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In this paper, we analyze the existence and uniqueness of remotely almost periodic solutions for systems of ordinary differential
equations. &e existence and uniqueness of remotely almost periodic solutions are achieved by using the results about the
exponential dichotomy and the Bi-almost remotely almost periodicity of the homogeneous part of the corresponding systems of
ordinary differential equations under our consideration.

1. Introduction and Preliminaries

&e notion of an almost periodic function was introduced by
a Danish mathematician H. Bohr around 1925 and later
generalized by many others. Let I � R or I � [0,∞), let X be
a complex Banach space, and let f: I⟶ X be continuous.
Given ε> 0, we call τ > 0 an ε-period for f(·) if and only if

‖f(t + τ) − f(t)‖≤ ε, t ∈ I. (1)

by ϑ(f, ε) we denote the set of all ϵ-periods for f(·). We say
that f(·) is almost periodic if and only if, for each ϵ> 0, the
set ϑ(f, ε) is relatively dense in [0,∞), which means
that there exists l> 0 such that any subinterval of [0, ∞) of
length l meets ϑ(f, ε). For further information about almost
periodic functions and their applications, see [1–10].

It is well known that Sarason defined the notion of a
scalar-valued remotely almost periodic function in [11]. &e
class of vector-valued remotely almost periodic functions
defined on Rn was introduced by Yang and Zhang in [12],
where the authors have provided several applications in the
study of existence and uniqueness of remotely almost

periodic solutions for parabolic boundary value problems
(for some results about parabolic boundary value problems,
one may refer to [13–15] and references cited therein). In
Propositions 2.4–2.6 in [16], the authors have examined the
existence and uniqueness of remotely almost periodic so-
lutions of multidimensional heat equations, while the main
results of Section 3 are concerned with the existence and
uniqueness of remotely almost periodic type solutions of the
certain types of parabolic boundary value problems (see also
[17, 18], where the authors have investigated almost periodic
type solutions and slowly oscillating type solutions for
various classes of parabolic Cauchy inverse problems).
Concerning applications of remotely almost periodic
functions, research articles [19] by Zhang and Piao, where
the authors have investigated the time remotely almost
periodic viscosity solutions of Hamilton–Jacobi equations,
and [20] by Zhang and Jiang, where the authors have in-
vestigated remotely almost periodic solutions for a class
systems of differential equations with piecewise constant
argument, should be mentioned, see [21] and the research
articles [22–29], for more details about the subject.
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&e problem of finding (pseudo) almost periodic solu-
tions for certain classes of ordinary differential equations has
been treated by many authors (see e.g., [5, 30–32]). In the
existing literature, we can find numerous results about the
existence, uniqueness, stability, applications in biology, etc.
(concerning the last issue, see, e.g., the research articles by
Xu et al. [16, 33–38] as well as the references cited therein).

&e strong motivational point for the genesis of this
paper lies in the fact that, with the exception of [20] by
Zhang and Liang, no one else has applied remotely almost
periodic functions in the theory of ordinary differential
equations. &e class of remotely almost periodic functions
is enormously larger than the usually considered class of
almost periodic functions, and the interest for studying
remotely almost periodic solutions of ordinary differential
equations exists. Concerning some practical applications of
our theoretical results obtained, we would like to note that
we specifically analyze here (see Section 3.1) the Chapman-
Richards type equations with external perturbations. It is
well known that the Chapman-Richards functions and
equations have an important role in the mathematical
biology. &e Chapman-Richards functions generalize
commonly used growth functions as monomolecular
functions and Gompertz functions, while the Chapman-
Richards equations generalize the logistic equations. &e
Chapman-Richards model has been widely applied in
forestry, thanks to its flexibility and many important an-
alytical features.

&e organization and main ideas of this paper can be
briefly described as follows. We consider the following
systems of differential equations:

dx

dt
� A(t)x(t), (2)

dx

dt
� A(t)x(t) + f(t), (3)

where A(t) is a complex-valuedmatrix of format n × n for all
t ∈ R. After repeating some necessary facts about remotely
almost periodic functions, we consider the notion of
(α, K, P)-exponential dichotomy (see Definition 2) for
equation (2) as well as the notion of exponential bi-almost
periodicity and the notion of integro bi-almost periodicity of
the associated Green’s function G(t, s) of (2) (see Definition
3 and Definition 4). After that, we introduce the notion of
α-exponentially bi-remotely almost periodicity and the
notion of integro bi-remotely almost periodicity of the as-
sociated Green’s function G(t, s) of (2) in Definition 5 and
Definition 6, respectively. &e main results of Section 2,
which also contains several important lemmas needed for
our further investigations, are &eorem 1 and&eorem 2. In
Section 3, we investigate the existence and uniqueness of
remotely almost periodic solutions to (2) and (3). We open
this section with an important theoretical result, &eorem 3,
in which we clarify that, under certain conditions, a unique
bounded solution of (3) is remotely almost periodic; see also
&eorems 4 and 5. Before we proceed to Section 3.1, in which
we analyze the existence and uniqueness of positive remotely

almost periodic solutions to the Chapman-Richards equa-
tion with external perturbations, we clarify some corollaries,
examples, and technical lemmas. &e main result of Section
3.1 is &eorem 6, where we show that, under hypotheses
(H1)-(H3) clarified below, equation (41) has a unique
positive remotely almost periodic solution for small values of
nonnegative real parameter μ.

Regarding the previous works of authors in this field, we
would like to emphasize that the techniques applied here
were born of the classical monographs on this field [5, 8].
However, we deal with the inherent new problems of the
remotely almost periodic functions, and some of these
problems can be found in [11, 20]. For example, the well-
known notion of bi-almost periodicity of the Green function
for almost periodic system [5] inspired us to introduce and
analyze here the definition of bi-remotely almost periodic
function in the remotely almost periodic systems. Fur-
thermore, we give certain conditions such that the Green
functions satisfy the bi-remotely almost periodic property.

We use the standard notation throughout the paper. By
BUC(R: Cn), we denote the Banach space of bounded and
uniformly continuous functions f: R⟶ Cn, equipped
with the sup-norm ‖ · ‖∞; let ‖ · ‖ be a fixed norm in Cn. We
set Nn ≔ 1, . . . , n{ }.

To better understand the space of remotely almost pe-
riodic functions, denoted by RAP(R: Cn), we will recall the
notion of a slowly oscillating function (the corresponding
space is denoted by SO(R: Cn) henceforth). A function
f ∈ BUC(R: Cn) is called slowly oscillating if and only if, for
every a ∈ R, we have that

lim
|t|⟶+∞

‖f(t + a) − f(t)‖ � 0. (4)

Now, we recall the notion of a remotely almost periodic
function (see, e.g., [12]).

Definition 1. A function f ∈ BUC(R: Cn) is called remotely
almost periodic if and only if ε> 0 we have that the set

T(f, ε) ≔ τ ∈ R: lim sup
|t|⟶+∞

‖f(t + τ) − f(t)‖< ε􏼨 􏼩, (5)

which is relatively dense in R.
Any number τ ∈ T(f, ε) is called an ϵ-remote-transla-

tion vector of f(·). We know that RAP(R: Cn) is a closed
subspace of BUC(R: Cn) and, therefore, the Banach space
itself. If the functions F1(·), . . . , Fk(·) are remotely almost
periodic (k ∈ N), then, for each ε> 0, the set of their
common ϵ-remote-translation vectors s is relatively dense in
R; see, e.g., Proposition 2.3 in [16].

Furthermore, we know that any remotely almost peri-
odic function f: R⟶ R possesses the mean value

M(f) ≔ lim
t⟶+∞

1
t

􏽚
t

0
f(s)ds, (6)

see e.g., Proposition 2.4 in [39]. A similar statement holds for
vector-valued remotely almost periodic functions
F: Rn⟶ X, but we will not use this fact here.
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2. Preliminaries on Exponential Dichotomies

&e property of exponential dichotomy will be primordial in
this section, where we are going to give its definition by
considering equations (2) and (3). For the following defi-
nitions and for more details about the subject, we refer to the
research [40] by Coppel.

Definition 2. Let Φ(·) be a fundamental matrix of equation
(2). &en, we say that equation (2) has an (α, K, P)-expo-
nential dichotomy if and only if there exist positive constants
α, K> 0 and a projection P (P2 � P) such that

‖G(t, s)‖≤Ke
− α|t− s|

, t, s ∈ R, (7)

where the Green function G(t, s) of (2) is given by
G(t, s) ≔ Φ(t)PΦ− 1(s) for t≥ s and G(t, s) ≔ − Φ(t)[I −

P]Φ− 1(s) for t< s.
&e notion of bi-almost periodicity of the Green func-

tion, which has been omitted or less considered for a long
time, plays a crucial role in our study:

Definition 3. We say that the Green function G(t, s) of (2) is
exponentially by-almost periodic if and only if, for all ϵ> 0,
there exist positive real constants α′ > 0 and c> 0 and a
relatively dense set T(G, ε) in R such that, for every
τ ∈ T(G, ε), we have

‖G(t + τ, s + τ) − G(t, s)‖≤ εce
− α′|t− s|

, t, s ∈ R. (8)

Definition 4. We say that the Green function G(t, s) of (2) is
integro bi-almost periodic if and only if, for all ε> 0, there
exist a positive real constant c> 0 and a relatively dense set
T(G, ε) in R such that, for every τ ∈ T(G, ε), we have

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds≤ εc, t ∈ R. (9)

It is worth noting that the Green function is not im-
mediately integro bi-almost periodic.

Example 1. &e next differential equation has an expo-
nential dichotomy:

x′ � − (1 + b(t))x + 1; b(t)> 0. (10)

However, the Green function associated to this system is
not bi-almost periodic. &e bounded solution, given by

x(t) � 􏽚
t

− ∞
e

− 􏽚
t

s
(1 + b(r))dr

ds,
(11)

is not almost periodic in general if b(·) is not almost periodic
(for example, this can occur if b(·) is almost automorphic but
not almost periodic; see [7], for the notion).

Now, we would like to introduce the following notion:

Definition 5. Let α> 0. &en, we say that the Green function
G(t, s) of (2) is α-exponentially bi-remotely almost periodic
if and only if, for every ε> 0, there exist a positive real
constant c> 0 and a relatively dense set T(G, ε) in R such
that, for every τ ∈ T(G, ε), we have

lim sup
|t|⟶∞

e
α(t− s)

[G(t + τ, s + τ) − G(t, s)]
�����

�����≤ εc, t, s ∈ R, t≥ s,

and, lim sup
|t|⟶∞

e
α(s− t)

[G(t + τ, s + τ) − G(t, s)]
�����

�����≤ εc, t, s ∈ R, t< s.
(12)

Definition 6. Let α> 0. &en, we say that the Green function
G(t, s) of (2) is integro bi-remotely almost periodic if and
only if, for every ε> 0, there exist a positive real constant
c> 0 and a relatively dense set T(G, ε) in R such that, for
every τ ∈ T(G, ε), we have

lim sup
|t|⟶∞

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds≤ εc, t ∈ R. (13)

Let us consider now the scalar differential equation
x′(t) � a(t)x(t). We have the following.

Theorem 1. If a(·) is a remotely almost periodic function
with M(a)≠ 0, then, for every ε> 0, there exists δ > 0 such
that, for every τ ∈ T(a, δ), we have
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lim sup|t|⟶∞ 􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds< ε, provided t< s andM(a)< 0,

lim sup|t|⟶∞ 􏽚
+∞

t
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds< ε, provided t≥ s andM(a)> 0.

(14)

proof. Let M(a)< − c< 0. &en, it is not difficult to verify
that |exp(􏽒

t

s
a(r)dr)| ≤Ke− c(t− s) for t≥ s, as well as

e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤K
2
(t − s)e

− c(t− s)supu∈(s,t)|a(u + τ) − a(u)|. (15)

&erefore,

􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds≤K
2

􏽚
∞

0
xe

− cxsupu∈(t,∞)|a(u − x + τ) − a(u − x)|dx. (16)

For every ε> 0, we set δ ≔ K2c− 1ε. Let us consider first
case t⟶ +∞. Given any sequence (xn) tending to plus
infinity, we have

lim
t⟶+∞

sup
u∈(t,∞)

|a(u − x + τ) − a(u − x)| � lim
n⟶∞

sup
u∈ xn,∞( )

|a(u − x + τ) − a(u − x)|.
(17)

Using the reverse Fatou lemma and (17), we obtain that

lim sup
t⟶∞

􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds≤K
2

􏽚
∞

0
xe

− cxlim supt⟶∞supu∈(t,∞)|a(u − x + τ) − a(u − x)|dx< ε. (18)

&e proof for case t⟶ − ∞ can be given analo-
gously. Case M(a)> 0 can be considered analogously as
well.

&is result can be extended to system (2), where the
matrix A(t) is diagonal A(t) � diag ai(t)􏼈 􏼉 and
R(M(ai))≠ 0, for all i ∈ Nn.

For the sequel, we need the following auxiliary lemma:
□

Lemma 1. Let A(t) be the complex-valued matrix of format
n × n for all t ∈ R, and let Φ(·) be the fundamental matrix of
(2). =e transition matrix Φ(t, s) ≡ Φ(t)Φ− 1(s) satisfies
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Φ(t + τ, s + τ) − Φ(t, s) � 􏽚
t

s
Φ(t, u)(A(u + τ) − A(u))Φ(u + τ, s + τ) du, provided t> s,

Φ(t + τ, s + τ) − Φ(t, s) � 􏽚
s

t
Φ(t, u)(A(u + τ) − A(u))Φ(u + τ, s + τ) du, provided t< s.

(19)

Proof. We will consider case t> s only. Set
V(t, s) ≔ Φ(t + τ, s + τ) − Φ(t, s). &en, we have

Vt � A(t + τ)Φ(t + τ, s + τ) − A(t)Φ(t, s),

Vs � A(t)V(t, s) +(A(t + τ) − A(t))Φ(t + τ, s + τ).

(20)

&is simply implies the required equality.
Suppose now that the matrix A(t) is diagonal by blocks

A+(t) and A− (t) so that system (2) can be written as the
system z′(t) � A+(t)z and y′(t) � A− (t)y. By Φ+(t, s) and
Φ− (t, s), we denote the fundamental matrices associated to

the equations for z and y, respectively; then, we have the
following estimates ‖Φ+(t − s)‖≤Ke− c(t− s) for t≥ s and
‖Φ− (t, s)‖≤Kec(t,s) for t≤ s, where c> 0. Define
G(t, s) ≔ diag(Φ+(t, s), 0) for t≥ s and G(t, s) ≔
diag(0,Φ− (t, s)) for t< s. Hence, ‖G(t, s)‖≤Ke− c|t− s| for all
t, s ∈ R.

As a straightforward consequence of the previous
lemma, the following holds for the above Green
function. □

Lemma 2. We have

‖G(t + τ, s + τ) − G(t, s)‖≤K
2
e

− c(t,s)
􏽚

t

s
A+(u + τ) − A+(u)

����
����du, t≥ s,

‖G(t + τ, s + τ) − G(t, s)‖≤K
2
e

− c(s− t)
􏽚

s

t
A− (u + τ) − A− (u)

����
����du, t≤ s.

(21)

Now, we are able to prove some important results of this
section. We start by stating the following theorem regarding
the diagonalization of A(t) into blocks A+(t) and A− (t),
where we assume that all the above estimates are satisfied.

Theorem 2. Let A+ and A− be remotely almost periodic
functions, and let the estimate ‖G(t, s)‖≤Ke− c|t− s|, t, s ∈ R,
hold for the associated Green function. =en, for every ε> 0,
there exists δ > 0 such that, for every τ ∈ T(A+, δ)∩T(A− , δ),
we have

lim sup
|t|⟶∞

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds< ε, (22)

and in other words, G(·, ·) is integro bi-remotely almost
periodic.

Proof. Applying Lemma 2, we obtain

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds

≤ 􏽚
t

− ∞
K

2
e

− c(t− s)
􏽚

t

s
A+(u + τ) − A+(u)

����
����duds

+ 􏽚
+∞

t
K

2
e

− c(s− t)
􏽚

s

t
A− (u + τ) − A− (u)

����
����duds

� 􏽚
∞

0
K

2
e

− cx
􏽚

t

t− x
A+(u + τ) − A+(u)

����
����duds

+ 􏽚
+∞

0
K

2
e

− cy
􏽚

t+y

t
A− (u + τ) − A− (u)

����
����duds

≔ K
2

I1 + I2􏼂 􏼃.

(23)

It is clear that

I1 ≤ 􏽚
∞

0
e

− cx
x sup

u∈(t− x,∞)

A+(u + τ) − A+(u)
����

����dx. (24)

Since A±(·) are globally bounded, we get the existence of
a finite real constant M1 > 0 such that I1 ≤M1. Set
δ ≔ (ε/(2K2M1)). Taking into account the reverse Fatou
lemma and the fact that, for every increasing sequence (sn)

tending to plus infinity, we have

lim
s⟶+∞

sup
u∈(s,∞)

A+(u + τ) − A+(u)
����

����

� lim
n⟶+∞

sup
u∈ sn,∞( )

A+(u + τ) − A+(u)
����

����,
(25)

and the above simply implies lim supt⟶+∞I1(t)≤ (ε/2). For
the asymptotic behaviour, when t⟶ − ∞, we can use the
estimate

I1(t)≤ 􏽚
∞

0
e

− cx
x sup

u∈(− ∞,t)

A+(u + τ) − A+(u)
����

����dx (26)

and a similar argumentation in order to show that
lim supt⟶− ∞I1(t)≤ (ε/2). &e calculations and argumen-
tation used for I1 are similar for I2, which completes the
proof of theorem. □

Remark 1. Suppose that system (2) has an (α, K, P)-expo-
nential dichotomy. If P commutes with the fundamental
matrix Φ(t) of this system, then it is possible to diagonalise
this system and conclude that the hypothesis of the above
theorem are satisfied; in other words, the associated Green
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function will be integro bi-remotely almost periodic. Also, if
system (2) is remotely almost periodic (it means that all
coefficients of (2) are remotely almost periodic) and expo-
nentially stable at infinity (or at minus infinity, respectively);
then, the associated Green function is integro bi-remotely
almost periodic. As easily proven, this also happens in the
case that there exists an invertible remotely almost periodic
transformation x � S(t)ω, ω � (z, y) under which the re-
motely almost periodic linear system (2) admits a diago-
nalization into blocks A+(t) and A− (t) such that the
associated Green function satisfies the already used condi-
tion of exponentially decaying.

3. The Existence and Uniqueness of Remotely
Almost Periodic Solutions to (2) and (3)

We start this section by stating the following result.

Theorem 3. Suppose that f ∈ RAP(R: Cn) and the ho-
mogeneous system (2) has an (α, K, P)-exponential dichot-
omy and the associated Green function is integro bi-remotely
almost periodic. =en, the unique bounded solution of (3) is
remotely almost periodic.

Proof. Without loss of generality, we may assume that f≠ 0.
By the variation of parameters formula, the unique bounded
solution of (3) is given by

x(t) � 􏽚
∞

− ∞
G(t, s)f(s)ds, t ∈ R. (27)

Let us show that x(·) is remotely almost periodic. Indeed,
we have

‖x(t + τ) − x(t)‖≤ 􏽚
∞

− ∞
[G(t + τ, s + τ) − G(t, s)]f(s + τ)ds

�������

�������

+ 􏽚
∞

− ∞
G(t, s)[f(s + τ) − f(s)]ds

�������

�������

≤ ‖f‖∞ · 􏽚
∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds

+ 􏽚
∞

− ∞
Ke

− α|t− s|
‖f(s

(28)

Let ε> 0 be given. Since the corresponding Green
function is integro bi-remotely almost periodic, we know

that there exists δ1 > 0 such that, for every τ ∈ T(G, δ1), we
have

lim sup
|t|⟶∞

􏽚
∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds<

ε
2
‖f‖∞. (29)

We also have the existence of a real number δ2 > 0 such
that, for every τ ∈ T(f, δ2), we have

lim sup
|t|⟶∞

􏽚
∞

− ∞
e

− α|t− s|
‖f(s + τ) − f(s)‖ds<

ε
2K

. (30)

Since the operation lim sup|t|⟶∞· is subadditive, this
simply completes the proof with δ � min(δ1, δ2).

We also have the following result, whose proof can be
omitted. □

Theorem 4. Suppose that f ∈ RAP(R: Cn) and A(t) is a
triangular matrix for all t ∈ R such thatR(M(aii))≠ 0 for all
i ∈ Nn. =en, system (3) has a unique bounded solution which
is remotely almost periodic.

Now, we consider system (3) in which the square matrix
A ≡ A(t) is independent of the time variable t:

x′(t) � Ax(t) + f(t), (31)

where and f ∈ RAP(R: C) for all i ∈ Nn.
We need the following lemma from [39].

Lemma 3. Given a square matrix A, there exists a regular
matrix α having the same order as A such that the matrix
B � α− 1Aα is triangular with the diagonal elements being the
eigenvalues of A.

Corollary 1. We have that every bounded solution of system
(31) is remotely almost periodic.

Proof. Keeping inmind Lemma 3, wemay assume thatA is a
triangular superior matrix. Applying &eorem 4, we get that
the associated solution is remotely almost periodic. For the
initial solution, we have x(t) � αy(t) ∈ RAP(R: Cn). &is
ends the proof. □

Example 2. Consider λ � iv ∈ i(R∖ 0{ }) and the linear
equation y′(t) � ivy(t) + g(t), where g(t) � eiv(t+t(1/3)) is a
remotely almost periodic function. &e solution is given by

y(t) � ce
itv

− 3iv
− 1

t
(2/3)

e
iv t+t(1/3)( ) + 6v

− 2
t
(1/3)

e
iv t+t(1/3)( ) + 6iv

− 3
e

iv t+t(1/3)( ). (32)

So, this equation does not have a bounded solution on
the real line.

Consider now the scalar linear differential equation:

x′(t) � a(t)x(t) + f(t). (33)

For the sequel, we need the following technical lemma
which follows from our foregoing arguments.
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Lemma 4. Let a(t) and f(t) be remotely almost periodic
functions such that R(M(a))≠ 0. =en, equation (33) has a
unique remotely almost periodic solution x(t) given by

x(t) � − 􏽚
∞

t
e

− 􏽚
t

s
a(r)dr

f(s)ds, providedR(M(a))> 0,

x(t) � 􏽚
t

− ∞
e

− 􏽚
s

t
a(r)dr

f(s)ds, providedR(M(a))< 0.

(34)

Now, let us consider the equation:

z′(t) � A(t)z(t) + f(t) + μg(t, z(t)). (35)

We have the following result.

Theorem 5. Let f ∈ RAP(R: Rn) and let g(·) be remotely
almost periodic in the first variable and locally Lipschitz in the
second variable. Suppose, further, that the homogeneous
system (2) has an (α, K, P)-exponential dichotomy and the
associated Green function is integro bi-remotely almost pe-
riodic. =en, there exists a positive constant μ0 such that the
assumption μ ∈ [0, μ0) implies that the differential equation
(35) has a unique bounded solution which is remotely almost
periodic.

Proof. Consider a unique remotely almost periodic solution
φ(t) of (3). Let r ∈ (0,∞) be such that ‖φ‖≤ r, and let L> 0
denote the corresponding Lipschitz constant. If z(t) solves
(35), then we set x(t) ≔ z(t) − φ(t), t ∈ R. It is clear that

x′(t) � A(t)x(t) + μg(t, x(t) + φ(t)), t ∈ R. (36)

Let the Green function of the homogeneous part satisfy
‖G(t, s)‖≤Ke− α|t− s|. By the variation of parameters’ for-
mula, we have

x(t) � 􏽚
∞

− ∞
G(t, s)μg(s, x(s) + φ(s))ds, t ∈ R. (37)

Define B(r, 0) to be the closed ball of diameter r and the
center 0 in the space of remotely almost periodic functions;
then, B(r, 0) is a complete metric space with the induced
metric. Define the mapping

Tψ(t) ≔ 􏽚
∞

− ∞
G(t, s)μg(s,ψ(s) + φ(s))ds, t ∈ R(ψ ∈ B(r, 0)).

(38)

We claim that the mapping T: B(r, 0)⟶ B(r, 0) is
well-defined and contracted. It is clear that the mapping Tψ
is remotely almost periodic for any ψ ∈ B(r, 0). Further-
more, we have

‖Tψ‖∞ ≤ 2Kμα− 1
‖g‖∞

≤ 2Kμα− 1
‖ψ + φ‖∞ + sup

s∈R
‖g(s, 0)‖􏼢 􏼣

≤ 2Krμα− 1 2r + sup
s∈R

‖g(s, 0)‖􏼠 􏼡< 1,

(39)

provided that μ ∈ [0, μ0) and 2Krμ0α− 1

(2r + sup
s∈R

‖g(s, 0)‖)< 1. For the contraction, we can use the

following calculation:

Tψ1 − Tψ2
����

����∞≤ μKL 􏽚
∞

− ∞
e

− α|t− s| ψ1(s) − ψ2(s)
����

����ds≤ μ2KLα− 1 ψ1 − ψ2
����

����∞. (40)

&erefore, the mapping T: B(r, 0 )⟶ B(r, 0) has a
unique fixed point, which simply finishes the proof. □

3.1.=e Existence andUniqueness of Positive Remotely Almost
Periodic Solutions. In this section, we analyze the Chapman-
Richards equation with an external perturbation f(·):

x′(t) � x(t) a(t) − b(t)x
θ
(t)􏽨 􏽩 + f(t), (41)

where θ≥ 0. Consider the following hypotheses:

(H1) a(t), b(t), and f(t) are remotely almost periodic
functions

(H2) 0< α≤ a(t)≤A, 0< β≤ b(t)≤B, 0<f(t)<F

(H3) With ω � A− 1[β − c((1+θ)/θ)F] and c � (B/α), we
have (1 + θ)Fc(1/θ)θ− 1α− 1 < 1 and
β(1 + θ)Bθ− 1 < 1

Remark 2. Suppose that f(t)≥ 0 for all t ∈ R. &en, we have

x′(t)≥ x(t) a(t) − b(t)x
θ
(t)􏽨 􏽩, t ∈ R. (42)

&is implies that, for each t0 ∈ R, we have

x(t)≥x t0( 􏼁e
􏽚

t

t0

a(s) − b(s)x
θ
(s)􏽨 􏽩ds

, t ∈ R.
(43)

Now, we will state the main result of this section.

Theorem 6. Suppose that hypotheses (H1)-(H3) hold. =en,
equation (41) has a unique remotely almost periodic solution
ϕ∗(t) satisfying c− (1/θ) ≤ ϕ∗ ≤ω− (1/θ) for all t ∈ R.

Proof. Let u(t) � x− θ(t). We only consider the positive
solutions of (41), by rewriting this system as follows:

u′(t) � − θa(t)u(t) + θb(t) − θu
((1+θ)/θ)

(t)f(t). (44)
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Let 􏽥B denote the complete metric space consisting of all
remotely almost periodic functions whose sup-norm belongs
to the interval [ω, c]. Given φ ∈ 􏽥B, we consider the following
equation:

u′(t) � − θa(t)u(t) + θb(t) − θφ((1+θ)/θ)
(t)f(t). (45)

By Lemma 4, this equation has a unique remotely almost
periodic solution μ(t), given by

u(t) ≔ Tφ(t) ≔ θ􏽚
t

− ∞
e

− θ 􏽚
t

s
a(r)dr

b(s) − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds.

(46)

It can be simply shown that ‖Tφ‖∞ ≤ (B/α) � c. Fur-
thermore, we have

θ􏽚
t

− ∞
e

− θ 􏽚
t

s
a(u)du

b(s) − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds≤ θ􏽚

t

− ∞
e

− θ 􏽚
t

s
a(u)du

β − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds,

(47)

which is always strictly greater or equal than
A− 1(β − c((1+θ)/θ))F � ω. Hence, the mapping T: 􏽥B⟶ 􏽥B is
well-defined. To see that this mapping is a contraction, we
use the following consequence of the mean value theorem
applied to the function x((1+θ)/θ), and by the definition of 􏽥B,
one obtains

ψ((1+θ)/θ)
− φ((1+θ)/θ)

�����

�����∞
≤
1 + θ
θ

max c
(1/θ)

,ω(1/θ)
􏽮 􏽯‖ψ − φ‖∞,

(48)

and a simple computation yielding that

‖Tψ − Tφ‖∞ ≤
F(1 + θ)

αθ
c

(1/θ)
‖ψ − φ‖∞. (49)

&erefore, T is a contraction mapping 􏽥B in 􏽥B so that T

has a unique fixed point in 􏽥B, and this point is a unique
remotely almost periodic positive solution of (41). &is
simply completes the proof because the unique solution of
our problem is given by ϕ∗(t) � [ϕ(t)]− (1/θ). □

4. Conclusions

&is paper investigates the existence and uniqueness of
remotely almost periodic solutions for systems of ordinary
differential equations. Our main contributions are achieved
by using the results about the exponential dichotomy and the
bi-almost remotely almost periodicity of the homogeneous
part of the corresponding systems of ordinary differential
equations. We particularly analyze the Chapman-Richards
equation with external perturbations.
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