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A B S T R A C T   

There is a growing interest in the use of functional foods. Studies indicate the contribution of β-glucans to 
glycemic control, but few have evaluated integrally the effect of this soluble dietary fiber on appetite-regulating 
hormones and microbiota in type-2 diabetes (T2D). We analyzed the effect of enriching a normal diet with oat 
β-glucan in thirty-seven T2D subjects. For 12 weeks, subjects consumed daily oat β-glucan or microcrystalline 
cellulose as control (5 g/day). We determined fasting glucose, C-peptide, insulin, HOMA, HbA1c, lipid profile, 
ghrelin, leptin, GLP-1, PYY, caloric intake, and intestinal microbiota. HbA1c decreased in the β-glucan group. 
Insulin, C-peptide and HOMA, Lactobacillus spp, and Butyrate-producing bacteria decreased in the β-glucan group 
(p < 0.05). Leptin (p < 0.05), GLP-1 (p < 0.01) and PYY (p < 0.001) were different between groups. The intake of 
5 g/oat β-glucan for 12 weeks can help improve glycemic control, increase the feeling of satiety, and promote 
changes in the gut microbiota profile.   

1. Introduction 

Type-2 Diabetes (T2D) projections increase every year and recently 
the International Diabetes Federation (IDF) estimated that 578 million 
persons, 10.2% of the world́s population, would be diabetic by 2030 
(Saeedi et al., 2019). This increase will generate high health expenses 
(Williams et al., 2020) and an increased risk of death from cardiovas-
cular disease (Zeinalova, Kurbanov, Mirzazade, Rzayeva, & Novruzova, 
2017). In this context, seeking therapeutic strategies that contribute to 
improving this epidemiological situation is essential. Different studies 
have shown the beneficial effects of dietary fiber, including improving 
blood glucose control (Post, Mainous, King, & Simpson, 2012), lipid 
profile (Surampudi, Enkhmaa, Anuurad, & Berglund, 2016), blood 
pressure (Aleixandre & Miguel, 2016), and decreasing cardiovascular 
risk (Buil-Cosiales et al., 2016). 

β-glucans are a soluble dietary fiber with a polymeric structure of D- 
glucose units, linked by β-glucosidic bonds, the structure of which can be 
linear, branched or cyclic (β 1–2, 1–4, 1–3 or 1–6) depending on origin 
(Barsanti, Passarelli, Evangelista, Frassanito, & Gualtieri, 2011). β-glu-
cans have shown promising effects in reducing cardiovascular risk by 
regulating the lipid profile (Sima, Vannucci, & Vetvicka, 2019) and 

glycemic control (Battilana et al., 2001), even in diabetic subjects 
(Tessari & Lante, 2017). There are several mechanisms that could 
explain these effects, with the most important being the increase in 
viscosity of the intestinal lumen, where β-glucans bind to glucose mol-
ecules, bile acids, monoglycerides, free fatty acids and cholesterol, 
decreasing absorption and increasing fecal excretion (Dong, Cai, Shen, & 
Liu, 2011; Sima et al., 2019). Another explanation relates to the regu-
lation of the release of GLP-1 and PYY in entero-endocrine L cells, 
stimulated by short chain fatty acids (SCFAs) generated by the fermen-
tation of β-glucans in the intestinal microbiota, increasing insulin 
secretion and perception of satiety (Vitaglione, Lumaga, Stanzione, 
Scalfi, & Fogliano, 2009; Zaremba, Gow, Drummond, McCluskey, & 
Steinert, 2018). Although there is contradictory information in this re-
gard (Barone-Lumaga, Azzali, Fogliano, Scalfi, & Vitaglione, 2012), 
β-glucan fermentation could modulate intestinal microbiota towards a 
healthier profile (Arena et al., 2014). 

Because of the properties of ß-glucans, the Food and Drug Adminis-
tration (FDA) has authorized a health message for ß-glucans which states 
that consumption of 3 g/day of β-glucans from oats or barley can reduce 
the risk of coronary heart disease (Food and Drugs Administration, 
2019). A similar recommendation was established by the European Food 
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Safety Authority (EFSA) for oats and barley ß-glucans in relation to the 
decrease of cholesterolemia and coronary risk, but with a minimum of 
4 g per serving (EFSA Panel on Dietetic Products N and A, 2011). 

The effect of β-glucans depends on some of its properties, such as 
source of β-glucans, dietary matrix, a combination of the fiber with other 
nutrients, concentration, and molecular weight (Liu et al., 2016; Paquet, 
Turgeon, & Lemieux, 2010; Pentikäinen et al., 2014; Zhao & Cheung, 
2013). To date, few studies have focused on the study of β-glucans as a 
therapeutic agent for the metabolic control of diabetes. In fact, in a 
recent meta-analysis (Shen et al., 2016) only four randomized controlled 
trials met stringency criteria. So there is a need for studies to investigate 
the effect of β-glucan enrichment over the long term. 

The objective of this work is to analyze the effect of the enrichment of 
the normal diet for twelve weeks with 5 g/day of oats β-glucans on 
glycemic control (fasting glucose, C-peptide, insulin, glycated hemo-
globin (HbA1c) and HOMA), lipid profile level (Total cholesterol, tri-
glycerides, HDL-c, LDL-c, VLDL-c), appetite control peptides (ghrelin, 
leptin, GLP-1 and PYY), nutritional caloric intake, intestinal perme-
ability (zonulin concentration) and Gut microbiota profile: bacterial 
phyla (Firmicutes, Bacteroidetes, and Verrucomicrobia), Lactobacillus 
spp, Bifidobacterium spp, Akkermansia Muciniphila, and butyrate- 
producing bacteria, among type 2 diabetic subjects, using a purified 
isolate of oat β-glucans. 

2. Materials and methods 

2.1. Study design 

The present study was a parallel, placebo-controlled, randomized, 
double-blind (participant and care provider) clinical trial. The meta- 
analysis of randomized controlled trials performed by Shen et al. 
(2016) identified doses of β-glucans between 2.5 and 5 g/day, over a 
period of 3–8 weeks. Therefore, we decided to use the highest dose and 
increase the exposure time to 12 weeks, a time comparable with similar 
studies (Bao, Cai, Xu, & Li, 2014) and also sufficient to analyze changes 
in HbA1c, since A1C reflects the mean blood glucose for approximately 
3 months (ADA, 2020). The β-glucan group then consumed 5 g/day of 
oat β-glucan as a supplement to their diet. Oat β-glucan had the 
following characteristics, bulk density 50.2 g/mL, 98.1% purified, loss 
on drying 3.86%, and molecular weight >1500 kDa (Xi’an Yaochang 
Co., Ltd., Xi’an, China). The control group was supplemented with 5 g/ 
day of microcrystalline cellulose (MC); apparent density 0.38 g/mL, loss 
on drying 3.23% and degree of polymerization 100–300 units (Avicel 
PH101) (FMC BioPolymer Philadelphia, PA, USA). We use MC, an 
insoluble dietary fiber, to prevent changes in blood glucose, and analyze 
the metabolic influence of the type of dietary fiber in type 2 diabetics. 
Participants were instructed to consume the supplement daily in the 
morning with water or milk at room temperature. Participants were 
asked to not modify their lifestyle habits nor their medication unless 
directed to do so by their personal doctor. As a measure of protocol 
compliance, at the end of the intervention, the participant were asked 
about the supplement container and the amount consumed was 
reviewed. Food intake was evaluated using a 24-hour recall survey of 
3 days and using a Table of Chemical Composition of Chilean Foods 
(Zacarías, Barrios, González, Loeff, & Vera, 2018). We measured weight 
and blood pressure, surveyed food intake, and collected fasting blood 
and stool samples at day 0 and after 12 weeks of treatment. 

2.2. Participants 

Patients with type-2 diabetes were recruited from a health center in 
Talca, Maule Region, Chile. They were then contacted and visited by the 
research team. Each participant received verbal and written information 
about the study protocol and an informed consent form was signed. The 
study was approved by the Institute of Nutrition and Food Technology of 
the University of Chile, by the scientific ethics committee of the Maule 

Health Service and the Talca Community Health Service. The protocol 
was registered at www.clinicaltrial.gov (ID NCT04299763). The inclu-
sion criteria were, type-2 diabetic male and female patients, between 30 
and 60 years, BMI between 30–35 kg/m2, HbA1c < 10%, <10 years with 
diagnosed diabetes and use of oral hypoglycemic drug metformin. 
Pregnant or breastfeeding women, subjects with intestinal complica-
tions, organic insufficiencies or immunodeficiencies, treatment with 
drugs that influence the intestinal microbiota and regular use of insulin 
were excluded. 

The recruited patients were randomly assigned by an independent 
computer procedure, to one of the groups (control or β-glucan). Vol-
unteers and nurses did not know the code or the content of the supple-
ments. The supplements were only identified with a code number. 

2.3. Methods 

Subjects were contacted and a home visit was coordinated during the 
morning at the beginning (week 0: W0) and at the end of the interven-
tion (week 12: W12). Subjects fasted (for at least 12 hrs) until the arrival 
of the researchers. Body weight was measured using a digital scale 
(Omron HBF-516, Lake Forest, IL) calibrated after each use (1 kg). Blood 
pressure was measured with a digital sphygmomanometer (Omron 
HEM-CR24, Bannockburn, IL). Blood samples were centrifuged at 1600g 
for 10 min, and the plasma was aliquoted and stored at − 20 ◦C until 
analysis. HbA1c levels were determined by HPLC (Biorad, Marnes la 
Coquette, France). Fasting glycemia and lipid profile (total cholesterol, 
HDL-Cholesterol, LDL-cholesterol, VLDL-cholesterol and Triglycerides - 
TAG) were determined with enzyme kit and automatic analyzer (Roche 
Diagnostics; Hitachi, Tokyo). Hormones related to appetite control 
(ghrelin, leptin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), 
insulin, and c-peptide were determined using the Magnetic Luminex 
assay (R&D Systems Inc., Minneapolis, MN) and the MAGPIX reader 
(Luminex Corporation, Austin, TX), we used 25 µL of undiluted sample 
on a 6 plex plate according to manufacturer instructions. We also 
calculated the homeostatic model assessment of insulin resistance 
(HOMA). 

Fecal samples were requested from each subject. Intestinal micro-
biota DNA was extracted using the commercial QIAamp DNA Stool Mini 
Kit following manufacturer instructions (QIAGEN Canada, Mississauga, 
ON, Canada). DNA was then quantified and stored at − 20 ◦C until 
analysis. Specific primers were used for each phylum or bacterial pop-
ulation of interest (Table 1). qPCR was performed using the AriaMx 
Real-time PCR System (Agilent, Santa Clara, CA) and Brilliant II SYBR® 
Green QPCR Master Mix Kit (Agilent Technologies, Santa Clara, CA). 
Each microtube contained: 10 µL of Brilliant II SYBR; 1.25 µL each 
primer; 2 µL of DNA sample and 8.5 µL of water, for a total volume of 
23 µL, an amount sufficient according to the equipment manual. The 
program used was an initial denaturing cycle of 95 ◦C for 10 min, 40 
annealing cycles of 30 s at 95 ◦C, 60 s at: (a) 60 ◦C for Bifidobacteria spp, 
Bacteroidetes, Akkermancia Muciniphila, Verrucomicrobia, and Firmicutes; 
(b) 58 ◦C for Lactobacillus spp; (c) 55 ◦C for Total Bacteria and (d) 53 ◦C 
for Butyrate-Producing Bacteria. Populations were quantified using the 
semi-quantitative method. 

2.4. Statistical analysis 

Results are expressed as mean and standard deviation. The differ-
ences between initial and final times of each group were analyzed using 
the paired sample t-test, for variables with a non-normal distribution, 
the Wilcoxon test was used. Differences between groups were assessed 
using an unpaired t-test. In the event of non-normal distribution, the 
Mann Whitney non-parametric test was used. A two way ANOVA was 
used to determine the effect of treatment and time. We calculated a 
sample of 17 subjects per group, with a statistical power of 80%, con-
fidence of 95%, and variance of 0.22 to detect a decrease in HbA1c of 
0.4%. After considering 20% potential loss, we recruited 21 individuals 
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per group. Statistical significance was a p < 0.05. All analyses were 
performed with SPSS version 19 (IBM, Chicago, IL). 

3. Results 

3.1. Characteristics of the study sample 

Forty-four obese subjects with type 2 diabetes were randomly 
assigned to the control or β-glucan group. 37 subjects completed the trial 
(17 control and 20 β-glucan) and were included in the analysis. Dropouts 
were not due to intolerance or side effects, but to personal reasons. The 
population was composed up of 28 women and 9 men. Compliance with 
the protocol was adequate and the general perception of the groups was 
good: 72% of the control group and 92% in the β-glucan group indicated 
that the consumption of the supplement had a positive effect. Some 
secondary effects were observed: gurgling (bowel sounds) (n = 8 control 
group and n = 9 β-glucan group) and flatulence (n = 6 control group and 
n = 5 β-glucan group). Weekly stool frequency improved significantly 
(p = 0.011) in the β-glucan group (data not shown). 

Dietary intake at day 0 and after 12 weeks of the intervention was 
determined. The control consumed: 1829 ± 306 Kcal/day, 16.2 ± 4.7% 
of energy as protein, 32.7 ± 8.6% of energy as fat, 50.4 ± 9.0% of energy 
as carbohydrates and 21.4 ± 6.9 g dietary fiber. The β-glucan group had 
an intake of 2035 ± 407 kcal/day, 15.9 ± 2.8% of the energy as protein, 
29.2 ± 8.9% of the energy as fat, 55.3 ± 8.7% of the energy as carbo-
hydrates and 22.1 ± 11.8 g of dietary fiber when starting the interven-
tion. Nutrient and energy intake remained stable during the study period 
and no significant differences were observed between groups. 

The characteristics of the subjects are presented in Table 2. High 
blood pressure was the most prevalent secondary pathology (75.7%, 
n = 28) alone or combined with other non-communicable diseases 
(NCDs), followed by dyslipidemia (35%, n = 7) and hypothyroidism 
(19%, n = 5). Thirteen subjects (14%) presented only type 2 diabetes. 
Weight and BMI did not change significantly during the intervention or 
between groups, in both groups a non-significant decrease in systolic 
pressure was observed, while diastolic blood pressure remained almost 
constant, without significant differences between the groups (Table 3). 
Systolic blood pressure was reduced in both groups, but not signifi-
cantly, while diastolic pressure remained stable during the intervention 
period (Table 3). 

3.2. Glycemic control 

At the end of the intervention, HbA1c there was a decrease in the 
β-glucan group (p < 0.001) while in the control group it increased, but 
not significantly. Between the groups, the change was not different 
(p = 0.074), with a non-significant trend. Fasting glycemia and insulin 

remained stable during the period. An increase was observed in the 
control group and a decrease in the β-glucan group, but these changes 
were not different. Peptide C decreased in the β-glucan group 
(p = 0.023). Between the groups, there was a difference (p = 0.03). A 
significant change between groups was found in HOMA (p = 0.013), 
with a 28% reduction in the β-glucan group. 

3.3. Lipid profile 

We analyzing the lipid profile, and no significant changes were 
observed between the groups. However, in the control group, a non- 
significant increase in CT, HDLc, VLDLc, and TAG was found, while in 
the β-glucan group CT, VLDLc, and TAG decreased, this latter was 
significantly different (p = 0.041) (Table 3). 

3.4. Hormones 

The groups were comparable in most of the parameters, except for 

Table 1 
Sequences used to identify phyla and bacterial family.  

Primers Sequences Concentration Reference 

Total Bacteria 5′ CTCCTACGGGAGGCAGCAGT 3′

5′ GGACTACCAGGGTATCTAA 3′

1.0 µM Magne et al. (2006) 

Lactobacillus spp 5′ AGCAGTAGGGAATCTTCCA 3′

5′ CACCGCTACACATGGAG 3′

1.0 µM Rinttila, Kassinen, Malinen, Krogius, and Palva (2004) 

Bifidobacterium spp 5′ CACCCGTTTCCAGGAGCTATT 3′

5′ GCGTGCTTAACACATGCAAGTC 3′

1.0 µM Penders et al. (2005) 

Butyrate Producing Bacteria 5′ GCIGAICATTTCACITGGAAYWSITGGCAYATG 3′

5′ CCTGCCTTTGACATRTCIACRAANGC 3′

20 µM Louis and Flint (2007) 

Akkermansia muciniphila 5′ CAGCACGTGAAGGTGGGGAC 3′

5′CCTTGCGGTTGGCTTCAGAT 3′

0.35 µM Derrien, Collado, Ben-Amor, Salminen, and de Vos (2008) 

Bacteroidetes 5′ GGARCATGTGGTTTAATTCGATGAT 3′

5́AGCTGACGACAACCATGCAG 3′

5.0 µM Guo et al. (2008) 

Firmicutes 5′ GGAGYATGTGGTTTAATTCGAAGCA 3′

5′ AGCTGACGACAACCATGCAC 3′

1.0 µM Guo et al. (2008) 

Verrucomicrobia 5′ TGGCGGCGTGGWTAAGA 3′

5′-ATTACCGCGGCTGCTGG-3′

25 µM Navarrete et al. (2015)  

Table 2 
Demographic and clinical characteristics of the study subjects by group at the 
beginning of intervention.   

Control β-glucan p-value* 

n (woman/man) 17(13/4) 20 (15/5)  
Age (years) 52.8 ± 3.45 49.3 ± 6.75 0.058 
Weight (Kg) 81.7 ± 14.9 87.3 ± 15.3 0.264 
Height (cm) 155 ± 9.20 159 ± 9.3 0.202 
BMI (Kg/mt2) 34.2 ± 7.04 33.2 ± 5.16 0.781 
SBP (mmHg) 143 ± 19.9 141 ± 20.1 0.850 
DBP (mmHg) 82.7 ± 13.3 81.9 ± 11.0 0.832 
Time since diabetes diagnosis (years) 6.88 ± 3.84 7.55 ± 5.87 0.681 
HbA1c (%) 8.78 ± 1.73 8.91 ± 1.57 0.823 
Fasting glucose (mg/ml) 210 ± 62.3 170 ± 46.6 0.045 
Insulin (pmol/l) 146 ± 17.0 158 ± 43.1 0.522 
HOMA 63.4 ± 24.8 46.5 ± 18.0 0.360 
PEP-C (ng/ml) 0.54 ± 0.16 0.99 ± 0.86 0.032 
CT (mg/dl) 145 ± 63.9 147 ± 48.7 0.920 
TAG (mg/dl) 258 ± 150 269 ± 130 0.823 
HDL-C (mg/dl) 25.1 ± 10.9 27.1 ± 9.34 0.419 
LDL-C (mg/dl) 53.3 ± 21.5 59.2 ± 27.8 0.548 
VLDL-C (mg/dl) 36.3 ± 18.4 40.0 ± 15.8 0.588 
Ghrelin (ng/ml) 0.99 ± 0.19 0.94 ± 0.25 0.970 
Leptin (ng/ml) 0.22 ± 0.12 0.52 ± 0.29 0.004 
GLP-1 (μg/ml) 15.0 ± 6.1 18.7 ± 2.23 0.068 
PYY (pg/ml) 199 ± 13.4 160 ± 19.0 0.000 
Zonulin (ng/ml) 2.10 ± 0.62 1.70 ± 0.47 0.373 

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pres-
sure; HbA1c: Glycosylated hemoglobin A1c; HOMA: homeostatic model 
assessment of insulin resistance; CT: Total Cholesterol; TAG: Triglycerides. 
Data show mean ± SD. *T-test. 
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fasting blood glucose and YY peptide, which were higher in the control 
group. C peptide and leptin were higher in the β-glucan group, so results 
should be interpreted with caution (Table 2). Ghrelin concentrations 
were stable during the intervention period. Leptin concentration 
changed significantly between the groups (p = 0.033). In the β-glucan 
group, the concentration decreased, while in the control group no 

important changes were observed. Inverse situations were observed in 
GLP-1 and PYY. In the control group, we observed non-significant in-
creases in GLP-1 and decreases in PYY. On the other hand, in the 
β-glucan group, while GLP-1 decreased significantly (p = 0.001), PYY 
increased remarkably (p = 0.001). When comparing the groups, the ef-
fect was significant. 

3.5. Gut microbiota 

Intestinal patency was determined by zonulin concentration which 
remained stable during intervention period. A slight non-significant 
increase in the control group and a slight non-significant decrease in 
β-glucan group was observed. No changes between the groups were 
observed. Total bacteria decreased in the β-glucan group (p < 0.05). 
Also, there was a treatment and interaction effect (Two-way ANOVA, 
p < 0.037 and p < 0.024, respectively). Firmicutes, Bacteroidetes and 
Verrucomicrobia phyla decreased in β-glucan group (p < 0.05, T-test), 
However, only in Verrucomicrobia phyla showed an interaction effect 
(p < 0.001, Two way Anova) (Fig. 1). 

Populations of Lactobacillus spp decreased significantly in the 
β-glucan group (p = 0.020) and there was a time effect (p < 0.016, Two 
way Anova). Populations of Bifidobacteruim spp decreased in β-glucan 
group (p < 0.042, T-test), however, no differences were observed for the 
interaction. Akkermansia M. did not change in the β-glucan group. There 
was an interaction effect (0.031, Two-way ANOVA). Populations of 
butyrate-producing bacteria in the β-glucan group decreased signifi-
cantly (p = 0.019), while in the control group bacteria increased. There 
was an interaction effect (p < 0.005, Two-way ANOVA) (Fig. 2). 

4. Discussion 

The present study shows that long-term intake of 5 g/day of a sup-
plement of oat β-glucan consumed daily for 12 weeks as part of a regular 
diet, has a beneficial effect on the metabolic control of T2D subjects, 
improving glycemic control, TAG, intestinal habit (stool frequency), 
regulating hormones and modifying the intestinal microbiota. 

Table 3 
Changes in clinical, hormonal and dietary factors at the end intervention be-
tween groups.   

Control β-glucan p-value* 

Weight (Kg) − 0.15 ± 2.13 − 0.80 ± 3.51 0.786 
BMI (Kg/mt2) − 0.05 ± 0.86 − 0.31 ± 1.34 0.833 
SBP (mmHg) − 8.73 ± 16.4 − 7.83 ± 15.2 0.880 
DBP (mmHg) 1.18 ± 10.2 − 2.00 ± 7.72 0.347 
HbA1c (%) 0.36 ± 1.28 − 0.68 ± 1.89* 0.074 
Fasting glucose (mg/ml) 16.6 ± 110 − 30.8 ± 77.2 0.140 
Insulin (pmol/l) 0.08 ± 0.91 − 1.31 ± 1.85 0.022 
HOMA 9.86 ± 38.2 − 26.9 ± 33.2 0.013 
PEP-C (ng/ml) 0.07 ± 0.36 − 0.73 ± 0.82* 0.030 
CT (mg/dl) 0.12 ± 64.7 − 9.6 ± 57.1 0.326 
TAG (mg/dl) 22.1 ± 138 − 75.1 ± 152* 0.056 
HDL-C (mg/dl) 2.29 ± 10.3 1.75 ± 9.03 0.998 
LDL-C (mg/dl) − 1.16 ± 23.7 5.44 ± 37.4 0.666 
VLDL-C (mg/dl) 11.2 ± 16.4 − 2.80 ± 23.5 0.108 
Ghrelin (ng/ml) 0.04 ± 0.22 0.15 ± 0.26 0.363 
Leptin (ng/ml) 0.02 ± 0.14 − 0.24 ± 0.35 0.033 
GLP-1 (μg/ml) 0.31 ± 5.66 − 8.51 ± 0.60* 0.001 
PYY (pg/ml) − 10.2 ± 21.4 46.0 ± 28.9* 0.000 
Zonulin (ng/ml) 0.16 ± 0.37 − 0.04 ± 0.41 0.128 
Energy (Kcal/day) − 56.7 ± 453 − 83.9 ± 667 0.695 
Proteins (g/day) − 5.15 ± 21.2 − 8.89 ± 29.4 0.880 
Fat (g/day) − 2.91 ± 17.4 − 0.21 ± 29.8 0.928 
Carbohydrates (g/day) − 1.14 ± 83.2 − 8.29 ± 100 0.833 
Dietary fiber (g/day) − 0.13 ± 12.13 − 1.17 ± 14.3 0.928 

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pres-
sure; HbA1c: Glycosylated hemoglobin A1c; HOMA: homeostatic model 
assessment of insulin resistance; CT: Total Cholesterol; TAG: Triglycerides. 
Data show mean ± SD. * T-test. 

Fig. 1. Change in the gut microbiota profile and bacterial family during the intervention and between groups. A: Total bacteria; B: Firmicutes; C: Bacteroidetes and 
D: Verrucomicrobia. The figures show Log10 of copies of genes of interest per g/stool at day 0 and after 12 weeks of intervention. *p < 0.05. T-Test or Wilcoxon rank 
test for paired samples for each group. 
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Several studies and meta-analyses have demonstrated the positive 
effect of oat β-glucans on glycemic control parameters in type 2 diabetic 
subjects when incorporated into the diet (Andrade et al., 2014; Hou 
et al., 2015; Shen et al., 2016). Our study showed similar effects, with a 
0.68% decrease in glycated hemoglobin A1c. This effect may be related 
to various properties and effects of oat β-glucans. First, its gelling ca-
pacity, which occurs at low concentrations (1%) and at an optimal 
temperature of 37 ◦C (body temperature), which does not occur with 
barley β-glucan (57 ◦C) (Mäkelä, Maina, Vikgren, & Sontag-Strohm, 
2017). This property would decrease the glycemic effect of food 
(Ekström & Henningsson-Bok, 2017). In addition, a decrease in the 
expression of glucose transporters SGLT1 and GLUT2 has been described 
(Abbasi, Purslow, Tosh, & Bakovic, 2016), and an inhibition of the 
enzyme α-glycosidase (Dong et al., 2011); effects that would keep blood 
glucose lower. These properties regulate the absorption of carbohy-
drates, but there is another effect that could participate in this control: 
the increase of GLP-1. This incretin stimulates release of insulin, even 
more intensely than GIP (Jones, Bloom, Buenaventura, Tomas, & Rutter, 
2018). The increase of this peptide would be related to the generation of 
short chain fatty acids, acetate, propionate and butyrate, a product of 
β-glucan fermentation by the intestinal microbiota, which would stim-
ulate endocrine L cells of the intestine and increase production (Burce-
lin, 2017). 

Similar interventions in asymptomatic individuals with barley 
β-glucan (Aoe et al., 2017) or in overweight women supplemented with 
oat β-glucan (Beck, Tapsell, Batterham, Tosh, & Huang, 2010), have 
described no changes in lipid profile. Some trials in subjects with T2D 
have shown no changes (Cugnet-Anceau et al., 2010), but there are other 
investigations that show significant changes in LDL-cholesterol, non- 
HDL-cholesterol and Apo-B (Ho et al., 2016), so there is conflicting in-
formation. In the present study, it was possible to identify a significant 
decrease in triglycerides (TAG), without changes in the rest of the lipid 
profile similar to that described by Tessari and Lante (2017). These 
authors evaluated the effect of a functional bread with beta-glucans in 
diabetic subjects and found a significant decrease in TAG, without 

changes in the rest of the lipid profile. This decrease in TAG levels could 
be related to the action of SCFA, since they could modulate lipolysis in 
adipocytes; while butyrate increases lipolytic action by inhibiting his-
tone deacetylase enzymes (HDAC) (Rumberger, Arch, & Green, 2014), 
acetate attenuates lipolysis by decreasing hormone-sensitive lipase 
(HSL) phosphorylation (Jocken et al., 2018). This modification therefore 
would have no effect on enteroendocrine peptides, as it has been 
described that infusions of GLP-1 and PYY separately or in combination 
does not increase serum lipase levels (Schmidt et al., 2016). 

In short-term studies, it has been possible to observe an important 
effect of oat β-glucans in transforming diet, modulating levels of ghrelin, 
PYY, GLP-1, GIP and leptin, among others (Barone-Lumaga et al., 2012; 
Hartvigsen et al., 2014; Vitaglione et al., 2009). At least one long-term 
study has also demonstrated similar effects (Richter et al., 2019). In 
this study, no significant differences were observed in leptin and ghrelin, 
while GLP-1 and PYY showed significant changes. Incretin decreased 
48%, while YY peptide increased 26%. In this regard, the evidence is 
contradictory, studies in murine models indicate a significant increase of 
more than 2 times in both peptides (Adam et al., 2014). While human 
studies using solid and liquid food matrices enriched with β-glucans 
have not shown significant effects on GLP-1 (Barone-Lumaga et al., 
2012; Hartvigsen et al., 2014). Other studies show a decrease in this 
incretin 90 min after consuming a breakfast containing β-glucan versus a 
control. (p = 0.021) (Zaremba et al., 2018). On the other hand, other 
studies have reported a 16% (p < 0.005) increase in AUC for PYY 
(Vitaglione et al., 2009). So studies are still lacking in this regard. 

A possible explanation for this finding may be fermentation of 
β-glucans by intestinal microbiota. This process, with the consequent 
release of SCFA, would stimulate FFAR2 receptors, along with the ac-
tivity and number of colonic endocrine L cells, increasing the release of 
basal PYY but not from GLP-1(Brooks et al., 2016). GLP-1 secretion is 
regulated by a combination of pathways activated by nutrients, neural 
and hormonal signals, with nutrient intake being the main regulator of 
its expression in enteroendocrine L cells. Therefore, the lower levels of 
GLP-1 compared with the control could be related to a homeostatic 

Fig. 2. Change in the gut microbiota profile and bacterial family during the intervention and between groups. A: Lactobacillus spp; B: Bifidobacterium spp; C: 
Akkermansia Muciniphila and D: butyrate-producing bacteria. The figures show Log10 of copies of genes of interest per g/stool initial and end of intervention. 
*p < 0.05. T-Test or Wilcoxon rank test for paired samples for each group. 

J.L. Pino et al.                                                                                                                                                                                                                                   



Journal of Functional Foods 77 (2021) 104311

6

effect produced by the formation of gels by β-glucans, producing a lower 
absorption and availability of glucose monomers (Abbasi et al., 2016; 
Dong et al., 2011). 

Intestinal microbiota was analyzed using a semi-quantitative method 
previously described (Kralik & Ricchi, 2017; Liu & Saint, 2002). Bac-
terial 16S rRNA genes from variable regions 3 and 4 were used as 
reference (housekeeping) (Magne et al., 2006). While some studies 
report an increase in Lactobacillus and Bifidobacterium populations due to 
the intake of barley β-glucans (Arena et al., 2014) and in-vitro studies 
show that oat β-glucans promote the growth of Lactobacillus (Dong, Yu, 
Dong, & Shen, 2017), other investigations do not report significant 
changes for the same bacterial populations (Hughes, Shewry, Gibson, 
McCleary, & Rastall, 2008). In this investigation, a significant decrease 
in the relative quantity of Lactobacillus and Bifidobacterium was identi-
fied in the group supplemented with oat β-glucans, a result that has not 
been described in other similar studies. However, like effects have been 
described with other dietary fibers (Pedersen et al., 2016). In vitro 
studies suggest that stimulation of bacterial populations of gut micro-
biota are related to the degree of polymerization of dietary fibers. In this 
sense, the Lactobacillus and Bifidobacterium populations are negatively 
correlated (Chen et al., 2020), which could explain the effect of oat 
β-glucan. 

In T2D subjects, an increase in Lactobacillus populations mediated by 
the intake of metformin has been described (Wu et al., 2017). Metformin 
has a close relationship with the microbiota, in fact, since there is a 
feeble microbiota with little diversity, the anti-hyperglycemic and anti- 
hyperlipidemic effect of metformin is weakened (Wu et al., 2019). In this 
study, oat β-glucan could be modulating bacterial populations. One 
interesting finding is a significant decrease in butyrate-producing bac-
teria. Ingestion of oat β-glucans has previously been described to in-
crease butyrate concentrations (Queenan et al., 2007), both in the cecum 
and the colon (Adam et al., 2014) and that it is more effective than 
barley beta-glucans (Shen, Dang, Dong, & Hu, 2012). Therefore, this 
effect could be responding to better functioning of the butyrate- 
producing bacteria and not to the increase in population size. This 
decrease is also related to the significant decrease in the Firmicutes 
phylum, where most of these bacterial groups are classified. The in-
crease in these bacterial populations could be mediated by factors such 
as diet and medications in T2D subjects. The dietary fiber could reduce 
this overgrowth. With our results, it is not clear why the abundances of 
these phyla and bacterial groups decrease. We could attribute them to 
the characteristics of oat beta-glucans, but it is necessary to carry out 
more studies, perhaps in vitro studies, to identify the causes and 
mechanisms involved. 

An unexpected and intriguing finding was the significant increase in 
gut microbiota populations, especially Verrucomicrobia phylum, 
including Akkermansia Muciniphila, and an increase in butyrate- 
producing bacterial populations in the group supplemented with 
microcrystalline cellulose (control). These findings could suggest that 
microcrystalline cellulose could regulate these populations collabo-
rating with a better metabolic profile in subjects with type 2 diabetes, as 
has been described with other compounds and food matrices (Jaya-
chandran, Chung, & Xu, 2020). 

There are various studies that associate glycemic control with the 
relative abundance of some bacterial species or compounds derived 
from their metabolism. For example, Akkermansia muciniphila, this 
bacterium has the function of regulating intestinal permeability by 
maintaining the mucous layer and it has been associated with glycemic 
control, regulation of insulin resistance and decrease in plasma choles-
terol (Depommier et al., 2019). On the other hand, metabolites derived 
from fermentation in the intestinal microbiota (such as SCFA) have been 
related to development of DM1 (Kim, 2018) and the control of T2D 
(Mandaliya & Seshadri, 2019). 

The results observed in the glycemic control could be associated with 
the gelling effect of β-glucans. This property would decrease or delay the 
release of glucose in the intestinal lumen, reducing the pick of glucose 

and in turn of insulin. These results also could be associated with this 
property of glucans rather than to the change in the intestinal 
microbiota. 

We have exhaustively evaluated the effect of oat b-glucans on 
metabolic control in subjects with type-2 diabetes. Our results showed 
the effect of this dietary fiber on the regulation of appetite hormones and 
fecal microbiota in T2D. Some of our results were unexpected and raise 
new research questions to be answered in future investigations. In 
conclusion, this 3-month intervention trial in T2D subjects shows that a 
daily single intake of 5 g with a supplement of oat β-glucan (higher than 
the official recommendation of 3 g) improves, in general terms, meta-
bolic control. Oat β-glucan may be useful as a supplement for regular 
consumption among persons with T2D. 
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