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A B S T R A C T   

Characterizing the spatial variability of the severity of wildfires is important to assess ecological and economic 
consequences and to coordinate mitigation strategies. Vegetation indices such as the differenced Normalized 
Burn Ratio (dNBR) have become a standard tool to assess burn or fire severity across larger areas and are being 
used operationally. Despite the frequent application of dNBR-like vegetation indices, it is not yet fully understood 
which variables exactly drive the variability in dNBR observed by multispectral satellites. One reason for this is 
the lack of high quality prefire information about vegetation structure and composition. Consequently, the in
fluence of prefire vegetation composition and other potentially influential variables such as cast shadows has 
hardly been examined. Here, we use very high resolution Unmanned Aerial System (UAS) orthoimages collected 
briefly before and after the large wildfires in Central Chile in the fire season 2016/2017 to derive variables 
related to the pre- and postfire landscape composition and structure. The variables are used as predictors in 
Generalized Additive Models (GAM) to explain the spatial variability in dNBR and RdNBR pixel values as 
observed by Sentinel-2. Our models explain more than 80% and 75% of the variability in dNBR and RdNBR 
values, respectively, using a sparse set of five predictors. The results suggest that in our study area the largest 
fraction of variability in Sentinel-2 based dNBR and RdNBR values can be explained by variables related to the 
fraction of consumed canopy cover while the vegetation composition before the fire does not have a large in
fluence on dNBR and RdNBR. 

Our results further suggest that cast-shadows of snags and standing dead trees with remaining crown structure 
have a notable influence on the dNBR signal which may have been underestimated so far. We conclude that 
spatially continuous, very high spatial resolution data from UAS can be a valuable data source for an improved 
understanding of the exact meaning of common vegetation index products, operationally used for monitoring the 
environment.   

1. Introduction 

Wildfires are an integral part of many ecosystems, shaping their 
structure and functions (Attiwill, 1994) and having significant global 
impacts on terrestrial, aquatic and atmospheric systems (Lentile et al., 
2006). Wildfire occurrences and intensity are increasing in many parts 
of the world due to human activities (e.g., Balch et al., 2017) and climate 
warming (Harvey et al., 2019; Westerling, 2016). Understanding wild
fires is of high scientific interest because wildfires are a hazard to human 
properties and life (Cohen, 2000) and because of the manifold ways 
wildfires affect ecosystems and ecosystem services. This includes effects 

on water provision (e.g., Hallema et al., 2017; Spencer et al., 2003) 
erosion protection (e.g., Ice et al., 2004; Robichaud et al., 2020) and 
carbon storage (e.g., Liu et al., 2014; North & Hurteau, 2011). 

Wildfires often affect large and remote areas with at least partly 
limited accessibility. Hence, remote sensing approaches have been an 
effective tool for mapping and characterizing wildfires and their effects 
for many years. Studies suggested methods to map fire scars at local (e. 
g., Kasischke et al., 1992; Nioti et al., 2011) to regional (e.g.,Bourgeau- 
Chavez et al., 1997; Pu et al., 2004) and even global scales (e.g., Alonso- 
Canas & Chuvieco, 2015; Giglio et al., 2006) using mostly airborne and 
spaceborne multispectral and Radar data in combination with simple 
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thresholding procedures or more complex classification approaches. 
Such approaches often achieve very high accuracies when compared to 
visually delineated fire scars and field-reference data and are nowadays 
used operationally (Hua & Shao, 2017). Remote sensing has also been 
used to characterize the fire or burn severity patterns in fire affected 
areas. This is relevant as fires often burn heterogeneously in a landscape 
due to variable availability of fuel material as well as topographic and 
weather differences (Cocke et al., 2005 and references therein, Viedma 
et al., 2020, Whitman et al., 2018). To assess and understand the 
ecological and economic consequences and risks of a given wildfire and 
coordinate corresponding management activities, accurately mapping 
the variability in fire or burn severity is desirable (Whitman et al., 2018). 
However, relating the remotely sensed information about fire or burn 
severity to the actual processes and changes that occurred on the ground 
remains challenging (Lentile et al., 2009). In this context, the terms fire 
severity and burn severity have been subject to wide discussions as their 
definition is sometimes fuzzy and both terms are used in many different 
contexts in the remote sensing literature (Lentile et al., 2006). Lentile 
et al. (2006) defines “fire severity” as a measure that describes short- 
term impacts of fire on an environment (e.g., consumption of organic 
material and tree mortality, charcoal decomposition, etc.) while “burn 
severity” describes long-term ecological changes introduced to a land
scape through a fire and the corresponding ecosystem responses (e.g., 
delayed tree mortality, vegetation resprouting, re-colonization with 
vegetation) (Cansler & McKenzie, 2012). Hence, remote sensing data 
depicting situations after a wildfire may contain information on both 
“burn severity” and “fire severity” depending also on how long after the 
fire the data are acquired. It is further important that the meaning of 
both terms may vary drastically depending on the examined ecosystem 
and neither of them is generally (per definition) connected to defined 
measurable ecological variables, even though this may be the case in 
individual studies. 

In the remote sensing literature, the most common approaches to 
characterize fire and burn severity base on spectral indices (e.g., Key & 
Benson, 2006), spectral unmixing (Lentile et al., 2009; Veraverbeke & 
Hook, 2013) and radiative transfer models (Chuvieco et al., 2007; García 
et al., 2020) applied to multispectral or hyperspectral data. All these 
approaches make use of the fact that wildfires alter the optical properties 
of most elements of natural landscapes and particularly vegetation and 
soil. In summary, wildfires typically cause a general drop in reflectance 
in the visual (VIS)-near infrared (NIR) region due to vegetation removal 
and transformation of vegetation material to charcoal. However, the 
magnitude of the drop may vary notably depending on the prefire 
vegetation status with moist vegetation typically showing smaller drops 
in reflectance than dry vegetation which typically has higher prefire 
reflectance. The drops in reflectance are normally consistent in the NIR 
while the VIS region shows more variable changes depending on the 
prefire land-cover (Maier, 2010). Only subtle drops or even reflectance 
increases have been observed for the shortwave infrared (SWIR) region 
(Key & Benson, 2006; White et al., 1996). This is most likely connected 
to reduced foliage and hence leaf water absorption in the SWIR. 
Furthermore, white ash depositions may lead to short-term increases in 
reflectance throughout the VIS-SWIR range (Roy & Landmann, 2005) 
but these depositions typically disappear within a short time-window 
after the fire. 

The fact that NIR and SWIR reflectance are oppositely affected by 
fires is exploited by several spectral indices. These are at the same time 
the most widely studied approach to map fire and burn severity-related 
spectral variability. Among these indices, the differenced Normalized 
Burn Ratio (dNBR) and some derivations of it have become a standard 
procedure for rapidly assessing spectral fire effects. The NBR is calcu
lated as the normalized difference of a band covering the NIR 
(0.76–0.90 μm) and a band covering the SWIR (2.08–2.35 μm). dNBR is 

then derived by substracting a postfire NBR image from the prefire NBR 
image. Numerous studies have examined in which way the dNBR rep
resents field-measured burn severity metrics (e.g., Cansler & McKenzie, 
2012; Cocke et al., 2005; Harvey et al., 2019). The latter were often 
acquired using the Composite Burn Index (CBI) or the GeoCBI protocol 
suggested by Key & Benson (2006) and De Santis & Chuvieco, (2009), 
respectively. The CBI is a rapid and standardized semi-quantitative vi
sual interpretation-based field approach to summarize ecological rele
vant effects of wildfires on vegetation and soil observed in five (height- 
related) strata into a single site index (Cansler & McKenzie, 2012; 
French et al., 2008). The GeoCBI builds on the concept of the CBI but 
additionally integrates the fractional cover of each considered strata to 
improve the relation on the index with the remote sensing signal 
(Cansler & McKenzie, 2012). While CBI data was found to show good 
correlations with dNBR at the sites for which it was developed (Key & 
Benson, 2006), other studies showed that the strength of the relationship 
between dNBR and CBI and GeoCBI depends on the studied ecosystem 
and may be weak in some ecosystems or sites (French et al., 2008). 

One of the advantages of the CBI concept - its relative simplicity 
which allows a rapid data collection in the field - is also a major 
weakness for at least two reasons: 1. The CBI assessments have been 
criticized to be partly subjective and 2. by integrating all ecological 
relevant fire effects into a single index number, it is hard to understand 
which changes on the surface induced by the wildfire are actually 
driving the observed spectral changes (Harvey et al., 2019; Morgan 
et al., 2014). The fact that CBI measurements are collected in plots on 
the ground (and hence do not share the bird-eye perspective of the 
remote sensing data) and are not spatially continuous further compli
cates their linkage to remotely sensed indices such as the dNBR. Un
derstanding the fire-induced changes on the environment, which led to 
the observed remote sensing signal, in ideal case, requires spatially 
continuous information about the vegetation composition and structure 
as well as the spatial landscape patterns before and after the fire. Some 
studies reconstructed such information from postfire field surveys in 
larger plots. For example, Harvey et al. (2019) related dNBR measure
ments from a large geographical gradient to reconstructed prefire stand 
structure variables, topography and prefire bark beetle activity. They 
found a notable influence of these variables on the observed dNBR 
values and suggested that particularly in the presence of a large vari
ability of forest structures, differences in dNBR values may not only 
represent differences in fire or burn severity. In a comparable study, 
Miller et al. (2009) related percentage canopy cover change and per
centage basal area change with RdNBR values and found good correla
tions. McCarley et al. (2017) had prefire and postfire LiDAR data 
available and examined how changes in forest structure relate to spec
tral fire effects observed by Landsat. They found a high correlation be
tween LiDAR-derived canopy cover change and the ratio of Landsat 
band 7 and 4 – the same bands used to calculate dNBR. They found a 
general trend that structural metrics calculated for the upper part of the 
canopy related better to the Landsat-observed spectral changes. A 
stronger relation of dNBR with canopy changes than with surface fuel 
reduction has also been reported in other studies (e.g., Harvey et al., 
2019; Hoy et al., 2008). Wulder et al. (2009) also examined pre- and 
postfire LiDAR data and observed that vegetation fill (a LiDAR-based 
representation of the height and density of vegetation), postfire and 
absolute change in crown closure as well as relative change in average 
canopy height are useful for characterizing postfire spectral changes as 
observed by dNBR and related spectral indices. 

Similar to canopy cover and other measures of vegetation density, 
the vegetation type or species as well as the fraction of shadows may also 
influence postfire spectral changes. Vegetation types and species vary 
notably in terms of their greenness (pigments) as well as their reflec
tance amplitude in the NIR and SWIR region (differing canopy and leaf 
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structures and water contents) (Kattenborn et al., 2019a; Kattenborn 
and Schmidtlein, 2019). The latter should hence also have an influence 
on the dNBR. To address this issue, Miller & Thode (2007) suggested a 
modification to the dNBR, the so called relative dNBR (RdNBR). The 
RdNBR normalizes the dNBR with the square root of the prefire NBR to 
account for prefire variability in vegetation composition. 

Further, shadows within and between tree crowns and vegetation 
canopies can largely influence the spectral signal. In a postfire forest 
landscape, standing snags may lead to a notable fraction of shaded 
ground that influence the passive optical satellite signals and may affect 
the dNBR signal. The potential influence of shadow casts by trees has 
been discussed with respect to differing solar elevation angles for sat
ellite data acquisitions (Hoy et al., 2008) but may also be a more general 
problem related to, for example, the density of snags after the fire. It is 
unlikely that the normalization procedure of the RdNBR will mitigate 
the influence of shadows of snags as they did not exist in this way in the 
prefire signal. 

The role of vegetation shadows as well as the influence of prefire 
vegetation composition on the observed dNBR variability has not been 
widely examined, yet. The few studies that addressed these issues 
typically based on re-constructed information from postfire plot-based 
field work and had no spatially continuous and highly resolved infor
mation about the vegetation composition available (e.g., Miller et al., 
2009; Whitman et al., 2018). Such information may now increasingly 
become available through unmanned aerial systems (UAS) data, 
collected before wildfire incidents. 

Here, we examine how dNBR and RdNBR signals retrieved from 
Sentinel-2 data relate to pre- and postfire vegetation structure and 
composition as well as shadows in a diverse Mediterranean landscape in 
South-Central Chile. We extract information about the pre- and postfire 
vegetation situation from two UAS surveys conducted briefly before and 
after the wildfires occurring during the Southern summer of 2016/2017. 
The UAS surveys allow us to work with a comparably high number of 

samples, also from areas which are hardly accessible in the field. With 
this approach we aim on creating an improved understanding of the 
main drivers of the dNBR variability in Mediterranean landscapes. 

2. Methods 

2.1. Study sites 

The study region is located in Central Chile in the southeast of the 
city Constitución, province of Maule. The climate in the Maule region is 
Mediterranean with warm-dry summers and cold-wet winters. It is 
classified as “Csb” in the Koeppen classification scheme (Kottek et al., 
2006). Fire occurrence during summer is common (CONAF, 2017) but 
the number of ignitions and total area burnt depends strongly on inter- 
annual climate variability (González et al., 2005; Urrutia-Jalabert et al., 
2018). Wildfires are intensified by high precipitation in fall and winter, 
inducing biomass accumulation. Even more influential is the degree of 
summer drought (Urrutia-Jalabert et al., 2018). 

In the time period between December 2016 and February 2017 vast 
wildfires occurred in Central Chile and destroyed over 5,000 km2 of 
forested areas. 93% of the fires occurred between 1st of January and 
10th of February. In the Maule region, about 54% of the total area was 
burnt (CONAF, 2017). Prolonged drought and unusual high tempera
tures have led to this devastating wildfire season. Most fires started on 
18th of January. Some fires merged and grew critically on the 25th of 
January and lasted in high intensities until the 5th of February 2017. A 
detailed summary of the wildfires of this season is provided by de la 
Barrera et al. (2018). 

Our local sites covered with UAS data (Fig. 1) were distributed in the 
surroundings of the city Constitución. The study sites are dominated by 
dense forests (coverage > 80%) with a low proportion of shrubland 
(Matorral). The investigated forest areas consisted mainly of native 
vegetation or native forests mixed with Pinus radiata individuals while 

Fig. 1. Our analysis includes six subsites inside the satellite footprint (b). The study sites cover mixed and natural forests as well as tree plantations (c).  
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the perimeter of the local sites were often covered by tree plantations 
which cover a large proportion of the total area of the Maule region. 
Within our six sites the forests consisted mainly of Nothofagus glauca a 
vulnerable endemic species (IUCN, 2017), some sclerophyll species 
(Quillaja saponaria, Maytenus boaria, Cryptocarya alba) and Pinus radiata, 
the non-native though most common plantation tree in Chile (GER
ENCIA FORESTAL, 2011). At sites 1 to 4 the fire was intense and no or 
hardly any vegetation survived, whereas on sites 5 and 6 notable pro
portions of green vegetation remained after the fire. 

2.2. Data acquisition and pre-processing 

2.2.1. Satellite data 
We used Sentinel–2 data to calculate dNBR and RdNBR with a res

olution of 20 m. We focused on dNBR and RdNBR as these are amongst 
the most frequently applied indices to assess burned areas in satellite 
images. We did not consider additional related indices such as the 
Relativized Burn Ratio (RBR) as we found it to be highly correlated (0.95 
and 0.99, respectively) to dNBR and RdNBR and hence did not expect 
any additional insights from repeating the analyses for these indices. We 
acquired L1C–tiles of Sentinel–2 data via the EarthExplorer (earth
explorer.usgs.gov) website. We used satellite images with acquisition 
dates as close as possible to the corresponding UAS acquisition dates to 
avoid potential effects of changes occurring after the UAS acquisitions 
(Table 1). On the selected images our study sites were cloudless. An 
atmospheric correction was performed using the standalone version of 
the Sen2Cor-Processor (ESA) (Mousivand et al., 2015). Using Sentinel’s 
Application Platform (SNAP), we resampled all bands to 20 m pixel size 
using bilinear resampling. We used band 8a (NIR with band center at 
865 nm) and band 12 (SWIR with band center at 2190 nm) to calculate 
the dNBR and the RdNBR according to Eqs. (1)–(3): 

NBR = (NIR − SWIR)/(NIR + SWIR) (1)  

dNBR = NBR prefire − NBR postfire (2)  

RdNBR = dNBR
/

abs(NBR prefire)
0.5 (3) 

No expansive land-cover changes occurred in the areas covered by 
the UAS images during the time period between the pre-fire image 
acquisition (5th March 2016) and the start of the wildfires (December 
2016). 

2.2.2. Unmanned aerial systems (UAS) surveys 
We used UAS imagery to obtain information about pre- and postfire 

vegetation composition, structure and shadows. The prefire and postfire 
UAS surveys were conducted in March 2016 and April 2017, respec
tively (Table 1). We used an octocopter carrying a Canon EOS 100D 
camera to take between 200 and 400 pictures at each site at an altitude 
of about 200 m. From the Red Green Blue (RGB) imagery, we derived 
orthoimagery and obtained height information from photogrammetric 
point clouds. We applied the standard processing chain implemented in 
Agisoft Photoscan (version 1.4.0.5650) as described in full detail in 
Supplementary Material 1. The images were automatically georefer
enced using the GPS trajectories of the drone. For each subarea, we 
additionally co-registered the pre- to the postfire image to improve the 
precision of the spatial overlay. For this we selected between 12 and 20 
control points on each study site. We cut off a margin of about 100 m 

from the borders of each orthomosaic to exclude blurry parts of the 
mosaics. This processing resulted in an aggregated study area of about 
113 ha equivalent to 2.828 Sentinel-2 pixels (20 × 20 m pixel size). The 
final ortho-images had a pixel size of 3 cm. 

2.2.3. Deriving vegetation structure information from the UAS data 
From the photogrammetric point cloud derived with the Agisoft 

processing chain, we calculated a Digital Surface Model (DSM) and a 
Digital Terrain Model (DTM). We used the prefire point cloud to derive a 
DSM with 0.5 m pixel size using the DSM algorithm in the TreesVis 
software (Weinacker et al., 2004). Contrarily, we used the postfire point 
cloud data to calculate a DTM with 2 m pixel size using the DTM algo
rithm in TreesVis. We applied the postfire point cloud to derive the DTM 
as a notably larger proportion of the ground was visible after most of the 
vegetation canopies had been burned. After downsampling the DTM to 
the pixel size of the DSM we calculated a canopy height model repre
senting the situation before the fire by subtracting the DTM from the 
DSM. 

2.2.4. Pre- and postfire vegetation composition and landscape structure 
Information on pre- and postfire vegetation composition and land

scape structure was derived by classifying the UAS ortho-images into 
major vegetation types as well as shadow and non-vegetated areas using 
a supervised classification. In the prefire image we defined three vege
tation types including “Pinus radiata”, “Nothofagus” and “Sclerophyll”. 
The “Nothofagus” class mostly consisted of Nothofagus glauca (hualo), 
and Nothofagus caducifolia while the “Sclerophyll” class summarized a 
range of sclerophyll species including for example Quillaja saponaria, 
Maytenus boaria and Cryptocarya alba. These three vegetation types 
clearly differed in their optical traits showing distinct shades of green in 
the ortho-images (Fig. 2). Besides the three vegetation types we 
considered the classes “non vegetation”, “shadow” and “dry vegetation”. 
For the postfire image we differentiated the classes “non vegetation”, 
“shadow”, “singed vegetation” and “green vegetation”. The postfire 
class “green vegetation” summarizes all vegetation types as the overall 
fraction of living vegetation was small after the fire and it would have 
been impossible to reach a meaningful sample size for the three vege
tation types. The postfire class “singed vegetation” includes all non- 
green postfire vegetation with leaves present. The class “non vegeta
tion” includes bare soil, roads, woody residues, and rocks (see also 
Figs. 10-12). For each site we collected a total of 272 to 1721 training 
samples using visual interpretation (Table 2). We tried to collect at least 
50 samples for each considered class and UAS dataset. In some cases this 
was not possible because some classes only occurred marginally in some 
of the UAS datasets. However, the applied Support Vector machines 
(SVM) classifier (see below) is known to perform will with sparse 
training samples (Mountrakis et al., 2011). 

We augmented the feature space derived from the UAS imagery by 
adding four grey level co-occurrence (GLCM) texture parameters (ho
mogeneity, variance, entropy and correlation) in two resolutions (1 m 
and 2 m). This resulted in 11 features as input to the supervised classi
fication (RGB + 2 × 4 texture parameters). We applied a Support Vector 
Machines (SVM) classifier using a Radial Basis Function (RBF) as kernel 
function (Hsu et al. 2003). For the RBF parameters sigma and cost we 
determined optimal values using a grid-search (Hsu et al., 2003; Kuhn, 
2013). Further details can be found in the R-Documentation for the 
e1071–package (Meyer et al., 2017). We evaluated the resulting SVM 
models using a 5–fold cross–validation (Hsu et al., 2003; Kuhn, 2013). 
We selected SVM as classifier based on the good performances we ob
tained with it in earlier studies using UAS-like data (Lopatin et al., 2017) 
and based on its superiority in method comparison studies focusing on 
the classification of vegetation (e.g., Fassnacht et al., 2014). 

First results showed that the classes “dry vegetation” and “singed 
vegetation” interfered notably with the “non vegetation” class in some 
areas. Hence, we decided to re-classify “dry vegetation’ below 2 m to 
“non vegetation” using the height information of the nDSM. This step 

Table 1 
Acquisition dates of UAS and Sentinel-2 data.  

Dataset Acquisition date 

Prefire UAS survey 11th-21st of March 2016 
Prefire Sentinel-2 image 5th of March 2016 
Postfire UAS survey 10th and 13th of April 2017 
Postfire Sentinel-2 image 29th of April 2017  
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caused some new errors – for instance dry shrubs below 2 m were 
classified as “non vegetation”. However, as dry shrubs were rare – this 
step still improved the overall classification accuracy. The classification 
accuracies were generally high and the derived classification maps 
represented the landscape structure and vegetation composition well 
(see results section). 

2.3. Model building 

2.3.1. Feature preparation 
We related the spectral indices derived from the Sentinel-2 satellite 

data to the very high resolution data from the UAS imagery. For this, we 
extracted the fractional cover of each of the pre- and postfire classes 
obtained during the supervised classification of the UAS images for each 
20 × 20 m Sentinel-2 pixel overlapping with the UAS images. Further, 

we extracted the mean and standard deviation of the height within each 
Sentinel-2 pixel using the canopy height model. We further calculated 
the fractional vegetation cover by first converting the canopy height 
model into a binary map of areas higher and lower than 1.5 m and then 
calculating the fractional cover of areas with a canopy height higher 
than 1.5 m within each Sentinel-2 pixel. The threshold of 1.5 m was 
selected visually and was found to adequately differentiate between 
open and vegetated areas while accounting for smaller inconsistencies in 
the canopy height model which are expected when using only UAS data 
for calculating canopy height. This resulted in a total of 13 features or 
predictor variables summarized in Table 3. After some first trial and 
error runs, we dropped 2 of the 13 variables due to high correlations 
with other variables and for other reasons specified in Table 2. 

The remaining predictor variables generally showed low to moderate 
inter-correlations (Fig. 3). 

As dependent variable, we extracted the corresponding dNBR and 
RdNBR values of the Sentinel-2 pixels which showed a quite high vari
ability (Table 4). We finally filtered our feature space so that remaining 
S2-pixels all had a dNBR value >= 0.1 as we were mostly interested in 
the capabilities of dNBR to describe fire-induced changes. Values below 
0.1 were assigned to unburned areas in the original categories suggested 
by Key & Benson (2006) as shown in Table 5. This resulted in a total of 
2598 samples. 

2.3.2. Generalized Additive Models (GAM) 
To examine the relationship between the variability of the dNBR and 

RdNBR indices over the study areas and the vegetation and landscape 
structure and composition before and after the fire, we calculated 
Generalized Additive Models (GAMs). 

We calculated one model using all predictor variables, one model 

Fig. 2. Examples of the six land-cover classes considered in the prefire data.  

Table 2 
Number of sample plots per class and flight. Prefire and Postfire classifications 
were conducted separately.  

Class Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Prefire non vegetation 382 153 200 33 361 120 
Prefire Sclerophyll 128 57 116 193 100 16 
Prefire Pinus radiata 310 164 325 190 193 176 
Prefire Nothofagus 406 134 426 696 306 172 
Prefire dry vegetation 130 58 22 98 17 21 
Prefire shadow 76 114 85 73 53 50 
Postfire non vegetation 170 729 359 209 1058 145 
Postfire green vegetation 26 134 100 20 233 92 
Postfire singed vegetation 46 201 207 79 252 54 
Postfire shadow 30 268 37 126 178 27  
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using only prefire variables, and one model using only postfire variables. 
We calculated separate models using dNBR and RdNBR as response. We 
additionally conducted a best-subset regression where we examined all 
possible combinations of predictors for models with 2–10 predictor 
variables and identified the best models using lowest Akaike Informa
tion Criterion (AIC) as indicator. 

We applied the GAM algorithm implemented in the R-package 
“mgcv” (Wood, 2011) using the “REML” (restricted maximum likeli
hood)” automatic smoothing parameter option. We also activated the 
internal variable selection to identify unnecessary predictor variables. 

Table 3 
Statistical summary of the 13 features/predictor variables extracted from the UAS imagery after applying the dNBR threshold of greater than 0.1. Features not used 
during the modeling work-flow are in grey.  

Feature Pre- or 
postfire 

Min Median Mean Max Rationale 

%cov Pinus radiata pre 0.0 0.40 0.41 0.91 Differences in prefire vegetation composition may have an effect on dNBR 
%cov Nothofagus pre 0.0 0.27 0.32 0.93 See %cov Pinus radiata 
%cov Sclerophyll pre 0.0 0.05 0.07 0.67 See %cov Pinus radiata 
%cov dry vegetation pre 0.0 0.0 0.01 0.50 Differences in prefire vegetation status may have an effect on dNBR 
%cov non vegetation pre 0.0 0.03 0.08 0.99 Areas not vegetated before the fire are unlikely to change 
%cov shadow pre 0.0 0.08 0.10 0.47 Correlated with Variance height and is unlikely to be a good predictor as prefire shadows also 

depend on view angle which is likely to differ between S2 and UAS data 
%cov green vegetation post 0.0 0.01 0.05 0.81 Green vegetation remaining after the fire should affect the dNBR due to high NIR reflection 
%cov singed vegetation post 0.0 0.03 0.11 0.77 Singed vegetation remaining after the fire should affect the dNBR due to its higher reflectance 

compared to charcoal 
% cov non vegetation post 0.02 0.72 0.67 1 The postfire non vegetation class represents mostly burned areas 
% cov shadow post 0.0 0.11 0.17 0.89 Shadows of standing tree trunks may influence NIR and SWIR reflectance and depend a lot on 

the prefire vegetation density and structure 
Mean height pre 0.0 11.60 11.58 34.52 Height metrics may serve as proxy for the amount of biomass that can be burned 
Variance height pre 0.02 13.59 18.93 149.65 See Mean height 
% vegetation cover 

(height-based) 
pre 0.0 99.64 90.57 100 Correlates with %cov non vegetation  

Fig. 3. Correlation plot for the two response variables (dNBR, RdNBR) and the 11 predictor variables.  

Table 4 
Statistical summary of dNBR and RdNBR values covered by the UAS flights 
after applying a dNBR threshold of 0.1.  

Index dNBR RdNBR 

Min 0.1 0.11 
Median 0.89 1.12 
Mean 0.85 1.05 
Max 1.60 2.39  
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As we were not interested in the predictive performance of the models, 
but rather in explaining the relation between the response and the 
predictor variables, we report detailed model results for models using all 
available samples during the model building. However, we provide 
additional model performances based on cross-validated models with 
repeated data splits where we always used 70% of the samples for 
training and 30% for validation. 

3. Results 

3.1. Supervised classification of UAS flights 

The overall accuracies for the supervised classifications of all six UAS 
datasets obtained from the five-fold cross-validation range between 
86.3% and 90.6% for the prefire classification and 90.1% and 95.1% for 
the postfire classifications (Table 6). 

3.2. Best subset selection GAM 

The best subset selection results indicate that best models with 5 to 
10 predictors show hardly any difference in model performances when 
compared to the model using all predictors (Fig. 4) (differences of 0.008 
and 0.013 in adjusted R2 for dNBR and RdNBR, respectively – see also 
Fig. 5). Models with 2–4 predictors show larger performance losses (up 
to 0.209 and 0.101 difference in adjusted R2 for dNBR and RdNBR, 
respectively). 

The variables selected in the two first ranked best subset models with 
2–10 predictor variables and for the response variables dNBR and 
RdNBR are summarized in Table 7 and 8, respectively. Postfire variables 
(grey rows in Table 7 and 8) were generally more represented in sparse 
models than prefire variables. Vegetation type specific predictor vari
ables were only selected in models with 5 and more predictors with 
“Cover of Sclerophyll forest” being the most frequently selected class. 
Most frequently selected prefire predictor is “prefire non vegetation”. 
Accuracies, similar to the reference model using all predictor variables 
were obtained when combining a set of 2–3 postfire variables with the 
“prefire non vegetation” and the “mean height” variables. These results 
are very similar for models using dNBR and RdNBR as response. In case 
of dNBR, most second ranked models show similar AIC values as the best 
subset model (Supplementary Material 2). In case of RdNBR, the per
formances of the second ranked models deviate more, particularly for 
models with 2–4 predictor variables (Supplementary Material 2). 

3.3. Detailed GAM results 

GAM models based on all predictor variables performed best, for 
both dNBR and RdNBR (approximately 82% and 75% explained vari
ability) (Fig. 5). Postfire predictors alone were able to explain about 
70% of the variability in dNBR and RdNBR. Using only prefire predictors 
led to notably reduced abilities of the models to explain the variability in 
dNBR and RdNBR values (explained variance of approximately 37% and 
29%, respectively). Overall, the median adjusted R2 values from models 
applying repeated data-splits resulted in lower accuracy than the models 
using all samples during model training. The drops in accuracy when 
applying repeated data-splits were higher for RdNBR than for dNBR. For 
the latter, in most cases, the accuracies reported for the models using all 
samples were within the range of values observed for the iterative 
validation. The two best subset selection models with 5 predictors 
showed similar performances as the models using all predictor variables. 
Best very sparse models based on only two predictor variables still 
explain about 60% of the variance in dNBR and RdNBR values. 

The corresponding scatterplots confirm the reported numerical cor
relation trends and show very high correlations between predicted and 
observed dNBR values for models using all predictor variables and the 5 
predictor model of the best subset regression (Fig. 6). The scatterplots 
for RdNBR are very similar to the results for dNBR and are only pre
sented in the Appendix (Supplementary material 3). 

In the following, we will have a closer look at the best subset model 
with 5 predictor variables (representing a parsimonious model which 
performs nearly equally well as the reference model with all predictors) 
and additionally at the two models with only 2 predictor variables, 
which still show a comparably high ability to explain the variance of 
dNBR values. We focus on these models as they are more suitable for 
interpretation than the models with more predictors. 

3.4. Response curves 

Response curves of GAM models indicate the relation between an 
individual predictor and the response variable, taking into account the 
influence of the other predictor variables in the GAM. In the best subset 
regression model with 5 predictors, the variables “prefire non vegeta
tion”, “postfire green vegetation” as well as “postfire singed vegetation” 
show a negative relation with dNBR values with increasing coverage 

Table 5 
Categorization of severity classes based on dNBR values as suggested by Key 
& Benson (2006).  

Severity level dNBR range 

Enhanced regrowth (high) − 0.5 to − 0.251 
Enhanced regrowth (low) − 0.25 to − 0.101 
Unburned − 0.1 to 0.099 
Low severity 0.1 to 0.269 
Moderate-low severity 0.27 to 0.439 
Moderate-high severity 0.44 to 0.659 
High severity 0.66 to 1.3  

Table 6 
Overall accuracies of the supervised SVM classifications of the UAS flights.  

Index Prefire Postfire 

Site 1 90.0 91.2 
Site 2 86.3 92.6 
Site 3 88.2 94.3 
Site 4 86.7 90.1 
Site 5 90.6 95.1 
Site 6 87.7 94.3  

Fig. 4. Best subset selection results. Adjusted R2-values of the best Generalized 
Additive Model models selected during the best subset selection are plotted 
over the number of predictors. Best model for each number of predictors was 
selected according to minimum Akaike Information Criterion (AIC). The models 
with 5 predictors are marked with the two vertical grey lines and will be dis
cussed with more details below. 
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(Fig. 7). The trends of the additional two variables “mean height” and 
“postfire non vegetation” are less clear and the curves fluctuate around 
dNBR values of 0 which suggests a smaller influence of these two pre
dictors. The “postfire non vegetation” variable shows overall a small 
negative trend, while the mean height variable first shows a slight 
positive trends with dNBR for heights between 0 and 5 m, then a 

negative trend between 5 and approximately 12 m before the curve 
levels off at a value of close to 0. 

The first ranked best subset regression model with two predictors 
consists of the two predictor variables “postfire green vegetation” and 
“postfire singed vegetation” which were both also included in the best 
model with five predictor variables (Fig. 8). Both variables show a more 

Fig. 5. Iterative adjusted R2 values of GAM models using all, only postfire and only prefire predictors and using dNBR and RdNBR as response variable. The same 
results are presented for the two first ranked best subset (BSS) regression models using two and the first ranked model using five predictor variables. Boxplots indicate 
R2 value ranges of 100 iterative model runs splitting the available data into 70% training and 30% validation samples. Blue horizontal lines indicate corresponding 
performances of models trained with all samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 7 
Selected predictors of the two best performing models with 2–10 predictor variables and dNBR as response. A + indicates that the predictor was selected once in the 
two models, ++ indicates that the predictor was selected in both models. Grey indicates a selection in the second best model. Grey rows in the table mark postfire 
predictors.  
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or less clear negative trend with dNBR and hence a similar behavior as in 
the model with five predictors. 

The second ranked best subset regression model with two predictors 
includes the variables “postfire non vegetation” and “postfire shadow” 
(Fig. 9). In this model both variables show a clear positive trend with 
dNBR which suggests that an increased cover of “postfire non 

vegetation” and “postfire shadows” leads to higher dNBR values if only 
these two variables are considered. 

The response curves for RdNBR closely followed the results for the 
dNBR models and are only presented in the Supplementary Material 
(Supplementary material 4). Response curves for all other models are 
also included there (Supplementary Material 4). 

Table 8 
Selected predictors of the two best performing models with 2–10 predictor variables and RdNBR as response. A + indicates that the predictor was selected once in the 
two models, ++ indicates that the predictor was selected in both models. Grey indicates a selection in the second best model. Grey rows in the table mark postfire 
predictors.  

Fig. 6. Scatterplots corresponding to the same models presented in Fig. 5 and trained with all available samples, using dNBR as response.  
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3.5. Maps 

Besides the numerical results, we present maps of four subsets of the 
study area for additional context and for better understanding the 
modeling results. The first map shows a subset of test site 1, which 
displays a completely burned area (Fig. 10). The prefire vegetation was 
dominated by the “Sclerophyll” and “Pinus radiata” classes while no 

living vegetation is apparent in the postfire UAS images. In the corre
sponding classification maps, we can see that some areas that appear to 
be a mix of burned organic material and shadows were misclassified as 
green vegetation. This problem was only observed for this UAS scene 
and explains the small bump in the response curve of “postfire green 
vegetation” at fractional covers of 0.2–0.25 (Figs. 7 and 8). Concerning 
the dNBR and RdNBR maps, we can observe a local maximum in the 

Fig. 7. Response curves for the best subset selection model with five predictors and using dNBR as response variable. Units on x-axes are fractional cover values (1 =
100%) for all predictors except for mean height which is in meters [m]. 

Fig. 8. Response Curves for the best subset selection model with 2 predictors and using dNBR as response variable. Units on x-axes are fractional cover values (1 
= 100%). 
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eastern part of the image. This maximum seems to be particularly 
related to an area which appears very dark in the postfire UAS image and 
which was assigned to the shadow-class in the postfire UAS classifica
tion. The visual appearance confirms that there are a lot of shadows in 
this area. The shadows seem to partly relate to standing snags and partly 
to terrain shadows. The prefire UAS image does not show a particularly 
high vegetation cover in this area (at least there are other areas with 
similar cover). Hence, the shadow seems to play an important role for 
causing the dNBR maximum. Further, a slight gradient of dNBR and 
RdNBR values can be observed from the local maximum in the East 
towards the western edge of the area. According to the prefire UAS 
image, this may relate to a canopy cover density gradient with lower 
canopy cover in the western parts of the depicted area. In these areas 
higher coverages of the “prefire non vegetation” class can be observed 
and these spatially match well with lower dNBR and RdNBR values. 

The second map shows a subset of test site 4 which was dominated by 
a mix of Nothofagus and Sclerophyll forests before the fire. Some 
intermixed Pinus radiata individuals occur as well (Fig. 11). The canopy 
coverage was high throughout the area and some smaller patches of dry 
vegetation are visible in the north-western parts of the scene. After the 
fire, most of the vegetation is burned completely, but some smaller forest 
areas with singed leaves remained. The singed areas show lower dNBR 
and RdNBR values which is in line with the response cuve of “postfire 
singed vegetation” (Fig. 8). Similarly, as in the first map, a local 
maximum with particularly high RdNBR and dNBR values exists in the 
center north of the area. Again, we can observe particularly dark areas in 
the postfire UAS image which again suggests a notable influence of 
shadow and maybe also an accumulation of charcoal in these areas (even 
though we did not note such accumulations in the field during the UAS 
campaigns). Interestingly, the areas with particularly high RdNBR and 
dNBR values show mostly dead trees which still maintain their coarse 
crown structures. In other parts of the scene, where only snags remained 
after the fire (for example at the bottom of the eastern edge of the scene), 
the RdNBR and dNBR values tend to be lower. 

The third map shows another subset of test site 4 which was domi
nated by Sclerophyll and Nothofagus forests before the fire and burned 
completely (Fig. 12). The postfire UAS image shows a distinct pattern of 
three linear dark features expanding in North-South direction with a 
slight shift. These patterns also appear in the corresponding dNBR and 
RdNBR maps. We assume that these features correspond to small creeks 
which tend to have vertically denser and more diverse vegetation layers 
due to the favorable hydric conditions and the protections against 

winds. The first impression is that the dark appearance of these areas are 
exclusively driven by topographic shadows. However, a closer look 
suggests, that, similarly as for the second map, the areas are also densely 
stocked with standing dead trees with intact crown structures which 
may also contribute to the observed strong shadows. 

Finally, the fourth map shows a subset of test site 5 which was 
covered by a mix of Sclerophyll and Pinus radiata forests before the fire 
(Fig. 13). This site burned only partly and after the fire a notable fraction 
of green vegetation remained in the southern parts of the area while 
singed vegetation can be found in most parts of the scenes. Only about 
30% of the area burned completely. The gradient from remaining green 
vegetation to singed vegetation and completely burned areas is nicely 
mirrored in the dNBR and RdNBR maps which show low, intermediate 
and high values for the three classes, respectively. 

4. Discussion 

Here, we applied very high resolution UAS imagery collected briefly 
before and after a large wildfire in Chile to derive information about the 
landcover and vegetation composition before and after the fire and used 
this information to explain dNBR and RdNBR variability as captured by 
two Sentinel-2 scenes. As our postfire imagery was collected shortly 
after the wildfires, we assume that the majority of (R)dNBR variability 
induced by the fire relates to fire severity according to the definition of 
Lentile et al. (2006). However, as no detailed ecological field data were 
available, we avoid discussing fire and burn severity differences in this 
study. 

With the UAS approach we provide a new perspective that comple
ments the findings of earlier studies who examined dNBR variability 
using pre- and postfire vegetation structure obtained from LiDAR data 
(e.g., McCarley et al., 2017; Viedma et al., 2020; Wulder et al., 2009) or 
from field surveys (e.g., Harvey et al., 2019). In the following we will 
first discuss the UAS classifications which led to our explanatory vari
ables, then we will reflect on the obtained model performances and 
interpret the results concerning how the considered landcover classes 
drive the dNBR and RdNBR signal. We will conclude with some thoughts 
about the limitations of this study. 

4.1. Extraction of vegetation variables from UAS data 

The classification of the pre- and postfire UAS images into 6 and 4 
landcover classes, respectively, resulted in high overall accuracies 

Fig. 9. Response Curves for the second best subset selection model with two predictors and using dNBR as response variable. Units on x-axes are fractional cover 
values (1 = 100%) 
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(86.3%-94.3%). The corresponding classification maps are depicting the 
visual impression of the landscape composition well (see Figs. 10–13). 
An exception to the overall good results is the “postfire green vegeta
tion” class in test site 1, which was overpredicted quite notably (Fig. 10). 

We explain this with a general scarcity of green vegetation in this 
postfire scene, which has hampered the collection of an adequate 
training dataset for this class. As only one of the six postfire UAS scenes 
was affected by this problem, we consider this problem to be negligible 

Fig. 10. Subset of test site 1, showing pre- and postfire classification maps (top row), pre- and postfire UAS images (middle row) and Sentinel-2 based RdNBR and 
dNBR images (bottom row). Center coordinate of the scene is E: 745840 N: 6,071,099 (coordinate reference system: WGS 84, UTM 18S, EPSG: 32718). The depicted 
grid has a size of 20 × 20 m. North is up. 
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Fig. 11. First subset of test site 4, showing pre- and postfire classification maps (top row), pre- and postfire UAS images (middle row) and Sentinel-2 based RdNBR 
and dNBR images (bottom row). Center coordinate of the scene is E: 749014 N: 6,079,150 (coordinate reference system: WGS 84, UTM 18S, EPSG: 32718). The 
depicted grid has a size of 20 × 20 m. North is up. 
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Fig. 12. Second subset of test site 4, showing pre- and postfire classification maps (top row), pre- and postfire UAS images (middle row) and Sentinel-2 based RdNBR 
and dNBR images (bottom row). Center coordinate of the scene is E: 749311 N: 6,079,017 (coordinate reference system: WGS 84, UTM 18S, EPSG: 32718). The 
depicted grid has a size of 20 × 20 m. North is up. 
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even though it is likely that the small bump in the otherwise clearly 
declining response curve of the “postfire green vegetation” class (Figs. 7 
and 8) originates from these misclassifications. We restricted the num
ber of landcover classes to 6 and 4 classes in the pre- and postfire UAS 

images, as these classes were clearly separable via visual interpretation 
and we considered them to have a relevant influence on the dNBR signal. 
If higher spectral resolution UAS images and corresponding reference 
data from the field would be available, a discrimination of more classes, 

Fig. 13. Subset of test site 5, showing pre- and postfire classification maps (top row), pre- and postfire UAS images (middle row) and Sentinel-2 based RdNBR and 
dNBR images (bottom row). Center coordinate of the scene is E: 760646 N: 6093841(coordinate reference system: WGS 84, UTM 18S, EPSG: 32718). The depicted 
grid has a size of 20 × 20 m. North is up. 
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particularly for the postfire situation, could be beneficial for a deeper 
understanding of the dNBR signal. Such classes could for example 
include standing dead wood and rocks (see also discussion about 
shadows below). 

In our study we followed a pixel-based approach to classify the UAS 
images into the considered landcover classes. Recently emerging deep 
learning algorithms may be able to further improve UAS-based vegeta
tion classifications where the spectral information is limited but detailed 
textural information is available due to the very high spatial resolution 
of the UAS data (e.g., Ferreira et al., 2020; Hamylton et al., 2020; Kat
tenborn et al., 2020; Torres et al., 2020). As these deep learning algo
rithms require a notably larger amount of training data and our 
classification results were generally satisfying, we did not pursue such 
an approach in our study. 

Instead of classifying the UAS images into discrete landcover classes, 
it is also possible to extract a continuous greenness signal from the UAS 
images as proxy for the prefire vegetation composition. We examined 
this approach as well but did not find good correlations between the 
variability in greenness in the UAS and the Sentinel-2 based dNBR and 
RdNBR variability (results not shown). It can be assumed that the 
radiometric variability between the individual UAS flights (taken under 
different acquisition conditions) and the generally restricted radiometric 
resolution of the applied consumer camera hamper this approach. 
Radiometric calibration procedures for UAS systems are available (e.g., 
Guo et al., 2019) but the required field data from calibration targets 
were not available for our dataset. Even with an appropriate radiometric 
calibration the relation between the greenness signal and dNBR may still 
be limited as the dNBR bases on information from the NIR and SWIR 
region and not the visual part of the spectrum. 

4.2. Which variables explain the variability in dNBR? 

GAM models trained with all UAS-based landcover classes were able 
to explain more than 80% of the variance of Sentinel-2 based dNBR 
values and more than 75% of the variance in RdNBR (Fig. 5). Models 
trained with only postfire predictors performed notably better than 
models trained with only prefire predictors. On the other hand, prefire 
predictors are still able to explain around 35% and 30% of the variance 
in dNBR and RdNBR, respectively. This suggests that the prefire land
scape composition, and presumably particularly the prefire vegetation 
cover, which was found to be the most important prefire predictor, has a 
notable influence on the resulting (R)dNBR index values. The fact that 
prefire predictors perform slightly better for explaining dNBR values 
than for RdNBR values does not necessarily confirm the ability of the 
RdNBR to account for prefire vegetation composition, as RdNBR models 
were generally found to perform slightly weaker than dNBR models 
(Fig. 5). Viedma et al., (2020) also reported that variables related to 
vegetation structure better explained variability in dNBR than in 
RdNBR. However, the authors related this mostly to outlier values in 
their RdNBR dataset which were not occurring in our study. 

Interestingly, models trained with all 11 landcover classes performed 
merely better than models with only 5 predictor variables which were 
identified during the best subset analysis. This indicates that most of the 
variability in the NBR indices can be explained with a parsimonious set 
of land-cover class fractions. According to our results, the most impor
tant land-cover classes selected for the parsimonious models with 2–5 
predictors are “prefire non vegetation”, “postfire non vegetation”, 
“postfire green vegetation” and “postfire singed vegetation”. All of these 
classes relate to the overall amount of burned vegetation surface which 
seems to be the key driver of Sentinel-2 based dNBR and RdNBR vari
ability in the examined landscape. This somewhat confirms earlier 
studies based on pre- and postfire LiDAR data which identified the 
variables “change in crown closure” (Wulder et al. 2009) and “change in 
canopy cover” (McCarley et al. 2017) to be amongst the most important 
variables for explaining the variability of dNBR-like indices. 

Height information was found to be of moderate importance and was 

included in models with 5 or more predictors. The response curve of the 
“mean height” predictor showed no clear trend with dNBR or RdNBR 
(Fig. 7). A visual comparison between the patterns of canopy height and 
the resulting dNBR and RdNBR values confirmed that there are no clear 
patterns apparent (results not shown). Canopy height is known to be a 
good proxy for vegetation biomass (e.g., Tonolli et al., 2011). The fact 
that it hardly relates to variability in dNBR and RdNBR again confirms 
that in the examined landscape, (R)dNBR is rather a proxy for burned 
vegetation cover than for burned vegetation mass. 

Prefire vegetation type composition played only a marginal role in 
explaining the variability in dNBR and RdNBR in our study and the 
corresponding predictors were only selected in models with higher 
number of predictors. This may relate to the generally high intensity of 
the fire in our test site, which burned as crown fires across most areas 
leading to high levels of combustion of all available vegetation, inde
pendent from its structure and species composition. A small exception 
were riparian vegetation areas which were on average less affected by 
the fire; but these areas did not cover notable parts of our test sites. In 
fires with overall lower intensities, vegetation types may relate notably 
stronger to the amount of canopy cover consumed and hence the 
observed fire or burn severity. For example Viedma et al., (2020) 
identified vegetation composition and biomass to be a very important 
driver of fire severity in a mixed-severity fire in Spain. Here, the vege
tation types were in many cases decisive whether the fire burned more 
or less intensively and the corresponding patterns also emerged in the 
NBR-based indices. 

Aside the best performing GAM models, we also presented two 
models based on only two postfire predictor variables which were able 
to explain about 60% of the variability in (R)dNBR values. The first 
ranked model selected “postfire green vegetation” and “postfire singed 
vegetation” as predictor variables. This is in line with the results for the 
model based on 5 predictors and again confirms that most of the vari
ability in the dNBR indices apparently relates to the consumption or 
survival of green vegetation cover. On the other hand, the second ranked 
model selected “postfire non vegetation” and “postfire shadow” as most 
important variables. Both, the “postfire non vegetation” and the “post
fire shadow” class show a positive, linear relation to dNBR values. While 
this is expected for the “postfire non vegetation” class which represents 
mostly burned areas, the interpretation of this outcome for the “postfire 
shadow” class is less straightforward. The spatial patterns of the shadow 
class in Figs. 10–13 suggest that areas classified as shadows mostly occur 
in areas with a high density of snags of dead trees and in areas with dead 
standing trees with remaining crown structures and in areas influenced 
by terrain shadows (Fig. 13). In Fig. 11, an area appearing very dark in 
the postfire UAS image coincides with a local maximum in dNBR values. 
The UAS image shows a comparably high fraction of standing dead trees 
with remaining crown structures in this area which cast a comparably 
high amount of shadows contributing to the dark appearance of the area. 
On the other hand, areas with similar vegetation densities before the fire 
but a complete combustion of the crowns (and only snags remaining) 
appear notably brighter in the postfire UAS image and also typically 
show lower dNBR values. This may suggest that shadows shed by 
standing leafless dead trees with intact crown structures may have a 
quite notable, potentially misleading, influence on the observed dNBR 
values. The gravity of this effect is likely to vary with solar elevation 
angle during the satellite data acquisition. Additionally it has to be 
considered that the slope and aspect of the terrain determines the pro
jection and, thereby, total cover of cast shadows on the ground (Kat
tenborn et al., 2018), which in turn may introduce substantial local 
variability in dNBR values. 

The problematic influence of shadows on dNBR values has earlier 
been discussed by Hoy et al., (2008), who also specifically addressed 
variation in solar elevation angles and topography. Both were found to 
notably affect the remote sensing signal of forest stands (Verbyla et al., 
2008). However, the potential influence of shadows cast by remaining 
standing woody vegetation after a fire has not been extensively 
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discussed yet. One reason for this might be the fact that in medium 
resolution optical data that is often used for dNBR analysis (e.g. Landsat 
or Sentinel-2), cast shadows are not directly identifiable and their in
fluence on NBR-related products could be mistaken as a signal of 
accumulated charcoal on the ground as both phenomena lead to a 
general drop in reflectance. Chuvieco et al., (2007) mentioned cast 
shadows as an issue when they attempted to simulate the signal of 
burned vegetation areas using a radiative transfer model that assumed 
horizontally homogeneous vegetation layers. The model failed to accu
rately simulate the reflectance signal of the burned areas of the exam
ined heterogeneous landscape in which cast shadows were present and 
which hence deviated notable from the assumption of a horizontally 
homogeneous vegetation canopy. 

4.3. Limitations and considerations 

The most severe limitation of our study is that we have no detailed 
field data available. As a consequence, some of our defined land-cover 
classes are defined rather widely (e.g., the “postfire non vegetation” 
class). Detailed information from the field may have helped to differ
entiate the UAS information into more classes and hence enable a more 
detailed thematic analysis of dNBR variability. On the other hand, our 
dataset is unique in that it provides detailed, fine-grained and spatially 
continuous information about the landscape composition before and 
after the wildfire. Such UAS data overcome some typical limitations of 
field sampling surveys after wildfires which are often at least partly 
constrained by accessibility and limited sampling frequency and lack 
spatial continuity. The latter makes it often challenging to collect 
representative field data matching the spatial resolution of the satellite 
sensor and the environmental variability (e.g., Hoy et al., 2008). The 
potential of UAS data to partly replace field reference data in situations 
where the target classes can be clearly identified by visual interpretation 
has also recently been discussed with more detail in Kattenborn et al. 
(2019b, 2020), who also mention that the shared bird’s eye perspective 
of UAS and satellite data is a big advantage. This shared perspective 
proved to be particularly interesting for effectively analyzing the influ
ence of cast shadows. 

A further limitation of our study is that our findings are restricted to a 
single wildfire event in central Chile. This particular fire was one of the 
most severe fires that has ever occurred in central Chile since fires are 
recorded and may hence not be a representative example for an average 
wildfire in Chile let alone a Mediterranean landscape. Nevertheless, our 
findings may be the starting point for further investigations with com
parable datasets. The increasing number of UAS surveys for ecological 
applications constantly increases the chances to coincidentally capture 
landscapes briefly before a wildfire event. If a recently surveyed area is 
affected by a wildfire, a follow-up UAS campaign may often be orga
nized with limited efforts. In ideal case, these postfire UAS campaigns 
should be accompanied by a field survey collecting further ecological 
information that subsequently can be upscaled with the UAS data and 
then used to explain fire severity patterns observed by satellites. It may 
also be possible to conduct a corresponding investigation in the context 
of prescribed burnings or even a controlled wildfire experiment. 

5. Conclusions 

We derived pre- and postfire landscape composition from UAS im
agery acquired briefly before and after a wildfire in central Chile. We 
used several vegetation-related variables derived from the UAS imagery 
to explain dNBR and RdNBR variability captured by Sentinel-2 satellite 
data. Our results suggest that: (i) in our study area the largest fraction of 
variability in Sentinel-2 based dNBR and RdNBR values can be explained 
by the fraction of consumed canopy cover (ii) vegetation composition 
before the fire did not have a large influence on dNBR and RdNBR 
variability (iii) cast-shadows of snags and standing dead trees with 
remaining crown structure may have a notable influence on the dNBR 

signal. 
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M., González-Cascón, R., Riaño, D., Becerra, J., Zhao, K., 2020. Evaluating the 
potential of LiDAR data for fire damage assessment: A radiative transfer model 
approach. Remote Sens. Environ., 247, December 2019, 111893. https://doi.org/ 
10.1016/j.rse.2020.111893. 

GERENCIA FORESTAL. (2011). CATASTRO DE USO DEL SUELO Y VEGETACIÓN. 
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