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Abstract: Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher
level of uncertain and imprecise information, which cannot be represented using intuitionistic fuzzy
linguistic (IFL)/Pythagorean fuzzy linguistic (PFL) sets. On the other hand, the linguistic scale
function (LSF) is the better way to consider the semantics of the linguistic terms during the evaluation
process. It is worth noting that the existing operational laws and aggregation operators (AOs) for
Fermatean fuzzy linguistic numbers (FFLNs) are not valid in many situations, which can generate
errors in real-life applications. The present study aims to define new robust operational laws and
AOs under Fermatean fuzzy linguistic environment. To do so, first, we define some new modified
operational laws for FFLNs based on LSF and prove some important mathematical properties of them.
Next, the work defines several new AOs, namely, the FFL-weighted averaging (FFLWA) operator, the
FFL-weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA) opera-
tor, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid averaging (FFLHA)
operator and the FFL-hybrid geometric (FFLHG) operator under Fermatean fuzzy linguistic environ-
ment. Several properties of these AOs are investigated in detail. Further, based on the proposed AOs,
a new decision-making approach with Fermatean fuzzy linguistic information is developed to solve
group decision-making problems with multiple attributes. Finally, to illustrate the effectiveness of the
present approach, a real-life supplier selection problem is presented where the evaluation information
of the alternatives is given in terms of FFLNs. Compared to the existing methods, the salient features
of the developed approach are (1) it can solve decision-making problems with qualitative information
data using FFLNs; (2) It can consider the attitudinal character of the decision-makers during the
solution process; (3) It has a solid ability to distinguish the optimal alternative.

Keywords: Fermatean fuzzy set; Fermatean fuzzy linguistic set; Fermatean fuzzy linguistic number;
MAGDM; supplier selection

MSC: 03E72; 62A86; 90B50

1. Introduction

The intuitionistic fuzzy set (IFS) theory was introduced by Atanassov [1] in 1983
to accommodate uncertain and vague concepts more precisely in complex real-life sit-
uations. An IFS assigns each element a degree of membership (DM) and a degree of
non-membership (DNM), whose sum is always less than or equal to one. It has become
an important and widely studied generalization of fuzzy sets [2]. Due to the applicabil-
ity and effectiveness of the IFS theory, several researchers started work in this direction
and established many significant results. For aggregating different intuitionistic fuzzy
numbers (IFNs), a large number of AOs have been defined by considering various aspects
of available information [3–6]. The Bonferroni mean operators were studied in [7–10] to
capture the interrelationship between aggregated IFNs. Verma [11] proposed prioritized
weighted aggregation operators with intuitionistic fuzzy information based on Einstein
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t-norms. Zhenghai and Xu [12–14] undertook a detailed study on intuitionistic fuzzy
calculus and explored its utility in decision-making problems. Besides, several information
measures have been proposed under an intuitionistic fuzzy environment, including dis-
tance measure [15–18], similarity measure [19–22], entropy measure [23–26], divergence
measure [27–29], and inaccuracy measure [30] and applied them in different application
areas including pattern recognition, medical diagnosis, and decision making.

1.1. Literature Review

In 2013, Yager [31] and Yager and Abbasov [32] proposed the notion of the Pythagorean
fuzzy sets (PFSs) as a new generalization to IFSs. PFSs are more effective in modeling
imperfect or vague information, which cannot be represented in terms of IFSs. For example:
suppose an expert provides the DM of an alternative corresponding to a criterion as 0.8
and the DNM as 0.5. As we see, the sum of both degrees is 1.3, which does not satisfy the
essential condition of IFS. Further, if we consider the sum of the squares of both the degrees,
i.e., 0.82 + 0.52 then we obtain 0.89 < 1; hence, this information can be represented in the
form of PFS, not in IFS. In a short span, the PFS theory has become an efficient tool for
solving various real-life problems. Zhang and Xu [33] extended the TOPSIS method under
the Pythagorean fuzzy environment. Yager [34] proposed some novel AOs for aggregating
Pythagorean fuzzy numbers (PFNs). The power AOs were studied by Wei and Lu [35]
under a Pythagorean fuzzy environment. Yang et al. [36] defined some Pythagorean
fuzzy Bonferroni mean operators using t-norms. Akram et al. [37] developed a two-
phase group decision-making approach using the ELECTRE III method with Pythagorean
fuzzy information. Ejegwa [38] defined a modified Zhang and Xu’s distance measure for
solving pattern recognition problems with Pythagorean fuzzy information. Molla et al. [39]
extended the PROMETHEE method with PFSs and utilized them in medical diagnosis.
Bakioglu and Atahan [40] conducted a detailed study on prioritizing risks in self-driving
vehicles based on hybrid approaches with Pythagorean fuzzy information.

Again, let us assume the DM as 0.9 and the DNM as 0.6 in the above-discussed
example. It is clear that we do not express this information by using IFS and PFS. To cope
with this problem, Senapati and Yager [41] proposed the concept of Fermatean fuzzy set
(FFS), where the DM and DNM are both real numbers that lie between 0 and 1 and satisfy
the condition 0 ≤ (DM)3 + (DNM)3 ≤ 1. The main advantage of the FFS is that it provides
a better tool than IFS and PFS for handling the higher level of uncertainties arising in
many real-life decision-making problems. As we obtain 0.93 + 0.63 < 1, hence FFS is an
appropriate tool to capture this uncertain information. Later on, Senapati and Yager [42]
defined some operations on FFSs and discussed their application in decision-making. To
aggregate different Fermatean fuzzy numbers (FFNs), Senapati and Yager [43] developed
some weighted averaging/geometric AOs and utilized them to solve decision-making
problems with multiple criteria. Aydemir and Yilmaz Gunduz [44] used the TOPSIS
method with Dombi AOs for solving decision-making problems with Fermatean fuzzy
information. Mishra et al. [45] formulated a Fermatean fuzzy CRITIC-EDAS approach to
select sustainable logistics providers.

In many real-life situations, due to the increase in complexities and uncertainties
in practical decision problems, an expert feels difficulty expressing his/her preference
information by exact numerical values. Besides, many attributes and criteria can be
evaluated quickly and effectively in terms of linguistic values. Firstly, Zadeh [46,47]
developed the idea of the linguistic term set (LTS) in 1975. For example—suppose an
expert evaluates the performance of a motorbike, then he/she may use the terms “good”,
“excellent”, etc., to express his/her evaluation information because linguistic terms (LTs)
are very close to human cognition. In 2010, Wang and Li [48] developed a hybrid set theory
by combining the notions of LTS and IFS in a single formulation, which is known as the
intuitionistic linguistic fuzzy sets (ILFSs). In the literature, several research studies have
been conducted under the intuitionistic linguistic fuzzy environment. Liu [49] proposed
some generalized dependent AOs with intuitionistic linguistic fuzzy numbers (ILFNs) and
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studied their application in decision-making. Liu and Wang [50] defined some intuitionistic
linguistic generalized power aggregation operators. Su et al. [51] studied ordered weighted
distance averaging operators with intuitionistic linguistic fuzzy information. Yu et al. [52]
presented an extended TODIM method for solving MAGDM problems with ILFNs.

Recently, Liu et al. [53] generalized the notion of ILFSs and introduced Fermatean
fuzzy linguistic sets (FFLS) by integrating the idea of LTS with FFS. Besides, a MCDM
approach was formulated for solving decision problems with Fermatean fuzzy linguistic
information. Further, Liu et al. [54] defined some new distance and similarity measures
between FFLSs based on linguistic scale function (LSF) and utilized them in the devel-
opment of TODIM and TOPSIS methods. In conclusion, Fermatean fuzzy linguistic set
theory has a broader scope of applications in different practical areas. However, a limited
investigation has been conducted on FFLSs and their applications. It is also worth noting
that the operational laws defined by Liu et al. [54] for FFLNs are not valid in general.
Therefore, it is significant to pay attention to the research studies under the Fermatean
fuzzy linguistic environment.

1.2. Objective and Contributions of the Work

The main objective of this work is to define the modified operational laws for Fer-
matean fuzzy linguistic numbers (FFLNs) and study different AOs based on them to
aggregate Fermatean fuzzy linguistic information. To fulfill the aim of the proposed study,
firstly, the work defines some new modified operational laws for FFLNs based on LSF,
which overcome the drawbacks of the existing operational laws. We also study several
essential properties of the proposed modified operational laws. Then, the paper develops
several new AOs for aggregating different FFLNs and discusses several properties asso-
ciated with them. Finally, a decision-making approach is formulated to solve MAGDM
problems under the Fermatean fuzzy linguistic environment. The contributions of this
paper can be summarized as follows:

1. New and improved operational laws are introduced for FFLNs with their properties.
2. Several new AOs such as the FFL-weighted averaging (FFLWA) operator, the FFL-

weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA)
operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid
averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator are
defined for aggregating Fermatean fuzzy linguistic information.

3. A MAGDM method based on the proposed AOs is constructed to support the decision-
making problems under Fermatean fuzzy linguistic environment.

4. A sensitivity analysis is also conducted to analyze the impact of different AOs on the
ranking of the alternatives.

1.3. Organization of the Paper

The rest of the manuscript is organized as follows: In Section 2 we briefly review some
preliminary results on linguistic variables (LVs), LSF, FFS, FFLS and discuss some significant
drawbacks of the Fermatean fuzzy linguistic operational laws defined by Liu et al. [54].
Section 3 presents modified algebraic operational laws for FFLNs based on LSF and proves
several important properties of FFLNs using proposed operation laws. Then, we define
the FFLWA, FFLWG, FFLOWA, FFLOWG, FFLHA, and FFLHG AOs to aggregate different
FFLNs. In Section 4, based on the developed AOs, a MAGDM approach is formulated
for solving real-life decision problems with Fermatean fuzzy linguistic information. Then,
a real-life supplier selection problem is given to illustrate the decision-making steps and
effectiveness of the developed approach. In Section 5 we conclude the paper and discuss
some future works.
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2. Preliminaries
2.1. Linguistic Variables

The linguistic variable provides a useful tool to represent qualitative information in
terms of linguistic values. According to Herrera and Martínez [55], the linguistic variable
can be defined as follows:

Definition 1 ([55]). Let L̂ = {`d|d = 0, 1. . . . , 2t} be a totally ordered discrete LTS with the odd
cardinality. Any level `d denotes a possible value for a linguistic variable and t is a positive integer.
The LTS should meet the following properties:

i. `i ≤ `j ⇔ i ≤ j;
ii. neg(`d) = `2t−d;
iii. max

(
`i, `j

)
= `i ⇔ i ≥ j;

iv. min
(
`i, `j

)
= `i ⇔ i ≤ j;

where neg denotes the negation operator.

For example, a well-known set of seven linguistic terms can be defined as:

L̂ =

{
`0 = N(none), `1 = VL(very low), `2 = L(low), `3 = M(medium),

`4 = H( high ), `5 = VH(very high), `6 = P(perfect)

}
.

Further, Xu [56] defined the extended continuous LTS
_
L [0,2t] = {`d|`0 ≤ `d ≤ `2t,

d ∈ [0, 2t]}, where, if `d ∈
_
L , then `d is called the original linguistic term (OLT), otherwise

`d is called the virtual linguistic term (VLT). However, `d ∈
_
L is usually used by the

decision-makers to evaluate attributes/alternatives while `d ∈
_
L [0,2t] only appears in the

calculation process.

Definition 2 ([56]). Let `α, `β ∈
_
L [0,2t] and λ, λ1, λ2 ∈ [0, 1], then some operational laws are

given as follows:

(i) `α ⊕ `β = `α+β;
(ii) `α ⊗ `β = `α×β;
(iii) λ`α = `λα;
(iv) λ

(
`α ⊕ `β

)
= λ`α ⊕ λ`β;

2.2. Linguistic Scale Function

In the evaluation process, an expert uses LTs directly rather than their corresponding
semantics. In general, the simplest way to deal with LTs is to use the levels of LTs directly.
However, in different semantics decision-making environments, LTs have some differences
in expressing evaluations. To resolve these issues, Wang et al. [57] defined the LSF to deal
with linguistic information. According to the decision-making environment, experts can
consider different LSFs, which express available linguistic information more flexibly and
precisely in different semantic situations.

Definition 3 ([57]). Let L̂ = {`d|d = 0, 1, 2, . . . , 2t} be a discrete LTSs with the odd cardinality
and κd ∈ [0, 1] be a real number, then the LSF ϕ can be defined as

ϕ : `d → κd, d = 0, 1, 2, . . . , 2t. (1)

where ϕ is a strictly monotonically increasing function with respect to subscript d.

In general, there are three different linguistic scaling functions, given as
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LSF 1 ([58]). When the semantics of linguistic terms are uniformly (balanced) distributed, i.e., the
absolute semantic gap (ASG) between any adjacent LTs is always equal.

ϕ1(`d) = κd =
d
2t

, d = 0, 1, 2, . . . , 2t. (2)

LSF 2 ([58]). When the ASG between two semantics of the adjacent LTs increases with the extension
from `t to both ends of LTS.

ϕ2(`d) = κd =


θt−θt−d

2(θt−1) , d = 0, 1, 2, . . . , t,
θt+θd−t−2

2(θt−1) , d = t + 1, t + 2, . . . , 2t,
(3)

where θ is a threshold, which can be determined by a subjective method according to the specific
problem, and it should be greater than or equal to 1. If the LTS is a set of seven terms, then
θ ∈ [1.37, 1.40].

LSF 3 ([58]). When the ASG between two semantics of the adjacent LTs decreases with the extension
from `t to both ends of LTS.

ϕ3(`d) = κd =

{
tρ−(t−d)ρ

2tρ , d = 0, 1, 2, . . . , t,
tτ+(d−t)τ

2tτ , d = t + 1, t + 2, . . . , 2t,
(4)

where ρ, τ ∈ [0, 1] are determined according to the specific problem. If the LTS is a set of seven
terms, then ρ = τ = 0.8.

Example 1. Let L̂ =

{
`0 = N(none), `1 = VL(very low), `2 = L(low), `3 = M(medium),

`4 = H( high ), `5 = VH(very high), `6 = P(perfect)

}
be a LTS with seven terms. Figures 1–3 show the balanced distribution of L̂, unbalanced distribution
of L̂ in an increasing trend and the unbalanced distribution of L̂ in a decreasing trend, respectively.
Besides, Figure 4 represents the relationships between LTs of L̂ and their corresponding semantics
under different situations.

Meanwhile, to avoid an information loss and to facilitate the calculation process, the
LSF ϕ can be further generalized to an extended continuous LTS as follows:

Definition 4 ([57]). Let L̂[0,2t] = {`d|`0 ≤ `d ≤ `2t, d ∈ [0, 2t]} be an extended continuous LTS
and κd ∈ [0, 1] be a real number, then the LSF ϕ∗ is defined as

ϕ∗ : L̂[0,2t] → κd (5)

where ϕ∗ is also a strictly monotonically increasing function, and its inverse is expressed as ϕ∗−1.

Example 2. Let L̂[0,6] = {`d|d ∈ [0, 6]} be a continuous LTS, then the inverse corresponding to
the LSFs ϕ∗1 , ϕ∗2 and ϕ∗3 can be obtained as follows:

(1) If ϕ∗1(`d) = κd = d
6 (d = [0, 6]), then ϕ∗1

−1(κd) = `6×κd(κd ∈ [0, 1]).

(2) If ϕ∗2(`d) = κd =


θ3−θ3−d

2(θ3−1) , 0 ≤ d ≤ 3
θ3+θd−3−2

2(θ3−1) , 3 < d ≤ 6
, then ϕ∗2

−1(κd) =

{
`3−logθ [θ

3−(2θ3−2)κd ]
, κd ∈ [0, 0.5],

`3+logθ [(2θ3−2)κd−θ3+2], κd ∈ (0.5, 1].

(3) If ϕ∗3(`d) = κd =

{
3ρ−(3−d)ρ

2×3ρ , 0 ≤ d ≤ 3
3τ+(d−3)τ

2×3τ , 3 <d ≤ 6
, then ϕ∗3

−1(κd) =

{
`3−[3ρ−2×3ρ×κd ]

1/ρ , κd ∈ [0, 0.5],

`3+[2×3τ×κd−3τ ]1/τ , κd ∈ (0.5, 1].
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Figure 4. The relationships between LTs and their corresponding semantics under different situations.

2.3. Fermatean Fuzzy Linguistic Set

Definition 5 ([41]). A FFS F̂ in a fixed set X = {x1, x2, . . . , xn} is given by

F̂ =
{〈

xj, ξ F̂
(

xj
)
, ψF̂

(
xj
)〉
|xj ∈ X

}
(6)

where ξ F̂
(

xj
)

and ψF̂
(

xj
)

denote, respectively, the DM and DNM of xj ∈ X to the set F̂, with the

conditions ξ F̂ : X → [0, 1] , ψF̂ : X → [0, 1] and 0 ≤
(
ξ F̂
(
xj
))3

+
(
ψF̂
(
xj
))3 ≤ 1 ∀ x ∈ X.

For all xj ∈ X, the corresponding degree of hesitancy (DH) is defined as ζ F̂
(

xj
)
=

3
√

1−
(
ξ F̂
(

xj
))3 −

(
ψF̂
(
xj
))3. In the interest of simplicity, Senapati and Yager [41] called the

pair
〈
ξ F̂
(

xj
)
, ψF̂

(
xj
)〉

a FFLN and denoted by α = 〈ξα, ψα〉, which satisfies the conditions
ξα ∈ [0, 1], ψα ∈ [0, 1] and 0 ≤ (ξα)

3 + (ψα)
3 ≤ 1.

Definition 6 ([53]). Let X = {x1, x2, . . . , xn} be a fixed set and L̂[0,2t] = {`d|`0 ≤ `d ≤ `2t,
d ∈ [0, 2t]} be an extended continuous LTS, then a FFLS can be defined as

F =
{〈

xj, `σF(xj)
, ξF
(
xj
)
, ψF

(
xj
)〉
|xj ∈ X

}
(7)
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where `σF(xj)
∈ L̂[0,2t], ξF : X → [0, 1] and ψF : X → [0, 1] , satisfying 0 ≤(

ξF
(

xj
))3

+
(
ψF
(

xj
))3 ≤ 1 ∀ xj ∈ X. The numbers ξF

(
xj
)

and ψF
(
xj
)

represent, respec-
tively, the DM and DNM of xj ∈ X to the linguistic term `σF(xj)

. For all xj ∈ X, if ζF
(

xj
)
=

3
√

1−
(
ξF
(

xj
))3 −

(
ψF
(
xj
))3, then ζF

(
xj
)

is called the DH of xj ∈ X to `σF(xj)
.

Note that when ξF
(
xj
)
= 1 and ψF

(
xj
)
= 0 ∀ xj ∈ X, the FFLS reduces to the LTS. In

particular, when X has only one element, the FFLS is reduced into
〈
`σF(x), ξF(x), ψF(x)

〉
.

For convenience, the triplet
〈
`σF(x), ξF(x), ψF(x)

〉
is called a FFLN and simply denoted

by ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
, which meets the conditions ξ℘ ∈ [0, 1], ψ℘ ∈ [0, 1] and 0 ≤

(ξ℘)
3 + (ψ℘)

3 ≤ 1. We indicate the collection of all FFLNs by Ω.

Definition 7 ([54]). Let L̂[0,2t] be an extended continuous LTS,℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
, ℘1 =〈

`σ(℘1)
, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
`σ(℘2)

, ξ℘2 , ψ℘2

〉
be any three FFLNs, where `σ(℘), `σ(℘1)

, `σ(℘2)
∈

L̂[0,2t]. Further, consider that ϕ∗ and ϕ∗−1 denote a linguistic scale function and its inverse function,
respectively. Then, by using the LSF, some algebraic operational laws on FFLNs were defined by
Liu et al. [54] as follows:

(i). ℘1 ⊕ ℘2 =
〈

ϕ∗−1
(

ϕ∗
(
`σ(℘1)

)
+ ϕ∗

(
`σ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2

, ψ℘1 ψ℘2

〉
;

(ii). ℘1 ⊗ ℘2 =
〈

ϕ∗−1
(

ϕ∗
(
`σ(℘1)

)
ϕ∗
(
`σ(℘2)

))
, ξ℘1 ξ℘2 , 3

√
ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2

〉
;

(iii). λ℘ =

〈
ϕ∗−1

(
λϕ∗

(
`σ(℘)

))
, 3
√

1−
(
1− ξ3

℘

)λ, (ψ℘)
λ
〉

, λ ≥ 0;

(iv). ℘λ =

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘)

))λ
)

, (ξ℘)
λ, 3
√

1−
(
1− ψ3

℘

)λ
〉

, λ ≥ 0;

(v). neg(℘) =
〈

ϕ∗−1
(

ϕ∗(`2t)− ϕ∗
(
`σ(℘)

))
, ψ℘, ξ℘

〉
.

Definition 8 ([54]). Let ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
be a FFLN and ϕ∗ be a LSF, the score and accuracy

functions of ℘ are defined as

S(℘) = ϕ∗
(
`σ(℘)

)
×
(

ξ3
℘ + 1− ψ3

℘

2

)
and A(℘) = ϕ∗

(
`σ(℘)

)
×
(

ξ3
℘ + ψ3

℘

)
(8)

For any two FFLNs ℘1 =
〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
`σ(℘2)

, ξ℘2 , ψ℘2

〉
, the compari-

son rules between ℘1 and ℘2 are given as

(i). If S(℘1) > S(℘2), then ℘1 � ℘2;
(ii). If S(℘1) = S(℘2), then: (a) A(℘1) > A(℘2), then ℘1 � ℘2; (b) A(℘1) = A(℘2),

then ℘1 = ℘2.

Some shortcomings of the operational laws given in Definition 7

Here, we consider a numerical example in order to show the shortcomings of the
operations on FFLNs defined by Liu et al. [54].

Example 3. Let L̂[0,6] = {`d|d ∈ [0, 6]} be an extended continuous LTS, ℘1 = 〈`3, 0.3, 0.6〉,
℘2 = 〈`5, 0.5, 0.7〉 ℘3 = 〈`1, 0, 0.5〉, ℘4 = 〈`3, 0, 0.7〉, ℘5 = 〈`4, 0.8, 0〉 and ℘6 = 〈`6, 0.6, 0〉 be
six FFLNs. If ϕ∗

(
`σ(a)

)
= ϕ∗2

(
`σ(a)

)
(θ = 1.4) and λ = 4, then according to the operational

laws given in Definition 7, we have

(i). ℘1 ⊕ ℘2 =
〈

ϕ∗2
−1(ϕ∗2(`3) + ϕ∗2(`5)),

3
√

0.33 + 0.53 − 0.330.53, 0.6× 0.7
〉

=
〈

ϕ∗2
−1(0.5000 + 0.7752), 0.5279, 0.4200

〉
=
〈

ϕ∗2
−1(1.2752), 0.5279, 0.4200

〉
. Here, we
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see that ϕ∗2(`3)+ ϕ∗2(`5) = 1.2752 > 1, therefore, ϕ∗2
−1(ϕ∗2(`3) + ϕ∗2(`5)) = ϕ∗2

−1(1.2752)
is undefined.

(ii). ℘1 ⊗ ℘3 =
〈

ϕ∗2
−1(ϕ∗2(`3)ϕ∗2(`1)), 0.3× 0, 3

√
0.63 + 0.53 − 0.63 × 0.53

〉
=
〈

ϕ∗2
−1(0.5000× 0.2248), 0.0000, 0.6797

〉
= 〈`0.4619, 0.0000, 0.6797〉 (9)

and

℘1 ⊗ ℘4 =
〈

ϕ∗2
−1(ϕ∗2(`3)ϕ∗2(`3)), 0.3× 0, 3

√
0.63 + 0.73 − 0.63 × 0.73

〉
=
〈

ϕ∗2
−1(0.5000 + 0.5000), 0.0000, 0.7856

〉
= 〈`6, 0.0000, 0.7856〉

(10)

From Equations (9) and (10), it is clear that there is no effect of nonmembership values on
the membership values of ℘1 ⊗ ℘3 and ℘1 ⊗ ℘4. In general, if ℘1 =

〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
,

℘2 =
〈
`σ(℘2)

, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
`σ(℘3)

, ξ℘3 , ψ℘3

〉
are three different FFLNs satisfying,

ξ℘2 = ξ℘3 = 0, ψ℘2 6= ψ℘3 then we always obtain ξ℘1⊗℘2 = ξ℘1⊗℘3 = 0. This outcome
does not match our intuition.

(iii). ℘2 ⊕ ℘5 =
〈

ϕ∗2
−1(ϕ∗2(`5) + ϕ∗2(`4)),

3
√

0.53 + 0.83 − 0.53 × 0.83, 0.7× 0,
〉

=
〈

ϕ∗2
−1(0.7752 + 0.6147), 0.8306, 0.0000

〉
=
〈

ϕ∗2
−1(1.3899), 0.8306, 0.0000

〉
(11)

and

℘2 ⊕ ℘6 =
〈

ϕ∗2
−1(ϕ∗2(`5) + ϕ∗2(`6)),

3
√

0.53 + 0.63 − 0.53 × 0.63, 0.7× 0
〉

=
〈

ϕ∗2
−1(0.7752 + 1.0000), 0.6797, 0.0000

〉
=
〈

ϕ∗2
−1(1.7752), 0.6797, 0.0000

〉 (12)

The obtained resulting values in Equations (11) and (12) indicate that there is no effect of
the membership values on the nonmembership values of ℘2 ⊕ ℘5 and ℘2 ⊕ ℘6. In general, if
℘1 =

〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
, ℘2 =

〈
`σ(℘2)

, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
`σ(℘3)

, ξ℘3 , ψ℘3

〉
are three

different FFLNs satisfying, ξ℘2 6= ξ℘3 , ψ℘2 = ψ℘3 = 0 then we always obtain ψ℘1⊕℘2 =
ψ℘1⊕℘3 = 0. Additionally, ϕ∗2

−1(1.3899) and ϕ∗2
−1(1.7752) are undefined.

4℘1 =

〈
ϕ∗2
−1(4× ϕ∗2(`3)),

3
√

1− (1− 0.33)
4, (0.6)4

〉
=
〈

ϕ∗2
−1(2.0000), 0.4698, 0.1296

〉
, (13)

4℘2 =

〈
ϕ∗2
−1(4× ϕ∗2(`5)),

3
√

1− (1− 0.53)
4, (0.7)4

〉
=
〈

ϕ∗2
−1(3.1008), 0.7452, 0.2401

〉
(14)

From Equations (13) and (14), we can see that ϕ∗2
−1(2.0000) and ϕ∗2

−1(3.1008) are undefined
because here κd > 1. Hence, 4℘1 and 4℘2 are not FFLNs.

Based on the above analysis, we conclude that the operational laws defined in Defini-
tion 7 are not suitable for FFLNs. Therefore, in order to nullify the above shortcomings, it
is necessary to modify these operational laws. In the next section, we first define some new
modified operational laws for FFLNs based on LSF and discuss their properties in detail.
Then, we introduce some aggregation operators for aggregating different FFLNs.

3. Fermatean Fuzzy Aggregation Operators
3.1. Improved Operational Laws for FFLNs Based on LSF

Here, we define some improved operational laws for FFLNs, which overcome the
shortcomings of the existing operations.

Definition 9. Let L̂[0,2t] be an extended continuous LTS, ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
,

℘1 =
〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
sσ(℘2)

, ξ℘2 , ψ℘2

〉
be three FFLNs, where `σ(℘), `σ(℘1)

, `σ(℘2)
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∈ L̂[0,2t]. Further, consider that ϕ∗ and ϕ∗−1 denote a linguistic scale function and its inverse
function, respectively. The improved operational laws between them based on LSFs are defined as

(i) ℘1⊕̃℘2 =
〈

ϕ∗−1
(

ϕ∗
(
`σ(℘1)

)
+ ϕ∗

(
`σ(℘2)

)
− ϕ∗

(
`σ(℘1)

)
ϕ∗
(
`σ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2

, 3
√

ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2
− ψ3

℘1
ξ3
℘2
− ξ3

℘1
ψ3
℘2

〉
=
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

)))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
, 3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))〉
;

(ii) ℘1⊗̃℘2 =
〈

ϕ∗−1
(

ϕ∗
(
`σ(℘1)

)
ϕ∗
(
`σ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2
− ξ3

℘1
ψ3
℘2
− ψ3

℘1
ξ3
℘2

, 3
√

ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2

〉
=
〈

ϕ∗−1
(

ϕ∗
(
`σ(℘1)

)
ϕ∗
(
`σ(℘2)

))
, 3
√(

1− ψ3
℘1

)(
1− ψ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ψ3

℘1

)(
1− ψ3

℘2

)〉
;

(iii) λ∗̃℘ =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))λ
)

, 3
√

1−
(
1− ξ3

℘

)λ, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
〉

, λ > 0;

(iv) ℘̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘)

))λ
)

, 3
√(

1− ψ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ψ3

℘

)λ
〉

, λ > 0.

Theorem 1. The numbers ℘1⊕̃℘2, ℘1⊗̃℘2, λ∗̃℘, and ℘̃̂λ are also FFLNs.

Proof. Here, we shall prove only ℘1⊕̃℘2 and λ∗̃℘ are FFLNs, while others can be shown
similarly. Since ℘i =

〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2) are two FFLNs, where `σ(℘i)

∈ L̂[0,2t],

ξ℘i , ψ℘i ∈ [0, 1] and 0 ≤ ξ3
℘i

+ ψ3
℘i
≤ 1, i = 1, 2. For `σ(℘1)

, `σ(℘2)
∈ L̂[0,2t], based on

the definition of the LSFs, we know 0 ≤ ϕ∗
(
`σ(℘1)

)
, ϕ∗
(
`σ(℘2)

)
≤ 1. Then, 0 ≤ 1 −(

1− ϕ∗
(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

))
≤ 1⇒ ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

)))
∈ L̂[0,2t]. Now 0 ≤ ξ℘1 , ξ℘2 ≤ 1, which implies 0 ≤

(
1− ξ3

℘1

)(
1− ξ3

℘2

)
≤ 1 ⇔ 0 ≤

3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
≤ 1. Moreover, because 1− ξ3

℘1
≥ 1− ξ3

℘1
− ψ3

℘1
and 1− ξ3

℘2
≥

1− ξ3
℘2
− ψ3

℘2
, then 0 ≤ 3

√(
1− ξ3

℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
≤ 1.

Further

(
3

√
1−

( (
1− ξ3

℘1

)(
1− ξ3

℘2

) ))3

+

(
3

√( (
1− ξ3

℘1

)(
1− ξ3

℘2

) )−( (
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

)) ))3

= 1−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
≤ 1. Thus, it shows that the a1⊕̃a2 is a FFLN.

For any λ > 0, 0 ≤ 1 −
(

1− ϕ∗
(
`σ(℘)

))λ
≤ 1, which gives

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘)

))λ
)
∈ L̂[0,2t]. Additionally, 0 ≤ ξ℘1 , ξ℘2 , ψ℘1 , ψ℘2 ≤ 1, which

implies 0 ≤ 3
√

1−
(
1− ξ3

℘

)λ ≤ 1 and 0 ≤ 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ ≤ 1.

Further
(

3
√

1−
(
1− ξ3

℘

)λ
)3

+

(
3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
)3

= 1−
(
1−

(
ξ3
℘ + ψ3

℘

))λ ≤ 1. Hence, λ∗̃℘ is also a FFLN.
This completes the proof. �

Example 4. Let L̂[0,6] = {`d|d ∈ [0, 6]} be an extended continuous LTS, ℘ = 〈`2, 0.4, 0.5〉,
℘1 = 〈`3, 0.3, 0.6〉, ℘2 = 〈`5, 0.5, 0.7〉 be three FFLNs and λ = 5. Then, according to the modified
operation laws, we obtained the following results as shown in Table 1:

Table 1. Values of different operations.

Operation ϕ∗ = ϕ∗1 ϕ∗ = ϕ∗2 and θ = 1.4 ϕ∗ = ϕ∗3 and ρ = τ = 0.8

℘1⊕̃℘2 〈`5.4996, 0.5297, 0.7655〉 〈`5.5418, 0.5297, 0.7655〉 〈`5.4896, 0.5297, 0.7655〉
℘1⊗̃℘2 〈`2.5002, 0.4826, 0.7856〉 〈`2.0169, 0.4826, 0.7856〉 〈`2.7468, 0.4826, 0.7856〉

λ∗̃℘ 〈`5.2098, 0.6149, 0.6945〉 〈`5.6483, 0.6149, 0.6945〉 〈`4.7348, 0.6149, 0.6945〉
℘̃̂λ 〈`0.0246, 0.5355, 0.7452〉 〈`0.0323, 0.5355, 0.7452〉 〈`0.0157, 0.5355, 0.7452〉

Further, if we consider Example 3 again and utilize the improved operational laws
summarized in Definition 9, Table 2 presents the obtained results.
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Table 2. Calculation results of Example 3 based on the proposed operational laws.

Operation ϕ∗ = ϕ∗2 and θ = 1.4

℘1⊕̃℘2 〈`5.5418, 0.5279, 0.7655〉
℘1⊗̃℘3 〈`0.4582, 0.2869, 0.6797〉
℘1⊗̃℘4 〈`1.1365, 0.2608, 0.7856〉
℘2⊕̃℘5 〈`5.6534, 0.8306, 0.5511〉
℘2⊕̃℘6 〈`6.0000, 0.6797, 0.6455〉
4∗̃℘1 〈`5.7540, 0.4698, 0.8281〉
4∗̃℘2 〈`5.9902, 0.7452, 0.7969〉

The obtained calculation results verify that the improved operational laws are more
reasonable and realistic as per our intuition.

Theorem 2. Let L̂[0,2t] be an extended continuous LTS, and ℘1 =
〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
, ℘2 =〈

`σ(℘2)
, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
`σ(℘3)

, ξ℘3 , ψ℘3

〉
be three FFLNs, where `σ(℘1)

, `σ(℘2)
, `σ(℘3)

∈
L̂[0,2t]. The following results hold:

(i). ℘1⊕̃℘2 = ℘2⊕̃℘1;
(ii). ℘1⊗̃℘2 = ℘2⊗̃℘1;
(iii).

(
℘1⊕̃℘2

)
⊕̃℘3 = ℘1⊕̃

(
℘2⊕̃℘3

)
;

(iv).
(
℘1⊗̃℘2

)
⊗̃℘3 = ℘1⊗̃

(
℘2⊗̃℘3

)
.

Proof. The results follow directly from Definition 9, so we omit the proofs of them. �

Theorem 3. Let L̂[0,2t] be an extended continuous LTS, ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
℘1 =

〈
`σ(℘1)

, ξ℘1 , ψ℘1

〉
, and ℘2 =

〈
`σ(℘2)

, ξ℘2 , ψ℘2

〉
be three FFLNs and λ, λ1, λ2 > 0, where

`σ(℘), `σ(℘2)
, `σ(℘2)

∈ L̂[0,2t], then

(i). (λ∗̃℘1)⊕̃(λ∗̃℘2) = λ∗̃
(
℘1⊕̃℘2

)
;

(ii). (λ1∗̃℘)⊕̃(λ2∗̂℘) = (λ1 + λ2)∗̃℘
(iii).

(
℘1̃̂λ

)
⊗̃
(
℘2̃̂λ

)
=
(
℘1⊗̃℘2

)̃̂
λ;

(iv).
(
℘̃̂λ1

)
⊗̃
(
℘̃̂λ2

)
= ℘̃̂(λ1 + λ2);

(v). λ1∗̃(λ2∗̃℘) = (λ1λ2)∗̃℘;

(vi).
(
℘̃̂λ1

)̃̂
λ2 = ℘̃̂(λ1λ2).

(vii). neg
(
℘1⊕̃℘2

)
= neg(℘1)⊗̃neg(℘2)

(viii). neg
(
℘1⊗̃℘2

)
= neg(℘1)⊕̃neg(℘2);

(ix). (neg(℘))̃̂λ = neg(λ∗̃℘);
(x). λ∗̃(neg(℘)) = neg

(
℘̃̂λ
)

.

Proof. Here, we only prove the parts (i), (iii), (v), (vii), and (ix); the others can be proved
similarly.

(i) From Definition 9, we have

λ∗̃℘1 =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘1)

))λ
)

, 3
√

1−
(
1− ξ3

℘1

)λ, 3
√(

1− ξ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
〉

, (15)

and

λ∗̃℘2 =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘2)

))λ
)

, 3
√

1−
(
1− ξ3

℘2

)λ, 3
√(

1− ξ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
〉

, (16)

Using Equations (15) and (16), we obtain
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(λ∗̃℘1)⊕̃(λ∗̃℘2)

=

〈
ϕ∗−1

 1−
(

1− ϕ∗
(

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘1)

))λ
)))

(
1− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘2)

))λ
)))

, 3

√√√√1−
(

1−
(

3
√

1−
(
1− ξ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ξ3

℘1

)λ
)3
)

,

3

√√√√√√√√√√√√√√

(
1−

(
3
√

1−
(
1− ξ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ξ3

℘2

)λ
)3
)

−
(

1−
((

3
√

1−
(
1− ξ3

℘1

)λ
)3

+

(
3
√(

1− ξ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
)3
))

(
1−

((
3
√

1−
(
1− ξ3

℘2

)λ
)3

+

(
3
√(

1− ξ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
)3
))

〉

=

〈
ϕ∗−1

(
1−

((
1− ϕ∗

(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

)))λ
)

, 3
√

1−
((

1− ξ3
℘1

)(
1− ξ3

℘2

))λ,

3
√((

1− ξ3
℘1

)(
1− ξ3

℘2

))λ −
((

1−
(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

)))λ

〉
= λ∗̃

(
℘1⊕̃℘2

)
.

(iii) According to Definition 9, we have

℘1̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘1)

))λ
)

, 3
√(

1− ψ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ, 3
√

1−
(
1− ψ3

℘1

)λ
〉

, (17)

and

℘2̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘2)

))λ
)

, 3
√(

1− ψ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ, 3
√

1−
(
1− ψ3

℘2

)λ
〉

. (18)

By Equations (17) and (18), we obtain

(
℘1̃̂λ

)
⊗̃
(
℘2̃̂λ

)
=

〈

ϕ∗−1
(

ϕ∗
(

ϕ∗−1
((

ϕ∗
(
`σ(℘1)

))λ
))

ϕ∗
(

ϕ∗−1
((

ϕ∗
(
`σ(℘2)

))λ
)))

,

3

√√√√√√√√√√√√√√√√


(

1−
(

3
√

1−
(
1− ψ3

℘1

)λ
)3
)

(
1−

(
3
√

1−
(
1− ψ3

℘2

)λ
)3
)
−



1−


(

3
√(

1− ψ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
)3

+

(
3
√

1−
(
1− ψ3

℘1

)λ
)3




1−


(

3
√(

1− ψ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
)3

+

(
3
√

1−
(
1− ψ3

℘2

)λ
)3





,

3

√√√√1−
(

1−
(

3
√

1−
(
1− ψ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ψ3

℘2

)λ
)3
)

〉

=

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘1)

)
ϕ∗
(
`σ(℘2)

))λ
)

, 3
√((

1− ψ3
℘1

)(
1− ψ3

℘2

))λ −
((

1−
(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

)))λ ,

3
√

1−
((

1− ψ3
℘1

)(
1− ψ3

℘2

))λ

〉
=
(
℘1⊗̃℘2

)̃̂
λ.

(v) For two positive real numbers λ1 and λ2, we have

λ1∗̃(λ2∗̃℘) = λ1

(〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))λ2
)

, 3
√

1−
(
1− ξ3

℘

)λ2 , 3
√(

1− ξ3
℘

)λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ2

〉)
,

=

〈 ϕ∗−1

(
1−

(
1− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))λ2
)))λ1

)
, 3

√√√√1−
(

1−
(

3
√

1−
(
1− ξ3

℘

)λ2

)3
)λ1

,

3

√√√√(1−
(

3
√

1−
(
1− ξ3

℘

)λ2

)3
)λ1

−
(

1−
((

3
√

1−
(
1− ξ3

℘

)λ2

)3
+

(
3
√(

1− ξ3
℘

)λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ2

)3
))λ1

〉

=

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))λ1λ2
)

, 3
√

1−
(
1− ξ3

℘

)λ1λ2 , 3
√(

1− ξ3
℘

)λ1λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ1λ2

〉
= (λ1λ2)∗̃℘
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(vii) From Definitions 7 and 9, we have

neg
(
℘1⊕̃℘2

)
=

〈
ϕ∗−1

(
ϕ∗(`2t)− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

)))))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

) 〉

=

〈
ϕ∗−1

(
ϕ∗(`2t)−

(
1−

(
1− ϕ∗

(
`σ(℘1)

))(
1− ϕ∗

(
`σ(℘2)

))))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

) 〉

=

〈
ϕ∗−1

((
ϕ∗(`2t)− ϕ∗

(
`σ(℘1)

))(
ϕ∗(`2t)− ϕ∗

(
`σ(℘2)

)))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ψ3
℘1

+ ξ3
℘1

))(
1−

(
ψ3
℘2

+ ξ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

) 〉;= neg(℘1)⊗̃neg(℘2)

(ix) (neg(℘))̃̂λ =
(〈

ϕ∗−1
(

ϕ∗(`2t)− ϕ∗
(
`σ(℘)

))
, ψ℘, ξ℘

〉)λ

=

〈
ϕ∗−1

((
ϕ∗(`2t)− ϕ∗

(
`σ(℘)

))λ
)

, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ξ3

℘

)λ
〉

=

〈
ϕ∗−1

(
ϕ∗(`2t)− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))λ
)))

, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ξ3

℘

)λ
〉

= neg
(〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘)

))λ
)

, 3
√

1−
(
1− ξ3

℘

)λ, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
〉)

= neg(λ∗̃℘).

This completes the proof. �
Next, by utilizing proposed improved operational laws on FFLNs, we propose some

arithmetic and geometric aggregation operators for fusing a collection of FFLNs ℘i =〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n).

3.2. FFL-Weighted Average (FFLWA) Operator

The weighted average (WA) is the most commonly used mean operator in a wide
range of application areas. Here, we extend the idea of WA to the Fermetean fuzzy linguistic
information environment and propose the following formal definition.

Definition 10. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs. The FFL-

weighted average (FFLWA) operator is a mapping FFLWA : Ωn → Ω , such that

FFLWA(℘1,℘2, . . . ,℘n) =
n
⊕̃

i=1
(wi∗̃℘i), (19)

where w = (w1, w2, . . . , wn)
T is the weight vector of ℘i with wi ∈ [0, 1],

n
∑

i=1
wi = 1. Especially

when w =
(

1
n , 1

n , . . . , 1
n

)T
, the FFLWA operator reduces to FFL-average (FFLA) operator, which

is defined as

FFLWA(℘1,℘2, . . . ,℘n) =
1
n
∗̃
( n
⊕̃

i=1
℘i

)
. (20)

Theorem 4. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of n FFLNs and w =

(w1, w2, . . . , wn)
T be the weight vector of ℘i with wi ∈ [0, 1],

n
∑

i=1
wi = 1, then the aggregated

value by using the FFLWA operator is also a FFLN and
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FFLWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
. (21)

Proof. The first result directly holds from Theorem 1. Using the principle of mathemat-
ical induction, we shall prove the result stated in Equation (21). Firstly, for n = 2, by
Definition 9, we obtain

w1∗̃℘1 =
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘1)

))w1
)

, 3
√

1−
(
1− ξ3

℘1

)w1 , 3
√(

1− ξ3
℘1

)w1 −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))w1
〉

,

w2∗̃℘2 =
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
`σ(℘2)

))w2
)

, 3
√

1−
(
1− ξ3

℘2

)w2 , 3
√(

1− ξ3
℘2

)w2 −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))w2
〉
. (22)

Hence,

FFLWA(℘1,℘2) =

〈 ϕ∗−1
(

1−
2

∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

2
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
2

∏
i=1

(
1− ξ3

℘i

)wi −
2

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
(23)

Hence, the result is valid for n = 2.
Next, assume that Equation (21) is true for n = k, i.e.,

FFLWA(℘1,℘2, . . . ,℘k) =

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

k
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
. (24)

Then, for n = k + 1, by Definition 10, we have

FFLWA(℘1,℘2, . . . ,℘k,℘k+1) = FFLWA(℘1,℘2, . . . ,℘k)⊕̃(wk+1∗̃℘k+1)

=

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

k
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈
`σ(℘k+1)

, ξ℘k+1 , ψ℘k+1

〉

=

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
(

1− ϕ∗
(
`σ(℘k+i)

))wk+i
)

, 3

√
1−

k
∏
i=1

(
1− ξ3

℘i

)wi
(

1− ξ3
℘k+1

)wk+1
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi
(

1− ξ3
℘k+1

)wk+1 −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
(

1−
(

ξ3
℘k+1

+ ψ3
℘k+1

))wk+1

〉

=

〈 ϕ∗−1
(

1−
k+1
∏
i=1

(
1− ϕ∗

(
`σ(ai)

))wi
)

, 3

√
1−

k+1
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k+1
∏
i=1

(
1− ξ3

℘i

)wi −
k+1
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉

(25)

i.e., the Equation (21) holds for n = k + 1.
This proves the theorem. �

Theorem 5. The FFLWA operator, defined in Equation (21), holds the following properties:
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(P1) (Idempotency): If ℘i = ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLWA(℘1,℘2, . . . ,℘n) = ℘. (26)

(P2) (Monotonicity): Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
and ℵi =

〈
`σ(ℵi)

, ξℵi , ψℵi

〉
(i = 1, 2, . . . , n) be two collections of FFLNs such that `σ(℘i)

≤ `σ(ℵi)
, ξ3

℘i
≤ ξ3

ℵi
, ξ3

℘i
+ ψ3

℘i
≥

ξ3
ℵi
+ ψ3

ℵi
∀ i, then

FFLWA(℘1,℘2, . . . ,℘n) ≤ FFLWA(ℵ1,ℵ2, . . . ,ℵn). (27)

(P3) (Boundedness): Let

℘− =

〈
min

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
, min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
, max

{
0,

(
max

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

) )} 〉
,

and

℘+ =

〈
max

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
, max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
,
(

min
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

) ) 〉
,

then
℘− ≤ FFLWA(℘1,℘2, . . . ,℘n) ≤ ℘+.

(P4): If ℵ =
〈

sσ(ℵ), ξℵ, ψℵ
〉

is another FFLN, then

FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ. (28)

(P5): Let ϑ > 0 be a real number, then

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) = ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)). (29)

(P6): Let ℵ =
〈

sσ(ℵ), ξℵ, ψℵ
〉

be another FFLN and ϑ > 0 be a real number, then

FFLWA
(
(ϑ∗̃℘1)⊕̃ℵ, (ϑ∗̃℘2)⊕̃ℵ, . . . , (ϑ∗̃℘n)⊕̃ℵ

)
= (ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)))⊕̃b. (30)

(P7): Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
and ℵi =

〈
sσ(ℵi)

, ξℵi , ψℵi

〉
, (i = 1, 2, . . . , n) be two

collections of FFLNs, then

FFLWA
(
℘1⊕̃ℵ1,℘2⊕̃ℵ2, . . . ,℘n⊕̃ℵn

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃FFLWA(ℵ1,ℵ2, . . . ,ℵn). (31)

Proof. (P1) Assume that ℘i = ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
∀ i, then
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FFLWA(℘1,℘2, . . . ,℘n) = FFLWA(℘,℘, . . . ,℘)

=

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘

)wi ,

3

√
n
∏
i=1

(
1− ξ3

℘

)wi −
n
∏
i=1

(
1−

(
ξ3
℘ + ψ3

℘

))wi

〉

=

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘)

))w1+w2+···+wn
)

, 3
√

1−
(
1− ξ3

℘

)w1+w2+···+wn ,

3
√(

1− ξ3
℘

)w1+w2+···+wn −
(
1−

(
ξ3
℘ + ψ3

℘

))w1+w2+···+wn

〉

=
〈
`σ(℘), ξ℘, ψ℘

〉
= ℘.

(P2) Since `σ(℘i)
≤ `σ(ℵi)

and ϕ∗ is a strictly monotonically increasing function, then

`σ(℘i)
≤ `σ(ℵi)

⇔ 1− ϕ∗
(
`σ(℘i)

)
≥ 1−ϕ∗

(
`σ(ℵi)

)
⇔ ϕ∗−1

(
1−

n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)
≤ ϕ∗−1

(
1−

n
∏
i=1

(
1− ϕ∗

(
`σ(ℵi)

))wi
) . (32)

As ξ3
℘i
≤ ξ3

ℵi
(i = 1, 2, . . . , n) and ξ3

℘i
+ ψ3

℘i
≥ ξ3

ℵi
+ ψ3

ℵi
(i = 1, 2, . . . , n), we have

3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi ≤ 3

√
1−

n
∏
i=1

(
1− ξ3

ℵi

)wi

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi ≥ 3

√
n
∏
i=1

(
1− ξ3

ℵi

)wi −
n
∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi

. (33)

According to Definition 10, we have

FFLWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
,

and

FFLWA(ℵ1,ℵ2, . . . ,ℵn) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(ℵi)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

ℵi

)wi
,

3

√
n
∏
i=1

(
1− ξ3

ℵi

)wi −
n
∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi

〉

Now, using Definition 8, we obtain S(FFLWA(℘1,℘2, . . . ,℘n)) ≤ S(FFLWA(ℵ1,ℵ2,
. . . ,ℵn)), which gives

FFLWA(℘1,℘2, . . . ,℘n) ≤ FFLWA(ℵ1,ℵ2, . . . ,ℵn).

(P3) It directly follows from Property 2.
(P4) Since, so

℘i⊕̃ℵ =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘i)

))(
1− ϕ∗

(
`σ(ℵ)

)))
, 3

√
1−

(
1− ξ3

℘i

)(
1− ξ3

ℵ
)
,

3

√(
1− ξ3

℘i

)(
1− ξ3

ℵ
)
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
))

〉
(34)

Therefore,
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FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)
=

〈 ϕ∗−1
(

1−
n
∏
i=1

((
1− ϕ∗

(
`σ(℘i)

))(
1− ϕ∗

(
`σ(ℵ)

)))wi
)

, 3

√
1−

n
∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵ
))wi

,

3

√
n
∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵ
))wi −

n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
)))wi

〉

=

〈 ϕ∗−1
(

1−
(

n
∏
i=1

((
1− ϕ∗

(
`σ(℘i)

)))wi
)(

1− ϕ∗
(
`σ(ℵ)

)))
, 3

√
1−

(
n
∏
i=1

(
1− ξ3

℘i

)wi
)(

1− ξ3
ℵ
)
,

3

√(
n
∏
i=1

(
1− ξ3

℘i

)wi
)(

1− ξ3
ℵ
)
−
(

n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)(

1−
(
ξ3
ℵ + ψ3

ℵ
))
〉

=

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈
`σ(ℵ), ξℵ, ψℵ

〉

= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ.

(P5) For any ϑ > 0, we have

ϑ∗̃℘i =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘i)

))ϑ
)

, 3

√
1−

(
1− ξ3

℘i

)ϑ
, 3

√(
1− ξ3

℘i

)ϑ
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))ϑ
〉

. (35)

Therefore,

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

((
1− ϕ∗

(
`σ(℘i)

))ϑ
)wi

)
, 3

√
1−

n
∏
i=1

((
1− ξ3

℘i

)ϑ
)wi

,

3

√
n
∏
i=1

((
1− ξ3

℘i

)ϑ
)wi

−
n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))ϑ
)wi

〉

=

〈 ϕ∗−1
(

1−
n
∏
i=1

((
1− ϕ∗

(
`σ(℘i)

))wi
)ϑ
)

, 3

√
1−

n
∏
i=1

((
1− ξ3

℘i

)wi
)ϑ

,

3

√
n
∏
i=1

((
1− ξ3

℘i

)wi
)ϑ
−

n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)ϑ

〉

= ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)).

(P6) From Property 4, we know

FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ, (36)

and according to Property 5, we have

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) = ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n))., (37)

From Equations (36) and (37), we obtain the desired results.
(P7) Since ℘i,ℵi ∈ Ω, then

℘i⊕̃ℵi =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
`σ(℘i)

))(
1− ϕ∗

(
`σ(ℵi)

)))
, 3

√
1−

(
1− ξ3

℘i

)(
1− ξ3

ℵi

)
,

3

√(
1− ξ3

℘i

)(
1− ξ3

ℵi

)
−
(

1−
(

ξ3
℘i
+ ψ3

ℵi

))(
1−

(
ξ3
℘i
+ ψ3

ℵi

))
〉

. (38)

Therefore,
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FFLWA
(
℘1⊕̃ℵ1,℘2⊕̃ℵ2, . . . ,℘n⊕̃ℵn

)
=

〈 ϕ∗−1
(

1−
n
∏
i=1

((
1− ϕ∗

(
`σ(℘i)

))(
1− ϕ∗

(
`σ(ℵi)

)))wi
)

, 3

√
1−

n
∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵi

))wi
,

3

√
n
∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵi

))wi −
n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

ℵi

))(
1−

(
ξ3
℘i
+ ψ3

ℵi

)))wi

〉

=

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi n
∏
i=1

(
1− ϕ∗

(
`σ(ℵi)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi n
∏
i=1

(
1− ξ3

ℵi

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi n
∏
i=1

(
1− ξ3

ℵi

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi n
∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi

〉

=

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(ρi)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈 ϕ∗−1

(
1−

n
∏
i=1

(
1− ϕ∗

(
`σ(℘i)

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n
∏
i=1

(
1− ξ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉

= FFLWA(℘1,℘2, . . . ,℘n)⊕̃FFLWA(ℵ1,ℵ2, . . . ,ℵn).

This proves the theorem. �

3.3. FFL-Ordered Weighted Average (FFLOWA) Operator

The ordered weighted averaging (OWA) operator [59] is an aggregation operator that
provides a parameterized family of aggregation operators between the minimum and the
maximum. In this subsection, we extend the idea of the FFLWA operator into the FFLOWA
operator based on the OWA operator.

Definition 11. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, the

FFLOWA operator of dimension n is a mapping FFLOWA : Ωn → Ω , that has an associated

weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n
∑

i=1
ωi = 1, then

FFLOWA(℘1,℘2, . . . ,℘n) =
n
⊕̃

i=1

(
ωi∗̃℘φ(i)

)
, (39)

where ℘φ(i) is the ith largest value of ℘i(i = 1, 2, . . . , n).

Theorem 6. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLOWA operator is also a FFLN and

FFLOWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(℘φ(i))

))ωi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3

℘φ(i)

)ωi
,

3

√
n
∏
i=1

(
1− ξ3

℘φ(i)

)ωi −
n
∏
i=1

(
1−

(
ξ3
℘φ(i)

+ ψ3
℘φ(i)

))ωi

〉
. (40)

Proof. The proof of this theorem is similar to Theorem 4, so it is omitted here. �

It can be easily proved that the FFLOWA operator holds the following properties.
(P1) (Idempotency): If ℘i = ℘ =

〈
`σ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLOWA(℘1,℘2, . . . ,℘n) = ℘. (41)

(P2) (Monotonicity): Let℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
andℵi =

〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n)

be two collections of FFLNs such that `σ(℘i)
≤ `σ(ℵi)

, ξ℘i ≤ ξℵi , ξ℘i + ψ℘i ≥ ξℵi + ψℵi∀ i,
then

FFLOWA(℘1,℘2, . . . ,℘n) ≤ FFLOWA(ℵ1,ℵ2, . . . ,ℵn). (42)
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(P3) (Boundedness): Let

℘− =

〈
min

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
, min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
, max

{
0,

(
max

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

) )} 〉
,

and

℘+ =

〈
max

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
, max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
,
(

min
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

) ) 〉

then
℘− ≤ FFLOWA(℘1,℘2, . . . ,℘n) ≤ ℘+. (43)

P4 (Commutativity): Let (℘′1,℘′2, , . . . ,℘′n) be any permutation of (℘1,℘2, . . . ,℘n),
then

FFLOWA(℘1,℘2, . . . ,℘n) = FFLOWA
(
℘′1,℘′2, , . . . ,℘′n

)
. (44)

Further, motivated by the idea of geometric mean and ordered weighted geometric
operator [60], we develop the FFLWG operator and the FFLOWG operator.

3.4. FFL-Weighted Geometric (FFLWG) Operator

This subsection extends the notion of weighted geometric mean to the Fermetean
fuzzy linguistic information environment and defines the FFL-weighted geometric operator
as follows:

Definition 12. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs. The

FFL-weighted geometric (FFLWG) operator is a mapping FFLWG : Ωn → Ω , such that

FFLWG(℘1,℘2, . . . ,℘n) =
n
⊗̃

i=1

(
℘ĩ̂wi

)
, (45)

where w = (w1, w2, . . . , wn)
T denotes the weight vector of ℘i with wi ∈ [0, 1],

n
∑

i=1
wi = 1.

Especially, in the case of w =
(

1
n , 1

n , . . . , 1
n

)T
, the FFLWG operator is reduced into FFLG operator

expressed as

FFLG(a1, a2, . . . , an) =
n
⊗̃

i=1

(
℘ĩ̂

1
n

)
. (46)

Theorem 7. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLWG operator is also a FFLN and

FFLWG(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

n
∏
i=1

(
ϕ∗
(
`σ(℘i)

))wi
)

, 3

√
n
∏
i=1

(
1− ψ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
,

3

√
1−

n
∏
i=1

(
1− ψ3

℘i

)wi

〉
. (47)

Proof. Based on improved operational laws on FFLNs mentioned in Definition 9, Theorem 6
is evident from Theorems 4. �

Theorem 8. The FFLWG operator satisfies the following properties:
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(P1) (Idempotency): If ℘i = ℘ =
〈
`σ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLWG(℘1,℘2, . . . ,℘n) = ℘. (48)

(P2) (Monotonicity): Let℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
and ℵi =

〈
`σ(ℵi)

, ξℵi , ψℵi

〉
(i = 1, 2, . . . , n)

be two collections of FFLNs such that `σ(℘i)
≤ `σ(ℵi)

, ψ℘i ≥ ψℵi , ξ℘i + ψ℘i ≤ ξℵi + ψℵi∀ i, then

FFLWG(℘1,℘2, . . . ,℘n) ≤ FFLWG(ℵ1,ℵ2, . . . ,ℵn). (49)

(P3) (Boundedness): Let

℘− =

〈
min

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
, max

{
0,

(
min

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−max(ψ℘1 , ψ℘2 , . . . , ψ℘n )

)}
, max(ψ℘1 , ψ℘2 , . . . , ψ℘n )

〉

and

℘+ =

〈
max

(
`σ(℘1)

, `σ(℘2)
, . . . , `σ(℘n)

)
,
(

max
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n + ψ3

℘n

)
−min

(
ψ3
℘1

, ψ3
℘1

, . . . , ψ3
℘1

) )
, min

(
ψ3
℘1

, ψ3
℘1

, . . . , ψ3
℘1

)〉
,

then
℘− ≤ FFLWG(℘1,℘2, . . . ,℘n) ≤ ℘+. (50)

(P4): If ℵ =
〈
`σ(ℵ), ξℵ, ψℵ

〉
is another FFLN, then

FFLWG
(
℘1⊗̃ℵ,℘2⊗̃ℵ, . . . ,℘n⊗̃ℵ

)
= FFLWG(℘1,℘2, . . . ,℘n)⊗̃ℵ. (51)

(P5): If ϑ > 0 is a real number, then

FFLWG
(
℘1̃̂ϑ,℘2̃̂ϑ, . . . ,℘ñ̂ϑ

)
= (FFLWFG(℘1,℘2, . . . ,℘n))̃̂ϑ. (52)

(P6): Let ℵ =
〈
`σ(ℵ), ξℵ, ψℵ

〉
be another FFLN and ϑ > 0 be a real number, then

FFLWG
((

℘1̃̂ϑ
)
⊗̃ℵ,

(
℘2̃̂ϑ

)
⊗̃ℵ, . . . ,

(
℘ñ̂ϑ

)
⊗̃ℵ
)
=
(
(FFLWG(℘1,℘2, . . . ,℘n))̃̂ϑ

)
⊗̃ℵ. (53)

(P7): Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
and ℵi =

〈
`σ(ℵi)

, ξℵi , ψℵi

〉
, (i = 1, 2, . . . , n) be two

collections of FFLNs, then

FFLWG
(
℘1⊗̃ℵ1,℘2⊗̃ℵ2, . . . ,℘n⊗̃ℵn

)
= FFLWG(℘1,℘2, . . . ,℘n)⊗̃FFLWG(ℵ1,ℵ2, . . . ,ℵn). (54)

Proof. Here, we prove the properties 4 and 5 only, and others can proceed likewise. �

(P4) From Definition 9, we have

℘i⊗̃ℵ =

〈
ϕ∗−1

(
ϕ∗
(
`σ(℘i)

)
ϕ∗
(
`σ(ℵ)

))
, 3

√(
1− ψ3

℘i

)(
1− ψ3

ℵ
)
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
))

,

3

√
1−

(
1− ψ3

℘i

)(
1− ψ3

ℵ
)

〉
(55)

Therefore
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FFLWG
(
℘1⊗̃ℵ,℘2⊗̃ℵ, . . . ,℘n⊗̃ℵ

)

=

〈 ϕ∗−1
(

n
∏
i=1

(
ϕ∗
(
`σ(℘i)

)
ϕ∗
(
`σ(ℵ)

))wi
)

, 3

√√√√√√√
n
∏
i=1

((
1− ψ3

℘i

)(
1− ψ3

ℵ
))wi

−
n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘1

))(
1−

(
ξ3
ℵ + ψ3

ℵ
)))wi

,

3

√
1−

n
∏
i=1

((
1− ψ3

℘

)(
1− ψ3

ℵ
))wi

〉

=

〈 ϕ∗−1
(

n
∏
i=1

(
ϕ∗
(
`σ(℘i)

))wi
ϕ∗
(
`σ(ℵ)

))
, 3

√√√√√√√
(

n
∏
i=1

(
1− ψ3

℘i

)wi
)(

1− ψ3
ℵi

)
−
(

n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘1

))wi
)(

1−
(

ξ3
ℵi
+ ψ3

ℵi

)) ,

3

√
1−

(
n
∏
i=1

(
1− ψ3

℘i

)wi
)(

1− ψ3
ℵi

)
〉

=

〈 ϕ∗−1
(

n
∏
i=1

(
ϕ∗
(
`σ(℘i)

))wi
)

, 3

√
n
∏
i=1

(
1− ψ3

℘i

)wi −
n
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
,

3

√
1−

n
∏
i=1

(
1− ψ3

℘i

)wi

〉
⊗̃
〈
`σ(ℵ), ξℵ, ψℵ

〉

= FFLWG(℘1,℘2, . . . ,℘n)⊗̃ℵ

(P5) Using Definition 9, we obtain

℘ĩ̂ϑ =

〈
ϕ∗−1

((
ϕ∗
(
`σ(℘i)

))ϑ
)

, 3

√(
1− ψ3

℘i

)ϑ
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))ϑ
, 3

√
1−

(
1− ψ3

℘i

)ϑ
〉

(56)

Therefore

FFLWG
(
℘1̃̂ϑ,℘2̃̂ϑ, . . . ,℘ñ̂ϑ

)

=

〈 ϕ∗−1
(

n
∏
i=1

((
ϕ∗
(
`σ(℘i)

))ϑ
)wi

)
, 3

√
n
∏
i=1

((
1− ψ3

℘i

)ϑ
)wi

−
n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))ϑ
)wi

,

3

√
1−

n
∏
i=1

((
1− ψ3

℘i

)ϑ
)wi

〉

=

〈 ϕ∗−1
(

n
∏
i=1

((
ϕ∗
(
`σ(℘i)

))wi
))ϑ

, 3

√
n
∏
i=1

((
1− ψ3

℘i

)wi
)ϑ
−

n
∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)ϑ

,

3

√
1−

n
∏
i=1

((
1− ψ3

℘i

)wi
)ϑ

〉

= (FFLWFG(℘1,℘2, . . . ,℘n))̃̂ϑ.

3.5. FFL-Ordered Weighted Geometric (FFLOWG) Operator

The ordered weighted geometric (OWG) operator [60] is a common aggregation
operator in the field of information fusion. However, the existing OWG operator cannot
aggregate FFLNs. Now, we define the FFLOWG operator based on the notion of the OWG
operator to aggregate FFLNs.

Definition 13. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, the

FFLOWG operator of dimension n is a mapping FFLOWG : Ωn → Ω , that has an associated

weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n
∑

i=1
ωi = 1, then

FFLOWG(℘1,℘2, . . . ,℘n) =
n
⊗̃

i=1

(
℘φ(i)̃̂ωi

)
, (57)
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where ℘φ(i) is the ith largest value of ℘i(i = 1, 2, . . . , n).

Theorem 9. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by the FFLOWG operator is also a FFLN and

FFLOWG(℘1,℘2, . . . ,℘n)

=

〈 ϕ∗−1
(

n
∏
i=1

(
ϕ∗
(
`σ(℘φ(i))

))ωi
)

, 3

√
n
∏
i=1

(
1− ψ3

℘φ(i)

)ωi −
n
∏
i=1

(
1−

(
ξ3
℘φ(i)

+ ψ3
℘φ(i)

))ωi

3

√
1−

n
∏
i=1

(
1− ψ3

℘φ(i)

)ωi

〉
(58)

Proof. We can derive the proof similar to Theorem 4, so we omit it here. �

Moreover, the FFLOWG operator also satisfies properties such as idempotency, mono-
tonicity, boundedness, and commutativity.

3.6. FFL-Hybrid Average (FFLHA) Operator and FFL-Hybrid Geometric (FFLHG) Operator

From Definitions 10 to 13, we know that the FFLWA and FFLWG AOs only weight
the FFLNs, while the FFLOWA and FFLOWG AOs weight the ordered position of the
FFLNs instead of weighting the FFLNs itself. In both cases, the weights address different
aspects during the aggregation process of the FFLNs. However, the developed aggregation
operators for FFLNs consider only one of them. The hybrid averaging (HA) operator [61]
is an aggregation operator that uses the weighted average (WA) and the ordered weighted
averaging (OWA) operator in the same formulation. In the following, we propose the
FFL-hybrid average (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator.

Definition 14. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, the FFL-

hybrid average (FFLHA) operator of dimension n is a mapping FFLHA : Ωn → Ω , that has an

associated weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n
∑

i=1
ωi = 1, then

FFLHA(℘1,℘2, . . . ,℘n) =
n
⊕̃

i=1

(
ωi∗̃

.
℘φ(i)

)
(59)

where
.
℘φ(i) is the ith largest number of the weighted FFLNs

.
℘i
( .
℘i = (nwi)∗̃℘i, i = 1, 2, . . . , n

)
,

w = (w1, w2, . . . , wn)
T is the weight vector of ℘i (i = 1, 2, . . . , n) such that wi ∈ [0, 1],

n
∑

i=1
wi =

1 and n is the balancing coefficient.

Theorem 10. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLHA operator is also a FFLN and

FFLHA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(

.
℘φ(i))

))wi
)

, 3

√
1−

n
∏
i=1

(
1− ξ3.

℘φ(i)

)wi

,

3

√
n
∏
i=1

(
1− ξ3.

℘φ(i)

)wi

−
n
∏
i=1

(
1−

(
ξ3.
℘φ(i)

+ ψ3.
℘φ(i)

))wi

〉
(60)

Proof. The proof of this theorem is similar to Theorem 4. �
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Definition 15. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of n FFLNs, the

FFL-hybrid geometric (FFLHG) operator of dimension n is a mapping FFLHG : Ωn → Ω , that

has an associated weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n
∑

i=1
ωi = 1, then

FFLHG(℘1,℘2, . . . ,℘n) =
n
⊗̃

i=1

( .
℘φ(i)̃̂ω

)
, (61)

where
.
℘φ(i) is the ith largest number of the weighted FFLNs

.
℘i

( .
℘i = ℘ĩ̂nwi, i = 1, 2, . . . , n

)
,

w = (w1, w2, . . . , wn)
T is the weight vector of ℘i (i = 1, 2, . . . , n) such that wi ∈ [0, 1],

n
∑

i=1
wi =

1 and n is the balancing coefficient.

Theorem 11. Let ℘i =
〈
`σ(℘i)

, ξ℘i , ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLHG operator is also a FFLN and

FFLHG(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n
∏
i=1

(
1− ϕ∗

(
`σ(

.
℘φ(i))

))wi
)

, 3

√
n
∏
i=1

(
1− ψ3.

℘φ(i)

)wi

−
n
∏
i=1

(
1−

(
ξ3.
℘φ(i)

+ ψ3.
℘φ(i)

))wi

,

3

√
1−

n
∏
i=1

(
1− ψ3.

℘φ(i)

)wi

〉
., (62)

Proof. The proof of this theorem can be obtained similar to Theorem 4. �

Note that similar to the FFLOWA and the FFLOWG operators, the FFLHA and FFLHG
operators follow the idempotent, bounded, monotonic and commutative properties.

Remark 1. If ω =
(

1
n , 1

n , . . . , 1
n

)T
, then FFLHA and FFLHG operators become the FFLWA

operator and FFLWG operator, respectively;

Remark 2. If w =
(

1
n , 1

n , . . . , 1
n

)T
, then the FFLHA and FFLHG operators are reduced into

FFLOWA operator and FFLOWG operator, respectively.

In the next section, we formulate a new decision-making method to solve MAGDM
problems under the Fermatean fuzzy linguistic environment. Then, we consider a real-life
supplier selection problem to demonstrate the decision-making steps.

4. An Approach to MAGDM Making with Fermatean Fuzzy Linguistic Information
4.1. MAGDM Problem Description

For a MAGDM problem, let F = {F1, F2, . . . , Fm} be a set of alternatives, A =

{A1, A2, . . . An} be an attribute set with the associated weighting vector (w1, w2, . . . , wn)
T ,

satisfying wj ∈ [0, 1] and
n
∑

j=1
wj = 1. Assume E = {E1, E2, . . . , Et} is a collection of s

experts whose weight vector is (ω1, ω2, . . . , ωs)
T , satisfying ωq ∈ [0, 1] and

s
∑

q=1
ωq = 1. Fur-

ther, suppose thatB(q) =
(
℘ij

(q)
)

m×n
is a decision matrix, where ℘ij

(q) =
〈
`
(q)
σ(℘ij)

, ξ
(q)
℘ij , ψ

(q)
℘ij

〉
represents an attribute evaluation value, given by the expert Eq, for the alternative Fi ∈ F

concerning the attribute Aj ∈ A such that 0 ≤
(

ξ
(q)
℘ij

)3
+
(

ψ
(q)
℘ij

)3
≤ 1 and `

(q)
σ(℘ij)

∈
_
L [0,2t],

i = 1, 2, . . . , m; j = 1, 2, . . . , n. Then, the ranking of the alternatives is required to obtain the
best alternative(s).
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4.2. Decision Method

The decision method comprises the following steps.
Step 1: To nullify the effect of the different attributes, transform the decision matrices

B(q) =
(
℘ij

(q)
)

m×n
into the normalized form B̂(q) =

(
℘̂ij

(q)
)

m×n

=
(〈

`
(q)
σ(℘̂ij)

, ξ
(q)
℘̂ij

, ψ
(q)
℘̂ij

〉)
m×n

. The elements of the normalized decision matrices B̂(q) can be

obtained as follows:

℘̂
(q)
ij =


〈
`
(q)
σ(℘ij)

, ξ
(q)
℘ij , ψ

(q)
℘ij

〉
, if Aj is benefit type attribute〈

`
(q)
2t−σ(℘ij)

, ψ
(q)
℘ij , ξ

(q)
℘ij

〉
, if Aj is cos t type attribute

., (63)

Step 2: Aggregate all the B̂(q) =
(
℘̂ij

(q)
)

m×n
into a collective normalized decision

matrix
^

B̂ =

(
^
℘̂ ij

)
m×n

=

(〈
`

σ(
^
℘̂ ij)

, ξ^
℘̂ ij

, ψ^
℘̂ ij

〉)
by using either FFLOWA operator

^
℘̂ ij = FFLOWA

(
℘̂ij

(1), ℘̂ij
(2), . . . , ℘̂ij

(s)
)
=

〈 ϕ∗−1

(
1−

s
∏

q=1

(
1− ϕ∗

(
`

σ(℘̂
φ(q)
ij )

))ωq
)

, 3

√
1−

s
∏

q=1

(
1− ξ3

℘̂
φ(q)
ij

)ωq

,

3

√
s

∏
q=1

(
1− ξ3

℘̂
φ(q)
ij

)ωq

−
s

∏
q=1

(
1−

(
ξ3
℘̂

φ(q)
ij

+ ψ3
℘̂

φ(q)
ij

))ωq

〉
, (64)

or FFLOWG operator

^
℘̂ ij = FFLOWG

(
℘̂ij

(1), ℘̂ij
(2), . . . , ℘̂ij

(s)
)
=

〈 ϕ∗−1

(
s

∏
q=1

(
ϕ∗
(
`

σ(℘̂
φ(q)
ij )

))ωq
)

, 3

√√√√1−
s

∏
q=1

(
1− ψ3

℘̂
φ(q)
ij

)ωq

−
s

∏
q=1

(
1−

(
ξ3
℘̂

φ(q)
ij

+ ψ3
℘̂

φ(q)
ij

))ωq

,

3

√√√√1−
s

∏
q=1

(
1− ψ3

℘̂
φ(q)
ij

)ωq

〉
, (65)

where ℘̂
σ(q)
ij =

〈
`

φ(q)
σ(℘̂ij)

, ξ
φ(q)
℘̂ij

, ψ
φ(q)
℘̂ij

〉
is the qth largest value of ℘̂(q)

ij and (ω1, ω2, . . . , ωt)
T

represents the associated ordered position weight vector with ωq ∈ [0, 1] and
s
∑

q=1
ωq = 1.

Step 3: Aggregate all the collective preference values
^
℘̂ ij (j = 1, 2, . . . , n) for obtain-

ing the overall assessment values ℘̃i (i = 1, 2, . . . , m) corresponding to the alternatives
Fi(i = 1, 2, . . . , m), based on either the FFLWA operator

℘̃i= FFLWA
(
^
℘̂ i1,

^
℘̂ i2, . . . ,

^
℘̂ in

)
=

〈 ϕ∗−1

(
1−

n
∏
j=1

(
1− ϕ∗

(
`

σ(
^
℘̂ ij)

))wj
)

, 3

√√√√1−
n
∏
j=1

(
1− ξ3

^
℘̂ ij

)wj

,

3

√√√√ n
∏
i=1

(
1− ξ3

^
℘̂ ij

)wj

−
n
∏
j=1

(
1−

(
ξ3
^
℘̂ ij

+ ψ3
^
℘̂ ij

))wj

〉
, (66)

or FFLWG operator

℘̃i= FFLWA
(
^
℘̂ i1,

^
℘̂ i2, . . . ,

^
℘̂ in

)
=

〈 ϕ∗−1

(
n
∏
j=1

(
ϕ∗
(
`

σ(
^
℘̂ij)

))wj
)

, 3

√√√√ n
∏
j=1

(
1− ψ3̂

℘̂ij

)wj

−
n
∏
j=1

(
1−

(
ξ 3̂
℘̂ij

+ ψ3̂
℘̂ij

))wj

,

3

√√√√1−
n
∏
j=1

(
1− ψ3̂

℘̂ij

)wj

〉
, (67)

Step 4. According to Definition 8, we obtain the order of the overall aggregated values
℘̃i (i = 1, 2, . . . , m).
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Step 5. Rank all the alternatives Fi (i = 1, 2, . . . , m) and hence select the most desirable
one(s).

4.3. Numerical Example

In order to illustrate the application of the developed approach in practice, we consider
a real-life decision problem about searching the global supplier with Fermatean fuzzy
linguistic information.

Example 5. Supplier selection is one of the most important processes to accomplish an effective
supply chain because a supplier comprehensively contributes to the overall supply chain performance.
Due to the involvement of a group of persons and many factors, supplier selection is typically
considered a MAGDM problem. In the last few years, the supplier selection problem has received a
considerable amount of attention from researchers working in different parts of the globe.

A Chilean company specializing in commercialized computer and office materials
wants to select a suitable material supplier to assign the raw materials’ optimum order.
After preliminary screening, five potential global suppliers {F1, F2, F3, F4, F5} were short-
listed for further evaluation. The company invites four experts {E1, E2, E3, E4} to evaluate
the shortlisted suppliers concerning five attributes: (i) overall cost of the product A1; (ii)
service performance of the supplier A2; (iii) reputation of the supplier A3; (iv) quality of
the product A4; (v) delivery time of the product A5. The attribute weight vector is given
as w = (0.20, 0.15, 0.25, 0.25, 0.15)T . The experts provide their evaluation information
corresponding to each attribute in terms of FFLNs based on the following LTS:

L =


`0 = EP(extremly poor), `1 = VP(very poor), `2 = P( poor),
`3 = SP(slightly poor), `4 = F(fair), `5 = SG(slightly good),
`6 = G(good), `7 = VG(very good), `8 = EG(extremly good)

.

The experts provide the following Fermetean fuzzy linguistic decision matrices B(q) =(
℘ij

(q)
)

5×5
(q = 1, 2, 3, 4), as listed in Tables 3–6, respectively.

Table 3. Decision matrix B(1).

A1 A2 A3 A4 A5

F1 〈`3, 0.8, 0.3〉 〈`1, 0.5, 0.5〉 〈`4, 0.6, 0.1〉 〈`1, 0.2, 0.3〉 〈`5, 0.4, 0.6〉
F2 〈`5, 0.7, 0.2〉 〈`4, 0.6, 0.4〉 〈`7, 0.7, 0.3〉 〈`6, 0.8, 0.1〉 〈`4, 0.5, 0.7〉
F3 〈`4, 0.4, 0.7〉 〈`2, 0.2, 0.8〉 〈`3, 0.4, 0.6〉 〈`2, 0.6, 0.6〉 〈`5, 0.5, 0.1〉
F4 〈`1, 0.7, 0.5〉 〈`3, 0.4, 0.5〉 〈`4, 0.3, 0.4〉 〈`4, 0.2, 0.1〉 〈`2, 0.6, 0.2〉
F4 〈`3, 0.3, 0.1〉 〈`4, 0.7, 0.1〉 〈`1, 0.8, 0.5〉 〈`5, 0.5, 0.8〉 〈`4, 0.9, 0.1〉

Table 4. Decision matrix B(2).

A1 A2 A3 A4 A5

F1 〈`2, 0.5, 0.2〉 〈`3, 0.7, 0.6〉 〈`5, 0.2, 0.4〉 〈`5, 0.3, 0.9〉 〈`7, 0.4, 0.3〉
F2 〈`4, 0.6, 0.1〉 〈`7, 0.9, 0.5〉 〈`6, 0.8, 0.4〉 〈`8, 0.9, 0.3〉 〈`3, 0.8, 0.3〉
F3 〈`5, 0.9, 0.3〉 〈`4, 0.5, 0.2〉 〈`3, 0.4, 0.2〉 〈`2, 0.4, 0.5〉 〈`1, 0.7, 0.1〉
F4 〈`7, 0.5, 0.4〉 〈`2, 0.5, 0.1〉 〈`4, 0.6, 0.7〉 〈`5, 0.2, 0.8〉 〈`5, 0.5, 0.3〉
F4 〈`5, 0.2, 0.5〉 〈`1, 0.6, 0.8〉 〈`1, 0.9, 0.6〉 〈`7, 0.1, 0.7〉 〈`2, 0.2, 0.2〉



Axioms 2021, 10, 113 25 of 37

Table 5. Decision matrix B(3).

A1 A2 A3 A4 A5

F1 〈`1, 0.7, 0.2〉 〈`4, 0.6, 0.1〉 〈`3, 0.8, 0.3〉 〈`1, 0.6, 0.5〉 〈`2, 0.8, 0.0〉
F2 〈`2, 0.6, 0.4〉 〈`8, 0.9, 0.2〉 〈`6, 0.6, 0.1〉 〈`7, 0.9, 0.6〉 〈`3, 0.7, 0.0〉
F3 〈`4, 0.9, 0.6〉 〈`4, 0.6, 0.7〉 〈`2, 0.4, 0.4〉 〈`4, 0.1, 0.8〉 〈`5, 0.6, 0.2〉
F4 〈`3, 0.4, 0.4〉 〈`5, 0.7, 0.0〉 〈`6, 0.2, 0.5〉 〈`5, 0.6, 0.8〉 〈`7, 0.1, 0.4〉
F4 〈`7, 0.3, 0.9〉 〈`3, 0.8, 0.3〉 〈`1, 0.7, 0.6〉 〈`6, 0.3, 0.5〉 〈`1, 0.8, 0.6〉

Table 6. Decision matrix B(4).

A1 A2 A3 A4 A5

F1 〈`2, 0.7, 0.1〉 〈`4, 0.7, 0.0〉 〈`3, 0.6, 0.6〉 〈`4, 0.8, 0.2〉 〈`5, 0.2, 0.9〉
F2 〈`3, 0.6, 0.9〉 〈`6, 0.5, 0.3〉 〈`7, 0.9, 0.2〉 〈`8, 0.9, 0.4〉 〈`5, 0.7, 0.1〉
F3 〈`4, 0.3, 0.4〉 〈`3, 0.6, 0.9〉 〈`4, 0.2, 0.5〉 〈`5, 0.4, 0.7〉 〈`4, 0.2, 0.6〉
F4 〈`3, 0.3, 0.5〉 〈`1, 0.3, 0.4〉 〈`3, 0.7, 0.4〉 〈`3, 0.8, 0.3〉 〈`2, 0.6, 0.7〉
F4 〈`5, 0.6, 0.4〉 〈`4, 0.4, 0.8〉 〈`1, 0.5, 0.5〉 〈`2, 0.4, 0.7〉 〈`4, 0.5, 0.6〉

Step 1: Since A1 is a cost–type attribute while A2, A3, A4 and A5 are benefit-type
attributes, so the normalized decision matrices B̂(q)(q = 1, 2, 3, 4) are obtained using
Equation (63) as follows (see Tables 7–10).

Table 7. Normalized decision matrix B̂(1).

A1 A2 A3 A4 A5

F1 〈`5, 0.3, 0.8〉 〈`1, 0.5, 0.5〉 〈`4, 0.6, 0.1〉 〈`1, 0.2, 0.3〉 〈`5, 0.4, 0.6〉
F2 〈`3, 0.2, 0.7〉 〈`4, 0.6, 0.4〉 〈`7, 0.7, 0.3〉 〈`6, 0.8, 0.1〉 〈`4, 0.5, 0.7〉
F3 〈`4, 0.7, 0.4〉 〈`2, 0.2, 0.8〉 〈`3, 0.4, 0.6〉 〈`2, 0.6, 0.6〉 〈`5, 0.5, 0.1〉
F4 〈`7, 0.5, 0.7〉 〈`3, 0.4, 0.5〉 〈`4, 0.3, 0.4〉 〈`4, 0.2, 0.1〉 〈`2, 0.6, 0.2〉
F5 〈`5, 0.1, 0.3〉 〈`4, 0.7, 0.1〉 〈`1, 0.8, 0.5〉 〈`5, 0.5, 0.8〉 〈`4, 0.9, 0.1〉

Table 8. Normalized decision matrix B̂(2).

A1 A2 A3 A4 A5

F1 〈`6, 0.2, 0.5〉 〈`3, 0.7, 0.6〉 〈`5, 0.2, 0.4〉 〈`5, 0.3, 0.9〉 〈`7, 0.4, 0.3〉
F2 〈`4, 0.1, 0.6〉 〈`7, 0.9, 0.5〉 〈`6, 0.8, 0.4〉 〈`8, 0.9, 0.3〉 〈`3, 0.8, 0.3〉
F3 〈`3, 0.3, 0.9〉 〈`4, 0.5, 0.2〉 〈`3, 0.4, 0.2〉 〈`2, 0.4, 0.4〉 〈`1, 0.7, 0.1〉
F4 〈`1, 0.4, 0.5〉 〈`2, 0.5, 0.1〉 〈`4, 0.6, 0.7〉 〈`5, 0.2, 0.8〉 〈`5, 0.5, 0.3〉
F5 〈`3, 0.5, 0.2〉 〈`1, 0.6, 0.8〉 〈`1, 0.9, 0.6〉 〈`7, 0.1, 0.7〉 〈`2, 0.2, 0.2〉

Table 9. Normalized decision matrix B̂(3).

A1 A2 A3 A4 A5

F1 〈`7, 0.2, 0.7〉 〈`4, 0.6, 0.1〉 〈`3, 0.8, 0.3〉 〈`1, 0.6, 0.5〉 〈`2, 0.8, 0.0〉
F5 〈`6, 0.4, 0.6〉 〈`8, 0.9, 0.2〉 〈`6, 0.6, 0.1〉 〈`7, 0.9, 0.6〉 〈`3, 0.7, 0.0〉
F3 〈`4, 0.6, 0.9〉 〈`4, 0.6, 0.7〉 〈`2, 0.4, 0.4〉 〈`4, 0.1, 0.8〉 〈`5, 0.6, 0.2〉
F4 〈`5, 0.4, 0.4〉 〈`5, 0.7, 0.0〉 〈`6, 0.2, 0.5〉 〈`5, 0.6, 0.8〉 〈`7, 0.1, 0.4〉
F4 〈`1, 0.9, 0.3〉 〈`3, 0.8, 0.3〉 〈`1, 0.7, 0.6〉 〈`6, 0.3, 0.5〉 〈`1, 0.8, 0.6〉
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Table 10. Normalized decision matrix B̂(4).

A1 A2 A3 A4 A5

F1 〈`6, 0.1, 0.7〉 〈`4, 0.7, 0.0〉 〈`3, 0.6, 0.6〉 〈`4, 0.8, 0.2〉 〈`5, 0.2, 0.9〉
F2 〈`5, 0.9, 0.6〉 〈`6, 0.5, 0.3〉 〈`7, 0.9, 0.2〉 〈`8, 0.9, 0.4〉 〈`5, 0.7, 0.1〉
F3 〈`4, 0.4, 0.3〉 〈`3, 0.6, 0.9〉 〈`4, 0.2, 0.5〉 〈`5, 0.4, 0.7〉 〈`4, 0.2, 0.6〉
F4 〈`5, 0.5, 0.3〉 〈`1, 0.3, 0.4〉 〈`3, 0.7, 0.4〉 〈`3, 0.8, 0.3〉 〈`2, 0.6, 0.7〉
F5 〈`3, 0.4, 0.6〉 〈`4, 0.4, 0.8〉 〈`1, 0.5, 0.5〉 〈`2, 0.4, 0.7〉 〈`4, 0.5, 0.6〉

Step 2: First, we calculate the experts’ weighting vector ω = (0.1550, 0.3450, 0.3450,
0.1550)T based on the normal distribution method [62]. Then, utilizing the FFLOWA
operator mentioned in Equation (64) (without loss of generality, we have taken the linguistic
scaling function ϕ∗ = ϕ∗2(θ = 1.4) to obtain the collective normalized decision matrix
^

B̂ =

(
^
℘̂ ij

)
5×5

. Using Equation (8), we obtain

S
(
℘̂11

(1)
)
= ϕ∗2(`5)×

(
0.33+1−0.83

2

)
= 0.1469, S

(
℘̂11

(2)
)
= ϕ∗2(`6)×

(
0.23+1−0.53

2

)
= 0.2953,

S
(
℘̂11

(3)
)
= ϕ∗2(`7)×

(
0.23+1−0.73

2

)
= 0.2683, S

(
℘̂11

(4)
)
= ϕ∗2(`6)×

(
0.13+1−0.73

2

)
= 0.2201.

Since S
(
℘̂11

(2)
)
> S

(
℘̂11

(3)
)
> S

(
℘̂11

(4)
)
> S

(
℘̂11

(1)
)

, therefore ℘̂11
(2) � ℘̂11

(3) �
℘̂11

(4) � ℘̂11
(1).

^
℘̂11 = FFLOWA

(
℘̂11

(1), ℘̂11
(2), ℘̂11

(3), ℘̂11
(4)
)

=

〈 ϕ∗2
−1
(

1− (1− ϕ∗2(`6))
0.1550 × (1− ϕ∗2(`7))

0.3450 × (1− ϕ∗2(`6))
0.3450 × (1− ϕ∗2(`5))

0.1550
)

,
3
√

1− (1− 0.23)
0.1550 × (1− 0.23)

0.3450 × (1− 0.13)
0.3450 × (1− 0.33)

0.1550,

3

√√√√ (
1− 0.23)0.1550 ×

(
1− 0.23)0.3450 ×

(
1− 0.13)0.3450 ×

(
1− 0.33)0.1550

−
(
1−

(
0.23 + 0.53))0.1550 ×

(
1−

(
0.23 + 0.73))0.3450 ×

(
1−

(
0.13 + 0.73))0.3450 ×

(
1−

(
0.33 + 0.83))0.1550

〉

= 〈`6.3636, 0.2046, 0.7016〉.

Similarly, we can calculate other collective values. Table 11 presents the collective
normalized decision matrix.

Table 11. Collective normalized decision matrix
^

B̂ based on FFLOWA operator.

A1 A2 A3 A4 A5

F1 〈`6.3636, 0.2046, 0.7016〉 〈`3.0842, 0.6463, 0.4778〉 〈`4.0947, 0.5943, 0.3966〉 〈`1.9102, 0.6272, 0.5882〉 〈`4.8442, 0.6262, 0.5809〉
F2 〈`4.9662 , 0.5876, 0.6750〉 〈`8.0000, 0.8048, 0.4686〉 〈`6.6072, 0.3266, 0.3266〉 〈`8.000, 0.8892, 0.5234〉 〈`3.4637, 0.7244, 0.3855〉
F3 〈`3.8309, 0.4735, 0.8315〉 〈`3.2911, 0.5571, 0.8364〉 〈`3.1444, 0.2951, 0.5097〉 〈`2.6951, 0.3791, 0.6367〉 〈`4.0135, 0.4683, 0.4152〉
F4 〈`5.1312, 0.3942, 0.5286〉 〈`2.5714, 0.5054, 0.3709〉 〈`4.1499, 0.5602, 0.5041〉 〈`4.4243, 0.5652, 0.6810〉 〈`4.4155, 0.5367, 0.4497〉
F5 〈`2.9330, 0.6195, 0.4349〉 〈`3.0842, 0.6778, 0.6322〉 〈`0.9998, 0.7717, 0.6001〉 〈`5.9625, 0.3895, 0.7325〉 〈`2.7125, 0.6724, 0.4952〉

Step 3: Utilize the FFLWA operator given in Equation (66) with w = (0.20, 0.15, 0.25, 0.25,
0.15)T to derive the overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5)
corresponding to each alternative Fi(i = 1, 2, 3, 4, 5). Using the expression mentioned in
Equation (66), we obtain
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℘̃1 = FFLWA
(
^
℘̂11,

^
℘̂12,

^
℘̂13,

^
℘̂14,

^
℘̂15

)

=

〈
ϕ∗2
−1
(

1− (1− ϕ∗2(`6.3636))
0.20 × (1− ϕ∗2(`3.0842))

0.15 × (1− ϕ∗2(`4.0947))
0.25 × (1− ϕ∗2(`1.9102))

0.25 × (1− ϕ∗2(`4.8442))
0.15
)

,
3
√

1− (1− 0.20463)
0.20 × (1− 0.64633)

0.15 × (1− 0.59433)
0.25 × (1− 0.62723)

0.25 × (1− 0.62623)
0.15,

3

√√√√√√
(
1− 0.20463)0.20 ×

(
1− 0.64633)0.15 ×

(
1− 0.59433)0.25 ×

(
1− 0.62723)0.25 ×

(
1− 0.62623)0.15

−
(
1−

(
0.20463 + 0.70163))0.20 ×

(
1−

(
0.64633 + 0.47783))0.15 ×

(
1−

(
0.59433 + 0.39663))0.25

×
(
1−

(
0.62723 + 0.58823))0.25 ×

(
1−

(
0.62623 + 0.58093))0.25

〉

= 〈`4.3017, 0.5831, 0.5647〉.

The overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5) are recorded
in Table 12.

Table 12. The overall FFL preference values ℘̃i based on the FFLWA operator.

F1 F2 F3 F4 F5

〈`4.3017, 0.5831, 0.5647〉 〈`8.0000, 0.7473, 0.5436〉 〈`3.2991, 0.4379, 0.7336〉 〈`4.2602, 0.5254, 0.5559〉 〈`3.2791, 0.6571, 0.6108〉

Step 4: According to Definition 8, we have

S(℘̃1)= 0.2641, S(℘̃2)= 0.6284, S(℘̃3)= 0.1562, S(℘̃4)= 0.2511, S(℘̃5)= 0.2385

Step 5: The final ranking order of the suppliers following the score values S(℘̃i) is
F2 � F1 � F4 � F5 � F3, thus, the most desirable supplier is F2.

Additionally, if we use the FFLOWG operator in Step 2 and the FFLWG operator in
Step 3 instead of FFLOWA and FFLWA operators, respectively, in the developed method,
then the procedure steps are as follows:

Step 1: Same as above.
Step 2: Utilizing the FFLOWG operator to aggregate all the normalized decision

matrices B̂(q)(q = 1, 2, 3, 4), the obtained results corresponding to each alternative are
shown in Table 13.

Table 13. Aggregated normalized decision matrix
^

B̂ based on FFLOWG operator.

A1 A2 A3 A4 A5

F1 〈`6.2263, 0.2137, 0.7007〉 〈`2.7656, 0.6538, 0.4637〉 〈`3.9865, 0.5937, 0.3980〉 〈`1.4768, 0.5857, 0.6112〉 〈`3.9815, 0.5743, 0.6318〉
F2 〈`4.7577 , 0.6489, 0.6190〉 〈`6.4552, 0.8239, 0.4017〉 〈`6.5188, 0.3211, 0.3211〉 〈`7.3788, 0.9050, 0.4721〉 〈`3.3857, 0.7149, 0.4160〉
F3 〈`3.8103, 0.6273, 0.7881〉 〈`3.1929, 0.6306, 0.7975〉 〈`3.0632, 0.3571, 0.5091〉 〈`2.4951, 0.4715, 0.6414〉 〈`3.4022, 0.5068, 0.4347〉
F4 〈`4.1466, 0.4034, 0.5233〉 〈`2.2839, 0.5001, 0.3805〉 〈`3.9398, 0.5654, 0.5041〉 〈`4.3441, 0.5767, 0.6729〉 〈`3.3720, 0.5447, 0.4377〉
F5 〈`2.6262, 0.6119, 0.4495〉 〈`2.7656, 0.6350, 0.6754〉 〈`0.9998, 0.7958, 0.5559〉 〈`5.3982, 0.4159, 0.7244〉 〈`2.3979, 0.6756, 0.4893〉

Step 3: The overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5) of
each alternative Fi(i = 1, 2, 3, 4, 5) using the FFLWG operator are summarized in Table 14.

Table 14. The overall Fermetean fuzzy linguistic preference values ℘̃i based on the FFLWG operator.

F1 F2 F3 F4 F5

〈`3.1520, 0.5552, 0.5861〉 〈`6.0409, 0.7785, 0.4727〉 〈`3.0867, 0.5716, 0.6739〉 〈`3.6215, 0.5375, 0.5460〉 〈`2.3249, 0.6565, 0.6115〉

Step 4: The score values S(℘̃i) of the overall Fermetean fuzzy linguistic preference
values obtained during Step 3 are calculated as

S(℘̃1)= 0.2143, S(℘̃2)= 0.4602, S(℘̃3)= 0.1923, S(℘̃4)= 0.2363, S(℘̃5)= 0.1934
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Step 5. Since S(℘̃2) � S(℘̃4) � S(℘̃1) � S(℘̃5) � S(℘̃3), therefore we obtain the
final ranking order of the suppliers as F2 � F4 � F1 � F5 � F3. Hence, F2 is the most
desirable supplier.

It is worth noting that a decision-maker can choose the appropriate aggregation
operator based on his/her behavior towards the aggregation procedure. If a decision-
maker has optimistic behavior towards the aggregation of experts’ preference information
and pessimistic behavior towards the final decision, then he/she uses the FFLOWA and
FFLWG operators in Step 2 and Step 3, respectively, of the developed approach. A complete
analysis has been conducted to analyze the effect of the decision-maker’s behavioral
attitude on the final ranking. The results are summarized in Table 15, along with the
suppliers’ ranking order. The results shown in Table 15 indicate that when we use the
FFLOWA (or the FFLOWG) operator in Step 2 and the FFLWA (or FFLHA) operator in
Step 3 then the ranking order of the alternatives is always F2 � F1 � F4 � F5 � F3. On the
other hand, if we use the FFLOWA (or the FFLOWG) operator in Step 2 and the FFLWG
(or FFLHG) operator in Step 3 then the ranking order of the alternatives is obtained as
F2 � F4 � F1 � F5 � F3, which is slightly different from the previous ones. It shows
the effect of the nature of varying aggregation operators on the final ranking order of
the alternatives.

Table 15. The score values S(℘̃i) and ranking order of the suppliers.

The Operator
Used in Step 2

The Operator
Used in Step 3

Score Values Ranking of the
SuppliersS(℘̃1) S(℘̃2) S(℘̃3) S(℘̃4) S(℘̃5)

FFLOWA

FFLWA 0.2641 0.6284 0.1562 0.2511 0.2385 F2 � F1 � F4 � F5 � F3
FFLWG 0.2407 0.4832 0.1679 0.2501 0.2030 F2 � F4 � F1 � F5 � F3
FFLHA 0.2618 0.6245 0.1568 0.2513 0.2235 F2 � F1 � F4 � F5 � F3
FFLHG 0.2427 0.5334 0.1704 0.2484 0.2165 F2 � F4 � F1 � F5 � F3

FFLOWG

FFLWA 0.2408 0.4812 0.1765 0.2369 0.2228 F2 � F1 � F4 � F5 � F3
FFLWG 0.2143 0.4602 0.1923 0.2363 0.1934 F2 � F4 � F1 � F5 � F3
FFLHA 0.2385 0.4665 0.1804 0.2366 0.2151 F2 � F1 � F4 � F5 � F3
FFLHG 0.2125 0.4236 0.1873 0.2282 0.1899 F2 � F4 � F1 � F5 � F3

Apart from the above analysis, to examine the influence of the different LSFs on the
alternatives’ ranking order, we have employed different LSFs in the calculation process of
the developed decision-making approach. Then, after applying the steps, the corresponding
results are summarized in Table 16.

From Table 16, it has been observed that although the score values of the alternatives
are entirely different when we use different LSFs; however, the best alternative is always
F2 for the considered problem. Note that the use of different LSFs shows an influence
on the final ranking order of the alternatives. It is also worth noting that, in other real-
life decision problems, the best alternative may be different depending on the use of
different aggregation operators. Our developed method provides an ability to the DMs
for choosing the appropriate LSF according to his/her personal choice and the actual
semantic environment.
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Table 16. The score values S(℘̃i) and ranking order of the suppliers based on different LSFs.

LSF
The Operator
Used in Step 2

The Operator
Used in Step 3

Score Values Ranking of the
SuppliersS(℘̃1) S(℘̃2) S(℘̃3) S(℘̃4) S(℘̃5)

ϕ∗ = ϕ∗1

FFLOWA

FFLWA 0.2813 0.6283 0.1610 0.2616 0.2414 F2 � F1 � F4 � F5 � F3
FFLWG 0.2531 0.4785 0.1702 0.2564 0.1797 F2 � F4 � F1 � F5 � F3
FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 F2 � F4 � F1 � F5 � F3
FFLHG 0.2523 0.4719 0.1686 0.2516 0.1813 F2 � F1 � F4 � F5 � F3

FFLOWG

FFLWA 0.2368 0.5157 0.1629 0.2309 0.2074 F2 � F1 � F4 � F5 � F3
FFLWG 0.2002 0.4793 0.1752 0.2265 0.1629 F2 � F4 � F1 � F3 � F5
FFLHA 0.2373 0.5013 0.1638 0.2500 0.1929 F2 � F4 � F1 � F5 � F3
FFLHG 0.2000 0.4386 0.1722 0.2373 0.1560 F2 � F4 � F1 � F3 � F5

ϕ∗ = ϕ∗3
(ρ = τ = 0.8)

FFLOWA

FFLWA 0.2913 0.6283 0.1591 0.3061 0.2448 F2 � F4 � F1 � F5 � F3
FFLWG 0.2554 0.5060 0.1669 0.2891 0.1695 F2 � F4 � F1 � F5 � F3
FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 F2 � F4 � F1 � F5 � F3
FFLHG 0.2569 0.4772 0.1661 0.2779 0.1718 F2 � F4 � F1 � F5 � F3

FFLOWG

FFLWA 0.2398 0.5270 0.1537 0.2319 0.2009 F2 � F1 � F4 � F5 � F3
FFLWG 0.1931 0.4864 0.1650 0.2274 0.1901 F2 � F4 � F1 � F5 � F3
FFLHA 0.2412 0.5124 0.1554 0.2337 0.1907 F2 � F1 � F4 � F5 � F3
FFLHG 0.1942 0.4455 0.1640 0.2232 0.1481 F2 � F4 � F1 � F3 � F5

4.4. Sensitivity Analysis

The decision-making approach developed in this paper uses various AOs with dif-
ferent LSFs to aggregate information data as provided by decision-makers. This section
discusses the influence of these AOs and LSFs on the decision result.

A sensitivity analysis has been conducted to better understand the impact of the
various AOs on the ranking order of the alternatives with different LSFs. Figures 5–10 have
been plotted, portraying the sensitivity of the results based on various AOs taking different
LSFs. As shown in Figures 5–10, changes in the AOs and LSFs significantly influence the
ranking of alternatives.
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4.5. A Comparative Overview of the Results Based on Different AOs

In order to compare the performance of the developed AOs with existing ones, this
paper uses the AOs and decision method formulated by Li et al. [53] to solve the above
considered MAGDM problem. The obtained values of the closeness coefficient and ranking
order of the suppliers are summarized in Table 17.

Table 17. The values of the closeness coefficient C(℘̃i) and ranking order of the suppliers.

Aggregation Operator
Used

The Closeness Coefficient Values
Ranking of the Suppliers

C(℘̃1) C(℘̃2) C(℘̃3) C(℘̃4) C(℘̃5)

FFLWA 0.3803 0.6109 0.2222 0.3317 0.3529 F2 � F1 � F5 � F4 � F3
FFLWG 0.3942 0.5856 0.2063 0.3396 0.3412 F2 � F1 � F5 � F4 � F3

From Table 17, it is inferred that the best alternative obtained by the proposed approach
agrees with the method formulated by Li et al. [53] which confirms the consistency of the
proposed operators. It is also clear from the results summarized in Table 17 that the
best alternative (F2) and the worst alternative (F3) are the same by all the approaches.
However, the complete ranking order of the suppliers is slightly different from our ranking
order because of the use of different aggregation operators for aggregating the preference
information of the decision-makers.

In addition, Spearman’s rank correlation test [63] is used for the subsequent analyses
to identify the differences between the ranking orders of the alternatives obtained by using
different AOs in the formulated approach. Spearman’s rank correlation measures the
strength of association of two variables. It can be defined as follows:

rSRC = 1−
6

m
∑

j=1
d2

j

m(m2 − 1)
,

where m is the number of alternatives and d denotes the ranking difference of alternative Fj
between two different rankings. According to [63], rSRC lies between −1 to +1. rSRC = +1
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indicates a perfect positive relationship between the two sets of rankings and rSRC = −1
implies a perfect negative relationship between the two sets of rankings. The closer rSRC is
to ±1, the stronger the relationship between the two rankings. Tables 18–20 summarize
Spearman’s rank correlation coefficient values between different rankings obtained based
on different AOs and LSFs.

From Tables 18 and 19, we can easily see that the ranking orders obtained using
FFLOWA+ FFLWA and FFLOWG+ FFLWA have a perfect positive relationship. Similarly,
Tables 19 and 20 show that the rankings obtained by the FFLOWA+ FFLWG and FFLOWA+
FFLHG also have a perfect positive relationship.

Table 18. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗1 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA
+ FFLWG

FFLOWA
+ FFLHA

FFLOWA
+ FFLHG

FFLOWG
+ FFLWA

FFLOWG
+ FFLWG

FFLOWG
+ FFLHA

FFLOWG
+ FFLHG

FFLOWA+
FFLWA 1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWA+
FFLWG 0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWA+
FFLHA 0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWA+
FFLHG 1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWG+
FFLWA 1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWG+
FFLWG −0.3 0.6 0.6 −0.3 −0.3 1 0.6 1

FFLOWG+
FFLHA 0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWG+
FFLHG −0.3 0.6 0.6 −0.3 −0.3 1 0.6 1

Table 19. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗2 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA
+ FFLWG

FFLOWA
+ FFLHA

FFLOWA
+ FFLHG

FFLOWG
+ FFLWA

FFLOWG
+ FFLWG

FFLOWG
+ FFLHA

FFLOWG
+ FFLHG

FFLOWA+
FFLWA 1 0.1 1 0.1 1 0.1 1 0.1

FFLOWA+
FFLWG 0.1 1 0.1 1 0.1 1 0.1 1

FFLOWA+
FFLHA 1 0.1 1 0.1 1 0.1 1 0.1

FFLOWA+
FFLHG 0.1 1 0.1 1 0.1 1 0.1 1

FFLOWG+
FFLWA 1 0.1 1 0.1 0.1 0.1 1 0.1

FFLOWG+
FFLWG 0.1 1 1 1 0.1 1 0.1 1

FFLOWG+
FFLHA 1 0.1 1 0.1 1 0.1 1 0.1

FFLOWG+
FFLHG 0.1 1 0.1 1 0.1 1 0.1 1
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Table 20. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗3 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA+

FFLWG
FFLOWA
+ FFLHA

FFLOWA+
FFLHG

FFLOWG+
FFLWA

FFLOWG+
FFLWG

FFLOWG+
FFLHA

FFLOWG+
FFLHG

FFLOWA+
FFLWA 1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLWG 1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLHA 1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLHG 1 1 1 1 0.1 1 0.1 0.6

FFLOWG+
FFLWA 0.1 0.1 0.1 0.1 0.1 0.1 1 −0.3

FFLOWG+
FFLWG 1 1 1 1 0.1 1 0.1 0.6

FFLOWG+
FFLHA 0.1 0.1 0.1 0.1 1 0.1 1 −0.3

FFLOWG+
FFLHG 0.6 0.6 0.6 0.6 −0.3 0.6 −0.3 1

4.6. Some Advantages and Limitations of the Proposed Approach

1. The formulated approach can solve decision-making problems with qualitative infor-
mation data in terms of FFLNs very efficiently.

2. We can also apply this method to solve many existing decision problems with intu-
itionistic fuzzy linguistic and Pythagorean fuzzy linguistic information [48–50].

3. The main limitation of this study is that it cannot handle the situations in which the
attributes have some interaction and prioritization relationship between them.

4. The developed study opens a new door for further research under a qualitative
information environment.

5. There can be some adverse situations in which the defined operational laws for FFLNs
may not work. Then, we will need to undertake a further detailed investigation of the
operational laws of FFLNs.

5. Conclusions

In this paper, we studied the MAGDM problems under a Fermatean fuzzy linguistic
environment. To overcome the shortcomings of the existing operational laws of FFLNs, the
paper has defined four new algebraic operational laws for FFLNs based on the idea of LSF.
Several mathematical properties of the proposed operational laws have been studied in
detail. Next, we formulated some AOs, including the FFLWA operator, the FFLWG operator,
the FFLOWA operator, the FFLOWG operator, the FFLHA operator, and the FFLHG
operator to aggregate different FFLNs. Furthermore, the work has proved many important
properties of the proposed AOs, such as idempotency, monotonicity, commutativity, and
boundedness, to establish their applicability in different areas. Utilizing the proposed AOs,
the paper has developed a new decision-making approach to solve MAGDM problems
with Fermatean fuzzy linguistic information. Finally, a real-life supplier selection problem
has been considered to illustrate the steps of the proposed method.

In the future, we will employ the proposed AOs to solve some other decision-making
problems such as medical diagnosis, pattern recognition, and image processing. Further,
we will also develop some new aggregation operators such as Bonferroni mean operator,
Heronian mean operator, and Hamy mean operator to aggregate the correlative Fermatean
fuzzy linguistic information in future work.
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