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Abstract: In this study, GMAW and CMT welding technologies were evaluated in terms of their
technological lifecycles based on their patent datasets together with the S-curve concept, and the
joints were evaluated in terms of their welding characteristics. To predict the future trends for both
technologies, different models based on the time-series and growth-curve methods were tested. From
a process point of view, the results showed better performance and stability for the CMT process
based on the heat input to the base material and the frequency of the short circuits. The temperature
distribution in the sample revealed that the GMAW process delivers higher values and, consequently,
greater heat transfer. Regarding the technological lifecycle, the analyses revealed that the CMT
welding process, despite being recent, is already in its mature phase. Moreover, the GMAW welding
process is positioned in the growth phase on the S-curve, indicating a possibility of advancement.
The main findings indicated that through mathematical modelling, it is possible to predict, in a
precise way, the inflection points and the maturity phases of each technology and chart their trends
with expert opinions. The new perspectives for analysing maturity levels and welding characteristics
presented herein will be essential for a broaden decision-making market process.

Keywords: S-curve; technology lifecycle; GMAW; CMT

1. Introduction

Many developments in joining techniques have emerged to supply the demand for
productivity alongside reliability. As one of the most commonly used processes in industry,
welding is present in almost all products from the machinery, automotive, shipbuilding,
and aerospace fields. Because of the many variables involved (energy sources, modes
of operation, productivity, welding position, quality and properties, market strategies,
digitalisation, materials development, reliability, costs, etc.) and the existence of many
welding processes, choosing a proper welding process has become quite difficult.

Developed in the late 1950s, Gas Metal Arc Welding (GMAW) is one of the most
commonly used welding processes in the world due to its high productivity and possibility
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of automation, as described in the work of Yapp and Blackman [1]. Some advantages of
GMAW are the high deposition rate, low-cost equipment, good welding penetration, use
for almost all metals and alloys, use in coating layer application, and good mechanical
properties. On the other hand, Shen et al. [2] reported that this process can present unstable
arc behaviour, which can impact the reliability and scale up production in some applications.
Additionally, the process is sensitive to contaminants, can produce lack of fusion, is less
portable when compared to others and is less suited to smaller and constricted spaces due
to the nature of the welding touch.

Guided by the challenges of lightweight construction in the automotive and aerospace
industries, the demand for development is focused on increasing the materials’ strength
and improving the joining processes. According to Goede et al. [3], steel remains the
primary constituent of vehicles structures. One significant challenge in welding parts is the
production of tailored blanks of dissimilar materials, not only between different classes of
steels, but also between aluminium and steel. In this regard, Madhavan et al. [4] stated that
a low heat input fusion welding process could provide a solution. Low heat input leads
to insufficient time for enough materials to melt, and the results are a low volume weld
pool with fast freezing. This impacts the dendritic structure and controls the intermetallic
layer formation.

Considered a variation of the GMAW process, Cold Metal Transfer (CMT) consists of
a power source and a torch with a wire feed speed disassociated from the welding energy,
as described in the work of Cornacchia et al. [5]. Despite its electrical current control, this
process allows wire retraction during the short circuit transfer. This eliminates the need for
an electromagnetic force to detach the molten material of the electrode, which results in a
low-spatter or spatter-free procedure. According to Selvi et al. [6], with a transfer mode
under a low voltage, the heat input on the welded part is also decreased.

There are notable studies on the arc characteristics of the CMT process. For instance,
Zhang et al. [7] investigated the arc and metal transfer behaviours in the CMT welding of
aluminium and zinc-coated steel. The results showed that a low heat input and spatter-free
welding, characteristics of CMT processes, can improve the mechanical performance of
dissimilar material joining. Focusing on this issue, Pickin et al. [8] used the advantages
of the CMT process for low dilution cladding applications and showed that the process’s
characteristics and control can optimise crack formation during solidification due to eutectic
reactions. In another study, Costa et al. [9] analysed the arc characteristics and best practical
parameters involving standard GMAW and its derivative processes with the short-circuit
transfer mode, including the CMT. It was shown that the lower heat input delivered in the
CMT configuration can be more efficient in some welding positions, improving the root
characteristics of the joint.

Although many studies have been presented, there is still a lack of information and
research materials for the CMT process compared to standard ones, such as GMAW, espe-
cially when not only basic characteristics (level of heat input and its impact on the delivered
temperature and material deposition) but also technological trends are addressed. Chang
et al. [10] noted that the evaluation of welding technologies from a technical perspective
has fundamental importance in establishing the limits of the process parameters. However,
besides the technical aspects of the parameters and setup, it is also important to incorporate
a broader perspective to facilitate a multidisciplinary view of this analysis, such as the
Technology Lifecycle (TLC) approach.

2. The TLC Approach Based on the S-Curve Concept

TLC analyses have been applied for different purposes and are delineated into several
phases, such as embryonic, growth, maturity, and aging, as stated by Taylor and Taylor [11].
Wilder et al. [12] showed that S-curve models can facilitate the understanding of change
dynamics, reveal patterns and technological changes, and serve as tools combined with
growth models to predict inflection points and thus establish monitoring strategies. The
model proposed in this study originates from the established S-curve concept proposed
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by Little [13] to measure technological changes and provide an analytical method for
the adaptation of strategic planning techniques to manage corporate R&D resources. In
addition to the TLC study, it is essential to note that the use of patents is an important
strategy to study and explore the forces that drive sustainable development, as the study
of Wu et al. [14] addressed.

Figure 1, provided by Gao et al. [15], represents the S-curve within the category of
nonlinear growth curve models, which has been extensively applied in other scientific
disciplines, such as biology and medicine. For instance, Xinán and Aijun [16] identified the
non-linear growth model that provides the best fit for determining the growth rate and
established mathematical formulae to explore the growth intervals of a rapidly growing
turbot fish strain. The technological trends were categorized into four different stages
(emerging, growth, maturity, and saturation), which represent, respectively, low and high
competitive impact, the key technology, and, finally, the phase at which the technology
begins to be replaced, as noted by Madvar et al. [17].
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According to Gao et al. [15], the dominant approach for analyzing TLC uses the S-curve
to observe patent applications over time, and this kind of analysis helps decision-makers
estimate future development trends and, thus, mitigate risks and increase the probability of
success. Studies based on the S-curve can use different approaches, such as conceptual and
visual approaches, as demonstrated by the study of photovoltaic technology competitive
strategies proposed by Jamali et al. [18]; however, this methodology carries significant
uncertainty. The use of mathematical (or statistical) modelling has increased and seems to
be more promising for predictions when an event will occur and can be combined with
expert opinions to predict if an event will occur, as noted by Fye et al. [19]. For this type
of modelling, the historical data of patents and scientific studies (articles, reports, and
publications) have become reliable references to estimate future development [20].

Nevertheless, there is still room for improvement, such as identifying all points of
transition between stages. In this regard, Andrade et al. [21] sought to identify these
transition points using an empirical approach, but this approach seems to be inaccurate.
In the same sense, Yang et al. [22] used the concept of the S-curve for an important
analysis of the competitiveness of several countries in the graphene industry. However, it
presents only a visual analysis of the S-curve so that it can lead to inadequate interpretation.
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Wilder et al. [12] used mathematical modelling to define the central inflection, but the
S-curve has three inflection points. On the other hand, Kucharavy and De Guio [23] made
some advances but were still limited to a specific model, such as the logistic growth-curve.

De Gooijer and Hyndman [24] revealed that the use of more advanced smoothing and
forecasting techniques presented in other studies may offer more robust solutions, such as
using a time-series divided into exponentials, ARIMA, and automatic ARIMA (or Auto-
ARIMA). Xin’an and Aijun [16] suggested another option: the use of growth-curves with
different models, such as exponential, Gompertz, Chapman–Richards, and logistic models.

Past time-series methods were very subjective, but, with the introduction of more
advanced models like ARIMA, they now provide the necessary mathematical rigour,
allowing them to represent patent evolution, as established by Smith and Agrawal [20].
Krispin [25] considers time-series techniques to be essential for statistical programming, and
Fye et al. [19] noted that time-series methods can be used extensively, although they may
lose accuracy over a long-time horizon. Bouzada [26] noted that, in general, the classical
time-series decomposition method considers the following characteristics: seasonality,
trends, cycles, and random components. Kabacoff [27] stated that these methods can
produce good short-term forecasts in a wide range of applications despite their simplicity.
On the other hand, growth-curve methods have also been used to predict bacterial growth,
as studied by Lobacz et al. [28], in a microbiology model to describe this phenomenon
accurately in cheese production. In relation to technological forecasting, these models have
been applied to patent datasets to determine the maturity of new technologies, such as
additive manufacturing [29].

This work proposes to analyse the basic aspects of the joints produced by the CMT
and GMAW welding processes and mainly to exploit the technological trends based on
patents and expert opinions to predict a forecast for each technology. Firstly, the main goal
is to correlate the heat input and welding characteristics using the same wire and setup
to join non-alloy quality structural steel (ISO E235B) in terms of its temperature reached
and welding penetration. The main focus of the following TLC analyses is to investigate
different techniques applied to specific boundary conditions to provide a representative
analysis of the chosen welding technologies’ maturity levels.

3. Materials and Methods
3.1. The Welding Analyses
3.1.1. Sample Preparation

The welds investigated in this work were prepared in the V-joint configuration without
any root openings and a groove angle of 60◦. The processes of GMAW and CMT were used
to join 5-mm-thick ISO E235B [30] steel with dimensions of about 100 mm in width and
250 mm in length. The chosen process parameters were monitored using a YOKOGAWA
DL850 data acquisition recorder (YOKOGAWA, Tokyo, Japan). The joints were prepared
using a standard filler, G3Si1 (ER70S-6), with a 1.2 mm diameter in three passes, and no
backing bar was used. Samples of 200 × 250 × 5 mm3 were prepared for each process,
described as GMAW and CMT. Tables 1 and 2 show the chemical composition and the
mechanical properties, respectively, of all materials used in this work.

Table 1. Chemical composition (wt%) of the materials used in this work, according to manufacturer.

C % Mn % Si % S % P % Cu %

ISO E235B 0.17 1.40 0.40 0.045 0.045 -

G3Si1 (ER70S-6) 0.07 1.40 0.80 0.012 0.012 0.10
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Table 2. Mechanical properties of the materials used in this work, according to manufacturer.

Rp0.2 (MPa) Rm (MPa) A (%)

ISO E235B 235 340–470 26

G3Si1 (ER70S-6) 470 560 26

As a power source, we used a Fronius TransPuls Synergic 4000 CMT R machine. The
samples were manufactured with the synergic mode turned on, which means that only
the parameter Wire Feed Rate (WFR) was set in the power source control. This allowed
for better control of the parameters and ensured a uniform penetration and weld bead
profile. For comparison purposes, the joints were prepared using the same voltage and
welding travel speed. The values of the current were different to explore the differences in
the wire feed. Thus, the heat input of the CMT process was slightly higher. Table 3 shows
the applied welding parameters and the estimation of the heat input considering a welding
process efficiency of about 85% for both the GMAW and CMT processes in accordance
with the studies carried out by Haelsig et al. [31] and Pepe et al. [32]. The heat input was
calculated according to Equation (1):

Q =
60 × U × I

1000 × v
(1)

where Q is the heat input (kJ/mm), U is the voltage (volts), I is the current (ampere), and v
is the travel speed (mm/min).

Table 3. Setup welding parameters.

Sample Voltage
(V)

Current
(A)

Wire Feed
(m/min)

Travel Speed
(mm/min)

Heat Input
(kJ/mm)

GMAW
18.5

198 5.0
400

0.55

CMT 229 8.0 0.65

All samples were manufactured and characterised at the Institute for Welding and
Joining at the University of Aachen (RWTH Aachen, ISF) in Germany.

3.1.2. Temperature Measurements

To determine the temperature distribution during the process, standard thermocouples
of type-k were installed on the bottom sides, in the middle of the joint length, at three
different points from the centreline: 2, 4, and 6 mm. The data recording and analyses
were performed using the DIAdem® software, and the Short Circuit Frequency (SCF) was
determined by applying a Fast Fourier Transform (FFT) based on all three welding pass
curves for both current and voltage (arithmetic average). The SCF analysis was used to
verify if the material deposition occurred in a standard way and if it corresponded to a
certain regular frequency.

3.1.3. Welding Characterisation

The weld penetration and shapes were measured using the ImageJ® software based on
optical macrographs taken from the transversal cross sections. The samples were ground,
polished, and etched using Nital 5%. The area was estimated using the average of all three
passes. The real wire feed (m/min) of each process was then calculated based on the real
microstructural dimensions in accordance with Equation (2):

WFR =
A × v × 4

π × d2 (2)
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where WFR is the wire feed rate (m/min), A is the average cross sectional area of the de-
posited material (mm2), v is the welding (travel) speed (mm/min), and d is the wire diame-
ter (mm), as proposed by Imoudu et al. [33]. Additionally, the dilution was calculated based
on the estimated areas measured in the macrocographs, according to Tomków et al. [34],
dividing the molten area of the base material by the total molten area of the joint.

3.2. TLC Analyses of Technological Maturity

To understand the maturity and stage of development for each welding technology,
different statistical models were used to assess and predict future trends. Here, the analyses
and assessments followed consolidated references from statistical studies and consisted
of (i) data collection and preparation, (ii) statistical model development and tests, and
(iii) analyses and comparisons of the results, as suggested by Kabacoff [27].

3.2.1. Data Collection and Preparation

All data used in this work were collected using the patent research and analytics
platform Derwent InnovationTM, a Clarivate Analytics company. In particular, the Global
Patent Data Collection was accessed on July 14th 2020 (8:49 pm Brazilian time) using the
Text-Fields option in the Derwent Innovation Index (DII) database. The analyses were
conducted at SENAI CIMATEC—Salvador, Bahia, Brazil, which holds the license for use.
The first challenge was to select keywords that represent the different ways in which the
technologies of interest could be found in the documents. The DII database stores patents
that have been deposited worldwide. The survey was carried out by searching for the
terms selected in the title, abstract, and claims of the patent documents. The following
queries were the references needed to obtain each database related to the GMAW and CMT
patent documents and were entered in the “Preview/edit queries” field:

• GMAW technology: AB = ((gmaw OR (gas ADJ metal ADJ arc ADJ welding)) AND
welding) OR AB = ((mag OR (metal ADJ active ADJ gas)) AND welding) OR AB = ((mig
OR (metal ADJ inert ADJ gas)) AND welding) NOT AB = ((cold ADJ metal ADJ trans-
fer)) NOT AB = (cmt);

• CMT technology: AB = ((cold ADJ metal ADJ transfer)) OR AB = ((cmt)) AND
AB = (welding) NOT AB = ((mag OR (metal ADJ active ADJ gas))) NOT AB = ((mig
OR (metal ADJ inert ADJ gas))).

Notably, these patent databases can have an 18-month restriction in their access period
that precedes the full publication of a patent in most countries [35]. The preparation of the
dataset started with the use of patents accumulated each year according to each selected
technology and following the S-curve model (assessed by the priority date). The dataset
was then organised with the number of patents for each year, with a value of zero used for
patents without any deposit date of reference.

3.2.2. Statistical Model Development and Tests

The statistical models applied in this work were developed and analysed in the R
Studio environment [36], which was used to import the dataset, generate the plots, and
analyse the results. Time-series and growth-curve models were applied to analyse the
patent evolution and exploit the technological trends:

• Time-series: The forecast (8.11) package developed by Hyndman et al. [37], which
contains methods for smoothing and forecasting using time-series analysis and linear
models;

• Growth-curves: The growthrates (0.8.1) package developed by Petzoldt [38], which
includes nonlinear growth models with varying quantities of parameters written as
analytical solutions of the differential equation.

Different mathematical and statistical algorithms were evaluated for each model.
Table 4 summarises each model’s characteristics (both time-series and growth-curve mod-
els) used in this study. In general, for the algorithms used in the growth-curve models,
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it is necessary to engage in some initial interactions to establish the starting values for
each model’s parameters. By doing so, it is possible to better optimise the results. In
general, models with up to three parameters work well with single starting values. On the
other hand, for models with more than three parameters, such as Gompertz, Richards, and
Baranyi, it is necessary to establish data ranges with minimums and maximums for each
parameter to avoid alerts.

Table 4. Summary of all models used in this study to obtain the best fit for each patent’s data.

Model Description

Ti
m

e-
se

ri
es

Exponential Single
Exponential smoothing methods were originally used in the 1950s as a collection of ad hoc
techniques for extrapolating various types of univariate time series [20]. The Holt–Winters
exponential single model is indicated for univariate data without a trend or seasonality [39].

Exponential Double Holt–Winters exponential smoothing that adds support for trends in the univariate
time-series [39].

Exponential Triple Holt–Winters exponential smoothing that adds support for seasonality in the univariate
time-series [20], which likely does not fit well since the S-curve has no seasonality.

ARIMA and Auto-ARIMA The autoregressive integrated moving average for forecasting discrete time-series processes,
and Auto-ARIMA fits the best ARIMA model to the univariate time series easily [39].

G
ro

w
th

-c
ur

ve

Logistic
The simplest mathematical function that produces an S-curve with three parameters for
studying and forecasting future changes. The application of the logistic curve can contribute
essentially to the accuracy of a long-term forecast [40].

Gompertz Originally derived to estimate human mortality with three parameters, and there are a
number of different ways that this equation can be written with three or four parameters [41].

Richards The generalisation of a logistic curve that is no longer symmetrical around the point of
inflection, with four parameters [41].

Baranyi Developed for predicting the bacterial growth curve; this is a dynamic model with four
parameters dealing with time-varying environmental conditions [42].

Exponential Classical growth model with two parameters and a very simple structure [43].

Models using time-series are more easily adjusted because the algorithm seeks to
adjust the data characteristics to each time-series model. In general, errors can occur if
it is not possible to adjust the curve—for example, trying to adjust data that does not
have seasonality in a model that requires seasonality. In this way, the algorithm produces
alerts that cannot be adjusted. After attending to these observations and interactions and
considering the exceptions of the time-series models mentioned above, the algorithms no
longer generated alerts.

The next step was to plot each graph to compare the actual curve with the predicted
one. This procedure was necessary because, although the algorithm did not emit more
alerts, the resulting curves may not have fit into the original curves. If there were still some
distortions in this visual inspection, it would be necessary to change the model’s initial
parameters again and rerun the algorithm.

3.2.3. Analyses and Comparisons between the Models

Best model analysis began by selecting the best smoothing method for evaluating
the level of statistical representativeness, evaluating the accuracy measurement, and de-
termining the information quality based on the principle of parsimony, as discussed in
Bozdogan [44]. Afterwards, a prediction test was carried out with the existing data, remov-
ing the last three years from the dataset. Then, new smoothing of the data prediction was
generated to compare the predicted and observed datasets.

Based on the best prediction model, a full dataset was used to forecast the techno-
logical development for the following years. Notably, for the growth-curve model, it was
necessary to identify the curve parameters. The summary(.) command was included in the
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algorithm developed in the growthrates package to identify these parameters. Then, the
corresponding equation was defined and, by obtaining the 2nd and 3rd order derivatives,
established the inflection points, as detailed in Section 3.2. Finally, when discussing trends
and using expert opinions on welding technologies, it is crucial to check the results and
identify factors likely to alter the development suggested by the TLC [15].

4. Results and Discussion
4.1. Welding Analyses

The chosen process parameters ensured a good welding bead with a lack of superficial
defects and discontinuities under both processes. Visual analyses highlighted the character-
istics of CMT welds to have a slightly more pronounced bead compared to standard GMAW,
which is expected due to the low heat input, fast solidification, and higher deposition ratio,
as also observed in the research carried out by Selvi et al. [6]. The characteristic curves
for current and voltage were monitored and are presented in Figure 2 for both processes.
Based on the curves for standard GMAW shown in Figure 2a,b, standard behaviour with
peaks of current occurs when the arc reignites after the short circuit phase. At this point
in time, the droplet touches the base metal, and the material detaches from the wire tip
(nip-off) due to the magnetic forces, as also reported by Selvi et al. [6]. For the CMT welds,
the current curve showed the three phases (I, II, and III) characteristic of this process, in
accordance with the results obtained by Zhang et al. [7] and Mezrag et al. [45] (Figure 2c).
It can be observed that on the high peaks of the current (phase I in Figure 2c), the arc
reignites, and the filler material melts. This peak time is followed by the background time
(phase II in Figure 2c), when a small droplet of molten metal grows on the tip of the wire
and is followed by a voltage reduction at this moment, which is also in accordance with
the results of Zhang et al. [7]. This process occurs under small current values to inhibit
the globular transfer of material. At the end of the cycle, short circuit transfer (phase III
in Figure 2c) occurs, and the voltage decreases. Notably, molten material detachment
does not occur due to magnetic forces but because of wire feed retraction. Similar results
were reported by Zhang et al. [46], who investigated the effects of welding velocity on the
microstructural formation of AZ31 Mg alloy material cladding using the CMT process. The
authors observed that after the arc ignition, a period of a peak pulse occurred, causing
the wire electrode to melt. Then, there was a period of a pulse base with a lower welding
current and a decrease in the arc intensity.
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Cold Metal Transfer (CMT) process (c,d).

Comparing the characteristic curves of both processes, CMT presented a smaller
average (Root Mean Square, RMS) welding voltage during the procedure, which means
that the arc of this technology is also smaller than that of standard GMAW, which has a
positive impact on the heat input yield. These characteristics are in accordance with the
results obtained by Dutra et al. [47]. It was reported that the short-circuit voltage remains
at a very low level during this process when compared to GMAW-MIG technology. As a
result, the energy decreases and remains constant. Additionally, the CMT process reaches
higher current values for short periods of time, while the peaks for standard GMAW
process are shorter and instantaneous—just enough to reopen the arc. In this case, the
current oscillation can be attributed to the power source response control, behaviour that
can also be observed in each phase (I, II, and III) of the CMT process. In accordance with
Selvi et al. [6], a higher peak of current in the CMT process can also contribute to a higher
deposition rate, as shown in Table 5.

Table 5. Measured welding parameters for both processes, standard GMAW and CMT.

Sample Voltage
(V)

Current
(A)

Wire Feed *
(m/min)

Travel Speed
(mm/min)

Heat Input
(kJ/mm)

GMAW 18.97 200.61 6.39 400 0.57

CMT 16.59 229.98 8.17 400 0.57
* Based on metallographic analyses presented later in this section (Figure 5, Table 7, and Equation (2)).

Another significant characteristic of the CMT process is its stability and pronounced
SCF. Figure 3 shows the FFT graphs for both processes side-by-side, and Table 6 highlights
the almost constant values of SCF for the CMT process in each pass. The average value
is also presented and confirms the stability of the process. The distinguish peaks of the
SCF control, through digital process, the power supply and the retraction of the wire,
thereby ensuring the stability and deposition control of the CMT process. Note that this
is not clear for the standard GMAW process, where no dwell-defined peaks of frequency
were detected.
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Table 6. Short Circuit Frequencies (SCFs) for the CMT process.

Sample
SCF (Hz)

1st Pass 2nd Pass 3rd Pass Average ± Std. Deviation

CMT 90.12 88.83 89.24 89.40 ± 0.66

The temperature distributions for the first pass of the standard GMAW and for the
CMT processes are presented in Figure 4. The analyses present the temperatures registered
during the welding process and the cooling rate until the base material reached approxi-
mately 200 ◦C. Although the temperature gradient is very high at the weld area and some
errors of the thermocouple location can have great influence on the peak temperature, the
thermocouple located 2 mm from the root opening registered a peak of temperature around
1090 ◦C for the GMAW process, while the maximum temperature for the CMT process was
around 930 ◦C. It can be seen that the cooling times t85 (time spent between 800 ◦C and
500 ◦C) were 15.3 s (19.6 ◦C/s on average) and 62 s (4.8 ◦C/s on average) for the GMAW
and the CMT processes, respectively. These differences suggest that wire deposition was
more pronounced in the CMT process.

Although the arc energy of both processes presented similar values (estimated heat
input presented in Table 5), the standard GMAW process seemed to transfer more energy
to the base material, with the thermocouple registering a higher peak in temperature. This
could relate to the differences in voltage and current between the processes, although the
welding speed was fixed for comparison. Microscopic investigations into the welding
cross-section revealed the differences in material deposition for both processes (Figure 5).

The analysis based on the macrographs presented in Figure 5 confirms the slightly
pronounced bead observed by visual inspection, with a height of about 3.33 mm for
standard GMAW versus 4.09 mm for CMT (arrow B in Figure 5a,c). The wetting angle was
also higher for the CMT process compared to standard GMAW, with about 95◦ compared
to 65◦, respectively. The welding width was also larger for the CMT process, with values of
14.95 mm versus 13.79 mm for GMAW. However, with these parameters, the joints prepared
using the CMT process were not able to achieve full penetration, as observed in the GMAW
process, despite the fact that no root reinforcement was observed. All these aspects and
the estimated welding parameters presented in Table 5 confirm the characteristics of the
CMT process to have a less-open arc during the process, which could be related to the high
wetting angle and lower penetration depth when compared to the GMAW process. Thus,
less heat was transferred to the base material, which indicates that the molten metal drop
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solidified too fast when contact occurred. All measured instances of penetration and areas
shown in Figure 5 are presented in Table 7.
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Table 7. Area and dimensional measurements of the cross-section positions highlighted in Figure 5.

Sample
Positions Highlighted in Figure 5

A (mm) B (mm) C (mm) D (mm) E (mm) F (mm) G (◦)

GMAW 13.79 3.33 3.18 3.29 4.55 1.05 65

CMT 14.95 4.09 3.98 4.30 1.42 1.05 95

A1
(mm2)

A2
(mm2)

A3
(mm2)

Total Average Area
(mm2)

Total Molten BM Area
(mm2)

Total Molten Joint Area
(mm2)

GMAW 20.50 16.16 17.58 18.08 19.54 54.23

CMT 25.95 20.14 23.26 23.11 21.57 69.35

As also cited by Imoudu [48], these results confirm the characteristics of the CMT
process, showing that by operating at the same level of heat input, the material deposition is
higher than that of GMAW. Here, the choice of a higher wire feed results in a lower voltage
and a higher current in the CMT process, even though the same welding speed was applied
in both processes. In terms of welding characteristics, both processes showed similar depth
penetration and morphologies for all passes. These results seem to be related to the high
average current observed for the CMT process and the higher voltage of standard GMAW,
which was expected based on the setup parameters and technological characteristics
and was also suggested by other authors such as Haelsig et al. [31], Mezrag et al. [45],
Pepe et al. [32], and Selvi et al. [6]. In terms of dilution, the calculation based on the
estimated areas (the total molten base material area divided by the total molten joint area)
shows that the GMAW values are of about 15% higher than the CMT process, which is in
accordance with the literature, G.P. et al. [49].

4.2. TLC Analyses and Assessment of Technological Maturity
4.2.1. The Dataset Characteristics

The DII patent database used in this work revealed the existence of 11,352 related
patents with standard GMAW and 535 with the CMT process [50]. The distribution of
the requested patents over the years can be seen in Figure 6, and the observed disparity
between the numbers for each process can be considered normal since the first technology
(GMAW) was launched in the 1950s, while the second (CMT) was launched in the 2000s.
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For the GMAW process (Figure 6a), the analysis revealed that the first patent was
dated 1950, is owned by the Air Reduction Company, and was invented by Muller [51].
In terms of technological maturity, based on the phases presented in Figure 1, the curve
in Figure 6a shows characteristics similar to those of the maturity or growth phases. On
the other hand, CMT technology is considered relatively recent, as its patent registration
is dated to 2003, and it was invented by Artelsmair [52]. By matching this result with the
S-curve concept of the TLC presented in Figure 1, apparently, this technology is located
within the growth phase of the curve (Figure 6b).

Considering the distribution of patents by country, Japan, China, and the United States
hold the top three spots for both GMAW and CMT welding process requests (Table 8). From
a business point of view, the company Fronius Int has about 162% more records on the
CMT process than their closest competitor, Unitec Technologies Corp. [53]. Similar results
were found for the GMAW process, with Illinois Tool W. Inc. showing 103% more patents
than their closest competitor. Thus, in these particular cases, there is a high concentration
of patents among these leading competitors.

Table 8. Countries and top assignees with a great number of patent depositions for CMT and GMAW welding technologies.

Country GMAW CMT Top Assignees GMAW Top Assignees CMT

Japan 2129 37 Illinois Tool W. Inc. 1821 Fronius Intern. 97

China 2035 252 Lincoln Elet. H. Inc. 897 United Tech. Corp 37

United States 1734 68 Kobe Steel Ltd. 327 Magna Intern. Inc. 29

Canada 608 9 L’air Liquide S.A. 294 GE Company 29

Germany 601 35 Victor Tech. H. Inc. 272 Siemens 22

Korea 462 15 Nippon Steel Corp. 206 Tianjin Univ. 20

A close look on the dataset presented in Figure 6 reveals that the most relevant and
state-of-the-art technologies in this field cover different applications: (a) welding, soldering,
and repairing; (b) tools, heat exchangers, assembly, robots, and gas turbines engines; and
(c) gas turbines engines, airfoils, and turbomachines. These clusters of technologies and
applications represent about 87% of the results for CMT technology. According to Ljung
et al. [53], a larger percentage of technological interest indicates a saturation in that space,
whereas lower rates indicate diverse technological representation. Thus, these results
suggest a certain saturation and concentration of CMT technology.

4.2.2. Development of TLC Models and Analyses

Based on the methodology presented in Section 2 and Figure 6a,b, no seasonality
factor can be observed for the two curves, which means that no external influences, such
as weather, holidays, or periodic and repetitive facts, impact the “shapes” of the curves.
Therefore, the use of the time-series method by applying triple exponential smoothing
algorithms was not feasible for this dataset. This was confirmed when the tests for this
model were conducted in the R Studio environment for both technologies: “Error in ets
(dados, model = “AMN”): Forbidden model combination“. Thus, the use of the triple
exponential smoothing method (time-series), highlighted in Table 4, will not be considered
in this study.

CMT Technology

The performance of different algorithms using the time-series models presented in
Table 4 is shown in Table 9. The main variables analysed were the root mean square error
(RMSE), as suggested by Yilmaz [42]; the mean absolute error (MAE); and the mean absolute
percentage error (MAPE), suggested by Myttenaere et al. [54]. The Akaike information
criterion (AIC) was also used for the evaluations, and its values consider the number of
parameters of the models, penalising the models with more parameters according to the
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parsimony described in Bozdogan [44]. As the p-value for the Auto-ARIMA model was
higher than 5% (Table 9), the null hypothesis of white noise was not rejected [27]. The
results revealed that Auto-ARIMA is the best model for fitting the CMT patent dataset,
since in all metrics (RMSE, MAE, MAPE, and AIC), auto-ARIMA showed the best results.

Table 9. CMT—Performance metrics for time-series models.

Time-Series Models RMSE MAE MAPE AIC p-Value

Exponential—Simple 38.194 28.122 26.547 178.020 0.0008

Exponential—Double 10.042 7.184 20.302 136.590 0.6534

ARIMA 21.827 15.953 17.152 151.870 0.0656

Auto-ARIMA 10.038 7.118 13.776 115.640 0.6402

The next step was to use the Auto-ARIMA model to prepare the Ljung-Box Q statis-
tical test proposed by Ljung and Box [55] and to test whether the series of observations
(residuals from the fitted models) was random and independent over time. The R func-
tions qqnorm(.) and qqline(.) were used to generate the curve (normal probability plot of
residuals) presented in Figure 7, which showed normally distributed data along the fitting
line, following the criteria of Kabacoff [27].
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For the growth-curves, the following models were tested according to Table 4: logistic,
exponential, Richards, Baranyi, and Gompertz. All the results are presented in Figure 8,
and the analyses indicate that the exponential (Figure 8c) and Gompertz (Figure 8f) models
presented the worst fit, with many points outside the line.

Each model’s performance is described in Table 10. The Richards model shows the
best outcome for all indicators, with a lower AIC and RMSE and a larger R-squared—R2.
As already mentioned, the AIC criterion is very relevant in this kind of comparison process
because it considers the numbers of parameters in the models, penalising the models with
more parameters according to the parsimony criteria described in Bozdogan [44].
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Table 10. CMT—Performance metrics for growth models.

Growth-Curve Models RMSE AIC R2 Parameters

Logistic 10.312 68.803 0.998 3

Exponential 37.603 88.155 0.968 2

Richards 7.045 64.511 0.999 4

Baranyi 9.152 68.834 0.998 4

Gompertz 42.487 92.170 0.960 3

Using the Best Models to Forecast

At this stage, a comparative test was made between the two best models for each type
of technique: Auto-ARIMA for time-series and Richards for growth-curves. The last three
years were removed from each dataset, and then we used the models to predict the years
2017, 2018, and 2019. The results are shown in Table 11. Here, the Richards growth model
best fit the predictions for the following years since it had a lower value of RMSE.

Establishing the Curve and Its Inflection Points

After defining all the parameters for the Richards growth-curve function, as mentioned
in item 2.2.3, the formula was completed as described in Equation (3):

P = 1885.67×
(

1 + 0.11926× e(−0.1123×t)
)−78.8003

(3)

where P represents the number of accumulated patents in a specific year (t).
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Table 11. CMT—Comparison between Growth-curve and Time-series models.

Year Patents Richards AUTOARIMA

2107 502 489 465

2018 566 539 496

2019 617 587 527

RMSE 24.75 69.21

To obtain the curve’s inflection points, derivative mathematical concepts were applied.
The application of mathematical methods was used to obtain the points of inflection of the
curve, thereby determining the divisions between the stages of maturity of each technology.
The second derivative is the fundamental concept of the central inflection point or change
in the curve’s concavity. Da Costa and Guerra [56] noted that when the second derivative
of a given function is equal to zero, there is an inflection of its concavity at this point. Thus,
the following rules were applied:

• Let f be a derivative function up to 2nd order in the interval I and suppose that at
x0 ∈ I, f ”(x0) <> 0. In this case, if f ”(x0) > 0, then the curve of f has a positive concavity
in x0; otherwise, the curve of f ”(x0) > 0 has a negative concavity in x0;

• Let f be a derivative function up to 2nd order in an interval I and suppose that x0 ∈ I
is the abscissa of an inflection point in the curve of f. Thus, f ”(x0) = 0.

For the other inflection points, a third derivative concept was used. This concept
is known as “Jerk” and is widely applied in physics. The time rate of the acceleration
change is called the Jerk and is essential in mechanical and acoustic applications. The third
derivative is the rate of change of the slope. When this rate is zero, the second derivative
is constant, and the rate of the slope change is fixed, as defined by Schot [57]. In terms
of the S-curve (Figure 6), this interpretation is related to the curve’s acceleration changes.
This means that between the emergent and growth phases, there is a spike in acceleration;
from there, acceleration begins to decrease. In this transition, the first inflection or the first
root of function d”’ is equal to zero. In the transition between the maturity and saturation
phases, a new inflection occurs. This new inflection is represented by the second root of the
function when d”’ is equal to zero. The inflection passes then through a negative peak of
deceleration and gradually reduces, tending towards zero at its limit.

Figure 9 shows the real curve of CMT technology patents until 2019, plotted with the
predicted curve using the formula obtained by the Richards growth-curve (Equation (3)).
This curve best represented the data obtained from the patents. Adding the inflection
points gives a clearer view of the behaviour of the technology and its possible predictions.
As can be seen, this technology is already in a stage of maturity. Notably, based on this
analysis, CMT technology could possibly reach saturation in the following years. This is a
somewhat surprising finding for such a recent technology.

GMAW Technology

Table 12 shows the performance metrics calculated for each of the possibilities of the
studied time-series models. Again, Auto-ARIMA appears to be the best model for fitting,
except for the MAE indicator, which shows the Double Exponential method to be the best.
However, the Double Exponential method has a Ljung-Box p-value < 0.05, so, as proposed
by Ljung and Box [55], it rejects the white noise hypothesis. This analysis methodology
was followed by using Auto-ARIMA for the GMAW patent dataset.
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Table 12. GMAW—Performance metrics for time-series models.

Time-Series Models RMSE MAE MAPE AIC p-Value

Exponential—Simple 262.115 180.853 12.446 1001.670 4.109 × 10−15

Exponential—Double 53.802 31.481 10.913 799.420 0.007567

ARIMA 140.798 93.383 7.074 822.000 4.501 × 10−9

Auto-ARIMA 50.495 32.042 4.311 676.260 0.9291

In Table 12, the p-value for the Auto-ARIMA model was again higher than 5%, thus
not rejecting the null hypothesis of the Ljung-Box test proposed by Ljung and Box [55].
The R functions qqnorm(.) and qqline(.) produced the graph (normal probability plot of
residuals) in Figure 10. The results were satisfactory once the Auto-ARIMA case data were
normally distributed along the fitting line following the criteria of Kabacoff [27].
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For the growth-curve models, the same nonlinear methodology was applied to study
the GMAW technology patents. Figure 11 shows that the Gompertz model offers the worst
fit, as many points are outside the predicted line.
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Table 13 describes each growth curve model’s performance results using the same
algorithm in R studio. In this case, the Baranyi model presented better outcomes for all
indicators: R2, RMSE, and AIC.

Table 13. GMAW—Performance metrics for the growth-curve models.

Growth-Curve Models RMSE AIC R2 Parameters

Logistic 0.995 243.183 392.020 3

Exponential 0.993 297.056 400.275 2

Richards 0.993 285.739 402.285 4

Baranyi 0.996 220.518 389.007 4

Gompertz 0.942 997.252 464.339 3

Using the Best Models to Forecast

At this stage, a test for comparison was made between both best-fitted models for each
type of technique: Auto-ARIMA for time-series and Baranyi for growth-curves. The last
three years were removed from the GMAW dataset to proceed with the predictions for 2017,
2018, and 2019. It can be seen, according to Table 14, that the Auto-ARIMA time-series
model best fits the predictions for the following years, presenting a lower RMSE.
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Table 14. GMAW—Comparison between the Growth and Time-series models.

Year Patents Baranyi AUTOARIMA

2107 11,154 11,531 11,202

2018 11,513 12,302 11,613

2019 11,755 13,122 12,023

RMSE 936.96 167.71

Establishing the Curve and Its Inflection Points

Following the methodology described in the previous section, we calculated and
plotted the second and third derivatives in Figure 12. However, due to the Auto-ARIMA
time-series models’ characteristics, several roots emerged, as shown in Figure 12, leading
to an unfeasible solution.
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The analyses were conducted by plotting the graphical positioning using the second-
best option: the Baranyi growth-curve. This decision was made once the Baranyi model
presented consistent results, showing an even better (i.e., lower) AIC than the Auto-ARIMA
model. Figure 13 illustrates the plot using the (estimated) parameters for the Baranyi model
with its formula. The inflection points are the roots of the second and third derivatives,
following the same methodology used for the CMT technology. Even though GMAW
is an older technology, the results reveal that this technology is in the curve-growth
phase. This suggests that GMAW is a key technology, showing that there is still room for
further expansion compared to CMT technology, as noted in a similar analysis for another
technology by Wilder et al. [12].

Notably, the CMT and GMAW welding technologies present inherent characteristics,
as detailed in Table 15. As observed and stated by G.P. et al. [49], the CMT process offers
the main advantage of low heat input and, therefore, lower dilution and spatter levels. On
the other hand, this characteristic also limits the process in certain applications because
of the chosen welding parameters, as reported by Imoudu [48]. Compared with the CMT
process, the main advantage of the GMAW process is that it can be easily automated and
integrated with other technologies. This is in full accordance with the TLC results, which
indicates that GMAW has room for further expansion.
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• Automotive industries;
• Defence sectors;
• Power plants as a method of

additive manufacturing;
• Cladding, additive

manufacturing, composite
joint pin fabrication, and
crack repair welding.

• Distortion reduction;
• Increased productivity;
• Low heat input;
• Low levels of dilution;
• Spatter free welding;
• Perfect arc length

management compared with
the traditional process which
measured by weld voltage.

• Low precision in shaping;
• Short circuit phenomena do

not exist for greater currents;
• The upper limits of the

application are close to those
of the conventional short arc
process, i.e., when the
transition zone starts.
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• Widely used in the
manufacturing industry;

• Industrial manufacturing;
• Agriculture;
• Construction industry;
• Shipbuilding;
• Marine and ground vehicle

industries;
• Mining.

• Low cost;
• Easy operation;
• Good adaptability;
• High productivity;
• Narrow heat-affected zone;
• Concentration of heat source;
• Low deformation;
• High welding efficiency;
• Good protection;
• No need to use a welding flux;
• Easily automated.

• After welding, due to the
effect of high temperatures,
defects usually appear in the
welded parts;

• Reduced control level;
• The arc must be protected

against draught;
• Spatter formation.

5. Conclusions

In this study, GMAW and CMT welding processes were investigated in terms of
their basic welding characteristics and maturity levels based on patent records using TLC
analysis. Based on the results, the following conclusions can be drawn:
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5.1. Welding Characteristics

• Visual inspection revealed a good welding bead with a lack of superficial defects and
discontinuities for both processes. The chosen parameters ensured similar heat inputs
in both prepared joints, and the analyses showed that the CMT process promoted a
high deposition rate and less heat transfer to the base material compared to standard
GMAW. This supported the lack of penetration and the pronounced welding bead
observed for the CMT joints;

• The short circuit frequency analyses confirmed the stable and controlled material depo-
sition under the CMT process, revealing a distinct frequency for material transfer. The
monitored voltage and current parameters revealed the three typical phases connected
with peaks of current and arc reignition after the filler material melted. At that moment,
a small droplet of molten metal was detached, followed by a voltage reduction;

• The monitored temperature profile confirms that the GMAW process promoted high
temperature peaks and cooling rates, which led to a high heat transfer to the base
material with peaks of current when the arc reignited after the short circuit phase.

5.2. TLC Analyses

• The patent dataset developed and used in this study revealed that GMAW technology
has more than twenty times the number of patents of CMT. This may be connected
with the high possibility of adjustment, automation, and time use with this technology.
The main clusters of the request themes/topics were related to the methodology,
characteristics, and applications. The analyses also revealed that few countries and
companies dominate patent deposition in the field of CMT welding technology. This
scenario offers a great opportunity for other countries and companies to study and
deliver new solutions to the market in this regard.

• The use of advanced models to predict the S-curve trends revealed that, for the
CMT process, the formula obtained by Richards growth-curve was the one that best
represented the data obtained from the patents. Instead, for the GMAW process,
the growth-curve model using the Baranyi methodology was the one that best fit
with the original data. Both models differed mainly in their algorithms for inflection
points, thus providing a clearer view of the behaviour of the technology and its
possible predictions;

• The S-curve trend for the CMT process revealed that, despite being recent, the tech-
nology is already in a mature phase, a fact confirmed by the experts’ opinions due
to the limited use of this technology. For the GMAW process, despite being older,
this technology is positioned in the growth phase on the S-curve, indicating great
possibility for advancement—a fact also supported by the opinions of the experts.

• The results confirm that mathematical modelling can precisely reveal the inflection
points and phases of each technology, which provides a new possible perspective
of analysis in terms of maturity level. This kind of methodology together with the
experts’ opinion can be essential for assisting in the decision-making and analysis of
technological trends.

The findings presented in this study have demonstrated the importance of engaging
in a broader analysis when comparing different process technologies. This evaluation, from
a technical perspective, has fundamental importance in establishing the relevant limits, but
technological maturity level analyses can present a broader overview of perspectives to
obtain forecasting and help in the decision-making market process. It must be highlighted
that, to increase the reliability of the models, other variables should be added to provide a
more robust analysis in terms of TLC.



Sustainability 2021, 13, 3766 22 of 23

Author Contributions: Conceptualization, A.S.O., R.O.d.S. and R.S.C.; methodology, A.S.O., R.O.d.S.,
E.L.D., P.H.F.d.S. and R.S.C.; validation, E.L.D., P.H.F.d.S. and R.S.C.; formal analysis, A.S.O. and
R.O.d.S.; investigation, A.S.O. and R.O.d.S.; resources, A.S.O., B.C.d.S.S. and R.S.C.; data curation,
A.S.O. and R.O.d.S.; writing—original draft preparation, A.S.O. and R.O.d.S.; writing—review and
editing, B.C.d.S.S., L.L.N.G., M.A., U.R., R.R.S., B.A.S.M., E.L.D., P.H.F.d.S. and R.S.C.; visualization,
A.S.O., R.O.d.S., B.A.S.M. and R.S.C.; supervision, U.R., R.R.S., E.L.D., P.H.F.d.S. and R.S.C.; project
administration, A.S.O., B.C.d.S.S., R.R.S. and R.S.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yapp, D.; Blackman, S.A. Recent Developments in High Productivity Pipeline Welding. J. Braz. Soc. Mech. Sci. Eng. 2004, 26,

89–97. [CrossRef]
2. Shen, H.; Deng, R.; Liu, B.; Tang, S.; Li, S. Study of the mechanism of a stable deposited height during GMAW-based additive

manufacturing. Appl. Sci. 2020, 10, 4322. [CrossRef]
3. Goede, M.; Stehlin, M.; Rafflenbeul, L.; Kopp, G.; Beeh, E. Super Light Car—Lightweight construction thanks to a multi-material

design and function integration. Eur. Transp. Res. Rev. 2009, 1, 5–10. [CrossRef]
4. Madhavan, S.; Kamaraj, M.; Vijayaraghavan, L. Microstructure and mechanical properties of cold metal transfer welded

aluminium/dual phase steel. Sci. Technol. Weld. Join. 2016, 21, 194–200. [CrossRef]
5. Cornacchia, G.; Cecchel, S.; Panvini, A. A comparative study of mechanical properties of metal inert gas (MIG)-cold metal transfer

(CMT) and fiber laser-MIG hybrid welds for 6005A T6 extruded sheet. Int. J. Adv. Manuf. Technol. 2018, 94, 2017–2030. [CrossRef]
6. Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold metal transfer (CMT) technology—An overview. Def. Technol. 2018, 14,

28–44. [CrossRef]
7. Zhang, H.T.; Feng, J.C.; He, P.; Zhang, B.B.; Chen, J.M.; Wang, L. The arc characteristics and metal transfer behaviour of cold

metal transfer and its use in joining aluminium to zinc-coated steel. Mater. Sci. Eng. A 2009, 499, 111–113. [CrossRef]
8. Pickin, C.G.; Williams, S.W.; Lunt, M. Characterisation of the cold metal transfer (CMT) process and its application for low

dilution cladding. J. Mater. Process. Technol. 2011, 211, 496–502. [CrossRef]
9. Costa, T.F.; Benedetti Filho, E.; Arevalo, H.D.H.; Vilarinho, L.O. Assessment of Conventional and Controlled Short-Circuit

MIG/MAG Processes for Steel-Pipe Welding in Single Pass. Soldag. Inspeção 2012, 17, 356–368. [CrossRef]
10. Chang, Y.J.; Sproesser, G.; Neugebauer, S.; Wolf, K.; Scheumann, R.; Pittner, A.; Rethmeier, M.; Finkbeiner, M. Environmental and

Social Life Cycle Assessment of Welding Technologies. Procedia Cirp 2015, 26, 293–298. [CrossRef]
11. Taylor, M.; Taylor, A. The technology life cycle: Conceptualization and managerial implications. Int. J. Prod. Econ. 2012, 140,

541–553. [CrossRef]
12. Wilder, J.; Sossa, Z.; Palop, F.; Alzate, B.A.; Mauricio, F.; Salazar, V.; Felipe, A.; Patiño, A. S-Curve Analysis and the Technology

Life Cycle: Application in Series of Data of Articles and Patents. Espacios 2016, 37, 19.
13. Little, A.D. The strategic management of technology. Eur. Manag. Forums 1981, 1, 1–39.
14. Wu, J.; Yang, Z.; Hu, X.; Wang, H.; Huang, J. Exploring driving forces of sustainable development of China’s new energy vehicle

industry: An analysis from the perspective of an innovation ecosystem. Sustainability 2018, 10, 4827. [CrossRef]
15. Gao, L.; Porter, A.L.; Wang, J.; Fang, S.; Zhang, X.; Ma, T.; Wang, W.; Huang, L. Technology life cycle analysis method based on

patent documents. Technol. Forecast. Soc. Chang. 2013, 80, 398–407. [CrossRef]
16. Xin’an, W.; Aijun, M. Comparison of four nonlinear growth models for effective exploration of growth characteristics of turbot

Scophthalmus maximus fish strain. Afr. J. Biotechnol. 2016, 15, 2251–2258. [CrossRef]
17. Madvar, M.D.; Khosropour, H.; Khosravanian, A.; Mirafshar, M.; Azaribeni, A.; Rezapour, M.; Nouri, B. Patent-based technology

life cycle analysis: The case of the petroleum industry. Foresight STI Gov. 2016, 10, 72–79. [CrossRef]
18. Jamali, M.Y.; Aslani, A.; Moghadam, B.F.; Naaranoja, M.; Madvar, M.D. Analysis of photovoltaic technology development based

on technology life cycle approach. J. Renew. Sustain. Energy 2016, 8. [CrossRef]
19. Fye, S.R.; Charbonneau, S.M.; Hay, J.W.; Mullins, C.A. An examination of factors affecting accuracy in technology forecasts.

Technol. Forecast. Soc. Chang. 2013, 80, 1222–1231. [CrossRef]
20. Smith, M.; Agrawal, R. A Comparison of Time Series Model Forecasting Methods on Patent Groups. In Proceedings of the CEUR

Workshop Proceedings, Rome, Italy, 24–25 November 2014; pp. 167–173.
21. Andrade, H.; Junior Chagas, M.; Silva, M.; Brito, M.A.; Rocha, D.; Ribeiro, J. Avaliação da Maturidade Tecnológica: Conceitos; Fbra,

E.B.E., Ed.; Edição: Jundiaí, Brazil, 2019; ISBN 9786551040009.
22. Yang, X.; Yu, X.; Liu, X. Obtaining a sustainable competitive advantage from patent information: A patent analysis of the graphene

industry. Sustainability 2018, 10, 4800. [CrossRef]
23. Kucharavy, D.; De Guio, R. Logistic substitution model and technological forecasting. Procedia Eng. 2011, 9, 402–416. [CrossRef]
24. De Gooijer, J.G.; Hyndman, R.J. 25 Years of Time Series Forecasting. Int. J. Forecast. 2006, 22, 443–473. [CrossRef]

http://doi.org/10.1590/S1678-58782004000100015
http://doi.org/10.3390/app10124322
http://doi.org/10.1007/s12544-008-0001-2
http://doi.org/10.1179/1362171815Y.0000000082
http://doi.org/10.1007/s00170-017-0914-9
http://doi.org/10.1016/j.dt.2017.08.002
http://doi.org/10.1016/j.msea.2007.11.124
http://doi.org/10.1016/j.jmatprotec.2010.11.005
http://doi.org/10.1590/S0104-92242012000400010
http://doi.org/10.1016/j.procir.2014.07.084
http://doi.org/10.1016/j.ijpe.2012.07.006
http://doi.org/10.3390/su10124827
http://doi.org/10.1016/j.techfore.2012.10.003
http://doi.org/10.5897/AJB2016.15490
http://doi.org/10.17323/1995-459X.2016.4.72.79
http://doi.org/10.1063/1.4952763
http://doi.org/10.1016/j.techfore.2012.10.026
http://doi.org/10.3390/su10124800
http://doi.org/10.1016/j.proeng.2011.03.129
http://doi.org/10.1016/j.ijforecast.2006.01.001


Sustainability 2021, 13, 3766 23 of 23

25. Krispin, R. Hands-On Time Series Analysis with R: Perform Time Series Analysis and Forecasting Using R, 1st ed.; Shetty, S., Ed.; Packt
Publishing: Birmingham, UK, 2019; ISBN 9781788629157.

26. Bouzada, M.A.C. Aprendendo Decomposição Clássica: Tutorial para um Método de Análise de Séries Temporais. TAC Tecnol.
Adm. Contab. 2012, 2, 1–18. [CrossRef]

27. Kabacoff, R.I. R in Action Data Analysis and Graphics with R; Manning Publications: New York, NY, USA, 2011; ISBN 9781935182399.
28. Lobacz, A.; Kowalik, J.; Tarczynska, A. Modeling the growth of Listeria monocytogenes in mold-ripened cheeses. J. Dairy Sci.

2013, 96, 3449–3460. [CrossRef] [PubMed]
29. Lezama-Nicolás, R.; Rodríguez-Salvador, M.; Río-Belver, R.; Bildosola, I. A bibliometric method for assessing technological

maturity: The case of additive manufacturing. Scientometrics 2018, 117, 1425–1452. [CrossRef] [PubMed]
30. En, D. Hot Rolled Products of Structural Steels Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels; DIN EN 10025-2;

BSI: London, UK, 2005.
31. Haelsig, A.; Mayr, P.; Kusch, M. Determination of energy flows for welding processes. Weld. World 2016, 60, 259–266. [CrossRef]
32. Pepe, N.; Egerland, S.; Colegrove, P.A.; Yapp, D.; Leonhartsberger, A.; Scotti, A. Measuring the process efficiency of controlled gas

metal arc welding processes. Sci. Technol. Weld. Join. 2011, 16, 412–417. [CrossRef]
33. Imoudu, N.E.; Ayele, Y.Z.; Barabadi, A. The characteristic of cold metal transfer (CMT) and its application for cladding. In

Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, the Arctic University
of Norway, Bangkok, Thailand, 16–19 December 2018; Volume 2017-Decem, pp. 1883–1887.

34. Tomków, J.; Czupry´nski, A.; Czupry´nski, C.; Fydrych, D. The Abrasive Wear Resistance of Coatings Manufactured on
High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions. Coatings 2020, 10, 219. [CrossRef]

35. WIPO. WIPO Guide to Using PATENT; WIPO Publishing: New York, NY, USA, 2015; pp. 1–43.
36. RStudio Team. RStudio: Integrated Development Environment for R. Available online: https://rstudio.com/products/rstudio/

(accessed on 10 March 2019).
37. Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang,

E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and LInear Models. Available online: http://pkg.robjhyndman.com/
forecast%3E (accessed on 10 March 2020).

38. Petzoldt, T. Growthrates: Estimate Growth Rates from Experimental Data; R Package: Auckland City, New Zealand, 2019; p. 42.
39. Anderson, E.C.; Winter, D.J. Forecasting Functions for Time Series and Linear Models. 2020, p. 140. Available online: https:

//rstudio.com/products/rstudio/ (accessed on 10 March 2020).
40. Kucharavy, D.; De Guio, R. Application of logistic growth curve. Procedia Eng. 2015, 131, 280–290. [CrossRef]
41. Conservation, P. Growth II—A Major Upgrade to Our “Simply Growth” Software. Fits and Plots von Bertalanffy, Gompertz, Logistic and a

Wide Range of Other Growth Curves to Length and/or Weight at Age Data; Pisces Conservation Ltd.: Hampshire, UK, 2006.
42. Yilmaz, M.T. Identifiability of Baranyi model and comparison with empirical models in predicting effect of essential oils on

growth of Salmonella typhimurium in rainbow trout stored under aerobic, modified atmosphere and vacuum packed conditions.
Afr. J. Biotechnol. 2011, 10, 7468–7479. [CrossRef]

43. Phillips, F. On S-curves and tipping points. Technol. Forecast. Soc. Chang. 2007, 74, 715–730. [CrossRef]
44. Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions.

Psychometrika 1987, 52, 345–370. [CrossRef]
45. Mezrag, B.; Deschaux-Beaume, F.; Benachour, M. Control of mass and heat transfer for steel/ aluminium joining using cold metal

transfer process. Sci. Technol. Weld. Join. 2015, 20, 189–198. [CrossRef]
46. Zhang, H.; Hu, S.; Wang, Z.; Liang, Y. The effect of welding speed on microstructures of cold metal transfer deposited AZ31

magnesium alloy clad. Mater. Des. 2015, 86, 894–901. [CrossRef]
47. Dutra, J.C.; Gonçalves e Silva, R.H.; Marques, C. Melting and welding power characteristics of MIG–CMT versus conventional

MIG for aluminium 5183. Weld. Int. 2015, 29, 181–186. [CrossRef]
48. Imoudu, N.E. The Characteristic of Cold Metal Transfer (CMT) and Its Application for Cladding; The Arctic University of Norway:

Tromso, Norway, 2017.
49. Rajeev, G.P.; Kamaraj, M.; Bakshi, S.R. Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding

process. Surf. Coat. Technol. 2017, 326, 63–71. [CrossRef]
50. Derwent Innovation Index—DII Derwent Innovation Index. Available online: https://www.derwentinnovation.com/login/

(accessed on 16 August 2020).
51. Muller, A. United States Patent Office Method of Arc Welding; United States Patent and Trademark Office: Alexandria, VA, USA,

1950; p. 867.
52. Artelsmair, J. Unit Combining Welding Processes, Includes Separate, Synchronized Burners for Welding and Cold-Metal-Transfer

Processes. U.S. Patent 20070145028A1, 15 December 2003.
53. WIPO; INSEAD; Cornell. Global Innovation Index 2019; WIPO: Geneva, Switzerland, 2019.
54. de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing

2016, 192, 38–48. [CrossRef]
55. Ljung, G.M.; Box, G. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [CrossRef]
56. Da Costa, G.A.T.F.; Guerra, F. Cálculo I; 2a Edição; UFSC: Florianópolis, Brazil, 2009; ISBN 978-85-99379-78-3.
57. Schot, S.H. Jerk: The time rate of change of acceleration. Am. J. Phys. 1978, 46, 1090–1094. [CrossRef]

http://doi.org/10.21714/2236-02632012v2n1tac14
http://doi.org/10.3168/jds.2012-5964
http://www.ncbi.nlm.nih.gov/pubmed/23548297
http://doi.org/10.1007/s11192-018-2941-1
http://www.ncbi.nlm.nih.gov/pubmed/30546169
http://doi.org/10.1007/s40194-016-0297-9
http://doi.org/10.1179/1362171810Y.0000000029
http://doi.org/10.3390/coatings10030219
https://rstudio.com/products/rstudio/
http://pkg.robjhyndman.com/forecast%3E
http://pkg.robjhyndman.com/forecast%3E
https://rstudio.com/products/rstudio/
https://rstudio.com/products/rstudio/
http://doi.org/10.1016/j.proeng.2015.12.390
http://doi.org/10.5897/AJB11.823
http://doi.org/10.1016/j.techfore.2006.11.006
http://doi.org/10.1007/BF02294361
http://doi.org/10.1179/1362171814Y.0000000271
http://doi.org/10.1016/j.matdes.2015.07.143
http://doi.org/10.1080/09507116.2014.932974
http://doi.org/10.1016/j.surfcoat.2017.07.050
https://www.derwentinnovation.com/login/
http://doi.org/10.1016/j.neucom.2015.12.114
http://doi.org/10.1093/biomet/65.2.297
http://doi.org/10.1119/1.11504

	Introduction 
	The TLC Approach Based on the S-Curve Concept 
	Materials and Methods 
	The Welding Analyses 
	Sample Preparation 
	Temperature Measurements 
	Welding Characterisation 

	TLC Analyses of Technological Maturity 
	Data Collection and Preparation 
	Statistical Model Development and Tests 
	Analyses and Comparisons between the Models 


	Results and Discussion 
	Welding Analyses 
	TLC Analyses and Assessment of Technological Maturity 
	The Dataset Characteristics 
	Development of TLC Models and Analyses 


	Conclusions 
	Welding Characteristics 
	TLC Analyses 

	References

