
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

GRADUAL SENSITIVITY TYPES

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN
COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

DAMIÁN NICOLÁS ARQUEZ TRIGO

PROFESOR GUÍA:
ÉRIC TANTER

PROFESOR CO-GUÍA:
MATÍAS TORO IPINZA

MIEMBROS DE LA COMISIÓN:
ALEJANDRO HEVIA ANGULO
FEDERICO OLMEDO BERÓN
RAIMIL CRUZ CONCEPCIÓN

Este trabajo ha sido parcialmente financiado por:
Fondecyt regular 1190058 y ANID - Programa Iniciativa Científica Milenio - Código ICN17_002

SANTIAGO DE CHILE
2021

Resumen

Los sistemas de tipos con sensibilidad son utilizados para razonar sobre la sensibilidad de
computaciones. Esto es de particular interés en el campo de privacidad, especialmente en
privacidad diferencial. Una particularidad de los tipos con sensibilidad es que, al ser una
disciplina de tipado, restringen al programador a lidiar estáticamente con a veces complejos
y usualmente restricciones conservadoras, impuestas por los tipos. Esto puede conducir
rápidamente a una compleja experiencia de desarrollo.

El tipado gradual es un técnica efectiva para proveer al programador con una transición
suave entre la flexibilidad de lenguajes dinámicamente tipados y la seguridad de lenguajes
estáticamente tipados. Esto se logra permitiendo supocisiones optimistas durante el chequeo
de tipos, que más tarde son monitoreadas y chequeadas en tiempo de ejecución. Por ejemplo,
en un languaje gradualmente tipado, un programador puede empezar con un programa que
es chequeado en una disciplina completamente dinámica, y a medida que el código se vuelve
más estable, el programador puede agregar información de tipos con el fin de aprovechar las
garantías entregadas por el chequeo de tipos estático. Nosotros establecemos la hipótesis
de que el tipado gradual, y sus ventajas, pueden ser aplicadas en un context de tipos con
sensibilidad. Tipos con sensibilidad gradual permitiría al programador moverse en un rango
desde un programa con tipos simples a uno completamente anotado añadiendo información
de sensibilidad.

En este trabajo, estudiamos la introducción del tipado gradual en la información de
sensibilidad codificada en los tipos con sensibilidad. En particular, exploramos como la
metodología Abstracting Gradual Typing (AGT) puede ser utilizada para lograr esta tarea.
Primero, presentamos un lenguage con sensibilidad estáticamente tipado como un preám-
bulo a la introducción de tipado gradual. Discutimos las particularidades del lenguaje y
establecemos dos propiedades en el contexto de sensibilidad: type safety y soundness. Luego,
derivamos un lenguaje con sensibilidad gradual siguiendo paso a paso la metodología AGT
y exploramos si satisface (1) las propiedades ya satisfechas por su contraparte estática, es-
pecialmente soundness con respecto a sensibilidad, y (2) una propiedad crucial en lenguajes
gradualmente tipados, conocida como gradual guarantee.

i

Abstract

Sensitivity type systems are used to reason about the sensitivity of computations. This is
of particular interest in the fields of privacy, specially differential privacy. One caveat of
sensitivity types is that, being a typing discipline, they constrain programmers to statically
deal with sometimes complex and often conservative restrictions imposed by types. This can
quickly lead to a cumbersome developer experience.

Gradual typing is an effective approach to provide the programmer with a smooth transi-
tion between the flexibility of dynamically-typed languages and the safety of statically-typed
ones. This is achieved by allowing optimistic assumptions during typechecking that are later
monitored and checked during runtime. For instance, in a gradually-typed language, a pro-
grammer can start with a program that is checked in a full dynamic discipline, and as the
code becomes stable the programmer can add type information in order to take advantage
of the guarantees provided by static typechecking. We hypothesize that gradual typing, and
its advantages, can be applied in a sensitivity types setting. Gradual sensitivity types would
allow the programmer to range from a program with simple types to a fully-annotated one
by adding sensitivity information.

In this work, we explore the introduction of gradual typing in the sensitivity information
encoded in sensitivity types. In particular, we explore how the Abstracting Gradual Typing
(AGT) methodology can be used to achieve this task. We first present a statically-typed
sensitivity language as a preamble to the introduction of gradual typing. We discuss the
particularities of the language and establish type safety and soundness in a sensitivity setting.
We then derive a gradual sensitivity language by following step-by-step the AGTmethodology
and explore whether it satisfies (1) the properties already satisfied by its static counterpart,
specially soundness with respect to sensitivity, and (2) a crucial property of gradually-typed
languages, known as gradual guarantee.

ii

Contents

1. Introduction 1

2. Background 4
2.1. Sensitivity Type Systems . 4
2.2. Gradual Typing . 6
2.3. Abstracting gradual typing . 8
2.4. Summary . 9

3. A Static Sensitivity Type System 11
3.1. Syntax . 11
3.2. Static Semantics . 13
3.3. Dynamic Semantics . 18
3.4. Properties . 20
3.5. Summary . 25

4. A Gradual Sensitivity Type System 26
4.1. Syntax and Meaning of Gradual Types . 26
4.2. Lifting the Type System . 30

4.2.1. Lifting predicates . 30
4.2.2. Lifting Type Functions . 31

4.3. Static Semantics . 33
4.4. Dynamic Semantics . 35

4.4.1. Evidence for Consistent Subtyping 35
4.4.2. Intrinsic Terms . 39
4.4.3. Reduction of Intrinsic Terms . 40
4.4.4. Elaboration of Terms . 46

4.5. Properties . 49

5. Conclusions 54

Bibliography 56

A. Auxiliary definitions 60
A.1. A Static Sensitivity Type System . 60
A.2. A Gradual Sensitivity Type System . 61

B. Properties of a Gradual Sensitivity Type System 62

iii

B.1. Preamble . 62
B.2. Galois connections . 72
B.3. Type Safety . 75
B.4. Gradual Guarantee . 84

B.4.1. Static Gradual Guarantee . 84
B.4.2. Dynamic Gradual Guarantee . 89

B.5. Soundness . 95

iv

Figures

3.1. Syntax of static sensitivity types . 12
3.2. Type system of λs . 14
3.3. Subtyping relation of static sensitivity types 15
3.4. Sensitivities scaling, join and meet . 17
3.5. Dynamic semantics of λs . 18
3.6. λs : Logical relations for metric preservation 22
4.1. Syntax of gradual sensitivities . 27
4.2. Type system of λi . 34
4.3. Algorithmic interior operator . 36
4.4. Algorithmic consistent transitivity . 38
4.5. Syntax and type system of λiε . 41
4.6. Dynamic semantics of λiε . 45
4.8. Inversion functions on evidences . 47
4.9. Elaboration of λiε from λi . 48
4.10. Logical relations for gradual sensitivity soundness 50
A.1. Sensitivity environment substitutions . 60
A.2. Typing rules for closures and contexts . 60
A.3. Gradual sensitivity environment substitutions 61
A.4. Typing rules for gradual closures and contexts 61
B.1. Precision of evaluation contexts . 93

v

Chapter 1

Introduction

Privacy is a critical concern for software systems. Unfortunately, the use of traditional
techniques, such as de-identification, is not enough to prevent privacy violations. The classical
examples of this are the de-anonymization of user ratings of Netflix by using the Internet
Movie Database (IMDb) as the source of background knowledge [1] and the re-identification
of Governor William Weld’s medical records [2]. Furthermore, Narayanan and Shmatikov
have proposed a generic re-identification framework to target anonymized social networks
graphs [3]. In this context, an emerging technique called differential privacy has received a
lot of attention and it has become the standard approach for protecting privacy of individuals.

The goal of differential privacy is to gain knowledge from aggregated data without compro-
mising any individual’s privacy, i.e. revealing something particular about them. Informally,
a computation is said to be differentially private if for two similar databases, the results
of the computation are close enough. Two databases are considered to be similar if they
differ in at most one individual’s data. Furthermore, the result of the computations are close
enough when they are indistinguishable to an external observer. Therefore, an attacker can
not learn anything about the individual (whose data differ between databases) by analyzing
the results. Differential privacy is a strong and formal statistical guarantee of privacy, that
provides a mathematical definition of what it means for a computation over sensitive data
to be private. Since its early formulation, many variants of differential privacy have been
developed in the seek of interesting properties over the composition of differentially private
algorithms [4–6].

Most differential privacy mechanisms achieve privacy by adding random noise to the out-
puts of computations. In order to determine how much an output must be perturbed, dif-
ferential privacy uses a concept called sensitivity. Sensitivity is a measure of how much a
computation can magnify the distance between two inputs. Quantifying how sensitive is a
computation is a crucial part of differential privacy as it provides a lower bound on how much
noise has to be introduced: if the added noise is too little, privacy may not be guaranteed; if
it is too high, the result may no longer be useful.

Implementing differential privacy algorithms comes with a particular set of challenges: the
right amount of noise have to be added in the right places. Worse yet, differential privacy is a

1

probabilistic multi-run property, so developing test cases for differentially private algorithms
is far from trivial. Hence, many efforts have been done in order to achieve automation or
mechanization of differential privacy verification.

A particular set of approaches have used program logics [7–10] in order to prove correct-
ness of differential privacy mechanisms and support advanced variants of differential privacy.
However, these approaches are not suitable for automation. The other major approaches
leverage typechecking and type systems in order to automate differential privacy verification.
The first such approach, Fuzz [11], is based on linear type systems and is capable of mea-
suring sensitivity and tracking privacy costs. Fuzz and its successor, DFuzz [12], support
automation and higher-order programming. Both languages use only one type system for
sensitivity reasoning and privacy cost tracking, which has the advantage of being a simple
approach. However, they are not able to support advanced variants of differential privacy.

Another approach based on type systems, HOARe2 [13], uses relational refinement types
to encode differential privacy. This improves on Fuzz-like systems being able to support more
advanced variants of differential privacy, at the expense of limiting its automation support.

Latest developments, Duet [14] and Jazz [15], have taken the approach of splitting their
differential privacy language on two mutually embedded languages, each with its own type
system: one for measuring sensitivity, namely a sensitivity type system; and another one for
tracking privacy costs.

Inspired by Fuzz, Duet’s sensitivity type system is based on linear types. Its multi-
language design allows it to support more advanced variant of differential privacy at the
expense of limited higher-order programming. The sensitivity language of Jazz, Sax, make
novel use of contextual linear types and a delayed type-and-effect discipline, which allows
it to support advanced variants of differential privacy while having the same expressiveness
for higher-order programming as Fuzz. Both sensitivity type systems are able to bound the
sensitivity of functions and computations through typechecking.

One limitation of tracking sensitivity with types is that it imposes complexity on program-
mers, which can be prohibitive, especially in the early stages of software development. Just as
in a sensitivity type system types are statically checked, there exist another discipline where
types are dynamically checked. In fact, most programming languages today can be classified
in two groups: statically-typed languages, such as Java, Scala or C]; and dynamically typed
languages, such as Python or Javascript. Both paradigms have their advantages and limita-
tions. For example, statically-typed languages can prevent errors at runtime at the cost of
conservatively rejecting programs that may go well. On the other hand, dynamically-typed
languages are better suited for quick prototyping at the expense of possible runtime errors
and extra runtime checks, that result in slower execution.

Many efforts have been done in combining the advantages of both paradigms [16–19]. One
prominent approach is gradual typing [20], which provides the programmer with a smooth
transition between dynamic and static checking within the same language by introducing a
notion of imprecision on types. Hence, the programmer is able to choose which portions of
the program are dynamically checked and which ones are statically checked.

2

Gradual typing has been studied in many settings such as subtyping [21, 22], references
[23, 24], effects [25], ownership [26], information-flow typing [27, 28], refinement types [29],
parametric polymorphism [30–34]. However, it has never been studied for a sensitivity type
system.

In this work, we explore the gradualization of the sensitivity parts of a minimal statically-
typed sensitivity language. We derive a gradual sensitivity language by following the Ab-
stracting Gradual Typing (AGT) methodology [21], which provides a systematic approach
for deriving gradual language using statically-typed languages as the starting point. This
language allow a programmer to smoothly evolve a program with simple types by annotating
it with sensitivity information, incrementally obtaining the advantages of sensitivity types.
We prove that the gradual sensitivity language we present satisfies 3 key properties: type
safety, i.e. a well-typed closed expression does not get stuck; soundness, which in the
setting of sensitivity is defined as metric preservation [11] that captures the bound of how
much two similar computations may change given a small input variation; and the gradual
guarantee [35], which establishes that reducibility and typeability of programs is monotonic
with respect to imprecision. The simultaneous satisfiability of the last two is of particular
of interest for us since in related work [36, 37], when soundness is a multi-run hyperprop-
erty [38] like metric preservation, conciliating it with the dynamic component of the gradual
guarantee has proven to be challenging.

Contributions. To summarize, this work makes the following contributions:

• We present λs , a minimal statically-typed sensitivity language (§ 3). We explain the
main mechanisms of a sensitivity language and work on several simplifications in order
to ease the derivation of our gradual language.

• We derive a gradual sensitivity language, λi , by following the AGT methodology on λs
(§ 4). We illustrate step-by-step how to apply the AGT methodology in a sensitivity
types setting. This is the first application of both gradual typing and AGT to sensitivity
types.

• We prove three key properties of the derived gradual language: type safety, soundness
and the gradual guarantee (§ 4.5).

3

Chapter 2

Background

In this chapter we introduce the core ideas necessary to understand our work. The first
section outlines the evolution of the mechanisms used in type systems in order to reason
about sensitivity. We put special emphasis on the latest developed sensitivity language,
Sax. Finally, in the last two sections, we present gradual typing and AGT as a methodology
to derive gradual languages from statically-typed languages. The next chapters assume the
reader’s familiarity with these concepts.

2.1. Sensitivity Type Systems

Sensitivity captures how much a computation can magnify the distance between similar
inputs. Formally, a function f is c-sensitive if and only if |f(x)− f(y)| ≤ c ∗ |x− y|, for all
x, y. For example, f(x) = x and f(x) = −x are 1-sensitive functions, whereas f(x) = 2x+ 1
is 2-sensitive. On the other hand, the function f(x) = x ∗ x would not be c-sensitive for any
c, i.e., it is ∞-sensitive. In particular, for differential privacy, the sensitivity of a function
provides a lower bound on how much the output must be perturbed in order to preserve
privacy. Furthermore, reasoning about sensitivity is crucial for implementing and verifying
differential privacy.

Developing correct differentially-private algorithms is particularly challenging as one has
to introduce the right amount of noise in the right parts of the program. For the former,
sensitivity plays a key role but quantifying it can rapidly become a non-trivial task when
dealing with large programs. The latter is usually achieved by reasoning about privacy costs
that flow through the program, which is as difficult as measuring sensitivity. Given the
difficulty of verifying the correctness of differentially private algorithms, automation of this
process has become an important area of research. Two major approaches have been explored:
approaches using program logics [7–10] have mechanized the verification of differential privacy
mechanism, but lack support for automation; and others have explored the verification of
differential privacy by using type systems.

In general terms, a type system is a formalization of a modular static analysis performed

4

to programs before they are executed. They are used to prevent type errors during runtime.
Depending on how complex the types are, a type system can also encode more powerful
guarantees. In particular, type systems can be used to verify differential privacy by encoding,
among other things, sensitivity in its types.

The first approach that uses type systems to verify differential privacy is Fuzz [11], which
uses linear types. The type system takes care of both sensitivity reasoning and privacy costs
tracking. Focusing on the sensitivity parts of Fuzz, its type system makes use of linear types
to bound the sensitivity of functions, which allows it to classify them as c-sensitive functions.
Fuzz achieves this by using a typing judgment of the form x :c τ1 ` e : τ2, meaning that e
is a c-sensitive computation of type τ2 with respect to the variable x of type τ1. This notion
generalizes to x1 :c1 τ1, . . . , xn :cn τn ` e : τ .

Both Fuzz and its successor DFuzz [12] use one type system that takes care of sensitivity
measuring and privacy costs tracking. While this has the advantage of being a simple ap-
proach, it limits the type systems to not be able to support advanced variants of differential
privacy, which are alternative formalizations that yield different composition properties [4–6].

HOARe2 uses a relational refinement type system to encode differential privacy and,
improving on previous type systems approaches, is capable of supporting advanced variants.
However, it has limited support for automation.

Later, Duet [14] presents a novel approach to differential privacy type systems, splitting
the language in two mutually embedded sub-languages, each with its own type system: one
for reasoning about sensitivity and another one exclusively for privacy costs tracking. This
approach allows Duet to support more advanced variants of differential privacy but at the
expense of supporting less expressive higher-order programming than Fuzz.

Duet’s successor, Jazz [15], is also built on a multi-language design which allows it to
keep the reasoning about differential privacy through typechecking. In addition, its sensi-
tivity language, Sax, makes use of contextual linear types, which supports fully-expressive
higher-order programming. Sax presents a novel delayed sensitivity effects discipline, which
increases the precision of the sensitivity analysis with respect to all previous work, specially
for sum and product types. Product types, multiplicative and additive, encode pairs of
resources. Their difference resides in how they are destructed: multiplicative pairs are de-
structed by pattern matching and both components can be used, and for additive pairs only
one component can be used at the same time, by using projections. On the other hand, sum
types encode alternative occurrences of resources and are introduced via inl and inr construc-
tors. They are destructed via a case expression with one branch per constructor. In Sax,
the expression inl(x+ x) is 2-sensitive on x.

Sax separates the sensitivity tracking from the type environment, creating a separate
sensitivity environment, Σ, that maps variables to sensitivities (positive real numbers). This
results in a typing judgment of the form Γ ` e : τ ; Σ, where Γ maps variables to types.
The delayed effect discipline of Jazz gets reflected in the syntax of function and sum types,
(x : τ) Σ−→ τ and τ ⊕Σ Σ τ , respectively. The annotated sensitivity environments are called
latent effects and correspond to the sensitivity effect of the body of a function or the injected
expression in a sum type. One important caveat of a function type (x : τ1) Σ−→ τ2 is that

5

x (the argument variable) may be present both in the latent effect and the result type (the
result type may contain other latent effects). For instance, the expression e = inlR(x + x) is
typechecked as x : R ` e : R ⊕2x ∅ R;∅.

Soundness. For a sensitivity type system to be sound its types have to express an actual
upper bound on the real sensitivity of a computation. For instance, in Sax the expression
x + x is 2-sensitive on x, so informally for any two similar inputs (values for x) at distance
d, the result of the expression must not vary more than 2 ∗ d. In this example, it is easy
to see that it is sound. However, for reasoning about more complex programs, soundness is
defined as property called metric preservation [11]. This establishes that if a program has a
predicted sensitivity, when closed by two similar inputs, the output will not vary more than
predicted. We defer a more technical characterization of soundness to Chapter 3 with an
actual type system in place.

2.2. Gradual Typing

Statically and dynamically typed languages have advantages and limitations of their own.
For example, static checking provides static guarantees against runtime errors at the cost
of conservatively rejecting programs that may go right. Furthermore, in some cases a static
type discipline can result in a cumbersome developer experience since the programmer may
have to fully annotate a program or deal with complex types. On the other hand, dynamic
typing is better suited for quick prototyping and flexibility at the expense of extra checks
during runtime (which may raise errors) and slower execution. Motivated by this duality,
there is a lot of work done on trying to combine static and dynamic checking. One of the
most important approaches is gradual typing [20] based on the notion of imprecision of types.

In a gradually typed language, static and dynamic checking are combined, providing the
programmer the advantages of both paradigms through a smooth transition between both.
This is achieved by introducing the unknown type, denoted ?, which can be used to specify
partially known types [20]. For example, the type Int → ? is the gradual type of functions
whose domain is Int and the co-domain is statically unknown ?.

A gradual typechecker optimistically treats the unknown as any type statically. Ac-
counting for the optimistic judgments during typechecking, at runtime, a mechanism en-
sures a runtime type error is raised before performing an unsafe operation. For instance,
(λx : ?.x + 1) false is well-typed, but during runtime it will result in a runtime error before
the addition is performed.

In summary, in a gradual language, if a portion of a program is annotated with static
types, it gets verified at compile time, getting the benefits of static checking. Contrarily, if
the portion is not annotated (by using the unknown type), it gets verified at runtime, getting
the benefits of dynamic checking.

6

Gradual typing is about (im)precision. The key element for formalizing gradual typing
is the notion of (programmer-controlled) precision on types [20, 24]. Type precision v is an
ordering relation between gradual types where G1 v G2 means that G1 represents less static
types than G2. In order to introduce imprecision, most gradual languages define the unknown
type ?, which represents any possible type, i.e. G v ? for any G. The precision relation is
defined also for constructs like function types where G1 → G2 v G1 → ? v ?.

The notion of type precision can be naturally lifted to expressions. For example, the
program λf : R → ?.f(1) + 2 is less precise (or has less precise type information) than
λf : R→ R.f(1) + 2.

Cast as runtime checks. Gradual typing achieves its flexibility by treating imprecision
optimistically, leveraging relaxed type predicates. For example, type consistency, noted ∼,
is the relaxation of type equality [20, 21]. Recalling the previous example, (λx : ?.x+ 1) false
is well-typed because Bool ∼ ? and ? ∼ Int (but notice that Bool � Int). However, it is
important to notice that consistency is not a transitive relation, i.e. Bool � Int. Therefore,
a runtime mechanism is needed to prevent unsafe operations, e.g. adding a number with a
boolean.

In a classic design of gradual languages, dynamic semantics are typically given by translat-
ing the source language to a cast calculus [20]. The translation insert casts at the boundaries
between the static and dynamic portions of the programs, in order to raise an error be-
fore an optimistic assumption during typechecking is violated. For example, the expression
(λx : ?.x+ 1) false would typically be translated to (λx : ?.〈Int⇐ ?〉x+ 1) 〈?⇐ Bool〉false,
where the cast 〈Int⇐ ?〉 ensures that the argument passed to the function is indeed of type
Int, before proceeding with the addition.

Since type consistency is not a transitive relation, combination of casts is used as the
mechanism to prevent unsafe operations. For instance, the expression presented before would
reduce as:

(λx : ?.〈Int⇐ ?〉x+ 1) 〈?⇐ Bool〉false
7→ 〈Int⇐ ?〉(〈?⇐ Bool〉false) + 1
7→ error

When combining the two casts, 〈Int ⇐ ?〉 and 〈? ⇐ Bool〉, an error is raised because
types Int and Bool are not compatible.

Desirable properties of a gradual language. There are properties that every gradual
language should aim to satisfy. In particular, Siek et al. [35] formalized a refined criteria of
what it means for a language to be gradually typed. These are the following:

7

• Type safety: Well-typed expressions do not get stuck and they either reduce to values,
diverge or halt with a runtime type error. Formally, if ` e : G then either t ⇓ v and
` v : G, e ⇑, or e ⇓ error, where t ⇑ denotes that e diverges.

• Conservative extension of the static discipline: A gradual type system is equiv-
alent to its static counterpart on fully-annotated programs. Formally, `s e : T if and
only if ` e : T , where `s denotes the typing judgment used in the static type system.
Additionally, both reductions behave equivalently: e ⇓s v if and only if e ⇓ v, where ⇓s
denotes the big-step reduction relation for the static type system.

• Embedding of the dynamic discipline: Expressions from the corresponding dynamic
language can be encoded into expressions of the gradual language, where all the binders
and literals are annotated as ?. Formally, let e be an expression from the dynamic
language, then ` dee : ?, where d·e is a function that annotates ? on every binder and
literal. Additionally, the reduction of an expression in the dynamic language and its
gradual counterpart behave equivalently: e ⇓d v if and only if dee ⇓ dve.

• Gradual guarantees:

– Static gradual guarantee: Expressions typeability is monotone with respect to
imprecision, i.e. removing precision does not introduce new type errors. Formally,
let e and e′ be expressions such that e v e′. If ` e : G then ` e′ : G′ and G v G′,
for some G′.

– Dynamic gradual guarantee: Expressions reducibility is monotone with respect
to imprecision, i.e. removing precision does not introduce new runtime errors. For-
mally, let e and e′ be expressions such that e v e′. If e ⇓ v then e′ ⇓ v′ and v v v′,
for some v′.

Classic design of gradual languages. The classical approach for designing gradual type
systems, and used for most gradual languages, is an ad-hoc process. The runtime semantics
are given by a translation to a cast calculus. However, as noted by Garcia et al. [21], there is
no direct justification for how to choose or design a suitable cast calculus. An implication of
this is that there is no guidance through the design process of the semantics of the gradual
language, e.g. how should the unknown information be dealt with? Moreover, the correctness
of the cast calculus with respect to the intentions of the source language is typically argued
based on intuition.

2.3. Abstracting gradual typing

Abstracting Gradual Typing (AGT) is a systematic methodology for deriving gradual
languages [21]. It uses abstract interpretation [39] at the type level to construct gradually
typed languages using a statically typed language as the starting point. The application of
the AGT methodology results in a gradual type system along with its runtime semantics,
without the need for an intermediate cast calculus. In this section we present an overview

8

of the AGT methodology. However, we defer a more detailed formalization to Chapter § 4,
where we apply AGT step-by-step to language with a sensitivity type system.

AGT dictates the following steps for deriving a gradual language:

• Deriving the static semantics:

1. Start from a statically-typed language and its type safety proof.
2. Define the syntax and meaning of gradual types. This is done by defining a con-

cretization function γ : GType → P(Type), that maps a gradual type to the set
of static types it represents. For example, ? is mapped to the set of all possible
static types, whereas ?→ R is mapped to the set of all functions that return a real
number.

3. Existentially lift all type relations and type functions. This is done by exploiting the
Galois connection obtained from the concretization function and its corresponding
abstraction function, α : P(Type) ⇀ GType, that takes any non-empty set of types
and produces the most precise gradual type. The lifting is driven by plausibility:
two gradual types are in a consistent relation if and only if some of the static types
they represent are in the static relation.

4. Re-write the static typing rules using the lifted relations and functions.

• Deriving the dynamic semantics:

1. Define the syntax of evidences for consistent judgments, which is usually a pair
of gradual types. Evidence represents why a consistent judgment holds. Evidence
operations are defined by using a Galois connection as well (usually the same used
when deriving the static semantics). Evidences are evolved during runtime in order
to determine whether the use of a transitivity judgment holds.

2. Derive the reduction rules mirroring the reasoning used in the type safety proof
of the statically typed language. This exploits the correspondence between proof
normalization and term reduction [40].

In summary, using AGT one can derive the static and dynamic semantics of a gradual
language, starting from a statically-typed language along with the Galois connection(s).
Although there is not a generalized proof, it is conjectured that this gradual language should
satisfy, by construction, the refined criteria for gradual typing [35]. However, it is still
necessary to prove this criteria formally for each derived language using AGT.

2.4. Summary

In this chapter we reviewed several key concepts needed to understand our work. Section
2.1 introduced basic notions of sensitivity and the importance of measuring it for differential
privacy. It also presented the main characteristics of five differential privacy type systems,
with particular focus in the most recent two: Duet and Sax. These are of particular interest
as they introduce the first sensitivity type systems as part of their multi-language design.

9

Section 2.2 introduces and motivates the usefulness of gradual typing. It explains the
key notions and mechanisms to give a develop a gradually-typed language. Lastly, several
properties are presented as desired properties in a gradual typing setting.

Section 2.3 explains the workings and benefits of the Abstracting Gradual Typing (AGT)
methodology. Although, details of the formalization are deferred to Chapter 4, where we
apply AGT step-by-step to derive a gradually-typed sensitivity language.

In the next chapter, we present a sensitivity language along with its static and dynamic
semantics, largely based on Sax, and we discuss the main characteristics of this sensitivity
language mechanisms.

10

Chapter 3

A Static Sensitivity Type System

In this chapter we present a statically-typed sensitivity language, λs , that will act as the static
counterpart of our gradual language. We present the details of the syntax and the static and
dynamic semantics of λs , with particular focus on the sensitivity reasoning mechanisms and
the important insights for the upcoming gradualization. The syntax and typing rules are
largely based on a core subset of Sax [15]. λs works using a full-fledged type-and-effect
discipline. We also work on several simplifications in order to ease the gradualization process
in the next chapter.

Whereas Sax uses big-step runtime semantics, AGT is formalized on languages using
small-step semantics. Therefore, in order to match the AGT pre-requisites for deriving our
gradual language in the next chapter, we define a small-step runtime semantics for λs .

Finally, we establish two very important properties: type safety, i.e. every well-typed
expression is either a value or it can take a step to another expression whose type is a
subtype of the original one; and soundness, which in the context of sensitivity corresponds to
a property called metric preservation [11]. Intuitively, this metric preservation ensures that
predictions on sensitivity are sound with respect to the evolution of programs.

3.1. Syntax

We begin by defining the syntax of sensitivity types and expressions. In a sensitivity type
system, typechecking is used not only to infer the type of an expression but also its sensitivity
effect, i.e. how the expression may change. The sensitivity effect of an expression is variable-
wise, namely, an expression can change depending on multiple variables. Therefore, it is
useful to define effects as mappings between variables and sensitivities representing how a
variable change may affect the value of an expression. This notions are formalized in Figure
3.1 which presents the syntax of expressions, sensitivity environments and types.

11

r ∈ R
b ∈ B
x ∈ Var
e ∈ Expr ::= r | e + e | e ≤ e real numbers

| b (derived) booleans
| x | λ(x : τ).e | e e functions
| tt unit
| inlτe | inrτe | case e of {x⇒ e } {x⇒ e } sums
| e :: T ascriptions

s ∈ Sens , R+ ∪ {∞} sensitivities
Σ ∈ SEnv , Var⇀ Sens ::= sx+ · · ·+ sx sensitivity environments
τ ∈ Type ::= R | B | unit | (x : τ) Σ−→ τ types

| τ ⊕Σ Σ τ

T ∈ TypeΣ ::= τ; Σ type-and-effects

Figure 3.1: Syntax of static sensitivity types

Expressions. Syntax of expressions support operations on real numbers: real numbers
literals r, additions e + e and comparisons e ≤ e. Expressions also support functions, so
e can be either a variable x, a lambda λ(x : τ).e or an application e e. Additionally, an
expression can encode sums, i.e. expressions can be the unit literal tt, a sum constructor
inlτe or inrτ , or a sum destructor case e of {x⇒ e } { y ⇒ e }. The left-hand side branch
of a case expression is used to destruct an inl constructor. Analogously, the right-hand side
branch is used to destruct inr constructors. For simplicity expressions can be derived booleans
where true = inlunittt and false = inrunittt. Finally, and differently from Sax, every expression
can be ascribed to a type-and-effect instead of just a type. Ascriptions play a key role as
hooks in AGT, so in our plan to gradualize the sensitivity parts of λs it is crucial to support
ascriptions by both types and effects.

Sensitivities and Sensitivity environments. A sensitivity s is either a positive real
number (including zero) or the infinity symbol∞. A sensitivity environment Σ is a mapping
between variables and sensitivities. Similar to Sax, we write a sensitivity environment as
a first-order polynomial, e.g. Σ = 1x + 3y is a sensitivity environment where Σ(x) = 1
and Σ(y) = 3. Although sensitivity environments are in essence partial functions, as only
in-scope variables can be accessed, we treat them as total functions: whenever a variable
that is not within the domain of a sensitivity environment is accessed, we return 0 as the
sensitivity. Extending from the previous example, Σ(z) = 0 because z /∈ dom(Σ). Later, this
simplification is going to allow us to define the typing rules in a more natural manner.

Types. A type can be a real number type R, a boolean type B, a unit type unit, a function
type (x : τ) Σ−→ τ or a sum type τ ⊕Σ Σ τ. The annotated Σ in a function type is called the
latent sensitivity effect and corresponds to the effect of executing the body of the lambda,

12

i.e. applying the function. In a function type (x : τ1) Σ−→ τ2, x may be present in the latent
effect Σ or in the result type τ2 (it can contain other latent effects). Because of this, in
order to typecheck a function, the name of the argument variable, x, is annotated beside the
argument type τ1. Similar to function types, the annotated sensitivity environments Σ1 and
Σ2 in a sum type τ1 ⊕Σ1 Σ2 τ2 are called the latent sensitivity effects, which correspond to the
sensitivity effect of executing the injected expression by the inl or inr, respectively.

Type-and-effects. A type-and-effect T is a pair of a type τ and a sensitivity environment
Σ. It will be used in the typing rules to report the type and the sensitivity effect of an
expression.

3.2. Static Semantics

The typing rules for λs are presented in Figure 3.2. The expression typing judgment
Γ ` e : T uses a type environment Γ to track variables in scope and their corresponding type-
and-effects. Although the sensitivity effect of a variable x is always 1x initially, later when
reducing a program, x may be bounded to a different sensitivity environment. Therefore, we
need to track not only the type of a variable but its type-and-effect. Additionally, for brevity
we just call them type environments, even though technically they are mappings between
variables and type-and-effects.

Constants. Rules (Trlit) and (Tunit) are standard and report no effect since there is
no variables being accessed. Notice that because of treating sensitivity environments as total
functions we can report an empty sensitivity environment ∅. Otherwise, the reported effect
should have the form 0x1 + · · · + 0xn for xi ∈ dom(Γ), i.e. every free variable is explicitly
mapped to a 0 sensitivity.

Additions. Rule (Tplus) computes the aggregated sensitivity effect by adding the effects
of the both sub-expressions. Addition of sensitivity environments is defined as the polynomial
sum, e.g. (1x+ 2y) + (4x) = 5x+ 2y.

Comparisons. Rule (Tleq) is similar to (Tplus) but the resulting effect is scaled by
∞ because the distance between different booleans is considered to be infinite. This is an
implication of encoding booleans using sum types. Sensitivity environment scaling is defined
in Figure 3.4.

Variables. Rule (Tvar) is standard as the type-and-effect of a variable is extracted from
the type environment.

13

Γ ∈ TEnv , Var⇀ TypeΣ ::= · | Γ, x : T type environments

Γ ` e : T Well-typed expressions

(Trlit)

Γ ` r : R;∅

(Tunit)

Γ ` tt : unit;∅

(Tplus)
Γ ` e1 : R; Σ1 Γ ` e2 : R; Σ2

Γ ` e1 + e2 : R; Σ1 + Σ2

(Tleq)
Γ ` e1 : R; Σ1 Γ ` e2 : R; Σ2

Γ ` e1 ≤ e2 : B;∞(Σ1 + Σ2)

(Tvar)
Γ(x) = T
Γ ` x : T

(Tlam)
Γ, x : τ1; x ` e : τ2; Σ

Γ ` λ(x : τ1).e : (x : τ1) Σ−→ τ2;∅

(Tapp)
Γ ` e1 : (x : τ1) Σ2−→ τ2; Σ Γ ` e2 : τ ′1; Σ1 τ ′1 <: τ1

Γ ` e1 e2 : [Σ1/x]τ2; Σ + [Σ1/x]Σ2

(Tinl)
Γ ` e : τ1; Σ1

Γ ` inlτ2e : τ1 ⊕Σ1 ∅ τ2;∅

(Tinr)
Γ ` e : τ2; Σ2

Γ ` inrτ1e : τ1 ⊕∅ Σ2 τ2;∅

(Tcase)
Γ ` e1 : τ11 ⊕Σ11 Σ12 τ12; Σ1 Γ, x : τ11; x ` e2 : τ2; Σ2 Γ, y : τ12; y ` e3 : τ3; Σ3

Γ ` case e1 of {x⇒ e2 } { y ⇒ e3 } :
([Σ1 + Σ11/x]τ2 g [Σ1 + Σ12/y]τ3) ; (Σ1 g [Σ1 + Σ11/x]Σ2 g [Σ1 + Σ12/y]Σ3)

(Tascr)
Γ ` e : T T <: T′

Γ ` e :: T′ : T′

Figure 3.2: Type system of λs

Functions. Rule (Tlam) type checks the body under an extended type environment where
the variable is bound to a type-and-effect composed by the type annotated in the lambda
and a sensitivity environment that reports a single usage of a variable. The resulting type
is annotated with a latent effect Σ, computed as the effect of the body. Lambdas are pure
values, so the effect of constructing one is the empty sensitivity environment.

Function applications. Rule (Tapp) typechecks applications and allows for subtyping in
the argument. Subtyping is defined in Figure 3.3 and is discussed in more detail later when
explaining ascriptions. Since x may be free in Σ2 and τ2 (e.g. in latent effects), x needs
to be substituted by the argument effect, Σ1, in the resulting type-and-effect. A sensitivity
environment substitution, [Σ1/x]Σ, replaces all occurrence of x in Σ by Σ1. For example,
[2y + z/x](3x+ y) = 3(2y + z) + y = 7y + 3z. The same notion can be generalized to types.
The resulting type is the substituted type of the arrow type body, [Σ1/x]τ2, and the resulting

14

Σ <: Σ

Σ1 <: Σ2 ⇔ ∀x ∈ dom(Σ1) ∪ dom(Σ2).Σ1(x) ≤ Σ2(x)

τ <: τ

τ ∈ {R, unit }
τ <: τ

τ21 <: τ11 Σ12 <: Σ22 τ12 <: τ22

(x : τ11) Σ12−−→ τ12 <: (x : τ21) Σ22−−→ τ22

τ11 <: τ21 Σ11 <: Σ21 τ12 <: τ22 Σ12 <: Σ22

τ11 ⊕Σ11 Σ12 τ12 <: τ21 ⊕Σ21 Σ22 τ22

T <: T

τ1 <: τ2 Σ1 <: Σ2

τ1; Σ1 <: τ2; Σ2

Figure 3.3: Subtyping relation of static sensitivity types

effect is computed as the sum of the effect of the function, Σ, and the substituted latent
effect of the function [Σ1/x]Σ2. For example, let e = (λ(x : R).x + y)y an open expression
where y is free, the typing derivation follows as:

(Tapp)
y : R; y ` λ(x : R).x+ y : (x : R) x+y−−→ R;∅ y : R; y ` y : R; y R <: R

y : R; y ` (λ(x : R).x+ y)y : 2y

If no substitution were performed on the resulting sensitivity effect, then x would be free.
Therefore, we compute the sensitivity effect by substituting x by the effect of the argument
[y/x](x+ y) = 2y. The same applies for the resulting type as its type can contain references
to x too, e.g. when returning a function instead of a real number. Sensitivity environment
substitution is formally defined in Appendix A (Figure A.1).

Sum injections. Rule (Tinl) considers inl expressions to be pure. Therefore, sum in-
jections have no effect. Instead, the effect of the expression being injected is annotated in
the sum type as a latent effect. The constructor is annotated with a type τ2 to avoid non-
determinism in the typing derivations. The right-hand side latent effect is empty as it will
never be accessed or used. Rule (Tinr) is defined analogously.

Sum eliminations. Rule (Tcase) typechecks the sub-expressions e2 and e3 under ex-
tended type environments where x and y are bound to a proper type-and-effect, respectively.
The binding of x and y are similar to rule (Tlam). The resulting type is the join of the two

15

branches types, where x and y have been substituted by the cost of using e1: The sensitivity
effect of e1, Σ1, plus the left latent effect Σ11 for x, and analogously, Σ12 for y. The same
approach is followed for the computed effect, but if neither x is used in e2 or y in e3, the cost
of computing e1 is not going to be paid for. Thus, we also join Σ1 to the resulting sensitivity
effect. Therefore, in the worst case (where x or y are not used in their respective expressions)
the reported effect is at least Σ1. The join operator, g, is defined in Figure 3.4: joining two
sensitivities result in the maximum of the two; the join of two sensitivity environments is the
natural lifting of joining the sensitivities variable-wise; join of types is defined inductively
and is contravariant on the argument of function types, so the meet operator f is used. This
operator is analogously defined in Figure 3.4, where the meet of two sensitivities is their
minimum. Consider the open expression case z of {x1 ⇒ 0 } { x2 ⇒ x2 + x2 } and a type
environment Γ = x : R;x, z : R ⊕∞x x R; z, then the type derivation follows as:

(Tcase)

Γ ` z : R ⊕∞x x R; z
Γ, x1 : R;x1 ` 0 : R;∅ Γ, x2 : R;x2 ` x2 + x2 : R; 2x2

Γ ` case z of {x1 ⇒ 0 } {x2 ⇒ x2 + x2 } : R; (z g [z +∞x/x1]∅g [z + x/x2]2x2)

Then, the resulting effect is 2z + 2x. Also notice that if we now define the expression
as case z of {x1 ⇒ 0 } {x2 ⇒ 1 }, then the resulting effect is z, the cost of reducing z to a
value.

Ascriptions. Rule (Tascr) allows expressions to be annotated with a greater type-and-
effect under a subtyping relation. Subtyping is supported only in the sensitivity parts of
type-and-effects. A sensitivity effect is subtype of another if all sensitivities are less or equal
than the other for each variable. Although two sensitivity environments can have different
domains, when checking for subtyping we assume that they share their domains and if a
variable is not present on one of them, its sensitivity is 0. For instance, ∅ <: 2x is equivalent
to 0x <: 2x. Latent effects are co-variant.

For example, consider the open expression e = λ(x : R).x + 2y and a type environment
Γ = y : R; y. Then, e :: (x : R) 2x+3y−−−→ R; 2y is well-typed as its type derivation follows:

(Tascr)
Γ ` e : (x : R) x+2y−−−→ R;∅ (x : R) x+2y−−−→ R;∅ <: (x : R) 2x+3y−−−→ R; 2y

Γ ` e :: (x : R) 2x+3y−−−→ R; 2y : (x : R) 2x+3y−−−→ R; 2y

The subtyping relation holds because x+ 2y <: 2x+ 3y and ∅ <: 2y.

16

3.2. STATIC SEMANTICS 17

sΣ

s∅ = ∅
s(Σ + s′x) = sΣ + (s ∗ s′)x

s g s

s1 g s2 = max(s1, s2)

s f s

s1 f s2 = min(s1, s2)

Σ g Σ

∅g∅ = ∅
(Σ1 + s1x)g (Σ2 + s2x) = (Σ1 g Σ2) + (s1 g s2)x where x /∈ dom(Σ1 g Σ2)

(Σ1 + s1x)g Σ2 = (Σ1 g Σ2) + s1x where x /∈ dom(Σ2)
Σ1 g (Σ2 + s2x) = (Σ1 g Σ2) + s2x where x /∈ dom(Σ1)

Σ f Σ

∅f∅ = ∅
(Σ1 + s1x)f (Σ2 + s2x) = (Σ1 f Σ2) + (s1 f s2)x where x /∈ dom(Σ1 f Σ2)

(Σ1 + s1x)f Σ2 = (Σ1 f Σ2) + s1x where x /∈ dom(Σ2)
Σ1 f (Σ2 + s2x) = (Σ1 f Σ2) + s2x where x /∈ dom(Σ1)

τ g τ

Rg R = R
unitg unit = unit

(x : τ11) Σ12−−→ τ12 g (x : τ21) Σ22−−→ τ22 = (x : (τ11 f τ21)) Σ12gΣ22−−−−−→ (τ12 g τ22)
τ11 ⊕Σ11 Σ12 τ12 g τ21 ⊕Σ21 Σ22 τ22 = (τ11 g τ21) ⊕Σ11gΣ21 Σ12gΣ22 (τ12 g τ22)

τ f τ

Rf R = R
unitf unit = unit

(x : τ11) Σ12−−→ τ12 f (x : τ21) Σ22−−→ τ22 = (x : (τ11 g τ21)) Σ12fΣ22−−−−−→ (τ12 f τ22)
τ11 ⊕Σ11 Σ12 τ12 f τ21 ⊕Σ21 Σ22 τ22 = (τ11 f τ21) ⊕Σ11fΣ21 Σ12fΣ22 (τ12 f τ22)

Figure 3.4: Sensitivities scaling, join and meet

3.3. Dynamic Semantics

The dynamic semantics of λs are defined using evaluation contexts [41] and are presented
in Figure 3.5. We also present extensions to the syntax of the language.

v ∈ Val ::= r | tt | 〈λ(x : τ).e, γ〉 | inlτv | inrτv values
γ ∈ VEnv , var⇀ val ::= {x 7→ v, . . . , x 7→ v} substitutions
e ∈ Expr ::= · · · | 〈λ(x : τ).e, γ〉 | ctx(γ, e) closures and contexts
E ::= � | E + e | v + E | E ≤ e | v ≤ E | E e | v E evaluation contexts

| inlτE | inrτE | case E of {x⇒ e } { x⇒ e }
| E :: T

e
γ−−→ e Notions of reduction

(Tr-plus) r1 + r2 −→ r3
where r3 = r1J+Kr2

(Tr-leq) r1 ≤ r2 −→ b

where b = r1J≤Kr2

(Tr-var) x
γ−−→ γ(x)

(Tr-lam) λ(x : τ).e γ−−→ 〈λ(x : τ).e, γ〉
(Tr-app) 〈λ(x : g1).e, γ′〉 v γ−−→ ctx(γ′ext, e)

where γ′ext = γ′[x 7→ v]
(Tr-case-1) case inlg12v of {x⇒ e2 } { y ⇒ e3 }

γ−−→ ctx(γext, e2)
where γext = γ[x 7→ v]

(Tr-case-2) case inrg11v of {x⇒ e2 } { y ⇒ e3 }
γ−−→ ctx(γext, e3)

where γext = γ[x 7→ v]
(Tr-ctx) ctx(γ′, v) −→ v

(Tr-ascr) v :: T −→ v

e
γ7−−→ e Reduction

(TR→)
e1

γ−−→ e2

e1
γ7−−→ e2

(TRE)
e1

γ7−−→ e2

E[e1] γ7−−→ E[e2]

(TRctx)

e1
γ′

7−−−→ e2

ctx(γ′, e1) γ7−−→ ctx(γ′, e2)

Figure 3.5: Dynamic semantics of λs

Values. Values can be real, boolean or unit literals, a closure or a sum constructor whose
injected expression is also a value.

18

Value environments. A substitution γ is a partial function that maps variables to the
values they were instantiated with, i.e. in the application of a function or the elimination of
an injected expression. An extended substitution γ[x 7→ v] stands for a new substitution in
which the variable x is bound to the value v.

Runtime expressions. Similar to Sax, the runtime semantics of λs are defined using
explicit substitution [42]. In order to support this in a small-step discipline, we introduce a
new piece of syntax: ctx, called contexts. When using implicit substitution, denoted [v/x]e,
every occurrence of x is immediately substituted by v and the actual substitution is deferred
to the meta language. For instance, [2/x](2x+ 3 ∗x) immediately yields 2 ∗ 2 + 3 ∗ 2, without
the need of extra reduction steps. In contrast, a language with explicit substitution takes
care of substituting each occurrence of the variable using reduction steps. In λs , when a
variable is bounded to a value we create a new context with an extended substitution where
the variable is mapped to the respecting value. For simplicity we define closures and contexts
under the same meta-variable e but it is important to note that the (unreduced) body of
a lambda will never contain a closure nor a context, since they are not part of the source
language and they are constructed only during the reduction of an expression. Typing rules
for closures and contexts are presented in the Appendix A.

Elimination rules. We present the elimination rules as notions of reduction, which cap-
ture how an expression and a substitution are transformed into a new pair of expression and
substitution. Since a substitution is never explicitly extended upon reduction, the substi-
tution on both sides of an elimination rule will always be the same. Thus, we simplify the
notation writing the substitution (once) over the arrow in the elimination rule, i.e. e γ−−→ e.
Additionally, we do not annotate it whenever it is not relevant for the reduction rule. Rules
(Tr-plus) and (Tr-leq) are eliminated for the value calculated by the meta language. Rule
(Tr-var) eliminates a variable by (explicitly) substituting it with the value provided in the
substitution. Rule (Tr-lam) creates a closure that captures the current substitution. Rule
(Tr-app) takes an application and produces a new context for reducing the body of the
lambda e, where the substitution is the one captured by the closure extended with the value
v provided for x. Rules (Tr-case-left) and (Tr-case-right) work analogously to (Tr-
app) except for the fact that they extend the current substitution. Rule (Tr-ctx) takes
care of dropping a substitution once the expression contained in the context has reached a
value. Rule (Tr-ascr) eliminates ascriptions keeping only the underlying value.

Reduction rules. For reduction rules, we apply the same syntax simplifications as for
elimination rules. Reduction rules, denoted e γ7−−→ e, capture the inductive mechanism used
to reduce an expression using evaluation contexts E. The formulation of evaluation contexts
is defined under a call-by-value discipline. Rule (TR→) establish that if an expression e1
can be eliminated to e2, it also can be reduced to e2. Rule (TRE) captures the inductive
mechanism of reduction: an expression equivalent to E[e1] can reduce to another expression
E[e2] if e1 reduces to e2. Rule (TRctx) is a mechanism for handling explicit substitution:
it operates similarly to (TRE) but allows the inner expression to reduce under a different
substitution γ′.

19

Explicit substitution in action. The explicit substitution mechanism is mainly per-
formed by a combination of the rules (TRctx) and (Tr-var). Suppose e = (λ(x :
R).x+ 1) 2, then the reduction will perform as:

(λ(x : R).x+ 1) 2
7→ 〈λ(x : R).x+ 1,∅〉 2 by (Tr-lam), (TR→) and (TRE)
7→ ctx({x 7→ 2 } , x+ 1) by (Tr-app), (TR→)
7→ ctx({x 7→ 2 } , 2 + 1) by (Tr-var), (TR→) and (TRctx)
7→ ctx({x 7→ 2 } , 3) by (Tr-plus), (TR→) and (TRctx)
7→ 3 by (Tr-ctx), (TR→)

The reduction steps take care of substituting every instance of x, and when the reduction
inside a context has reached a final value, the substitution is dropped along with the context,
since a value has no free variables.

3.4. Properties

λs satisfy two very important properties: type safety, i.e. every well-typed closed expres-
sion is either a value or it can take a step to another expression whose type is a subtype of
the original expressions’ type; and soundness, which is going to be detailed later.
Proposition 1 (Type safety). Let · ` e : T. Then one of the following is true:

1. e is a value v.

2. e ∅7−−→ e′, where · ` e′ : T′ and T′ <: T.

Proof. The proof is standard and follows from progress and preservation [43].

Soundness For a sensitivity type system to be sound, the predicted sensitivity of a program
has to match or over-approximate the actual sensitivity. Intuitively, if a program is said to
be s-sensitive, it cannot magnify the distance between two inputs by more than a factor of
s. Formally, in a sensitivity types setting soundness is called metric preservation [11]. This
property captures the maximum variation of an open expression if closed with two different
(but related) substitutions, i.e. with respect to an input variation. To formalize the notion
of input variation we (1) classify free variables as directly sensitives and indirectly sensitives
depending on their sensitivity effect under a type environment Γ, and (2) define distance
environments ∆ that establish the variation of the free variables. Free variables are classified
as following:
Definition 1 (Directly sensitive variables). A variable x is directly sensitive under a type
environment Γ if and only if x ∈ dom(Γ) and Γ(x) = τ; x, for some τ.

20

Definition 2 (Indirectly sensitive variables). A variable x is indirectly sensitive under a type
environment Γ if and only if x ∈ dom(Γ) and ∀xi ∈ dom(Σ). xi 6= x, where Γ(x) = τ; Σ for
some τ.

Suppose the expression e = x+2y, then in order to typecheck this expression we must use
a type environment, e.g. Γ = x : R; x, y : R; 2x. In the last example we are implicitly defining
x a directly sensitive variable, as its sensitivity effect is the variable itself. Additionally, y
is a indirectly sensitive variable since its effect depends entirely on other variables (x in this
case). Typechecking the expression would yield Γ ` e : R; 5x.

Distance environments. The syntax of distance environments is defined in Figure 3.6.
Syntactically, a distance environment ∆ is equivalent to a sensitivity environment. However,
semantically they differ as a distance environment captures how much a directly sensitive
variables may vary. Note that because of this, a distance environment will only contain a
subset of all free-variables, as indirectly sensitive variables have no explicit variation, i.e.
y /∈ dom(∆) if y is indirectly sensitive. This notion is formalized as follows:

Definition 3. A distance environment ∆ is well formed with respect to a type environment
tenv, written Γ ` ∆, if ∀x ∈ dom(Γ) such that x is directly sensitive with respect to Γ, it
follows that x ∈ dom(∆).

Logical relations. Similar to Sax, we establish metric preservation by using a logical
relation. Logical relations are a proof method useful for enunciating properties that cannot
be proven by traditional mechanisms like structural induction. They were first used for
proving strong normalization [44], but to the date it has been applied in several scenarios,
specially for hyperproperties such as noninterference [45], relational parametricity [46] or
metric preservation in the case of Sax.

The logical relation for metric preservation is presented in Figure 3.6. We define three
mutually recursive logical relations: for values, computations and substitutions. The logical
relations for values (V∆JTK) and computations (T∆JTK) are indexed by a type-and-effect
T. On the other hand, the logical relation for substitutions (G∆JΓK) is indexed by a type
environment Γ. All three logical relations are also indexed by a distance environment ∆.
Notation (v1, v2) ∈ V∆JTK denotes that the value v1 is related to value v2 at type-and-effect
T and at distance environment ∆. Likewise for computations and substitutions.

Related real numbers. Two numbers r1 and r2 are related if their distance, i.e. |r1−r2|, is
bounded by the maximum variation. The maximum variation is calculated as the dot product
of the distance environment ∆ and the sensitivity effect Σ. The dot product between two a
distance environment and a sensitivity environment is defined inductively in Figure 3.6, but it
is essentially the classic vectorial dot product. Notice that since Σ(x) = 0 when x /∈ dom(Σ),
the definition of the dot product is correct and exhaustive.

Related unit literals. As expected, only the unit literal tt is related to itself.

21

∆ ∈ DEnv , Var⇀ Sens ::= sx+ · · ·+ sx distance environments

(r1, r2) ∈ V∆JR; ΣK ⇐⇒ |r1 − r2| ≤ ∆ · Σ
(v1, v2) ∈ V∆Junit; ΣK ⇐⇒ v1 = tt ∧ v2 = tt

(v1, v2) ∈ V∆J(x : τ1) Σ2−→ τ2; ΣK ⇐⇒ ∀Γ, γ1, γ2, v
′
1, v
′
2,Σ1 :

(v′1, v′2) ∈ V∆Jτ1; Σ1K ∧ (γ1, γ2) ∈ G∆JΓK.
(v1 v

′
1 | γ1, v2 v

′
2 | γ2) ∈ T∆J[Σ1/x]τ2; Σ + [Σ1/x]Σ2K

(v1, v2) ∈ V∆Jτ1 ⊕Σ1 Σ2 τ2; ΣK ⇐⇒ ∆ · Σ <∞ =⇒ ∀Γ, γ1, γ2 : (γ1, γ2) ∈ G∆JΓK.
(useL(v1) | γ1, useL(v2) | γ2) ∈ T∆Jτ1; Σ + Σ1K∨
(useR(v1) | γ1, useR(v2) | γ2) ∈ T∆Jτ2; Σ + Σ2K

(e1 | γ1, e2 | γ2) ∈ T∆Jτ1; Σ1K ⇐⇒ (e1
γ17−−−→

∗
v1 ∧ e2

γ27−−−→
∗
v2) =⇒ (v1, v2) ∈ V∆Jτ1; Σ1K

(γ1, γ2) ∈ G∆JΓK ⇐⇒ dom(Γ) = dom(γ1) = dom(γ2)
∧ ∀x ∈ dom(Γ). (γ1(x), γ2(x)) ∈ V∆JΓ(x)K

useL(inlτv′) = v′

useR(inrτv′) = v′

∆ · Σ Dot product

∅ · Σ = 0
(∆ + sx) · Σ = (∆ · Σ) + s ∗ Σ(x)

Figure 3.6: λs : Logical relations for metric preservation

Related closures. Two closures are related if, given related inputs, their computation
under two related substitutions are related at the type-and-effect of the application. We
quantify over related substitutions to reduce the applications of the closures as a inductive
hypothesis mechanism, even though the closures and the arguments are already values.

Related sum injections. Different sum constructors (with the same type-and-effect) are
considered to be related at distance∞, i.e. when ∆ ·Σ =∞. Otherwise, both sum construc-
tors have to (1) be either inl or inr. And, (2) the computations of their injected expressions
along with any two related substitutions have to be related on their respective type-and-
effects. The sensitivity effect of the injected expressions is computed mirroring the typing
rules. Similar to related closures, we also quantify over related substitutions to reduce the
corresponding branch of the sum expression. Notice, however, that useL(vi) and useR(vi) are
always values. We prefer to reason about their reduction in order to maintain consistency
with the gradual version of these logical relations presented later, where useL and useR are
not going to return values but expressions (not yet reduced).

22

Related computations. Since λs is a language with explicit substitution, instead of re-
lating pairs of closed terms, we reason about pairs of related configurations, i.e. expressions
enclosed by substitutions. Two configurations are related if they reduce to related values at
the same type-and-effect. Although we could use the same approach as in related functions
and sums, quantifying over related substitutions instead of taking them as arguments, we
follow the classical approach where the quantification is done in the main property, i.e. metric
preservation.

Related substitutions. Two substitutions are related with respect to a type environment
Γ, if all their domains are the same. Additionally, the values held in the substitutions have
to be related with respect to the expected type of that variable in Γ.

Combining the notion of sensitive variables and distance environments we can now an-
nounce the metric preservation property.

Theorem 2 (Metric preservation) If Γ ` e : T, then ∀∆, γ1, γ2 such that Γ ` ∆ and
(γ1, γ2) ∈ G∆JΓK, (e | γ1, e | γ2) ∈ T∆JTK.

Proof. The proof is a particular case of metric preservation in a gradual setting, presented
in the next chapter.

Metric preservation in action. To illustrate how the logical relations work let us use
the same example as before: e = x + 2y, Γ = x : R;x, y : R; 2x, T = R; 5x and Γ ` e : T.
Let us pick an arbitrary distance environment ∆ = 2x. Notice how dom(∆) = {x } as x
is the only sensitive variable. Then, we have pick two related substitutions. In order to
show how metric preservation captures the maximum variation of expressions, let us pick
γ1 = {x 7→ 2, y 7→ 4 } and γ2 = {x 7→ 4, y 7→ 8 }. Now, let us check that (γ1, γ2) ∈ G∆JΓK.
We need to prove:

• dom(Γ) = dom(γ1) = dom(γ2): Trivial. And,

• ∀x ∈ dom(Γ).(γ1(x), γ2(x)) ∈ V∆JΓ(x)K, i.e.:

– (2, 4) ∈ V∆JR;xK: As ∆ = 2x, then ∆ · (1x) = 2. Finally, |2− 4| ≤ 2 holds. And,
– (4, 8) ∈ V∆JR; 2xK: As ∆ = 2x, then ∆ · (2x) = 4. Finally, |4− 8| ≤ 4 holds.

Now, given that (γ1, γ2) ∈ G∆JΓK, from theorem 2 we know that (e | γ1, e | γ2) ∈ T∆JR; 5xK.
Let us see why:

• First, trivially e γ17−−−→ 10 and e γ27−−−→ 20. Then we have to prove that,

• (10, 20) ∈ V∆JR; 5xK: ∆ · (5x) = 10. Finally, |10− 20| ≤ 10 holds.

In this example, the predicted sensitivity matches the actual sensitivity of the expression,
5x. Nevertheless, given that a sensitivity type system is a conservative approximation, it

23

may over-approximate the sensitivity of an expression. However, this approximation is still
sound.

Consider a new example where e = case (inlR3z) of {x⇒ x } { y ⇒ 6z } and Γ = z : R; z.
The type-and-effect of e is Γ ` e : T with T = R;∅ g 3z g 6z = 6z. Notice that the
typing rules over-approximate the sensitivity effect by joining the effect of the right branch,
6z, whereas the expression will reduce through the left branch. Now, let us check soundness
for e.

Let ∆ = 3z, γ1 = { z 7→ 5 } and γ2 = { z 7→ 8 }. Again, let us see that (γ1, γ2) ∈ G∆JΓK:

• dom(Γ) = dom(γ1) = dom(γ2): Trivial. And,

• (5, 8) ∈ V∆JR; zK: As ∆ = 3z, then ∆ · (1z) = 3. Finally, |5− 8| ≤ 3 holds.

• Let us reduce e under the two substitutions: e γ17−−−→ 15 and e γ27−−−→ 24. Then, we have
to prove that,

• (15, 24) ∈ V∆JR, 6zK: ∆ · (6z) = 18. Finally, |15− 24| ≤ 18.

Notice that even though the substitutions are at the maximum distance allowed by ∆
(|5 − 8| = 3 exactly), the over-approximation of the type system is still sound, i.e. satisfies
metric preservation.

Of course, the previous examples show arbitrary values and they are not proofs of metric
preservation. However, they are useful to exemplify the categorization of directly and indi-
rectly sensitive variables as well as the semantic characterization of distance environments.
In particular, they show how sensitivity types are a sound approximation of the actual sen-
sitivity of the expression.

24

3.5. Summary

In this chapter we presented λs , a statically-typed sensitivity language, with the following
characteristics (some of them inherited from Sax):

• Support for real number operations, functions and sum types. The syntax of
λs is expressive enough to explore interesting results in Chapter § 4. We also support
derived booleans, encoded by using sum types.

• Type-and-effect discipline. An expression e can be typechecked to a particular type
and sensitivity effect, namely Γ ` e : T, where T is a type-and-effect tuple τ; Σ and
Γ : Var ⇀ TypeΣ is a mapping from variables to type-and-effects. Also, ascriptions by
type-and-effect are supported in the syntax of the language.

• Small-step dynamic semantics. Since AGT is formalized in languages with small-
step runtime semantics, we defined the reduction rules of λs using evaluation contexts.

• Support for closures and higher-order programming. Support for higher-order
programming is an important feature in languages for verifying differential privacy. Since
our work is meant to be a step towards gradual differential privacy languages, it is impor-
tant that λs (and our gradual sensitivity language) supports higher-order programming
as well.

• Type safe and sound. For the latter, we presented an interpretation of directly and
indirectly sensitive free variables, based on their sensitivity effect.

In Chapter 4 we derive a gradually-typed sensitivity language by applying step-by-step
the AGT methodology to λs . Finally, in addition to establishing important properties for a
gradual language, we explore whether type safety and soundness are satisfied by the derived
gradual language.

25

Chapter 4

A Gradual Sensitivity Type System

With a static sensitivity type system in place, we can start deriving a gradual language using
the Abstracting Gradual Typing methodology (AGT) [21]. The first step is to define the
syntax and give meaning to gradual types. The latter is achieved by defining a concretization
function, C : GTypeΣ → P(TypeΣ), which connects gradual types with static types. Then,
by finding a suitable abstraction function, A : P(TypeΣ) → GTypeΣ , to establish a Galois
connection [39], the static semantics of the static language can be lifted to the gradual setting.
Finally, the dynamic semantics of the gradual language are derived by proof normalization
of gradual typing derivations. In this chapter, we derive the gradual sensitivity language λi
by applying the AGT methodology to λs , introduced in Chapter 3.

4.1. Syntax and Meaning of Gradual Types

We aim to gradualize only the sensitivity parts of the type system. Therefore, the “dy-
namic” end of the spectrum is simply typed. The cornerstone of a sensitivity language are
sensitivities, so defining the syntax and meaning of gradual sensitivities is crucial.

Gradual sensitivities. Most gradual languages introduce the unknown type ? in the types
syntax as a form of imprecision. Analogously, a natural way to introduce imprecision in a
sensitivity language would be the unknown sensitivity ?, that represents any sensitivity.
However, as noted by Toro et al. [36], later when reasoning why a consistent subtyping
judgment holds, the unknown sensitivity ? is not going to be expressive enough when trying
to justify consistent transitivity judgments. Toro et al. solves this by using intervals to
represent why consistent subtyping judgments hold. We follow the same approach by using
intervals to abstract the meaning of gradual sensitivities. We defer the technical discussion
of this decision to Subsection 4.4.1.

Syntax of gradual sensitivities is defined in Figure 4.1. A gradual sensitivity is defined
as a valid interval of two sensitivities, i.e. positive real numbers or ∞ where the lower
bound is less than or equal to the upper bound. This way, a gradual sensitivity captures the

26

i ∈ GSens ::= [s, s] gradual sensitivities
| s (derived) fully-static sensitivities
| ? (derived) unknown sensitivities

Ξ ∈ GSEnv , Var⇀ GSens ::= ix+ · · ·+ ix gradual sensitivity environments
g ∈ GType ::= R | B | unit | (x : g) Ξ−→ g gradual types

| g ⊕Ξ Ξ g

G ∈ GTypeΣ ::= g; Ξ gradual type-and-effects

Figure 4.1: Syntax of gradual sensitivities

plausibility of a sensitivity being any number within the range. Furthermore, as a syntactic
sugar we allow for the unknown sensitivity ? as a shorthand for the interval [0,∞], and a fully
precise sensitivity s as a shorthand for the interval [s, s]. For example, a gradual sensitivity
environment may be Ξ = [0, 5]x+ [0,∞]y + [3, 3]z = [0, 5]x+ ?y + 3z.

Expressions e, values v, substitutions γ, type environments Γ and evaluation contexts E
also have gradual types occurrences in them, but for readability their notation is not changed.

Similar to defining the syntax, a concretization function for gradual sensitivities naturally
leads to the definitions of the concretization functions for sensitivity environments, types and
type-and-effects.

Definition 4 (Sensitivity concretization). Let Ci : GSens→ P(Sens) be defined as follows:

Ci([s1, s2]) = { s | s1 ≤ s ≤ s2 }

Definition 5 (Sensitivity environments concretization). Let CΞ : GSEnv → P(SEnv) be
defined as follows:

CΞ(∅) = {∅ } CΞ(Ξ + ix) = {Σ + sx | Σ ∈ CΞ(Ξ) ∧ s ∈ Ci(i) }

Definition 6 (Type concretization). Let Cg : GType→ P(Type) be defined as follows:

Cg(R) = {R } Cg(unit) = { unit }

Cg((x : g1) Ξ−→ g2) = { (x : τ1) Σ−→ τ2 | τ1 ∈ Cg(g1) ∧ τ2 ∈ Cg(g2) ∧ Σ ∈ CΞ(Ξ) }

Cg(g1 ⊕Ξ1 Ξ2 g2) = { τ1 ⊕Σ1 Σ2 τ2 | τ1 ∈ Cg(g1) ∧ Σ1 ∈ CΞ(Ξ1) ∧ Σ2 ∈ CΞ(Ξ2) ∧ τ2 ∈ Cg(g2) }

Definition 7 (Type-and-effect concretization). Let C : GTypeΣ → P(TypeΣ) be defined as
follows:

C(g; Ξ) = { τ ; Σ | τ ∈ Cg(g) ∧ Σ ∈ CΞ(Ξ) }

Once the concretization function is defined, the notion of precision can be directly derived
from it [21]:

27

Definition 8 (Sensitivity precision). i1 v i2 if and only if Ci(i1) ⊆ Ci(i2).

Intuitively a gradual sensitivity i1 is more precise than i2 if the interval of i1 is contained
in the interval of i2. For instance, [2, 10] v [1, 20] or [10, 20] v ? but [0, 5] 6v [2, 7].

Proposition 3. The following definition of sensitivity precision is equivalent to definition 8.
Let i1 = [s11, s12], i2 = [s21, s22], then i1 v i2 if and only if s11 ≥ s21 and s12 ≤ s22.

Definition 9 (Sensitivity environment precision). Ξ1 v Ξ2 if and only if CΞ(Ξ1) ⊆ CΞ(Ξ2).

Proposition 4 (Sensitivity environment precision, inductively). The following definition of
sensitivity environment precision is equivalent to definition 9.

∅ v ∅
Ξ1 v Ξ2 i1 v i2

Ξ1 + i1x v Ξ2 + i2x

Definition 10 (Type precision). g2 v g2 if and only if C(g2) ⊆ C(g2).

Proposition 5 (Type precision, inductively). The following inductive definition of type pre-
cision is equivalent to definition 10.

g ∈ {R, unit,B }
g v g

g1 v g′1 Ξ v Ξ′ g2 v g′2

(x : g1) Ξ−→ g2 v (x : g′1) Ξ′

−→ g′2

g1 v g′1 Ξ1 v Ξ′1 Ξ2 v Ξ′2 g2 v g′2

g1 ⊕Ξ1 Ξ2 g2 v g′1 ⊕Ξ′
1 Ξ′

2 g′2

Definition 11 (Precision). G1 v G2 if and only if C(G1) ⊆ C(G2).

Proposition 6 (Precision, inductively). The following definition of precision is equivalent
to definition 11.

g1 v g2 Ξ1 v Ξ2

g1; Ξ1 v g2; Ξ2

The next step is to define an abstraction function A, which produces a gradual type-and-
effect from a non-empty set of static type-and-effects. The abstraction function must be both
sound and optimal with respect to C: From a set of static type-and-effects, it produces the
most precise gradual type-and-effects that over-approximates the given set. When A satisfy
these two properties, 〈C,A〉 is said to form a Galois connection [39].

Similar to concretization, we first define an abstraction function for gradual sensitivities
and all other definitions follow naturally. For deriving a gradual sensitivity from a set of static
sensitivities we need to create a new interval in which the lower bound is less than or equal
to any other sensitivity within the set. Similarly, the upper bound must be greater or equal
to any sensitivity within the set. Therefore, the auxiliary functions min and max are used

28

to find a suitable lower and upper bound, respectively. Abstraction functions for sensitivity
environments, types and type-and-effects are defined inductively, using the previously defined
abstractions. For convenience, we use the notation { τi } to represent a set of type-and-effects
labeled by an index i. We extend this notation to all type constructs and forms, including
sensitivities and sensitivity environments.

Definition 12 (Sensitivity abstraction). Let Ai : P(Sens) ⇀ GSens be defined as follows:

Ai(S) = [min(S),max(S)]

Definition 13 (Sensitivity environments abstraction). Let AΞ : P(SEnv) ⇀ GSEnv be
defined as follows:

AΞ({∅ }) = ∅ AΞ({Σi + six }) = AΞ({Σi }) + Ai({ si })x

Definition 14 (Type abstraction). Let Ag : P(Type) ⇀ GType be defined as follows:

Ag({R }) = R Ag({ tt }) = tt

Ag({ (x : τi1) Σi−→ τi2 }) = (x : Ag({ τi1 }))
AΞ{Σi }−−−−−→ Ag({ τi2 })

Ag({ τi1 ⊕Σi1 Σi2 τi2 }) = Ag({ τi1 }) ⊕AΞ ({Σi1 }) AΞ ({Σi2 }) Ag({ τi2 })

Definition 15 (Abstraction). Let A : P(TypeΣ) ⇀ GTypeΣ be defined as follows:

A({ τi; Σi }) = Ag({ τi });AΞ({Σi })

The abstraction function A is both sound and optimal: From a set of static type-and-
effects, it produces themost precise gradual type-and-effects that over-approximates the given
set. The same applies for the other abstraction functions within their respecting domains.
However, for brevity, we enounce only the Galois connections for gradual sensitivities and
type-and-effects.

Proposition 7 (Galois connection for sensitivities). 〈Ci , Ai〉 is a Galois connection, i.e.:

1. (Soundness) for any non-empty set of static sensitivities S = { s }, we have S ⊆
Ci(Ai(S))

2. (Optimality) for any gradual sensitivity i, we have i v Ai(Ci(i)).

Proposition 8 (Galois connection for type-and-effects). 〈C,A〉 is a Galois connection, i.e.:

1. (Soundness) for any non-empty set of static type-and-effects S = {T }, we have S ⊆
C(A(S))

29

2. (Optimality) for any gradual type-and-effect G, we have G v A(C(G)).

In summary, we defined the syntax and meaning of gradual sensitivities. For the lat-
ter, we defined concretization and abstraction functions for sensitivities, sensitivity envi-
ronments, types and type-and-effects. Two important results come out of this: we now
have a definition of precision for gradual constructs; and, as defined, concretization and ab-
straction functions form Galois connections. These results play a key role in the following
sections.

4.2. Lifting the Type System

In order to derive the static semantics of λi , we lift type predicates (subtyping) and
type functions (sensitivities and sensitivity environments addition, sensitivity environment
scaling, sensitivity environment substitution and join). This lifting is obtained by leveraging
the Galois connections through existential lifting. Intuitively, a lifted predicate between two
gradual types holds if and only if there exists a concretization of the gradual types involved
that satisfy the static predicate. For functions, the result is the abstraction of the collected
results of the function applied to all elements of the concretization(s) of the gradual type(s).

4.2.1. Lifting predicates

Let P ⊆ P(Sens, Sens) be some binary predicate on sensitivities. The lifted predicate P̃ ⊆
P(GSens,GSens) is true for two gradual sensitivities i1 and i2 if there exist two sensitivities s1
and s2, represented by the two gradual sensitivities, that satisfy the static predicate P . The
same notion is valid for other gradual constructs, such as sensitivity environments, types and
type-and-effects. Although the equivalences are only conjectured, i.e. not formally proven,
we also provide algorithmic definitions for all lifted predicates.
Definition 16 (Consistent subtyping for sensitivities). i1 ‹≤ i2 if and only if s1 ≤ s2, for
some s1 ∈ Ci(i1), s2 ∈ Ci(i2)
Proposition 9. The following definition of consistent sensitivity subtyping is equivalent to
definition 16:

s1 ≤ s2

[s1, s12]‹≤ [s21, s2]

Definition 17 (Consistent subtyping for sensitivity environments). Ξ1 <̃: Ξ2 if and only if
Σ1 <: Σ2 for some Σ1 ∈ CΞ(Ξ1), Σ2 ∈ CΞ(Ξ2).
Proposition 10. The following definition of consistent sensitivity environment subtyping is
equivalent to definition 17: Ξ1 <̃: Ξ2 if and only if ∀x. Ξ1(x) ‹≤ Ξ2(x). Or inductively:

∅ <̃: ∅
Ξ1 <̃: Ξ2 i1 ‹≤ i2
Ξ1 + i1x <̃: Ξ2 + i2x

30

Definition 18 (Consistent subtyping). g1 <̃: g2 if and only if τ1 <: τ2 for some τ1 ∈ Cg(g1),
τ2 ∈ Cg(g2).

Proposition 11. The following definition is equivalent to definition 18:

g ∈ {R, unit }
g <̃: g

g′1 <̃: g1 Ξ <̃: Ξ′ g2 <̃: g′2
(x : g1) Ξ−→ g2 <̃: (x : g′1) Ξ′

−→ g′2

g1 <̃: g′1 Ξ1 <̃: Ξ′1 g2 <̃: g′2 Ξ2 <̃: Ξ′2
g1 ⊕Ξ1 Ξ2 g2 <̃: g′1 ⊕Ξ′

1 Ξ′
2 g′2

Definition 19 (Consistent subtyping for type-and-effects). G1 <̃: G2 if and only if T1 <: T2
for some T1 ∈ C(G1), T2 ∈ C(G2).

Proposition 12. The following definition is equivalent to definition 19:

g1 <̃: g2 Ξ1 <̃: Ξ2

g1; Ξ1 <̃: g2; Ξ2

4.2.2. Lifting Type Functions

In order to lift the type functions the abstraction function is required: the lifted function
is defined as the abstraction of all possible results of the static function applied to the
concretization of types. For example, consider a partial function F : TypeΣ × TypeΣ ⇀

TypeΣ . The lifting of F , namely F̃ , is defined as F̃ (G1, G2) = A(ÛF (C(G1), C(G2)))1. Note
that the partiality of F leads to the notion of errors [21]. This notion extends to n-ary
functions as well as to other abstractions and concretizations (not only type-and-effects).

In order to improve readability, we overload the name of the type functions to be lifted,
so they can operate on static types as well on gradual types. For example, the addition of
two gradual sensitivities is denoted i1 + i2 instead of i1 +̃ i2. We also provide algorithmic
definitions for lifted type functions.

Definition 20. i1 + i2 = Ai({ s1 + s2 | (s1, s2) ∈ Ci(i1)× Ci(i2) }).

Proposition 13. The following definition is equivalent to definition 20: Let i1 = [s1, s2],
i2 = [s′1, s′2], then i1 + i2 = [s1 + s′1, s2 + s′2].

Definition 21. Ξ1 + Ξ2 = Ai({Σ1 + Σ2 | (Σ1,Σ2) ∈ CΞ(Ξ1)× CΞ(Ξ2) }).

Proposition 14. The following definition is equivalent to definition 21:

∅+∅ = ∅
(Ξ1 + i1x) + (Ξ2 + i2x) = (Ξ1 + Ξ2) + (i1 + i2)x

Definition 22. i1 ∗ i2 = Ai({ s1 ∗ s2 | (s1, s2) ∈ Ci(i1)× Ci(i2) }).

1 ÙF is the notation for the collecting function of F

31

Proposition 15. The following definition is equivalent to definition 22: Let i1 = [s1, s2],
i2 = [s′1, s′2], then i1 ∗ i2 = [s1 ∗ s′1, s2 ∗ s′2].

Definition 23. iΞ = Ai({ sΣ | (s,Σ) ∈ Ci(i)× CΞ(Ξ) }).

Proposition 16. The following definition is equivalent to definition 23:

i∅ = ∅
i(Ξ + i′x) = (iΞ) + (i ∗ i′)x

Definition 24. [Ξ1/x]Ξ = Ai({ [Σ1/x]Σ | (Σ1,Σ) ∈ CΞ(Ξ1)× CΞ(Ξ) }).

Proposition 17. The following definition is equivalent to definition 24:

[Ξ1/x]∅ = ∅
[Ξ1/x](Ξ + ix) = [Ξ1/x]Ξ + iΞ1

[Ξ1/x](Ξ + iy) = [Ξ1/x]Ξ + iy

Definition 25. [Ξ/x]g = Ai({ [Σ/x]τ | (Σ, τ) ∈ CΞ(Ξ)× Cg(g) }).

Proposition 18. The following definition is equivalent to definition 25:

[Ξ/x]R = R
[Ξ/x]unit = unit

[Ξ/x]((y : g1) Ξ2−→ g2) = (y : [Ξ/x]g1) [Ξ/x]Ξ2−−−−→ [Ξ/x]g2

[Ξ/x](g1 ⊕Ξ1 Ξ2 g2) = [Ξ/x]g1 ⊕[Ξ/x]Ξ1 [Ξ/x]Ξ2 [Ξ/x]g2

Definition 26. i1 g i2 = Ai({ s1 g s2 | (s1, s2) ∈ Ci(i1)× Ci(i2) }).

Proposition 19. The following definition is equivalent to definition 26: Let i1 = [s11, s12],
i2 = [s21, s22], then i1 g i2 = [max(s11, s21),max(s12, s22)].

Definition 27. Ξ1 g Ξ2 = AΞ({Σ1 g Σ2 | (Σ1,Σ2) ∈ CΞ(Ξ1)× CΞ(Ξ2) }).

Proposition 20. The following definition is equivalent to definition 27:

∅g∅ = ∅
(Ξ1 + i1x)g (Ξ2 + i2x) = (Ξ1 g Ξ2) + (i1 g i2)x

Definition 28. g1 g g2 = AΞ({ τ1 g τ2 | (τ1, τ2) ∈ Cg(g1)× Cg(g2) }).

Proposition 21. The following definition is equivalent to definition 28:

Rg R = R
unitg unit = unit

(x : g11) Ξ12−−→ g12 g (x : g21) Ξ22−−→ g22 = (x : (g11 f g21)) Ξ12gΞ22−−−−−→ (g12 g g22)
g11 ⊕Ξ11 Ξ12 g12 g g21 ⊕Ξ21 Ξ22 g22 = (g11 g g21) ⊕Ξ11gΞ21 Ξ12gΞ22 (g12 g g22)

Definition 29. i1 f i2 = Ai({ s1 f s2 | (s1, s2) ∈ Ci(i1)× Ci(i2) }).

32

Proposition 22. The following definition is equivalent to definition 29: Let i1 = [s11, s12],
i2 = [s21, s22], then i1 f i2 = [min(s11, s21),min(s12, s22)].

Definition 30. Ξ1 f Ξ2 = AΞ({Σ1 f Σ2 | (Σ1,Σ2) ∈ CΞ(Ξ1)× CΞ(Ξ2) }).

Proposition 23. The following definition is equivalent to definition 30:

∅f∅ = ∅
(Ξ1 + i1x)f (Ξ2 + i2x) = (Ξ1 f Ξ2) + (i1 f i2)x

Definition 31. g1 f g2 = AΞ({ τ1 f τ2 | (τ1, τ2) ∈ Cg(g1)× Cg(g2) }).

Proposition 24. The following definition is equivalent to definition 31:

Rf R = R
unitf unit = unit

(x : g11) Ξ12−−→ g12 f (x : g21) Ξ22−−→ g22 = (x : (g11 g g21)) Ξ12fΞ22−−−−−→ (g12 f g22)
g11 ⊕Ξ11 Ξ12 g12 f g21 ⊕Ξ21 Ξ22 g22 = (g11 f g21) ⊕Ξ11fΞ21 Ξ12fΞ22 (g12 f g22)

To summarize, we provided definitions for lifted type relations (subtyping) and functions.
All definitions follow directly from the AGT methodology. Accounting for the pragmatics
of the language, we provided algorithmic definitions for all lifted relations and functions.
Whereas the predicate for consistent subtyping is denoted <̃:, in contrast to static subtyp-
ing <:, all lifted functions are overloaded with their static counterpart in order to improve
readability in upcoming sections. With all lifted type predicates and functions in place, we
can now lift the type system.

4.3. Static Semantics

The type-system for λi is presented in Figure 4.2. The rules are obtained by replacing the
static elements with their gradual counterpart just as the type functions and relations with
their lifted counterparts. Note that by overloading the lifted type functions, only the types
and the notation for subtyping are changed.

The type system of λi accepts optimistically judgments that may hold during runtime. For
instance, consider the open expression 2x :: R; ?x :: R;x and a type environment Γ = x : R;x.
The type derivation of e follows as:

(Gascr)
(Gascr)

Γ ` 2x : R; 2x R; 2x <̃: R; ?x
Γ ` 2x :: R; ?x : R; ?x R; ?x <̃: R; x

Γ ` 2x :: R; ?x :: R;x : R;x

Notice how both subtyping judgments, R; ?x <̃: R; x and R; 2x <̃: R; ?x, hold. This is

33

Γ ` e : G Well-typed gradual expressions

(Grlit)

Γ ` r : R;∅

(Gplus)
Γ ` e1 : R; Ξ1 Γ ` e2 : R; Ξ2

Γ ` e1 + e2 : R; Ξ1 + Ξ2

(Gleq)
Γ ` e1 : R; Ξ1 Γ ` e2 : R; Ξ2

Γ ` e1 ≤ e2 : B;∞(Ξ1 + Ξ2)

(Gvar)
Γ(x) = G

Γ ` x : G

(Glam)
Γ, x : g1;x ` e : g2; Ξ

Γ ` λ(x : g1).e : (x : g1) Ξ−→ g2;∅

(Gapp)
Γ ` e1 : (x : g1) Ξ2−→ g2; Ξ Γ ` e2 : g′1; Ξ1 g′1 <̃: g1

Γ ` e1 e2 : [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2

(Gunit)

Γ ` tt : unit;∅

(Ginl)
Γ ` e : g1; Ξ1

Γ ` inlg2e : g1 ⊕Ξ1 ∅ g2;∅

(Ginr)
Γ ` e : g2; Ξ2

Γ ` inrg1e : g1 ⊕∅ Ξ2 g2;∅

(Gcase)
Γ ` e1 : g11 ⊕Ξ11 Ξ12 g12; Ξ1 Γ, x : g11;x ` e2 : g2; Ξ2 Γ, y : g12; y ` e3 : g3; Ξ3

Γ ` case e1 of {x⇒ e2 } { y ⇒ e3 } :
[Ξ1 + Ξ11/x]g2 g [Ξ1 + Ξ12/y]g3; Ξ1 g [Ξ1 + Ξ11/x]Ξ2 g [Ξ1 + Ξ12/y]Ξ3

(Gascr)
Γ ` e : G G <̃: G′

Γ ` e :: G′ : G′

Figure 4.2: Type system of λi

because, given the removal of precision through the use of ?, for the typechecker it is plausible
that they might hold during runtime.

The type system of λi is equivalent to the type system of λs for fully-static expressions.
We say a gradual type-and-effect is static if all the gradual sensitivities occurrences happen
to be fully-static, i.e. of the form [n, n]. A fully-static expression is the natural lifting of the
previous notion. Let `s denote the typing judgment for λs .

Proposition 25 (Equivalence for fully-static expressions). Let e be a fully-static expression
and G a static type (G = T). · `s e : T if and only if · ` e : T.

Also, the static semantics of λi satisfy the static gradual guarantee, which states that
typeability is monotone with respect to imprecision [35]. Precision on expressions, noted
e1 v e2, is the natural lifting of type precision to expressions.

Proposition 26 (Static gradual guarantee). Let e1 and e2 be two closed expressions such
that e1 v e2 and · ` e1 : G1. Then, · ` e2 : G2 and G1 v G2.

34

So far in this chapter we have defined the meaning of gradual sensitivities and lifted
the typing rules, obtaining the static semantics of λi . These static semantics satisfy two
important properties from the refined criteria for gradual typing [35]: they behave the same as
their static counterpart on fully-annotated expressions; and typeability of gradual expressions
is monotone with respect to imprecision. In the next section, we take the last step, which is
to derive the dynamic semantics of λi .

4.4. Dynamic Semantics

For deriving the dynamic semantics of a gradual language, AGT introduces the concept
of evidence that captures why a consistent judgment holds. Evidences are used to aug-
ment consistent judgments. Then, the dynamic semantics are derived by mimicking the type
preservation argument of the static language, combining evidences through consistent transi-
tivity to check whether an expression can reduce another step or should halt with a runtime
error. We call these semantics λiε .

Similar to the case of lifted predicates, we provide algorithmic definitions for evidence
operators without providing a formal proof. However, we conjecture that the equivalence
between the formal definitions and their algorithmic counterparts holds.

4.4.1. Evidence for Consistent Subtyping

Evidence represents the plausible static types that support some consistent judgment.
Consider Ξ1 = ?x and Ξ2 = 10x and the valid consistent subtyping judgment Ξ1 <̃: Ξ2.
Besides knowing that it holds, we also know why it holds: for any static evaluation of Ξ1,
the sensitivity of x must be less than or equal to 10. Therefore, we can refine the precise
bounds on the set of static entities that support why consistent subtyping holds. This notion
can be captured by a pair of two gradual types (type-and-effects in the current setting)
ε = 〈G,G 〉, where each type is at least as precise as the types involved in the consistent
subtyping judgment. In the last example, the evidence for consistent subtyping would be
initially computed as 〈 [0, 10]x, [10, 10]x 〉 . ?x <̃: 10x 2. Definition 32 captures this formally
3.

Definition 32. ε . G1 <̃: G2 ⇐⇒ ε v A2({ 〈T1,T2 〉 | T1 ∈ C(G1) ∧ T2 ∈ C(G2) })

Evidence is initially computed using a partial function called the initial evidence operator
I<:. The initial evidence operator returns the most precise evidence that can be deduced
from a given judgment. Although the initial evidence operator does not always coincide with
the interior operator [21], in our language they are the same. Thus, we define the initial
evidence operator exactly as the interior operator and we use these names interchangeably.

2 Remember that ? and 10 are encoded as [0,∞] and [10, 10], respectively.
3 A2({ 〈Ti1,Ti2 〉 }) = 〈A({Ti1 }), A({Ti2 }) 〉.

35

I<:(i, i)

s1 ≤ s2 f s4 s1 g s3 ≤ s4

I<:([s1, s2], [s3, s4]) = 〈 [s1, s2 f s4], [s1 g s3, s4] 〉

I<:(Ξ,Ξ)

I<:(∅,∅) = 〈∅,∅ 〉
I<:(Ξ1,Ξ2) = 〈Ξ′1,Ξ′2 〉 I<:(i1, i2) = 〈 i′1, i′2 〉
I<:(Ξ1 + i1x,Ξ2 + i2x) = 〈Ξ′1 + i′1x,Ξ′2 + i′2x 〉

I<:(g, g)

I<:(R,R) = 〈R,R 〉 I<:(B,B) = 〈B,B 〉

I<:(g21, g11) = 〈 g′21, g
′
11 〉 I<:(Ξ1,Ξ2) = 〈Ξ′1,Ξ′2 〉 I<:(g12, g22) = 〈 g′12, g

′
22 〉

I<:((x : g11) Ξ1−→ g12, (x : g21) Ξ2−→ g22) = 〈 (x : g′11) Ξ′
1−→ g′12, (x : g′21) Ξ′

2−→ g′22 〉

I<:(g11, g21) = 〈 g′11, g
′
21 〉 I<:(g12, g22) = 〈 g′12, g

′
22 〉

I<:(Ξ11,Ξ21) = 〈Ξ′11,Ξ′21 〉 I<:(Ξ21,Ξ22) = 〈Ξ′21,Ξ′22 〉
I<:(g11 ⊕Ξ11 Ξ12 g12, g21 ⊕Ξ21 Ξ22 g22) = 〈 g′11 ⊕Ξ′

11 Ξ′
12 g′12, g

′
21 ⊕Ξ′

21 Ξ′
22 g′22 〉

I<:(G,G)

I<:(g1, g2) = 〈 g′1, g′2 〉 I<:(Ξ1,Ξ2) = 〈Ξ′1,Ξ′2 〉
I<:(g1; Ξ1, g2; Ξ2) = 〈 g′1; Ξ′1, g′2; Ξ′2 〉

Figure 4.3: Algorithmic interior operator

Definition 33 (Interior).

I<:(G1, G2) = A2({ (T1,T2) ∈ C(G1)× C(G2) | T1 <: T2 })

In order to provide an algorithmic definition for the interior operator, we overload it to
operate on smaller gradual constructs, specifically, gradual sensitivities, sensitivity environ-
ments and types (Figure 4.3).
Proposition 27. The definition of the interior operator in Figure 4.3 is equivalent to defi-
nition 33.

During runtime, evidences need to be combined in order to justify the use of transitivity
judgments. For instance, although [5, 8]x <̃: [2, 6]x and [2, 6]x <̃: [0, 3]x, the transitive
judgement of both, [5, 8]x <̃: [0, 3]x, does not hold, i.e. consistent subtyping is not a transitive
relation. In the case where the combination of two evidences does not justify transitivity a

36

runtime error is raised. Formally, the notion of combination of evidences is captured by the
consistent transitivity operator, denoted ◦<: for a language with subtyping. For instance,
suppose ε1 . 10x <̃: ?x and ε2 . ?x <̃: 5x 4. Since [10, 10] is not subtype of [5, 5] (10 � 5),
then ε1 ◦<: ε2 should be undefined and an error should be raised.

The consistent transitivity for a predicate P , denoted ◦P , is defined by the abstract inter-
pretation framework [21]. In particular, for subtyping it is defined as follows:

Definition 34 (Consistent subtyping transitivity). Suppose εab . Ga <̃: Gb and εbc . Gb <̃:
Gc. Evidence for consistent subtyping transitivity is deduced as (εab ◦<: εbc) . Ga <̃: Gc,
where:

〈G1, G12 〉 ◦<: 〈G21, G3 〉 = A2({T1,T3 ∈ C(G1)× C(G3) | ∃T2 ∈ C(G12) ∩ C(G21),T1 <:

T2 ∧ T2 <: T3})

Recalling Section 4.1, when we discussed why gradual sensitivities should be interpreted
as intervals instead of a simple unknown sensitivity ?, let us see how evidence evolves when
intervals are not available. Suppose ε1 = 〈 3x, 5x 〉, ε2 = 〈 5x, ?x 〉 and ε3 = 〈 4x, 4x 〉. Let us
compute ε = (ε1 ◦<: ε2) ◦<: ε3 without using intervals:

ε = (ε1 ◦<: ε2) ◦<: ε3

= (〈 3x, 5x 〉 ◦<: 〈 5x, ?x 〉) ◦<: ε3

= (〈 3x, ?x 〉) ◦<: ε3

= 〈 3x, ?x 〉 ◦<: 〈 4x, 4x 〉
= 〈 3x, 4x 〉

Now, let us see how ε is computed in a setting with intervals:

ε = (ε1 ◦<: ε2) ◦<: ε3

= (〈 3x, 5x 〉 ◦<: 〈 5x, ?x 〉) ◦<: ε3

= (〈 3x, [5,∞]x 〉) ◦<: ε3

= 〈 3x, [5,∞]x 〉 ◦<: 〈 4x, 4x 〉 (CΞ([5,∞]x) ∩ CΞ(4x) = ∅)
= undefined

As expected, the combination using intervals yields an undefined result. However the setting
without intervals does not fail because in the combination of ε1 and ε2 information is lost.
From the beginning we can notice that the right-hand side sensitivity of ε2 will never be less
than 5. Nevertheless, the result of the combination, 〈 3x, ?x 〉, has no way to encode such
information, so later when combined with ε3 the operation can not be refuted.

Following the same approach as for the interior operator, in order to provide an algorith-
mic definition, we overload the consistent transitivity operator to work on smaller gradual
constructs (Figure 4.4).

4 Notice that we are omitting types, both in judgments and in evidences, in order to improve readability as

37

4.4. DYNAMIC SEMANTICS 38

〈 i, i 〉 ◦<: 〈 i, i 〉

s11 ≤ (s12 f s14 f s22) (s13 g s21 g s23) ≤ s24

〈 [s11, s12], [s13, s14] 〉 ◦<: 〈 [s21, s22], [s23, s24] 〉 = 〈 [s11, s12 f s14 f s22], [s13 g s21 g s23, s24] 〉

〈Ξ,Ξ 〉 ◦<: 〈Ξ,Ξ 〉

〈∅,∅ 〉 ◦<: 〈∅,∅ 〉 = 〈∅,∅ 〉

〈Ξ1,Ξ2 〉 ◦<: 〈Ξ3,Ξ4 〉 = 〈Ξ′1,Ξ′4 〉 〈 i1, i2 〉 ◦<: 〈 i3, i4 〉 = 〈 i′1, i′4 〉
〈Ξ1 + i1x,Ξ2 + i2x 〉 ◦<: 〈Ξ3 + i3x,Ξ4 + i4x 〉 = 〈Ξ′1 + i′1x,Ξ′4 + i′4x, 〉

〈 g, g 〉 ◦<: 〈 g, g 〉

g ∈ {R, unit }
〈 g, g 〉 ◦<: 〈 g, g 〉 = 〈 g, g 〉

〈 g41, g31 〉 ◦<: 〈 g21, g11 〉 = 〈 g′41, g
′
11 〉

〈Ξ12,Ξ22 〉 ◦<: 〈Ξ32,Ξ42 〉 = 〈Ξ′12,Ξ′42 〉 〈 g12, g22 〉 ◦<: 〈 g32, g42 〉 = 〈 g′12, g
′
42 〉

〈 (x : g11) Ξ12−−→ g12, (x : g21) Ξ22−−→ g22 〉 ◦<: 〈 (x : g31) Ξ32−−→ g32, (x : g41) Ξ42−−→ g42 〉 =
〈 (x : g′11) Ξ′

12−−→ g′12, (x : g′41) Ξ′
42−−→ g′42 〉

〈 g11, g21 〉 ◦<: 〈 g31, g41 〉 = 〈 g′11, g
′
41 〉 〈Ξ11,Ξ21 〉 ◦<: 〈Ξ31,Ξ41 〉 = 〈Ξ′11,Ξ′41 〉

〈Ξ12,Ξ22 〉 ◦<: 〈Ξ32,Ξ42 〉 = 〈Ξ′12,Ξ′42 〉 〈 g12, g22 〉 ◦<: 〈 g32, g42 〉 = 〈 g′12, g
′
42 〉

〈 g11 ⊕Ξ11 Ξ12 g12, g21 ⊕Ξ21 Ξ22 g22 〉 ◦<: 〈 g31 ⊕Ξ31 Ξ32 g32, g41 ⊕Ξ41 Ξ42 g42 〉 =
〈 g′11 ⊕Ξ′

11 Ξ′
12 g′12, g

′
41 ⊕Ξ′

41 Ξ′
42 g′42 〉

〈G,G 〉 ◦<: 〈G,G 〉

〈 g1, g2 〉 ◦<: 〈 g3, g4 〉 = 〈 g′1, g′4 〉 〈Ξ1,Ξ2 〉 ◦<: 〈Ξ3,Ξ4 〉 = 〈Ξ′1,Ξ′4 〉
〈 g1; Ξ1, g2; Ξ2 〉 ◦<: 〈 g3; Ξ3, g4; Ξ4 〉 = 〈 g′1; Ξ′1, g′4; Ξ′4 〉

Figure 4.4: Algorithmic consistent transitivity

Proposition 28. The definition of consistent transitivity in Figure 4.4 is equivalent to defi-
nition 34.

Equipped with a formal definition of evidences and operations for initially inferring (inte-
rior operator) and combining them (consistent transitivity operator), we can now augment
the syntax of our gradual language with runtime information of why consistent judgments
hold and whether they can be combined. Recalling the characteristics of gradual languages,
evidences serve the purpose of accounting for the optimistic judgments during typechecking.
Moving forward, we derive the runtime semantics by elaborating λi to a language with a
richer syntax.

4.4.2. Intrinsic Terms

In order to avoid writing reduction rules on actual (bi-dimensional) derivation trees, Garcia
et al [21] leverage the use of intrinsic terms, a flat representation of terms that are isomorphic
to type derivations [47]. More specifically, the typing judgment Γ ` e : G is now represented
by an intrinsic term tG ∈ T[G], where all the information contained in Γ is implicitly present
in the syntax of tG .

In addition to the use of intrinsic terms, and similar to Toro et al [48], we heavily rely on
a type-directed translation that inserts explicit ascriptions to every inner-term ensuring that
all top-level constructor types match.

AGT requires that when a term reduces to a new one it has to preserve its type (type-and-
effect), but the static type system λs reduces under subtyping, i.e. the type of the resulting
expression is a subtype of the original one. Preserving the types without ascriptions is
impossible, since values have no sensitivity effect. For instance, by rule (Tr-ascr), the
expression 2 :: R; 2x reduces to 2, whose type-and-effect is R;∅. Therefore, we re-define the
syntax of values (and terms) to work under the premise that every value and inner-term is
ascribed.

The syntax of intrinsic terms is presented in Figure 4.5. We avoid writing the explicit
type exponent whenever is not needed and can be inferred from the context, i.e. t ∈ T[G].
We defer the formalization of elaboration of terms to Subsection 4.4.4.

In summary, the transformations made to the original gradual syntax are the following:

• Intrinsic terms. Every expression is translated to a term that carries its own typing
derivation tree. This allows us to get rid of the type environment Γ in the typing rules.
Although, making use of a type environment is still useful when reasoning about open
terms for metric preservation.

• Matching types. The types in function application are matched through ascribing the
argument to the type-and-effect expected by the function. Because of this transforma-
tion, the only typing rule where consistent subtyping is used is (IGascr).

they are not necessary to illustrate the point.

39

• Evidences. Every ascription is augmented with evidence supporting the underlying
subtyping judgment.

• All values are ascribed. In order to ease the proofs for type safety and soundness,
we work on the premise that all values are ascribed simple values. Simple values u are
introduced to the syntax in order to re-define values v as ascribed simple values. This
is also reflected later on the reduction rules.

4.4.3. Reduction of Intrinsic Terms

We now focus on the reduction rules for λiε . A caveat of gradual types is that even
a program that typechecks may raise an error because of an optimistic judgment during
typecheck might not hold on a runtime check. For instance, the program (x + x) :: R; ?x ::
R; 1x typechecks, as ? hides the real sensitivity of the expression statically, but should halt
with an error during runtime since 2x is not a subtype of 1x.

Reduction rules for λiε are given by proof normalization on the type safety proof of
λs . However, because of the transformations during the elaboration of terms, particularly
the ascribed values and matching types approaches, the type safety proof does not exactly
mirror the evidence operations necessary to derive the reduction rules. For this reason, we
need to reason about the type safety proof for an intermediate language with all ascription
transformations mentioned before.

Consider the type safety proof of the application case in λs with ascribed values and
matching types. The application expression will have the form

e = (〈λx : τ ′1.e, γ′〉 :: (x : τ1) Σ2−→ τ2; Σ) (u :: τ1; Σ1)

where both the closure and the value provided to it are ascribed, and the ascriptions have
matching types.

First, to deal with the type safety proof of e, we need the typing rules for closures and
contexts, as well as an auxiliary definition of well-formedness of type environments. Essen-
tially, a type environment is well formed if for any variable x ∈ dom(γ), Γ(x) matches the
type-and-effect of γ(x). The actual definition of typing rules for closures and contexts, and
well-formedness of type environments can be found in Appendix A (Figure A.2 and Definition
37, respectively).

The type safety proof essentially reduces a typing derivation D (of e) into a new one, D′,
and preserves the type of the original expression.

D = (Tapp)
D1 (Tascr)

Γ ` u : τ ′′1 ; Σ′′1 τ ′′1 ; Σ′′1 <: τ1; Σ1

Γ ` u :: τ1; Σ1 : τ1; Σ1

Γ ` (〈λx : τ ′1.e, γ′〉 :: (x : τ1) Σ2−→ τ2; Σ) (u :: τ1; Σ1) : [Σ1/x]τ2; Σ + [Σ1/x]Σ2

40

4.4. DYNAMIC SEMANTICS 41

t ∈ T[∗] ::= εr :: G | t+ t | t ≤ t terms
| x | ε λ(x : g).t :: G | t t
| εtt :: G | ε (inlgt) :: G | ε (inrgt) :: G
| case t of {x⇒ t } {x⇒ t }
| εt :: G
| ε〈λ(x : g).t, γ〉 :: G | εctx(γ, t) :: G

u ∈ SVal ::= r | 〈λ(x : g).t, γ〉 | tt | inlgv | inrgv simple values
v ∈ Val ::= εu :: G values

t ∈ T[G] Well-typed intrinsic terms

(IGrlit)

r ∈ T[R;∅]

(IGplus)
t1 ∈ T[R; Ξ1] t2 ∈ T[R; Ξ2]

t1 + t2 ∈ T[R; Ξ1 + Ξ2]

(IGleq)
t1 ∈ T[R; Ξ1] t2 ∈ T[R; Ξ2]
t1 ≤ t2 ∈ T[B;∞(Ξ1 + Ξ2)]

(IGvar)

xG ∈ T[G]

(IGlam)
t ∈ T[g2; Ξ]

λ(x : g1).t ∈ T[(x : g1) Ξ−→ g2;∅]

(IGapp)
t1 ∈ T[x : g1

Ξ2−→ g2; Ξ] t2 ∈ T[g1; Ξ1]
t1 t2 ∈ T[[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2]

(IGunit)

tt ∈ T[unit;∅]

(IGinl)
t ∈ T[g1; Ξ]

inlg2t ∈ T[g1 ⊕Ξ ∅ g2;∅]

(IGinr)
t ∈ T[g2; Ξ]

inrg1t ∈ T[g1 ⊕∅ Ξ g2;∅]

(IGcase)
t1 ∈ T[g11 ⊕Ξ11 Ξ12 g12; Ξ1] t2 ∈ T[g2; Ξ2] t3 ∈ T[g3; Ξ3]

case t1 of {x⇒ t2 } { y ⇒ t3 } ∈
T[[Ξ1 + Ξ11/x]g2 t [Ξ1 + Ξ12/y]g3; Ξ1 t [Ξ1 + Ξ11/x]Ξ2 t [Ξ1 + Ξ12/y]Ξ3]

(IGascr)
t ∈ T[G] ε . G <̃: G′

εt :: G′ ∈ T[G′]

Figure 4.5: Syntax and type system of λiε

where

D1 = (Tascr)
D2 (x : τ ′1) Σ′

2−→ τ ′2;∅ <: (x : τ1) Σ2−→ τ2; Σ

Γ ` 〈λx : τ ′1.e, γ′〉 :: (x : τ1) Σ2−→ τ2; Σ : (x : τ1) Σ2−→ τ2; Σ

D2 = (Tclosure)

∃Γ′ : γ′ ` Γ′ (Tlam)
Γ′, x : τ ′1;x ` e : τ ′2; Σ′2

Γ′ ` λx : τ ′1.e : (x : τ ′1) Σ′
2−→ τ ′2;∅

Γ ` 〈λx : τ ′1.e, γ′〉 : (x : τ ′1) Σ′
2−→ τ ′2;∅

The adapted elimination rule, from (Tr-app) (Figure 3.5), follows:

(〈λx : τ ′1.e, γ′〉 :: (x : τ1) Σ2−→ τ2; Σ) (u :: τ1; Σ1) γ−−→ ctx(γ′ext, e) :: [Σ1/x]τ2; Σ + [Σ1/x]Σ2

where γ′ext = γ′[x 7→ u :: τ ′1; Σ1].

And D′ is derived as:

D′ = (Tascr)
D′1 τ ′′2 ; Σ′′2 <: [Σ1/x]τ2; Σ + [Σ1/x]Σ2

Γ ` ctx(γ′ext, e) :: [Σ1/x]τ2; Σ + [Σ1/x]Σ2 : [Σ1/x]τ2; Σ + [Σ1/x]Σ2

where

D′1 = (Tctx)
∃Γ′′ : γ′ext ` Γ′′ Γ′′ ` e : τ ′′2 ; Σ′′2

Γ ` ctx(γ′ext, e) : τ ′′2 ; Σ′′2

Then, we need to prove that:

• · ` u :: τ ′1; Σ1 : τ ′1; Σ1, which in essence is proving that u can be ascribed to τ ′1; Σ1,
i.e. τ ′′1 ; Σ′′1 <: τ ′1; Σ1. This is achieved by combining the knowledge from the subtyping
judgments in the rule (Tascr): τ ′′1 ; Σ′′1 <: τ1; Σ1 and (x : τ ′1) Σ′

2−→ τ ′2;∅ <: (x : τ1) Σ2−→
τ2; Σ. Notice that whereas inferring the domain type of a function is fairly intuitive, the
type-and-effect is not. We consider the type-and-effect domain of a function type-and-
effect (x : τ1) Σ2−→ τ2; Σ to be τ1;x. This results in that [Σ1/x]dom((x : τ ′1) Σ′

2−→ τ ′2;∅) <:
[Σ1/x]dom((x : τ1) Σ2−→ τ2; Σ) gives us exactly the piece of knowledge, such as when
combined with τ ′′1 ; Σ′′1 <: τ1; Σ1, it proves that τ ′′1 ; Σ′′1 <: τ ′1; Σ1. This is an important
result as it will correspond with the gradual reduction rules.

42

• ∃Γ′′ : γ′ext ` Γ′′: It suffices to pick Γ′′ = Γ′, x : τ ′1; Σ1. As we know that γ′ ` Γ′, we only
need to prove that · ` γ′ext(x) : Γ′′(x) which we already did.

• Γ′′ ` e : τ ′′2 ; Σ′′2: By substitution lemma we know that the typing judgment holds (as
Γ′′ = Γ′, x : τ ′1; Σ1) and τ ′′2 ; Σ′′2 = [Σ1/x]τ ′2; [Σ1/x]Σ′2.

• [Σ1/x]τ ′2; [Σ1/x]Σ′2 <: [Σ1/x]τ2; Σ + [Σ1/x]Σ2: This follows directly from using the sub-
typing judgment in (Tascr), (x : τ ′1) Σ′

2−→ τ ′2;∅ <: (x : τ1) Σ2−→ τ2; Σ, after applying a
sensitivity substitution of x by Σ1. Similar to the domain type-and-effect of a function,
we define the type-and-effect co-domain of (x : τ1) Σ2−→ τ2; Σ as τ2; Σ + Σ2. Thus, we can
prove that [Σ1/x]cod((x : τ ′1) Σ′

2−→ τ ′2;∅) <: [Σ1/x]cod((x : τ1) Σ2−→ τ2; Σ) and the sub-goal
holds immediately.

Finally, we proved that the type-and-effect is preserved after one step, for the application
case.

In the gradual language, the same notions apply. First, as intrinsic terms carry all the
type information, instead of a well-formedness definition for type environments, now we need
a well-formedness definition for substitutions with respect to a term:

Definition 35. A substitution γ is well-formed with respect to an intrinsic term t if and only
if:

1. FV (t) ⊆ γ, and

2. ∀xGi ∈ FV (t). γ(xi) ∈ T[G].

D = (IGapp)
D1 (IGascr)

u ∈ T[g′′1 ; Ξ′′1] ε2 . g′1; Ξ′′1 <̃: g1; Ξ1

ε2u :: g1; Ξ1 ∈ T[g1; Ξ1]

(ε1〈λ(x : g′′1).t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ) (ε2u :: g1; Ξ1)
∈ T[[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2]

where

D1 = (IGascr)
D2 ε1 . (x : g′1) Ξ′

2−→ g′2;∅ <̃: (x : g1) Ξ2−→ g2; Ξ

ε1〈λ(x : g′1).t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ ∈ T[(x : g1) Ξ2−→ g2; Ξ]

D2 = (IGclosure)

t ` γ′ (IGlam)
t ∈ T[g′2; Ξ′2]

λ(x : g′1).t ∈ T[(x : g′1) Ξ′
2−→ g′2;∅]

〈λ(x : g′1).t, γ′〉 ∈ T[(x : g′1) Ξ′
2−→ g′2;∅]

43

• We need to extend γ′ with a suitable value for x. Based on the static language, we
can pass u but the type-and-effect will not match exactly with the one expected by the
closure. So now we have to ascribe u to g′1; Ξ1 and produce an evidence that justifies
the subtyping judgment. By inversion lemmas, we know that idom(ε1) . g1;x <̃: g′1; x
and icod(ε1) . g′2; Ξ′2 <̃: g2; Ξ + Ξ2. Using consistent transitivity between ε2 and
[Ξ1/x]idom(ε1), (if defined) we can justify (ε2 ◦<: [Ξ1/x]idom(ε1)) . g′′1 ; Ξ′′1 <̃: g′1; Ξ1.

• Notice that by extending γ′ with x 7→ ε′2u :: g′1; Ξ1 we are implicitly stating that the
sensitivity effect of x is now known and it corresponds to Ξ1. However, all occurrences
of x in (the types and sensitivity environments of) t are not yet updated. Therefore, we
need to substitute all occurrences of x in the type-and-effects within t, i.e. [Ξ1/x]t. It
is important to note that the substitutions only occur in the type-and-effects and not
in the terms itself, e.g. [Ξ1/x](xR;x + yR;y) = xR;Ξ1 + yR;y, as the term substitution is
explicitly handled by reduction. In the static setting this is implicitly handled by the
existential predicates of type environments.

• We can now construct a term t′ = ctx(γ′[x 7→ (ε2 ◦<: [Ξ1/x]idom(ε1))u :: g′1; Ξ1], [Ξ1/x]t)
for handling the reduction of the lambda body. However, despite t′ is well-typed, it does
not preserve the type of the original term. To fix this, we can ascribe t′ by the type-and-
effect of the original term, [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2, and justify the subtyping judgment
with evidence [Ξ1/x]icod(ε1).

• The final resulting term is derived as follows:

ε11ctx(γ′[x 7→ v′], [Ξ1/x]t) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2

where v′ = ε′2u :: g′1; Ξ1, ε11 = [Ξ1/x]icod(ε1), ε′2 = ε2 ◦<: [Ξ1/x]idom(ε1).

Figure 4.7 presents the reduction rules for λiε . They are defined over configurations of
terms and substitutions. However, as substitutions are not affected by reduction, we write
the substitution just once in the reduction rules.

E ::= � | E + t | v + E | E ≤ t | v ≤ E | E t | v E evaluation contexts
| inlτE | inrτE | case E of {x⇒ t } {x⇒ t }
| εE :: T

t
γ7−−→ t Reduction

(IGR→)
t1

γ−−→ t2

t1
γ7−−→ t2

(IGRE)
t1

γ7−−→ t2

E[t1] γ7−−→ E[t2]

(IGRctx)

t1
γ′

7−−−→ t2

ctx(γ′, t1) γ7−−→ ctx(γ′, t2)

(IGR→err)
t1

γ−−→ error
t1

γ7−−→ error

(IGREerr)
t1

γ7−−→ error
E[t1] γ7−−→ error

(IGRctxerr)

t1
γ′

7−−−→ error
ctx(γ′, t1) γ7−−→ error

Figure 4.7: Dynamic semantics of λiε

44

4.4. DYNAMIC SEMANTICS 45

t
γ−−→ t Notions of reduction

(IGr-plus) (ε1r1 :: R; Ξ1) + (ε2r2 :: R; Ξ2) −→ ε3r3 :: R; Ξ1 + Ξ2
where r3 = r1 J+K r2

ε3 = ε1 +Ξ ε2
(IGr-leq) (ε1r1 :: R; Ξ1) ≤ (ε2r2 :: R; Ξ2) −→ ε3b :: B;∞(Ξ1 + Ξ2)

where b = r1 J≤K r2
ε3 = ε1≤Ξ ε2

(IGr-var) x
γ−−→ γ(x)

(IGr-lam) ελ(x : g′1).t :: (x : g1) Ξ2−→ g2; Ξ γ−−→ ε〈λ(x : g′1).t, γ〉 :: (x : g1) Ξ2−→ g2; Ξ
(IGr-app) (ε1〈λ(x : g′1).t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ) (ε2u :: g1; Ξ1)

γ−−→
®
ε11ctx(γext, tbody) :: g′2; Ξ + Ξ′2
error if not defined

where γext = γ′[x 7→ ε′2u :: g′1; Ξ1]
tbody = [Ξ1/x]t
ε11 = [Ξ1/x]icod(ε1)
ε′2 = ε2 ◦<: [Ξ1/x]idom(ε1)
g′2 = [Ξ1/x]g2
Ξ′2 = [Ξ1/x]Ξ2

(IGr-case-1) case(εinlg′
12(ε1u :: g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1)

of {x⇒ tg2;Ξ2
2 } {y ⇒ tg3;Ξ3

3 }
γ−−→

®
ε′2ctx(γext, tbody) :: g′; Ξ′ g Ξ1

error if not defined
where γext = γ[x 7→ ε′1u :: g11; Ξx]

tbody = [Ξx/x]t2
ε′1 = ε1 ◦<: ileft(ε)
ε′2 = I<:(g′2; Ξ′2, g′; Ξ′) gΞ ε

Ξx = Ξ1 + Ξ11
Ξy = Ξ1 + Ξ12
g′2 = [Ξx/x]g2
Ξ′2 = [Ξx/x]Ξ2
g′ = [Ξx/x]g2 g [Ξy/y]g3
Ξ′ = [Ξx/x]Ξ2 g [Ξy/y]Ξ3

(IGr-ctx) εctx(γ′, v) :: g; Ξ −→ εv :: g; Ξ

(IGr-ascr) ε(ε′u :: g′; Ξ′) :: g; Ξ −→
®
ε′ ◦<: εu :: g; Ξ
error if not defined

Figure 4.6: Dynamic semantics of λiε

Rules (IGr-var), (IGr-lam) and (IGr-ctx) present no novelty with respect to their
static counterpart, except for the fact that they operate on ascribed terms. Rule (IGr-plus)
follows the same pattern as (Tr-plus) and the evidence is computed using the inversion
operator +Ξ . The evidence operator +Ξ works only on the sensitivity environment parts of
the evidences by adding them, reassembling the operations done at the ascriptions level. For
example, 〈R; 2x,R; 3x 〉+Ξ 〈R; 4x,R; 5x 〉 = 〈R; 2x+ 4x,R; 3x+ 5x 〉 = 〈R; 6x,R; 8x 〉. The
formal definition of +Ξ , and all inversion functions, are presented in Figure 4.8. Rule (IGr-
leq) is analogous to (IGr-plus). The application rule, (IGr-app), is defined as explained
before by using the inversion functions idom and icod.

Although the derivation process is analogous to (IGr-app), rule (IGr-case-1) is more
complex. Evidence ε′1, for the stored value, is computed using the inversion function ileft
(instead of idom in (IGr-app)). Furthermore, no substitution is needed in the computation
of ε′1, since there is no free variables in its types. Since the body terms have no explicit
evidences, in order to produce an evidence ε′2 for the context term we use the interior operator.
For ε′2 to fully resemble the ascriptions operations we must integrate the information in the
sensitivity environment parts of ε. This is done by using the inversion operator gΞ , which
is also defined in Figure 4.8. Rule (IGr-case-2), corresponding to the inr case, is left out
as its definition is analogous to (IGr-case-1).

Finally, rule (IGr-ascr) eliminates ascriptions by keeping only the outer one. Consistent
transitivity is performed in order to justify the new ascribed (simple) value.

So far, we have defined the runtime semantics of λiε that, by translation, also define the
runtime semantics for λi . The reduction rules are fully derived by proof normalization against
the type safety proof. Nevertheless, the type safety proof used belongs to a modified version
of λs that preserve types and have matching types on applications (by using ascriptions).
However, we argue that the derivation process still follows the AGT methodology. This
seems to conclude the derivation of the dynamic semantics of λi . However, we still do not
address the actual elaboration of terms and whether it preserves important properties such
as typeability or precision.

4.4.4. Elaboration of Terms

In order to justify that reduction rules of λiε preserve the semantics of λi , we have to
formalize the elaboration of terms and establish whether it preserves typeability and precision.
Figure 4.9 shows the elaboration from gradual expressions to evidence-augmented intrinsic
terms. Judgment Γ ` e : G ;ε t

G denotes the elaboration of the intrinsic term tG from the
expression e, where e has type G under the type environment Γ.

Rules (ELplus), (ELleq) and (ELcase) work by translating each sub-expression point-
wise. Rules (ELrlit), (ELlam), (ELunit), (ELinl) and (ELinr) insert ascriptions and
justify them with evidences produced by the interior operator. The computation of these
evidences never fails since both type-and-effects are always the same, so the insertion of these
ascriptions are harmless. Rule (ELapp) ascribes the argument by the expected type while
preserving its sensitivity effect. The interior operator is used again to produce the evidence

46

idom(ε)

idom(〈 (x : g11) Ξ12−−→ g12; Ξ1, (x : g21) Ξ22−−→ g22; Ξ2 〉) = 〈 g21;x, g11; x 〉

icod(ε)

icod(〈 (x : g11) Ξ12−−→ g12; Ξ1, (x : g21) Ξ22−−→ g22; Ξ2 〉) = 〈 g12; Ξ1 + Ξ12, g22; Ξ2 + Ξ22 〉

ileft(ε)

ileft(〈 g11 ⊕Ξ11 Ξ12 g12; Ξ1, g21 ⊕Ξ21 Ξ22 g22; Ξ2 〉) = 〈 g11; Ξ1 + Ξ11, g21; Ξ2 + Ξ21 〉

iright(ε)

iright(〈 g11 ⊕Ξ11 Ξ12 g12; Ξ1, g21 ⊕Ξ21 Ξ22 g22; Ξ2 〉) = 〈 g12; Ξ1 + Ξ12, g22; Ξ2 + Ξ22 〉

ε+Ξ ε

〈R; Ξ11,R; Ξ12 〉+Ξ 〈R; Ξ21,R; Ξ22 〉 = 〈R; Ξ11 + Ξ21,R; Ξ12 + Ξ22 〉

ε≤Ξ ε

〈R; Ξ11,R; Ξ12 〉≤Ξ 〈R; Ξ21,R; Ξ22 〉 = 〈B;∞(Ξ11 + Ξ21),B;∞(Ξ12 + Ξ22) 〉

ε gΞ ε

〈 g11; Ξ11, g12; Ξ12 〉 gΞ 〈 g21; Ξ21, g22; Ξ22 〉 = 〈 g11; Ξ11 g Ξ21, g12; Ξ12 g Ξ22 〉

Figure 4.8: Inversion functions on evidences

with the difference that this computation may fail if g′1 is not a subtype of g1. Finally,
(ELascr) produces a initial evidence to justify the ascription. This ascription can also fail
to compute if subtyping is not satisfied.

In order to conclude with the derivation of the dynamic semantics of λiε we establish that
elaboration preserves typing. Notice that elaboration rules only insert trivial ascriptions
and enrich derivations with evidence and ascriptions. As this derivations are represented as
intrinsic terms, by construction, elaboration of terms trivially preserves typing.

Proposition 29 (Elaboration preserves typing). If Γ ` e : G and Γ ` e : G ;ε t
G, then

tG ∈ T[G].

47

4.4. DYNAMIC SEMANTICS 48

Γ ` e : G ;ε t
G Elaboration of Intrinsic Terms

(ELrlit)
ε = I<:(R;∅,R;∅)

Γ ` r : R;∅;ε εr :: R;∅

(ELplus)
Γ ` e1 : R; Ξ1 ;ε t1 Γ ` e2 : R; Ξ2 ;ε t2

Γ ` e1 + e2 : R; Ξ1 + Ξ2 ;ε t1 + t2

(ELleq)
Γ ` e1 : R; Ξ1 ;ε t1 Γ ` e2 : R; Ξ2 ;ε t2

Γ ` e1 ≤ e2 : B;∞(Ξ1 + Ξ2) ;ε t1 ≤ t2

(ELvar)
Γ(x) = G

Γ ` x : G ;ε x
G

(ELlam)
Γ, x : g1;x ` e : g2; Ξ ;ε t ε = I<:((x : g1) Ξ−→ g2;∅, (x : g1) Ξ−→ g2;∅)

Γ ` λ(x : g1).e : (x : g1) Ξ−→ g2;∅;ε ελ(x : g1).t :: (x : g1) Ξ−→ g2;∅

(ELapp)
Γ ` e1 : (x : g1) Ξ2−→ g2; Ξ ;ε t1 Γ ` e2 : g′1; Ξ1 ;ε t2 ε2 = I<:(g′1; Ξ1, g1; Ξ1)

Γ ` e1 e2 : [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2 ;ε t1 (ε2t2 :: g1; Ξ1)

(ELunit)
ε = I<:(unit;∅, unit;∅)

Γ ` tt : unit;∅;ε εtt :: unit;∅

(ELinl)
Γ ` e : g1; Ξ1 ;ε t ε = I<:(g1 ⊕Ξ1 ∅ g2;∅, g1 ⊕Ξ1 ∅ g2;∅)

Γ ` inlg2e : g1 ⊕Ξ1 ∅ g2;∅;ε εinlg2t :: g1 ⊕Ξ1 ∅ g2;∅

(ELinr)
Γ ` e : g2; Ξ2 ;ε t ε = I<:(g1 ⊕∅ Ξ2 g2;∅, g1 ⊕∅ Ξ2 g2;∅)

Γ ` inrg1e : g1 ⊕∅ Ξ2 g2;∅;ε εinrg1t :: g1 ⊕∅ Ξ2 g2;∅

(ELcase)
Γ ` e1 : g11 ⊕Ξ11 Ξ12 g12; Ξ1 ;ε t1

Γ, x : g11; x ` e2 : g2; Ξ2 ;ε t2 Γ, y : g12; y ` e3 : g3; Ξ3 ;ε t3
Γ ` case e1 of {x⇒ e2 } { y ⇒ e3 } :

[Ξ1 + Ξ11/x]g2 t [Ξ1 + Ξ12/y]g3; Ξ1 t [Ξ1 + Ξ11/x]Ξ2 t [Ξ1 + Ξ12/y]Ξ3
;ε case t1 of {x⇒ t2 } { y ⇒ t3 }

(ELascr)
Γ ` e : G ;ε t ε = I<:(G,G′)

Γ ` e :: G′ : G′ ;ε εt :: G′

Figure 4.9: Elaboration of λiε from λi

4.5. Properties

The derived gradual language λiε satisfy several important properties. The first one is
type safety: close terms do not get stuck, but they still can halt with a runtime error.

Proposition 30 (Type safety). If t ∈ T[g; Ξ], then one of the following is true:

• t is a value v.

• t
∅7−−→ t′ for some t′ ∈ T[g; Ξ].

• t
∅7−−→ error

In addition, we also prove that the gradual type system is equivalent to the statically-
typed system for fully-static expressions and that it satisfies the gradual guarantee [35]. The
former and the static component of the gradual guarantee were previously stated in Section
4.3. First, the static semantics of λi and λs are equivalent for fully-static expressions, i.e.
expressions whose gradual sensitivity occurrences are all fully-static.

Proposition 25 (Equivalence for fully-static expressions). Let e be a fully-static expression
and G a static type (G = T). · `s e : T if and only if · ` e : T.

The static semantics of λs also satisfy the static gradual guarantee: typeability is monotone
to imprecision.

Proposition 26 (Static gradual guarantee). Let e1 and e2 be two closed expressions such
that e1 v e2 and · ` e1 : G1. Then, · ` e2 : G2 and G1 v G2.

Finally, we also prove that λi satisfies the dynamic component of the gradual guarantee:
any program that reduces without error will continue to do so if precision is removed. In
related work [36, 37], where soundness of the type system is an hyperproperty, simultaneous
satisfiability of this proposition and soundness has resulted to be fairly challenging. For this
reason, we have particular interest in formally proving both.

Proposition 31 (Dynamic gradual guarantee). Suppose t11 v t12 and γ1 v γ2. If t11
γ17−−−→

t21 then t12
γ27−−−→ t22 where t21 v t22.

Soundness. Just as in the static setting, we state metric preservation by making use of
logical relations (Figure 4.10).

For proving soundness we make extensive use of a compatibility lemma, which states
that if two values are related, then the computations of ascribing both values to the same
type-and-effect are also related. Lemma 32 captures this formally:

Lemma 32. If (v1, v2) ∈ V∆JGK and εi . G <̃: G′, then ∀Γ, γ1, γ2 : (γ1, γ2) ∈ G∆JΓK it
follows that (ε1v1 :: G′ | γ1, ε2v2 :: G′ | γ2) ∈ T∆JG′K.

49

(v1, v2) ∈ AtomJGK ⇐⇒ v1 ∈ T[G] ∧ v2 ∈ T[G]
(v1, v2) ∈ V∆JR; ΞK ⇐⇒ (v1, v2) ∈ AtomJR; ΞK∧

¬
(
∆ · (Ξ′1 g Ξ′2) <̃ |u1 − u2|

)
where vi = 〈R;∅,R; Ξ′i 〉ui :: R; Ξ

(v1, v2) ∈ V∆Junit; ΞK ⇐⇒ (v1, v2) ∈ AtomJunit; ΞK∧
u1 = tt ∧ u2 = tt
where vi = εiui :: unit; Ξ

(v1, v2) ∈ V∆Jg1 ⊕Ξ1 Ξ2 g2; ΞK ⇐⇒ (v1, v2) ∈ AtomJg1 ⊕Ξ1 Ξ2 g2; ΞK∧
∆ · (Ξ′1 g Ξ′2)‹≤∞ =⇒

(
∀Γ, γ1, γ2 : (γ1, γ2) ∈ G∆JΓK.

(useL(v1) | γ1, useL(v2) | γ2) ∈ T∆Jg1; Ξ + Ξ1K∨
(useR(v1) | γ1, useR(v2) | γ2) ∈ T∆Jg2; Ξ + Ξ2K

)
where vi = 〈G′i1;∅, G′i2; Ξ′i 〉ui :: g1 ⊕Ξ1 Ξ2 g2; Ξ

(v1, v2) ∈ V∆J(x : g1) Ξ2−→ g2; ΞK ⇐⇒ (v1, v2) ∈ AtomJ(x : g1) Ξ2−→ g2; ΞK∧(
∀Γ, γ1, γ2, v

′
1, v
′
2,Ξ1 :

(v′1, v′2) ∈ V∆Jg1; Ξ1K ∧ (γ1, γ2) ∈ G∆JΓK .

(v1 v
′
1 | γ1, v2 v

′
2 | γ2) ∈ T∆J[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2K

)
(t1 | γ1, t2 | γ2) ∈ T∆JGK ⇐⇒ (t1

γ17−−−→
∗
v1 ∧ t2

γ27−−−→
∗
v2) =⇒ (v1, v2) ∈ V∆JGK

(γ1, γ2) ∈ G∆JΓK ⇐⇒ dom(γ1) = dom(γ2) = dom(Γ) ∧
∀x ∈ dom(Γ).(γ1(x), γ2(x)) ∈ V∆JΓ(x)K

useL(v) = ileft(ε)v′ :: g1; Ξ + Ξ1 if v = εinlv′ :: g1 ⊕Ξ1 Ξ2 g2; Ξ
useR(v) = iright(ε)v′ :: g2; Ξ + Ξ2 if v = εinrv′ :: g1 ⊕Ξ1 Ξ2 g2; Ξ

Figure 4.10: Logical relations for gradual sensitivity soundness

Furthermore, in order to prove this lemma the logical relation has to reason about worst-
case scenarios. Otherwise, if we would take optimistic assumptions, one could always ascribe
two related values to a less sensitive type-and-effect (justified by gradual plausibility) and
these terms should be related as well. However, this might not hold. For the same reason,
we have to make use of the most precise information, so instead of using the sensitivity
environment in the ascriptions, we leverage the information encoded in the evidences. Ad-
ditionally, in order to reason about what evidences justify, typechecking is also needed. For
this AtomJGK is introduced and used in all values logical relations. Although integrating the
type system within the logical relations can be prohibitive (given the conservative nature of
a type system) we assume this cost in order to ease the proof work.

In summary, with respect to their static counterpart, the key differences are:

50

• In order to account for the optimistic assumptions of the gradual typechecker and grad-
ual operations, such as <̃:, we must reason about worst-case scenarios.

• We introduce the AtomJGK relation that typechecks the values in the relation. This
relation is used in all value relations.

We now discuss each relation in detail.

Related numbers. First, instead of using the information in the sensitivity environment in
the ascription, Ξ, we use the most precise information, namely the one inside the evidences.
Between the two sensitivity environments inside the evidences of v1 and v2, we compute
the join in order to account for the worst case. Notice that ∆ · (Ξ′1 g Ξ′2) returns a gradual
sensitivity, i.e. an interval. Let us call it d. Reasoning about the worst case for the inequality
is a bit challenging: the judgment cannot be directly lifted by using ‹≤, e.g. |u1 − u2| ‹≤ d,
since ‹≤ is already an optimistic operator. We actually want |u1−u2| to be less or equal than
any of the values within d. In other words, we do not want to exist a value within d that
is less than |u1 − u2|, so ¬(d <̃ |u1 − u2|). Notice that we make use of <̃ (strict consistent
less than) instead of ‹≤, e.g. [2, 4] <̃ 2 is not true. For instance, let v1 = 〈R;∅,R; [1, 4]x 〉 2 ::
R; [0, 10]x, v2 = 〈R;∅,R; [1, 5]x 〉 5 :: R; [0, 10]x and ∆ = 3x. Consider the following proof
for (v1, v2) ∈ V∆JR; [0, 10]xK:

• (v1, v2) ∈ AtomJR; [0, 10]xK: Trivially both values typecheck.

• ¬
(
∆ · (Ξ′1 g Ξ′2) <̃ |u1 − u2|

)
:

¬
(
(3x) · ([1, 4]xg [1, 5]x) <̃ |2− 5|

)
⇐⇒ ¬

(
(3x) · ([1, 5]x) <̃ |2− 5|

)
⇐⇒ ¬

(
[3, 15] <̃ 3

)
⇐⇒ ¬

(
⊥
)

⇐⇒ >

Informally, it is useful to think of ∆ as the distance of the input, Ξ′1gΞ′2 as the predicted
sensitivity, and ∆ · (Ξ′1 g Ξ′2) as the predicted output distance. For the predicted sensitivity
to be sound, there must not exist any value within the predicted output distance, [3, 15],
that is less than the actual distance, 3. As [3, 15] <̃ 3 is false, both values are related.

Related sums. The reasoning for this relation is similar to the rule for related numbers.
Evidence is used in the same way, but now in order to account for the worst case, we need to
take the best case on the hypothesis side of the implication as the consistent judgment is in
a contravariant position. Therefore, the consistent operator <̃: is used directly, without the
need for double negations. The rest is analogous to their static counterpart. Functions useL
and useR now operate on ascribed values so ileft and iright are used.

51

Related computations

Related unit literals, functions and substitutions. These relations present no nov-
elty with respect to their static counterparts except for the fact that typechecking is now
performed for value relations. Everything else is the natural lifting to a gradual setting.

Finally, in order to enounce metric preservation we need a notion of well-formedness of a
type environment with respect to a terms:

Definition 36 (Type environment well-formedness). A type environment Γ is well-formed
with respect to an intrinsic term t, denoted t ` Γ if and only if FV (t) ⊆ dom(t) and ∀xG ∈
FV (t). Γ(x) = G.

Now we can establish soundness for gradual terms: if an open intrinsic term type checks
and we have a type environment Γ that closes it (at the type level), then for any two related
substitutions γ1, γ2, the computations of the term enclosed by γ1 and γ2 are related.

Theorem 33 ((Gradual) metric preservation) If t ∈ T[G] and t ` Γ, then ∀∆, γ1, γ2 such
that Γ ` ∆ and (γ1, γ2) ∈ G∆JΓK, it follows that (t | γ1, t | γ2) ∈ T∆JGK.

Gradual metric preservation in action. Let t = ε2(x+ ε11 :: R; ?x) :: R; [0, 2]x, where
ε1 = 〈R;∅,R; ?x 〉 and ε2 = 〈R; 1x,R; [1, 2]x 〉. Consider Γ = x : R;x, ∆ = 2x, γ1 =
{x 7→ 〈R;∅,R;x 〉 4 :: R;x } and γ2 = {x 7→ 〈R;∅,R;x 〉 5 :: R;x }. Let us establish that
(γ1, γ2) ∈ G∆JΓK:

• dom(Γ) = dom(γ1) = dom(γ2): Trivial.

• (〈R;∅,R;x 〉4 :: R;x, 〈R;∅,R; x 〉5 :: R; x) ∈ V∆JR; xK: ¬(2 <̃ 1) ⇐⇒ >.

By Proposition 33 we know that (t | γ1, t | γ2) ∈ T∆JR; [0, 2]xK. Let us see why:

• t
γ17−−−→

∗
ε 5 :: R; [0, 2]x, where ε = 〈R;∅,R; [1, 2]x 〉. Analogously, t γ27−−−→

∗
ε 6 ::

R; [0, 2]x.

• (ε5 :: R; [0, 2]x, ε6 :: R; [0, 2]x) ∈ V∆JR; [0, 2]xK:

¬
(
(2x) · ([1, 2]xg [1, 2]x) <̃ |5− 6|

)
⇐⇒ ¬

(
(2x) · ([1, 2]x) <̃ |5− 6|

)
⇐⇒ ¬

(
[2, 4] <̃ 1

)
⇐⇒ ¬

(
⊥
)

⇐⇒ >

Notice that if we had used the ascribed effect, [0, 2]x, instead of the ones in the evidences
the last judgment would have fail because ¬

(
(2x) · ([0, 2]x) <̃ |5 − 6|

)
⇐⇒ ⊥. Along with

52

the pessimistic reasoning in the logical relations, this notion is the most challenging part of
characterizing metric preservation for gradual sensitivity types.

In Appendix B we provide proofs for all the results presented in this section. We argue
that type safety and soundness for λs are specific cases of their gradual counterparts, so their
proofs are corollaries of the properties presented in this section.

53

Chapter 5

Conclusions

In this work we have presented λi , a gradual language with support for sensitivity reasoning.
Gradual sensitivity types allow a programmer to smoothly evolve a program with simple
types by incrementally adding sensitivity information. This, for example, enables the use of
library code in contexts such as differentially private algorithms. By developing a gradual
sensitivity language, we have proven that gradual typing can be applied to sensitivity typing.
Furthermore, we proved that a sound gradual sensitivity type system is possible. We ex-
plained how to apply, step-by-step, the AGT methodology to λs , a language with sensitivity
types, presenting a novel interpretation of gradual sensitivities. Also, given the formalization
of λs , we showed an application of AGT to a language with explicit substitutions. Finally,
we proved three important properties of λi : type safety, soundness and the gradual guaran-
tee. For this, we presented a characterization for soundness of gradual sensitivity types. In
particular, we found that the use of intervals in evidences, proposed by Toro et al [36], was
enough for the derived gradual language to be sound, without the need for ad-hoc changes
to the runtime semantics.

One of the key challenges of this work was to design small-step semantics for λs (in contrast
to the big-step semantics of Sax) that were type safe, specially in the presence of explicit
substitution. Regarding the application of AGT, several simplifications and transformation
techniques were applied to mitigate challenges in the proof work. In particular, a challenging
task was to define the logical relations of metric preservation in the context of a gradual
language, where plausibility has to be carefully managed in order to avoid making unsound
assumptions.

Whereas λi satisfies many interesting properties, other properties from the refined criteria
for gradual typing [35] are left for future work. However, we conjecture that the most
challenging proof work was in proving both soundness and the dynamic gradual guarantee.
Additionally, our gradual language is limited in the sense that it only presents a subset of the
functionality originally found in Sax. In particular, λi does not provide support for product
types which are highly used in the context of differential privacy and data manipulation.
Although we argue that this subset is enough to capture the main challenges of gradual
sensitivity types, in order to aim for a practical implementation, extensions must be done.

54

In relation to differential privacy, we believe that a semi-gradual differential privacy lan-
guage could be developed by using the multi-language design of Duet or Jazz. Our gradual
sensitivity type system could be embedded into a privacy type system by adding gradual-to-
static ascriptions at the boundaries of both disciplines. Another interesting track for future
work is to add support for mutable references. We believe it is worthwhile exploring whether
tension would be found between soundness and the dynamic gradual guarantee, in a context
with mutable references, similar to Toro et al [36] where soundness was also a hyperproperty.

55

Bibliography

[1] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,”
in 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125, 2008.

[2] D. Barth-Jones, “The ’re-identification’ of governor william weld’s medical information:
A critical re-examination of health data identification risks and privacy protections, then
and now,” SSRN Electronic Journal, 06 2012.

[3] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” Proceedings - IEEE
Symposium on Security and Privacy, 04 2009.

[4] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found.
Trends Theor. Comput. Sci., vol. 9, p. 211–407, Aug. 2014.

[5] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications, extensions,
and lower bounds,” in Theory of Cryptography (M. Hirt and A. Smith, eds.), (Berlin,
Heidelberg), pp. 635–658, Springer Berlin Heidelberg, 2016.

[6] I. Mironov, “Rényi differential privacy,” 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), Aug 2017.

[7] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin, “Probabilistic relational reason-
ing for differential privacy,” in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, (New York, NY, USA),
p. 97–110, Association for Computing Machinery, 2012.

[8] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin, “Probabilistic relational rea-
soning for differential privacy,” ACM Trans. Program. Lang. Syst., vol. 35, Nov. 2013.

[9] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub, “Proving differential
privacy via probabilistic couplings,” in Proceedings of the 31st Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’16, (New York, NY, USA), p. 749–758,
Association for Computing Machinery, 2016.

[10] T. Sato, G. Barthe, M. Gaboardi, J. Hsu, and S.-y. Katsumata, “Approximate span
liftings: Compositional semantics for relaxations of differential privacy,” in 2019 34th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14, 2019.

[11] J. Reed and B. C. Pierce, “Distance makes the types grow stronger: A calculus for
differential privacy,” in Proceedings of the 15th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2010), (New York, NY, USA), p. 157–168, Association for
Computing Machinery, Sept. 2010.

[12] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce, “Linear depen-

56

dent types for differential privacy,” in Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, (New York,
NY, USA), p. 357–370, Association for Computing Machinery, 2013.

[13] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and P.-Y. Strub, “Higher-
order approximate relational refinement types for mechanism design and differential
privacy,” SIGPLAN Not., vol. 50, p. 55–68, Jan. 2015.

[14] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang, N. Somani,
M. Zhang, N. Sharma, A. Shan, and D. Song, “Duet: An expressive higher-order lan-
guage and linear type system for statically enforcing differential privacy,” Proc. ACM
Program. Lang., vol. 3, Oct. 2019.

[15] M. Toro, D. Darais, C. Abuah, J. Near, F. Olmedo, and Éric Tanter, “Contextual linear
types for differential privacy,” 2020.

[16] E. Meijer and P. Drayton, “Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages,” 01 2004.

[17] K. E. Gray, R. B. Findler, and M. Flatt, “Fine-grained interoperability through mir-
rors and contracts,” in Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,
(New York, NY, USA), p. 231–245, Association for Computing Machinery, 2005.

[18] G. L. Steele, “An overview of common lisp,” in Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, LFP ’82, (New York, NY, USA), p. 98–107,
Association for Computing Machinery, 1982.

[19] N. Feinberg, S. Keene, R. O. Mathews, and P. Withington, “Dylan programming: an
object-oriented and dynamic language,” 1996.

[20] J. Siek and W. Taha, “Gradual typing for functional languages,” in Proceedings of the
Scheme and Functional Programming Workshop, pp. 81–92, Sept. 2006.

[21] R. Garcia, A. M. Clark, and É. Tanter, “Abstracting gradual typing,” in Proceedings of
the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2016) (R. Bodík and R. Majumdar, eds.), (St Petersburg, FL, USA), pp. 429–
442, ACM Press, Jan. 2016. See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

[22] J. Siek and W. Taha, “Gradual typing for objects,” in Proceedings of the 21st European
Conference on Object-oriented Programming (ECOOP 2007) (E. Ernst, ed.), no. 4609 in
Lecture Notes in Computer Science, (Berlin, Germany), pp. 2–27, Springer-Verlag, July
2007.

[23] D. Herman, A. Tomb, and C. Flanagan, “Space-efficient gradual typing,” Higher-Order
and Sympolic Computation, vol. 23, pp. 167–189, June 2010.

[24] J. G. Siek, M. M. Vitousek, M. Cimini, S. Tobin-Hochstadt, and R. Garcia, “Monotonic
references for efficient gradual typing,” in Proceedings of the 24th European Symposium
on Programming Languages and Systems (ESOP 2015) (J. Vitek, ed.), vol. 9032 of
Lecture Notes in Computer Science, (London, UK), pp. 432–456, Springer-Verlag, Mar.
2015.

[25] F. Bañados Schwerter, R. Garcia, and É. Tanter, “A theory of gradual effect systems,” in
Proceedings of the 19th ACM SIGPLAN Conference on Functional Programming (ICFP

57

2014), (Gothenburg, Sweden), pp. 283–295, ACM Press, Sept. 2014.
[26] I. Sergey and D. Clarke, “Gradual ownership types,” in Proceedings of the 21st Eu-

ropean Symposium on Programming Languages and Systems (ESOP 2012) (H. Seidl,
ed.), vol. 7211 of Lecture Notes in Computer Science, (Tallinn, Estonia), pp. 579–599,
Springer-Verlag, 2012.

[27] T. Disney and C. Flanagan, “Gradual information flow typing,” in International Work-
shop on Scripts to Programs, 2011.

[28] L. Fennell and P. Thiemann, “Gradual security typing with references,” in Proceedings
of the 26th Computer Security Foundations Symposium (CSF), pp. 224–239, June 2013.

[29] N. Lehmann and É. Tanter, “Gradual refinement types,” in Proceedings of the 44th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2017), (Paris, France), pp. 775–788, ACM Press, Jan. 2017.

[30] A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler, “Blame for all,” in Proceedings
of the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2011), (Austin, Texas, USA), pp. 201–214, ACM Press, Jan. 2011.

[31] A. Ahmed, D. Jamner, J. G. Siek, and P. Wadler, “Theorems for free for free: Para-
metricity, with and without types,” Proceedings of the ACM on Programming Languages,
vol. 1, pp. 39:1–39:28, Sept. 2017.

[32] Y. Igarashi, T. Sekiyama, and A. Igarashi, “On polymorphic gradual typing,” Proceedings
of the ACM on Programming Languages, vol. 1, pp. 40:1–40:29, Sept. 2017.

[33] L. Ina and A. Igarashi, “Gradual typing for generics,” in Proceedings of the 26th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2011), (Portland, Oregon, USA), pp. 609–624, ACM Press, Oct.
2011.

[34] N. Xie, X. Bi, and B. C. d. S. Oliveira, “Consistent subtyping for all,” in Proceed-
ings of the 27th European Symposium on Programming Languages and Systems (ESOP
2018) (A. Ahmed, ed.), vol. 10801 of Lecture Notes in Computer Science, (Thessaloniki,
Greece), pp. 3–30, Springer-Verlag, Apr. 2018.

[35] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland, “Refined criteria for grad-
ual typing,” in 1st Summit on Advances in Programming Languages (SNAPL 2015),
vol. 32 of Leibniz International Proceedings in Informatics (LIPIcs), (Asilomar, Califor-
nia, USA), pp. 274–293, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, May 2015.

[36] M. Toro, R. Garcia, and É. Tanter, “Type-driven gradual security with references,”
ACM Transactions on Programming Languages and Systems, vol. 40, pp. 16:1–16:55,
Nov. 2018.

[37] M. Toro, E. Labrada, and É. Tanter, “Gradual parametricity, revisited (with appendix),”
2018. arXiv:1807.04596 [cs.PL].

[38] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” vol. 18, p. 1157–1210, Sept.
2010.

[39] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints,” in Conference Record

58

of the 4th ACM Symposium on Principles of Programming Languages (POPL 77), (Los
Angeles, CA, USA), pp. 238–252, ACM Press, Jan. 1977.

[40] W. A. Howard, “The formulae-as-types notion of construction,” in To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism (H. Curry, H. B., S. J.
Roger, and P. Jonathan, eds.), Academic Press, 1980.

[41] M. Felleisen, R. B. Findler, and M. Flatt, Semantics Engineering with PLT Redex. The
MIT Press, 1st ed., 2009.

[42] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy, “Explicit substitutions,” in Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, (New York, NY, USA), p. 31–46, Association for Computing
Machinery, 1989.

[43] B. C. Pierce, Types and programming languages. Cambridge, MA, USA: MIT Press,
2002.

[44] W. W. Tait, “Intensional interpretations of functionals of finite type i,” Journal of Sym-
bolic Logic, vol. 32, no. 2, p. 198–212, 1967.

[45] J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, pp. 11–11, 1982.

[46] J. C. Reynolds, “Towards a theory of type structure,” in Programming Symposium
(B. Robinet, ed.), (Berlin, Heidelberg), pp. 408–425, Springer Berlin Heidelberg, 1974.

[47] A. Church, “A formulation of the simple theory of types,” J. Symb. Log., vol. 5, pp. 56–
68, 1940.

[48] M. Toro, E. Labrada, and É. Tanter, “Gradual parametricity, revisited,” Proceedings of
the ACM on Programming Languages, vol. 3, pp. 17:1–17:30, Jan. 2019.

59

Appendix A

Auxiliary definitions

A.1. A Static Sensitivity Type System

This section present auxiliary functions and operators definitions that were not included
in the Chapter § 3.

[Σ/x]Σ Sensitivity environment substitution

[Σ1/x]∅ = ∅
[Σ1/x](Σ + sy) = [Σ1/x]Σ + sy

[Σ1/x](Σ + sx) = [Σ1/x]Σ + sΣ1

[Σ/x]τ Sensitivity environment substitution (on types)

[Σ/x]R = R
[Σ/x]unit = unit

[Σ/x]((y : τ1) Σ2−→ τ2) = (y : [Σ/x]τ1) [Σ/x]Σ2−−−−→ [Σ/x]τ2

[Σ/x](τ1 ⊕Σ1 Σ2 τ2) = [Σ/x]τ1 ⊕[Σ/x]Σ1 [Σ/x]Σ2 [Σ/x]τ2

Figure A.1: Sensitivity environment substitutions

Γ ` e : T Well-typed expressions

(Tclosure)
∃Γ′ : γ′ ` Γ′ Γ′ ` e : T

Γ ` 〈e, γ′〉 : T
(Tctx)

∃Γ′ : γ′ ` Γ′ Γ′ ` e : T
Γ ` ctx(γ′, e) : T

Figure A.2: Typing rules for closures and contexts

Definition 37. A type environment is well-formed with respect to a substitution, denoted
γ ` Γ, if and only if:

60

1. dom(γ) ⊆ dom(Γ), and

2. ∀xi ∈ dom(γ). · ` γ(xi) : Γ(xi).

A.2. A Gradual Sensitivity Type System

[Ξ/x]Ξ Gradual sensitivity environment substitution

[Ξ1/x]∅ = ∅
[Ξ1/x](Ξ + iy) = [Ξ1/x]Ξ + iy

[Ξ1/x](Ξ + ix) = [Ξ1/x]Ξ + iΞ1

[Ξ/x]τ Gradual sensitivity environment substitution (on gradual types)

[Ξ/x]R = R
[Ξ/x]unit = unit

[Ξ/x]((y : g1) Ξ2−→ g2) = (y : [Ξ/x]g1) [Ξ/x]Ξ2−−−−→ [Ξ/x]g2

[Ξ/x](g1 ⊕Ξ1 Ξ2 g2) = [Ξ/x]g1 ⊕[Ξ/x]Ξ1 [Ξ/x]Ξ2 [Ξ/x]g2

Figure A.3: Gradual sensitivity environment substitutions

Γ ` tG : G Well-typed expressions

(IGclosure)
t ∈ T[G] t ` γ′

〈t, γ′〉 ∈ T[G]
(IGctx)

e ∈ T[G] t ` γ′

ctx(γ′, t) ∈ T[G]

Figure A.4: Typing rules for gradual closures and contexts

61

Appendix B

Properties of a Gradual Sensitivity
Type System

B.1. Preamble

This section presents necessary definitions and propositions in order to prove the propo-
sitions in the following sections.

The precision relation for intrinsic terms is defined modulo α-renaming for pairs of con-
structs like lambdas or case terms that introduce fresh variables not necessarily with the
same name.

Definition 38 (Expressions precision).

(GvR)
r v r

(Gv+)
e11 v e21 e12 v e22

e11 + e12 v e21 + e22
(Gv≤)

e11 v e21 e12 v e22

e11 ≤ e12 v e21 ≤ e22

(Gvx)
x v x

(Gvλ)
g11 v g21 e1 v e2

λ(x : g11).e1 v λ(x : g21).e2
(Gv@)

e11 v e21 e12 v e22

e11 e12 v e21 e22

(Gvunit) tt v tt
(Gvinl)

g12 v g22 e11 v e21

inlg12e11 v inlg22e21
(Gvinr)

g11 v g21 e12 v e22

inrg11e12 v inrg21e22

(Gvcase)
e11 v e21 e12 v e22 e13 v e23

case e11 of {x⇒ e12 } { y ⇒ e13 } v case e21 of {x⇒ e22 } { y ⇒ e23 }

(Gv::)
e11 v e21 G12 v G22

e11 :: G12 v e21 :: G22
(Gv〈λ,γ〉)

γ1 v γ2 e1 v e2

〈e1, γ1〉 v 〈e2, γ2〉

(Gvctx)
γ1 v γ2 e1 v e2

ctx(γ1, e1) v ctx(γ2, e2)

62

Definition 39 (Substitutions precision).

(IGv∅)
∅ v ∅

(IGvγ)
γ1 v γ2 v1 v v2

γ1[x 7→ v1] v γ2[x 7→ v2]

Definition 40 (Terms precision).

(IGvR)
rR;∅ v rR;∅ (IGv+)

t11 v t21 t12 v t22

t11 + t12 v t21 + t22

(IGv≤)
t11 v t21 t12 v t22

t11 ≤ t12 v t21 ≤ t22
(IGvx)

G1 v G2

xG1 v xG2

(IGvλ)
g11 v g21 tG12 v tG22

λ(x : g11).tG12 v λ(x : g21).tG22
(IGv@)

t11 v t21 t12 v t22

t11 t12 v t21 t22

(IGvunit) tt v tt
(IGvinl)

g12 v g22 t11 v t21

inlg12t11 v inlg22t21
(IGvinr)

g11 v g21 t12 v t22

inrg11t12 v inrg21t22

(IGvcase)
t11 v t21 t12 v t22 t13 v t23

case t11 of {x⇒ t12 } { y ⇒ t13 } v case t21 of {x⇒ t22 } { y ⇒ t23 }

(IGv::)
ε1 v ε2 t11 v t21 G12 v G22

ε1t11 :: G12 v ε2t21 :: G22
(IGv〈λ,γ〉)

γ1 v γ2 t1 v t2

〈t1, γ1〉 v 〈t2, γ2〉

(IGvctx)
γ1 v γ2 t1 v t2

ctx(γ1, t1) v ctx(γ2, t2)

Definition 41 (Type environments precision).

(Gv ·) · v ·
(GvΓ)

Γ1 v Γ2 G1 v G2

Γ1, x : G1 v Γ2, x : G2

Proposition 34. If i1 v i2 and i3 v i4 then i1 ∗ i3 v i2 ∗ i4

Proof. Follows directly from the Propositions 15 and 3.

Proposition 35. If i1 v i2 and Ξ1 v Ξ2 then i1Ξ1 v i2Ξ2

Proof. Let Ξ′1 = i1Ξ1, Ξ′2 = i2Ξ2. Then, for any x, Ξ′1(x) = i1 ∗Ξ1(x) and Ξ′2(x) = i2 ∗Ξ2(x).
Finally, by Proposition 34, ∀x,Ξ′1(x) v Ξ′2(x), which is equivalent to Ξ′1 v Ξ′2.

Proposition 36. If i1 v i2 and i3 v i4 then i1 + i3 v i2 + i4.

Proof. Follows directly from the Propositions 13 and 3.

Proposition 37. If Ξ1 v Ξ2 and Ξ3 v Ξ4 then Ξ1 + Ξ3 v Ξ2 + Ξ4.

63

Proof. Follows directly by Propositions 4 and 36.

Proposition 38. If i1 v i2 and i3 v i4, then i1 g i3 v i2 g i4

Proof. Let ii = [si1, si2]. We know that

1. s11 ≥ s21 and s12 ≤ s22.

2. s31 ≥ s41 and s32 ≤ s42.

3. max(s11, s31) ≥ max(s21, s41) and max(s12, s32) ≤ max(s22, s42).

4. i1 g i3 = [max(s11, s31),max(s12, s32)] and i2 g i4 = [max(s21, s41),max(s22, s42)].

Finally, i1 g i3 v i2 g i4.

Lemma 39. If Ξ1 v Ξ2 and Ξ3 v Ξ4, then Ξ1 g Ξ3 v Ξ2 g Ξ4

Proof. Let x ∈ dom(Ξ1 g Ξ3). We know that

1. By Proposition 4, Ξ1(x) v Ξ2(x) and Ξ3(x) v Ξ4(x).

2. By Proposition 38, Ξ1(x)g Ξ3(x) v Ξ2(x)g Ξ4(x).

Finally, by Proposition 4, Ξ1 g Ξ3 v Ξ2 g Ξ4.

Proposition 40. If g1 v g2 and g3 v g4, then g1 g g3 v g2 g g4

Proof. By induction on the definition of g1 g g3. All cases follow trivially (no premises) or
by inductive hypotheses and Proposition 39. The function type case follows by induction
hypotheses, Propositions 39 and 43.

Proposition 41. If i1 v i2 and i3 v i4 and i1 f i3 is defined, then i1 f i3 v i2 f i4.

Proof. Let ii = [si1, si2]. We know that

1. s11 ≥ s21 and s12 ≤ s22.

2. s31 ≥ s41 and s32 ≤ s42.

3. min(s11, s31) ≥ min(s21, s41) and min(s12, s32) ≤ min(s22, s42).

4. i1 f i3 = [min(s11, s31),min(s12, s32)] and i2 f i4 = [min(s21, s41),min(s22, s42)].

Finally, i1 f i3 v i2 f i4.

Proposition 42. If Ξ1 v Ξ2 and Ξ3 v Ξ4 and Ξ1 f Ξ3 is defined, then Ξ1 f Ξ3 v Ξ2 f Ξ4

64

Proof. Follows directly from the Propositions 23 and 41.

Proposition 43. If g1 v g2 and g3 v g4 and g1 f g3 is defined, then g1 f g3 v g2 f g4

Proof. By induction on the definition of g1fg3. All cases follow trivially (no premises) or by
inductive hypotheses and Proposition 42. The function case follow by induction hypotheses,
and Propositions 42 and 40.

Proposition 44. If G1 v G2 and G3 v G4 and G1fG3 is defined, then G1fG3 v G2fG4

Proof. By Propositions 43 and 42.

Proposition 45. If Ξ1 v Ξ2 and Ξ3 v Ξ4 then [Ξ3/x]Ξ1 v [Ξ4/x]Ξ2.

Proof. By induction on the definition of substitution.

Case Ξ1 = ∅ and Ξ1 = ∅. Trivial.

Case Ξ1 = Ξ′1 + i1y and Ξ2 = Ξ′2 + i2y, where y 6= x. By induction hypothesis.

Case Ξ1 = Ξ′1 + i1y and Ξ2 = Ξ′2 + i2y, where y = x. We know that Ξ′1 v Ξ′2, i1 v i2,
[Ξ3/x]Ξ1 = Ξ′1 + i1 ∗Ξ3, [Ξ4/x]Ξ2 = Ξ′2 + i2 ∗Ξ4. By Proposition 35 and 45, [Ξ3/x]Ξ1 v
[Ξ4/x]Ξ2 = Ξ′2 + i2 ∗ Ξ4.

Proposition 46. If g1 v g2 and Ξ1 v Ξ2 then [Ξ1/x]g1 v [Ξ2/x]g2.

Proof. By induction on the type constructors:

Case {R, unit }: [Ξ1/x]g1 = g1 and [Ξ2/x]g2 = g2.

Case g1 = (x : g11) Ξ11−−→ g12 and g2 = (x : g21) Ξ21−−→ g22. By induction hypotheses and
Proposition 45.

Case g1 = g11 ⊕Ξ11 Ξ12 g12 and g2 = g21 ⊕Ξ21 Ξ22 g22. By induction hypotheses and Proposition
45.

Proposition 47. If G1 v G2 and Ξ1 v Ξ2 then [Ξ1/x]G1 v [Ξ2/x]G2.

Proof. By Propositions 45 and 46.

Proposition 48. If ε1 v ε2 and Ξ1 v Ξ2 then [Ξ1/x]ε1 v [Ξ2/x]ε2.

65

Proof. Follows directly from using the Propositions 46 and 45 point-wisely.

Proposition 49. If t1 v t2 and Ξ1 v Ξ2 then [Ξ1/x]t1 v [Ξ2/x]t2.

Proof. By induction on the definition of [Ξ1/x]t1. The variable case follows trivially by using
the Propositions 46 and 45 point-wisely. All other cases follow directly from the induction
hypotheses.

Proposition 50. If ε1 v ε2 then idom(ε1) v idom(ε2).

Proof. Follows directly from the hypothesis and the precision relation between arrow types.

Proposition 51. If ε1 v ε2 then icod(ε1) v icod(ε2).

Proof. Follows directly from the hypothesis and the precision relation between arrow types.

Proposition 52. If ε1 v ε2 then ileft(ε1) v ileft(ε2).

Proof. Follows directly from the hypothesis and the precision relation between sum types.

Proposition 53. If ε1 v ε2 then iright(ε1) v iright(ε2).

Proof. Follows directly from the hypothesis and the precision relation between sum types.

Proposition 54. If ε1 v ε2 and ε3 v ε4 then ε1 +Ξ ε3 v ε2 +Ξ ε4.

Proof. Let εi = 〈 gi1; Ξi1, gi2; Ξi2 〉.

ε1 +Ξ ε3 = 〈 g11; Ξ11 + Ξ31,Ξ12; Ξ12 + Ξ32 〉 and ε2 +Ξ ε4 = 〈 g21; Ξ21 + Ξ41,Ξ22; Ξ22 + Ξ42 〉.

By Proposition 37, Ξ11 + Ξ31 v Ξ12 + Ξ32 and Ξ21 + Ξ41 v Ξ22 + Ξ42. Finally, ε1 +Ξ ε3 v
ε2 +Ξ ε4.

Proposition 55. If ε1 v ε2 and ε3 v ε4 then ε1 gΞ ε3 v ε2 gΞ ε4.

Proof. Analogous to the proof for Proposition 54 but using Proposition 39.

Proposition 56. If i1 v i2 and i3 v i4 then I<:(i1, i3) v I<:(i2, i4).

Proof. Let ii = [si1, si2]. We know that

1. s21 ≤ s11, s12 ≤ s22, s41 ≤ s31, s32 ≤ s42.

66

2. s11 ≤ min(s12, s32) and max(s11, s31) ≤ s32.

3. s21 ≤ s11 ≤ min(s12, s32) ≤ min(s22, s42).

4. max(s21, s41) ≤ max(s11, s31) ≤ s32 ≤ s42

5. I<:(i2, i4) = 〈 [s21,min(s22, s42)], [max(s21, s41), s42] 〉 is defined and I<:(i1, i3) v I<:(i2, i4).

And the result holds.

Proposition 57. If Ξ1 v Ξ2 and Ξ3 v Ξ4 then I<:(Ξ1,Ξ3) v I<:(Ξ2,Ξ4).

Proof. By induction on the definition of I<:(Ξ1,Ξ3) and Proposition 56.

Proposition 58. If g1 v g2 and g3 v g4 then I<:(g1, g3) v I<:(g2, g4).

Proof. By induction on the definition of I<:(g1, g3).

Case g ∈ {R, unit }. Trivial.

Case gi = (x : gi1) Ξi2−−→ gi2. We know that

g11 v g31 Ξ12 v Ξ32 g12 v g32

(x : g11) Ξ12−−→ g12 v (x : g31) Ξ32−−→ g32

g21 v g41 Ξ22 v Ξ42 g22 v g42

(x : g21) Ξ22−−→ g22 v (x : g41) Ξ42−−→ g42

I<:(g11, g31) = 〈 g′11, g
′
31 〉

I<:(Ξ12,Ξ32) = 〈Ξ′12,Ξ′32 〉 I<:(g12, g32) = 〈 g′12, g
′
32 〉

I<:((x : g11) Ξ12−−→ g12, (x : g31) Ξ32−−→ g32) = 〈 (x : g′11) Ξ′
12−−→ g′12, (x : g′31) Ξ′

32−−→ g′32 〉

I<:(g21, g41) = 〈 g′21, g
′
41 〉

I<:(Ξ22,Ξ42) = 〈Ξ′22,Ξ′42 〉 I<:(g22, g42) = 〈 g′22, g
′
42 〉

I<:((x : g21) Ξ22−−→ g22, (x : g41) Ξ42−−→ g42) = 〈 (x : g′21) Ξ′
22−−→ g′22, (x : g′41) Ξ′

42−−→ g′42 〉

– By induction hypotheses, 〈 g′2j, g′4j 〉 are defined and 〈 g′1j, g′3j 〉 v 〈 g′2j, g′4j 〉.
– By Proposition 57, 〈Ξ′22,Ξ′42 〉 are defined and 〈Ξ′12,Ξ′32 〉 v 〈Ξ′22,Ξ′42 〉.

Finally, I<:(g2, g4) is defined and I<:(g1, g3) v I<:(g2, g4).

Case gi = gi1 ⊕Ξi1 Ξi2 gi2. Analogous to arrow types.

Proposition 59. If G1 v G2 and G3 v G4 then I<:(G1, G3) v I<:(G2, G4).

Proof. By Propositions 57 and 58.

67

Proposition 60. If 〈 i11, i12 〉 v 〈 i21, i22 〉 and 〈 i31, i32 〉 v 〈 i41, i42 〉 then 〈 i11, i12 〉 ◦<:

〈 i31, i32 〉 v 〈 i21, i22 〉 ◦<: 〈 i41, i42 〉.

Proof. Let iij = [sij1, sij2]. Then, we know that

• s1j1 ≥ s2j1 and s1j2 ≤ s2j2.

• s3j1 ≥ s4j1 and s3j2 ≤ s4j2.

• s112 f s122 f s312 ≤ s212 f s222 f s412.

• s121 g s311 g s321 ≥ s221 g s411 g s421.

• [s111, s112 f s122 f s312] v [s211, s212 f s222 f s412].

• [s121 g s311 g s321, s322] v [s221 g s411 g s421, s422].

• 〈 i11, i12 〉 ◦<: 〈 i31, i32 〉 = 〈 [s111, s112 f s122 f s312], [s121 g s311 g s321, s322] 〉.

• 〈 i21, i22 〉 ◦<: 〈 i41, i42 〉 = 〈 [s211, s212 f s222 f s412], [s221 g s411 g s421, s422] 〉.

Finally, 〈 i11, i12 〉 ◦<: 〈 i31, i32 〉 v 〈 i21, i22 〉 ◦<: 〈 i41, i42 〉.

Proposition 61. If 〈Ξ11,Ξ12 〉 v 〈Ξ21,Ξ22 〉 and 〈Ξ31,Ξ32 〉 v 〈Ξ41,Ξ42 〉 then 〈Ξ11,Ξ12 〉 ◦<:

〈Ξ31,Ξ32 〉 v 〈Ξ21,Ξ22 〉 ◦<: 〈Ξ41,Ξ42 〉.

Proof. By induction hypothesis on 〈Ξ11,Ξ12 〉 ◦<: 〈Ξ31,Ξ32 〉. All cases follow trivially (with
no hypotheses) or by induction hypothesis with Proposition 60.

Proposition 62. If 〈 g11, g12 〉 v 〈 g21, g22 〉 and 〈 g31, g32 〉 v 〈 g41, g42 〉 then 〈 g11, g12 〉 ◦<:

〈 g31, g32 〉 v 〈 g21, g22 〉 ◦<: 〈 g41, g42 〉.

Proof. By induction on 〈 g11, g12 〉◦<:〈 g31, g32 〉. All cases follow trivially (with no hypotheses)
or by induction hypotheses with Proposition 61.

Proposition 63 (Consistent transitivity monotonicity). If ε1 v ε2 and ε3 v ε4 then ε1 ◦<:

ε3 v ε2 ◦<: ε4.

Proof. By Propositions 62 and 61.

Lemma 64. If tG1 v tG2, then G1 v G2.

Proof. By induction in the syntax of tG1 .

Case εr :: G, ελx.t :: G, ε〈λx.t, γ〉 :: G, εctx(γ, t) :: G, εtt :: G, ε(inlgt) :: G, ε(inrgt) :: G,
εt :: G. By inspection on (IGv::).

Case tG1 = xG1 . By inspection on (IGvx).

68

Case tG1 = tR;Ξ11
11 + tR;Ξ12

12 , where G1 = R; Ξ11 + Ξ12. By inspection on (IGv+), tG2 =
tR;Ξ21
21 + tR;Ξ22

22 , where G2 = R; Ξ21 + Ξ22, tR;Ξ11
11 v tR;Ξ21

21 , tR;Ξ12
12 v tR;Ξ22

22 . By induction
hypothesis, R; Ξ11 v R; Ξ21 and R; Ξ12 v R; Ξ22. Finally, by Proposition 37, G1 v G2.

Case tG1 = t11 ≤ t12. Analogous.

Case tG1 = t
(x:g11)

Ξ12−−→g12;Ξ1
1 tg11;Ξ11

11 , where G1 = [Ξ11/x]g12; Ξ1 + [Ξ11/x]Ξ12. By inspection

on (IGv@), tG2 = t
(x:g21)

Ξ22−−→g22;Ξ2
2 tg21;Ξ21

21 , where G2 = [Ξ21/x]g22; Ξ2 + [Ξ21/x]Ξ22,

t
(x:g11)

Ξ12−−→g12;Ξ1
1 v t

(x:g21)
Ξ22−−→g22;Ξ2

2 , tg11;Ξ11
11 v tg21;Ξ21

21 . By induction hypothesis, (x :
g11) Ξ12−−→ g12; Ξ1 v (x : g21) Ξ22−−→ g22; Ξ2 and g11; Ξ11 v g21; Ξ21. Finally, by Proposi-
tions 46, 45 and 37, G1 v G2.

Case tG1 = case t
g111 ⊕Ξ111 Ξ112g112;Ξ11
11 of {xg11;x ⇒ tg12;Ξ12

12 } { yg11;y ⇒ tg13;Ξ13
13 }, where G1 =

[Ξ11+Ξ111/x]g12g[Ξ11+Ξ112/y]g13; Ξ11g[Ξ11+Ξ111/x]Ξ12g[Ξ11+Ξ112/y]Ξ13. By inspec-
tion on (IGvcase), tG2 = case tg211 ⊕Ξ211 Ξ212g212;Ξ21

21 of {xg21;x ⇒ tg22;Ξ22
22 } { yg21;y ⇒ tg23;Ξ23

23 },
where G2 = [Ξ21+Ξ211/x]g22g[Ξ21+Ξ212/y]g23; Ξ21g[Ξ21+Ξ211/x]Ξ22g[Ξ21+Ξ212/y]Ξ23,
t
g111 ⊕Ξ111 Ξ112g112;Ξ11
11 v t

g211 ⊕Ξ211 Ξ212g212;Ξ21
21 , g11;x v g21; x, tg12;Ξ12

12 v tg22;Ξ22
22 , g12; y v g22; y,

tg13;Ξ13
13 v tg23;Ξ23

23 . By induction hypothesis, g111 ⊕Ξ111 Ξ112g112; Ξ11 v g211 ⊕Ξ211 Ξ212g212; Ξ21,
g12; Ξ12 v g22; Ξ22 and g13; Ξ13 v g23; Ξ23. Finally, by direct application of propositions
37, 46, 45, 40 and 39, G1 v G2.

Proposition 65. If g1 <̃: g2, g1 v g′1 and g2 v g′2, then g′1 <̃: g′2.

Proof. By definition of · <̃: ·, there exists 〈τ1, τ2〉 ∈ C2
g (g1, g2) such that τ1 <: τ2. From

g1 v g′1 and g2 v g′2 it follows that Cg(g1) ⊆ Cg(g′1) and Cg(g2) ⊆ Cg(g′2). Therefore,
〈τ1, τ2〉 ∈ C2

g (g′1, g′2) and the result holds.

Proposition 66. If G1 <̃: G2, G1 v G′1 and G2 v G′2, then G′1 <̃: G′2.

Proof. By definition of · <̃: ·, there exists 〈T1,T2〉 ∈ C2(G1, G2) such that T1 <: T2. From
G1 v G′1 and G2 v G′2 it follows that C(G1) ⊆ C(G′1) and C(G2) ⊆ C(G′2). Therefore,
〈T1,T2〉 ∈ C2(G′1, G′2) and the result holds.

Proposition 67. If i1 <̃: i3 and i2 <̃: i4, then i1 + i2 <̃: i3 + i4.

Proof. Let ii = [si1, si2]. We know that s11 ≤ s32 and s21 ≤ s42. Then, s11 + s21 ≤ s32 + s42.
Finally, i1 + i2 <̃: i3 + i4.

Proposition 68. If Ξ1 <̃: Ξ3 and Ξ2 <̃: Ξ4, then Ξ1 + Ξ2 <̃: Ξ3 + Ξ4.

Proof. By induction on Ξ1 <̃: Ξ3. All cases follow with no premises or by induction hypoth-
esis and Proposition 67.

Proposition 69. If Ξ1 v Ξ2 then ∆ · Ξ1 v ∆ · Ξ2.

69

Proof.

Ξ1 v Ξ2 ⇐⇒ ∀x ∈ dom(Ξ1) ∪ dom(Ξ2).Ξ1(x) v Ξ2(x)
=⇒ ∀x ∈ dom(Ξ1) ∪ dom(Ξ2).∆(x) ∗ Ξ1(x) v ∆(x) ∗ Ξ2(x) By Proposition 34
=⇒

∑
x∈dom(Ξ1)∪dom(Ξ2)

∆(x) ∗ Ξ1(x) v
∑

x∈dom(Ξ1)∪dom(Ξ2)

∆(x) ∗ Ξ2(x)

=⇒
∑

x∈dom(Ξ1)

∆(x) ∗ Ξ1(x) v
∑

x∈dom(Ξ2)

∆(x) ∗ Ξ2(x)

⇐⇒ ∆ · Ξ1 v ∆ · Ξ2

Proposition 70. If ε1 . R; Ξ11 <̃: R; Ξ12 and ε2 . R; Ξ21 <̃: R; Ξ22, then ε1 +Ξ ε2 . R; Ξ11 +
Ξ21 <̃: R; Ξ12 + Ξ22.

Proof. Let εi = 〈R; Ξ′i1,R; Ξ′i2 〉. By definition, we know that Ξ′i1 v Ξi1 and Ξ′i2 v Ξi2. By
Proposition 37, Ξ′11 + Ξ′21 v Ξ11 + Ξ21 and Ξ′12 + Ξ′22 v Ξ12 + Ξ22. Finally, ε1 +Ξ ε2 . R; Ξ11 +
Ξ21 <̃: R; Ξ12 + Ξ22.

Proposition 71. If ε1 . R; Ξ11 <̃: R; Ξ12 and ε2 . R; Ξ21 <̃: R; Ξ22, then ε1 gΞ ε2 .
R; Ξ11 g Ξ21 <̃: R; Ξ12 gΞ Ξ22.

Proof. Let εi = 〈R; Ξ′i1,R; Ξ′i2 〉. By definition, we know that Ξ′i1 v Ξi1 and Ξ′i2 v Ξi2. By
Proposition 39, Ξ′11gΞ′21 v Ξ11gΞ21 and Ξ′12gΞ′22 v Ξ12gΞ22. Finally, ε1 gΞ ε2 . R; Ξ11g
Ξ21 <̃: R; Ξ12 g Ξ22.

Proposition 72. If ε . G1 <̃: G2, then [Ξ/x]ε . [Ξ/x]G1 <̃: [Ξ/x]G2

Proof. Let ε = 〈G′1, G′2 〉. By definition, we know that G′1 v G1 and G′2 v G2. By Propo-
sition 47, [Ξ/x]G′1 v [Ξ/x]G1 and [Ξ/x]G′2 v [Ξ/x]G2. Finally, [Ξ/x]ε . [Ξ/x]G1 <̃:
[Ξ/x]G2.

Lemma 73 (Substitutions). If t ∈ T[g; Ξ] and t is not a runtime term, then ∀x,Ξ′ such that
x ∈ FV (t), [Ξ′/x]t ∈ T[[Ξ′/x]g; [Ξ′/x]Ξ].

Proof. By induction on the structure of t.

• Case r, b, tt: Trivial.

• Case t1 + t2: We know that,

(IGplus)
t1 ∈ T[R; Ξ1] t2 ∈ T[R; Ξ2]

t1 + t2 ∈ T[R; Ξ1 + Ξ2]

70

Therefore, by induction hypothesis,

(IGplus)
[Ξ′/x]t1 ∈ T[R; Ξ1] [Ξ′/x]t2 ∈ T[R; Ξ2]

[Ξ′/x](t1 + t2) ∈ T[R; [Ξ′/x](Ξ1 + Ξ2)]

And the result holds.

• Case λx.t, t1 t2, t :: g; Ξ, inlgt, inrgt: Analogous.

• Case xg;Ξ : We know that xg;Ξ ∈ T[g; Ξ]. Then, by (IGvar), [Ξ′/x]xg;Ξ = x[Ξ′/x]g;[Ξ′/x]Ξ ∈
T[[Ξ′/x]g; [Ξ′/x]Ξ]. And the result holds.

Proposition 74. 〈 i11, i12 〉 ◦<: (〈 i21, i22 〉 ◦<: 〈 i31, i32 〉) = (〈 i11, i12 〉 ◦<: 〈 i21, i22 〉)◦<: 〈 i31, i32 〉

Proof.

(〈 [s11, s12], [s13, s14] 〉 ◦<: 〈 [s21, s22], [s23, s24] 〉) ◦<: 〈 [s31, s32], [s33, s34] 〉
= 〈 [s11,min(s12, s14, s22)], [max(s13, s21, s23), s24] 〉 ◦<: 〈 [s31, s32], [s33, s34] 〉
= 〈 [s11,min(min(s12, s14, s22), s24, s32)], [max(max(s13, s21, s23), s31, s33), s34] 〉
= 〈 [s11,min(s12, s14, s22, s24, s32)], [max(s13, s21, s23, s31, s33), s34] 〉
= 〈 [s11,min(s12, s14,min(s22, s24, s32))], [max(s13, s21,max(s23, s31, s33)), s34] 〉
= 〈 [s11, s12], [s13, s14] 〉 ◦<: 〈 [s21,min(s22, s24, s32)], [max(s23, s31, s33), s34] 〉
= 〈 [s11, s12], [s13, s14] 〉 ◦<: (〈 [s21, s22], [s23, s24] 〉 ◦<: 〈 [s31, s32], [s33, s34] 〉)

Proposition 75. 〈Ξ1,Ξ2 〉 ◦<: (〈Ξ3,Ξ4 〉 ◦<: 〈Ξ5,Ξ6 〉) = (〈Ξ1,Ξ2 〉 ◦<: 〈Ξ3,Ξ4 〉) ◦<: 〈Ξ5,Ξ6 〉

Proof. We proceed by induction on the structure of Ξj.

Case Ξj = ∅. Trivial.

Case Ξj = Ξj0 + ijx.

1. Let 〈Ξ′11,Ξ′41 〉 = 〈Ξ10,Ξ20 〉 ◦<: 〈Ξ30,Ξ40 〉.
2. Let 〈 i′11, i

′
41 〉 = 〈 i1, i2 〉 ◦<: 〈 i3, i4 〉.

3. Let 〈Ξ′′11,Ξ′61 〉 = 〈Ξ′11,Ξ′41 〉◦<:〈Ξ50,Ξ60 〉 = (〈Ξ10,Ξ20 〉◦<:〈Ξ30,Ξ40 〉)◦<:〈Ξ50,Ξ60 〉.
4. Let 〈 i′′11, i

′
61 〉 = 〈 i′11, i

′
41 〉 ◦<: 〈 i5, i6 〉 = (〈 i1, i2 〉 ◦<: 〈 i3, i4 〉) ◦<: 〈 i5, i6 〉.

5. Let 〈Ξ′32,Ξ′62 〉 = 〈Ξ30,Ξ40 〉 ◦<: 〈Ξ50,Ξ60 〉.
6. Let 〈 i′32, i

′
62 〉 = 〈 i3, i4 〉 ◦<: 〈 i5, i6 〉.

7. Let 〈Ξ′12,Ξ′′62 〉 = 〈Ξ10,Ξ20 〉◦<:〈Ξ′32,Ξ′62 〉 = 〈Ξ10,Ξ20 〉◦<:(〈Ξ30,Ξ40 〉◦<:〈Ξ50,Ξ60 〉).
8. Let 〈 i′12, i

′′
62 〉 = 〈 i1, i2 〉 ◦<: 〈 i′32, i

′
62 〉 = 〈 i1, i2 〉 ◦<: (〈 i3, i4 〉 ◦<: 〈 i5, i6 〉).

71

9. By Proposition 74, 〈 i′′11, i
′
61 〉 = 〈 i′12, i

′′
62 〉.

10. By induction hypothesis, 〈Ξ′′11,Ξ′61 〉 = 〈Ξ′12,Ξ′′62 〉.

Notice that

– (〈Ξ1,Ξ2 〉 ◦<: 〈Ξ3,Ξ4 〉) ◦<: 〈Ξ5,Ξ6 〉 = 〈Ξ′′11 + i′′11x,Ξ′61 + i′61x 〉, and
– 〈Ξ1,Ξ2 〉 ◦<: (〈Ξ3,Ξ4 〉 ◦<: 〈Ξ5,Ξ6 〉) = 〈Ξ′12 + i′12x,Ξ′′62 + i′′62x 〉.

Finally, by (9) and (10), 〈Ξ1,Ξ2 〉◦<: (〈Ξ3,Ξ4 〉◦<: 〈Ξ5,Ξ6 〉) = (〈Ξ1,Ξ2 〉◦<: 〈Ξ3,Ξ4 〉)◦<:

〈Ξ5,Ξ6 〉.

Proposition 76. 〈 g1, g2 〉 ◦<: (〈 g3, g4 〉 ◦<: 〈 g5, g6 〉) = (〈 g1, g2 〉 ◦<: 〈 g3, g4 〉) ◦<: 〈 g5, g6 〉

Proof. Analogous to 75. By induction on the structure of gj and Proposition 75.

Proposition 77 (Consistent transitivity associativity). ε1 ◦<: (ε2 ◦<: ε3) = (ε1 ◦<: ε2) ◦<: ε3

Proof. Follows directly from Propositions 76 and 75.

B.2. Galois connections

Proposition 7 (Galois connection for sensitivities). 〈Ci , Ai〉 is a Galois connection, i.e.:

1. (Soundness) for any non-empty set of static sensitivities S = { s }, we have S ⊆
Ci(Ai(S))

2. (Optimality) for any gradual sensitivity i, we have i v Ai(Ci(i)).

Proof. We first prove Soundness.

• Let S = { s }.

• Then Ai(S) = [min(S),max(S)].

• But Ci([min(S),max(S)]) = { s | s ≥ min(S) ∧ s ≤ max(S) }.

• Finally, for any s ∈ S, s ≥ min(S) ∧ s ≤ max(S), so S ⊆ Ci(Ai(S)).

We then prove Optimality.

• Let i = [s1, s2].

72

• Then, let S = Ci(i) = { s | s ≥ s1 ∧ s ≤ s2 }.

• But Ai(S) = [min(S),max(S)] = [s1, s2].

• Finally, the result trivially holds.

Proposition 78 (Galois connection for sensitivity environments). 〈CΞ , AΞ〉 is a Galois con-
nection, i.e.:

1. (Soundness) for any non-empty set of static sensitivity environments S = {Σ }, we have
S ⊆ CΞ(AΞ(S))

2. (Optimality) for any gradual sensitivity environment Ξ, we have Ξ v AΞ(CΞ(Ξ)).

Proof. We first prove Soundness, by induction on the structure of the non-empty set S.

Case S = {∅ }. Then AΞ(S) = ∅, but CΞ(∅) = ∅. Finally, the result trivially holds.

Case S = {Σ + sx }. ThenAΞ(S) = AΞ({Σ })+Ai({ s })x. But CΞ(AΞ({Σ })+Ai({ s })x) =
CΞ(AΞ({Σ })) + Ci(Ai({ s }))x. By induction hypothesis {Σ } ⊆ CΞ(AΞ({Σ })) and,
by Proposition 7, { s } ⊆ Ci(Ai({ s })). Finally, S ⊆ CΞ(AΞ(S)).

We then prove Optimality, by induction on the structure of Ξ.

Case Ξ = ∅. Then, CΞ(∅) = {∅ }. But AΞ({∅ }) = ∅ and the result trivially holds.

Case Ξ = Ξ′ + ix. Then, CΞ(Ξ′ + ix) = CΞ(Ξ′) + Ci(i)x. But AΞ(CΞ(Ξ′) + Ci(i)x) =
AΞ(CΞ(Ξ′)) + Ai(Ci(i))x. By induction hypothesis, Ξ′ v AΞ(CΞ(Ξ′)) and, by Proposi-
tion 7, i v Ai(Ci(i)). Finally, the result holds.

Proposition 79 (Galois connection for types). 〈Cg , Ag〉 is a Galois connection, i.e.:

1. (Soundness) for any non-empty set of static types S = { τ }, we have S ⊆ Cg(Ag(S))

2. (Optimality) for any gradual type g, we have g v Ag(Cg(g)).

Proof. We first prove Soundness, by induction on the structure of the non-empty set S.

Case S = {R }. Then, Ag({R }) = R. But Cg(R) = R. Finally, the result trivially holds.

Case S = {B } and S = { unit }. Analogous to case S = {R }.

73

Case S = { (x : τ1) Σ−→ τ1 }.

– Then, Ag(S) = (x : Ag({ τ1 }))
AΞ ({Σ })−−−−−→ Ag({ τ2 }).

– But Cg(Ag(S)) = (x : Cg(Ag({ τ1 })))
CΞ (AΞ ({Σ }))−−−−−−−−→ Cg(Ag({ τ2 })).

– By induction hypotheses, { τ1 } ⊆ Cg(Ag({ τ1 })) and { τ2 } ⊆ Cg(Ag({ τ2 })).
– Additionally, by Proposition 78, {Σ } ⊆ CΞ(AΞ({Σ })).
– Finally, S ⊆ Cg(Ag(S)).

Case S = { τ1 ⊕Σ1 Σ2 τ2 }.

– Then, Ag(S) = Ag({ τ1 }) ⊕Ag({Σ1 }) Ag ({Σ2 }) Ag({ τ2 }).
– But Cg(Ag(S)) = Cg(Ag({ τ1 })) ⊕CΞ (Ag ({Σ1 })) CΞ (Ag ({Σ2 })) Cg(Ag({ τ2 })).
– By induction hypotheses, { τ1 } ⊆ Cg(Ag({ τ1 })) and { τ2 } ⊆ Cg(Ag({ τ2 })).
– Additionally, by Proposition 78, {Σ1 } ⊆ CΞ(AΞ({Σ1 })) and {Σ2 } ⊆ CΞ(AΞ({Σ2 })).
– Finally, S ⊆ Cg(Ag(S)).

We then prove Optimality by induction of the structure of g.

Case g = R. Then, Cg(R) = {R }. But Ag({R }) = R and the result trivially holds.

Case g = B and g = unit. Analogous to case g = R.

Case g = (x : g1) Ξ−→ g2.

– Then, Cg(g) = (x : Cg(g1)) CΞ (Ξ)−−−→ Cg(g2).

– But Ag(Cg(g)) = (x : Ag(Cg(g1))) AΞ (CΞ (Ξ))−−−−−−→ Ag(Cg(g2)).
– By induction hypotheses, g1 v Ag(Cg(g1)) and g2 v Ag(Cg(g2)).
– Additionally, by Proposition 78, Ξ v AΞ(CΞ(Ξ)).
– Finally, the result holds.

Case g = g1 ⊕Ξ1 Ξ2 g2.

– Then, Cg(g) = Cg(g1) ⊕Cg (Ξ1) Cg (Ξ2) Cg(g2).
– But Ag(Cg(g)) = Ag(Cg(g1)) ⊕AΞ (CΞ (Ξ1)) AΞ (CΞ (Ξ2)) Ag(Cg(g2)).
– By induction hypotheses, g1 v Ag(Cg(g1)) and g2 v Ag(Cg(g2)).
– Additionally, by Proposition 78, Ξ1 v AΞ(CΞ(Ξ1)) and Ξ2 v AΞ(CΞ(Ξ2)).
– Finally, the result holds.

Proposition 8 (Galois connection for type-and-effects). 〈C,A〉 is a Galois connection, i.e.:

74

1. (Soundness) for any non-empty set of static type-and-effects S = {T }, we have S ⊆
C(A(S))

2. (Optimality) for any gradual type-and-effect G, we have G v A(C(G)).

Proof. We first prove Soundness.

• Let S = { τ; Σ }.

• Then, A(S) = Ag({ τ });AΞ({Σ }).

• But C(A(S)) = Cg(Ag({ τ }));CΞ(AΞ({Σ })).

• By Propositions 79 and 78, { τ } ⊆ Cg(Ag({ τ })) and {Σ } ⊆ CΞ(AΞ({Σ })), respec-
tively.

• Finally, the result holds.

We then prove Optimality.

• Let G = g; Ξ.

• Then, C(G) = Cg(g);CΞ(Ξ).

• But A(C(G)) = Ag(Cg(g));AΞ(CΞ(Ξ)).

• By Propositions 79 and 78, g v Ag(Cg(g)) and Ξ v AΞ(CΞ(Ξ)), respectively.

• Finally, the result holds.

B.3. Type Safety

Lemma 80 (Canonical Forms). Consider a value v ∈ T[g; Ξ]. Then, v = εu :: g; Ξ with
u ∈ T[g′; Ξ′] and ε . g′; Ξ′ <̃: g; Ξ. Furthermore:

1. If g = R then u = r with r ∈ T[R;∅].

2. If g = B then u = b with b ∈ T[B;∅].

3. If g = unit then u = tt with tt ∈ T[unit;∅].

4. If g = (x : g1) Ξ2−→ g2 then u = 〈λxg′
1 .t, γ〉 with t ∈ T[g′2; Ξ′2].

5. If g = g1 ⊕Ξ1 Ξ2 g2 then u is either:

75

• inlg′
2v1 with v1 ∈ T[g′1; Ξ′1].

• inrg′
1v2 with v2 ∈ T[g′2; Ξ′2].

Proof. By direct inspection of the typechecking rules for intrinsic terms.

Proposition 81 (−→ is well-defined). . If t ` γ, t ∈ T[G] and t
γ−−→ t′, then t′ ∈

T[G] ∪ { error }.

Proof. By induction on the structure of derivation of t γ7−−→ t′.

Case (IGr-plus).
Then t = ε1r1 :: R; Ξ1 + ε2r2 :: R; Ξ2. Then, let ε1 = 〈R;∅,R; Ξ12 〉 and ε2 =
〈R;∅,R; Ξ22 〉,

(IGplus)
(IGascr)

ri ∈ T[R;∅] εi . R;∅ <̃: R; Ξi

εiri :: R; Ξi ∈ T[R; Ξi]
ε1r1 :: R; Ξ1 + ε2r2 :: R; Ξ2 ∈ T[R; Ξ1 + Ξ2]

Then,

ε1r1 :: R; Ξ1 + ε2r2 :: R; Ξ2 −→ ε3r3 :: R; Ξ1 + Ξ2

where

r3 = r1J+Kr2

ε3 = ε1 +Ξ ε2

– By Proposition 70, ε3 . R;∅ <̃: R; Ξ1 + Ξ2.

Finally

(IGascr)
r3 ∈ T[R;∅] ε3 . R;∅ <̃: R; Ξ1 + Ξ2

ε3r3 :: R; Ξ1 + Ξ2 ∈ T[R; Ξ1 + Ξ2]

and the result holds

Case (IGr-leq). Analogous to (IGr-plus).

Case (IGr-var).
Then t = xg;Ξ . Let γ(x) = v. We know that,

76

(IGvar)
xg;Ξ ∈ T[g; Ξ]

Also, we know, by the definition of well-formedness of γ, that v ∈ T[g; Ξ].
Then,

xg;Ξ −→ γ(x)

And the result holds immediately.

Case (IGr-lam).

Then t = ελx.t :: (x : g1) Ξ2−→ g2; Ξ. Then,

(IGascr)
λx.t ∈ T[(x : g′1) Ξ′

2−→ g′2; Ξ′] ε . (x : g′1) Ξ′
2−→ g′2; Ξ′ <̃: (x : g1) Ξ2−→ g2; Ξ

ελx.t :: (x : g1) Ξ2−→ g2; Ξ ∈ T[(x : g1) Ξ2−→ g2; Ξ]

Therefore,

ελx.t :: (x : g1) Ξ2−→ g2; Ξ γ−−→ ε〈λx.t, γ〉 :: (x : g1) Ξ2−→ g2; Ξ

– We know by hypothesis that ελx.t :: (x : g1) Ξ2−→ g2; Ξ ` γ, but since ascriptions
don’t introduce fresh variables nor change inner terms types we also know that
λx.t ` γ.

Finally,

(IGascr)
D1 ε . (x : g′1) Ξ′

2−→ g′2; Ξ′ <̃: (x : g1) Ξ2−→ g2; Ξ

ε〈λx.t, γ〉 :: (x : g1) Ξ2−→ g2; Ξ ∈ T[(x : g1) Ξ2−→ g2; Ξ]

where,

D1 = (IGclosure)
λx.t ∈ T[(x : g′1) Ξ′

2−→ g′2; Ξ′] λx.t ` γ

〈λx.t, γ〉 ∈ T[(x : g′1) Ξ′
2−→ g′2; Ξ′]

77

and the result holds.

Case (IGr-app).

Then t = (ε1〈λxg
′′
1 .t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ) (ε2u :: g1; Ξ1).

(IGapp)
D1

(IGascr)
u ∈ T[g′′′1 ; Ξ′′′1] ε2 . g′′′1 ; Ξ′′′1 <̃: g1; Ξ1

ε2u :: g1; Ξ1 ∈ T[g1; Ξ1]

ε1〈λxg
′′
1 .t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ ε2u :: g1; Ξ1 ∈ T[[Ξ1/x]g2; Ξ′ + [Ξ1/x]Ξ]

where,

D1 = (IGascr)
D2 ε1 . (x : g′′1) Ξ′′

2−→ g′′2 ;∅ <̃: (x : g1) Ξ2−→ g2; Ξ

ε1〈λxg
′′
1 .t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ ∈ T[(x : g1) Ξ2−→ g2; Ξ]

D2 = (IGclosure)

(IGlam)
t ∈ T[g′′2 ; Ξ′′2]

λxg
′′
1 .t ∈ T[(x : g′′1) Ξ′′

2−→ g′′2 ;∅] λxg
′′
1 .t ` γ′

〈λxg′′
1 .t, γ′〉 ∈ T[(x : g′′1) Ξ′′

2−→ g′′2 ;∅]

If ε′2 = ε2 ◦<: sdom(Ξ1, ε1) is not defined, then t −→ error and the result holds
immediately. Suppose that the consistent transitivity hold, then:

ε1〈λxg
′′
1 .t, γ′〉 :: (x : g1) Ξ2−→ g2; Ξ ε2u :: g1; Ξ1

γ−−→ ε11ctx(γ′ext, [Ξ1/x]t) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2

where γ′ext = γ′[x 7→ ε′2u :: g′′1 ; Ξ1], ε11 = [Ξ1/x]icod(ε1).

– By inversion lemmas, we know that icod(ε1) . g′′2 ; Ξ′′2 <̃: g2; Ξ2. Then, by Proposition
72, ε11 . [Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2 <̃: [Ξ1/x]g2; [Ξ1/x]Ξ2. Finally, we have that ε11 .
[Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2 <̃: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2.

– As ε2 . g′′′1 ; Ξ′′′1 <̃: g1; Ξ1 and by inversion lemmas sdom(Ξ1, ε1) . g1; Ξ1 <̃: g′′1 ; Ξ1,
then ε′2 . g′′′1 ; Ξ′′′1 <̃: g′′1 ; Ξ1.

– We want to prove that [Ξ1/x]t ` γ′ext: First, we know that λxg′′
1 .t ` γ′, then

(1) FV (λxg′′
1 .t) ⊆ dom(γ′) and (2) ∀ygy ;Ξy ∈ FV (λxg′′

1 .t), γ(y) ∈ T[gy; Ξy]. Also,
FV ([Ξ1/x]t) = FV (λxg′′

1 .t)∪{ x }, then FV ([Ξ1/x]t) ⊆ dom(γ′)∪{x } = dom(γ′ext).
Since xg′′

1 ;Ξ1 /∈ FV (λxg′′
1 .t), we only need to prove that the value provided for x in

γ′ext is well-typed:

(IGascr)
u ∈ T[g′′′1 ; Ξ′′′1] ε′2 . g′′′1 ; Ξ′′′1 <̃: g′′1 ; Ξ1

ε′2u :: g′′1 ; Ξ1 ∈ T[g′′1 ; Ξ1]

78

– We know that t ∈ T[g′′2 ; Ξ′′2]. Then, by Proposition 73, [Ξ1/x]t ∈ T[[Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2].

Finally,

(IGascr)
D4 ε11 . [Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2 <̃: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2

ε11ctx(γ′ext, [Ξ1/x]t) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2 ∈ T[[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2]

where

D4 = (IGctx)
[Ξ1/x]t ∈ T[[Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2] [Ξ1/x]t ` γ′ext

ctx(γ′ext, [Ξ1/x]t) ∈ T[[Ξ1/x]g′′2 ; [Ξ1/x]Ξ′′2]

and the result holds.

Case (IGr-case-1).
Then, t = case (εinlg′

12(ε1u :: g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12g12; Ξ1) of {xg11 ⇒ tg2;Ξ2
2 } { yg12 ⇒ tg3;Ξ3

3 }
and:

(IGcase)
D1 t2 ∈ T[g2; Ξ2] t3 ∈ T[g3; Ξ3]

case (εinlg′
12(ε1u :: g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1) of {xg11 ⇒ tg2;Ξ2

2 } { yg12 ⇒ tg3;Ξ3
3 } ∈

T[[Ξ1 + Ξ11/x]g2 t [Ξ1 + Ξ12/y]g3; Ξ1 t [Ξ1 + Ξ11/x]Ξ2 t [Ξ1 + Ξ12/y]Ξ3]

D1 = (IGascr)
D2 ε . g′11 ⊕Ξ′

11 ∅ g′12;∅ <̃: g11 ⊕Ξ11 Ξ12 g12; Ξ1

εinlg′
12(ε1u :: g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1 ∈ T[g11 ⊕Ξ11 Ξ12 g12; Ξ1]

D2 = (IGinl)
(IGascr)

u ∈ T[g′′11; Ξ′′11] ε1 . g′′11; Ξ′′11 <̃: g′11; Ξ′11

ε1u :: g′11; Ξ′11 ∈ T[g′11; Ξ′11]
inlg′

12(ε1u :: g′11; Ξ′11) ∈ T[g′11 ⊕Ξ′
11 ∅ g′12;∅]

If ε′2 = I<:([Ξx/x]g2; [Ξx/x]Ξ2, [Ξx/x]g2t [Ξy/y]g3; Ξ′) gΞ ε or ε′1 = ε1 ◦<: ileft(ε) are not
defined then t −→ error, and the result holds immediately. Suppose that the consistent
transitivity and the interior hold and are defined, then:

case (εinlg′
12(ε1u :: g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1) of {xg11 ⇒ tg2;Ξ2

2 } { yg12 ⇒ tg3;Ξ3
3 } γ−−→

ε′2ctx(γext, tbody) :: g′; Ξ′ g Ξ1

79

where

γext = γ[x 7→ ε′1u :: g11; Ξx]
tbody = [Ξx/x]t2

Ξx = Ξ1 + Ξ11

Ξy = Ξ1 + Ξ12

g′ = [Ξx/x]g2 t [Ξy/y]g3

Ξ′ = [Ξx/x]Ξ2 t [Ξy/y]Ξ3

– We know that I<:([Ξx/x]g2; [Ξx/x]Ξ2, [Ξx/x]g2t[Ξy/y]g3; Ξ′) . [Ξx/x]g2; [Ξx/x]Ξ2 <̃:
g′; Ξ′, and ε . g′11 ⊕Ξ′

11 ∅ g′12;∅ <̃: g11 ⊕Ξ11 Ξ12 g12; Ξ1. Then, by Proposition 71,
ε′2 . [Ξx/x]g2; [Ξx/x]Ξ2 <̃: g′; Ξ′ g Ξ1

– We know that t2 ∈ T[g2; Ξ2]. Then, by Lemma 73, [Ξx/x]t2 ∈ T[[Ξx/x]g2; [Ξx/x]Ξ2].
– We know that ε1 . g′′11; Ξ′′11 <̃: g′11; Ξ′11. Also, by inversion lemmas, ileft(ε1) .
g′11;∅+ Ξ′11 <̃: g11; Ξ1 + Ξ11. Then ε′1 . g′′11; Ξ′′11 <̃: g11; Ξ1 + Ξ11.

– We want to prove that [Ξx/x]t2 ` γext: We know that t ` γ, then (1) FV (t) ⊆
dom(γ) and (2) ∀zgz ;Ξz ∈ FV (t).γ(z) ∈ T[gz; Ξz]. We also know that FV ([Ξx/x]t2) =
FV (t) ∪ { x }, then FV ([Ξx/x]t2) ⊆ dom(γ) ∪ {x } = dom(γext). Since xg11;Ξx , we
only need to prove that the value provided for x in γext is well-typed:

(IGascr)
u ∈ T[g′′11; Ξ′′11] ε′1 . g′′11; Ξ′′11 <̃: g11; Ξx

ε′1u :: g11; Ξx ∈ T[g11; Ξx]

Finally,

(IGascr)
D3 ε′2 . [Ξx/x]g2; [Ξx/x]Ξ2 <̃: g′; Ξ′ g Ξ1

ε′2ctx(γext, tbody) :: g′; Ξ′ g Ξ1 ∈ T[g′; Ξ′ g Ξ1]

D3 = (IGctx)
[Ξx/x]t2 ∈ T[g2; Ξ2] [Ξx/x]t2 ` γext
ctx(γext, tbody) ∈ T[[Ξx/x]g2; [Ξx/x]Ξ2]

And the result holds.

Case (IGr-case-2). Analogous to (IGr-case-1).

Case (IGr-ctx).

80

Then, tg;Ξ = εctx(γ′, v) :: g; Ξ. Then,

(IGascr)
(IGctx)

v ∈ T[g′; Ξ′] v ` γ′

ctx(γ′, v) ∈ T[g′; Ξ′] ε . g′; Ξ′ <̃: g; Ξ
εctx(γ′, v) :: g; Ξ ∈ T[g; Ξ]

Therefore,

εctx(γ′, v) :: g; Ξ −→ εv :: g; Ξ

But,

(IGascr)
v ∈ T[g′; Ξ′] ε . g′; Ξ′ <̃: g; Ξ

εv :: g; Ξ ∈ T[g; Ξ]

And the result holds.

Case (IGr-ascr).
Then, t = (u :: g1; Ξ1) :: g2; Ξ2. Then,

(IGascr)
(IGascr)

u ∈ T[g0; Ξ0] ε1 . g0; Ξ0 <̃: g1; Ξ1

ε1u :: g1; Ξ1 ∈ T[g1; Ξ1] ε2 . g1; Ξ1 <̃: g2; Ξ2

ε2(ε1u :: g1; Ξ1) :: g2; Ξ2 ∈ T[g2; Ξ2]

If ε1 ◦<: ε2 is not defined, then t −→ error and the result holds immediately. Suppose
that the consistent transitivity holds, then:

ε2(ε1u :: g1; Ξ1) :: g2; Ξ2 −→ ε1 ◦<: ε2u :: g2; Ξ2

But,

(IGascr)
u ∈ T[g0; Ξ0] ε1 ◦<: ε2 . g0; Ξ0 <̃: g2; Ξ2

ε1 ◦<: ε2u :: g2; Ξ2 ∈ T[g2; Ξ2]

And the result holds.

81

Proposition 82 (7−→ is well-defined). If t ` γ, t ∈ T[G] and t γ7−−→ t′, then t′ ∈ T[G] ∪
{ error }.

Proof. By induction on the structure of derivation of t γ7−−→ t′.

Case (IGR→)
By Proposition 81, r ∈ T[g; Ξ] ∪ { error }.

Case (IGRE)
t = E[t1], E[t1] ∈ T[g; Ξ], t1 7−→ t2, t1 ∈ T[g′; Ξ′], and E : g′; Ξ′ → g; Ξ. By induction
hypothesis, t2 ∈ T[g; Ξ], so E[t2] ∈ T[g; Ξ].

Case (IGRctx)

t = εctx(γ′, t1) :: g; Ξ, t1
γ′

7−−−→ t2. We know,

(IGascr)
(IGctx)

t1 ∈ T[g′; Ξ′] γ′ ` t1
ctx(γ′, t1) ∈ T[g′; Ξ′] ε . g′; Ξ′ <̃: g; Ξ

εctx(γ′, t1) :: g; Ξ ∈ T[g; Ξ]

By induction hypothesis t2 ∈ T[g′; Ξ′], then

(IGascr)
(IGctx)

t2 ∈ T[g′; Ξ′] γ′ ` t2
ctx(γ′, t2) ∈ T[g′; Ξ′] ε . g′; Ξ′ <̃: g; Ξ

εctx(γ′, t2) :: g; Ξ ∈ T[g; Ξ]

Case (IGR→err), (IGREerr), (IGRctxerr). r = error

Proposition 83. If t ∈ T[g; Ξ], then one of the following is true:

• t is a value v.

• if γ ` t then t γ7−−→ t′ for some t′ ∈ T[g; Ξ].

• t
γ7−−→ error

Proof. By induction on the structure of t.

Case εr :: g′; Ξ′, ε〈t′, γ′〉 :: g′; Ξ, εtt :: g′; Ξ′: t is a value.

82

Case (IGinl), (IGinr). t = εinlg1t′ :: G′: We only show the proof inl as both cases are
analogous. We know that,

(IGascr)
(IGinl)

t′ ∈ T[g1; Ξ]
inlg2t ∈ T[g1 ⊕Ξ ∅ g2;∅] ε . g1 ⊕Ξ ∅ g2;∅ <̃: G′

εinlg1t′ :: G′ ∈ T[G′]

By induction hypothesis,

– t′ is a value v, then t′ is a value.
– t′ 7−→ t′′ for some t′′ ∈ T[g1; Ξ] ∪ { error }. By Proposition 82 and either (IGRE)
or (IGREerr).

Case (IGascr). t = εt′ :: G

(IGascr)
t′ ∈ T[G′] ε . G′ <̃: G

εt′ :: G ∈ T[G]

By induction hypothesis,

– t′ is a value v, then the result holds by Proposition 82 and either (IGR→) or
(IGR→err).

– t′ 7−→ t′′ for some t′ ∈ T[G′] ∪ { error }. By Proposition 82 and either (IGRE) or
(IGREerr).

Case (IGplus). t = t1 + t2, and

(IGplus)
t1 ∈ T[R; Ξ1] t2 ∈ T[R; Ξ2]

t1 + t2 ∈ T[R; Ξ1 + Ξ2]

By induction hypothesis on t1 and t2:

– If t1 and t2 are values ε1u1 :: R; Ξ1 and ε2u2 :: R; Ξ2, respectively, then by Lemma
80 u1 = r1 and u2 = r2 and the result holds by Proposition 82 and (IGR→).

– If t1 7−→ t′1, then the result holds by Proposition 82 and either (IGRE) or (IGREerr).
– If t2 7−→ t′2, then the result holds by Proposition 82 and either (IGRE) or (IGREerr).

Case (IGleq). Analogous to (IGplus).

Case (IGvar). t = x. We know that x ` γ, therefore x ∈ dom(γ). Then, the result holds
by Proposition 82 and (IGR→).

Case (IGlam). t = ελx.t :: (x : g1) Ξ−→ g2. The result holds by Proposition 82 and (IGR→).

83

Case (IGapp). t = t1 t2, and

(IGapp)
t1 ∈ T[(x : g1) Ξ2−→ g2; Ξ] t2 ∈ T[g1; Ξ1]

t1 t2 ∈ T[[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ2]

By induction hypothesis on t1 and t2:

– If t1 and t2 are values ε1u1 :: R; Ξ1 and ε2u2 :: R; Ξ2, respectively, then by Lemma
80 u = 〈λxg′

1 .t, γ′〉 and the result holds by Proposition 82 and either (IGR→) or
(IGR→err).

– If t1 7−→ t′1, then the result holds by Proposition 82 and either (IGRE) or (IGREerr).
– If t2 7−→ t′2, then the result holds by Proposition 82 and either (IGRE) or (IGREerr).

Case (IGcase). Analogous to (IGapp).

Proposition 30 (Type safety). If t ∈ T[g; Ξ], then one of the following is true:

• t is a value v.

• t
∅7−−→ t′ for some t′ ∈ T[g; Ξ].

• t
∅7−−→ error

Proof. It follows directly as a corollary of Proposition 83.

B.4. Gradual Guarantee

Proposition 25 (Equivalence for fully-static expressions). Let e be a fully-static expression
and G a static type (G = T). · `s e : T if and only if · ` e : T.

Proof. By induction on the typing derivations. The proof is trivial because static sensitivities
are given one-point intervals meanings, i.e. [s, s], via concretization.

B.4.1. Static Gradual Guarantee

Proposition 84. If Γ ` e : G and Γ v Γ′, then Γ′ ` e : G′ where G v G′.

Proof. By simple induction on the typing derivation.

84

Proposition 26 (Static gradual guarantee). Let e1 and e2 be two closed expressions such
that e1 v e2 and · ` e1 : G1. Then, · ` e2 : G2 and G1 v G2.

Proof. We prove the property on open expressions instead: If Γ ` e1 : G1 and e1 v e2, then
Γ ` e2 : G and G1 v G2.

We proceed by induction on the typing derivation.

Case (Grlit), (Gunit). Trivial by Definitions (GvR) and (Gvunit), respectively.

Case (Gplus).
We know that e1 = e11 + e12 and, by (Gplus),

(Gplus)
Γ ` e11 : R; Ξ11 Γ ` e12 : R; Ξ12

Γ ` e1 : R; Ξ11 + Ξ12

Then, there exists e2 = e21 + e22 such that:

(Gv+)
e11 v e21 e12 v e22

e1 v e2

We know that:

– By induction hypothesis, Γ ` e21 : R; Ξ21 and R; Ξ11 v R; Ξ21.
– By induction hypothesis, Γ ` e22 : R; Ξ22 and R; Ξ12 v R; Ξ22.
– By (Gplus), Γ ` e2 : R; Ξ21 + Ξ22.
– By Proposition 37, Ξ11 + Ξ12 v Ξ21 + Ξ22. Then, R; Ξ11 + Ξ12 v R; Ξ21 + Ξ22.

Finally, the result holds.

Case (Gleq). Analogous to (Gplus).

Case (Gvar). We know that e1 = x. By (Gvar), Γ(x) = G1. Then, by inspection on
(Gvx), e2 = x and the result trivially holds by (Gvar).

Case (Glam).
We know that e1 = λ(x : g11).e12 and, by (Glam),

(Glam)
Γ, x : g11;x ` e12 : g12; Ξ12

Γ ` λ(x : g11).e12 : (x : g11) Ξ12−−→ g12;∅

Then, there exists e2 = λ(x : g21).e22 such that:

85

(Gvλ)
g11 v g21 e12 v e22

λ(x : g11).e12 v λ(x : g21).e22

We know that:

– By induction hypothesis, Γ, x : g11; x ` e22 : g22; Ξ22 and g12; Ξ12 v g22; Ξ22.
– By Proposition 84, Γ, x : g21;x ` e22 : g′22; Ξ′22 and g22; Ξ22 v g′22; Ξ′22. Then,
g12; Ξ12 v g′22; Ξ′22.

– By (Glam), Γ ` e2 : (x : g21) Ξ′
22−−→ g′22;∅.

– By definition of v for arrow types, (x : g11) Ξ12−−→ g12;∅ v (x : g21) Ξ′
22−−→ g′22;∅.

Finally, the result holds.

Case (Gapp).
We know that e1 = e11 e12 and, by (Gapp),

(Gapp)
Γ ` e11 : (x : g11) Ξ12−−→ g12; Ξ1 Γ ` e12 : g′11; Ξ11 g′11 <̃: g11

Γ ` e11 e12 : [Ξ11/x]g12; Ξ1 + [Ξ11/x]Ξ12

Then, there exists e2 = e21 e22 such that:

(Gv@)
e11 v e21 e12 v e22

e11 e12 v e21 e22

We know that:

– By induction hypothesis, Γ ` e21 : (x : g21) Ξ22−−→ g22; Ξ2 and (x : g11) Ξ12−−→ g12; Ξ1 v
(x : g21) Ξ22−−→ g22; Ξ2. Then, by Definition of precision of arrow types, g11 v g21,
g12 v g22 and Ξ12 v Ξ22.

– By induction hypothesis, Γ ` e22 : g′21; Ξ21 and g′11; Ξ11 v g′21; Ξ21.
– By Proposition 65, g′21 <̃: g21.
– By (Gapp), Γ ` e2 : [Ξ21/x]g22; Ξ2 + [Ξ21/x]Ξ22.
– By Propositions 47, 45 and 37, [Ξ11/x]g12; Ξ1+[Ξ11/x]Ξ12 v [Ξ21/x]g22; Ξ2+[Ξ21/x]Ξ22.

Finally, the result holds.

Case (Ginl).
We know that e1 = inlg12e11 and, by (Ginl),

(Ginl)
Γ ` e11 : g11; Ξ11

Γ ` inlg12e11 : g11 ⊕Ξ11 ∅ g12;∅

86

Then, there exists e2 = inlg22e21 such that:

(Gvinl)
e11 v e21 g12 v g22

inlg12e11 v inlg22e21

We know that:

– By induction hypothesis, Γ ` e21 : g21; Ξ21 and g11; Ξ11 v g21; Ξ21.
– By definition of precision of sum types, g11 ⊕Ξ11 ∅ g12;∅ v g21 ⊕Ξ21 ∅ g22;∅.

Finally, the result holds.

Case (Ginr). Analogous to (Ginl).

Case (Gcase).
We know that e1 = case e11 of {x⇒ e12 } { y ⇒ e13 } and, by (Gcase),

(Gcase)

Γ ` e11 : g111 ⊕Ξ111 Ξ112 g112; Ξ11
Γ, x : g111; x ` e12 : g12; Ξ12 Γ, y : g112; y ` e13 : g13; Ξ13

Γ ` case e11 of {x⇒ e12 } { y ⇒ e13 } :
[Ξ11 + Ξ111/x]g12 g [Ξ11 + Ξ112/y]g13; Ξ11 g [Ξ11 + Ξ111/x]Ξ12 g [Ξ11 + Ξ112/y]Ξ13

Then, there exists e2 = case e21 of {x⇒ e22 } { y ⇒ e23 } such that:

(Gvcase)
e11 v e21 e12 v e22 e13 v e23

case e11 of {x⇒ e12 } { y ⇒ e13 } v case e21 of {x⇒ e22 } { y ⇒ e23 }

We know that:

– By induction hypothesis, Γ ` e21 : g211 ⊕Ξ211 Ξ212g212; Ξ21 and g111 ⊕Ξ111 Ξ112g112; Ξ11 v
g211 ⊕Ξ211 Ξ212 g212; Ξ21.

– By induction hypothesis, Γ, x : g111;x ` e22 : g22; Ξ22 and g12; Ξ12 v g22; Ξ22.
– By induction hypothesis, Γ, y : g112; y ` e23 : g23; Ξ23 and g13; Ξ13 v g23; Ξ23.
– By Proposition 84, Γ, x : g211;x ` e22 : g′22; Ξ′22 and g22; Ξ22 v g′22; Ξ′22. Then,
g12; Ξ12 v g′22; Ξ′22.

– By Proposition 84, Γ, y : g212; y ` e23 : g′23; Ξ′23 and g23; Ξ23 v g′23; Ξ′23. Then,
g13; Ξ13 v g′23; Ξ′23.

– By (Gcase), Γ ` case e21 of {x⇒ e22 } { y ⇒ e23 } : [Ξ21 + Ξ211/x]g′22 g [Ξ21 +
Ξ212/y]g′23; Ξ21 g [Ξ21 + Ξ211/x]Ξ′22 g [Ξ21 + Ξ212/y]Ξ′23.

– By Propositions 37, 46 and 40, [Ξ11 + Ξ111/x]g12 g [Ξ11 + Ξ112/y]g13 v [Ξ21 +
Ξ211/x]g′22 g [Ξ21 + Ξ212/y]g′23.

– By Propositions 37, 45 and 39, Ξ11 g [Ξ11 + Ξ111/x]Ξ12 g [Ξ11 + Ξ112/y]Ξ13 v Ξ21 g
[Ξ21 + Ξ211/x]Ξ′22 g [Ξ21 + Ξ212/y]Ξ′23.

87

Finally, the result holds.

Case (Gascr).
We know that e1 = e11 :: G1 and, by (Gascr),

(Gascr)
Γ ` e11 : G11 G11 <̃: G1

Γ ` e11 :: G1 : G1

Then, there exists e2 = e21 :: G2 such that:

(Gv::)
e11 v e21 G1 v G2

e11 :: G1 v e21 :: G2

We know that:

– By induction hypothesis, Γ ` e21 : G21 and G11 v G21.
– By Proposition 66, G21 <̃: G2.
– By (Gascr), Γ ` e21 :: G2 : G2.

Finally, the result holds.

Case (Gclosure).
We know that e1 = 〈e11, γ

′
1〉 and, by (Gclosure),

(Gclosure)
∃Γ′1 : γ′1 ` Γ′1 Γ′1 ` e11 : G1

Γ ` 〈e11, γ
′
1〉 : G1

Then, there exists e2 = 〈e12, γ
′
2〉 such that:

(Gv〈λ,γ〉)
e11 v e12 γ′1 v γ′2
〈e11, γ

′
1〉 v 〈e12, γ

′
2〉

We know that:

– By definition of type environment and substitution precision, dom(γ′1) = dom(γ′2).
– By induction hypothesis, Γ′1 ` e12 : G2 and G1 v G2.
– From the definition of type environment well-formedness, for any xi ∈ dom(γ′1),
· ` γ′1(xi) : Γ′1(xi). Then, by induction hypothesis, · ` γ′2(xi) : G2i where
Γ′1(xi) v G2i. Let us call Γ′2 the type environment where Γ′2(xi) = G2i.

– By construction, γ′2 ` Γ′2.
– By Proposition 84, Γ′2 ` e12 : G′2 and G2 v G′2. Then G1 v G′2.
– By choosing Γ′2 and (Gascr), Γ ` 〈e12, γ

′
2〉 : G′2.

Finally, the result holds.

88

Case (Gctx). Analogous to (Gclosure).

B.4.2. Dynamic Gradual Guarantee

Proposition 85 (Dynamic gradual guarantee for −→). Suppose that t11 v t12, and γ1 v γ2.
If t11

γ1−−−→ t21 then t12
γ2−−−→ t22 where t21 v t22.

Proof. Let t11 = tg1;Ξ1
1 , t12 = tg2;Ξ2

1 , t21 = tg1;Ξ1
2 , t22 = tg2;Ξ2

2 . By induction on the definition of
tg1;Ξ1
1 −→ tg1;Ξ1

2 .

Case (IGr-plus).
We know that tg1;Ξ1

1 = ε11r1 :: R; Ξ11 + ε12r2 :: R; Ξ12, then there exist ε21, ε22,Ξ21,Ξ22
such that tg2;Ξ2

1 = ε21r1 :: R; Ξ21 + ε22r2 :: R; Ξ22 and:

v+

v::
ε11 v ε21 . . . R; Ξ11 v R; Ξ21

ε11r1 :: R; Ξ11 v ε21r1 :: R; Ξ21

v::
ε12 v ε22 . . . R; Ξ12 v R; Ξ22

ε12r2 :: R; Ξ12 v ε22r2 :: R; Ξ22

ε11r1 :: R; Ξ11 + ε12r2 :: R; Ξ12 v ε21r1 :: R; Ξ21 + ε22r2 :: R; Ξ22

If tg1;Ξ1
1 −→ ε11 +Ξ ε12r3 :: R; Ξ11 + Ξ12 where r3 = r1J+Kr2, then:

1. By Proposition 54, ε21 +Ξ ε22 is defined and ε11 +Ξ ε12 v ε21 +Ξ ε22.
2. By Proposition 39, R; Ξ11 + Ξ12 v R; Ξ21 + Ξ22.
3. tg2;Ξ2

1 −→ ε21 +Ξ ε22r3 :: R; Ξ21 + Ξ22.

Finally,

v::
ε11 +Ξ ε12 v ε21 +Ξ ε22 r3 v r3 R; Ξ11 + Ξ12 v R; Ξ21 + Ξ22

ε11 +Ξ ε12r3 :: R; Ξ11 + Ξ12 v ε21 +Ξ ε22r3 :: R; Ξ21 + Ξ22

and the result holds.

Case (IGr-leq). Analogous to (IGr-plus).

Case (IGr-var). We know that tg1;Ξ1
1 = xg1;Ξ1 , then by (IGvx) tg2;Ξ2

1 = xg2;Ξ2 where g1; Ξ1 v
g2; Ξ2. If tg1;Ξ1

1
γ1−−−→ γ1(x), then by hypothesis (γ1 v γ2) we know that tg2;Ξ2

1
γ2−−−→ γ2(x)

where, in particular, γ1(x) v γ2(x). Therefore, the result holds immediately.

Case (IGr-lam).

89

We know that tg1;Ξ1
1 = ε1λx

g′
11 .t11 :: (x : g11) Ξ12−−→ g12; Ξ1, then there exist ε2, (x :

g21) Ξ22−−→ g22; Ξ2 such that tg2;Ξ2
1 = ε2λx

g′
21 .t21 :: (x : g21) Ξ22−−→ g22; Ξ2 and:

v::
ε1 v ε2 λxg

′
11 .t11 v λxg

′
21 .t21 (x : g11) Ξ12−−→ g12; Ξ1 v (x : g21) Ξ22−−→ g22; Ξ2

ε1λx
g′
11 .t11 :: (x : g11) Ξ12−−→ g12; Ξ1 v ε2λx

g′
21 .t21 :: (x : g21) Ξ22−−→ g22; Ξ2

Trivially, tg1;Ξ1
1

γ1−−−→ ε1〈λxg
′
11 .t11, γ1〉 :: (x : g11) Ξ12−−→ g12; Ξ1 and tg2;Ξ2

1
γ2−−−→ ε2〈λxg

′
21 .t21, γ2〉 ::

(x : g21) Ξ22−−→ g22; Ξ2. Finally,

v::

ε1 v ε2
v〈λ,γ〉

γ1 v γ2 λxg
′
11 .t11 v λxg

′
21 .t21

〈λxg′
11 .t11, γ1〉 v 〈λxg

′
21 .t21, γ2〉

(x : g11) Ξ12−−→ g12; Ξ1 v (x : g21) Ξ22−−→ g22; Ξ2

ε1〈λxg
′
11 .t11, γ1〉 :: (x : g11) Ξ12−−→ g12; Ξ1 v ε2〈λxg

′
21 .t21, γ2〉 :: (x : g21) Ξ22−−→ g22; Ξ2

And the result holds.

Case (IGr-app).

We know that tg1;Ξ1
1 = (ε11〈λxg

′
11 .t′1, γ

′
1〉 :: (x : g11) Ξ12−−→ g12; Ξ1) (ε12u1 :: g11; Ξ11), then

there exist tg2;Ξ2
1 = (ε21〈λxg

′
21 .t′2, γ

′
2〉 :: (x : g21) Ξ22−−→ g22; Ξ2) (ε22u2 :: g21; Ξ21) such that:

v@
D1

v::
ε12 v ε22 u1 v u2 g11; Ξ11 v g21; Ξ21

ε12u1 :: g11; Ξ11 v ε22u2 :: g21; Ξ21

(ε11〈λxg
′
11 .t′1, γ

′
1〉 :: (x : g11) Ξ12−−→ g12; Ξ1) (ε12u1 :: g11; Ξ11) v

(ε21〈λxg
′
21 .t′2, γ

′
2〉 :: (x : g21) Ξ22−−→ g22; Ξ2) (ε22u2 :: g21; Ξ21)

where

D1= v::
ε11 v ε21 D2

g11 v g21 Ξ12 v Ξ22 g12 v g22 Ξ1 v Ξ2

(x : g11) Ξ12−−→ g12; Ξ1 v (x : g21) Ξ22−−→ g22; Ξ2

ε11〈λxg
′
11 .t′1, γ

′
1〉 :: (x : g11) Ξ12−−→ g12; Ξ1 v ε21〈λxg

′
21 .t′2, γ

′
2〉 :: (x : g21) Ξ22−−→ g22; Ξ2

D2= v〈λ,γ〉
γ′1 v γ′2

vλ
g′11 v g′21 t′1 v t′2

λxg
′
11 .t′1 v λxg

′
21 .t′2

〈λxg′
11 .t′1, γ

′
1〉 v 〈λxg

′
21 .t′2, γ

′
2〉

If tg1;Ξ1
1 takes one step:

tg1;Ξ1
1

γ1−−−→ ε′11ctx(γ′1ext, t1body) :: [Ξ11/x]g12; Ξ1 + [Ξ11/x]Ξ12

90

where γ′1ext = γ′1[x 7→ ε12u1 :: g11; Ξ11], t1body = [Ξ11/x]t′1, ε′11 = [Ξ11/x]icod(ε11), ε′12 =
ε12 ◦<: [Ξ11/x]idom(ε11), then:

1. Let ε′21 = [Ξ21/x]icod(ε21). By Propositions 51 and 48, ε′11 v ε′21.
2. Let ε′22 = ε22 ◦<: [Ξ21/x]idom(ε21). By Propositions 63, 48 and 50, ε′22 is defined and
ε′12 v ε′22.

3. By (IGv::), ε′12u1 :: g′11; Ξ11 v ε′22u2 :: g′21; Ξ21.
4. Let γ′2ext = γ′2[x 7→ ε22u2 :: g21; Ξ21]. By (IGvγ), γ′1ext v γ′2ext.
5. Let t2body = [Ξ21/x]t′2. By Proposition 49, t1body v t2body.
6. By Propositions 46, 45 and 37 [Ξ11/x]g12; Ξ1+[Ξ11/x]Ξ12 v [Ξ21/x]g22; Ξ2+[Ξ21/x]Ξ22.
7. tg2;Ξ2

1
γ2−−−→ ε′21ctx(γ′2ext, t2body) :: [Ξ21/x]g22; Ξ2 + [Ξ21/x]Ξ22

Finally,

v::
ε′11 v ε′21 D3 [Ξ11/x]g12; Ξ1 + [Ξ11/x]Ξ12 v [Ξ21/x]g22; Ξ2 + [Ξ21/x]Ξ22

ε′11ctx(γ′1ext, t1body) :: [Ξ11/x]g12; Ξ1 + [Ξ11/x]Ξ12 v
ε′21ctx(γ′2ext, t2body) :: [Ξ21/x]g22; Ξ2 + [Ξ21/x]Ξ22

where

D3= vctx
γ′1ext v γ′2ext t1body v t2body

ctx(γ′1ext, t1body) v ctx(γ′2ext, t2body)

and the result holds.

Case (IGr-case-1).
We know that tg1;Ξ1

1 = case v1 of {x⇒ tg12;Ξ12
12 } { y ⇒ tg13;Ξ13

13 }, where v1 = ε1inlg′
112(ε11u1 ::

g′11; Ξ′11) :: g111 ⊕Ξ111 Ξ112 g112; Ξ11.
Then, there exist tg2;Ξ2

1 = case v2 of {x⇒ tg22;Ξ22
22 } { y ⇒ tg23;Ξ23

23 }, where v2 = ε2inlg′
212(ε21u1 ::

g′21; Ξ′21) :: g211 ⊕Ξ211 Ξ212 g212; Ξ21, such that:

vcase
D1 g111 v g211 tg12;Ξ12

12 v tg22;Ξ22
22 g112 v g212 tg13;Ξ13

13 v tg23;Ξ23
23

case ε1inlg′
112(ε11u1 :: g′11; Ξ′11) :: g111 ⊕Ξ111 Ξ112 g112; Ξ11 of {x⇒ tg12;Ξ12

12 } { y ⇒ tg13;Ξ13
13 } v

case ε2inlg′
212(ε21u1 :: g′21; Ξ′21) :: g211 ⊕Ξ211 Ξ212 g212; Ξ21 of {x⇒ tg22;Ξ22

22 } { y ⇒ tg23;Ξ23
23 }

where

D1= v::
ε1 v ε2 D2 g111 ⊕Ξ111 Ξ112 g112; Ξ11 v g211 ⊕Ξ211 Ξ212 g212; Ξ21

ε1inlg′
112(ε11u1 :: g′11; Ξ′11) :: g111 ⊕Ξ111 Ξ112 g112; Ξ11 v

ε2inlg′
212(ε21u1 :: g′21; Ξ′21) :: g211 ⊕Ξ211 Ξ212 g212; Ξ21

D2= vinl

v::
ε11 v ε21 u1 v u1 g′11; Ξ′11 v g′21; Ξ′21

ε11u1 :: g′11; Ξ′11 v ε21u1 :: g′21; Ξ′21

inlg′
112(ε11u1 :: g′11; Ξ′11) v inlg′

212(ε21u1 :: g′21; Ξ′21)

91

If tg1;Ξ1
1

γ17−−−→ ε′12ctx(γ1ext, t1body) :: g′1; Ξ′1 t Ξ11, where Ξ1x = Ξ11 + Ξ111, Ξ1y = Ξ11 +
Ξ112, g′1 = [Ξ1x/x]g12 t [Ξ1y/y]g13, Ξ′1 = [Ξ1x/x]Ξ12 t [Ξ1y/y]Ξ13, ε′11 = ε11 ◦<: ileft(ε1),
ε′12 = I<:([Ξ1x/x]g12; [Ξ1x/x]Ξ12, g

′
1; Ξ′1) gΞ ε1, γ1ext = γ1[x 7→ ε′11u1 :: g111; Ξ1x], t1body =

[Ξ1x/x]t12. Then:

1. Let Ξ2x = Ξ21 + Ξ211. By Proposition 37, Ξ1x v Ξ2x.
2. Let Ξ2y = Ξ21 + Ξ212. By Proposition 37, Ξ1y v Ξ2y.
3. Let g′2 = [Ξ2x/x]g22 t [Ξ2y/y]g23. By Propositions 46 and 40, g′1 v g′2.
4. Let Ξ′2 = [Ξ2x/x]Ξ22 t [Ξ2y/y]Ξ23. By Propositions 45 and 39, Ξ′1 v Ξ′2.
5. Let ε′21 = ε21 ◦<: ileft(ε2). By Propositions 52 and 63, ε′21 is defined and ε′11 v ε′21.
6. By lemma 64, g12; Ξ12 v g22; Ξ22 and g13; Ξ13 v g23; Ξ23.
7. By Propositions 46 and 45, [Ξ1x/x]g12; [Ξ1x/x]Ξ12 v [Ξ2x/x]g22; [Ξ2x/x]Ξ22.
8. By Proposition 59, I<:([Ξ1x/x]g12; [Ξ1x/x]Ξ12, g

′
1; Ξ′1) v I<:([Ξ2x/x]g22; [Ξ2x/x]Ξ22, g

′
2; Ξ′2).

9. Let ε′22 = I<:([Ξ2x/x]g22; [Ξ2x/x]Ξ22, g
′
2; Ξ′2) gΞ ε2. By Proposition 55, ε′12 v ε′22.

10. By (IGv::), ε′11u1 :: g111; Ξ1x v ε′21u1 :: g211; Ξ2x.
11. Let γ2ext = γ2[x 7→ ε′21u1 :: g211; Ξ2x] By (IGvγ), γ1ext v γ2ext.
12. Let t2body = [Ξ2x/x]t22. By Proposition 49, t1body v t2body.
13. By Proposition 37, Ξ′1 t Ξ11 v Ξ′2 t Ξ21.

Finally,

v::

ε′12 v ε′22

vctx
γ1ext v γ2ext t1body v t2body

ctx(γ1ext, t1body) v ctx(γ2ext, t2body) g′1; Ξ′1 t Ξ11 v g′2; Ξ′2 t Ξ21

ε′12ctx(γ1ext, t1body) :: g′1; Ξ′1 t Ξ11 v ε′22ctx(γ2ext, t2body) :: g′2; Ξ′2 t Ξ21

and the result holds.

Case (IGr-case-2). Analogous to (IGr-case-1).

Case (IGr-ctx)
We know that tg1;Ξ1

1 = ε1ctx(γ′1, v1) :: g1; Ξ1, then there exist tg2;Ξ2
1 = ε2ctx(γ′2, v1) ::

g2; Ξ2 such that:

v::
ε1 v ε2

vctx
γ′1 v γ′2 v1 v v1

ctx(γ′1, v1) v ctx(γ′2, v1) g1; Ξ1 v g2; Ξ2

ε1ctx(γ′1, v1) :: g1; Ξ1 v ε2ctx(γ′2, v1) :: g2; Ξ2

If tg1;Ξ1
1 7−→ ε1v1 :: g1; Ξ1, then tg1;Ξ1

2 7−→ ε2v1 :: g2; Ξ2 and:

v::
ε1 v ε2 v1 v v1 g1; Ξ1 v g2; Ξ2

ε1v1 :: g1; Ξ1 v ε2v1 :: g2; Ξ2

92

E v E Precision of evaluation contexts

vE1
� v �

vE2
E1 v E2 t1 v t2

E1 + t1 v E2 + t2
vE3

v1 v v2 E1 v E2

v1 + E1 v v2 + E2

vE4
E1 v E2 t1 v t2

E1 ≤ t1 v E2 ≤ t2
vE5

v1 v v2 E1 v E2

v1 ≤ E1 v v2 ≤ E2
vE6

E1 v E2 t1 v t2

E1 t1 v E2 t2

vE7
v1 v v2 E1 v E2

v1 E1 v v2 E2
vE8

g12 v g22 E1 v E2

inlg12E1 v inlg22E2
vE9

g11 v g21 E1 v E2

inrg11E1 v inrg21E2

vE10
G11 v G21 G12 v G22 t11 v t21 t12 v t22 E1 v E2

case E1 of {xG11 ⇒ t11 } { yG12 ⇒ t12 } v case E2 of {xG21 ⇒ t21 } { yG22 ⇒ t22 }

vE11
ε1 v ε2 E1 v E2 G1 v G2

ε1E1 :: G1 v ε2E2 :: G2

Figure B.1: Precision of evaluation contexts

And the result immediately holds.

Case (IGr-ascr).
We know that tg1;Ξ1

1 = ε1(ε′1u1 :: g′1; Ξ′1) :: g1; Ξ1, then there exists tg2;Ξ2
1 = ε2(ε′2u2 ::

g′2; Ξ′2) :: g2; Ξ2 such that:

v::
ε1 v ε2

v::
ε′1 v ε′2 u1 v u2 g′1; Ξ′1 v g′2; Ξ′2

ε′1u1 :: g′1; Ξ′1 v ε′2u2 :: g′2; Ξ′2 g1; Ξ1 v g2; Ξ2

ε1(ε′1u1 :: g′1; Ξ′1) :: g1; Ξ1 v ε2(ε′2u2 :: g′2; Ξ′2) :: g2; Ξ2

If tg1;Ξ1
1 7−→ ε′1 ◦<: ε1u1 :: g1; Ξ1, then:

1. By Proposition 63, ε′2 ◦<: ε2 is defined and ε′1 ◦<: ε1 v ε′2 ◦<: ε2.

Finally,

v::
ε′1 ◦<: ε1 v ε′2 ◦<: ε2 u1 v u2 g1; Ξ1 v g2; Ξ2

ε′1 ◦<: ε1u1 :: g1; Ξ1 v ε′2 ◦<: ε2u2 :: g2; Ξ2

And the result holds.

Proposition 86. Suppose t1 = E1[t′1]. If t1 v t2 then there exist E2 and t′2 such that
t2 = E2[t′2] where E1 v E2 and t′1 v t′2.

93

Proof. By induction on t1 = E1[t′1].

Case E1 = E + t12. By inspection on (IGv+), t2 = t21 + t22, where t′1 v t21 and t12 v t22.
Then, E2 = E + t22 and t′2 = t21.

Case E1 = v11 + E. By inspection on (IGv+), t2 = v21 + t22, where v11 v v21 and t′1 v t22.
Then, E2 = v11 + E and t′2 = t22.

Case E1 = E ≤ t12. By inspection on (IGv≤), t2 = t21 ≤ t22, where t′1 v t21 and t12 v t22.
Then, E2 = E ≤ t22 and t′2 = t21.

Case E1 = v11 ≤ E. By inspection on (IGv≤), t2 = v21 ≤ t22, where v11 v v21 and t′1 v t22.
Then, E2 = v11 ≤ E and t′2 = t22.

Case E1 = E t12 and E1 = v11 E. Analogous.

Case E1 = inlg12E. By inspection on (IGvinl), t2 = inlg22t21, where g12 v g22 and t′1 v t21.
Then, E2 = inlg22E and t′2 = t21.

Case E1 = inrg11E. Analogous.

Case E1 = case E of {xG11 ⇒ t12 } { yG12 ⇒ t13 }.

– By inspection on (IGvcase), t2 = case t21 of {xG21 ⇒ t22 } { yG22 ⇒ t23 }, where
t′1 v t21, G11 v G21, t12 v t22, G12 v G22, t13 v t23.

– Then, E2 = case E of {xG21 ⇒ t22 } { yG22 ⇒ t23 } and t′2 = t21.

Case E1 = ε1E :: G1. By inspection on (IGv::), t2 = ε2t21 :: G2, where ε1 v ε2, t′1 v t21 and
G1 v G2. Then, E2 = ε2E :: G2 and t′2 = t21.

Finally, the result holds.

Proposition 31 (Dynamic gradual guarantee). Suppose t11 v t12 and γ1 v γ2. If t11
γ17−−−→

t21 then t12
γ27−−−→ t22 where t21 v t22.

Proof. Let t11 = tG1
1 , t12 = tG2

1 , t21 = tG1
2 and t22 = tG2

2 . By induction on the definition of
tG1
1 7−→ tG1

2 .

Case (IGR→). By Proposition 85

Case (IGRE). We know that tG1
1 = E1[t′G

′
1

1], tG1
2 = E1[t′G

′
1

2], t′G
′
1

1 7−→ t′
G′

1
2 , E1 : G′1 → G1.

Then,

1. By Proposition 86, there exist E2 : G′2 → G2 and t′G
′
2

1 such that tG2
1 = E2[t′G

′
2

1] where
t′
G′

1
1 v t′

G′
2

1 and E1 v E2.

2. By induction hypothesis, t′G
′
2

1 7−→ t′
G′

2
2 where t′G

′
1

2 v t′
G′

2
2 .

3. Let tG2
2 = E2[t′G

′
2

2]. By (IGRE), tG2
1 7−→ tG2

2 .
4. By (IGvE10), tG1

2 v tG2
2 .

94

And the result holds.

Case (IGRctx). We know that tG1
1 = ctx(γ′1, t′

G′
1

1), tG1
2 = ctx(γ′1, t′

G′
1

2), t′G
′
1

1
γ′

17−−−→ t′
G′

1
2 . Then,

1. By (IGvctx), tG2
1 = ctx(γ′2, t′

G′
2

1) where γ′1 v γ′2 and t′G
′
1

1 v t′
G′

2
1 .

2. By induction hypothesis, t′G
′
2

1
γ′

27−−−→ t′
G′

2
2 where t′G

′
1

2 v t′
G′

2
2 .

3. Let tG2
2 = ctx(γ′2, t′

G′
2

2). By (IGRctx), tG2
1 7−→ tG2

2 .
4. By (IGvctx), tG2

1 v tG2
2 .

And the result holds.

B.5. Soundness

Proof artifacts. Before proving metric preservation, we introduce several artifacts for
easing the proofs:

• Sensitivity substitutions: We introduce a structure ψ, called sensitivity substitution,
that maps variables to sensitivity environments. Its role is to close the sensitivities of
an open term. For example, consider t = xR;x+2yR;y+zR;z and ψ = { y 7→ 2x, z 7→ 5x }.
Then, ψ(t) = xR;x + 2yR;2x + zR;5x. Essentially, a sensitivity substitution states which
of the free variables are directly and indirectly sensitive. Formally, the syntax and
application (on terms, type-and-effects, type environments and evidences) of sensitivity
substitutions is defined as following:

ψ ::= ∅ | ψ[x 7→ Ξ]

∅(t) = t

ψ[x 7→ Ξ](t) = ψ([Ξ/x]t)

∅(G) = G

ψ[x 7→ Ξ](G) = ψ([Ξ/x]G)

ψ(Γ) = Γ
ψ(Γ, y : G) = ψ(Γ), y : ψ(G)

ψ(〈G1, G2 〉) = 〈ψ(G1), ψ(G2) 〉

• Evidence projections: We use the notation ε.Ξl and ε.Ξr for projecting the sensitivity
effects from the left-hand side and right-hand side, respectively. Formally, they are

95

defined as:

〈 g1; Ξ1, g2; Ξ2 〉.Ξl = Ξ1

〈 g1; Ξ1, g2; Ξ2 〉.Ξr = Ξ2

• sdom: We introduce the sdom function as a shortcut for idom and an additional sub-
stitution. Formally:

sdom(Ξ, ε) = [Ξ/x]idom(ε) where ε = 〈 (x : g′11) Ξ′
12−−→ g′12; Ξ′1, (x : g′21) Ξ′

22−−→ g′22; Ξ′2 〉

sdom naturally inherits the properties of sensitivity substitution and idom.

Lemma 87. If π1(∆ ·Ξ1) ≤ π1(∆ ·Ξ2), and π1(∆ ·Ξ3) ≤ π1(∆ ·Ξ4), then π1(∆ · (Ξ1tΞ3)) ≤
π1(∆ · (Ξ2 t Ξ4))

Proof.

π1(∆ · (Ξ1 t Ξ3)) = π1((∆ · Ξ1) t (∆ · Ξ3))
= max(π1(∆ · Ξ1), π1((∆ · Ξ3))) By prop 19
≤ max(π1(∆ · Ξ2), π1((∆ · Ξ4)))
= π1((∆ · Ξ2) t (∆ · Ξ4))
= π1(∆ · (Ξ2 t Ξ4))

Proposition 88. If

• εiui :: g; Ξ ∈ T[g; Ξ]

• π1(∆ · (ε1.Ξr g ε2.Ξr)) ≥ ∞

then (ε1u1 :: g; Ξ, ε1u2 :: g; Ξ) ∈ V∆Jg; ΞK.

Proof. For proving the goal we have to prove that,

1. (ε1u1 :: g; Ξ, ε1u2 :: g; Ξ) ∈ AtomJg; ΞK: Trivial as by hypothesis both values typecheck.

2. ¬(∆ · (ε1.Ξr g ε2.Ξr) <̃ |u1 − u2|):

¬(∆ · (ε1.Ξr g ε2.Ξr) <̃ |u1 − u2|)
⇐⇒ |u1 − u2| ≤ π1(∆ · (ε1.Ξr g ε2.Ξr))
⇐⇒ |u1 − u2| ≤ ∞ ≤ π1(∆ · (ε1.Ξr g ε2.Ξr))
⇐⇒ >

96

Finally, (ε1u1 :: g; Ξ, ε1u2 :: g; Ξ) ∈ V∆Jg; ΞK.

Proposition 89. Suppose t ∈ T[G], t ` Γ, t′ = ψ(t) and Γ′ = ψ(Γ). Then, ∀∆, γ1, γ2 such
that Γ′ ` ∆ and (γ1, γ2) ∈ G∆JΓ′K, it follows that (t′ | γ1, t

′ | γ2) ∈ T∆Jψ(g);ψ(Ξ)K.

Proof. We proceed by induction on t ∈ T[g; Ξ]

Case t = εn :: R; Ξ ∈ T[R; Ξ], and t′ = ψ(ε)n :: R;ψ(Ξ) ∈ T[R;ψ(Ξ)]. Since t′ is already
a value, in order to prove the goal, we have to prove that (t′, t′) ∈ V∆JR;ψ(Ξ)K. As
ψ(ε).Ξr g ψ(ε).Ξr = ψ(ε).Ξr, we have to prove that ¬ Â�|n− n| > ∆ · ψ(ε).Ξr, which is
true as n− n = 0 and ∆ · ψ(ε).Ξr ≥ 0, and the result holds.

Case t = t01 + t02 ∈ T[R; Ξ0]. Then t′ = t1 + t2 ∈ T[R; Ξ], for t1 = ψ(t1), t2 = ψ(t2) and
Ξ = ψ(Ξ0). We have to prove that

(t′ | γ1, t
′ | γ2) ∈ T∆JR; ΞK

i.e. if t′ γi7−−−→
∗
vi, then

(v1, v2) ∈ V∆JR; ΞK

where vi = εiriR; Ξ.
If t′ γi7−−−→

∗
error the result holds immediately. Suppose the term reduces. By induction

hypothesis on t0j ∈ T[R; Ξ0j], then tj
γi7−−−→

∗
vji and (vj1, vj2) ∈ V∆JR; ΞjK, where

Ξ = Ξ1 + Ξ2 and vi = v1i + v2i. In particular,

– Let vji = εjirji :: R; Ξj.
– εi = ε1i +Ξ ε2i.
– ri = r1i + r2i.
– |r1 − r2| = |r11 + r21 − r12 − r22| ≤ |r11 − r12|+ |r21 − r22|.
–

∆ · (ε1.Ξr g ε2.Ξr) = ∆ · ((ε11 +Ξ ε21).Ξr g (ε12 +Ξ ε22).Ξr)
= ∆ · ((ε11.Ξr + ε21.Ξr)g (ε12.Ξr + ε22.Ξr))

– ¬(∆ · (εj1.Ξr g εj2.Ξr) <̃ |rj1 − rj2|) is true. Furthermore,

¬(∆ · (εj1.Ξr g εj2.Ξr) <̃ |rj1 − rj2|)
=⇒ ¬(∆ · (ε11.Ξr g ε12.Ξr) + ∆ · (ε21.Ξr g ε22.Ξr) <̃ |r11 − r12|+ |r21 − r22|)
=⇒ ¬(∆ · ((ε11.Ξr g ε12.Ξr) + (ε21.Ξr g ε22.Ξr)) <̃ |r11 − r12|+ |r21 − r22|)
=⇒ ¬(∆ · ((ε11.Ξr + ε21.Ξr)g (ε12.Ξr + ε22.Ξr)) <̃ |r11 − r12|+ |r21 − r22|)
=⇒ ¬(∆ · ((ε11.Ξr + ε21.Ξr)g (ε12.Ξr + ε22.Ξr)) <̃ |r11 + r21 − r12 − r22|)
=⇒ ¬(∆ · (ε1.Ξr g ε2.Ξr) <̃ |r1 − r2|)

97

Finally, the result holds.

Case t = xg;Ξ ∈ T[g; Ξ], and t′ = xψ(g);ψ(Ξ). We know that xψ(g);ψ(Ξ) γi7−−−→ γi(x), but by the
definition of related environments, (γ1(x), γ2(x)) ∈ V∆Jψ(g);ψ(Ξ)K and the result holds.

Case t = ε0(inlg′
02t0) :: g01 ⊕Ξ01 Ξ02 g02; Ξ0 ∈ T[g01 ⊕Ξ01 Ξ02 g02; Ξ0].

Then t′ = ε(inlg′
2tg

′
1;Ξ′

1) :: g1 ⊕Ξ1 Ξ2 g2, for ε = ψ(ε0), gi = ψ(g0i), Ξi = ψ(Ξoi), g′i = ψ(g′0i),
and tg′

1 = ψ(t0).
We have to prove that

(ε(inlg′
2tg

′
1) :: g1 ⊕Ξ1 Ξ2 g2; Ξ | γ1, ε(inlg′

2tg
′
1) :: g1 ⊕Ξ1 Ξ2 g2; Ξ | γ2) ∈ T∆Jg1 ⊕Ξ1 Ξ2 g2; ΞK

i.e. if t′ γi7−−−→
∗
vi, which means, by (IGRE), that tg′

1;Ξ′
1

γi7−−−→
∗
v′i, then

(v1, v2) ∈ V∆Jg1 ⊕Ξ1 Ξ2 g2; ΞK

where vi = ε(inlg′
2v′i) :: g1 ⊕Ξ1 Ξ2 g2; Ξ.

If tg′
1;Ξ′

1
γi7−−−→

∗
error, the result holds immediately. Suppose the term reduces. Knowing

that ε.Ξr g ε.Ξr = ε.Ξr, we have to prove that if Â�∆ · ε.Ξr <∞ then, for all Γ′′, γ′′1 , γ′′2 ,
such that (γ′′1 , γ′′2) ∈ G∆JΓ′′K, either (useL(v1) | γ′′1 , useL(v2) | γ′′2) ∈ T∆Jg1; Ξ1K, or
(useR(v1) | γ′′1 , useR(v2) | γ′′2) ∈ T∆Jg2; Ξ + Ξ2K, which is equivalent to show that either
(useL(v1), useL(v2)) ∈ V∆Jg1; Ξ +Ξ1K or (useR(v1), useR(v2)) ∈ V∆Jg2; Ξ +Ξ2K (because
useR(vi) and useL(vi) are already values or undefined).
Note that ε = 〈g11 ⊕Ξ11 ∅ g12;∅, g21 ⊕Ξ21 Ξ22 g22; Ξ′〉, for some gij,Ξij,Ξ′. But

useL(ε(inlg′
2vi) :: g1 ⊕Ξ1 ∅ g2) = ileft(ε)vi :: g1; Ξ + Ξ1

for ileft(ε) = 〈g11; Ξ11, g21; Ξ′ + Ξ21〉. By induction hypothesis on t0 ∈ T[g′01; Ξ′01], we
know that (v′1, v′2) ∈ V∆Jg′1; Ξ′1K. But ileft(ε) ` g′1; Ξ′1 <̃: g1; Ξ + Ξ1, and the result holds
by Proposition 32.

Case t = ε0(λxg′
01;x.t

g′
02;Ξ′′

0
0) :: (x : g01) Ξ′

0−→ g02;∈ T[(x : g01) Ξ′
0−→ g02; Ξ0].

Then t′ = ε(λxg′
1;x.tg

′
2;Ξ′′) :: (x : g1) Ξ′

−→ g2;∈ T[(x : g1) Ξ′

−→ g2; Ξ] (after ψ substitution).
We know that

ε(λxg′
1;x.tg

′
2;Ξ′′) :: (x : g1) Ξ′

−→ g2; Ξ γi7−−−→ vi

For, vi = ε〈λxg′
1;x.tg

′
2;Ξ′′

, γi〉 :: (x : g1) Ξ′

−→ g2; Ξ.
We have to prove that,

(ε〈λxg′
1;x.tg

′
2;Ξ′′

, γ1〉 :: (x : g1) Ξ′

−→ g2; Ξ,

ε〈λxg′
1;x.tg

′
2;Ξ′′

, γ2〉 :: (x : g1) Ξ′

−→ g2; Ξ)

∈ V∆J(x : g1) Ξ′

−→ g2; ΞK

98

i.e. ∀v′1, v′2,Ξ1,Γ′′, γ′1, γ′2, such that ∀(γ′1, γ′2) ∈ G∆JΓ′′K and (v′1, v′2) ∈ V∆Jg1; Ξ1K, it
follows that (v1 v

′
1 | γ′1, v2 v

′
2 | γ′2) ∈ T∆J[Ξ1/x]g2; Ξ + [Ξ1/x]Ξ′K. Consider v′i = ε2iu2i ::

g1; Ξ1 Then

vi v
′
i

γ′
i7−−−→ ε11ctx(γi[x 7→ v′′i], [Ξ1/x]tg′

2;Ξ′′) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ′

where v′′i = (ε2i ◦<: sdom(Ξ1, ε))u2i :: g1; x (notice that if consistent transitivity does not
hold the result holds immediately).
We know that sdom(Ξ1, ε) . g′1; Ξ1 <̃: g1; Ξ1. By Prop 32, we know that (v′′1 , v′′2) ∈
V∆Jg1; Ξ1K.
Let γ′′i = γ′i[x 7→ v′′i], then by Definition of related substitutions (γ′′1 , γ′′2) ∈ G∆J(Γ′′, x :
g′1; Ξ1)K.
We know that tg′

2;Ξ′′ ∈ T[g′2; Ξ′′]
By Prop 73, [Ξ1/x]tg′

2;Ξ′′ ∈ T[[Ξ1/x]g′2; [Ξ1/x]Ξ′′], then we use induction hypothesis on
t
g′
02;Ξ′′

0
0 , using (γ′′1 , γ′′2) ∈ G∆J(Γ, x : g′1; Ξ1)K, and ψ′ = ψ[x 7→ Ξ1]. Let us call t′′ =

[Ξ1/x]tg′
2;Ξ′′ = ψ′(tg

′
02;Ξ′′

0
0). Note that ψ′(g′02) = [Ξ1/x]g′2, and ψ′(Ξ′′0) = [Ξ1/x]Ξ′′. We

know that if t′′ γ′′
i7−−−→ vci then (vc1, vc2) ∈ V∆J[Ξ1/x]g′2; [Ξ1/x]Ξ′′K.

Therefore

t′′
γ′′

i7−−−→
∗
vci

ε11ctx(γ′′i , t′′) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ′ γ′
i7−−−→
∗
ε11ctx(γ′′i , vci) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ′

and

ε11ctx(γ′′i , vci) :: [Ξ1/x]g2; [Ξ1/x]Ξ′ γ
′
i7−→ ε11(vci) :: [Ξ1/x]g2; Ξ + [Ξ1/x]Ξ′

And the result follows by Proposition 32.

Case t = t01 t02 ∈ T[g; Ξ].
Then t′ = t1 t2 ∈ T[g′; Ξ′], where ti = ψ(t0i), g′ = ψ(g), and Ξ′ = ψ(Ξ).

Suppose t01 ∈ T[(x : g01) Ξ02−−→ g02; Ξ01], and thus t02 ∈ T[g01; Ξ03]. Also ψ(g0i) = gi,
and ψ(Ξ0i) = Ξi. By induction hypotheses, we know that t1

γ′
i7−−−→
∗
v1i, and t2

γ′
i7−−−→
∗
v2i

(otherwise the result holds immediately), and that (v11, v12) ∈ V∆J(x : g1) Ξ2−→ g2; Ξ1K,
and (v21, v22) ∈ V∆Jg1; Ξ3K. Following the definition of related functions instantiated
with (v21, v22) ∈ V∆Jg1; Ξ3K we know that

(v11 v21, v12 v22) ∈ T∆J[Ξ3/x]g2; Ξ2 + [Ξ3/x]Ξ1K

but g′ = [Ξ3/x]g2 and Ξ′ = Ξ2 + [Ξ3/x]Ξ1 and the result holds.

Case t = case tg01;Ξ01
1 of {x⇒ tg02;Ξ02

2 } { y ⇒ tg03;Ξ03
3 } ∈ T[g0; Ξ0].

Then t′ = case tg1;Ξ1 of {x⇒ tg2;Ξ2
2 } { y ⇒ tg3;Ξ3

3 }, for gi = ψ(g0i), Ξi = ψ(Ξ0i).

99

Let us suppose consistent transitivity hold, otherwise the result holds immediately.
By induction hypothesis on tg01;Ξ01 ∈ T[g01; Ξ01], if tg1;Ξ1 γi7−−−→

∗
vi1, then (v11, v21) ∈

V∆Jg1; Ξ1K, where g1 = g11 ⊕Ξ11 Ξ12 g12, for some g1i, Ξ1i.
Suppose Ξm = ε1.Ξr g ε2.Ξr, and ¬(∆ · Ξm <̃: ∞), and without loosing generality
v11 = (ε1inlglr(εlul :: gll; Ξl) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1), and v21 = (ε2inrgrl(εrur :: grr; Ξr) ::
g11 ⊕Ξ11 Ξ12 g12; Ξ1).
Then

case v11 of {x⇒ tg2;Ξ2
2 } { y ⇒ tg3;Ξ3

3 } γ17−−−→
ε′12ctx(γ1[x 7→ ε′11ul :: g11; Ξx], [Ξx/x]t2) :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′

case v12 of {x⇒ tg2;Ξ2
2 } { y ⇒ tg3;Ξ3

3 } γ27−−−→
ε′22ctx(γ2[y 7→ ε′21ur :: g12; Ξy], [Ξy/y]t3) :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′

for Ξx = Ξ1 + Ξ11, Ξy = Ξ1 + Ξ12, Ξ′ = Ξ1 g [Ξx/x]Ξ2 g [Ξy/y]Ξ3, and ε′11 =
εl ◦<: ileft(ε1), ε′21 = εr ◦<: ileft(ε2), ε′12 = I<:([Ξx/x]g2; [Ξx/x]Ξ2,Ξ′ g ε1.Ξr), ε′22 =
I<:([Ξy/y]g3; [Ξy/y]Ξ3,Ξ′ g ε2.Ξr)
As ¬(∆ · Ξn .∞), it means that π1(∆ · Ξm) ≥ ∞.
Suppose

ε′12ctx(γ1[x 7→ ε′11ul :: g11; Ξx], [Ξx/x]t2) :: [Ξx/x]g2 t [Ξx/x]g2; Ξ′
γ17−−−→

∗
ε′12v2 :: [Ξx/x]g2 t [Ξx/x]g2; Ξ′

γ17−−−→v′2

and

ε′22ctx(γ2[y 7→ ε′21ur :: g12; Ξy], [Ξy/y]t3) :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′
γ17−−−→

∗
ε′22v3 :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′

γ17−−−→v′3

where v′i = (εui ◦<: ε′i2)u′i :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′, for some v′i and u′i.
Notice that

1. By definition of I<:, ε′i2.Ξr v εi.Ξr, so π1(∆ · εi.Ξr) ≤ π1(∆ · ε′i2.Ξr).
2. Then by Lemma 87, π1(∆ · (ε1.Ξr g ε2.Ξr) ≤ π1(∆ · (ε′i2.Ξr g ε′i2.Ξr))
3. As π1(∆ · Ξm) = π1(∆ · (ε1.Ξr g ε2.Ξr)) ≥ ∞, then π1(∆ · (ε′i2.Ξr g ε′i2.Ξr)) ≥ ∞.
4. By monotonicity of consistent transitivity (Lemma 63), (εui ◦<: ε′i2).Ξr v ε′i2.Ξr, and

thus ∀x, π1(ε′i2.Ξr(x)) ≤ π1((εui ◦<: ε′i2).Ξr(x)).
5. By proposition 39, (εu1 ◦<: ε′12).Ξr g (εu2 ◦<: ε′22).Ξr v ε′12.Ξr g ε′22.Ξr

6. By proposition 69, ∆ · (εu1 ◦<: ε′12).Ξr g (εu2 ◦<: ε′22).Ξr v ∆ · ε′12.Ξr g ε′22.Ξr

7. Which means that π1(∆ · (εu1 ◦<: ε′12).Ξr g (εu2 ◦<: ε′22).Ξr) ≥ π1(∆ · ε′12.Ξr g ε′22.Ξr)

100

8. But by (3) then π1(∆ · (εu1 ◦<: ε′12).Ξr g (εu2 ◦<: ε′22).Ξr) ≥ ∞, and the result holds
by Proposition 88.

Now suppose Ξm = ε1.Ξr g ε2.Ξr, and (∆ · Ξm <̃: ∞), and v11 = (ε1inlg′
12(ε′1u1 ::

g′11; Ξ′11) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1), and v21 = (ε2inlg′
22(ε′2u2 :: g′21; Ξ′21) :: g11 ⊕Ξ11 Ξ12 g12; Ξ1)

(the case where both terms are inr is analogous).
Then we know that

(ileft(ε1)(ε′1u1 :: g′11; Ξ′11) :: g11; Ξx | γ1, ileft(ε2)(ε′2u2 :: g′21; Ξ′21) :: g11; Ξx | γ2) ∈ T∆Jg11; ΞxK

for Ξx = Ξx, i.e. if consistent transitivity holds, then

(ε′11u1 :: g11; Ξx, ε
′
12u2 :: g11; Ξx) ∈ V∆Jg11; ΞxK

for ε′1i = ε′i ◦<: ileft(εi).
Then

case vi1 of {x⇒ tg2;Ξ2
2 } { y ⇒ tg3;Ξ3

3 } γi7−−−→ ε′i2ctx(γ′i, [Ξx/x]t2) :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′

for γ′i = γi[x 7→ ε′21u2 :: g11; Ξx], Ξy = Ξ1 +Ξ12,Ξ′ = Ξ1 g [Ξx/x]Ξ2g [Ξy/y]Ξ3, and ε′i2 =
I<:([Ξx/x]g2; [Ξx/x]Ξ2,Ξ′ g εi.Ξr). Notice that by Definition of related environments

(γ′1, γ′2) ∈ G∆JΓ, x : g11; ΞxK

By induction hypothesis on t02 ∈ T[g02; Ξ02], using ψ′ = ψ[x 7→ Ξx] (and ψ′(t02) =
[Ξx/x]ψ(t02) = [Ξx/x]t2), if [Ξx/x]t2

γ′
i7−−−→ vi, then (v1, v2) ∈ V∆Jg2; Ξ2K.

Then if

ε′i2ctx(γ′i, [Ξx/x]t2) :: [Ξx/x]g2 t [Ξx/x]g2; Ξ′
γ17−−−→

∗
ε′12v2 :: [Ξx/x]g2 t [Ξx/x]g2; Ξ′

γ17−−−→v′2

where v′i = (εui ◦<: ε′i2)u′i :: [Ξx/x]g2 t [Ξy/y]g3; Ξ′, for some v′i and u′i. The result holds
by Proposition 32.

Case t = εt0 :: g; Ξ ∈ T[g; Ξ]. Suppose t0 ∈ T[g0; Ξ0], then ε ` g0; Ξ0 <̃: g; Ξ.

By induction hypothesis on t0 ∈ T[g0; Ξ0], we know that ψ(t0) γ′
i7−−−→
∗
vi and (v1, v2) ∈

V∆Jψ(g0);ψ(Ξ0)K.
By lemma 73, ψ(ε) ` ψ(g0);ψ(Ξ0) <̃: ψ(g);ψ(Ξ), and the result follows by Proposi-
tion 32.

Lemma 32. If (v1, v2) ∈ V∆JGK and εi . G <̃: G′, then ∀Γ, γ1, γ2 : (γ1, γ2) ∈ G∆JΓK it
follows that (ε1v1 :: G′ | γ1, ε2v2 :: G′ | γ2) ∈ T∆JG′K.

101

Proof. Let us suppose both combination of evidence succeed (otherwise the result holds
immediately). Let us assume that vi = εuiu :: g; Ξ, and that εui ◦ εi = ε′i. Therefore we have
to prove that (ε′1u :: g′; Ξ′, ε′2u :: g′; Ξ′) ∈ V∆′Jg′; Ξ′K.

Case g = R. Then we know that (εu1n1 :: R; Ξ, εu2n2 :: R; Ξ) ∈ V∆JR; ΞK, for some ni.

1. Suppose Ξm = εu1.Ξr g εu2.Ξr and Ξ′m = ε′1.Ξr g ε′2.Ξr.
2. By proposition 63, ε′i.Ξr v εui.Ξr, and by Proposition 39, ε′1.Ξr g ε′2.Ξr v εu1.Ξr g
εu2.Ξr, i.e. ∀x, π1(Ξm(x)) = π1(εu1.Ξr g εu2.Ξr)(x) ≤ π1((ε′1.Ξr g ε′2.Ξr)(x)) =
π1(Ξ′m(x))

3. We know ¬(∆ · Ξm <̃: |n1 − n2|), which is equivalent to |n1 − n2| ≤ π1(∆ · Ξm)
4. We have to prove that ¬(∆ · Ξ′m <̃: |n1 − n2|), which is equivalent to |n1 − n2| ≤
π1(∆ · Ξ′m)

5. But we know that ∀x ∈ dom(Ξ′m), π1(Ξm(x)) ≤ π1(Ξ′m(x)), therefore π1(∆ · Ξm) ≤
π1(∆ · Ξ′m), and the result holds.

Case g = (y : g1) Ξl−→ g2. Therefore g′ = (y : g′1) Ξ′
l−→ g′2

Then we know that ∀va1, va2,Ξa, γa1, γa2, ∀(γa1, γa2) ∈ G∆JΓ;ψK, and (va1, va2) ∈ V∆Jg1; ΞaK,
then (v1 va1 | γa1, v2 va2 | γa2) ∈ T∆J[Ξa/y]g2; Ξ + [Ξa/y]ΞlK.
Suppose that v1 = εu1〈λyg11;y.t1, γ

′
1〉 :: g; Ξ, v2 = εu2〈λyg21;y.t2, γ

′
2〉 :: g; Ξ, and that

εu1 ◦ ε1 = ε′1 and εu2 ◦ ε2 = ε′2.

Then v′1 = ε′1〈λyg11;y.t1, γ
′
1〉 :: (y : g′1) Ξ′

l−→ g′2; Ξ′, and v′2 = ε′2〈λyg21;y.t2, γ
′
2〉 :: (y : g′1) Ξ′

l−→
g′2; Ξ′.
We have to prove that ∀vb1, vb2,Ξb, γb1, γb2, ∀(γb1, γb2) ∈ G∆JΓ′K, and (vb1, vb2) ∈ V∆Jg′1; ΞbK,
then (v′1 vb1 | γb1, v′2 vb2 | γb2) ∈ T∆J[Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′lK. Note that sdom(Ξb, ε

′
i) =

sdom(Ξb, εui ◦ εi) = sdom(Ξb, εi) ◦ sdom(Ξb, εui) (Proposition 77).
Suppose vbi = εbiubi :: g′1; Ξb. Then ε′bi = εbi ◦ sdom(Ξb, ε

′
i) = εbi ◦ (sdom(Ξb, ε) ◦

sdom(Ξb, εi)), and by associativity (Proposition 77), ε′bi = (εbi◦sdom(Ξb, εi))◦sdom(Ξb, εui).
Also ε′i1 = [Ξb/y]icod(ε′i) = [Ξb/y]icod(εui ◦ εi) = [Ξb/y]icod(εui) ◦ [Ξb/y]icod(εi), γ′′i =
γ′i[y 7→ ε′biubi :: gi1; Ξb] we have to prove that:

(ε′11ctx(γ′′1 , [Ξb/y]t1) :: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l,
ε′21ctx(γ′′2 , [Ξb/y]t2) :: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l) ∈ T∆J[Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′lK

Then by induction hypothesis on (vb1, vb2) ∈ V∆Jg′1; ΞbK, using ε′′i = sdom(Ξb, εi) `
g′1; Ξb <̃: g1; Ξb we know that

((εb1 ◦ ε′′i)ub1 :: g1; Ξb, (εb2 ◦ ε′′i)ub2 :: g2; Ξb) ∈ V∆Jg1; ΞbK

Then by choosing Ξa = Ξb, vai = (εbi ◦ ε′′i)ubi :: gi; Ξb, we know that (v1 va1 | γa1, v2 va2 |
γa2) ∈ T∆J[Ξb/y]g2; Ξ + [Ξb/y]ΞlK, i.e.

102

(ε′′11ctx(γ′′1 , t1) :: [Ξb/y]g2; Ξ + [Ξb/y]Ξl,

ε′′21ctx(γ′′2 , t2) :: [Ξb/y]g2; Ξ + [Ξb/y]Ξl) ∈ T∆′J[Ξb/y]g2; Ξ + [Ξb/y]ΞlK

for ε′′i1 = [Ξb/y]icod(εui). Then we know that

ε′′i1ctx(γ′′i , ti) :: [Ξb/y]g2; Ξ + [Ξb/y]Ξl

γ17−−−→
∗
ε′′i1vfi :: [Ξb/y]g2; Ξ + [Ξb/y]Ξl

γ17−−−→v′fi

where (v′f1, v
′
f2) ∈ V∆J[Ξb/y]g2; Ξ + [Ξb/y]ΞlK.

Note that y 6∈ FV (Ξ), then [Ξb/y]Ξ = Ξ. By induction hypothesis, using ε′′′i =
[Ξb/y]icod(εi) ` [Ξb/y]g2; Ξ + [Ξb/y]Ξl <̃: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l. Then

(ε′′′i v′f1 :: [Ξb/y]g′2; Ξ′+[Ξb/y]Ξ′l, ε′′′i v′f2 :: [Ξb/y]g′2; Ξ′+[Ξb/y]Ξ′l) ∈ T∆J[Ξb/y]g′2; Ξ′+[Ξb/y]Ξ′lK

i.e. if ε′′′i v′fi :: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l
γi7−−−→

∗
v′′fi, then (v′′f1, v

′′
f2) ∈ V∆J[Ξb/y]g′2; Ξ′ +

[Ξb/y]Ξ′lK.
But ε′i1 = [Ξb/y]icod(εi) ◦ [Ξb/y]icod(ε) = ε′′i1 ◦ ε′′′i
Therefore by associativity of consistent transitivity, we know that

ε′i1ctx(γ′′i , ti) :: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l
=(ε′′i1 ◦ ε′′′i)ctx(γ′′i , ti) :: [Ξb/y]g′2; Ξ′ + [Ξb/y]Ξ′l

γ17−−−→
∗
v′′fi

and the result holds.

Theorem 33 ((Gradual) metric preservation) If t ∈ T[G] and t ` Γ, then ∀∆, γ1, γ2 such
that Γ ` ∆ and (γ1, γ2) ∈ G∆JΓK, it follows that (t | γ1, t | γ2) ∈ T∆JGK.

Proof. Direct as a corollary of Proposition 89.

103

	Resumen
	Abstract
	Contents
	Introduction
	Background
	Sensitivity Type Systems
	Gradual Typing
	Abstracting gradual typing
	Summary

	A Static Sensitivity Type System
	Syntax
	Static Semantics
	Dynamic Semantics
	Properties
	Summary

	A Gradual Sensitivity Type System
	Syntax and Meaning of Gradual Types
	Lifting the Type System
	Lifting predicates
	Lifting Type Functions

	Static Semantics
	Dynamic Semantics
	Evidence for Consistent Subtyping
	Intrinsic Terms
	Reduction of Intrinsic Terms
	Elaboration of Terms

	Properties

	Conclusions
	Bibliography
	Auxiliary definitions
	A Static Sensitivity Type System
	A Gradual Sensitivity Type System

	Properties of a Gradual Sensitivity Type System
	Preamble
	Galois connections
	Type Safety
	Gradual Guarantee
	Static Gradual Guarantee
	Dynamic Gradual Guarantee

	Soundness

