
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

DEVELOPMENT OF SPIKING NEURAL NETWORKS BASED ON
DEEP LEARNING AND INFORMATION THEORY

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

JHON ALEJANDRO INTRIAGO CHICHANDA

PROFESORES GUÍA:
NANCY HITSCHFELD KAHLER
PABLO ESTÉVEZ VALENCIA

MIEMBROS DE LA COMISIÓN:
BENJAMIN BUSTOS CÁRDENAS

GONZALO ACUÑA LEIVA
FELIPE TOBAR HENRÍQUEZ

Este trabajo ha sido parcialmente financiado por:
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, SENESCYT

CONICYT, Fondecyt 1171678

SANTIAGO DE CHILE
2021

RESUMEN

Las Redes Neuronales Spiking (SNNs) son una posible vía para acortar la distancia entre
el aprendizaje profundo y la neurociencia. Estos modelos se consideran redes neuronales
biológicamente plausibles porque intentan simular cómo las neuronas biológicas transmiten
la información. Su implementación en hardware especializado ofrece un gran potencial de
velocidad computacional. Sin embargo, es necesario mejorar su rendimiento con respecto a
las redes neuronales recurrentes tradicionales tales como Vanilla Recurrent Neural Network
(V-RNN), Long Short Term Memory (LSTM) y Gated Recurrent Unit (GRU). Para ello,
abordamos algunas debilidades de estas redes desarrollando variantes basadas en principios
de aprendizaje profundo y teoría de la información. En concreto, proponemos un nuevo
método heurístico para estimar los parámetros que definen al modelo SNN. También añadi-
mos memoria externa a estos para una comparación justa con los modelos tradicionales y,
finalmente, adaptamos el método Information Bottleneck como criterio de optimización. Es-
tas mejoras propuestas se evaluaron con dos conjuntos de datos: El problema de los bits de
paridad y el conjunto de datos Spiking Heidelberg (SHD). Nuestros principales resultados
sostienen que el modelo SNN Recurrente (SRNN) mejorado logró un rendimiento similar al
modelo GRU con menos parámetros en la clasificación del conjunto de datos SHD, en el que
ambos modelos alcanzaron un 86% de exactitud en promedio. Además, cuando se añadió
Information Bottleneck como criterio de optimización, el modelo SRNN convergió más rápido
que los modelos entrenados con entropía cruzada (Cross-Entropy). Nuestros resultados su-
gieren que el modelo SRNN inspirado en conceptos biológicos tiene un rendimiento similar
al de las RNN tradicionales cuando las condiciones de evaluación son similares (por ejem-
plo, utilizando el mismo número de parámetros). Además, cuando las RNNs se entrenan
utilizando técnicas de control de gradientes, estos modelos mejoran su rendimiento.

i

ABSTRACT

Spiking Neural Networks (SNNs) are a possible way to bridge the gap between deep learn-
ing and neuroscience. These models are considered biologically plausible neural networks
because they try to simulate how biological neurons transmit information. Their implement-
ation on specialised hardware offers great potential for computational speed. However, its
performance needs to be improved with respect to traditional Recurrent Neural Networks
(RNNs) such as Vanilla Recurrent Neural Network (V-RNN), Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU). For this purpose, we address some weaknesses
of SNNs by developing variants based on deep learning and information theory principles.
Specifically, we propose a new heuristic method for estimating SNN parameters. We also add
external memory to SNNs for fair comparison with traditional RNNs and, finally, we adapt
the Information Bottleneck method as an optimisation criterion. The proposed improve-
ments were evaluated with two datasets: The parity bit problem and the Spiking Heidelberg
dataset (SHD). Our main results show that the improved Recurrent SNN (SRNN) achieved
similar performance to the GRU model with fewer parameters on the task of classifying the
SHD dataset, where both models achieved 86% accuracy on average. Furthermore, when
the Information Bottleneck was added, the SRNN model converged faster than the models
trained with cross-entropy. Our results suggest that the SRNN model inspired by biological
concepts performs similarly to traditional RNNs when the evaluation conditions are sim-
ilar (e.g., using the same number of parameters). Moreover, when RNNs are trained using
techniques to control gradients, these models improve their performance.

ii

In the form of acronyms, this work goes to: LOML & FFP.

iii

Agradecimientos

A lo largo de la redacción de esta tesis, he recibido una gran cantidad de apoyo y asistencia.

En primer lugar, quisiera agradecer a mis supervisores, el profesor Pablo Estévez y a la
profesora Nancy Hitschfeld, cuya experiencia fue invaluable en la formulación de las preguntas
y la metodología de la investigación. Sus comentarios, siempre oportunos, me impulsaron a
mejorar mi pensamiento crítico y a realizar con éxito el presente trabajo.

También me gustaría agradecer a mis padres por sus sabios consejos y comprensión. Fi-
nalmente, no podría haber completado esta disertación sin el apoyo del LOML Cinthia, con
quien siempre tuve discusiones alentadoras, así como momentos felices que me permitieron
descansar la mente fuera de mi investigación.

iv

Contents

1 Introduction 1
1.1 Related Work . 3

1.1.1 Spiking Neural Network Application and Formulation 3
1.1.2 Optimisation Criteria Based on Information Theory 4

1.2 Research Problem . 4
1.3 Hypothesis . 5

1.3.1 Parameter Model Definition on Spiking Models 5
1.3.2 Fair Comparison . 6

1.4 Research Questions . 6
1.5 Objectives . 6

1.5.1 General Objective . 6
1.5.2 Specific Objectives . 6

1.6 Methodology . 6
1.7 Contributions . 7
1.8 Thesis Outline . 7

2 Theoretical Framework 8
2.1 Recurrent Neural Networks (RNNs) . 9

2.1.1 Vanilla RNN (V-RNN) . 9
2.1.2 Long Short-Term Memory (LSTM) 10
2.1.3 Gated Recurrent Unit (GRU) . 11
2.1.4 RNN Architectures . 12

2.2 Spiking Recurrent Neural Networks (SRNNs) 13
2.2.1 Vanilla SRNN (V-SRNN) . 14
2.2.2 Cramer SRNN (C-SRNN) . 15
2.2.3 Adaptive SRNN (A-SRNN) . 16

2.3 Supervised Learning . 17
2.3.1 Cross-Entropy Optimisation Criterion 17
2.3.2 Evaluation Metric: Accuracy . 17

2.4 Training RNNs . 18
2.4.1 Vanishing and Exploding Gradient Problem 19
2.4.2 Gradient Clipping . 19
2.4.3 Reducing the Learning Rate at the Plateau 20

2.5 Information Theory . 20
2.5.1 Random Variables . 20

v

2.5.2 Entropy . 21
2.5.3 Mutual Information . 21
2.5.4 Information Bottleneck Principle . 21

3 Methodology 23
3.1 Experimental Data . 23

3.1.1 Parity Bit Problem or Sequential XOR 23
3.1.2 Spiking Heidelberg Digits (SHD) . 24

3.2 Experimental Framework . 25
3.2.1 Recurrent Neural Networks Graph Representation 25
3.2.2 Supervised Learning setup for Multilayer SRNNs and traditional RNNs 28
3.2.3 Backpropagation in SRNNs . 31
3.2.4 Training Setup . 32
3.2.5 Evaluation Procedure . 33
3.2.6 Final experimental flow . 33

3.3 SRNN Model Parameters . 35
3.3.1 Analysis of Parameters . 35
3.3.2 Analysis of Surrogate Gradient . 36
3.3.3 Initialisation of Learnable Parameters (Weights) 36
3.3.4 Proposed method to set SRNNs hyperparameters 36

3.4 Memory in SRNNs . 39
3.4.1 Categorisation of SRNNs based on their type of memory 39
3.4.2 Adaptation of Two-Level External Memory in SRNNs 40

3.5 Information Bottleneck in SRNNs . 42
3.5.1 Proposed Mutual Information Estimator Based on the Central Limit

Theorem . 43

4 Baseline Results 44
4.1 Parity Bit Problem . 44

4.1.1 Discussion . 47
4.2 SHD Problem Baselines . 47

4.2.1 Discussion . 49

5 SRNN Model Hyperparameters 51
5.1 Heuristic Method Exploration . 51

5.1.1 Discussion . 54
5.2 SRNNs vs Traditional RNNs . 56

5.2.1 Discussion . 60
5.3 Literature fixed Parameters vs Heuristic Method 62

5.3.1 Discussion . 63

6 Memory and Optimisation Criterion 65
6.1 Two-Level External Memory . 65

6.1.1 Discussion . 67
6.2 Space Information Bottleneck on V-SRNN 69

6.2.1 Discussion . 72

7 Conclusions 73

vi

7.1 Final Comments and Future Work . 75

Bibliography 75

Appendices 83

A Linear Transformation Approximates a Normal Distribution 84

B Input Current PDF Approximation 85

C Maximum Scores of Baselines 86

vii

List of Tables

2.1 Confusion matrix for a binary classification. 17

3.1 List of Parity Bit versions used in our experiments. 24
3.2 Architectures studied for parity bit and SHD dataset. 30
3.3 Training setup for datasets. 33

viii

List of Figures

1.1 Illustration of an artificial neural network unit 2

2.1 Vanilla recurrent cell. 9
2.2 LSTM recurrent cell. 11
2.3 GRU recurrent cell. 12
2.4 Deep and Many to many RNN architecture 12
2.5 Vanilla spiking recurrent cell. 14
2.6 Cramer spiking recurrent cell. 15
2.7 Adaptive spiking recurrent cell. 16
2.8 Effect of gradient clipping on a recurrent network with w and b parameters. . 19
2.9 Saddle point in loss landscape . 20
2.10 Mutual information between two random variables. 21

3.1 V-RNN computational graph . 25
3.2 GRU computational graph . 26
3.3 LSTM computational graph . 26
3.4 V-SRNN computational graph . 27
3.5 C-SRNN computational graph . 27
3.6 A-SRNN computational graph . 28
3.7 Sequence labeling for binary classification . 29
3.8 Sequence labeling for multiclass classification 30
3.9 Experimental flow pipeline. 34
3.10 Surrogate gradient for different standard deviations for normal distribution . 36
3.11 Illustration of the CLT when we sample from a continuous uniform distribution 37
3.12 Illustration of the external memory elements in GRU and V-SRNN models . 40
3.13 Information Bottleneck in V-SRNN. 42

4.1 Parity Bit dataset visualisation with different time length versions 44
4.2 Parity Bit test accuracy heat-maps . 45
4.3 Scatter plot of parity bit test accuracy . 46
4.4 Spiking Heidelberg dataset sample visualisation with different time length ver-

sions . 48
4.5 Mean accuracy and standard deviation of traditional RNNs and SRNN models

for the SHD dataset. 49

5.1 Mean accuracy and standard deviation of V-SRNN with different values of the
parameter ñ in the classification of the SHD test data set. 52

ix

5.2 Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-512-20 architecture. 53

5.3 Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-512-256-128-20 architecture. 53

5.4 Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-256-128-20 architecture. 54

5.5 Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-128-20 architecture. 54

5.6 SRNNs with heuristic function and traditional RNNs effectiveness 56
5.7 Effectiveness versus number of parameters of the SRNNs and the traditional

RNNs . 57
5.8 Parallelogram chart with the effectiveness, convergence steps, parameters, and

spikes per layer (only for the latter spiking models) of SRNNs and RNNs using
the 700-512-20 architecture. 58

5.9 Parallelogram chart with the effectiveness, convergence steps, number of para-
meters, and spikes per layer (only for the latter spiking models) of SRNNs and
RNNs with the 700-512-256-128-20 architecture. 59

5.10 Parallelogram chart with the effectiveness, convergence steps, parameters, and
spikes per layer (only for spiking models) of SRNNs and RNNs with the 700-
256-128-20 architecture. 59

5.11 Parallelogram chart with the effectiveness, convergence steps, number of para-
meters, and spikes per layer (only for the latter spiking models) of SRNNs and
RNNs with the 700-128-20 architecture. 60

5.12 SRNN models with literature fixed and heuristic parameters 62
5.13 P-values of the permutation test between literature fixed and heuristic para-

meters of SRNNs. 63

6.1 Gated-SRNN and GRU models performance 66
6.2 Gated-SRNN vs GRU comparison . 66
6.3 Radar charts with the effectiveness, convergence steps, parameters, and spikes

per layers (only for the latter spiking models) of G-SRNN and GRU architectures. 67
6.4 Effectiveness (top table) and iteration step (bottom table) of V-SRNN using

Space IB . 69
6.5 Statistical permutation test on Mutual information estimators 70
6.6 Mutual Information estimator comparison, training steps 70
6.7 Parallelogram of the average number of spikes per layers 71

A.1 Kernel density estimation of a linear transformation between a random binary
vector and a uniform distributed matrix . 84

B.1 Probability density approximation of the input current (Eq. 2.14) using CLT 85

C.1 Maximum accuracy of traditional RNNs and SRNNs for the SHD dataset. . 86

x

Chapter 1

Introduction

Deep learning has made significant advancements in numerous applications, such as computer
vision and natural language processing, applied in a variety of domains, such as medicine,
biology, government, among others. It is a field of machine learning that relies on the collec-
tion of algorithms for modeling high-level abstractions in the data with multiple nonlinear
transformations [15]. In view of the promising results of this leading machine learning ap-
proach, it is important to study Artificial Neural Networks (ANNs), as they are at the heart
of it.

ANNs are series and parallel combination of processing units, capable of acquiring inform-
ation through a learning process, and storing it in their connections [26]. They are inspired
by biological neurons; nevertheless, most ANNs follow a model that weakly simulates the
natural behaviour, mainly in the way information is propagated. These artificial networks
propagate information represented in real numbers, while biological neurons propagate it
using sparse spiking signals over time [31], [61].

There are three components typically used in the design of the ANNs [54]. First, the
learning rule, which drives how the synaptic connections (also known as weights) are up-
dated. Second, the optimisation criterion or loss function, which quantifies the performance
of the network in order to minimise its error or maximising its performance [11], [39], [54].
Third, the architecture, which defines how information flows (e.g. Feedforward, Convolu-
tional, Recurrent, among others) [48].

Recurrent Neural Networks (RNNs) are commonly the first option for working with se-
quential data, given their outstanding results in several domains such as natural language,
video, audio, among other forms of time series data [25], [34], [57]. They can be obtained by
sampling delay differential equations [57]. This basic architecture has different variations, for
example, some are built to perform specific computations [10], others are enhanced with new
features (such as augmented memory) [24], and others are inspired by strong neuroscience
principles (more biologically plausible1) [4], [12].

Spiking Neural Networks (SNNs) are considered biologically plausible neural networks be-

1When a modelled neuron is capable of producing a set of behaviours exhibited by real neurons [1]

1

cause they try to simulate how biological neurons transmit information (Figure 1.1). SNNs
can be obtained from mathematical models such as Hodgkin and Huxley (HH) [29], Spike
Response Model (SRM) [32], Leaky Integrate and Fire (LIF) [7], [20], among others. Par-
ticularly, LIF can be formally mapped to a RNN variant, known as Spiking RNN (SRNN),
using Euler method [49]. Unlike the SNNs, the SRNNs in addition to applying a recurrence
on the input data also applies a recurrence on the hidden state, i.e. it performs an expli-
cit recurrence. SRNN is a nature versatile solution to fault-tolerant, energy-efficient signal
processing [49], which makes it an object of research interest.

a) Representation of a perceptron, where Sn is the input feature, Oi is the output projection
and wn,i represents the learnable parameters.

b) Representation of a Spiking unit, where Sn,t−1 is the input feature at previous time step, Oi,t

is the output spikes projection in current time step and wn,i represents the learnable parameters.

Figure 1.1: Illustration of a) an ANN unit and b) an SNN unit.

In general, the input data for a SRNN are binary sequences. However, they are often
stored in formats that are not compatible with this model and must be transformed. These
transformations are generally based on two families of neural coding: Rate Code [60] and
Temporal Code [11]. Recent evidence suggests that these transformations have several rep-
licability issues due to their parameters. For that reason, Cramer et al. [14] proposed a

2

benchmark with binary sequences. This benchmark belongs to a supervised learning task2,
and consists of two audio datasets mapped to spike trains through a transmitter pool based
on hair cells3.

Both SRNNs and RNNs frequently use Cross-Entropy (CE) and Mean Square Error (MSE)
as optimisation criteria in supervised learning tasks [30], [49]. Other optimisation criteria are
Van Rossum distance [58], Predictive Coding [54] and Information Bottleneck [6]. Inform-
ation Bottleneck (IB) is based on information theory, which studies the rules that govern
the transmission of messages through communication systems [47] (IB is described in Section
2.5.4). A neural network architecture can be considered as a communication system because
it can work as a channel that receives an input signal and produces an output signal [21].
Therefore, it is justified to explore optimisation criteria based on information theory in these
models.

Throughout this thesis we use the term RNN to refer only to those architectures that
transmit information using real values, and the term SRNN for architectures that only trans-
mit information using binary pulses or spikes (biologically plausible). Given this background,
we focus on the SRNNs applied to binary sequential data classification, compared to some
variants of RNNs.

1.1 Related Work
In this section, we present a brief introduction to Spiking Neural Networks focusing on their
application and formulation, and their optimisation criterion based on information theoretic
measures.

1.1.1 Spiking Neural Network Application and Formulation

Spiking Neural Networks have been tested in several classification tasks [14], [49], [50], [58],
[61]. Previous studies have reported that SNNs are able to obtain a similar accuracy to
RNNs to classify Neuromorphic datasets. These datasets generally contain records generated
by sensors that mimic some human sense, e.g. the retinal saccades sensor [39], [50]. However,
more recent work provides contradictory findings when these models are tested with more
complex datasets, which ensure time dependence [14].

In general, SRNNs have different mathematical formulations due to their non-differentiable
synaptic transfer functions4, assumptions and discrete approximation [14], [39], [49], [58]. As
a result, there are several variants of SRNNs such as those proposed by Cramer et al. [14]
and Bellec et al. [4]. In this paper, we implement and explore the models formulated in
Cramer et al. [14] and Yin et al. [70], we use these works as a reference because they have
reported a score on one of the tasks used in this research.

The parameters of the SRNN play an important role in the performance of the model.
For example, the threshold parameter ϑ, which generates the spikes in the hidden layers, is

2Learning from a set of labelled instances.
3Hair cells are the sensory receptors in the inner ear [46].
4On Machine learning is known as activation function.

3

sometimes arbitrarily defined [14], and in other works is defined by a differential equation
using information from past spikes, which also needs an initial threshold value [4]. Indeed,
other parameters of the SRNN are also arbitrarily defined.

1.1.2 Optimisation Criteria Based on Information Theory

Optimisation criteria based on information theory in supervised learning are those that use
a logarithmic measure to minimise or maximise the predicted distribution with respect to
an actual distribution to solve a task. For example, cross-entropy (CE) minimises entropy
and information bottleneck (IB) maximises entropy to approximate the predicted probability
to the actual probability distribution. These methods have a significant advantage over the
most widely used optimisation criterion (Mean Square Error). In addition these criteria have
the ability to be easily extended to non-linear systems and non-Gaussian data as they use the
entire probability distribution of the data, whereas MSE uses only second order moments [52].

Cross-Entropy (CE) is the default option to be used in classification tasks because of
its outstanding results. In addition, Cross-Entropy has been combined with Information
Bottleneck (IB) for training ANNs in a different ways with interesting results [37], [66].
Reyes [53] modelled an algorithm, which adjusts the ANNs’ weights layer by a layer based
on the mutual information. Yu et al. [72] proposed a discrete IB criterion composed by
the mutual information and the CE criterion. However, Information Bottleneck in Spiking
Neural Networks has been explored in few works. Buesing and Maass [6] proposed a neural
model based on IB with sigmoidal activation function and non-refractory voltage dynamics
(an operation that prevents the neuron voltage from being reset). They only used a single
neuron, thus there is an opportunity to adapt the IB criterion to more complex models.

The optimisation criteria based on information theory needs to compute entropy. Sev-
eral attempts have been made to compute the entropy directly from data since it is nearly
impossible to compute the probability density function for the majority of the real-world
problems [55]. There are recent proposals to better estimate the entropy using different
mechanisms such as the estimator by Yu et al. [71] and Kolchinsky et al. [37]. Interestingly,
these two methods have nice properties such as computing the gradients of their mathematical
operations.

The Yu et al. [71] method is based on Infinitely Divisible Kernels. It allows the com-
putation of the entropy directly from data, thus facilitating new applications and uses of
mutual information. This estimator can be used as a part of the feature selection [71], the
Information Plane (IP) calculation [69], the optimisation criteria construction [72], among
others. Kolchinsky et al. [37] method is based on a pairwise distance function between mix-
ture components. These estimators have been applied to modelling the optimisation criterion,
monitoring compression of the ANNs and other tasks [8], [36], [37].

1.2 Research Problem
In recent years, there has been an increasing interest in SNNs. These models are commonly
evaluated in classification tasks [14], [49], [50], [58], [61]. Nevertheless, as far as we know, no
previous study has investigated the impact of the hyperparameters related to the network

4

structure (e.g., number of layers and hidden units) and training strategies (e.g., gradient
clipping and learning rate schedule) for different lengths of sequences. This knowledge may
provide insight about the limits and practical advantages or disadvantages of SRNNs com-
pared to traditional RNN models.

It is also important to address other aspects that influence the performance of these models
such as the optimisation criteria, memory type and parameters. Regarding the optimisation
criterion, it directly influences the adjusting of the weights during training of the model.
Buesing and Maass [6] applied an optimisation criterion based on information theory (In-
formation Bottleneck) to model SNNs; however, they focused on a single neuron, which limits
its applicability to real-world problems.

RNNs with added external memory5, such as Long Short-Term Memory (LSTM), have
shown significant improvements in several tasks compared to the Vanilla RNN that uses
internal memory6 [45]. Indeed, LSTM (including its derivatives) deals with the problem of
vanishing gradients and uses a mechanism to store the relevant information [45]. However,
to our knowledge, the memory of the SRNN has not been defined yet. Thus, there is a need
to study whether the external memory also improves SRNNs performance compared to not
using it.

Recent research has evaluated SRNNs performance with different datasets, in which some
define a fixed threshold [14], and others use an adaptive threshold (which requires an initial
value for threshold) as the parameter to generate a spike [4]. However, the above-mentioned
works do not provide a rationale for the definition of this threshold, which may imply an
arbitrary choice.

1.3 Hypothesis

The goal of this section is to define the hypotheses to be empirically tested. The first
hypothesis is related to the underlying parameters of the SRNN models; and the second is a
fair comparison between a SRNN variant and a traditional RNN.

1.3.1 Parameter Model Definition on Spiking Models

The first hypothesis that will be tested in this work isH1, which claims that the SRNNmodels
with the hyperparameters calculated using a heuristic method can obtain a higher accuracy
than the SRNN models using literature fixed model parameters, solving the classification
task used in this work. The null hypothesis is H1null, which claims that the SRNN models
with the parameters calculated using a heuristic method have similar accuracy to the SRNN
models using literature fixed model parameters, solving the classification task used in this
work.

5A mechanism which uses a external element to store information.
6Mix all time step information in a latent variable.

5

1.3.2 Fair Comparison

The second hypothesis that will be tested in this work is H2, which states that the SRNN
models using binary values in their layers have similar accuracy with respect to the traditional
RNNs (such as GRU) using continuous values, solving the same classification task used in
this work. Then, the null hypothesis that will prove is H2null, which states that the SRNN
models using binary values in their hidden layers have lower accuracy with respect to the
traditional RNNs (such as GRU) using continuous values, solving the same classification task
used in this work.

1.4 Research Questions
This study addresses the following four main research questions:

• RQ1: What is the minimum number of parameters needed to solve the classification
tasks used in this work, regardless of the RNN or SRNN architecture?

• RQ2: Can we automatically estimate the underlying hyperparameters of SRNNs based
on their architecture?

• RQ3: Does the optimisation criterion space Information Bottleneck improve the per-
formance of SRNNs compared to those trained with Cross-Entropy solving the classi-
fication tasks used in this work?

1.5 Objectives

1.5.1 General Objective

The main objective of this thesis is to develop Spiking Recurrent Neural Network models
based on deep learning and information theory principles to classify binary sequential data.

1.5.2 Specific Objectives

• To propose a training and evaluation methodology for RNNs and SRNNs and then
apply this methodology to the different architectures studied.

• To create a method to automatically estimate the threshold for the different architec-
tures of SRNNs.

• To develop a new model of SRNN using an external memory approach.
• To adapt the Information Bottleneck using optimisation criterion to SRNNs.

1.6 Methodology
We propose a methodology for training and evaluating RNNs and SRNNs. We also provide
an extensive experimental evaluation of different architectures of RNNs and SRNNs in the
classification of the sequential XOR dataset and two spiking datasets from audio signals. This
evaluation includes several techniques to improve the model performance such as: Gradient
Clipping [74] and Early Stopping [41]. In addition, we vary the length of the time series

6

modifying the simulation time of spiking datasets. Finally, we use different numbers of layers
and parameters.

In addition, we develop new models of SRNNs based on deep learning and information
theory principles to classify binary sequential data. These models consider modifications in
terms of optimisation criteria, memory type and parameters. For the optimisation criterion,
we use as a starting point the idea proposed by Buesing and Maass [6] who adapted informa-
tion bottleneck to the SNNs, and also the ideas presented by Yu et al. [72] who adapted it to
ANNs. For adapting an external memory, we combine a derivative of the LSTM with the best
SRNN variant obtained from the evaluation. Finally, we create a method to automatically
estimate the threshold of the SRNNs based on their network architecture.

1.7 Contributions
In summary, this work presents the following main contributions:

• A methodology consisting of a set of steps to train and evaluate SRNNs and RNNs.
• A method to estimate the threshold of the SRNNs based on their architecture.
• A new SRNN model, inspired on a derivative of the LSTM.
• A new SRNN model with Information Bottleneck as the optimisation criterion.
• The source code of all proposed methods: experimental framework, heuristic method,

external memory model and mutual information estimator.

1.8 Thesis Outline
In Chapter 2, we provide a background on the traditional and Spiking RNNs. Then, we
formalise these models for supervised learning. Next, we explain techniques to train these
models and finally we introduce Information Theory concepts and evaluation metrics.

In Chapter 3, we describe the methods and techniques used in our experiments and divide
it in the following sections. First, we describe the proposed experimental framework. Second,
we formalise the proposed heuristic method to compute SRNN model parameters. Third,
we present the categorisation of SRNN memory and propose a variant that uses external
memory. Finally, we formalise the adaptation of spatial Information Bottleneck to SRNNs.

In chapter 4, we present our baseline results using the proposed experimental framework
for training and evaluating the models.

In Chapter 5, we expose the results of the proposed heuristic method for SRNNs. In
addition, we compare the results obtained with the SRNN and traditional RNN models.

In Chapter 6, we present the results of the proposed Gated spiking model (G-SRNN) and
compare it with the Gated Recurrent Unit (GRU).

Finally, in Chapter 7, we present the main conclusions about our work in terms of datasets,
computation of model parameters, convergence steps and weights (learnable parameters).

7

Chapter 2

Theoretical Framework

This chapter provides an overview of the topics that are mentioned throughout the work,
including an explanation of our notation. The first section refers to the Recurrent Neural
Networks (RNNs) and their main architectures. The second section describes the Spiking
Recurrent Neural Networks (SRNNs), along with their main architectures. The third section
deals with supervised learning, including the concepts of optimisation criterion and accuracy
evaluation metric. The final section concerns the training of RNNs, using the Backpropagation
Through Time algorithm and some problems related to exploding and vanishing gradients.

Notation

The following notation is used consistently throughout this work to define the RNN and
SRNN architectures. The notation in lower case italics represents a scalar (e.g, a), in lower
case bold represents a vector (e.g, a), and in upper case bold represents a matrix (e.g, A).
In general, the hidden state of SRNNs is denoted by s, however, in this work we use the
notation h, as with RNNs.

• T: number of time steps in the sequence
• L: number of layers
• l : index of layer
• n: index of the time step
• dx: dimension of the input signal
• dh: dimension of the hidden signal
• dy: dimension of the output signal
• x[n] = h(0)[n] ∈ Rdx : input signal
• ŷ[n] = h(L)[n] ∈ Rdy : output signal
• h(l)[n] ∈ Rdh : hidden signal on layer lth
• W(l) ∈ Rdh×dx : Weights on layer lth for the input signal
• V(l) ∈ Rdh×dh : Weights on layer lth for the hidden signal
• U(L) ∈ Rdy×dh : Weights on layer lth for the output signal
• � Point-wise multiplication

8

2.1 Recurrent Neural Networks (RNNs)
RNNs are Turing complete models and belong to a family of neural networks designed for
processing sequential data like text sentences, time-series, and other discrete sequences like
biological sequences [2], [59]. There are different design strategies for RNNs depending on the
task. For example, they can produce an output at each time step (with recurrent connections
between hidden units or just from one time step to the hidden units at the next time step),
or they can produce a single output after reading an entire sequence [23].

In principle, RNNs can store the representations of recent input events in form of activ-
ations with their feedback connections [28]. Different architectures have been proposed for
modelling time-dependent phenomena [3]. A taxonomy was proposed based on the memory
characteristics (e.g. internal memory, external memory, logic gates, attention mechanism),
which classified RNN into four classes ordered by a inclusion relationship as Vanilla RNN ⊆
Long Short-Term Memory ⊆ Neural Stack ⊆ Neural RAM [45].

2.1.1 Vanilla RNN (V-RNN)

It is the classic version of RNN that introduces memory by encoding the past information
with a feedback connection, which flows from the hidden layer to itself. The hidden units
induce a memory named state memory or internal memory, which is updated at each time
step, where the current state only depends on one single compound event at the previous
time step [45].

The Equation 2.1 describes the computation of a cell in a V-RNN, where a linear trans-
formation is applied to the signal h(l−1)[n] and the hidden signal h(l)[n− 1] over the weights
W(l) and V(l), respectively. Then, a non-linear function φ is applied point-wise over the sum
of the transformed values. The non-linear function commonly used in this model is the tanh
function (hyperbolic tangent), which is bounded between -1 and +1. The update equation
for a cell in a V-RNN is:

h(l)[n] = φ
(
W(l) · h(l−1)[n] + V(l) · h(l)[n− 1]

)
. (2.1)

The Figure 2.1 describes the computational operations of a cell in a V-RNN and its
transition steps. This graph only considers a single neuron in the first layer.

Figure 2.1: Vanilla recurrent cell.

9

2.1.2 Long Short-Term Memory (LSTM)

This cell was proposed to deal with the vanishing gradient problem of the V-RNN. The key
insight was to incorporate non-linear, data-dependent controls into the RNN cell [57]. The
innovation resides in the incorporation of external memory and gates to balance both external
and internal memory. Thus, in the classical LSTM, the feedback connection of the hidden
layer goes through an external memory [45].

The original LSTM prevents the gradient problems by enforcing a constant error flow
through the internal states of specific neurons. Each memory cell needs two additional units
to learn to open and close access to error flow. First, a multiplicative input gate unit, which
decides whether to store certain information, protecting the memory from perturbation by
irrelevant inputs. Second, a multiplicative output gate unit, which decides whether to access
certain information, protecting other units from perturbation by currently irrelevant memory
contents [28].

Then, an adaptive forget gate was added to the original LSTM to learn to reset memory
blocks once their contents are no longer useful, thus releasing internal resources [19]. LSTM
networks have different variations, but in general they use forget, input and output gates,
which can be seen as a V-RNN with a sigmoid function represented by σ. The forget (Eq.
2.2) and input (Eq. 2.3) gates are used to decide the amount of information from the previous
time-stamp to be used for the selection of the candidate c(l)[n]. Then, Eq. 2.6 is used to
obtain the hidden signal h(l)[n], where a point-wise multiplication is applied over the output
gate (Eq. 2.4) and a non-linear function φ (e.g., tanh function) over the candidate c(l)[n]
(Eq. 2.5).

f(l)[n] = σ
(
W(l)

f · h
(l−1)[n] + V(l)

f · h
(l)[n− 1]

)
︸ ︷︷ ︸

forget gate

(2.2)

i(l)[n] = σ
(
W(l)

i · h
(l−1)[n] + V(l)

i · h
(l)[n− 1]

)
︸ ︷︷ ︸

input gate

(2.3)

o(l)[n] = σ
(
W(l)

o · h(l−1)[n] + V(l)
o · h(l)[n− 1]

)
︸ ︷︷ ︸

output gate

(2.4)

c(l)[n] = f(l)[n]� c(l)[n− 1] + i(l)[n]� φ
(
Wc · h(l−1)[n] + Vc · h(l)[n− 1]

)
︸ ︷︷ ︸

V−RNN︸ ︷︷ ︸
candidate

(2.5)

h(l)[n] = o(l)[n]� φ
(
c(l)[n]

)︸ ︷︷ ︸
hideen state

(2.6)

Figure 2.2 shows the computational operations of a LSTM cell and its transition steps,
where f [n], i[n], o[n] are V-RNNs with a sigmoid activation functions, and ĥ[n] is a V-RNN
with a tanh activation function.

10

Figure 2.2: LSTM recurrent cell.

2.1.3 Gated Recurrent Unit (GRU)

GRU can be viewed as a simplification of the LSTM, that only uses update and reset gates to
achieve the same goal [2]. The reset gate (Equation 2.7) decides how much of the information
from the previous time-stamp to pass to the candidate for the next step (Equation 2.8). The
update gate (Equation 2.9) controls how much of the information from the previous time-
stamp and the candidate to pass to the next step.

r(l)[n] = σ
(
W(l)

r · h(l−1)[n] + V(l)
r · h(l)[n− 1]

)
︸ ︷︷ ︸

reset gate

(2.7)

ĥ
(l)

[n] = φ
(
W(l)

ĥ
· h(l−1)[n] + V(l)

ĥ
· h(l)[n− 1]� r(l)[n]

)
︸ ︷︷ ︸

candidate

(2.8)

z(l)[n] = σ
(
W(l)

z · h(l−1)[n] + V(l)
z · h(l)[n− 1]

)
︸ ︷︷ ︸

update gate

(2.9)

h(l)[n] =
(
1− z(l)[n]

)
� ĥ

(l)
[n] + z(l)[n]� h(l)[n− 1]︸ ︷︷ ︸

hideen state

(2.10)

Figure 2.3 describes the computational operations of a GRU cell and their transition steps,
where r[n] and z[n] are V-RNNs with a sigmoid activation function, and ĥ[n] is a V-RNN
with a tanh activation function.

11

Figure 2.3: GRU recurrent cell.

2.1.4 RNN Architectures

The above-mentioned RNN cells can be used to build many architectures to solve different
tasks. For example, there is the Many-to-Many architecture, which consists of processing an
input sequence and producing an output sequence (commonly used for machine translation).
Another architecture is the Many-to-One architecture, which takes a sequence and produces
a single step (commonly used for classification tasks). There is also the One-to-Many archi-
tecture, which takes a single time step and produces an output sequence (commonly used
for music generation) [23]. In addition, these RNN cells can also be stacked to build a deep
RNN [73].

Figure 2.4: Deep and Many to many RNN architecture (space and time). Taken from [73]
as an open source resource.

12

2.2 Spiking Recurrent Neural Networks (SRNNs)

A particularly simple model of a spiking neuron is the Leaky Integrate-and-Fire (LIF) model
[20]. Its neural signal consists of voltage pulses called action potentials or spikes. The
information is encoded in the presence or absence of a spike, where spikes are reduced to events
that happen at a moment in time. Integrate-and-fire models are composed of an equation
that describes the evolution of the membrane potential1 and a mechanism to generate spikes.
Thus, their neural dynamics can be seen as a summation or integration process combined
with a mechanism that triggers spikes when the voltage (containing the summed effect of all
inputs) is above some threshold [20].

In order to align the LIF model with deep learning principles, Neftci et al. [49] define a
LIF neuron in layer l in a differential form as follows:

τmem
du(l)(t)

dt
= −

(
u(l)(t)− urest

)
+Ri(l)(t), (2.11)

where u(l)(t) is the membrane potential, urest is the resting potential, τmem is the membrane
time constant, R is the input resistance, and i(l)(t) is the input current.

In addition, Neftci et al. [49] assume that synaptic currents sum linearly as follows:

di(l)(t)
dt

= − i
(l)(t)

τsyn

+ W(l) · h(l−1)(t)︸ ︷︷ ︸
feed forward

+V(l) · h(l)(t)︸ ︷︷ ︸
recurrent

, (2.12)

where τsyn is the synaptic time constant. In this equation, a linear transformation between
the previous layer activation and the current layer weights W(l) is applied. Further, another
linear transformation between V(l) and the current layer activation is applied. The initial
conditions of both equations, 2.11 and 2.12, change instantaneously when a spike occurs.

A reset term is added to Eq. 2.11 to instantaneously decrease the membrane potential (by
amount urest − ϑ) whenever the neuron emits a spike as follows:

τmem
du(l)(t)

dt
= −

(
u(l)(t)− urest

)
+Ri(l)(t) + (urest − ϑ)(h(l)(t)), (2.13)

where h(l)(t) is a vector of spikes. In discrete time, the vector of spikes in layer l at time step
n is denoted by h(l)[n], which is expressed as a nonlinear function applied over the difference
between the membrane potential and a threshold, h(l)[n] = Θ(u(l)[n] − ϑ), where Θ is the
Heaviside step function and ϑ corresponds to the firing threshold.

In the following subsections we define different SRNN variants produced for mapping LIF
neurons in discrete time. These models are based on different assumptions, resulting in
different formulations.

1It is the difference in electrical potential between the interior and the exterior of a biological cell membrane
[35].

13

2.2.1 Vanilla SRNN (V-SRNN)

We call Vanilla SRNN to the result of mapping LIF neurons in discrete time. This mapping
has some assumptions for the SRNN formulation. First, the input current does not have its
own dynamics2 (Eq. 2.14). Second, the resting potential (urest) is defined using a scalar value
different from zero, the input resistance (R) is equal to 1, and the time membrane constant
and the step simulation are contained in β = δt

τmem
, according to the Eq. 2.15, which is

obtained by an algebraic manipulation of the LIF Euler approximation. This approximation
decouples the membrane potential into two parts: reset term and input current. The reset
term works as a leaky factor of the input current.

i(l)[n] = W(l) · h(l−1)[n] + V(l) · h(l)[n− 1]︸ ︷︷ ︸
input current

(2.14)

u(l)[n] = (1− β)
(

(1− h(l)[n− 1])� u(l)[n− 1] + h(l)[n− 1]urest

)
︸ ︷︷ ︸

leak

+βurest + βi(l)[n]

︸ ︷︷ ︸
membrane potential

(2.15)

Equation 2.16 defines a spike event h(l)[n] in layer l and time step n as follows:

h(l)[n] = Θ(u(l)[n]− ϑ), (2.16)

where in order to produce a spike event, a step function Θ is applied to the difference between
the membrane potential u(l)[n] and a threshold voltage value ϑ. This threshold works as a
barrier that, when overcome, allows the neuron to emit a spike.

Figure 2.5 shows the computational operations of a V-SRNN cell and its transition steps,
where i[n] could be considered a V-RNN with an identity activation function.

Figure 2.5: Vanilla spiking recurrent cell.

2It means that the initial conditions do not change when a spike occurs.

14

2.2.2 Cramer SRNN (C-SRNN)

The formulation by Cramer et al. [14] and Neftci et al. [49] are similar to one another. First,
both assume that input current has its own dynamics as follows:

i(l)[n] = αi(l)[n− 1] + W(l) · h(l−1)[n] + V(l) · h(l)[n− 1]︸ ︷︷ ︸
input current

, (2.17)

where α = dt
τsyn

.

Second, the threshold ϑ is equal to 1 and the resting potential urest is equal to 0. However,
both formulations differ in their resistance value R, where Cramer et al. [14] use a value of
1− λ = 0.025 for scaling the input current, while Neftci et al. [49] set it to 1.

A more simple formulation of membrane potential, previously expressed by the Eq. 2.15,
is defined as follows:

u(l)[n] = (1− β)
(

(1− h(l)[n− 1])� u(l)[n− 1]
)

︸ ︷︷ ︸
leak

+βi(l)[n]

︸ ︷︷ ︸
membrane potential

. (2.18)

Simplicity comes from ignoring urest and reducing the LIF approximation. By ignoring
urest, the dynamics of this model are reset to zero when a spike occurs.

Figure 2.6 shows the computational operations of a C-SRNN cell and its transition steps,
where i[n] could be considered a V-RNN with an identity activation function plus the previous
hidden state.

Figure 2.6: Cramer spiking recurrent cell.

15

2.2.3 Adaptive SRNN (A-SRNN)

A-SRNN is based on almost all assumptions and equations of the V-SRNN. It only differs in
the threshold definition, because it evolves over time producing its own dynamics [4]. The
threshold dynamics is represented as:

η(l)[n] = ρη(l)[n− 1] + (1− ρ)h(l)[n− 1], (2.19)

where ρ = δt
τadapt

is a scaling factor and h(l)[n−1] is the previous hidden state. This mechanism
produces small changes when a spike event occurs.

The adaptive threshold is computed as:

ϑ(l)[n] = ϑ0 +Bη(l)[n], (2.20)

where B is a scaling factor and ϑ0 is the initial threshold. This threshold is then used in
Eq. 2.16.

Figure 2.7 shows the computational operations of an Adaptive Spiking Recurrent Cell and
its transition steps, including the η computation.

Figure 2.7: Adaptive spiking recurrent cell.

16

2.3 Supervised Learning

Supervised learning is a machine learning paradigm for acquiring the relationship information
of a set of labelled training data. Its goal is to learn the mapping between the input and the
output to then predict the output of new inputs. These outputs can be discrete or continuous
values, that is known as classification and regression tasks, respectively [43].

In supervised learning, it is necessary to adapt the parameters or weights of the model,
such that predictions ŷ come close to the ground truth y. Backpropagation is a learning rule
widely used for this purpose [68]. In addition, an optimisation criterion is necessary (or loss
function) to quantify the performance of the model in order to maximise it (or minimise the
error).

2.3.1 Cross-Entropy Optimisation Criterion

The Squared Error (SE) and the Cross-Entropy (CE) criteria are the most popular choices
in state-of-the art implementations. An ANN can be trained by minimising either function,
as long as it is capable of approximating the true posterior distribution arbitrarily close
[22]. The CE method measures the Kullback Leibler distance between two distributions
P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn} as follows [40]:

D(Q,P) =
n∑
k=1

qk log2

qk
pk
. (2.21)

For multiclass classification, the loss of each class given an input vector is summed as
follows:

CrossEntropy = −
C∑
c=1

yc log(pc), (2.22)

where C is the number of classes, y is the ground truth and pc is the predicted probability
of belonging to class c.

2.3.2 Evaluation Metric: Accuracy

The performance of a trained model is measured on a test set (different from training),
where the predicted labels are compared with the actual labels. The confusion matrix shown
in Table 2.1 is a standard way to display the classification results.

Table 2.1: Confusion matrix for a binary classification.
Predicted class
1 0

Actual
class

1 True Positives
(TP)

False Negatives
(FN)

0 False Positives
(FP)

True Negatives
(TN)

17

Accuracy

Accuracy is the proportion of correct classifications. It is computed as the number of instances
correctly classified divided by the total number of instances evaluated.

Accuracy =
TP + TN

TP + FP + TN + FN
. (2.23)

2.4 Training RNNs
Neural network training is based on forward and backward propagation. Forward propagation
calculates all variables traversing the computational graph in the direction of the depend-
encies. Then, based on the chain rule, backpropagation computes and stores the gradients
[73]. Backpropagation calculates the derivatives of a single target quantity (such as the
classification error) with respect to the parameters or weights of a classification rule [68].

Backpropagation extended to sequence models like RNNs is known as Backpropagation
Through Time. It allows the calculation of derivatives to optimise an iterative procedure in
time [68]. The hidden states and outputs at each time step are computed as:

ht = f(xt, ht−1, wh),

ot = g(ht, wo),
(2.24)

where f and g are transformation functions. In this recurrent computation, ht depends on
both ht−1 and wh, and the computation of ht−1 also depends on wh [73].

The objective function L measures the discrepancy (or loss) between the output ot and
the desired label yt and it is computed as:

L(x1, . . . , xT , y1, . . . , yT , wh, wo) =
1

T

T∑
t=1

l(yt, ot), (2.25)

where L is the loss function, yt is the label of the class, ot is the output of the network and
T is the max time of the sequence. The chain rule cleared from Eq. 2.25 is clearly exposed,
where the time dependency and backward error propagation for two paths is expressed as:

∂L

∂wh
=

1

T

T∑
t=1

∂l(yt, ot)

∂wh
=

1

T

T∑
t=1

∂l(yt, ot)

∂ot

∂g(ht, wo)

∂ht

∂ht
∂wh

(2.26)

According that the loss in Eq. 2.26 computes the gradients with regard to the parameters
wh using the chain rule. The first path error propagation arises from the last output of the
network and the second one arises in the previous hidden step. Following the dependencies,
the recursive computation of ∂ht/∂wh is given by [73]:

∂ht
∂wh

=
∂f(xt, ht−1, wh)

∂wh
+
∂f(xt, ht−1, wh)

∂ht−1

∂ht−1

∂wh
(2.27)

18

2.4.1 Vanishing and Exploding Gradient Problem

Dependency learning with gradient descent based algorithms becomes more difficult as the
duration of the dependencies to be captured increases [5], because the gradients tend to
explode or vanish. In RNNs, the exploding or vanishing gradient becomes severe, because
the models are not only deep in terms of time, but also deep in terms of space (number of
layers).

These gradient problems are related to the network architecture and the chain rule of
gradient. Since, chain rule is a formula for calculating the derivative of a composite function,
sometimes via multiplying process. This process leads to two problems. The first one is
related to the explosion of the gradient that is produced by larger gradient values. The
second one is related to the vanishing of the gradient that is produced by small gradient
values (close to zero).

2.4.2 Gradient Clipping

Gradient clipping is a technique to avoid gradient explosion. According to [23], strongly
non-linear functions, such as those computed by a recurrent network over many time steps,
tend to have derivatives that may be of very large or very small magnitude. In reference to
large gradient magnitudes one type of simple solution that has been used by machine learning
practitioners is gradient clipping [23]. As shown in the Figure 2.8, when the parameter update
(w, b) has the same direction as the true gradient, with the clipping of the gradient norm,
the norm of the parameter update vector is now constrained.

Figure 2.8: Effect of gradient clipping on a recurrent network with w and b parameters.
Taken from [23]. The figure shows a landscape of the loss function considering two scenarios.
The figure on the left shows that the gradients are very large which creates a problem when
trying to reach the optimal solution. The figure on the right shows the effect of gradient
clipping which cuts off the large gradients to reach the optimal solution.

19

2.4.3 Reducing the Learning Rate at the Plateau

Reducing the learning rate at the plateau is a technique that helps the model to continue
learning once learning stagnates. It was proposed as a solution for the saddle points (Fig-
ure 2.9) and local minimum problem of the loss function [9], [23]. The initial selection of the
learning rate is usually arbitrary, which does not guarantee that it is the optimal. Therefore,
the use of a learning rate that decreases when the network stops learning is a technique that
could be very useful in this work.

Figure 2.9: Saddle point in loss landscape. The red point gives an illusion that the model
has converged to a minimum. Although there is a minimum on the x-axis, there is also a
local maximum in another direction, so if the contour is flatter towards the x-direction, the
learning rule would still oscillate in the y-axis direction.

2.5 Information Theory

Information theory is the field that studies the quantification, storage and communication of
digital information [56]. It is used to answer two fundamentals questions in communication
theory: (1) what is the ultimate data compression and (2) what is the ultimate transmis-
sion rate of communication [13]. Information, which is not a physical entity but an abstract
concept, is hard to quantify in general [18]. Nevertheless, there are several quantities to
measure the information in a random variable (e.g., the entropy and mutual information).
In reference to the optimisation criteria using information theory criteria, we introduce in-
formation bottleneck based on [6] and [64].

2.5.1 Random Variables

A random variable is a variable whose possible values are numerical outcomes of a random
phenomenon. Commonly random variables are denoted with capital letters, e.g., X : S → R.
Informally, a random variable assigns numbers to the outcomes in the sample space S. So,
instead of focusing on the outcomes themselves, we highlight a specific characteristic of the
outcomes [17], [62].

20

2.5.2 Entropy

Entropy H is defined as the average level of information associated to any random variable.
Specifically, it is a measure of uncertainty of a random variable [13]. When the entropy is
high, more uncertain is the random variable. In addition, it gives the fundamental limit for
data compression. In terms of the quantities, entropy is the average number of bits needed
to describe random variable X.

2.5.3 Mutual Information

The mutual information of two random variables X and Y (Figure 2.10), is represented as
I(X;Y) and indicates how much information these variables share based on the entropy [13],
[18], [55]. It can be interpreted as a measure of the mutual dependence between the two
random variables. In addition, this quantity allows the computation of the capacity of a
channel.

Figure 2.10: Mutual information between two random variables.

2.5.4 Information Bottleneck Principle

The Information Bottleneck (IB) method was introduced in [64] as an information theoretic
principle. This method is commonly used as a data compressor and as optimisation criterion.
The objective of IB is to extract the relevant information contained in an input random
variable X about an output random variable Y [63].

Formally, The goal of the IB method is to construct a random variable X̂, which tries to
keep the information that X has over Y via a stochastic mapping defined by the conditional
p(X̂|X) [6].

LIB = I(X̂;Y)− γI(X̂;X) (2.28)

LIB Measures how informative the compressed representation X̂ is about Y. The second
term is a Lagrange multiplier, which penalises complex representations of X̂ and can be re-
garded as a information regularization term. The IB method consists in finding a conditional

21

probability distribution p(X̂|X) that maximises LIB under the condition that X̂, X and Y
form the Markov Chain Y → X → X̂, the γ parameter determines the degree of compression
via the trade off between the relevant information that X̂ carries about Y and complexity of
X̂ [6].

22

Chapter 3

Methodology

This work formulates a new variant of SRNN based on deep learning models. Additionally,
we focus on evaluating the performance, optimisation criterion, and time resolution of the
most common SRNNs and traditional RNNs variants.

In this chapter, we describe the data used in our experiments and their pipeline pre-
processing. Next, we explain the experimental framework, including the elements used to
evaluate the SRNN and RNN arquitectures in two supervised learning tasks. Then, we
describe the formulation of a new SRNN variant. In the following section, we categorise
and model the memory in SRNNs. Finally, we formulate the adaptation of the information
bottleneck as an optimisation criterion in the SRNNs models.

3.1 Experimental Data

Our datasets consist in binary sequences for classification and sequence labeling tasks. The
first one corresponds to the parity bit problem (also known as the Theoretically Sequential
XOR problem), which is used to explore the properties of the RNNs models [38]. The second
one is the Spike Heidelberg Dataset, which is used to evaluate the performance of both
SRNNs and RNNs [14].

3.1.1 Parity Bit Problem or Sequential XOR

The parity bit is used for error communication decoding [76]. It is also used as a synthetic
dataset for machine learning in classification and sequential labeling tasks [16], [33], [38]. In
the classification task, the target of this problem can be computed via a XOR sum of the
bits defined as follows:

y =
n∑
t

xt (mod 2), (3.1)

where xt means the binary value at a time step t, and n means the size of the sequence. In
a sequential labeling task, the target is also sequential, and the model needs to learn if at a

23

certain time t, the sequence of bits is even or not. This can be expressed as:

yi =
i∑
t

xt (mod 2). (3.2)

The Equation 3.2 defines the dataset for this task, which we use to conduct our experiments.

Since the Eq. 3.2 depends on i, it is possible to generate different sequence lengths. Dif-
ferent sequence lengths make the problem more complex to solve, because as i increases, the
generation of unique sequences grows exponentially as 2i. This exponential growth of unique
elements ensures that the model can not memorise the data and needs to learn the function
that generates it.

We generated four versions of this dataset as a result of varying the sequence lengths
from 16 to 128 time steps (Fig. 4.1). Table 3.1 specifies the sequence size and the number
of unique sequence samples for each version. In addition, this table details the number of
samples used for training and testing the models.

Table 3.1: List of Parity Bit versions used in our experiments.
Version Sequence size Unique samples Train samples Test samples

1 16 216 103 102

2 32 232 104 103

3 64 264 105 103

4 128 2128 105 103

3.1.2 Spiking Heidelberg Digits (SHD)

In [14], two novel spike-based classification datasets were proposed, following a general audio-
to-spiking conversion procedure. These datasets are called Spiking Speech Command (SSC)
and Spiking Heidelberg Digits (SHD). In this thesis, we use the SHD dataset because it allows
us to perform several experiments due to the number of samples is lower than SSC dataset.
SHD dataset is based on a spoken digit dataset recorded by the University of Heidelberg.

The Heidelberg Digits (HD) audio dataset contains 20 classes of spoken digits, namely
the English and German digits from zero to nine, spoken by 12 speakers. The recording time
of the samples on average is around 750ms with +/- 500ms variance. This variance causes
some problems for mini-batch training due to the different duration of the samples. To solve
these problems, we define the following rules:

• To cut the audio sample if this is larger than one second (Simulation duration).
• To fill with zeros at the beginning of the sample until completing one second (Zero

Padding).

Using the defined simulation duration (one second) produces 10k time steps because the
SHD was generated using a 0.1ms simulation step size. The use of this simulation step is
computationally demanding, so we use binning to generate two reduced version of it. These
versions were generated using 4ms and 10ms simulation step sizes.

24

3.2 Experimental Framework

In this section, the SRNNs and traditional RNNs are defined as directed graphs. These
models are configured for supervised learning. Next, these models are built as multilayer
networks by varying the hyperparameters of the architecture. Finally, these architectures
are trained using strategies to avoid problems with gradients. All previously mentioned
architectures were implemented using the Pytorch library [51].

The experimental framework consists of a series of steps and methods listed in the below
sections. The results obtained with this framework are considered as baselines to compare
our results with existing works and with the new SRNN proposed in this work.

3.2.1 Recurrent Neural Networks Graph Representation

To analyse the dependency and information flow in SRNNs and traditional RNNs, we created
directed computational graphs. These directed graphs allow us to identify which edge will
be adjusted and which nodes will be used to solve a problem. For simplicity, these graphs
were designed to represent only neural networks with a single neuron in a hidden layer.

Figure 3.1 represents the computational graph for a Vanilla Recurrent Neural Network.
This graph has only two nodes and two edges with their respective weights. One of the nodes
is the hidden state which has its own loop and the other node is the input data connected
to the hidden state. This graph also can represent any traditional RNNs and SRNNs if the
parameters W , V are equal to one. In addition, this graph provides a reference to compare
the other models in terms of information flow and structure.

h[n]

x[n]

V

W

Figure 3.1: V-RNN computational graph, where x[n] is the input signal, h[n] is the hidden
signal at time step n, and W and V are the learnable or free parameters.

In order to understand how information flows in the GRU model, we designed a directed
graph, as shown in Figure 3.2. This graph has more weighted edges than V-RNN graph (five
nodes and ten edges) and summarise the Eq. 2.7, 2.8, 2.9. This graph shows that the hidden
state depends on the update gate z[n] and a V-RNN as a candidate ĥ[n]. The candidate
also depends on the reset gate r[n], which defines how much information to consider from

25

the previous hidden state. These mechanisms (z[n], r[n], ĥ[n]) need two edges with learnable
parameters for working.

x[n]

z[n] ĥ[n] r[n]

h[n]

Update Gate Reset Gate

Candidate

W ĥ
W
z

Wr

V̂
h

V
r

V z

Figure 3.2: GRU computational graph, where x[n] is the input, h[n] is the hidden state, z[n]
is the update gate, ĥ[n] is the candidate gate, r[n] is the reset gate in the time step n, and
W and V are the learnable or free parameters.

The information flow in the LSTM model, as shown in 3.3, is more complex than those
of the two previous models. It adds more parameters for including an the output gate that
controls how much information is passed to the hidden state. This hidden state h[n] depends
on a candidate node, which has a self-loop with no parameters. The candidate node ĥ[n]
adds an external memory mechanism, which is discarded when the forget gate is completely
deactivated (f [n] = 0). In some cases, the candidate is completely deactivated when the
input and forget gate are equal to zero (f [n] = 0 and i[n] = 0).

x[n]

i[n]o[n] c̃[n] f [n]

h[n] c[n]

Output Gate

Input Gates

Cell State

Forget Gate

Wi

Wf
W
c̃

W
o

Vc̃
Vf

V
iV

o

Figure 3.3: LSTM computational graph, where x[n] is the input, h[n] is the hidden state,
o[n] is the output gate, ĉ[n] is the candidate gate, f [n] is the forget gate, i[n] is the input
gate in the time step n, and W and V are the learnable or free parameters.

26

Figure 3.4 shows how the information flows in a Vanilla Spiking Recurrent Neural Network,
using only four nodes and six edges. In addition, it displays some similarities with the GRU
and LSTM graphs, considering that the node u[n] has a self-loop with no parameters. The
first notable difference with V-RNN is that it has more dependencies. However, both models
have two edges with learnable parameters.

x[n] i[n] u[n] h[n]

Input Current
Membrane Potential

W

V

Figure 3.4: V-SRNN computational graph, where x[n] is the input signal, i[n] is the input
current, u[n] is the membrane potential, h[n] is the spike event or hidden state signal, and
W and V are the learnable or free parameters.

The information flow in the Crammer SRNN model is described in the Figure 3.5. It
differs with V-SRNN only in the input current i[n], which has a self-loop giving the model
the ability to generate larger membrane potential voltages than the V-SRNN. This input
node is larger because the previous i[1, 2, . . . , n] are added directly to the current input as
expressed in the Equation 2.18.

x[n] i[n] u[n] h[n]

Input Current Membrane Potential

W

V

Figure 3.5: C-SRNN computational graph, where x[n] is the input signal, i[n] is the input
current signal with its own loop, u[n] is the membrane potential, h[n] is the spike event or
hidden state signal, and W and V are the learnable or free parameters.

The information flow in Adaptive SRNN is described in the Figure 3.6, which needs more
nodes and edges compared to the V-SRNN. This structure has three nodes that feed back to

27

each other, where two of them have self-loops. In addition, the hidden state and the input
data x[n] are connected to the input current i[n] through two edges with learnable parameters.
This structure also provides information on how the threshold is adapted. The adaptation is
produced by η[n] node, which adds new information when a spike occurs (Equation 2.19).

x[n] i[n] u[n] h[n] η[n]

Input Current

Membrane Potential Adaptive Threshold

W

V

Figure 3.6: A-SRNN computational graph, where x[n] is the input signal, i[n] is the input
current signal, u[n] is the membrane potential, h[n] is the spike event or hidden state signal,
η[n] is the threshold dynamics, and W and V are the learnable parameters.

The above graphs share some similarities and differences in how information is conveyed.
GRU, LSTM and V-SRNN have only one node with a self-loop without learning paramet-
ers, while the V-RNN, V-SRNN, C-SRNN and A-SRNN have two edges with two learnable
parameters. In addition, C-SRNN and A-SRNN have two nodes with self-loops with no
parameters on their edges.

All graphs have different paths where the information flows. However, in the SRNN
models, the nodes i[n], u[n], η[n] and h[n] can be grouped into a new node called H[n] and
considered as a V-RNN. Thus, the above grouping suggests that SRNN models have similar
capabilities as V-RNN, which is a universal approximator of any dynamics, where one of the
functions could be the SRNN formulations.

3.2.2 Supervised Learning setup for Multilayer SRNNs and tradi-
tional RNNs

To configure the SRNNs and traditional RNNs models for supervised learning, we selected
a sequence labeling approach for working with both datasets. Regarding the Parity Bit
problem, we used a single layered architecture as shown in Figure 3.7, according to the
following expression:

ŷ[n] = g(Wy · RNN(L) (θ,H[n− 1])), (3.3)

where RNN(L) is a function that could be any of the traditional RNNs or SRNNs, θ is the set
of learnable parameters, H are the hidden states that evolve internally in the models, ŷ[n] is
the output signal of the network at time step n, y[n] is the label in time step n and g is a

28

function that takes the output of the architecture and produces a valid probability density
function. The output of the network is used to compute the cross entropy:

LCE(ŷ[n],y[n]) = y[n] log ŷ[n] + (1− y[n]) log(1− ŷ[n]), (3.4)

where y[n] is the target in time n. Finally, the cost function is defined as follows:

C =
T∑
n

LCE(ŷ[n],y[n]) (3.5)

x[n] h[n] ŷ[n]

LCE[n]y[n]

θV

θW Wy

Figure 3.7: Sequence labeling for binary classification, where x[n] is the input signal, h[n] is
the hidden signal, ŷ[n] is the output of the network, LCE[n] is the binary cross entropy, and
y[n] is the actual label at time n. This graph could represent the studied recurrent models,
θW and θV are the free parameters.

Regarding the Spiking Heidelberg Digits (SHD) problem, we selected both mul-
tilayered and single-layered architectures as described in Fig. 3.8. These architectures follow
the same parity bit formulation but with more stacked layers (Eq. 3.3). The last layer is lin-
early projected to produce the output of the architecture at a given time, ŷ[n]. This output is
then reduced in time in order to generate a similar tensor to compare with the target, which
is not sequential. Finally, a softmax layer is applied over ŷ to produce a valid distribution.
The following expressions describe how information flows to solve this problem:

ŷ = S

(∑T
n ŷ[n]

T

)
, (3.6)

where S is the softmax function, T is the length of the sequence and ŷ is the predicted output
of the network. Then, the output of the network is used to compute CE:

LCE(ŷ,y) = −
C∑
c

yc log(ŷc), (3.7)

where C is the total number of classes. Finally, the cost function is defined in Eq. 3.8, where
N is the number of samples in the batches. This function is similar to the Eq. 3.5, but

29

without time:

C =
N∑
i

LCE(ŷi, yi) (3.8)

x[n] h(l)[n] h(L)[n] ŷ[n]

ŷLCEy

θlW

θlV

θLW

θLV

Wy

∑
T

Figure 3.8: Sequence labeling for multiclass classification, where x[n] is the input signal at
time n, h(l)[n] is the hidden signal at time n and layer l, Wy are the learnable parameter
for linear layer, ŷ[n] is the output of the network at time n, ŷ is the reduced mean time
prediction output class, LCE is the cross entropy, and y stands for the actual labels. Since
this graph represents any of RNN models, θ(l)

W and θ(l)
V are the free parameters.

As mentioned before, different architectures are explored for solving the parity bit and
SHD problems. For the parity bit, we studied 8 architectures, while for the SHD, we studied 4
architectures. The Table 3.2 contains the studied architectures where in stands for the input
features, the intermediate numbers represent the number of neurons in the hidden layers,
and out stands for the output dimension of the architecture. For instance, the architecture
in-256-128-out for the SHD problem has 2 recurrent layers, where the first layer has 256
hidden neurons and the second has 128 hidden neurons.

Parity Bit SHD

Range from in-20-out to in-27-out

where in and out are equal to 1

700-512-256-128-20
700-256-128-20
700-128-20
700-512-20

Table 3.2: Architectures studied for parity bit and SHD dataset.

We defined these architectures based on what we wanted to test in the spiking models
on the studied datasets. For example, in the case of SHD problem, we have two single
hidden layer architectures and two multiple hidden layer architectures with different number
of neurons. For the single hidden layer architecture of 128 neurons, we relied on the literature
to have an evaluation benchmark. We also consider the single hidden layer architecture of
512 neurons to evaluate whether adding more neurons improves the results. Finally, we add

30

architectures with more than one hidden layer based on [23], which mentioned that greater
depth seems to lead to better generalisation for a wide variety of tasks.

3.2.3 Backpropagation in SRNNs

The Backpropagation Through-Time algorithm (BPTT) for traditional RNNs is described
in [23], [73]. In this section, we formalise the V-SRNN backpropagation algorithm based
on abstract functions with their recurrence dependencies and learnable parameters. The
following equations, from 3.9 to 3.12, describe the sequence configuration for a V-SRNN with
a linear classification layer.

u[n] = f (u[n− 1], h[n− 1], W, V) (3.9)

h[n] = Θ (u[n], ϑ) (3.10)

ŷ[n] = g (h[n], Wy) (3.11)

L =
T∑
n

l(ŷ[n], y[n]), (3.12)

where f is a identity function, Θ is a non-linear function, l is the loss function and L is the
cost function.

The calculation of the gradient is divided into three main parts. The first part is about
how V affects the loss function l(ŷ[n], y[n]). The second part considers the contributions of
∂l(ŷ[T], y[T])

∂u[T]
, where T is the last step of the sequence. The final part computes the gradient

of ∂l(ŷ[n], y[n])
∂u[n]

at any time.

To compute the gradient between the loss function and V (we omit the gradient compu-
tation of W because follows the same logic of V) parameter (∂L

∂V), it is necessary to add up
all contributions which affect the loss function because V is present in all time steps. These
contributions are decoupled using the chain rule. After that, the gradient of ∂L

∂V is expressed
as follows:

∂L
∂V

=
1

T

T∑
n=1

∂l(ŷ[n], y[n])

∂u[n]

∂f (u[n− 1], h[n− 1], W, V)

∂V
, (3.13)

where the gradient of the membrane potential u[n] with respect to V is easy to compute.
Similarly, the gradient of the loss function with respect of the membrane potential ∂l(ŷ[T], y[T])

∂u[T]

becomes easy to compute given that u[T] only appears in the last step (Equation 3.14).

∂l(ŷ[T], y[T])

∂u[T]
=
∂l(ŷ[T], y[T])

∂ŷ[T]

∂ŷ[T]

∂h[T]

∂h[T]

∂u[T]
(3.14)

Finally, the computation of the gradient with respect to the membrane potential in any
time step ∂l(ŷ[n], y[n])

∂u[n]
is more complex than the previous gradients. This is because u[n]

31

depends of u[n− 1] and h[n− 1]. Nevertheless, this gradient can be computed in a recurrent
way as described in the following expression:

∂l(ŷ[n], y[n])

∂u[n]
=
∂l(ŷ[n], y[n])

∂ŷ[n]

∂g (h[n], Wy)

∂h[n]

∂Θ(u[n], ϑ)

∂u[n]
+

∂l(ŷ[n+ 1], y[n+ 1])

∂u[n+ 1]

{
∂u[n+ 1]

∂u[n]
+
∂u[n+ 1]

∂h[n]

∂Θ(u[n], ϑ)

∂u[n]

}
, (3.15)

where it can be clearly seen that there are two paths to calculate the membrane potential
dependence. One of these paths has two branches, which are added up.

The step function Θ is commonly used to produce spike events in SRNNs. Its derivative is
known as impulse function or δ Dirac delta function, which is not compatible with the BPTT
learning rule. Several solutions have been explored for this problem [49]. In this work, we
use the surrogate gradient proposed by [58]:

dΘ(u[n])

du[n]
= N (u[n]|ϑ, σ2)γ, (3.16)

where N is a normal distribution which depends of: threshold ϑ, u[n] and a γ value. The γ
value works as a scaling factor.

3.2.4 Training Setup

Training RNNs is a complicated task given their sequential nature. Therefore, several meth-
ods have been developed to train RNNs models. These methods partially avoid gradient
problems and other phenomena improving the model performance and generalisation. The
methods used in this work are detailed below (see Table 3.3).

The Adam Learning Rule (AdamW) method with weight decay is used to train SRNN
and traditional RNN models. AdamW is one of the more practical ways of training RNNs
because it improves their generalisation and avoids large values for weigths [44]. This learning
rule is used from pytorch library implementation with their default setup.

The Gradient Clipping technique avoids the exploding gradient phenomenon when
backpropagation is executed [75]. This technique requires a value defining the maximum
allowable gradient for weight updating. This value is usually calculated using the L2-square
of the gradients |∇θ|2.

An Exponential Learning Rate schedule is used for changing the learning rate when a
validation metric does not improve [42]. The parameters for this method follow this setup:
scaling factor of 2.5e5 with a patience of 5. Specifically, the ReduceLROnPlateau routine
from pytorch is used.

The Early Stopping method allows halting the training task when a validation metric
does not improve, allowing to evaluate more experiments and avoiding overfitting. This
method is used from the pytorch library with a patience of 20 epochs to terminate training.

32

Table 3.3: Training setup for datasets.
Dataset Epochs Early Stopping Learning Rate Learning Rate Decay
Parity bit 10 2 epochs 1

nl 0.10 scale factor
SHD 75 20 epochs 0.001 0.25 scale factor

3.2.5 Evaluation Procedure

As this work focuses on SRNNs and traditional RNNs for solving two classification tasks,
we use the accuracy metric to define the effectiveness of the models. The second metric
considered is the number of parameters of the model. The third metric is the average of
number of spikes per layer. Finally, we also consider the number of iterations needed by the
models to reach the best accuracy.

The parameters to be fitted in the models (weights) are randomly initialised. Therefore, we
perform 5 runs to evaluate each experiment and compute their mean accuracy and variance.
A statistical test is used to compare the performance between the models for solving the
Parity Bit and SHD problems.

We conduct a hypothesis test to define which model is better than others. For that,
there are several options such as t student test, Z test, permutation test, among others. In
this work, we use the permutation test, which does not require the samples to be normal
distributed and can be used for significance or hypothesis testing [65]. The probability, p is
defined as:

p(t ≥ t0) =
1

(n+m)!

(n+m)!∑
j=1

I(tj ≥ t0), (3.17)

where to is the observed value of the test statistic, and t is the statistic t-value computed
from the resamples.

Measuring Spikes in SRNNs per Layer

To compute the spikes when the models reach a max accuracy, we define a mini batch sample
size in time step n, as a random variable Xt. Then, we assume that Xt is a Bernoulli random
variable, so we can compute the average probability of the positive outcomes P =

∑T
t E[Xt].

Finally, P is averaged in terms of time and number of validation examples. This metric,
which considers the proportions of spikes, is called number of spikes per layer in the following
chapters.

3.2.6 Final experimental flow

Once all the elements have been described, Figure 3.9 shows the steps to be followed to
define a baseline. This baseline is used to compare the improvements to be made in the
spiking models introduced in the following sections. These improvements are related to the
calculation of parameters, adding external memory and adding information bottleneck.

33

Experimental
Flow

SHD data
versions

Parity Bit
data versions

SRNN and
RNN models

SHD
architectures

Parity Bit
architectures

Training

Evaluation

Figure 3.9: Experimental flow pipeline.

Experimental Framework Routine Implementation

We implement our proposed experimental framework (Fig. 3.9) using Python 3.7, PyTorch
library and PyTorch Lightning, using Object Oriented Programming (OOP) and Functional
Programming (FP) paradigms. This project can be found in the following repository: https:
//github.com/jthoth/srnn-builder.

34

https://github.com/jthoth/srnn-builder
https://github.com/jthoth/srnn-builder

3.3 SRNN Model Parameters

Setting the spiking model parameters β, urest, and ϑ from equations 2.15, 2.16 is a difficult
task. Similarly, σ2 and γ for surrogate gradient of the step function (Eq. 3.16) becomes
complex to set in multilayer networks. In this section, we propose a method to estimate
some of these parameters based on the network architecture and some assumptions of the
probability distribution of the membrane potential.

3.3.1 Analysis of Parameters

The urest parameter defines the membrane potential (voltage) at which a spike is produced.
This parameter can be ignored when its value is equal to zero, according to Equation 2.18.
Setting urest = 0 produces a less complex computational graph when the information is
propagated in SRNN models. Nevertheless, the contribution of urest could help to avoid
gradient vanishing when u[n] is close to zero (Eq. 3.18).

∂u[n+ 1]

∂h[n]
= (1− β) (−u[n] + urest) + βV. (3.18)

We consider the β parameter as a fixed scalar, which is defined as β = δt
τmem

, and we do
not use the δt and τmem parameters elsewhere. The β parameter plays an important role in
SRNN models because it scales the input current i(l)[n] in the membrane potential u(l)[n]. In
addition, scaling i(l)[n] is necessary to avoid a bad behaviour when a spike occurs. This bad
behaviour is produced for large values of u(l)[n], for instance, when i(l)[n] = 10, u(l)[n] = 11
and ϑ = 1 in Eq. 3.9 almost in every step simulation, the neuron will always produce a spike.

In surrogate gradient, a bad selection of the β parameter produces a bad approximation
because ∂Θ(u[n], ϑ)

∂u[n]
is represented by a normal distribution that generates large values of the

gradients. For instance, when the SRNN model process a long sequence, a large β could
cause exploding gradient, otherwise, a too small β could cause a vanishing gradient. These
gradient problems arise because the β parameter is strongly related to the learning rule as
can be seen here:

∂u[n+ 1]

∂u[n]
= (1− β) (1− h[n]) (3.19)

Finally, we analysed the threshold ϑ of the SRNN models based on two cases, having a
large and small values of ϑ. On the one hand, a large value of this parameter could produce
a slow learning regime because the learnable parameters tend to increase to produce spikes.
On the other hand, a small value of ϑ could produce saturated spiking layers because the
update of the learnable parameters tends to produce a fast transition between non spikes to
spikes events. A solution is to define a small β parameter. In summary, we can conclude
that β, urest and ϑ are strongly related for a good performance of the model.

35

3.3.2 Analysis of Surrogate Gradient

Surrogate gradient for the step function comprise two factors, σ2 and γ. As shown in Fig-
ure 3.10, the σ factor controls the width or narrowness of the probability distribution where a
small variance results in a narrow distribution, and a large variance leads a wide distribution.
On the other hand, the γ parameter in Eq 3.16 works as a scaling factor (gradient alleviate
value).

Figure 3.10: Surrogate gradient for different standard deviations for normal distribution

Regarding γ, a large value can cause the gradient to explode, regardless of the σ2 value.
In contrast, a small value can produce stable gradients when σ2 is also small. When σ2 is
large, the stability of the gradient also depends on u[n]. This happens because u[n] has a
small range for producing errors in surrogate gradient. For instance, as shown in the blue
line in Fig. 3.10), if σ2 = 0.01 and γ2 = 0.01 when |u[n]| > 0.02, the surrogate gradient is
zero, but when |u[n]| is close to zero, the gradients reach their highest point on the graph.

In this work we use mutilayer RNN models for solving both classification tasks where each
layer has different number of neurons (Table 3.2). This suggests that σ2 and γ should be
related to the structure of each layer rather than using an literature fixed value for the whole
architecture.

3.3.3 Initialisation of Learnable Parameters (Weights)

Heuristic methods are commonly used to initialise the learnable parameters of RNNs. In this
work, we use the heuristic initialisation for linear layers proposed in [27], which is defined as
follow:

a =

√
2

nl
; U (−a, a) , (3.20)

where nl is the number of neurons in the hidden layer l, and U represents a continuous
uniform distribution with Uµ = a−a

2
= 0 and a standard deviation equal to Uσ = 2a√

12
.

3.3.4 Proposed method to set SRNNs hyperparameters

SRNN formulation comprises parameters such as β, urest and ϑ, which are present in their
dynamics. These parameters play an important role for the correct behaviour in forward

36

and backward propagation through time because a bad selection could produce a slow or
null learning. In the following paragraphs and equations we propose a heuristic method to
estimate them automatically.

In Eq. 2.14, h(l)[n− 1] and h(l−1)[n] are binary vectors, and W(l) and V(l) are independ-
ent uniformly distributed matrices. Based on the Central Limit Theorem (CLT) [67]
(Figure 3.11), a linear transformation (without bias) between a matrix and a hidden state
approximates a value sampled from a normal distribution. For instance, h(l−1)[n] ·W approx-
imates a normal distribution with n̂Uµ = 0 and

√
n̂Uσ standard deviation (Equation 3.21).

An empirical simulation of the linear transformation is shown in Appendix A.

a) Approximation when n = 1 a) Approximation when n = 2

c) Approximation when n = 16 d) Approximation when n = 32

Figure 3.11: Illustration of the CLT when we sampling from a continuous uniform distribution
on the interval [−1, 1], where orange dashed line is the probability distribution function of the
a standard normal distribution and the blue line is the approximation using CLT theorem.
Taking from [67]

X(i) = N (n̂iUµ = 0,
√
n̂iUσ), (3.21)

where n̂i is the activate neurons in the input current. Similarly, h(l)[n− 1] ·V approximates
a random variable normally distributed:

Y(i) = N (n̂iUµ = 0,
√
n̂hUσ), (3.22)

where n̂h is the activate neurons in the hidden signal.

These linear transformations approximate a normal distribution, so assuming that X and
Y are independent random variables, we can obtain the Equation 3.23, where Z represents
the input current to the membrane potential defined in the Equation 2.15. Since n̂i and n̂h
changes when the model is learning, Z always changes the standard deviation. For example,

37

when neurons in the input and hidden layers nl are deactivated, no sampling is effectuated.
This case is unlikely because the models need to produce spikes to solve a problem. Another
example is when all neurons in the input and hidden layers nl are activated ensuring a random
variable with normal distribution (Demo in Appendix B).

Z = X(i) + Y(i) = N
(

0, Uσ
(√

n̂i +
√
n̂h

))
(3.23)

In Equation 2.15, Z is scaled with a β factor producing N
(
0, β2Uσ

(√
n̂i +

√
n̂h
))
. Then,

βurest is added up to βZ generating N
(
βurest, β

2Uσ
(√

n̂i +
√
n̂h
))
. Next, assuming that the

previous u[n] is never reset, Z is scaled again with (1−β) factor, which is always aggregated
in the membrane potential generating N

(
Tβurest, Tβ

2Uσ
(√

n̂i +
√
n̂h
))

in time step n. The
above expression is unlikely because spikes are needed to solve the problem.

On the other hand, assuming that there are always spikes, the membrane potential could
follow the distribution N

(
2(1− β)urest, β

2Uσ
(√

n̂i +
√
n̂h
))

on any time step n. This scen-
ario is also unlikely because the model needs deactivated neurons to solve the problem.
Therefore, a mix of the previous scenarios with spikes and non-spikes to compute the para-
meters are needed. For that, we use the expression N

(
ñβurest, ñβ

2Uσ
(√

n̂i +
√
n̂h
))
, where

ñ could refer to the step when a spike occurs. The previous values are dynamics because
when membrane potential evolves in time, the mean and standard deviation also evolve.

With the previous statements, β parameter could be defined by the following rules. First,
β must scale the values of u[n] small enough to give a range of evolution to reach ϑ. Second,
this parameter must be related to the architecture of the SRNN network. For instance, a
parameter related to the architecture is the a bound from equation 3.20. Finally, β must not
be too small, as it could cause problems in learning. Therefore, the candidate to define β
parameter is the upper bound a.

Finally, the parameter ϑ should be close to ñ times β2Uσ
(√

n̂i +
√
n̂h
)
. Therefore, we

define ϑ using different values of ñ ∈ {2, 4, 5, 6, 7, 8, 10, 20}. Similarly, urest should be related
to β, so we set urest = −ϑ. With these steps we reduce three parameters to just one (ñ)
deriving to following expression for the threshold:

ϑ(ñ) = ñ

 1

d
(l)
h

2a√
12

√d
(l−1)
h

2
+

√
d

(l)
h

2

 , (3.24)

where d
(l−1)
h is the input dimension signal and d(l) hidden is the dimension. These values are

divided by two because we are assuming that half of these dimensions have spike events. In
addition, we are assuming that the standard deviation of learnable parameters changes in
small values and its mean is close to zero (considered as a noise value that can be ignored).

Routine Implementation

We implement our proposed heuristic method (Eq. 3.24) using Python 3.7 and PyTorch
library, using Object Oriented Programming (OOP) paradigm. This project can be found in
the following repository: https://github.com/jthoth/heuristic-vth-srnn.

38

https://github.com/jthoth/heuristic-vth-srnn

3.4 Memory in SRNNs

Commonly, the memory in SRNNs is analysed following neuroscience principles. Neverthe-
less, as far as we know, there are no previous works that analyse the memory of SRNNs based
on their structure computation which refers to how information flows in the models. There-
fore, we categorised the type of memory underlying spiking models, following the framework
propose by [45].

To analyse the memory in RNNs, it is necessary to define a new form of building h(l)[n]
expressed as follow:

h(l)[m] = φ
(
h(l−1)[m], e(l)[m2], e(l)[m3], . . . , e(l)[mT],

)
, (3.25)

which decouples the state steps from memory events, where, e(l)[m] represents the relevant
information in a layer l and a time step m. Relevant information is a function defined as:

e(l)[m] = f(h(l−1)[m], h(l)[m− 1]), (3.26)

where h(l)[m − 1] represents a useful event that happened in past time. Equation 3.26 was
formulated because important events do not happen all the time. Then, Equation 2.1 was
reformulated as the following two expressions:

h(l)[i] = φ
(
h(l−1)[i], e(l)[i− 1]

)
, (3.27)

e(l)[i− 1] = f
(
h(l−1)[i], h(l)[i− 1]

)
, (3.28)

where i represents the time step when an important event occurs.

3.4.1 Categorisation of SRNNs based on their type of memory

To define the type of memory in SRNNs, we start by describing the known types of memory
in RNNs. On the one hand, Equation 2.1, which defines a VRNN, induces memory by mixing
all past information into its hidden state. This type of memory, known as internal memory,
can not recover all the important events. Therefore, the state can also be viewed as a single
compound event that is updated at each time step (Figure 3.1) and is expressed as:

h(l)[i] = φ
(
e(l)[i− 1]

)
(3.29)

Ma and Principe [45] define an external memory (A mechanism which uses a external
element to store information) using LSTM formulation. We follow their methodology using
a GRU external memory approach (Equation 3.30) that clearly shows how the external
memory arises in this model. This external memory mechanism is produced because there is
a controlled feedback connection with previous states as shown in figure 3.12. Finally, GRU
external memory can be expressed as h(l)[n] = φ(m(l)[1]), where m(l) indicates that a useful
event happened in layer l and time step n = 1.

39

m(l)[n] = (1− z(l)[n]) ·m(l)[n− 1] + z(l)[n] · ĥ
(l)

[n] (3.30)

After defining the memory mechanisms for traditional RNNs, we categorised SRNNs as
models with external memory. This external memory arises due to the connection that
exists between the membrane potential with itself and with the hidden states (Figure 3.1). A
hidden state works as a gate that controls whether information from the previous membrane
potential survives into the next membrane potential state. This external memory mechanism
is different from GRU because the gate that decides what information is relevant in GRU is
based on a V-RNN and in SRNN it is based on its dynamics without learnable parameters
(Fig. 3.12).

x[n]

z[n] ĥ[n] r[n]

h[n]

Update Gate Reset Gate

W ĥ
W
z

Wr

V
ĥ

External
Memory
Elements

Vr
V z

a) External memory elements in GRU graph

x[n] i[n] u[n] h[n]

External
Memory
Elements

W

V

b) External memory elements in V-SRNN graph

Figure 3.12: Illustration of the external memory elements in GRU and V-SRNN models

3.4.2 Adaptation of Two-Level External Memory in SRNNs

In the previous section, we categorise the type of SRNNs memory in internal and external. In
order to add external memory to V-SRNN, we used a GRU based formulation. The external

40

memory in the hidden state of a V-SRNN is based on replacing the Equations 2.7, 2.8, 2.9
with V-SRNNs and maintaining the definition of the hidden state of GRU (Equation 2.10).

r(l)[n] = V-SRNNr

(
h(l)[n− 1], u(l)

r [n], h(l−1)[n]
)

(3.31)

ĥ
(l)

[n] = V-SRNNĥ

(
r(l)[n]� h(l)[n− 1], u(l)

ĥ
[n], h(l−1)[n]

)
(3.32)

z(l)[n] = V-SRNNz

(
h(l)[n− 1], u(l)

z [n], h(l−1)[n]
)

(3.33)

For formulation purposes, we define Rt = r(l)[n], Ĥt = ĥ
(l)

[n] and Ut = z(l)[n]. Since
Rt, Ĥt and Ut states are binary sets (Rt, Ĥt, Ut,∈ S), a binary operation closed under S (a
non-empty binary set) is required to compute the hidden state Ht. The hidden state in the
GRU model is a linear interpolation. This interpolation on the set of binary numbers is a
closed operation. Therefore, the binary operation (1−Zt)Ĥt+ZtHt−1 on S is a closed binary
operation on S if (1− Zt)Ĥt + ZtHt−1, ∀ Ut, Ĥt ∈ S.

We call to the previous formulation Gated SRNN (G-SRNN), which has an external
memory at two levels (membrane potential and hidden state). It can be seen as GRU model
with binary gates and hidden states (Fig. 3.12). In addition, it has the property of allevi-
ating the vanishing gradient problem because it inherits the GRU’s ability to automatically
implement the Truncated Backpropagation Through Time (TBPTT).

Routine Implementation

We code our proposed G-SRNN (Eq. 3.31, 3.32, 3.33) using Python 3.7 and PyTorch library,
using Object Oriented Programming (OOP) paradigm. This project can be found in the
following repository: https://github.com/jthoth/gated-srnn.

41

https://github.com/jthoth/gated-srnn

3.5 Information Bottleneck in SRNNs

Similar to ANNs, the SRNN can be characterised as a Markov chain in space (number of
layers) but also in time. However, characterising in time adds computational complexity to
calculate the information measures. For that reason, we decided to characterise SRNN model
as a Markov chain in space, ignoring the time component. Space Markov chain in SRNNs
can be expressed as:

H
(0)
t︸︷︷︸

Xt

→ H
(1)
t → H

(2)
t → · · · → H

(L−1)
t︸ ︷︷ ︸

X̂t

→ H
(L)
t︸︷︷︸

Ŷt

, (3.34)

where H(0)
t represents the input signal, H(1)

t represents the first hidden signal and H
(L)
t

represents the output signal (encoder linear mapping). All hidden layers could represent a
whole hidden state signal, which can be expressed as X̂t. These signals are binary random
variables composed of the number of samples and neurons.

In order to incorporate the space deterministic Information Bottleneck in V-SRNN (with
the best architecture and model parameters), we propose the Equation 3.35.

LIB = CE

(
Y,

∑
t Ŷt

T

)
− γ

∑
t I
(
Xt; X̂t

)
T

, (3.35)

where CE is the cross entropy function, I is the mutual information and γ is the Lagrange
parameter. This formulation is represented in the Figure 3.13.

x[n] h(l)[n]

I(·)

h(L)[n] ŷ[n]

LIB y

W l

V l

WL

V L

Wy

∑
T

∑
T

Figure 3.13: Information Bottleneck in V-SRNN.

To compare the performance of the IB method with respect to the cross entropy, we
selected the best architecture among the evaluated SRNNs. For that, we consider the number
of spikes generated per layer and the accuracy metric. In addition, we evaluate several mutual
information estimators such as those proposed by Sanchez et al. [55], Kolchinsky and Tracey
[36], and an MI estimator proposed in this work based on the Central Limit Theorem. This
comparison is based on the evaluation of different values of Lagrange parameter (varying γ).

42

3.5.1 Proposed Mutual Information Estimator Based on the Central
Limit Theorem

Since we are dealing with binary random variables, we can assume that they follow a Bernoulli
distribution. Based on the above assumption, the probability of a spike can be found as
E(X) through the maximum likelihood estimation. Then, the whole random variable can be
reduced adding up all samples in order to obtain a normal distribution based on the central
limit theorem S(Xt) = N (NE(Xt), σ(Xt)).

σ(Xt) =
√
N
√

(E(Xt)(1− E(Xt))), (3.36)

where N is the number of samples and p = E(Xt) is the spike probability.

Function S(Xt) allows us to compute the differential mutual information because it defines
a valid probability distribution. This computation is possible because the differential mu-
tual information between two normal distributions are well-defined. This principle is used to
compute the mutual information for the Information Bottleneck method. In addition to cal-
culating the mutual information, the proposed estimator’s characteristic is that its operations
are differentiable.

I(Xt;Yt) =
1

2
log

(
1 +

σ(Xt)

σ(Yt)

)
(3.37)

Routine Implementation

We implement our estimator (Eq. 3.37) using Python 3.7 and PyTorch library, using Object
Oriented Programming (OOP) paradigm. This class can be found in the following repository:
https://github.com/jthoth/guassian-clt-mi.

43

https://github.com/jthoth/guassian-clt-mi

Chapter 4

Baseline Results

The aim of this chapter is to create a proof of concept and a baseline for spiking models. The
baseline allows making a fair comparison between the spiking models and traditional recurrent
networks. All spiking and non-spiking models are trained with the methods described in the
Section 3.2. Our proposed training and evaluation framework comprises the construction
of the baseline using two datasets with different architectures and lengths for training the
models. For the evaluation, we report the best accuracy obtained in the test set. To analyse
our results, we create heat map graphs describing the accuracy obtained by each training
setup.

4.1 Parity Bit Problem

We use the Parity Bit dataset in the proof of concept to contrast theory with practice for
the models studied. This dataset is used exclusively for this purpose. In total, we created
4 different versions of this dataset by varying its length (see Table 3.1). Figure 4.1 shows
samples generated using 32 and 64 time steps.

‘

a) Samples generated with 32 time steps b) Samples generated with 64 time steps

Figure 4.1: Parity Bit dataset visualisation with different time length versions, where xt
represent the input and yt the output sequence.

44

The heat map shown in Figure 4.2 outlines the maximum accuracy (effectiveness) achieved
on the test dataset by different models. The x-axis indicates spiking and non-spiking mod-
els with their respective architectures (y-axis). Overall, all models solved the problem for
sequence lengths of 16 and 32. Nevertheless, V-RNN and A-SRNN tended to fail when the
sequence becomes larger.

Figure 4.2: Parity Bit test accuracy heat-maps by different types of cells, number of neurons
and sequence lengths.

For a sequence length equal to 16 (top left), all models, except the V-RNN, achieved a
good performance. However, no model with a single neuron was able to solve this problem.
Using 2 neurons, V-RNN and A-SRNN failed to solve this problem when the models reach
10 training epochs.

For a sequence length equal to 32 (top right), all models, except the A-RNN, achieved
a good performance when the model reached the maximum number of epochs of training.
In this scenario, LSTM, GRU, C-SRNN and V-SRNN models reached the maximum score
in most architectures, except when using only a single recurrent neuron in the hidden layer.
On the other hand, A-SRNN had problems finding a solution with the number of epochs
assigned.

The sequence length equal to 64 reveals the limitations of V-SRNN and A-SRNN models.

45

In the case of V-SRNN, few architectures were able to solve this problem with the previous
analysed sequences. For A-SRNN model, no architecture managed to converge to the max-
imum accuracy. Similar to the shorter sequences, the single-neuron architecture did not solve
the problem, with the exception of LSTM and GRU.

Finally, for a sequence length equal to 128, none of the V-RNN architectures solved the
problem. Similarly, in the case of A-SRNN, no architecture achieved the maximum accuracy,
however this model performed better than V-RNN. For C-SRNN and V-SRNN, unlike the
other scenarios, the architecture with 2 neurons in the hidden layer did not solve the problem.
According to our results, LSTM, GRU, C-SRNN and V-SRNN models achieved the best
performance solving the parity bit problem with a least 4 neurons in the hidden layer. Notice
that the SRNN models have less parameters compared with LSTM and GRU. The scatter
plots shown in Figure 4.3 help to analyse the results of the different sequence lengths by type
of cell (colour and shape), number of learnable parameters (x-axis), accuracy (y-axis) and
number of neurons in the hidden layer (size).

‘

Figure 4.3: Scatter plot of parity bit test accuracy versus number of cells, neurons, parameters
and sequence length.

46

The scatter plot shows the differences between the models and architectures with respect
to their number of parameters. For instance, the LSTM and GRU models with 4 neurons in
the hidden layer have more parameters than the other models for all sequences. For sequences
of length 16 and 32, all models reached the max performance with at least 10 parameters. In
contrast, for a sequence of 64, V-RNN did not solve the problem, while for a sequence length
of 128, it solved the problem with 3 neurons.

4.1.1 Discussion

As mentioned in the literature review, RNN models are Turing Complete because they can
simulate any arbitrary program with proper weights. Since SRNNs are a family of RNNs, by
transitivity they are Turing complete. This fact suggests that spiking models can simulate
the program underlying the parity bit generator function (Equation 3.2).

The current study found that almost all models can solve parity bit problem for different
sequence lengths. Nevertheless, V-RNN tends to have some issues for larger sequence lengths.
A possible explanation for these results may be the lack of adequate control of the vanishing
gradient problem, which is solved in LSTM and GRU models, and partially solved in spiking
models.

These findings further support the notion that LSTM and GRU cells work well with long
sequences. However, the number of parameters of these models is much higher than those
of spiking and V-RNN models. Surprisingly, LSTM, GRU and V-SRNN models achieve
competitive performance, regardless of the number of neurons in the hidden layers.

In response to our first research question RQ1: What is the minimum number of paramet-
ers needed to solve the classification tasks used in this work, regardless of the RNN or SRNN
architecture?, our findings suggest that almost all models can solve the parity bit problem
using at least 10 parameters, regardless of the number of neurons in their hidden layers.

4.2 SHD Problem Baselines

To classify the real-world Spiking Heidelberg dataset, we generated a baseline for each train-
ing configuration, which comprises the type of model, architecture, training strategies, etc,
following the pipeline detailed in Figure 3.9. Previous works studied the LSTM, C-SRNN
and A-SRNN models for specific architectures. However, for the rest of the architectures and
models proposed in this work, as far as we know, there are no baselines. With respect to the
SRNN models, our baselines are based on the configuration parameters found in [14], [70].

As for the C-SRNN performance, in [14] it was reported 71% accuracy as a baseline, and
83% accuracy after applying multiple data processing techniques and increasing the number
of neurons. In addition, the same authors [14] reported the performance of LSTM model
using different time step sizes. In Figure 4.4, we show the generated versions of SHD dataset,
when using 4ms and 10ms simulation step sizes.

The heat map chart in Figure 4.5 shows the average accuracy (effectiveness) along with
the standard deviation on the test set achieved by the spiking and non-spiking models (x-

47

Sample from the original dataset

a) Sample generated with 10ms time
steps simulation (100 size steps)

b) Sample generated with 4ms time
steps simulation (250 size steps)

Figure 4.4: Spiking Heidelberg dataset sample visualisation with different time length ver-
sions.

axis) with their respective architectures (y-axis). All models, with the exception of V-RNN
(for a sequence length equal to 250), solved the SHD problem in at least one architecture
with equal or higher accuracy than the C-SRNN reported in [14].

Using 100 steps of sequence length, almost all models have a good performance. Even
V-RNN was able to solve this task with good performances in some architectures. The
architectures for SRNNs obtained an accuracy from 70% to 77%. In contrast, LSTM and
GRU models achieved an accuracy between 81% and 89%. On average, the best model was
LSTM with 512 units in its hidden layer (architecture 700-512-20).

For a sequence length equal to 250 steps, V-RNN obtained the worst performance followed
by the spiking models (V-SRNN, A-SRNN and C-SRNN) with an accuracy from 39% to 78%,
which decreased as more layers were added. With respect to LSTM and GRU models, they
achieved an accuracy from 79% to 89%.

48

Figure 4.5: Mean accuracy and standard deviation of traditional RNNs and SRNN models
for the SHD dataset.

4.2.1 Discussion

The current study found that SRNN models performance drops down when more layers
are stacked. A similar phenomenon occurs when the sequence length increases. A possible
explanation for this might be the gradients or the definition of the parameters. An unexpected
finding is that the performance of A-SRNN with three layers obtained the worst accuracy
between all models, which might be related to the aforementioned possible explanation.

For C-SRNN benchmark, we increase the results reported in [14] by 5% accuracy using
the 700-128-20 architecture. The authors [14] obtained 71.4% accuracy and we achieved 77%
accuracy using our proposed training framework. This result may be explained by the fact
that we used RNN training techniques to control the exploding gradient and the learning
rate. These results support the use of these techniques in the next experiments.

Our V-RNN obtained an average accuracy of 81% solving the SHD dataset. Surprisingly,
our V-RNN achieved a maximum accuracy of 83% (as shown in Appendix C.1) which is
competitive with the A-SRNN score reported in [70], and also with our small network ar-
chitecture of GRU and LSTM. This finding was unexpected and suggests that it might be
caused by another variable not considered in our analysis. In the following chapters, we
extend the analysis of the models not only in terms of accuracy, but also in terms of number

49

of parameters and iterations in converging to the maximum score, outlining the differences
and similarities between spiking and non-spiking models. In addition, we analysed other
aspects in SRNN models such as the parameters definition, memory and space compression
representation.

50

Chapter 5

SRNN Model Hyperparameters

In this chapter, we summarise the best results obtained by applying our proposed heuristic
estimation of the SRNN model hyperparameters (Section 3.3). In addition, we compare these
results with the performance obtained by the spiking and non-spiking models reported in the
previous section. For that, we visualise the results using heatmap and parallelogram chartss.

In summary, we first explore the impact of the ñ parameter in our proposed method, using
the V-SRNN model. Second, we compare the spiking and non-spiking models in terms of
accuracy, number of parameters and convergence steps. Finally, we discuss the capabilities
and weaknesses of SRNN models. This chapter provides insight into the best SRNN model
and architecture for solving the SHD problem based on heuristic estimation of the parameters.

5.1 Heuristic Method Exploration

As mentioned in the methodology section, we explored the impact of ñ in our proposed
heuristic method, which is the average value when a spike occurs. We evaluated the per-
formance of the V-SRNN by varying the value of this parameter, using the following values:
[2, 3, 4, 5, 7, 8, 10, 20]. The evaluation comprises the average validation accuracy of the model
with different architectures and versions of the SHD dataset (i.e., with different time length
versions). The heat map chart shown in Figure 5.1 outlines the average accuracy (effective-
ness) along their respective standard deviations reached with different architectures (y-axis)
and ñ values (x-axis). In general, a good performance was achieved for almost all values of
ñ in the evaluated architectures and the different sequence lengths.

For the SHD problem with 100 steps of length sequence, few values of ñ had a bad
performance. For the most complex architecture (with more stacked layers), the performance
decreased in the extreme values of the evaluation [2, 20]. In contrast, the center values of the
grid obtained the best scores, for example, when ñ ranges from 3 to 8 in this architecture of
three stacked V-SRNN layers, the model reached an average accuracy of 83%. For the SHD
problem with 250 steps of length sequence, it can be noted a similar phenomenon to the case
of 100-step dataset, but with lower performances, achieving an accuracy of 40% and 64%
with a ñ equal to 2 and 20, respectively.

51

Overall, the model scores studied were more stable than the baseline results in both
versions of the dataset (Figure 4.5). Furthermore, the most surprising aspect of our results
was that with ñ equals 4, the V-SRNN performed well regardless of architecture and sequence
size. In addition, the performance of single-layer models was stable for almost all ñ evaluation
values.

Figure 5.1: Mean accuracy and standard deviation of V-SRNN with different values of the
parameter ñ in the classification of the SHD test data set.

The parallelogram chart shown in Figure 5.2 compares the average accuracy (effectiveness),
the convergence training steps and the average number of spikes when evaluating a V-SRNN
with five values of ñ (represented by the line colour) using the 700-512-20 architecture. The
at_step variable represents the normalised number of iterations (3k iterations). The S(1) is
the average number of spikes occurring in space and time (batch and sequence) in a specific
layer. Overall, when the threshold value is large, the model on average tends to converge
slowly compared with the best ñ value. In both dataset versions, for ñ equal to 4, the V-
SRNN converged faster and obtained a better effectiveness than using other values for this
parameter. In terms of the number of spikes, the best efficiency was obtained with few spikes
per layer. However, the dataset versions behaved differently.

52

effectiveness at_step S(1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-512-20 | Seq = 100

ñ
2
3
4
7
20

a) 10ms step simulation (100 size steps)

effectiveness at_step S(1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-512-20 | Seq = 250

ñ
2
3
4
7
20

b) 4ms step simulation (250 size steps)

Figure 5.2: Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-512-20 architecture.

The parallelogram chart shown in Figure 5.3 presents an analysis of the largest architecture
studied in this work (700-512-256-128-20 architecture). Using the 10ms simulation step (left
chart), with a small ñ, the model obtained a low effectiveness, learned slowly and its first
layers almost saturated, while with ñ equal to 4 the convergence of the model improved using
fewer spikes per layer. Using the 4ms simulation step (right chart), the model obtained on
average the best convergence and good effectiveness with ñ equal to 7, while with ñ equal
to 20, the model tended to learn slowly and to saturate its spike layers, resulting in the
worst effectiveness. In general, some of the ñ values obtained a similar effectiveness to each
other, however, there was one configuration where this metric was also related to a good
convergence step and few spikes per layer.

effectiveness at_step S(1) S(2) S(3)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-512-256-128-20 | Seq = 100

ñ
2
3
4
7
20

a) 10ms step simulation (100 size steps)

effectiveness at_step S(1) S(2) S(3)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-512-256-128-20 | Seq = 250

ñ
2
3
4
7
20

b) 4ms step simulation (250 size steps)

Figure 5.3: Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-512-256-128-20 architecture.

The parallelogram chart shown in Figure 5.4 shows the performance of the V-SRNN with
two layers (700-256-128-20 architecture). Overall, the majority of the ñ values in both dataset
versions obtained similar effectiveness, except for ñ = 20. Nevertheless, the convergence steps
and spikes per layer changed radically depending on the length of the sequence.

Finally, Figure 5.5 shows the results of the V-SRNN using the 700-128-20 architecture,

53

effectiveness at_step S(1) S(2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-256-128-20 | Seq = 100

ñ
2
3
4
7
20

a) 10ms step simulation (100 size steps)

effectiveness at_step S(1) S(2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-256-128-20 | Seq = 250

ñ
2
3
4
7
20

b) 4ms step simulation (250 size steps)

Figure 5.4: Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-256-128-20 architecture.

where ñ = 20 obtained bad results and ñ = 4 preserved its best results as in the previously
analysed single-layer architecture. Interestingly, for this architecture the performance was
invariant to the dataset length version. In addition, another interesting behaviour occurs
with the 100-step sequence when ñ = 2 because the model converged faster than the other
configurations and also had fewer spikes in its hidden layer.

effectiveness at_step S(1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-128-20 | Seq = 100

ñ
2
3
4
7
20

a) 10ms step simulation (100 size steps)

effectiveness at_step S(1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arch = 700-128-20 | Seq = 250

ñ
2
3
4
7
20

b) 4ms step simulation (250 size steps)

Figure 5.5: Parallelogram chart with the effectiveness, convergence steps, and number of
spikes of the V-SRNN using the 700-128-20 architecture.

5.1.1 Discussion

The present study was designed to determine the effect of ñ in different architectures of V-
SRNN. The findings suggest that there is a range of ñ values where more spike events are
triggered. In turn, these events stabilise the performance of the model, maintaining a balance
between the results reported in both dataset versions.

Prior studies that have noted the importance of SRNN models parameters, usually adjust
these parameters to a specific architecture. This form of adjusting has an arguable weakness
due to the arbitrary nature of its definition. The present study provides a set of steps and

54

a heuristic method to define the parameters. Overall, one of the most significant findings of
this study is that a good setting of parameters generates effective and efficient SRNN models.

The lowest results reported by 3 layers V-SRNN (Figure 5.3) might be related to the small
value of ñ (when it is equal to 2) which generates small threshold ϑ and urest. Such values
could generate a rapid transition between neurons that are activated and non-activated and
vice versa. This transition might lead to a limitation in the computational power of SRNNs,
as the number of solutions is limited by the threshold and the urest value.

On the other hand, a large ñ (when it is equal to 20) generates large values for the
threshold ϑ and urest, so the model has to change the learnable parameters in order to cross
this threshold and then reset the membrane potential u(l)[n]. This may cause problems
related to model convergence and gradients.

Regarding the first phenomenon, the learning algorithm might need more steps to cross a
large threshold, leading to slow learning. This was noticeable in almost all the architectures
trained for both versions of the datasets (Figure 5.3). The second phenomenon is caused by
the surrogate gradient of the step function being modelled with a normal distribution with
zero mean. When the threshold is large, the membrane potential tends to be large which
impairs learning as these values move away from the average of the normal distribution
(Figure 3.10), producing no learning.

In response to our second research question RQ2: Can we automatically estimate the
underlying hyperparameters of SRNNs based on their architecture?, our findings suggest that
we can automatically estimate the hyperparameters of SRNNs based on their architecture
for the SHD problem. In addition, there is an optimal range of values for these parameters,
nevertheless, some values are more efficient than the others.

The exposed results are on average better than those reported by [14] and [70]. The best
parameters obtained with the V-SRNN model are evaluated with other traditional SRNNs
and RNNs in the following section.

55

5.2 SRNNs vs Traditional RNNs

The aim of this section is to compare the performance of the SRNN models with respect to
traditional RNNs in terms of effectiveness, convergence steps, spikes and number of paramet-
ers. The SRNN models were trained with the heuristic method to compute their threshold
ϑ and urest parameters. We evaluated all models in the classification of the SHD dataset,
following the proposed experimental framework. The heat map shown in Figure 5.6 out-
lines the average accuracy (effectiveness) with their respective standard deviation reached
by the models (x-axis) with different architectures (y-axis). Overall, spiking models with 3
layered SRNN obtained similar performances to those of some architectures of LSTM and
GRU models.

Figure 5.6: Mean accuracy and standard deviation of SRNNs with heuristic function and
traditional RNNs in the classification of the SHD test data set.

For the 100-step sequence, all spiking models obtained superior effectiveness than V-RNN
and some architectures achieved competitive results compared to gated RNNs. In addition,
spiking models with multiple layers performed better than others spiking architectures. For
the 250-step sequence, some architectures decreased their performance compared to the 100-
step version, but the single hidden layer architectures maintained a similar performance.
Since the gated models have a larger number of parameters compared to the spiking models,

56

a different analysis was performed to make a fair comparison as reported below.

The scatter plot in Figure 5.7 presents a comparative analysis between the effectiveness (y-
axis) and the number of parameters (x-axis) of the spiking and non-spiking models. Overall,
spiking models obtained significant improvements using the heuristic method and in some
cases, the V-SRNN model obtained better average score than the other models (spiking and
non spiking).

Focusing on the 100-step sequence version, all spiking models tended to increase in effect-
iveness as more parameters were added. Analysing the models with less than 1M parameters,
none of them reached the max effectiveness reported. Nevertheless, some of these models per-
form similarly to each other, for instance V-SRNN, GRU and LSTM. On the other hand,
when sequence has 250 steps, not only V-SRNN is affected in its performance but also most
other models. However, the performance of spiking models are close to the performance of the
gated models. For V-RNN, the performance is severely affected despite the use of gradient
clipping.

Figure 5.7: Effectiveness versus number of parameters of SRNNs with heuristic method and
traditional RNNs in the classification of the SHD test data set.

The radar graph shown in Figure 5.8 illustrates the convergence steps, effectiveness, num-

57

ber of parameters (invariant to the sequence length) and spikes per layer (only for spiking
models) of SRNNs and traditional RNNs with the 700-512-20 architecture. The above men-
tioned metrics are averaged and they represent the point in time at which the maximum
effectiveness was reached for the models. In general, for this particular architecture, the
LSTM model obtained the best performance, however, it has more parameters than the
other models.

For a 100-step sequence, all spiking models presented a similar performance in terms of
effectiveness and number of spikes (S(1)). All spiking models have three times less parameters
than GRU and four times less than LSTM. The step metric suggests that almost all spiking
models converged in a similar way. For a 250-step sequence, the spiking models performed
differently in their metrics. In this case, the S(1) metric suggests that the C-SRNN and
V-SRNN models have more spikes than the A-SRNN model. The step metric suggests that
the convergence of the A-SRNN model was similar to that of the GRU and V-SRNN model.
Finally, the effectiveness reported in this dataset version were similar to those of the 100-step
sequence version.

params effectiveness step S(1)
0.0

0.2

0.4

0.6

0.8

Arch = 700-512-20 | Seq = 100

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

a) 10ms step simulation (100 size steps)

params effectiveness step S(1)
0.0

0.2

0.4

0.6

0.8

Arch = 700-512-20 | Seq = 250

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

b) 4ms step simulation (250 size steps)

Figure 5.8: Parallelogram chart with the effectiveness, convergence steps, parameters, and
spikes per layer (only for the latter spiking models) of SRNNs and RNNs using the 700-512-20
architecture.

The latter radar graph shown in Figure 5.9 presents the performance of spiking and non
spiking models using the 700-512-256-128-20 architecture. Some models, such as C-SRNN,
converge slower than others. Regarding the number of learnable parameters, GRU and LSTM
required more parameters than the other models, however, the effectiveness of these models
is not much higher than spiking models. The previous analysis is independent of the sequence
length version.

Concerning the 100-step length version, the LSTM model obtained the best score in ef-
fectiveness and convergence steps, however, this model required more parameters than the
other models. With regard to spiking models, V-SRNN obtained on average better effective-
ness and convergence than the other spiking models. For the 250-step length version, GRU
model achieved the best score in effectiveness and convergence steps, and also required fewer
parameters than LSTM model. Regarding the spiking effectiveness and number of spikes per
layer, V-SRNN obtained better effectiveness than A-SRNN and C-SRNN, however, A-SRNN
had fewer spikes in its layers.

58

params effectiveness step S(1) S(2) S(3)
0.0

0.2

0.4

0.6

0.8

Arch = 700-512-256-128-20 | Seq = 100

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

a) 10ms step simulation (100 size steps)

params effectiveness step S(1) S(2) S(3)
0.0

0.2

0.4

0.6

0.8

Arch = 700-512-256-128-20 | Seq = 250

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

b) 4ms step simulation (250 size steps)

Figure 5.9: Parallelogram chart with the effectiveness, convergence steps, number of para-
meters, and spikes per layer (only for the latter spiking models) of SRNNs and RNNs with
the 700-512-256-128-20 architecture.

The radar graph shown in Figure 5.10 shows the performance of the models using the
700-256-128-20 architecture. The results are similar to those shown in Figure 5.9. For both
datasets, C-SRNN convergence was slower than the others models; LSTM models obtained
the best effectiveness; and A-SRNN had fewer spikes than the other spiking models.

params effectiveness step S(1) S(2)
0.0

0.2

0.4

0.6

0.8

Arch = 700-256-128-20 | Seq = 100

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

a) 10ms step simulation (100 size steps)

params effectiveness step S(1) S(2)
0.0

0.2

0.4

0.6

0.8

Arch = 700-256-128-20 | Seq = 250

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

b) 4ms step simulation (250 size steps)

Figure 5.10: Parallelogram chart with the effectiveness, convergence steps, parameters, and
spikes per layer (only for spiking models) of SRNNs and RNNs with the 700-256-128-20
architecture.

The radar graph shown in Figure 5.11 reports the results of the 700-128-20 architecture,
we can see that V-RNN obtained the worst effectiveness, nevertheless, it had one of the best
time convergences on average. In relation to the number of spikes, V-SRNN and C-SRNN
models had the highest number of spikes per layer when reaching their max effectiveness
value.

59

params effectiveness step S(1)
0.0

0.2

0.4

0.6

0.8

Arch = 700-128-20 | Seq = 100

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

a) 10ms step simulation (100 size steps)

params effectiveness step S(1)
0.0

0.2

0.4

0.6

0.8

Arch = 700-128-20 | Seq = 250

cells
A-SRNN
C-SRNN
GRU
LSTM
V-RNN
V-SRNN

b) 4ms step simulation (250 size steps)

Figure 5.11: Parallelogram chart with the effectiveness, convergence steps, number of para-
meters, and spikes per layer (only for the latter spiking models) of SRNNs and RNNs with
the 700-128-20 architecture.

5.2.1 Discussion

The aim of this discussion is to compare the results obtained with the models studied for
solving the SHD problem. First, we discuss about the effectiveness reached by the models.
Second, we expand an analysis about the number of learnable parameters (weights). Finally,
we present the relation between effectiveness and number of spikes per layer for each spiking
model.

Effectiveness

In the current study, a fair comparison1 of SRNNs and traditional RNNs showed that the
effectiveness have similar performances, especially between V-SRNN and GRU models. A
possible explanation may be the external memory underlying these models. Another possible
explanation is an appropriate use of their gradients and setting of hyperparameters.

Learnable Parameters

The results of this study indicate that spiking models with an appropriate number of paramet-
ers perform similarly to gated RNNs for the SHD dataset. Surprisingly, there is no significant
difference in effectiveness when learnable parameters reach a certain value. The analyses on
the number of learnable parameters are also consistent with the sequence length, however,
the results can not be extrapolated to all sequences because gradient problems could arise.

In response to our first research question RQ1: What is the minimum number of para-
meters needed to solve the classification tasks used in this work, regardless of the RNN or
SRNN architecture?, our findings suggest that the models require at least 1M parameters for
solving the SHD problem, regardless of their architectures.

1Considering the number of learnable parameters, among other training strategies.

60

Spikes

Our results show that the number of spikes is related to the convergence steps of the model
when the heuristic method is used. One unanticipated finding is that the last layer in different
SRNNs has the same number of spikes on average. A possible explanation for this might be
that the last layer generally is used for classification and the others layers (S(1), ... , S(L-1))
for data representation.

With regard to single-layer architecture spiking models, the architecture with 128 neurons
in the hidden layer needs more spikes than the one with 512 neurons, which could be related
to the threshold value. However, the hidden layers with 128 and 512 neurons in multilayer
architectures presented fewer spikes than in the single-layer architecture. Thus, this could
also relate to the capability of the model based on the number of learnable parameters.
Concerning the three-layer SRNN architecture, the number of spikes in S(1) was similar to
that of the single-layer architecture with 512 neurons. These results are possibly due to the
ϑ and urest values used. This phenomenon can be seen also for S(2) of the three-layer SRNN
and S(1) of two-layer SRNN architectures.

61

5.3 Literature fixed Parameters vs Heuristic Method
The objective of this section is to compare the performance between literature fixed and
heuristic parameters definition in the SRNN models. This comparison allowed us to find the
best spiking model and its architecture solving the SHD problem. We applied the permuta-
tion test (Eq. 3.17) to each experiment. The heat map in Figure 5.12 shows the performance
of spiking models with literature fixed parameter (left) and heuristic parameter (right) defin-
itions, for two different length sequences (upper and bottom). In general, the heuristic
method achieved the best effectiveness in almost all architectures, regardless of the time step
simulation. Among these spiking models, V-SRNN obtained the best performance.

Figure 5.12: Effectiveness of SRNN models with literature fixed and heuristic parameters for
the SHD problem.

For the 100-step length, the heuristic method increased the performance of the models
compared with respect to the literature fixed baseline. This increase is more notable in
the three-layer architecture of V-SRNN followed by the C-SRNN and A-SRNN models. This
order is kept in the single-layer model with 512 neurons and in the 2-layer model. In contrast,
the single-layer model with 128 neurons obtained a similar performance in all models. For the

62

250-step length, the V-SRNN with heuristic parameters reported the best effectiveness. In
this scenario, almost all architectures dropped down their performance, especially C-SRNN
and A-SRNN with three hidden layers. However, the single-layer architectures kept their
performance.

The heat map shown in Figure 5.3 outlines the p-values (colour-bar) in three SRNN models
(axis x) and four architectures (axis y). These p-values arise from the statistical comparison
of means between SRNNs trained with literature fixed parameters and SRNNs trained with
parameters obtained from the heuristic method. Each p-value represents one experiment
with 5 runs each. In general, most p-values are less than 0.05 which suggests that there is
an improvement by applying the heuristic method to compute SRNNs.

Figure 5.13: P-values of the permutation test between literature fixed and heuristic paramet-
ers of SRNNs.

5.3.1 Discussion

The present study found that the heuristic computation method makes the training of SRNNs
more stable and also improves the performance. Another interesting finding was that SRNN
with literature fixed parameters and architecture configuration taking from [4], [14], [70] does
not improve with respect to the heuristic method. A possible explanation for such results
may be that the above-mentioned authors set the optimal hyperparameter values to their
architecture. It is probable therefore that arbitrary literature fixed parameter worked only
for their experiments.

Previous studies related to adaptive threshold [4], [70], assume that this approach is better
than the static threshold. However, we report greater effectiveness using a well-calculated
static threshold in multilayer V-SRNNs. A possible explanation for this is that A-SRNN is
harder to train and might need another way to compute the initial threshold value.

In reference to the hypothesis H1, which claims that the SRNN models with the hyper-
parameters calculated using a heuristic method can obtain a higher accuracy than the SRNN

63

models using literature fixed model parameters, we obtained statistically significant improve-
ment by applying the heuristic method to compute SRNNs, so H1 is accepted solving the
SHD Problem.

64

Chapter 6

Memory and Optimisation Criterion

In this chapter, we report a fair evaluation between the proposed Gated SRNN (G-SRNN)
and GRU model. The G-SRNN is a variant of the V-SRNN, which proved to have better
effectiveness than the other spiking models for solving the SHD problem. In order to compare
other aspects of these models, we also analyse the convergence step and number of parameters.
Finally, we compare the effectiveness of these models using a statistical test.

In reference to the optimisation criterion, we evaluate the space information bottleneck on
V-SRNNs with three-layer architecture (700-512-256-128-20) using only 100-step sequence.
We use this particular architecture of V-SRNN because it reported the best accuracy (ef-
fectiveness) for solving the SHD problem. In addition, we analyse the numbers of spikes per
layer between different versions of mutual information estimators and the Lagrange values γ.

6.1 Two-Level External Memory
We conducted some experiments and comparisons between the G-SRNN and GRU models.
This comparison allowed us to have spiking models with the same number of parameters
for some specific architectures. These models were trained using the proposed experimental
framework, excluding the multilayer networks. We evaluated single-layer architectures be-
cause a single-layer GRU model achieved a good performance compared to the multilayer
architectures with a larger number of parameters. Finally, we analysed the performance of
these models using a statistical test.

The heat map shown in Figure 6.1 outlines the effectiveness (color-bar), network architec-
ture (y-axis) and spiking and non-spiking gated models (x-axis). In general, the G-SRNN and
GRU reported similar effectiveness in both architectures and sequence length. In addition,
Figure 6.1 shows that G-SRNN effectiveness varies more than GRU, especially in the smaller
networks.

The results for both sequence lengths of the dataset were similar. G-SRNN effectiveness
was on average slightly lower than GRU model with 512 hidden neurons, but for the architec-
ture with 128 neurons in the hidden layer the difference in performance was larger in favour
of GRU. There is a clear trend to decrease effectiveness when they have fewer neurons in the

65

hidden layer.

Figure 6.1: Gated-SRNN and GRU models performance for the SHD classification problem.

The heat map shown in Figure 6.2 presents the p-value (color-bar), network architecture
(y-axis) and spiking vs non-spiking gated networks (x-axis). This figure compared the effect-
iveness between G-SRNN and GRU using the permutation test (Equation 3.17). In general,
almost all architectures obtained a p-value higher or close to 0.05 which means that there
were no significant differences between both models.

Figure 6.2: Gated-SRNN vs GRU effectiveness comparison using permutation statistical test
for significance

The radar chart shown in Figure 6.3 outlines the effectiveness, convergence steps, para-
meters, and spikes per layers (only for the latter spiking models) in different architectures
of G-SRNN (left) and GRU (right) and sequence lengths. Overall, G-SRNN and GRU re-
ported similar effectiveness independent of the sequence length data. In addition, the GRU
architectures reported similar number of convergence steps for both sequence lengths.

66

Concerning architectures, GRU and G-SRNN with 512 neurons in its hidden layer con-
verged faster, in terms of number of iterations, than the architectures with 256 and 128
neurons, but demanded more parameters. In addition, G-SRNN was slower to converge than
the GRU network. Interestingly, the trained architectures behaved similarly in both versions
of sequence length in terms of effectiveness. In reference to the number of spikes, G-SRNN
for 100-step sequence needed more spikes than for 250-step sequence.

params effectiveness step S(1)

0.2

0.4

0.6

0.8

1.0
Cell= G-SRNN | Seq = 100

Architectures
700-128-20
700-256-20
700-512-20

a) G-SRNN performance metrics using
10ms step simulation (100 size steps)

params effectiveness step S(1)

0.2

0.4

0.6

0.8

1.0
Cell= GRU | Seq = 100

Architectures
700-128-20
700-256-20
700-512-20

b) GRU performance metrics using
10ms step simulation (100 size steps)

params effectiveness step S(1)

0.2

0.4

0.6

0.8

1.0
Cell= G-SRNN | Seq = 250

Architectures
700-128-20
700-256-20
700-512-20

a) G-SRNN performance metrics using
4ms step simulation (250 size steps)

params effectiveness step S(1)

0.2

0.4

0.6

0.8

1.0
Cell= GRU | Seq = 250

Architectures
700-128-20
700-256-20
700-512-20

b) GRU performance metrics using
4ms step simulation (250 size steps)

Figure 6.3: Radar charts with the effectiveness, convergence steps, parameters, and spikes
per layers (only for the latter spiking models) of G-SRNN and GRU architectures.

6.1.1 Discussion

As mentioned in the literature review, unfair comparisons between spiking and non-spiking
models are generally conducted. This part of the study aimed to assess those models with
a similar number of hidden neurons and learnable parameters (weights). We found that
both models perform similarly when they are evaluated on similar conditions. This could
be because both models (GRU and G-SRNN) belong to the category of the Infinite Impulse
Response (IIR) systems [57]. Furthermore, it can be seen that the spiking model is a natural
representation of an IIR (because it uses discrete pulses in its hidden layers), and makes sense
that both models have similar performance.

67

The present findings seem to be consistent with other works which have found that gated
RNNs can fix the gradient problems. Our results suggest that the results with 250- and 100-
step sequences are statistically similar with G-SRNN and GRU. In addition, the gradient
problem is more severe in SRNN models without gating mechanism or external memory
approach.

In reference to the hypothesis H2, which states that the SRNN models using binary values
in their layers have similar accuracy with respect to the traditional RNNs (such as GRU) using
continuous values, solving the SHD problem, we obtained that in almost all architectures and
sequence versions, there is no statistical differences between GRU and G-SRNN effectiveness
classifying the SHD problem. Therefore H2 is accepted, solving the SHD problem.

The reported results must be interpreted with caution because only one dataset was tested.
In future investigations, it might be possible to use a different and more complex dataset in
order to generalise our findings. Nevertheless, we conjecture that these results would be kept
for other binary spiking datasets.

68

6.2 Space Information Bottleneck on V-SRNN
Based on the proposed methodology, we evaluated the space IB as an optimisation criterion
in the best architecture of V-SRNN (700-512-256-128-20). We first present the effectiveness
of the model using different estimators of the mutual information and different values of γ
(Eq. 3.35). In addition, we present the iteration steps that were performed to reach the
maximum effectiveness. Then, we analyse the results of the average number of spikes per
layer. Finally, we use a statistical test to answer the research question.

Figure 6.4 compares the effectiveness (top heat map) and iteration steps (bottom heat
map) of the V-SRNN model with respect to mutual information estimator (x-axis) and γ
values (y-axis). Overall, mutual information estimators do not affect the effectiveness of the
model, however, there are some changes in the number of convergence steps.

Figure 6.4: Effectiveness and iteration steps of V-SRNN with the 700-512-256-128-20 archi-
tecture using IB in the classification of the SHD dataset.

With reference to the Gaussian estimator based on the Central Limit Theorem (CLT), the
effectiveness for almost all values of γ maintained a similar effectiveness. Interestingly, there
were differences in the number of iteration steps, since as the values of gamma increased, the
iteration steps increased on average. Finally, a comparison of the two metrics (effectiveness
and iteration steps) revealed that using pairwise Gauss estimator with a γ = 0.01 achieved
slightly better results on average.

Concerning upper pairwise Gauss estimators, one of the results obtained the highest ef-
fectiveness between the baseline and the others estimators (87% of accuracy). In contrast,

69

the same estimator obtained the lowest effectiveness values on average between all estimators
(84% of accuracy). In general, almost all γ values had similar number of iteration steps.

With respect to Principe’s estimator, the effectiveness and iteration steps were similar
among almost all the values of γ. Moreover, the performance of this estimator was more
affected when the values of γ were 0.5 and 1.0 (84% of accuracy).

The heat map shown in Figure 6.5 outlines the p-values of comparing Cross Entropy
(Baseline) and Information Bottleneck (with different estimators of mutual information and
γ values) in terms of effectiveness. Overall, no significant differences in almost all experiments
were found. Only in one particular case, IB negatively affected the performance of the model
because the p-value is under 0.05. On the other hand, the heat map shown in Figure 6.6
presents the p-values in terms of iterations steps. Similarly to the previous analysis, no
significant differences were found between Cross Entropy and Information Bottleneck.

Figure 6.5: Statistical permutation test between Cross Entropy and Information Bottleneck
in terms of effectiveness.

Figure 6.6: Statistical permutation test between Cross Entropy and Information Bottleneck
in terms of iterations steps.

70

The parallelogram chart shown in Figure 6.7 outlines the proportion of the number of
spikes (y-axis), γ values (y-axis), and estimators (color) when the model reached the best
effectiveness in the validation set. In general, the baseline optimisation criterion (Cross-
Entropy) obtained more spikes than Information Bottleneck with different estimators. Ad-
ditionally, when γ = 1 almost all estimators had a similar number of spikes per layer, except
for Principe’s estimator.

In almost all cases the baseline has on average more spikes than IB estimators in layer
one S(1). Focusing on layer two S(2), an elbow emerged for all γ values and estimators,
which is more pronounced in IB with Principe’s estimator. Finally, in layer three S(3), all
optimisation criteria, including the baseline, did not have a defined behaviour because they
resulted in different numbers of spikes.

The single most striking observation to emerge from the spikes comparison was that Gauss
CLT and MI-upper-Pairwise-Gauss estimators reported similar number of spikes per layers.
This is interesting because our proposed Gaussian CLT estimator is more simple (it considers
the number of samples and neurons as a single component) than MI-upper-Pairwise-Gauss
(which considers the number of samples and neurons as two different components).

Figure 6.7: Parallelogram of the average number of spikes per layer when the model achieved
the best effectiveness value in the validation set.

71

6.2.1 Discussion

The current study found that space information bottleneck does not improve the performance
of multilayer V-SRNN. It is difficult to explain this result, but it might be related to the
formulation of IB that only considered the space but not the time. Thus, in order to improve
the performance in this model, space and time may be required. Another possible explanation
for this is that estimators of mutual information could fail when using discrete random
variables.

In some cases, the estimators need a normalised random variable according to their defin-
ition. In our evaluation, we conducted our experiments normalising the batch of binary
values for Principe and MI-upper-Pairwise-Gauss estimators. This normalisation only makes
sense if the mean has a meaning. According to the Maximum Likelihood Estimation, the
mean represents the probability of positive events (or spikes) of a Bernoulli random variable.
Therefore, normalising our random variable is justified.

In response to our last research question RQ3: Does the optimisation criterion space
Information Bottleneck improve the performance of SRNNs compared to those trained with
Cross-Entropy?, our findings suggest that there was no statistically significant difference
between models training with cross-entropy and space information bottleneck solving SHD
problem.

Based on the results obtained in terms of effectiveness, two important findings emerge from
our experiments. The first one is related to the effectiveness since the mutual information
in the IB method works as a regularisation that could prevent the overfitting of the model.
The second one is related to the average number of spikes generated per layer, where models
trained with IB on average have fewer spikes than those trained with CE.

In future investigations, it might be possible to use space and time Information Bottleneck.
However, it is important to note that the time component will increase the computational
cost of the mutual information computation.

72

Chapter 7

Conclusions

Our findings suggest that SRNN and traditional RNN can be trained and evaluated using the
proposed experimental framework. Our experimental framework allows a complete analysis
of the relationship of the studied models. In fact, our approach can be applied to any deep
learning model. As a result, we generated a baseline for different models and architectures
in the classification of two binary datasets varying their sequence length.

One of the most significant findings to emerge from this study is that a heuristic method
can be used to estimate the parameters of multilayer SRNNs to improve their performance
solving the SHD problem. In addition, this study demonstrated, for the first time, that
SRNN model parameters are related to each other and that a good parameter selection can
alleviate the gradient problems.

To the best of our knowledge, most binary models have a lower performance than continu-
ous models. However, our results suggest that binary RNNs inspired by biological concepts
perform similarly to traditional RNNs solving SHD problem, which is an important finding.
The main conclusions obtained in the various aspects evaluated in this work are presented
in what follows.

Parity Bit and SHD Baselines

Parity bit problem can be empirically simulated with a proper number of parameters, regard-
less of the RNN model, architecture and sequence length. In addition, LSTM, GRU, C-SRNN
and V-SRNN model validation holds an invariant accuracy in almost all architectures and se-
quence lengths. Our results in the classification of the parity bit dataset empirically support
that SRNNs are Turing complete.

This study has found that, in general, traditional RNNs performs better than SRNN
models with parameters defined for a specific architecture for classifying the SHD dataset.
Despite the empirical nature of this work, it offers some insight about design of SRNNs and
other aspects that need to be taken into account for gradients. The generalisability of these
results is subject to certain limitations, such as the fact that we only used one dataset.

73

SRNN Model Parameters and Weights (Learnable Parameters)

This study was aimed to determine that SRNN models parameters are closely related to each
other. In addition, one of the most significant findings to emerge is that a correct selection
of the parameters could produce effective models because these parameters can also control
the behavior of the gradients and consequently accelerate the learning convergence time.
Although this study did not confirm the relationship between weights and effectiveness, it did
partially corroborate that as more parameters are added, models improve their performance.

Heuristic Method for SRNN Parameters Computation

In this work we designed methods to evaluate and improve SRNNs models. These findings
suggest that in general a good parameter estimation improves the SRNNs performance, espe-
cially in multilayer architectures. One of the most significant findings is that the three-layer
V-SRNN model has similar performance than GRU model in the classification of the SHD
dataset. Our evidence suggests that heuristic parameters stabilise the training procedure and
improve the model performance.

In addition, the results of this research support the idea that small threshold ϑ and
urest saturate the hidden layer with too many spikes, and although they produce a faster
convergence, the solution is generally not good. In contrast, a large ϑ and urest produce
fewer spikes in some cases, which slows down the convergence of the model and can lead to
a sub-optimal solution.

Finally, a number of important limitations need to be considered. First, heuristic method
for single-layer architectures needs to consider better assumptions (for instance considering
that one third of the spikes events are available for sampling). Second, the range of optimal
values of ñ changes as the time sequence becomes large. Finally, it is recommendable to
use the surrogate gradient function used in this work for a stable model training using our
heuristic method.

Two-Level External Memory in V-SRNN

This study has shown that SRNNs could be used as gated RNN with similar effectiveness
as the GRU under certain conditions. It also contributed to improving our understanding of
SRNNs with external memory and their gradient flow. In summary, our evidence suggests
that SRNNs are a natural expression of Infinite Impulse Response because Leaky Integrate
and Fire model is based on Dirac Delta function. Despite the exploratory nature of this study,
it offers some insight into the spiking and non spiking models classifying binary datasets
evaluated in similar conditions.

Space Information Bottleneck in V-SRNN

Returning to the question posed at the beginning of this study about IB, it is now possible to
state that in our experiments there are no significant improvements in terms of effectiveness
using it spatially. However, there is a kind of compression in the layers that show the
optimisation criterion is fulfilling its function of generating compressed representations.

74

One of the most significant results emerging in this aspect is that a simple estimator based
on the central limit theorem and differential mutual information is statistically similar to the
Principe and MI-upper-Pairwise-Gauss estimators in terms of effectiveness. When analysing
the convergence steps, the former estimator reported on average the best convergence values
using the spatial information bottleneck.

7.1 Final Comments and Future Work
This work focused on improving the performance of SRNNs by using training strategies and
methods widely used in the deep learning community. The application of these strategies
and methods helped to create new models and ways to compute the models parameters in
order to improve their performance compared to our baselines. In particular, we found that
these models of discrete nature can achieve competitive results with respect to GRU with
fewer parameters solving the SHD problem.

For future work, we want to test our heuristic method and the model with external memory
on more datasets. In addition, we would like to improve the adaptation of the bottleneck
principle in SRNNs considering space and time. Finally, we will formally prove that our
heuristic method is equal or better than defining a model parameter arbitrarily, and then we
will implement these models on specialised SNN hardware.

75

Bibliography

[1] Ahmed Abusnaina and Rosni Abdullah. Spiking neuron models: A review. International
Journal of Digital Content Technology and its Applications, 8:14–21, 06 2014.

[2] Charu C Aggarwal. Neural Networks and Deep Learning: A Textbook. Springer, 2018.
ISBN 978-3-319-94463-0.

[3] Coryn Bailer-jones, David Mackay, and Philip Withers. A recurrent neural network for
modelling dynamical systems. Network: Computation in Neural Systems, 9, 08 2002.
doi: 10.1088/0954-898X_9_4_008.

[4] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang
Maass. Long short-term memory and learning-to-learn in networks of spiking neurons.
In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, page 795–805, Red Hook, NY, USA, 2018. Curran Associates Inc.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[6] Lars Buesing and Wolfgang Maass. A spiking neuron as information bottleneck. Neural
Comput., 22(8):1961–1992, August 2010. ISSN 0899-7667. doi: 10.1162/neco.2010.
08-09-1084.

[7] Anthony Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input. Biological cybernetics, 95:1–19, 08 2006. doi: 10.1007/s00422-006-0068-6.

[8] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. Adaptive estimators show in-
formation compression in deep neural networks. In International Conference on Learning
Representations, 2019.

[9] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[10] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. In Neural Inform-
ation Processing Systems, Workshop on Deep Learning, 2014.

[11] Iulia M. Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Ges-
mundo, and Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha
synaptic function. In IEEE International Conference on Acoustics, Speech and Signal

76

https://github.com/fchollet/keras

Processing, pages 8529–8533, 2020.

[12] Rui Ponte Costa, Yannis M. Assael, Brendan Shillingford, Nando de Freitas, and Tim P.
Vogels. Cortical microcircuits as gated-recurrent neural networks. In Proceedings of the
31st International Conference on Neural Information Processing Systems, page 271–282.
Curran Associates Inc., 2017. ISBN 9781510860964.

[13] Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA,
2006. ISBN 0471241954.

[14] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–14, 2020.

[15] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. A
survey of deep learning and its applications: A new paradigm to machine learning.
Archives of Computational Methods in Engineering, 27(4):1071–1092, Sep 2020. ISSN
1886-1784. URL https://doi.org/10.1007/s11831-019-09344-w.

[16] Jeffrey Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[17] Bert Fristedt and L. Gray. A modern approach to probability theory. In A modern
approach to probability theory, 1996.

[18] Abbas El Gamal and Young-Han Kim. Network Information Theory. Cambridge Uni-
versity Press, USA, 2012. ISBN 1107008735.

[19] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction
with lstm. In 1999 Ninth International Conference on Artificial Neural Networks ICANN
99. (Conf. Publ. No. 470), volume 2, pages 850–855 vol.2, 1999.

[20] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge
University Press, 2014. ISBN 1107635195.

[21] G.J. Gibson, S. Siu, and C.F.N. Cowen. Multilayer perceptron structures applied to
adaptive equalisers for data communications. In International Conference on Acoustics,
Speech, and Signal Processing,, pages 1183–1186 vol.2, 1989.

[22] Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error train-
ing: a theoretical and experimental comparison. In Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH, pages 1756–
1760, 08 2013.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016. ISBN 0262035618.

[24] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014. URL

77

https://doi.org/10.1007/s11831-019-09344-w

http://arxiv.org/abs/1410.5401. cite arxiv:1410.5401.

[25] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks
and Learning Systems, 28(10):2222–2232, 2017.

[26] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
2nd edition, 1998. ISBN 0132733501.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. In Proceed-
ings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV
’15, page 1026–1034, USA, 2015. IEEE Computer Society. ISBN 9781467383912. doi:
10.1109/ICCV.2015.123. URL https://doi.org/10.1109/ICCV.2015.123.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

[29] A. L. HODGKIN and A. F. HUXLEY. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of physiology, 117
(4):500–544, Aug 1952. ISSN 0022-3751. URL https://pubmed.ncbi.nlm.nih.gov/
12991237. 12991237[pmid].

[30] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with LIF neurons. CoRR,
abs/1510.08829, 2015. URL http://arxiv.org/abs/1510.08829.

[31] Sander M Bohte Hélene Paugam-Moisy. Computing with Spiking Neuron Networks, pages
335–376. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-540-92910-9.

[32] Melissa Johnson and Sylvain Chartier. Spike neural models part ii: Abstract neural
models. The Quantitative Methods for Psychology, 14, 02 2018. doi: 10.20982/tqmp.14.
1.p001.

[33] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[34] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. In
Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning
Representations, San Juan, Puerto Rico, 2016. ICLR.

[35] Q. Kang and W. Guo. 4 - biomimetic smart nanopores and nanochannels. In Mario
Tagliazucchi and Igal Szleifer, editors, Chemically Modified Nanopores and Nanochan-
nels, pages 85–102. William Andrew Publishing, Boston, 2017. ISBN 978-0-323-40182-
1. doi: https://doi.org/10.1016/B978-0-323-40182-1.00004-X. URL https://www.
sciencedirect.com/science/article/pii/B978032340182100004X.

[36] Artemy Kolchinsky and Brendan D. Tracey. Estimating mixture entropy with pairwise
distances. Entropy, 19(7), 2017. ISSN 1099-4300. doi: 10.3390/e19070361. URL https:

78

http://arxiv.org/abs/1410.5401
https://doi.org/10.1109/ICCV.2015.123
https://pubmed.ncbi.nlm.nih.gov/12991237
https://pubmed.ncbi.nlm.nih.gov/12991237
http://arxiv.org/abs/1510.08829
https://www.sciencedirect.com/science/article/pii/B978032340182100004X
https://www.sciencedirect.com/science/article/pii/B978032340182100004X
https://www.mdpi.com/1099-4300/19/7/361
https://www.mdpi.com/1099-4300/19/7/361

//www.mdpi.com/1099-4300/19/7/361.

[37] Artemy Kolchinsky, Brendan D. Tracey, and David H. Wolpert. Nonlinear information
bottleneck. Entropy, 21(12), 2019. ISSN 1099-4300. URL https://www.mdpi.com/
1099-4300/21/12/1181.

[38] Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-
sampled time series. In Conference on Neural Information Processing Systems. NeurIPS,
2020.

[39] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience, 10:508, 2016. ISSN 1662-
453X.

[40] Chunhung Li Li and Leem C. Minimum cross entropy thresholding. Pattern Re-
cognition, 26(4):617–625, 1993. ISSN 0031-3203. doi: https://doi.org/10.1016/
0031-3203(93)90115-D. URL https://www.sciencedirect.com/science/article/
pii/003132039390115D.

[41] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early
stopping is provably robust to label noise for overparameterized neural networks. In
Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and Statistics, volume 108 of Proceed-
ings of Machine Learning Research, pages 4313–4324. PMLR, 26–28 Aug 2020. URL
http://proceedings.mlr.press/v108/li20j.html.

[42] Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learn-
ing. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rJg8TeSFDH.

[43] Qiong Liu and Ying Wu. Supervised Learning, pages 3243–3245. Springer US,
Boston, MA, 2012. ISBN 978-1-4419-1428-6. URL https://doi.org/10.1007/
978-1-4419-1428-6_451.

[44] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

[45] Ying Ma and Jose C. Principe. A taxonomy for neural memory networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 31(6):1780–1793, 2020.

[46] Walter Marcotti and Sergio Masetto. Hair Cells, chapter 1. American Cancer Soci-
ety, 2010. ISBN 9780470015902. doi: https://doi.org/10.1002/9780470015902.a0000181.
pub2. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.
a0000181.pub2.

[47] Laura Martignon. Information theory. In Neil J. Smelser and Paul B. Baltes, ed-
itors, International Encyclopedia of the Social & Behavioral Sciences, pages 7476 –
7480. Pergamon, Oxford, 2001. ISBN 978-0-08-043076-8. doi: https://doi.org/10.1016/

79

https://www.mdpi.com/1099-4300/19/7/361
https://www.mdpi.com/1099-4300/19/7/361
https://www.mdpi.com/1099-4300/21/12/1181
https://www.mdpi.com/1099-4300/21/12/1181
https://www.sciencedirect.com/science/article/pii/003132039390115D
https://www.sciencedirect.com/science/article/pii/003132039390115D
http://proceedings.mlr.press/v108/li20j.html
https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH
https://doi.org/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1007/978-1-4419-1428-6_451
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000181.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000181.pub2

B0-08-043076-7/00608-2. URL http://www.sciencedirect.com/science/article/
pii/B0080430767006082.

[48] Sambit Mohapatra, Heinrich Gotzig, Senthil Kumar Yogamani, Stefan Milz, and Raoul
Zöllner. Exploring deep spiking neural networks for automated driving applications.
In Alain Trémeau, Giovanni Maria Farinella, and José Braz, editors, Proceedings of
the 14th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, VISIGRAPP 2019, Volume 5: VISAPP, Prague,
Czech Republic, February 25-27, 2019, pages 548–555. SciTePress, 2019. doi: 10.5220/
0007469405480555.

[49] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[50] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor. Converting
static image datasets to spiking neuromorphic datasets using saccades. Frontiers in
Neuroscience, 9:437, 2015. ISSN 1662-453X. URL https://www.frontiersin.org/
article/10.3389/fnins.2015.00437.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning lib-
rary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[52] Jose C. Principe. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspect-
ives. Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 1441915699,
9781441915696.

[53] Ignacio Reyes. Monitoreo y aprendizaje de redes neuronales utilizando medidas de
información y su aplicación en detección de eventos astronómicos transitorios. Uchile,
2019. URL http://repositorio.uchile.cl/handle/2250/170542.

[54] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal
Bogacz, Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya
Ganguli, Colleen J Gillon, Danijar Hafner, Adam Kepecs, Nikolaus Kriegeskorte, Peter
Latham, Grace W Lindsay, Kenneth D Miller, Richard Naud, Christopher C Pack,
Panayiota Poirazi, Pieter Roelfsema, João Sacramento, Andrew Saxe, Benjamin Scel-
lier, Anna C Schapiro, Walter Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke,
Joel Zylberberg, Denis Therien, and Konrad P Kording. A deep learning framework for
neuroscience. Nature Neuroscience, 22(11):1761–1770, October 2019. ISSN 1097-6256.
doi: 10.1038/s41593-019-0520-2.

80

http://www.sciencedirect.com/science/article/pii/B0080430767006082
http://www.sciencedirect.com/science/article/pii/B0080430767006082
https://www.frontiersin.org/article/10.3389/fnins.2015.00437
https://www.frontiersin.org/article/10.3389/fnins.2015.00437
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://repositorio.uchile.cl/handle/2250/170542

[55] Gonzalo Sanchez, Murali Rao, and Jose Principe. Measures of entropy from data using
infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535–548,
Jan 2015.

[56] Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27
(3):379–423, 1948.

[57] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020. doi:
https://doi.org/10.1016/j.physd.2019.132306.

[58] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment
in time. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
82f2b308c3b01637c607ce05f52a2fed-Paper.pdf.

[59] Hava T. Siegelmann. Computation Beyond the Turing Limit, pages 153–164. Birkhäuser
Boston, Boston, MA, 1999. ISBN 978-1-4612-0707-8. URL https://doi.org/10.1007/
978-1-4612-0707-8_12.

[60] Amirhossein Tavanaei and Anthony Maida. Bp-stdp: Approximating backpropaga-
tion using spike timing dependent plasticity. Neurocomputing, 330:39 – 47, 2019.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2018.11.014. URL http:
//www.sciencedirect.com/science/article/pii/S0925231218313420.

[61] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masque-
lier, and Anthony Maida. Deep learning in spiking neural networks. Neural Networks,
111:47 – 63, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2018.12.002.

[62] LibreTexts Team. Introduction to random variables, Jan 2020. URL https://stats.
libretexts.org/@go/page/3258.

[63] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck prin-
ciple. In 2015 IEEE Information Theory Workshop (ITW), pages 1–5, 2015.

[64] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck
method. In Unkown, pages 368–377, 1999.

[65] Jos Unpingco. Python for Probability, Statistics, and Machine Learning. Springer Pub-
lishing Company, Incorporated, 1st edition, 2016. ISBN 3319307150.

[66] Madhavun Vasu and Eduardo Izquierdo. Information bottleneck in control tasks with
recurrent spiking neural networks. CoRR, abs/1706.01831, 2017. URL http://arxiv.
org/abs/1706.01831.

[67] David Watson. Central limit theorem for the continuous uni-
form distribution, 2010. URL http://demonstrations.wolfram.com/
CentralLimitTheoremForTheContinuousUniformDistribution. Last visited on
25/7/2021.

81

https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://doi.org/10.1007/978-1-4612-0707-8_12
https://doi.org/10.1007/978-1-4612-0707-8_12
http://www.sciencedirect.com/science/article/pii/S0925231218313420
http://www.sciencedirect.com/science/article/pii/S0925231218313420
https://stats.libretexts.org/@go/page/3258
https://stats.libretexts.org/@go/page/3258
http://arxiv.org/abs/1706.01831
http://arxiv.org/abs/1706.01831
http://demonstrations.wolfram.com/CentralLimitTheoremForTheContinuousUniformDistribution
http://demonstrations.wolfram.com/CentralLimitTheoremForTheContinuousUniformDistribution

[68] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

[69] Kristoffer Wickstrøm, Sigurd Løkse, Michael Kampffmeyer, Shujian Yu, Jose Principe,
and Robert Jenssen. Information Plane Analysis of Deep Neural Networks via Matrix-
Based Renyi’s Entropy and Tensor Kernels, 2019.

[70] Bojian Yin, Federico Corradi, and Sander M. Bohté. Effective and efficient computation
with multiple-timescale spiking recurrent neural networks. In International Conference
on Neuromorphic Systems 2020, ICONS 2020, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450388511. doi: 10.1145/3407197.3407225. URL
https://doi.org/10.1145/3407197.3407225.

[71] Shujian Yu, Luis Gonzalo Sánchez Giraldo, Robert Jenssen, and José Príncipe. Mul-
tivariate extension of matrix-based rényiś α-order entropy functional. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(11):2960–2966, 2020.

[72] Xi Yu, Shujian Yu, and Jose C. Principe. Deep deterministic information bottleneck
with matrix-based entropy functional, 2021.

[73] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep
Learning. CENGAGE, 2020. https://d2l.ai.

[74] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping
accelerates training: A theoretical justification for adaptivity. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJgnXpVYwS.

[75] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping
accelerates training: A theoretical justification for adaptivity. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJgnXpVYwS.

[76] R.E. Ziemer and W.H. Tranter. Principles of Communications: Systems, Modulation,
and Noise. Wiley, 2002. ISBN 9780471392538. URL https://books.google.cl/books?
id=6R0fAQAAIAAJ.

82

https://doi.org/10.1145/3407197.3407225
https://d2l.ai
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS
https://books.google.cl/books?id=6R0fAQAAIAAJ
https://books.google.cl/books?id=6R0fAQAAIAAJ

Appendices

83

Appendix A

Linear Transformation Approximates a
Normal Distribution

Figure A.1: Kernel density estimation of a linear transformation between a random binary
vector and a uniform distributed matrix, where nx is the number of samples taken from the
uniform distributed matrix.

84

Appendix B

Input Current PDF Approximation

a) Approximation when nx = 24, nh = 9
in the first layer (color light blue)

b) Approximation when nx = 41, nh = 23
in the first layer (color light blue)

c) Approximation when nx = 180, nh = 117
in the first layer (color light blue)

d) Approximation when nx = 347, nh = 250
in the first layer (color light blue)

Figure B.1: Probability density approximation of the input current (Eq. 2.14) using CLT,
when the ratio of sample and layer dimensions is tested with different values.

85

Appendix C

Maximum Scores of Baselines

Figure C.1: Maximum accuracy of traditional RNNs and SRNNs for the SHD dataset.

86

	Introduction
	Related Work
	Spiking Neural Network Application and Formulation
	Optimisation Criteria Based on Information Theory

	Research Problem
	Hypothesis
	Parameter Model Definition on Spiking Models
	Fair Comparison

	Research Questions
	Objectives
	General Objective
	Specific Objectives

	Methodology
	Contributions
	Thesis Outline

	Theoretical Framework
	Recurrent Neural Networks (RNNs)
	Vanilla RNN (V-RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	RNN Architectures

	Spiking Recurrent Neural Networks (SRNNs)
	Vanilla SRNN (V-SRNN)
	Cramer SRNN (C-SRNN)
	Adaptive SRNN (A-SRNN)

	Supervised Learning
	Cross-Entropy Optimisation Criterion
	Evaluation Metric: Accuracy

	Training RNNs
	Vanishing and Exploding Gradient Problem
	Gradient Clipping
	Reducing the Learning Rate at the Plateau

	Information Theory
	Random Variables
	Entropy
	Mutual Information
	Information Bottleneck Principle

	Methodology
	Experimental Data
	Parity Bit Problem or Sequential XOR
	Spiking Heidelberg Digits (SHD)

	Experimental Framework
	Recurrent Neural Networks Graph Representation
	Supervised Learning setup for Multilayer SRNNs and traditional RNNs
	Backpropagation in SRNNs
	Training Setup
	Evaluation Procedure
	Final experimental flow

	SRNN Model Parameters
	Analysis of Parameters
	Analysis of Surrogate Gradient
	Initialisation of Learnable Parameters (Weights)
	Proposed method to set SRNNs hyperparameters

	Memory in SRNNs
	Categorisation of SRNNs based on their type of memory
	Adaptation of Two-Level External Memory in SRNNs

	Information Bottleneck in SRNNs
	Proposed Mutual Information Estimator Based on the Central Limit Theorem

	Baseline Results
	Parity Bit Problem
	Discussion

	SHD Problem Baselines
	Discussion

	SRNN Model Hyperparameters
	Heuristic Method Exploration
	Discussion

	SRNNs vs Traditional RNNs
	Discussion

	Literature fixed Parameters vs Heuristic Method
	Discussion

	Memory and Optimisation Criterion
	Two-Level External Memory
	Discussion

	Space Information Bottleneck on V-SRNN
	Discussion

	Conclusions
	Final Comments and Future Work

	Bibliography
	Appendices
	Linear Transformation Approximates a Normal Distribution
	Input Current PDF Approximation
	Maximum Scores of Baselines

