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Editorial on the Research Topic

Interaction of Pathogenic Escherichia coli With the Host: Pathogenomics, Virulence and
Antibiotic Resistance

Escherichia coli live as commensals in the intestines of humans and warm-blooded animals
(Leimbach et al., 2013). Although most E. coli strains rarely produce disease in healthy
individuals, pathogenic strains can cause a wide range of diseases in the gastrointestinal tract or
extraintestinal sites in healthy and immunocompromised individuals (Kaper et al., 2004). This
variety of behaviors is due to the existence of virulence genes in mobile genetic elements and the
large permissiveness of E. coli to acquire these elements by horizontal gene transfer (Dobrindt et al.,
2004; Kaper et al., 2004; Croxen and Finlay, 2010; Leimbach et al., 2013; Johnson and Russo, 2018).

The acquisition of specific combinations of virulence genes defined the presently recognized
diarrheagenic E. coli (DEC) pathotypes, which constitute the most critical contributors to diarrhea
cases, especially in infants and young children in low- and middle-income countries (Gomes et al.,
2016; Jesser and Levy, 2020). These pathotypes differ concerning their virulence mechanisms,
preferential sites of intestinal colonization, symptoms, and clinical presentation. In turn, E. coli
strains involved in extraintestinal infections are collectively known as extraintestinal pathogenic E.
coli (ExPEC), as their virulence factor arsenal allows their spread to and multiplication in
extraintestinal organs, leading to signs and symptoms mainly in the urinary tract, blood, and
meninges (Russo and Johnson, 2000; Vila et al., 2016; Biran and Ron, 2018).

Although clinical outcomes may vary in severity, pathogenic E. coli remains a public health
concern as they continue to gain novel traits, occasionally resulting in more virulent strains. This
Research Topic highlights our growing understanding of the process of host-pathogen interactions
as it relates to E. coli, addressing the genetic diversity, evolution, antimicrobial resistance, and novel
molecular mechanisms and virulence strategies in their interaction with the host in various disease
conditions. E. coli typing, diagnostic, and potential therapy procedures are also discussed.
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NOVEL MECHANISMS OF
PATHOGENICITY IN THE E. COLI
PATHOTYPES

Shiga toxin-producing E. coli (STEC) and its subgroup,
enterohemorrhagic E. coli (EHEC), is one of the most relevant
DEC pathotypes. STEC/EHEC strains can cause diarrhea,
hemorrhagic colitis in humans, and occasionally lead to
hemolytic uremic syndrome (HUS) (Gianantonio et al., 1968;
Boyce et al., 2002) and encephalopathy (Obata, 2010), which can
be reversible or permanent (Melton-Celsa et al., 2012). STEC
colonize the intestines and produce Shiga toxin 1 (Stx1) and/or 2
(Stx2) (Melton-Celsa, 2014), which are released into the
intestinal lumen, translocated to the circulatory system, and
then bound to their receptor, globotriaosylceramide (Gb3)
(Zumbrun et al., 2010), in target cells. However, toxin uptake
exhibits both a Gb3-dependent (Sandvig et al., 2002) and a Gb3-
independent binding depending on the context (Malyukova
et al., 2009; Lukyanenko et al., 2011; In et al., 2013). In this
Research Topic, two relevant models, intestinal and microglial
cells (MG), are presented to address the pathways of Stx2 uptake.
Garimano et al. demonstrate that a hypervirulent O157:H7 STEC
strain increases the Stx2 cytotoxic effect by stimulating several
endocytic pathways and enhancing Stx2 translocation across
HCT-8 monolayers in both the paracellular and transcellular
pathways, employing dynamin-independent and Gb3-dependent
mechanisms. Berdasco et al. hypothesize that Stx2, either the
holotoxin or the Stx2B subunits, exerts a direct biological effect
on MG. To determine whether culture conditions affect MG cell
sensitivity and responsiveness, they analyze functional
parameters; and demonstrated that MG cells exhibit both Gb3-
independent and Gb3-canonical pathways for Stx2 uptake and
have a pivotal role in the inflammatory processes observed in
clinical HUS encephalopathy.

In addition to the production of Stx1, Stx2, and other
virulence factors, recent studies revealed that EHEC can
produce a type VI secretion system (T6SS) essential to disease
development in a murine model (Wan et al., 2017), which has
been associated with a higher prevalence of HUS. Vazquez-Lopez
and Navarro-Garcia investigate in silico the EHEC T6SS core
proteins and putative effector and immunity proteins. They
compare the corresponding genes between two published
genomes of the prototype EHEC O157:H7 strain EDL933 and
with the genome of other O157:H7 strains. Unlike other
typical T6SS E. coli effectors, the authors identify several Rhs
family genes (recombination hotspot) (Bondage et al., 2016) in
EHEC that could behave as T6SS effectors. These genes could
serve as immunity proteins since they have several similar
interaction motifs and structural homology with other known
immunity proteins.

Of the six classical DEC pathotypes, enteroaggregative
(EAEC) and diffusely adherent E. coli (DAEC) are the least
characterized. To date, not a single DAEC genome and only a few
different EAEC genomes have been sequenced. Meza-Segura
et al. sequenced the whole genome of ten DAEC and ten
typical EAEC strains (positive for the aggR gene, which
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encodes a transcriptional activator of EAEC virulence-
associated genes) from diarrheic patients and one commensal
E. coli strain isolated from a healthy child. They showed that
DAEC and typical EAEC are phylogenetically related, but strains
of the different pathotypes harbor genes encoding for different
sets of virulence factors; DAEC carry more genes encoding for
iron acquisition factors, while typical EAEC harbor genes
encoding toxins and bacteriocins. Interestingly, the authors
identified associations between the clinical characteristics of
the diarrheal episode and specific virulence gene profiles in
DAEC and typical EAEC.

Dias et al. present an extensive characterization of the typical
and atypical EAEC. These authors characterized 220 EAEC
isolates obtained from diarrheal patients during seven years
(2010-2016) of epidemiological surveillance in Brazil. These
isolates were classified into distinct phylogroups, with most
isolates assigned to phylogroups A or B1. Interestingly, genes
encoding aggregate-forming pili (AFP) were exclusively detected
in atypical EAEC, representing a putative novel marker for
increasing the efficiency of atypical EAEC diagnosis.

Virulence gene expression is a highly regulated process,
mediated by environmental conditions and/or bacterial
regulators, which can induce or silence its expression
(Kitamoto et al., 2016). Under well-defined environmental
conditions, virulence gene expression occurs at a specific site,
allowing bacteria to initiate the infection process (Carlson-
Banning and Sperandio, 2018). Gut microbiota, or its
metabolites, play a fundamental role in regulating pathogenic
mechanisms and colonization resistance (Vogt et al., 2015;
Rolhion and Chassaing, 2016). In a pilot study, Gallardo et al.
determine the composition of gut microbiota and metabolome in
stool samples obtained from healthy children and children with
diarrhea positive for DEC pathotype. Interestingly, a differential
metabolome and microbiota composition was identified
between these groups. Additionally, a strong correlation
between a gut microbiota species and specific metabolites, such
as histamine and L-ornithine, was found in the DEC group; such
information might help identify mechanisms and signaling
molecules involved in the crosstalk between microbiota and
DEC pathotypes.

Besides the production of a variety of virulence factors,
uropathogenic E. coli (UPEC) strains may produce the
vacuolating autotransporter toxin (Vat), which is one of the
so-called serine protease autotransporter proteins of the
Enterobacteriaceae (SPATEs) toxin family (Henderson and
Nataro, 2001; Dutta et al., 2002; Nichols et al., 2016). In an
urothelium model of bladder cells, Dıáz et al. showed that
treatment with Vat resulted in time-dependent vacuole
formation and loss of the intercellular contacts, leading to
changes in the monolayer permeability with a limited amount
of cell death. Cellular damage also included cytoskeletal
alterations in the urothelium and lamina propria of the
bladder and loss of integrity of the urothelium in
an experimental ex vivo murine bladder model. The Vat-
specific targets on the epithelial cell surface or the lamina
propria, as well as the composition of the Vat-induced
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vacuoles, remain to be determined to elucidate the contribution
of this toxin to UPEC pathogenesis.

E. coli and other members of the Enterobacteriaceae may
produce siderophore-microcins, which are peptides with
antimicrobial activity that, by mimicking the iron–siderophore
complexes, penetrate and kill phylogenetically related bacteria
(Duquesne et al., 2007). Massip and Oswald provide an overview
of the recent understanding of the siderophore-Mcc genetic
determinants and biosynthesis, their mechanisms of action,
and biological relevance in E. coli. They also show that the
UPEC siderophore-microcin gene clusters and biosynthetic
pathways differ from the “archetypal” types of fecal E. coli
strains. Production of an active siderophore-microcin depends
on the synergistic action of proteins encoded in other genomic
islands and confers a strong selective advantage to control the
colonic niche.

Rueter and Bielaszewska review the exciting topic of outer
membrane vesicles (OMVs) production by Gram-negative
bacteria, emphasizing intestinal pathogenic E. coli. OMVs are
nanoscale proteoliposomes secreted from the cell envelope
(Amano et al., 2010; Ellis and Kuehn, 2010; Kulp and Kuehn,
2010; O’Donoghue and Krachler, 2016). They represent a highly
advanced mechanism for secretion and delivery of bacterial
virulence factors into host cells, improving bacterial fitness,
and supporting bacterial interactions with polymicrobial
communities and the host (Manning and Kuehn, 2011;
Duperthuy et al., 2013). OMV production contributes
significantly to bacterial virulence since it makes it more able
to reach and colonize distant host tissues, impair cell functions,
and modulate the host’s defenses. Therefore, efforts have been
made to exploit the antigenic and adjuvant properties of OMVs
as promising vaccine components. However, much knowledge is
required to define the immunogenicity and protective efficacy of
OMVs and to identify their components involved in the immune
responses and mechanisms underlying OMV-elicited
protective immunity.
DIAGNOSIS, TYPING, AND GENOMIC
EVOLUTION IN THE E. COLI PATHOTYPES

Molecular diagnostics is becoming increasingly important to
allow detection and diagnosis of pathogens also culture-
independently. They are interesting for medical applications
and fundamental questions, e.g., regarding the prevalence and
ecology of pathogens and food safety (Ramanan et al., 2017;
Sekse et al., 2017). For example, the current focus of routine
STEC detection is still on the predominant “big seven” serotypes
associated with clinical symptoms. Nevertheless, comprehensive
diagnostic tests for all clinically relevant STEC serogroups are
required. Ludwig et al. took advantage of available genomic
sequence information of STEC O antigen-specific genes and
developed and validated multiplex PCR (mPCR) assays for the
discrimination and detection of 137 “non-big seven” STEC
serogroups, which can be associated with cattle. These mPCR
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
assays can, for instance, help to systematically screen the
prevalence of STEC in the environment or animals.

Merino et al. applied real-time quantitative PCR (qPCR) to
analyze in a culture-independent way the prevalence of bacterial
enteropathogens in stool samples of children below seven years
with and without diarrhea in São Paulo, Brazil. They detected the
tested enteropathogens’ virulence markers significantly more
frequently in stool samples from diarrhea cases than
asymptomatic controls. Also, the relevant marker copy number
was significantly higher in diarrheal patients than in stool from
asymptomatic children. This analysis demonstrates that
asymptomatic children of an urban area, such as São Paulo,
may be a reservoir of enteropathogens.

Michelacci et al. analyzed whole-genome sequences of highly
virulent enteroinvasive E. coli (EIEC) O96:H19 isolates. Sequence
comparison of the EIEC virulence plasmid indicated that IS
element-mediated recombination might be responsible for the
absence of the conjugation determinant in most EIEC and
Shigella virulence plasmids. The authors hypothesize that the
acquisition of virulence plasmids via conjugation led to the
evolution of EIEC from non-pathogenic E. coli and may
promote the establishment of new virulent EIEC clones.

Flament-Simon et al. studied the epidemiological differences
of 188 extended spectrum beta-lactamase (ESBL)-producing
extraintestinal pathogenic E. coli isolates from two hospitals in
Spain and France. Although these isolates were markedly diverse,
most of them belonged to only three clonal complexes. The new
globally emerging clone ST1193 was identified in two isolates
from France and Spain in 2015.

E. coli is characterized by high genomic plasticity and frequent
exchange of genetic material. Thus, unambiguous typing of clinical
isolates may be complicated due to the existence of hybrid strains
combining different pathotypes’ traits. Comparative genomics is,
therefore, instrumental in understanding pheno- and genotypic
variability among clinical isolates. Valiatti et al. characterized
geno- and phenotypically uropathogenic E. coli isolate 252
(UPEC 252) and demonstrated that this strain represents an
atypical enteropathogenic E. coli (EPEC) strain. The ability to
grow in human blood serum and adhere to human epithelial cell
lines of the urinary and intestinal tract enables UPEC 252 to cause
intestinal and extraintestinal infections.
HYBRID- AND HETERO-PATHOGENIC E.
COLI STRAINS

It has been reported that certain pathogenic E. coli strains
combine different pathotypes ’ main virulence traits,
encompassing potentially more virulent hybrid strains
(Dobrindt et al., 2003; Bielaszewska et al., 2007; Khan et al.,
2018). The terms hybrid- and hetero-pathogenic E. coli were
created to depict new combinations of virulence factors among
classic E. coli pathotypes. Two mini-reviews on this topic can be
appreciated in this Research Topic. Santos et al. review the
studies that introduced the hybrid- and hetero-pathogenic E.
coli classifications, emphasizing the E. coli genomic plasticity that
March 2021 | Volume 11 | Article 654283
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emerged in mixed pathotypes exhibiting unique pathogenic
mechanisms. The potential of such hybrid strains to emerge in
new and severe outbreaks and their potential implication in more
severe diseases are also discussed. Braz et al. add an important
topic to this discussion, i.e., the increasing acquisition of
antimicrobial resistance by E. coli strains. The consequences
related to this genetically versatile species are the growing need to
develop unconventional therapies and more precise diagnostic
methods to combat the infections caused by these hybrid strains.
NOVEL PROCEDURES FOR DEC
INFECTIONS THERAPY

Gut microbiota has been associated with resistance to pathogen
colonization in the intestine. Several molecules have been proven
to modify the composition of the gut microbiota (Pamer, 2016;
Jacobson et al., 2018). Liu et al. investigated the changes in gut
microbiota induced by Pulsatilla decoction (PD), a traditional
Chinese medicinal herb used to treat fever and dysentery, which
also has a good curative effect on bacterial diarrhea and
inflammatory bowel disease. The authors studied changes in
gut microbiota after PD therapy of E. coli infection in rats and
found that PD helped restore Bacteroidetes spp. composition in
the gut. These findings might be essential to determine the
mechanism of the Chinese herbal formula for preventing and
treating bacterial infections.

The use of antibiotics to treat STEC infections has long been
controversial due to reports that such treatments may increase
Shiga toxin secretion (Wong et al., 2000); currently, the
recommended therapy is mainly supportive. Mühlen and
Dersch reviewed the current understanding and progress in
developing treatment options against STEC infections. In
recent years, several strategies have progressed to the clinical
trial stages. Receptor analogs such as Synsorb Pk, or the use of
Eculizumab looked promising in phase II trials but showed little
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
evidence of success when evaluated systematically or in phase III
trials (Trachtman et al., 2003; Monet-Didailler et al., 2019). On
the other hand, a prophylactic vaccine may only be of interest for
countries where these infections are endemic. In general, phase II
clinical trials can be carried out, but patients with STEC
infections for phase III trials are limited.
CONCLUSIONS

The recent progression of genome sequencing techniques
allowed identifying novel virulence factors that enable E. coli
strains to harm the human host. The E. coli genetic plasticity
favors the emergence and spread of virulence traits and
antimicrobial resistance, resulting in novel virulent variants.
These isolates include the so-called hybrid- and hetero-
pathogenic strains, which exceed the borders currently
established in defining the different E. coli pathotypes and
represent an emerging threat that challenges the development
of novel diagnosis and typing methods. Knowing the different
virulence strategies employed by E. coli in its interaction with the
host in various disease conditions reveals potential new targets
for disease prevention and treatment.
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