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Asymmetric free spaces and canonical asymmetrizations

by

Aris Daniilidis (Santiago), Juan Matías Sepulcre (Alicante)
and Francisco Venegas M. (Santiago)

Abstract. A construction analogous to that of Godefroy–Kalton for metric spaces
allows one to embed isometrically, in a canonical way, every quasi-metric space (X, d) in
an asymmetric normed space Fa(X, d) (its quasi-metric free space, also called asymmetric
free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal
property (linearization of semi-Lipschitz functions). The (conic) dual of Fa(X, d) coincides
with the non-linear asymmetric dual of (X, d), that is, the space SLip0(X, d) of semi-
Lipschitz functions on (X, d), vanishing at a base point. In particular, for the case of a
metric space (X,D), the above construction yields its usual free space. On the other hand,
every metric space (X,D) naturally inherits a canonical asymmetrization coming from its
free space F(X). This gives rise to a quasi-metric space (X,D+) and an asymmetric free
space Fa(X,D+). The symmetrization of the latter is isomorphic to the original free space
F(X). The results of this work are illustrated with explicit examples.
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1. Introduction. Arens and Eells [4] showed that every metric space
(X,D) can be isometrically embedded as a closed subset of a normed lin-
ear space. The closed linear span of the image of X under this embedding
is called the Arens–Eells space [39, Section 2.2]. The idea of considering
isometric embeddings of metric spaces in linear spaces goes back to Kura-
towski, Wojdysławski and Klee [29]. It also implicitly appears in classical
works of Kantorovich [27, 28], where a new distance in the space of finite
measures on X was defined (known as the Kantorovich–Rubinstein distance,
[24] e.g.) in a way that entails an isometric embedding of (X,D) into the
dual space C(X)∗. The authors of [4] also obtained an analogous embedding
of a uniform space in a locally convex linear space. The terms free Banach
space and, respectively, free locally convex space have then been conceived
[35, 34] to refer to the resulting spaces.

The terminology Lipschitz free space (or simply, free space) over a metric
space (X,D) has been introduced and highly popularized with the seminal
work of Godefroy and Kalton [22], where they employed this term to de-
scribe a very similar construction to the one of the Arens–Eells space (see
Remark 3.9 for a comparison), but with emphasis on the linearization of both
the metric space and its natural morphisms (Lipschitz functions between
metric spaces). Free spaces, in this new terminology, have rapidly gained the
interest of many researchers in functional analysis ([2, 3, 8, 13, 16, 20, 23] e.g.)
and the topic has become, arguably, one of its most active trends nowadays.

Let us outline the construction. Given a metric space (X,D) with a dis-
tinguished point x0 (called a base point), the free space F(X) is constructed
as follows: we first consider as pivot space (non-linear dual of X) the Banach
space Lip0(X) of real-valued Lipschitz functions vanishing at the base point,
endowed with the norm

‖f‖Lip = sup
x,y∈X
x 6=y

|f(x)− f(y)|
D(x, y)

.

Then each x ∈ X is identified to a Dirac measure δx acting linearly on
Lip0(X) as evaluation. Then the mapping

δ̂ : X → Lip0(X)∗

that maps x to δx is an isometric embedding. The Lipschitz free space F(X)
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over X is defined as the closed linear span of δ̂(X) in Lip0(X)∗. Furthermore,
the free space is a predual for Lip0(X), meaning that F(X)∗ is isometrically
isomorphic to Lip0(X) (therefore, the space Lip0(X) is at the same time
the (linear) dual of F(X) and the non-linear dual of X). For a survey on
the properties and development of Lipschitz free spaces, we refer the reader
to [21]. We also refer to Bachir [5] for prior constructions based on evaluations
over some algebra of functions acting on X.

In the present work, using the aforementioned embedding, we show that
metric spaces can be asymmetrized in a canonical way, giving rise to quasi-
metric spaces, that is, spaces equipped with an asymmetric distance (see
Definition 2.2). Semi-Lipschitz functions (Definition 2.26) are the natural
morphisms for such spaces. Starting from a quasi-metric space (X, d) with
a base point x0 ∈ X, the normed cone structure (Definition 2.16) of the set
SLip0(X) of real-valued semi-Lipschitz functions onX vanishing at x0 is used
as an asymmetric pivot space to obtain a semi-Lipschitz free construction,
which is analogous to the Kalton–Godefroy symmetric construction (this
latter uses as pivot the Lipschitz functions). This leads the notion of semi-
Lipschitz free space (or quasi-metric free space) Fa(X, d) for (X, d), where
the set SLip0(X) is both the non-linear (conic) dual of X and the (linear,
conic) dual of Fa(X, d). We emphasize that SLip0(X) is not a linear space
in general, therefore we need to enhance the duality of normed cones. This
being said, the semi-Lipschitz free construction remains compatible with the
classical one in the symmetric case. Moreover, it is also compatible with
the aforementioned canonical asymmetrization, in the sense that the semi-
Lipschitz free space of the canonical asymmetrization of a metric space and
the asymmetrization of its free space are often identical (Proposition 3.18)
and in any case they have isomorphic symmetrizations (Theorem 3.12).

Quasi-metric spaces and asymmetric norms have recently attracted a lot
of interest: they arise naturally when considering non-reversible Finsler man-
ifolds [9, 14, 33] (see also [7, 15]), and have applications in physics [25], as well
as in game theory [1, 19]. The properties of spaces with asymmetric norms
have been studied by several authors (see [11, 36] and references therein),
emphasizing similarities and differences with respect to the theory of (sym-
metric) normed spaces. Besides its intrinsic interest, and the aforementioned
applications, this theory was also stimulated by the study of oriented graphs
and by applications in computer science, mainly to the complexity of algo-
rithms.

In this work we endeavor a new insight into the current state-of-the-art,
by showing that morphisms of quasi-metric spaces can be linearized in a
similar manner to what is done in the symmetric case through an asymmetric
free space, and that this asymmetric free theory behaves equally well and is
fully compatible with the symmetric theory in a canonical manner. Indeed,
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there is a canonical way to move from a symmetric to an asymmetric space
and vice versa, which in addition is compatible with the embeddings into
their free spaces.

The manuscript is organized as follows: In Section 2 we recall basic no-
tions and definitions and we fix our notation. We also give some auxiliary
results required for the development of the theory in the asymmetric case, to-
gether with results about linear functionals, dual conic norms and continuity
on normed cones. We also give the definition of a canonical asymmetriza-
tion of a metric space. The main result is established in Section 3, with the
definition of the semi-Lipschitz free space Fa(X) of a quasi-metric space X
(Definition 3.4) and its characteristic feature that its dual is exactly the space
SLip0(X) (Theorem 3.5). The semi-Lipschitz free space Fa(X) is a bicom-
plete asymmetric normed space (it is naturally endowed with an asymmetric
norm). For this reason, we shall also refer to it as the asymmetric free space
ofX. In Section 4, through a simple diagram chasing argument, we show that
semi-Lipschitz free spaces enjoy a canonical (and useful) linearization prop-
erty: every semi-Lipschitz map between pointed quasi-metric spaces extends
to a linear map between the corresponding semi-Lipschitz free spaces (Corol-
lary 4.4). In Section 5 we give concrete examples of asymmetric free spaces
in order to help the reader to get an insight into this new theory. Finally,
Section 6 contains open questions and outlines possible further research lines.

2. Notation and preliminaries. Throughout this article we denote
by R+ the set of non-negative real numbers and we use the convention inf ∅ =
+∞. Given a vector space E, we denote by ‖ · ‖ : E → R+ a norm on E and
by ‖ · | : E → R+ an asymmetric norm on E, that is, a function satisfying:

(i) ∀x, y ∈ E : ‖x+ y| ≤ ‖x|+ ‖y|;
(ii) ∀x ∈ E : x = 0⇔ ‖x| = 0;
(iii) ∀x ∈ E, ∀r > 0 : ‖rx| = r‖x|.
If we replace the second condition by

(ii)′ x = 0⇔

{
‖x| = 0,

‖−x| = 0

then we say that ‖ · | : E → R+ is an asymmetric hemi-norm on E. The
term asymmetric normed space refers to pairs (E, ‖ · |) having either an
asymmetric norm or an asymmetric hemi-norm. Notice that an asymmetric
(hemi-)norm differs from a norm in that ‖−x| = ‖x| is not necessarily true.

We may also consider, keeping the same notation, extended asymmetric
norms, allowing ‖ · | to take the value +∞. Finally, we denote by u the
asymmetric hemi-norm on R defined by

(2.1) u(x) = max {x, 0} for every x ∈ R.
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Remark 2.1 (Asymmetrizations in F(X)). There is a natural way to
asymmetrize the norm ‖ · ‖F of the free space F(X) of a given metric space
(X,D), based on the dual space L := Lip0(X). Let us denote by 〈·, ·〉 the
duality map of the duality pair (L,F(X)). Then the norm ‖·‖F of F(X) can
be represented as follows:

(2.2) ‖Q‖F := sup
φ∈L
‖φ‖L≤1

〈φ,Q〉 for every Q ∈ F(X).

Let us recall that a (convex) cone in a linear space is a (convex) subset P
such that λx ∈ P for every x ∈ P and λ ∈ R+. In this work we shall use the
term cone to refer to a convex cone. Consider any generating closed cone P
of L (i.e., L = span(P ) = P − P ) that satisfies

(2.3) ∀φ ∈ L, ∃φ1, φ2 ∈ P :{
φ = φ1 − φ2,

max {‖φ1‖L, ‖φ2‖L} ≤ ‖φ‖L ≤ ‖φ1‖L + ‖φ2‖L.
We set

(2.4) ‖Q|FP
:= sup

φ∈P
‖φ‖L≤1

〈φ,Q〉 for every Q ∈ F(X).

Notice that for any Q ∈ F(X) we have max {‖Q|FP
, ‖−Q|FP

} ≤ ‖Q‖F .
Since the supremum in (2.2) is attained at some φ ∈ L with ‖φ‖L = 1 (by
the Hahn–Banach theorem), using the decomposition (2.3) we deduce

(2.5) ‖Q‖F = 〈φ,Q〉 = 〈φ1, Q〉+ 〈φ2,−Q〉 ≤ ‖Q|FP
+ ‖−Q|FP

.

This shows that (ii)′ holds and (2.4) defines an asymmetric (hemi-)norm
‖ · |FP

on the vector space F(X).
We shall refer to the asymmetric norm ‖ · |FP

defined in (2.4) as the
P -asymmetrization of the free space F(X), for which we implicitly assume
that (2.3) holds. We shall mainly deal with the case where P is the cone of
positive Lipschitz functions, that is,

P = L+ := {φ ∈ L : φ ≥ 0}.
In this case, we denote the arising asymmetric norm by ‖ · |F+ . Notice that
if φ (= φ+ − φ−) ∈ L then both its positive part φ+ and its negative part
φ− are also in L and they satisfy |φ+(x) − φ+(y)| ≤ |φ(x) − φ(y)| and
|φ−(x)− φ−(y)| ≤ |φ(x)− φ(y)| for all x, y ∈ X, which leads to (2.3).

More generally, a P -asymmetrization of F(X) is called canonical if P is
of the form

P := {φ ∈ L : Tφ ≥ 0},
where T is a linear isometry that identifies L with some Banach lattice in a
canonical way.
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2.1. Quasi-metric spaces. Let us introduce the notion of a quasi-
metric space, which will be the main focus of this work.

Definition 2.2 (Quasi-metric space). A quasi-metric space is a pair
(X, d), where X 6= ∅ and

d : X ×X → [0,∞)

is a function, called a quasi-metric (or quasi-distance), satisfying:

(i) ∀x, y, z ∈ X: d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality);
(ii) ∀x, y ∈ X: x = y ⇔ d(x, y) = 0.

Note that a quasi-metric does not have the symmetry property d(x, y) =
d(y, x) of a distance. If we replace (ii) by

(ii)′ x = y ⇔

{
d(x, y) = 0

d(y, x) = 0

then we say that d is a quasi-hemi-metric. In this work we shall also consider
extended quasi-metrics d̃ : X×X → [0,∞], that is, quasi-metrics that satisfy
the same two conditions above, but are also allowed to take the value +∞.
If X is a vector space equipped with an (extended) asymmetric (hemi-)norm
‖·|, then the function

(2.6) d(x, y) := ‖y − x| for all x, y ∈ X
is an (extended) quasi-(hemi-)metric on X that satisfies

(2.7) d(x+ z, y + z) = d(x, y) and d(rx, ry) = rd(x, y),

for all x, y, z ∈ X and r ∈ R+. Furthermore, for all x, y ∈ X the reverse
quasi-metric d̄ is defined by

d̄(x, y) = d(y, x).

Throughout this paper, we shall be dealing with both variants of quasi-
metric spaces. The term quasi-metric space will thus refer to a pair (X, d)
where d is either a quasi-distance or a quasi-hemi-distance.

Remark 2.3 (Terminology alert I). The reader should be alerted that
the terminology may vary in the literature. Some authors allow a quasi-hemi-
metric and a asymmetric hemi-norm to also take negative values. They also
use the terms hemi-metric and hemi-norm to refer to what we call quasi-
hemi-metric and asymmetric hemi-norm, respectively (see, for instance, [19]).
In our work, the qualifier quasi refers to the asymmetry of the metric, and
hemi to the fact that distinct elements x, y in X may have quasi-distance
d(x, y) equal to 0.

Two quasi-metric spaces can be completely identified via isometries. (The
reader should be alerted that the slightly weaker notion of almost isometry
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also exists, and is more appropriate in relation to Banach–Stone type theo-
rems [9, 14].)

Definition 2.4 (Isometry). A bijective mapping Φ between extended
quasi-metric spaces (X, d) and (Y, ρ) is called an isometry if for all x1, x2∈X,

ρ(Φ(x1), Φ(x2)) = d(x1, x2).

Definition 2.5 (Canonical asymmetrization of a metric space). Let
(X,D) be a metric space with a base point x0 ∈ X. Every P -asymmetrization
of the free space F(X) (cf. Remark 2.1) induces, via the isometric injection
of X into F(X), an asymmetrization of the distance D, given by

DP (x, y) = ‖δy − δx|FP
= sup

φ∈P
‖φ‖L≤1

(φ(y)− φ(x)) for all x, y ∈ X.

The quasi-(hemi-)distance DP is called the P -asymmetrization of (X,D). If
‖ · |FP

is a canonical asymmetrization of F(X), then DP will be called a
canonical asymmetrization of D. If P = L+, the canonical asymmetrization
will be denoted by D+. The diagram below depicts the situation.

L = Lip0(X,D)

‖φ‖L = sup
x 6=y

φ(x)−φ(y)
D(x,y)

Non-linear
dual ↗ ↖ Linear

dual

(X,D) F(X)

D(x, y) = ‖δy − δx‖F
δ̂→ ‖Q‖F := sup

φ∈L
‖φ‖L≤1

〈φ,Q〉

y y
D+(x, y) = ‖δy−δx|F+ ‖Q|F+ := sup

φ∈L,φ≥0
‖φ‖L≤1

〈φ,Q〉

Let us illustrate the above notion of canonical asymmetrization by means
of the following simple example.
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Example 2.6 (Canonical asymmetrizations of R). Let us consider R as
a metric space, with its usual distance D(x, y) = |y − x| for all x, y,∈ R,
and x0 = 0 as a distinguished point. It is well known [20, 39] that the free
space F(R) can be identified with the space of Lebesgue-integrable functions
L1(R), provided we identify the space L = (Lip0(X,D), ‖ · ‖L) of real-valued
Lipschitz functions vanishing at 0 with the Banach space L∞(R) (essentially
bounded Lebesgue-measurable functions) via the canonical linear isometry
Tφ = φ′ (a.e.), for all φ ∈ L (cf. the Rademacher theorem). Then taking
either

P = L+ = {φ ∈ L : φ ≥ 0} or, respectively, P = {φ ∈ L : φ′ ≥ 0}
leads to two different canonical asymmetrizations of R (via the asymmetriza-
tions ‖·|F+ and respectively ‖·|FP

of its free space). The first asymmetrization
is given by the formula

D+(x, y) = ‖δ(y)− δ(x)|F+ = sup
φ∈L+

‖φ‖L≤1

(φ(y)− φ(x)).

Notice that D+(x, y) ≤ max {|y− x|, |y|}. It can be easily seen that if either
y > x > 0 or y < x < 0, then D+(x, y) = |y−x| (take φ∗(t) = |t| in L+ with
‖φ∗‖L = 1). However, D+(1, n) = n− 1, while D+(n, 1) = 1 for every n ≥ 2.

The second asymmetrization, thanks to the monotonicity of every φ in P ,
implies that for all x, y ∈ X,

DP (x, y) = ‖δy − δx|FP
= sup

φ∈L, φ′≥0
‖φ‖L≤1

(φ(y)− φ(x))

= max {y − x, 0} = u(y − x) = du(x, y),

where u(·) is the asymmetric hemi-norm given by u(x) = max{x, 0} for all
x ∈ R and du is the corresponding quasi-hemi-distance.

2.2. Symmetrized distance and topologies. Every quasi-metric dis-
tance can be symmetrized in the sense of the following definition.

Definition 2.7 (Symmetrized distance). Let (X, d) be a quasi-metric
space. Then

(2.8) ds0(x, y) = max {d(x, y), d(y, x)} and ds(x, y) = d(x, y) + d(y, x)

are two natural symmetrizations of the quasi-distance d, which are equivalent
to each other:

ds0(x, y) ≤ ds(x, y) ≤ 2ds0(x, y) for all x, y ∈ X.
If d is an extended quasi-metric, then so is d̄ and consequently the sym-

metrizations ds and ds0 give rise to extended metrics. In the case that X is
a vector space and d satisfies (2.7), the above symmetrizations preserve the
invariance by translations and homothety. Notice further that (2.5) shows



Asymmetric free spaces 9

that the symmetrization of the P -asymmetrized norm ‖·|FP
of a free space

F(X) is equivalent to ‖·‖F (cf. Remark 2.1). A similar remark applies to the
symmetrization of the P -asymmetrization of the distance of a metric space
(X,D) (cf. Definition 2.5).

Proposition 2.8 (Asymmetrization vs. symmetrization). Assume that
(X,DP ) is a P -asymmetrization of a metric space (X,D) (cf. Definition 2.5).
Then the symmetrizations Ds

P and Ds0
P are bi-Lipschitz equivalent to the

initial distance D, and consequently, the Banach spaces Lip0(X,D),
Lip0(X,Ds

P ) and Lip0(X,Ds0
P ) are isomorphic.

Proof. It suffices to prove the result for Ds
P . Take x, y ∈ X. Let φ̂ be a

function in L = Lip0(X,D) with ‖φ̂‖L ≤ 1 such that

D(x, y) = sup
φ∈L
‖φ‖L≤1

(φ(y)− φ(x)) = φ̂(y)− φ̂(x).

Let φ̂1 and φ̂2 be functions in P such that φ̂ = φ̂1 − φ̂2, with the inequality
max{‖φ̂1‖L, ‖φ̂2‖L} ≤ ‖φ̂‖L = 1. Then

D(x, y) = (φ̂1(y)− φ̂1(x)) + (φ̂2(x)− φ̂2(y))

≤ sup
ψ∈P
‖ψ‖L≤1

(ψ(y)− ψ(x)) + sup
ψ∈P
‖ψ‖L≤1

(ψ(x)− ψ(y)),

which coincides with DP (x, y) + DP (y, x) = Ds
P (x, y). Furthermore, it is

clear that
Ds
P (x, y) = DP (x, y) +DP (y, x) ≤ 2D(x, y).

Thus, the distances Ds
P and D are equivalent, and Lip0(X,D) is linearly

isomorphic to Lip0(X,Ds
P ).

Every (possibly extended) quasi-metric space (X, d) can be endowed with
three “natural” topologies:

(i) The forward topology T (d), generated by the family of open forward -
balls

{Bd(x, r) : x ∈ X, r > 0},

where Bd(x, r) := {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.
(ii) The backward topology T (d̄), generated by the family of backward -balls

{Bd̄(x, r) : x ∈ X, r > 0},

where Bd̄(x, r) := {y ∈ X : d(y, x) < r} for all x ∈ X and r > 0.
(iii) The symmetric topology T s, generated by the family of sets

{Bd(x, r) ∩Bd̂(x, r) : x ∈ X, r > 0}.
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The symmetric topology being generated by the symmetrized distance ds0
or ds defined in (2.8) is obviously a metric topology. On the other hand, T (d)
and T (d̄) are not in principle metric topologies. Nevertheless, they are both
first countable topologies, since they have local bases consisting of balls of
rational radii.

In what follows, unless stated otherwise, the default topology on a quasi-
metric space (X, d) will be its forward topology, which is either a T1-topo-
logy (when d is a quasi-metric) or a T0-topology (when d is a quasi-hemi-
metric).

Example 2.9 (The space (R, du)). Let us consider R with its (canonical)
asymmetric distance du (see Example 2.6). It is easy to check that T (du)
has a local basis of the form {[x0, x0 + ε) : ε > 0} for each x0 ∈ R, while
T (d̄u) has a local basis consisting of sets of the form (x0− ε, x0], and T (dsu)
is the usual topology of R.

Notice that du is issued from the asymmetric hemi-norm u(x)=max{x, 0}
for all x ∈ R; see (2.1) and (2.6). Moreover, the unit ball B(0, 1) = {y ∈ R :
du(0, y) ≤ 1} = (−∞, 1] is not T (du)-closed because (1,∞) is not T (du)-
open. Notice also that, for every topological space X, a function f : X → R
is upper semicontinuous if and only if f : X → (R, u) is continuous.

The following example reveals that the topology of a quasi-metric space
which is T1 may not be T2.

Example 2.10. Let {xn}n∈N be a sequence of distinct elements and
consider the space

X = {xn : n ∈ N} ∪ {x̄, ȳ},
where x̄ and ȳ are different from each other and from any element of the
sequence. Then the function d defined onX×X by d(x̄, xn) = d(ȳ, xn) = 1/n
for every n ∈ N, and d(x, y) = 1 for all other cases where x 6= y, is a quasi-
metric on X. In this case, the forward topology T (d) cannot be T2, since
{xn}n converges to both x̄ and ȳ. Notice that the symmetrized distance ds
is discrete, with ds(x, y) > 1, whenever x 6= y.

2.3. Cones and conic norms. In this subsection we shall recall from
[38] the notion of an abstract cone. To this end, let us first recall that a
monoid is a semigroup (X,+) with neutral element 0.

Definition 2.11 (Abstract cone). A cone on R+ is a triple (C,+, ·) such
that (C,+) is an abelian monoid (with neutral element 0), and · is a mapping
from R+ ×X to X such that for all x, y ∈ C and r, s ∈ R+:

(i) r · (s · x) = (rs) · x;
(ii) r · (x+ y) = (r · x) + (r · y) and (r + s) · x = (r · x) + (s · x);
(iii) 1 · x = x and 0 · x = 0.
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Note that this definition does not include the existence of additive in-
verses. However, when such an inverse exists for some x ∈ C, it is unique,
and we denote it by −x.

A subcone of a cone (C,+, ·) is a cone (S,+|S , ·|S) such that S is a subset
of C and +|S and ·|S are, respectively, the restriction of + and · to S × S.

Definition 2.12 (Cancellative cone). A cone (C,+, ·) is called cancella-
tive if for any x, y, z ∈ C,

x+ z = y + z =⇒ x = y.

It follows readily that every cone that embeds in a linear space is can-
cellative. Before we proceed, let us give two examples of abstract cones which
are not cancellative.

Example 2.13 (Non-cancellative cone). (i) Consider a cone C and let
S(C) be the set of subcones of C, under the usual operations of subset
addition and scalar product. Then S(C) may not be cancellative. Indeed,
for C = R2, let us consider the following elements of S(C):

X = {(x, 0) : x ∈ R}, Y = {(0, x) : x ∈ R}, Z = {(x, x) : x ∈ R}.
Then X + Z = Y + Z but X 6= Y.

(ii) For a non-empty setX, consider the set RX+ of non-negative functions,
with the operations λ�f = fλ (product with external scalar) and f⊕g = f ·g
(addition). Then RX+ is not cancellative.

Definition 2.14 (Cone morphisms). A linear mapping from a cone
(C1,+, ·) to a cone (C2,+, ·) is a mapping f : C1 → C2 such that f(α · x
+ β · y) = α · f(x) + β · f(y) for any x, y ∈ C1 and any α, β ∈ R+.

Remark 2.15 (Compatibility of cone morphisms). Let f be a linear
mapping between two cones C1 and C2. Then if Hi := {x ∈ Ci : −x ∈ Ci}
denotes the linear part of the cone Ci for i ∈ {1, 2}, then it is straightforward
to see that for every x ∈ H1, f(−x) = −f(x). In particular, the restriction
of f to H1 yields a linear mapping between the linear spaces H1 and H2.

We shall now introduce the notion of a conic norm, which will be relevant
for our developments.

Definition 2.16 (Conic norm). A conic norm on a cone (C,+, ·) is a
function ‖·|: C → R+ such that for all x, y ∈ C and r > 0:

(i) ‖x+ y| ≤ ‖x|+ ‖y|;
(ii) ‖x| = 0⇔ x = 0;
(iii) ‖r · x| = r‖x|.
The pair (C, ‖·|) is called a normed cone. If we replace condition (ii) by

(ii)′ x = 0⇔ ∀z ∈ C : [x+ z = 0⇒ ‖x| = ‖z| = 0],
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then we say that ‖·| : C → R+ is a conic hemi-norm. A cone equipped with
either a conic norm or a conic hemi-norm will be called a normed cone. This
is in accordance with the term asymmetric normed space, which refers to a
vector space equipped with either an asymmetric norm or an asymmetric
hemi-norm. (The asymmetry is now stemming from the use of a cone, rather
than a vector space. Notice however that C is not necessarily a cancellative
cone.)

Example 2.17. Consider the pair (R2, ‖·|), with
‖(x1, x2)| := u(x1) + u(x2),

where u is the canonical asymmetric hemi-norm of R given by u(x) =
max{x, 0} for all x ∈ R (see also Example 2.6). By restricting ‖· | to any
cone C ⊆ R2, we obtain a conic hemi-norm. The case C = R2

− corresponds
to an example of normed cone with the trivial conic hemi-norm equal to 0
everywhere.

x1

x2

x1+x2

0

Fig. 1. Illustration of Example 2.17

Remark 2.18 (Terminology alert II). The reader should again be alerted
that some authors ([38] e.g.) employ the term quasi-norm to refer to what
we call “conic hemi-norm”. We opt for “conic hemi-norm” because it is more
suggestive. At the same time, “quasi-norm” might have a different meaning
in the theory of Banach spaces ([2] e.g.). The asymmetric aspect of the conic
norm is inherent to the definition of a cone, and therefore does not require
the prefix “quasi”.

Remark 2.19 (Conic norm vs. asymmetric norm). If the cone happens to
be a linear space X, then the conic norm corresponds to an asymmetric norm
on X, and instead of the term “normed cone” we use the term asymmetric
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normed space, as in [11]. The same applies to the case of conic hemi-norms
and asymmetric hemi-norms. Given an asymmetric normed space (X, ‖·|),
one can define the reverse norm of an element x ∈ X as ‖−x|, and the
(symmetric) norms (symmetrizations of ‖· |)

‖x‖s0 := max {‖x|, ‖−x|} and ‖x‖s := ‖x|+ ‖−x|.

It is clear that the above norms are equivalent.

An extended quasi-metric d on a cone (C,+, ·) is called invariant if it
satisfies

(2.9) d(x+ z, y + z) = d(x, y) and d(rx, ry) = rd(x, y),

which is the case whenever the extended quasi-metric d is induced by a
conic norm which is the restriction of an asymmetric norm of a vector space
that contains C. An extended quasi-metric d on a cone (C,+, ·) is called
subinvariant if d(x + z, y + z) ≤ d(x, y) instead of the first part of (2.9).
More generally, the following result, established in [18, Proposition 1], states
that given a normed cone (C, ‖ · |), there is a natural way to generate an
extended quasi-metric de.

Proposition 2.20 (Extended quasi-metrics generated by conic norms).
Let ‖ · | be a conic (hemi-)norm on a cone (C,+, ·). Then the function de
defined on C × C by

de(x, y) = inf
z∈C
y=x+z

‖z|,

is a subinvariant extended quasi (hemi-)metric on C. If the cone (C,+, ·) is
cancellative, then de is invariant.

For x ∈ C, r ∈ R+\{0} and ε > 0, we have

rBde(x, ε) = rx+ {y ∈ C : ‖y| < rε},
and the translations are T (de)-open.

Remark 2.21. (i) The quasi-metric de might take infinite values if C is
not a linear space (the infimum may be taken over the empty set).

(ii) If C is a cancellative cone, then the infimum in the above definition
becomes superfluous, and if C is a linear space, the definition of de coincides
with the definition of the quasi-metric given in (2.6).

(iii) The quasi-metric induced by the reverse norm coincides with the one
obtained by the reverse quasi-metric. The same is true for the symmetrized
metric, which coincides with the metric obtained by the symmetrization of
the asymmetric norm.

Using the extended quasi-metric of Proposition 2.20, we define an equiv-
alence between normed cones.
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Definition 2.22 (Isomorphisms between normed cones). A bijective
mapping Φ : X → Y between two normed cones is called an isometric
isomorphism if it is linear (cf. Definition 2.14) and an isometry between the
corresponding extended quasi-metrics, that is,

de(Φx1, Φx2) = de(x1, x2) for all x1, x2 ∈ X.
Note that this is equivalent to the relation ‖Φx| = ‖x| for all x ∈ X.

We shall now proceed to define a notion of completeness for a quasi-metric
space. Even though there are several non-equivalent notions of completeness
in quasi-metric spaces (all of them generalizing, in some sense, completeness
in metric spaces), we shall focus on the one which is compatible with normed
cones and asymmetric normed spaces:

Definition 2.23 (Bicomplete quasi-metric space).A (possibly extended)
quasi-metric space (X, d) is called bicomplete if the (extended) metric space
(X, ds) is complete, meaning that any ds-Cauchy sequence in X is ds-con-
vergent in X. If X is a linear space and d is the quasi-metric induced by an
asymmetric norm ‖· |, we say (X, ‖· |) is a bi-Banach space whenever X is
complete under the symmetrized metric ds.

Definition 2.24 (Bicompletion of a quasi-metric space). Let (X, d) be
an (extended) quasi-metric space. A bicompletion of (X, d) is an (extended)
quasi-metric space (X̃, d̃) along with a mapping

ι : (X, d)→ (X̃, d̃)

such that:

(i) ι is an isometric embedding;
(ii) ι(X) is dense in X̃ for the symmetrized topology;
(iii) (X̃, d̃) is bicomplete.

An important result regarding bicompleteness of normed cones (and
therefore of asymmetric normed spaces) is the existence and uniqueness of
the bicompletion (see [32, Theorem 3.13]). This result, once again, general-
izes the usual completion of normed linear spaces.

Proposition 2.25 (Uniqueness of bicompletion for cancellative normed
cones). Let (C, ‖·|) be a cancellative normed cone. Then there exists a unique
(up to an isometric isomorphism) bicompletion of (C, ‖ · |), which is also a
normed cone, and the embedding into the bicompletion is linear. If C is a
linear space, then its bicompletion is an asymmetric normed space.

2.4. Semi-Lipschitz functions and dual cones. Let us now define
the class of semi-Lipschitz functions, which reflects naturally the asymmetry
in the definition of a quasi-metric space.
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Definition 2.26 (Semi-Lipschitz function). Let (X, d) be a quasi-metric
space. A function f : X → R is said to be semi-Lipschitz if there exists L > 0
such that for all x, y ∈ X we have

(2.10) f(x)− f(y) ≤ Ld(y, x).

The class of semi-Lipschitz functions on X is denoted by SLip(X).

Let us recall that a Lipschitz function f satisfies |f(x)−f(y)| ≤ Ld(x, y)
for all x, y ∈ X. Therefore, if (X, d) is a metric space, the notions of semi-
Lipschitz and Lipschitz function coincide. In a quasi-metric space, f is Lips-
chitz if and only if both f and −f are semi-Lipschitz. To get easy examples
of semi-Lipschitz functions that are not Lipschitz, consider functions of the
form d(x, ·) on the quasi-metric space of Example 2.6.

Definition 2.27 (Semi-Lipschitz conic norm). Let (X, d) be a quasi-
metric space. The semi-Lipschitz conic (hemi-)norm of a function f : X → R
is defined by

‖f |S := inf {L > 0 : (2.10) holds}.

The following proposition is easily shown.

Proposition 2.28 (Semi-Lipschitz criterion). Let (X, d) be a quasi-met-
ric space and f : X → R.

(i) If d is a quasi-metric, then f is semi-Lipschitz if and only if

‖f |S = sup
x 6=y

max {f(x)− f(y), 0}
d(y, x)

= sup
x 6=y

f(x)− f(y)

d(y, x)
<∞.

(ii) If d is a quasi-hemi-metric, then f is semi-Lipschitz if and only if
‖f |S <∞. In this case,

‖f |S = sup
d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

f(x)− f(y)

d(y, x)
.

Remark 2.29. Let (X, d) be a quasi-metric space and f : X → R. If for
all x, y ∈ X we have f(x) ≤ f(y) whenever d(y, x) = 0 (d-monotonicity),
then

(2.11) sup
d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

f(x)− f(y)

d(y, x)
.

It follows readily from Definition 2.26 that every semi-Lipschitz function is
d-monotonic, and therefore it satisfies (2.11).

Examples 2.30. (i) If f : X → R is not semi-Lipschitz or d-monotonic,
then the equality (2.11) is not necessarily true. For example, let X = {a, b}
with a, b ∈ R, let d : X × X → [0,∞) be the quasi-hemi-metric given by
d(a, b) = 1 and d(b, a) = 0, and let f : X → R be defined as f(a) = 1 and
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f(b) = 0. Then f is not semi-Lipschitz,

sup
d(y,x)>0

f(x)− f(y)

d(y, x)
= −1 and sup

d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= 0.

(ii) The equality (2.11) could be true without f being semi-Lipschitz. For
instance, let X = {a, b, c} with a, b, c ∈ R, let d : X × X → [0,∞) be the
quasi-hemi-metric given by

d(x, y) =


1 if x = a, y = b,

1 if x = b, y = c,

2 if x = a, y = c,

0 otherwise,

and let f : X → R be defined as f(a) = 2, f(b) = 1 and f(c) = 1. Then f is
not semi-Lipschitz, since f(a)− f(b) = 1 and d(b, a) = 0. However,

sup
d(y,x)>0

f(x)− f(y)

d(y, x)
= 0 and sup

d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= 0.

Remark 2.31 (Terminology alert III). The above definition of a semi-
Lipschitz function, introduced in [14], differs from the one that is usually
considered in the literature and is based on an inequality of the form

(2.12) f(x)− f(y) ≤ Ld(x, y).

A function f : (X, d) → R is semi-Lipschitz according to Definition 2.26 if
and only if it is semi-Lipschitz on (X, d̄) according to (2.12). This is also
equivalent to −f being semi-Lipschitz on (X, d) according to (2.12). There-
fore, the difference between these two definitions of a semi-Lipschitz function
is equivalent to either a change of orientation of the quasi-metric (replace d
by d̄) or of the sign of the values of f (replace f by −f). With this in mind,
let us now justify our choice for Definition 2.26:

(i) If (X, ‖ · |) is a normed cone, the norm ‖ · | may not be semi-Lipschitz ac-
cording to (2.12), while −‖·| is always semi-Lipschitz according to (2.12).

(ii) In general, if (X, d) is a quasi-metric space, the functions of the form
d(x0, ·) that characterize forward convergence (i.e. xn → x0 in the for-
ward topology if and only if d(x0, xn) → 0) may not be semi-Lipschitz
according to (2.12), while −d(x0, ·) and d(·, x0) will be so.

Therefore, to avoid/circumvent the above inconveniences, we shall opt for
Definition 2.26. This definition, in particular, is compatible with the natural
definition of a semi-Lipschitz function from a quasi-metric space (X, d) to
an asymmetric normed space or a normed cone (Y, ‖ · |): indeed, denoting
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by d‖·| the distance associated to the asymmetric norm ‖ · |, it is natural to
demand

d‖·|(f(x), f(y)) = ‖f(y)− f(x)| ≤ Ld(x, y),

which coincides with our definition when taking (Y, ‖ · |) = (R, u), with u
given by u(x) = max{x, 0} for all x ∈ R. In fact, the quasi-metric space
(R, u) is involved in the definition of the dual of both an asymmetric normed
space and a normed cone, and consequently it is of great importance in this
theory. Furthermore, as we shall see in Proposition 2.35, a real-valued linear
functional on a normed cone will belong to the dual cone (see Definition 2.37)
if and only if it is semi-Lipschitz according to Definition 2.26.

Definition 2.32 (Asymmetric pivot space). Let (X, d) be a quasi-metric
space and x0 ∈ X be a base point. We define the asymmetric non-linear dual
(pivot space)

SLip0(X, d) := {f ∈ SLip(X) : f(x0) = 0}.
In case there is no ambiguity regarding the quasi-metric considered, we sim-
ply write SLip0(X).

Remark 2.33. (i) It is easy to see that (SLip0(X), ‖ · |S) is a cancellative
normed cone.

(ii) Any semi-Lipschitz function on a quasi-metric space (X, d) is Lip-
schitz on the (symmetrized) metric space (X,D), where D is either ds
or ds0 . Therefore, both cones of semi-Lipschitz functions SLip(X, d) and
SLip(X, d̄) are contained in the linear space Lip(X,D) of Lipschitz func-
tions on (X,D).

Let (R, u) be the asymmetric normed space evoked in Example 2.6. Then
the asymmetric norm u generates the upper topology on R, which is the topol-
ogy that characterizes upper semicontinuity in the following way: a function
from a topological space f : (X, τ) → (R, u) is continuous for the forward
topology of (R, u) if and only if f is upper semicontinuous for the usual norm
on R (which is the symmetrization of u).

Example 2.34. Let (X, d) be a quasi-metric space with a base point x0.
Then for each x ∈ X, the function f(·) = d(x, ·) − d(x, x0) belongs to
SLip0(X, d) and satisfies ‖f |S = 1. Indeed, it follows directly from the trian-
gular inequality that f is semi-Lipschitz with ‖f |S ≤ 1. We obviously have
f(x0) = 0. Taking z ∈ X with z 6= x we deduce f(z)−f(x) = d(x, z), that is,
‖f |S = 1.

The previous example becomes relevant in order to define duality for
normed cones and asymmetric normed spaces. The following proposition
gives some insight into this duality. The proof has no essential difficulty and
is included for the reader’s convenience.
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Proposition 2.35 (Linear functionals over a normed cone). Let (C, ‖ · |)
be a normed cone and ϕ : C → R a linear functional. Then the following are
equivalent:

(i) ϕ is upper semicontinuous (for short, usc);
(ii) ϕ belongs to SLip0(C, de), where de is the (extended) quasi-metric in-

duced by the conic norm ‖ · | (cf. Proposition 2.20);
(iii) there exists M ≥ 0 such that ϕ(x) ≤M‖x| for all x ∈ C.

Proof. Let us show that (i) implies (iii). Assume that the linear functional
ϕ is usc. Then there exists α > 0 such that ϕ(B(0, α)) ⊆ (−∞, 1). Set
M = 2/α. Then for every x ∈ C with ‖x| 6= 0, we have x̃ = αx

2‖x| ∈ B(0, α),
hence ϕ(x̃) < 1 and ϕ(x) < M‖x|. If x ∈ C with ‖x| = 0, then for every
r > 0 we have ‖rx| = 0 and ϕ(rx) < 1, which implies ϕ(x) < 1/r and
necessarily ϕ(x) ≤ 0.

Let us now show that (iii) implies (ii). We need to establish the inequality
ϕ(x) − ϕ(y) ≤ Lde(y, x), ∀x, y ∈ C, for some L ≥ 0. If de(y, x) = ∞, the
inequality becomes trivial. If not, then x ∈ y+C, so we can write x = y+ z,
and then ϕ(x) − ϕ(y) = ϕ(z) ≤ M‖z|. By taking the infimum of all z such
that x = y+ z, we get ϕ(x)−ϕ(y) ≤Mde(y, x), that is, ϕ is semi-Lipschitz.

Let us finally assume (ii) and recall that the forward topology on (C, ‖· |)
is first countable. Then take {xn}n ⊆ C such that de(x, xn)→ 0. Since ϕ is
semi-Lipschitz, we have ϕ(xn) − ϕ(x) ≤ Lde(x, xn) for some L ≥ 0, which
yields ϕ(x) ≥ lim supϕ(xn).

Remark 2.36. Each one of the above statements is also equivalent to ϕ
being lower semicontinuous (for short, lsc) for the reverse extended quasi-
metric d̄e.

Indeed, assume there exists M ≥ 0 such that ϕ(x) ≤M‖x| for all x ∈ C,
and consider a sequence {zn}n and z in C such that d̄e(z, zn) → 0. Then
de(zn, z) → 0, which yields the existence of a sequence {yn}n ⊂ C such
that yn + zn = z and ‖yn| → 0. Since ϕ is linear, ϕ(z) = ϕ(zn) + ϕ(yn) ≤
ϕ(zn) +M‖yn|, which shows that ϕ is lsc for d̄e.

On the other hand, if ϕ is lsc for d̄e, an analogous argument to Propo-
sition 2.35 ((i)⇒(iii)) leads to the same conclusion, that is, the existence of
M ≥ 0 such that ϕ(x) ≤M‖x| for all x ∈ C.

Definition 2.37 (Dual normed cone). Let (C, ‖ · |) be a normed cone.
We define the dual cone of C as

C∗ := {ϕ : C → R : ϕ usc, linear} = {ϕ ∈ SLip0(C) : ϕ linear}.
For any ϕ ∈ C∗, the dual conic norm is defined by

‖ϕ|∗ := sup
‖x|≤1

max {ϕ(x), 0} = sup
‖x|≤1

ϕ(x).
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It is easy to check that ‖ · |∗ is a conic norm on C∗ (obviously ‖ϕ|∗ ≥ 0,
since ϕ(0) = 0). Moreover, if (C, ‖·|) is a normed cone with conic hemi-norm,
then ‖ · |∗ is a conic hemi-norm on C∗.

The proof of the following result is reasonably simple.

Proposition 2.38. Let (C, ‖ · |) be a normed cone, and ϕ ∈ C∗. Then
‖ϕ|∗ = inf {M > 0 : ϕ(x) ≤M‖x| for all x ∈ C}.

As in the case of normed spaces, there is a direct relation between the
semi-Lipschitz constant and the dual norm of a linear functional:

Corollary 2.39 (Dual conic norm and semi-Lipschitz constant). Let
(C, ‖ · |) be a normed cone, and ϕ ∈ C∗. Then ‖ϕ|∗ = ‖ϕ|S and the sub-
cone of linear functionals of SLip0(C) (linear semi-Lipschitz functions) is
isometrically isomorphic to (C∗, ‖ · |∗) (linear usc functions).

Proof. The inequality ‖ϕ|S ≤ ‖ϕ|∗ follows from Proposition 2.35
((ii)⇒(iii)). For the opposite inequality, as ϕ is semi-Lipschitz and ϕ(0) = 0,
we get

ϕ(x) = ϕ(x)− ϕ(0) ≤ ‖ϕ|S de(0, x) = ‖ϕ|S‖x|,
which by Proposition 2.38 implies that ‖ϕ|∗ ≤ ‖ϕ|S .

2.5. Duality of asymmetric normed spaces. In this subsection we
consider the particular case that the normed cone is an asymmetric normed
space (X, ‖ · |).

Proposition 2.40 (Dual of a finite-dimensional space). Let (X, ‖·|) be a
finite-dimensional vector space endowed with an asymmetric norm ‖· |. Then
there exists M > 0 such that

(2.13) ‖−x| ≤M‖x| for all x ∈ X.
Furthermore, (X, ‖ · |)∗ is also an asymmetric normed space such that for
every ϕ ∈ (X, ‖ · |)∗ we have −ϕ ∈ (X, ‖ · |)∗ and ‖−ϕ|∗ ≤M‖ϕ|∗. In parti-
cular, (X∗, ‖ · |) is a linear space (not only a normed cone).

Proof. Let B = {x ∈ X : ‖x| ≤ 1} be the unit ball of X. Since in finite
dimensions all asymmetric norms inducing a T1-topology are equivalent (see
[17, Corollary 11] or [6, Theorem 3] for example), it follows that B is closed
convex and 0 ∈ intB. Thus we can ensure the existence of M > 0 such that∥∥−x
‖x|
∣∣ ≤ M for all x ∈ X with ‖x| 6= 0, which yields ‖−x| ≤ M‖x| for all

x ∈ X. Now, if ϕ ∈ (X, ‖ · |)∗ then
−ϕ(x) = ϕ(−x) ≤ ‖ϕ|∗‖−x| ≤M‖ϕ|∗‖x| for all x ∈ X

and

‖−ϕ|∗
(

= sup
‖x|≤1

−ϕ(x)
)
≤M‖ϕ|∗ for all ϕ ∈ (X, ‖ · |)∗.
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Remark 2.41 (An infinite-dimensional counterexample). If X is infinite-
dimensional, then (2.13) may not be fulfilled. For example, let

X =
{
f ∈ C([0, 1]) :

1�

0

f(t) dt = 0
}

and ‖f | := maxt∈[0,1] max {f(t), 0}. Let {fn}n ⊂ X be defined as

fn(x) =


1
n if 0 ≤ x < 1

n2 ,
n

2−n2x+ 1−n2

2n−n3 if 1
n2 ≤ x < 1− 1

n2 ,

−n3x− n(1− n2) if 1− 1
n2 ≤ x ≤ 1,

(n ∈ N).

Then ‖fn| = 1/n for n ≥ 2 and ‖−fn| = n → ∞, which contradicts (2.13).
In addition, X∗ is a normed cone (and not a vector space). To see this, let
δ1 : C([0, 1]) → R be defined as δ1(f) = f(1). Then {fn}n → 0, δ1(0) = 0
and δ1(fn) = −n → −∞, which shows that the linear functional δ1 is not
lower semicontinuous in (X, ‖·|).

Remark 2.42 (Continuity of evaluation functionals). Let (X, ‖ · |) be an
asymmetric normed space with dual X∗. For every x ∈ X, the evaluation
functional x̂ : X∗ → R defined as x̂(ϕ) = ϕ(x) is linear and ‖ · |∗-continuous.
Indeed, we have

x̂(ϕ) = ϕ(x) ≤ ‖ϕ|∗‖x| and −x̂(ϕ) = −ϕ(x) = ϕ(−x) ≤ ‖ϕ|∗‖−x|,
hence |x̂(ϕ)| ≤ max {‖x|, ‖−x|} ‖ϕ|∗, i.e. x̂ is Lipschitz and thus continuous.

Lemma 2.43 ((L1(R), ‖· |1,+)∗ = (L∞+ (R), ‖·‖∞)). Let L1(R) be endowed
with the asymmetric norm

‖f |1,+ :=
�

R

f+ dλ,

where f+(x) = max{f(x), 0} and λ denotes the Lebesgue measure. Then the
dual of (L1(R), ‖ · |1,+) is isometrically isomorphic to (L∞+ (R), ‖ · ‖∞), where
L∞+ (R) denotes the cone of non-negative functions in L∞(R).

Proof. The facts that (L1(R), ‖ · |1,+) is an asymmetric normed space and
(L∞+ (R), ‖ · ‖∞) is a normed cone are straightforward. Let ϕ∈(L1(R), ‖·|1,+)∗.
Then ϕ : L1(R)→ R is linear and (‖ · |1,+-u)-continuous (see Example 2.6).
Hence, by Remark 2.33, ϕ is continuous for the symmetrized norms in both
spaces, therefore

|ϕ(f)| ≤ ‖ϕ‖∗max {‖f+|1,+, ‖−f+|1,+} ≤ ‖ϕ‖∗‖f‖1,
where ‖·‖∗ denotes the dual norm of the normed space (L1(R), (‖·|1,+)s) and
‖·‖1 is the usual norm on L1(R). It follows that ϕ is (‖·‖1-|·|)-continuous, and
therefore there exists g ∈ L∞(R) such that ϕ(f) =

	
gf dλ for all f ∈ L1(R).

We claim that g ≥ 0 almost everywhere.
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Indeed, suppose, towards a contradiction, that there exists a set E of
measure 0 < λ(E) < ∞ such that g < 0 on E. Consider the sequence
fn = −n1E (where 1E is the characteristic function of E), which clearly
belongs to L1(R). On the other hand, since ‖fn|1,+ = 0 for all n ∈ N, the
function fn belongs to the unit ball of the asymmetric norm ‖ · |1,+. Then,
as n→ +∞, we deduce

ϕ(fn) =
�
gfn dλ =

�

Ec

gfn dλ+
�

E

gfn dλ = n
�

E

(−g) dλ→ +∞.

Therefore, ϕ cannot be (‖ · |1,+-u)-continuous, a contradiction.
Notice now that any g ∈ L∞+ (R) defines a linear (‖ · |1,+-u)-continuous

functional ϕ in the same manner:

ϕ(f) =
�

R

gf dλ ≤
�

R

gf+ dλ ≤ ‖g‖∞
�

R

f+ = ‖g‖∞‖f |1,+,

which yields ‖ϕ|∗ ≤ ‖g‖∞. On the other hand, take ε > 0 and a set E of
finite measure such that g(x) ≥ ‖g‖∞ − ε on E. Then consider the function

f =
sgn(g)

λ(E)
1E ,

where sgn(g) denotes the sign of g, and note that ‖f |1,+ ≤ 1. Then

ϕ(f) =
1

λ(E)

�

E

g dλ ≥ 1

λ(E)

�

E

[‖g‖∞ − ε] dλ = ‖g‖∞ − ε.

It follows that ‖ϕ|∗ = ‖g‖∞, and therefore we can identify the dual of
(L1(R), ‖ · |1,+) with (L∞+ (R), ‖ · ‖∞) by an isometric isomorphism.

Let us now give the following definition.

Definition 2.44 (Asymmetric weak topologies). Let X be an (asym-
metric) normed space with dual X∗.

(i) The weak topology w on X is defined as the coarsest topology for which
every φ ∈ X∗ remains upper semicontinuous.

(ii) The weak-star topology w∗ on X∗ is defined as the coarsest topology
that makes every evaluation functional {x̂ : X∗ → (R, | · |), x ∈ X}
continuous (notice by Remark 2.42 that x̂ is always ‖ · |∗-continuous,
where ‖ · |∗ is the conic hemi-norm of X∗).

Therefore the weak-star topology w∗ on X∗ is weaker than the forward
‖ · |∗-topology. In what follows, we shall use the notation 〈y∗, y〉 = y∗(y).

Lemma 2.45. Let X be an asymmetric normed space with dual X∗, and
ϕ : X∗ → R a w∗-continuous linear functional. Then there exists xϕ ∈ X
such that ϕ(x∗) = x∗(xϕ) for all x∗ ∈ X∗.
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Proof. Since ϕ is w∗-continuous, the set ϕ−1(−1, 1) is a w∗-neighbour-
hood of 0, so there exist x1, . . . , xn ∈ X such that{

x∗i ∈ X∗ : max
i=1,...,n

|〈x∗, xi〉| < 1
}
⊆ ϕ−1(−1, 1),

which yields

(2.14)
n⋂
i=1

Ker(x̂i) ⊆ Ker(ϕ).

The above kernels are contained in the cone X∗. We can linearly extend ϕ
and the evaluation functionals x̂1, . . . , x̂n from the normed cone X∗ to the
linear space span(X∗) ⊆ RX . This operation preserves the inclusion (2.14)
on span(X∗). Consequently, the extension x̂ϕ of ϕ is a linear combination of
the extensions of x̂1, . . . , x̂n.

The following result is analogous to the classical one in operator theory
(see [37, Theorem 4.10]).

Lemma 2.46. Let (X, ‖ · |X), (Y, ‖ · |Y ) be asymmetric normed spaces,
X∗ and Y ∗ their respective dual cones and T : Y ∗ → X∗ a linear bounded
operator (meaning that there exists K ≥ 0 such that ‖Ty∗|Y ≤ K‖y∗|X for
all x ∈ X). If T is (w∗-w∗)-continuous, then there exists a linear bounded
operator S : X → Y such that T = S∗, in the sense that

〈y∗, Sx〉 = 〈Ty∗, x〉 for all x ∈ X and y∗ ∈ Y ∗.
Furthermore, if T is a bijective isometry, so is S.

Proof. Let x ∈ X, and define f : Y ∗ → R as f(y∗) = x̂(Ty∗), which
is w∗-continuous, and therefore by Lemma 2.45 there exists yx such that
x̂ ◦ T = ŷx and y∗(yx) = x̂T y∗, and define Sx = yx, which is linear and
bounded, since

‖Sx|Y = ‖yx|Y = ‖ŷx| = ‖x̂ ◦ T | = sup
‖y∗|≤1

(x̂ ◦ T )(y∗) ≤ ‖x|X‖T |.

Moreover, S∗ = T , because

〈S∗y∗, x〉 = 〈y∗, Sx〉 = 〈x̂ ◦ T, y∗〉 = 〈Ty∗, x〉
for all x ∈ X and y∗ ∈ Y ∗. Finally, if T is an isometry then

‖Sx|Y = sup
‖y∗|≤1

〈y∗, Sx〉 = sup
‖y∗|≤1

〈Ty∗, x〉 = sup
‖y∗|≤1

〈x∗, x〉 = sup
‖x∗|≤1

〈Ty∗, x〉,

where the first equality follows as a corollary of the Hahn–Banach theorem
for asymmetric normed spaces [11, Corollary 2.2.4].

The following proposition shows that an asymmetric normed space and
its bicompletion have the same dual. This fact will be relevant for our main
result.
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Proposition 2.47 (Unique extension of a linear usc functional). Let
(X, ‖ · |) be an asymmetric normed space, D ⊆ X a subspace that is dense in
the symmetrization of the induced quasi-metric, and ϕ : D → R a linear usc
functional. Then ϕ has a unique linear usc extension to X.

Proof. Thanks to the Hahn–Banach theorem [11, Theorem 2.2.1], ϕ has
at least one linear usc extension to X. Let us assume, towards a contradic-
tion, that ϕ has two different extensions φ1 and φ2, with φ1(x) < φ2(x) for
some x ∈ X. Since D is dense for the symmetrized extended quasi-metric
(see Definition 2.7), there is a sequence {xn}n ⊆ D such that xn → x in
both de and d̄e. Since φ1 and φ2 are usc for de, we deduce that they are
also lsc for d̄e (see Remark 2.36). Moreover, both functionals coincide on the
sequence {xn}n. We deduce:

lim sup
n

φ2(xn) ≤ φ1(x) < φ2(x) ≤ lim inf
n

φ2(xn),

which is a contradiction. Therefore φ1 = φ2.

Proposition 2.48 (Dual of an asymmetric normed space). Let (X, ‖ · |)
be an asymmetric normed space and (X̃, ‖ · |∼) its bicompletion. Then the
respective dual cones are isometrically isomorphic.

Proof. We already know that the extension mapping from X∗ to X̃∗ is
a bijection, in virtue of Proposition 2.47. To check that it is an isometry,
we only need to check that ‖φ|X |

∗ ≥ ‖φ|∗ for any φ ∈ X̃∗, as the reverse
inequality is obvious. Let BX̃ be the unit ball of X̃ for the forward distance,
and consider φ ∈ X̃∗ and a sequence {zn}n on BX̃ such that φ(zn) →
‖φ|∗ := supz∈BX̃

φ(z). Since X is dense for the symmetrized topology in X̃
(by definition), for each n ∈ N there exists a sequence {xjn}j ⊆ BX such
that {xjn} converges to zn in the symmetrized distance of X̃. In particular,
{xjn}j converges for both quasi-metrics de and d̄e. Since φ is lsc for d̄e, we
see that φ(zn) ≤ lim infj φ(xjn) for every n ∈ N. Then, for any ε > 0, there
exists n0 ∈ N such that ‖φ|∗ < ε+ φ(zn0), and consequently

‖φ|∗ < ε+ lim inf
j

φ(xjn0
) ≤ ε+ ‖φ|X |

∗.

3. The semi-Lipschitz free space. Throughout this section, (X, d)
will denote a quasi-metric space, with d being possibly a quasi-hemi-metric,
and with a base point x0 ∈ X.

3.1. Construction of Fa(X). We are ready to proceed to the con-
struction of the (asymmetric) semi-Lipschitz free space. For every x ∈ X we
consider the corresponding evaluation mapping

δx : SLip0(X)→ R, δx(f) = f(x), ∀f ∈ SLip0(X).
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Notice that δx is a linear mapping over the cone SLip0(X) (see Defini-
tion 2.14). We can also define the linear mapping −δx by −δx(f) := −f(x)
for all f ∈ SLip0(X).

Proposition 3.1 (δx belongs to the linear part of (SLip0(X))∗). For
each x ∈ X, both the evaluation functional δx : SLip0(X) → R and its
opposite −δx belong to the dual cone (SLip0(X), ‖ · |S)∗.

Proof. Let x ∈ X. Since δx is linear, we only need to check that it is
bounded from above on the unit ball of SLip0(X). Indeed, for any f in
SLip0(X), we have f(x) = f(x) − f(x0) ≤ d(x0, x) ‖f |S , and therefore
δx ∈ SLip0(X)∗. Using the same argument, we get −f(x) ≤ d(x, x0)‖f |S .

Remark 3.2. The fact that both δx and −δx are semi-Lipschitz shows
that δx is actually a Lipschitz function on (SLip0(X), ‖ · |) of constant ‖δx‖Lip

= max{d(x, x0), d(x0, x)}.

Proposition 3.3 (Isometric injection of X into SLip0(X)∗). The map-
ping

δ : (X, d)→ (SLip0(X)∗, ‖ · |∗)

defined by δ(x) = δx is (injective and) an isometry onto its image. Therefore,
for any x, y ∈ X, we have

d(x, y) = ‖δy − δx|∗.

Proof. Let x, y ∈ X. First of all, it is worth noting that the quasi-
metric generated by the conic norm is extended (Proposition 2.20) and that
‖δy − δx|∗ is well defined (Proposition 3.1). Note also that any dual cone is
cancellative, since it is contained in a linear space of real-valued functions.
To prove injectivity of δ, consider x, y ∈ X such that δx = δy. Then we take
the functions f(·) = d(x, ·) − d(x, x0) and g(·) = d(y, ·) − d(y, x0). Since
δx(f) = δy(f) and δx(g) = δy(g), we conclude that both d(x, y) and d(y, x)
must be zero, therefore x = y (Definition 2.2(ii)′).

By Remark 2.21(ii), for any x, y ∈ X we have de(δx, δy) = ‖δy − δx|∗.
Then, for any x, y ∈ X,

de(δx, δy) = sup
‖f |S≤1

(δy − δx)(f) = sup
‖f |S≤1

{f(y)− f(x)}

≤ sup
‖f |S≤1

‖f |S d(x, y) = d(x, y).

Conversely, by taking f(·) = d(x, ·)− d(x, x0) it follows, as in Example 2.34,
that

f(y)−f(x) = d(x, y) and f(y)−f(x) = (δy−δx)(f) ≤ ‖δy−δx|∗ = de(δx, δy).

Then the assertion holds.
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We now take the asymmetric normed space (span(δ(X)), ‖ · |∗) (which is
contained in the normed cone (SLip0(X), ‖ · |∗)), and we define the (asymmet-
ric) semi-Lipschitz free space to be the bicompletion of (span(δ(X)), ‖ · |∗).

Definition 3.4 (The semi-Lipschitz free space). Let (X, d) be a quasi-
metric space with a base point x0. The semi-Lipschitz free space over (X, d),
denoted by Fa(X), is the (unique) bicompletion of the asymmetric normed
space (span(δ(X)), ‖ · |∗), where ‖ · |∗ is the restriction of the norm of the
space SLip0(X)∗.

We are now ready to establish our main result, which is analogous of the
fundamental property of the Lipschitz free space of a metric space: being a
predual of the space of Lipschitz functions vanishing at the base point.

Theorem 3.5 (The equality Fa(X)∗ = SLip0(X)). Let (X, d) be a quasi-
metric space with a base point x0. Then the dual cone of Fa(X) is isometri-
cally isomorphic to SLip0(X).

Proof. Thanks to Proposition 2.48, we only need to check that the dual
cone of (span(δ(X)), ‖ · |∗) is isometrically isomorphic to SLip0(X). To this
end, we define the mapping

Φ : SLip0(X)→ (span(δ(X)), ‖ · |∗)∗,
with

Φ(f)
(∑

i

λiδxi

)
=
∑
i

λif(xi)

for any linear combination of evaluation functionals. First, we check that Φ is
well defined: Φ(f) is obviously linear, so let us demonstrate the condition (iii)
of Proposition 2.35. For any f ∈ SLip0(X) and any

∑
i λiδxi ∈ span(δ(X)),

Φ(f)
(∑

i

λiδxi

)
=
∑
i

λif(xi) =
(∑

i

λiδxi

)
(f) ≤

∥∥∥∑
i

λiδxi

∣∣∣∗‖f |S .
Therefore ‖f |S ≥ ‖Φ(f)|∗∗, where ‖ · |∗∗ is the norm on (span(δ(X)), ‖ · |∗)∗.
Conversely, consider f ∈ SLip0(X). Then, by Proposition 2.28,

‖f |S = sup
d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

max {Φ(f)(δx − δy), 0}
‖δx − δy|∗

≤ ‖Φ(f)|∗∗,

from which we deduce that Φ is an isometry. Since Φ is obviously linear
and injective, it remains to establish surjectivity. This follows from the fact
that any ϕ ∈ (span(δ(X)), ‖ · |∗)∗ can be seen as Φ(ϕ ◦ δ), with ϕ ◦ δ being
semi-Lipschitz on X: indeed, for all x, y ∈ X,

ϕ(δ(x))− ϕ(δ(y)) = ϕ(δx − δy) ≤ ‖ϕ|∗∗‖δx − δy|∗ = ‖ϕ|∗∗d(y, x).

This shows that ϕ ◦ δ belongs to SLip0(X) and Φ is surjective.
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Remark 3.6 (Compatibility with the classical theory of metric free
spaces). If (X, d) is a metric space, then SLip0(X) = Lip0(X). Moreover,
every linear usc functional on a normed space is continuous; thus, the dual
cone of a normed linear space is the same as the usual dual. We deduce that
Fa(X) = F(X).

Remark 3.7. For a quasi-metric space (X, d), it is easy to check that
the space SLip0(X, d̄) of semi-Lipschitz functions for the reverse quasi-metric
is exactly −SLip0(X, d), and that ‖f |S = ‖−f |S̄ for any f ∈ SLip0(X, d),
where ‖−f |S̄ denotes the semi-Lipschitz constant of −f on (X, d̄). Using
this isometry, we can identify the dual cones of SLip0(X, d̄) by the isom-
etry Ψ defined by Ψ(µ)(f) = µ(−f) for all f ∈ SLip0(X, d), and there-
fore Fa(X, d) = Ψ(Fa(X, d̄)) and ‖Ψ(µ)|∗

d̄
= ‖−µ|∗, where ‖ · |∗

d̄
is the norm

of Fa(X, d̄).

3.2. Relation to molecules. Given a quasi-metric space (X, d) (always
with a base point x0 ∈ X), we next give a description of the closed unit ball
of Fa(X) by means of the semi-Lipschitz evaluation functionals (often called
molecules)

M(x,y) =
δ(x)− δ(y)

d(y, x)
, where x, y ∈ X with d(x, y) > 0.

Let M̂X := {M(x,y) : x, y ∈ X with d(y, x) > 0}.
Before going to this, it is worth noting that if (X, d) is an asymmetric

locally convex space, the asymmetric polar of a subset Y ⊂ X in the case of
the asymmetric dual X∗ can be defined as [11, p. 161]

Y α = {ϕ ∈ X∗ : ϕ(y) ≤ 1 for all y ∈ Y }.
Analogously, we can define the asymmetric polar of a subset W of the dual
X∗ by [11, p. 165]

Wα = {x ∈ X : ϕ(x) ≤ 1 for all ϕ ∈W}.
Proposition 3.8. Let (X, d) be a quasi-metric space with a base point x0.

The closed unit ball of Fa(X) coincides with

({M(x,y) : x, y ∈ X, d(y, x) > 0}α)α.

Proof. Let BSLip0(X), BFa(X) and BFa(X)∗ denote respectively the closed
unit balls of SLip0(X), Fa(X) and Fa(X)∗, and consider the isometry Φ :
SLip0(X)→ (span(δ(X)), ‖ · |∗)∗ defined in the proof of Theorem 3.5 as

Φ(f)
(∑

i

λiδxi

)
=
∑
i

λif(xi)

for any linear combination of evaluation functionals. If f ∈ SLip0(X), the
condition ‖f |S ≤ 1 is equivalent to f(x)−f(y)

d(y,x) ≤ 1 for all x, y ∈ X with
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d(y, x) > 0 (by Proposition 2.28). Since Φ is an isometry, ‖f |S ≤ 1 also
yields Φ(f)(M(x,y)) ≤ 1 for all M(x,y) ∈ M̂X . Hence

BFa(X)∗ = {Φ(f) : f ∈ SLip0(X), Φ(f)(M(x,y)) ≤ 1, ∀M(x,y) ∈ M̂X}

= {F ∈ Fa(X)∗ : F (M(x,y)) ≤ 1, ∀M(x,y) ∈ M̂X} = (M̂X)α

and thus
Φ(BSLip0(X))α = ((M̂X)α)α.

Moreover,

((M̂X)α)α = Φ(BSLip0(X))α = {γ ∈ Fa(X) : Φ(f)(γ) ≤ 1, ∀f ∈ BSLip0(X)}
= {γ ∈ Fa(X) : γ(f) ≤ 1, ∀f ∈ BSLip0(X)}

=
{
γ ∈ Fa(X) : ‖γ|∗

(
= sup
‖f |S≤1

γ(f)
)
≤ 1
}

= BFa(X).

Remark 3.9. Let (X, d) be a quasi-metric space and x /∈ X. Then setting
X̃ = X∪{x} and extending d from X×X to X̃×X̃ by d̃(x, x) = d̃(x, x) = 1
and d̃(x, x) = 0, we obtain a new quasi-metric space (X̃, d̃) with base point
x0 ≡ x. The above construction corresponds to an asymmetric version of the
Arens–Eells approach (cf. [4]).

3.3. Relation to asymmetrizations. Let X = (X,D) be a metric
space with a base point x0 ∈ X and denote by

L = (Lip0(X,D), ‖ · ‖L)

its non-linear dual. Let P ⊆ L be a cone satisfying (2.3), that is, for every
φ ∈ L there exist φ1, φ2 ∈ P with φ = φ1 − φ2 and max {‖φ1‖L, ‖φ2‖L} ≤
‖φ‖L ≤ ‖φ1‖L + ‖φ2‖L. Let us denote by DP the P -asymmetrization of X
(see Definition 2.5). We also denote by

SL = (SLip0(X,DP ), ‖ · |S)

the non-linear asymmetric dual of (X,DP ), that is, the normed cone of
semi-Lipschitz functions on (X,DP ).

Lemma 3.10 (Isometric injection of P into SL). For every metric space
(X,D) and every P -asymmetrization (X,DP ):

(i) there exists an isometric injection of P into SL;
(ii) there is a non-expansive injection of SL into L.

Proof. Let φ ∈ SL and x, y ∈ X. Then

φ(y)− φ(x) ≤ ‖φ|SDP (x, y) = ‖φ|S‖δy − δx|FP

≤ ‖φ|S‖δy − δx‖F = ‖φ|SD(x, y),

which implies that φ ∈ Lip0(X,D) and ‖φ‖L ≤ ‖φ|S . This proves (ii).
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Let now φ : (X,D) → R be in P with ‖φ‖L 6= 0. Then φ1 = φ/‖φ‖L is
also in P and ‖φ1‖L = 1. Given x, y ∈ X, we deduce

DP (x, y) = ‖δy − δx|FP
= sup

ψ∈P
‖ψ‖L≤1

(ψ(y)− ψ(x))

≥ φ1(y)− φ1(x) =
1

‖φ‖L
(φ(y)− φ(x)),

which yields φ(y)− φ(x) ≤ ‖φ‖LDP (x, y). Hence, φ ∈ SL and ‖φ|S ≤ ‖φ‖L.
Combining with (ii) leads to ‖φ‖L = ‖φ|S , and (i) follows.

Let us set

(3.1) F = span {δ(x) : x ∈ X} ⊂ SL∗, F̂ = span {δ̂(x) : x ∈ X} ⊂ L∗

where δ (respectively, δ̂) is the canonical injection of (X,DP ) into SL∗ (re-
spectively, of (X,D) into L∗). There is a canonical bijection between F

and F̂ , under which a general element Q =
∑n

i=1 λiδ(xi) of F is identified
with the element Q̂ =

∑n
i=1 λiδ̂(xi) of F̂ . Using this bijection, we get the

following result.

Proposition 3.11 (‖ · ‖F is equivalent to the symmetrization of ‖ · |Fa).
For any Q ∈ F ,

max {‖Q|Fa , ‖−Q|Fa} ≤ ‖Q̂‖F ≤ ‖Q̂|FP
+ ‖−Q̂|FP

≤ 2 max {‖Q|Fa , ‖−Q|Fa}.

Proof. Let Q ∈ F . Since F = span(δ(X)), we have Q =
∑n

i=1 λiδ(xi) for
some n ∈ N, λi ∈ R and xi ∈ X, i = 1, . . . , n, and

‖Q̂|FP
= sup

φ∈P
‖φ‖L≤1

〈φ, Q̂〉 = sup
φ∈P
‖φ‖L≤1

n∑
i=1

λiφ(xi) ≤ sup
ϕ∈SL
‖φ|S≤1

n∑
i=1

λiϕ(xi) =: ‖Q|Fa .

We also obtain ‖−Q̂|FP
≤ ‖−Q|Fa . Now, if ϕ ∈ SL satisfies ‖φ|S ≤ 1, then

by Lemma 3.10(ii) we deduce that ϕ ∈ L and ‖ϕ‖L ≤ ‖ϕ|S ≤ 1. Hence

‖Q|Fa ≤ sup
φ∈L
‖φ‖L≤1

n∑
i=1

λiφ(xi) = ‖Q̂‖F

and ‖−Q|Fa ≤ ‖Q̂‖F , which yields

max {‖Q|Fa , ‖−Q|Fa} ≤ ‖Q̂‖F ≤ ‖Q̂|FP
+ ‖−Q̂|FP

,

where the last inequality is a consequence of (2.5). The result follows.

Below, we shall identify F with F̂ , defined in (3.1). Under this identi-
fication, the norm ‖ · ‖F can be considered to be also defined on F . With
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this convention, the statement of Proposition 3.11 reads as follows: the norm
‖ · ‖F is equivalent to the symmetrization of ‖ · |Fa and hence

(3.2) Fa(X,DP ) = F
‖·‖Fs

a = F
‖·‖F = F(X,D),

which implies that Fa(X,DP ) and F(X,D) can be identified as sets. More-
over,

DP (x, y) = ‖δ(y)− δ(x)|FP
= ‖δ(y)− δ(x)|Fa .

Hence the following result holds.

Theorem 3.12 (Compatibility I). Let (X,D) be a metric space with a
P -asymmetrization. Then the symmetrizations of (F(X,D), ‖ · |FP

) and of
(Fa(X), ‖ · |Fa) are both isomorphic to (F(X,D), ‖ · ‖F ).

The following diagram illustrates the situation described by Theorem 3.12:

F = span(δ(X)) v

‖·‖Fs
a
-dense

Fa(X) v (SL)∗

F̂ = span(δ̂(X)) v F(X) v L∗

‖·‖F -dense

Let us now study the inverse procedure: we start with a quasi-metric
space (X, d) and consider a symmetrization D of its distance (where D is ei-
ther ds or ds0 , see Definition 2.7). It is easily seen that every φ ∈ SLip0(X, d)
satisfies φ ∈ Lip0(X,D) and ‖φ‖L ≤ ‖φ|S . Therefore, P := SLip0(X, d) can
be viewed as a cone in Lip0(X,D) and used to define an asymmetric norm
‖ · |FP

on F(X,D) and consequently a quasi-metric DP on X. In this setting,
Proposition 3.13 below establishes a compatibility result under the assump-
tion that there exists α ≥ 1 such that for every φ ∈ SLip0(X, d),

(3.3) (‖φ‖L ≤) ‖φ|S ≤ α‖φ‖L.
Proposition 3.13 (Compatibility II). Let (X, d) be a quasi-metric space

with symmetrized distance D; assume (3.3) holds. Set P := SLip0(X, d) and
define, for every Q ∈ F(X,D),

‖Q|FP
:= sup

φ∈P
‖φ‖L≤1

〈Q,φ〉 .

Then for all Q ∈ span(δ(X)),

(3.4) ‖Q|Fa ≤ ‖Q|FP
≤ α‖Q|Fa .

In particular, if for x, y ∈ X we set

DP (x, y) := ‖δy − δx|FP
,
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then for all x, y ∈ X,

(3.5) d(x, y) ≤ DP (x, y) ≤ αd(x, y) .

Terminology (Equivalence of asymmetric norms/quasi-metrics). We
interpret (3.4) as an equivalence relation for the asymmetric norms ‖Q|Fa

and ‖Q|FP
. Similarly, (3.5) means that the quasi-distances d and DP are

equivalent.

Proof of Proposition 3.13. The equivalence between the asymmetric
norms ‖ · |Fa and ‖ · |FP

on the vector space span(δ(X)) follows directly from
their definitions and the inequalities ‖φ‖L ≤ ‖φ|S ≤ α‖φ‖L.

Remark 3.14. The equivalence between the quasi-metric d and the
canonical asymmetrization DP of the symmetrized distance D yields an
equivalence between D and the symmetrization (DP )s of DP .

If in addition to (3.3), we assume that P = SLip0(X, d) induces an asym-
metrization on the free space F(X,D), that is, for every φ ∈ Lip0(X,D)
there exist φ1, φ2 ∈ P such that

φ = φ1 − φ2 and max {‖φ1‖L, ‖φ2‖L} ≤ ‖φ‖L ≤ ‖φ1‖L + ‖φ2‖L,
then the equivalence between D and (DP )s extends to the corresponding
free spaces (see Remark 2.1). In particular, the following result holds.

Proposition 3.15 (Compatibility III). Let (X, d) be a quasi-metric space
and D=ds or D=ds0. Assume that the cone P =SLip0(X, d) of Lip0(X,D)
induces an asymmetrization in F(X,D) and (3.3) holds. Then the asymmet-
ric free spaces Fa(X, d) and Fa(X,DP ) coincide (as sets) with the free space
F(X,D):

Fa(X, d) = F(X,D) = Fa(X,DP ).

Moreover:

(i) The quasi-metrics d and DP are equivalent, as also are the (symmetric)
metrics D, (DP )s and (DP )s0 (symmetrizations of DP ).

(ii) The asymmetric norms ‖ · |Fa(X,d), ‖ · |FP
and ‖ · |Fa(X,DP ) are equiva-

lent.
(iii) The symmetrizations of ‖ · |Fa(X,d), ‖ · |FP

and ‖ · |Fa(X,DP ) are equiva-
lent to ‖ · ‖F .

Proof. We have seen in (3.2) that F(X,D) = Fa(X,DP ) (as sets). By
Proposition 3.13, the asymmetric norms ‖ · |Fa(X,d) and ‖ · |FP

are equivalent
on F = span {δ(x) : x ∈ X}, therefore

Fa(X, d) = F
‖·‖sFa(X,d) = F

‖·‖sFP = F(X,D).

Assertions (i) follow directly from Proposition 3.13. For (ii) it remains to
prove that ‖ · |Fa(X,d) and ‖ · |Fa(X,DP ) are equivalent. We established in (3.5)
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that the quasi-distances d and DP are equivalent. This implies that the
normed cones SLip0(X, d) and SLip0(X,DP ) are isomorphic, which leads to
an isomorphism of the corresponding semi-Lipschitz free spaces. The equiva-
lence between the symmetrizations of the asymmetric norms asserted in (iii)
now follows from (ii). Thanks to Theorem 3.12 they are also equivalent
to ‖ · ‖F .

Remark 3.16. If the value of α associated to the assumption (3.3) is
equal to 1, all of the aforementioned equivalences of Proposition 3.15 become
equalities.

3.4. Properties (S) and (S∗). We have shown that the P -asymmetri-
zation of a metric space (X,D) gives rise to a quasi-metric space, for which
the symmetrization of its asymmetric free space is isomorphic to the free
space (F(X), ‖ · ‖F ). In this subsection we shall be interested in cases in
which the aforementioned isomorphism is in fact an isometry.

Definition 3.17. Let (X,D) be a metric space, L = Lip0(X,D) and
P ⊂ L be a cone. We say that the metric space (X,D) satisfies:

(i) property (S) with respect to P if P induces a non-trivial asymmetrization
DP on X and

SL = SLip0(X,DP ) = P ;

(ii) property (S∗) (respectively, (S∗0)) with respect to P if, in addition to (i),

‖Q‖F = ‖Q|FP
+‖−Q|FP

(respectively, ‖Q‖F = max {‖Q|FP
, ‖−Q|FP

})
for every Q ∈ F(X,D).

The following proposition is straightforward.

Proposition 3.18. Let (X,D) be a metric space.

(i) If (X,D) satisfies (S) with respect to P , then (F(X,D), ‖ · |FP
) and

(Fa(X,DP ), ‖ · |Fa) are identical.
(ii) If (X,D) satisfies (S∗) (resp. (S∗0)) with respect to P , then the ds-

symmetrization (resp. ds0-symmetrization) of (Fa(X,DP ), ‖ · |Fa) given
in (2.8) is isometrically isomorphic to (F(X,D), ‖ · ‖F ).

Before we proceed, let us give examples of metric spaces for which the
above properties fail.

Example 3.19. (i) (Property (S) fails) Let X = R with the usual dis-
tance D(t, s) = |s− t| for t, s ∈ R. Let L be the space of Lipschitz functions
on R vanishing at 0 and set

P :=
{
φ ∈ L :

�

R

φ ∈ [0,+∞]
}
.
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Then P contains the cone L+ of non-negative Lipschitz functions vanishing
at 0, and consequently L = P − P and (2.3) holds. It is easy to see that

DP (t, s) = sup
φ∈P
‖φ‖L≤1

(φ(s)− φ(t)) = |s− t| = D(t, s).

Therefore, SL = L 6= P and (S) fails.
(ii) (Property (S) holds but properties (S∗) and (S∗0) fail) We consider

againX = R equipped with its usual distanceD, and L the space of Lipschitz
functions on R vanishing at 0. We now set

P = L+ := {φ ∈ L : φ ≥ 0}.
It follows easily that

D+(s, t) = sup
φ∈L+

‖φ‖L≤1

(φ(t)− φ(s))

=


|t− s| if 0 ≤ s ≤ t or s ≤ t ≤ 0,

min{t, s− t} if 0 ≤ t ≤ s,
min{|s|, s− t} if t ≤ s ≤ 0,

|t| if t ≤ 0 ≤ s or s ≤ 0 ≤ t.
Let us show that property (S) holds. Indeed, for s 6= 0 we have D+(0, s) = s
and D+(s, 0) = 0. By Lemma 3.10(i), P ⊂ SL ⊂ L. Let ϕ : R → R be any
function vanishing at 0 and assume that for some s 6= 0 we have ϕ(s) < 0.
Then ϕ(0) − ϕ(s) > 0 and D+(s, 0) = 0 reveals that ϕ cannot be in SL,
showing that (S) holds.

Taking any two integers n, k ≥ 2 we have D+(n,−k) = k, D+(−k, n) = n
and D(n,−k) = n + k, which shows that (S∗0) fails. On the other hand,
D+(1, n) = n− 1 = D(1, n) and D+(n, 1) = 1, which shows that (S∗) fails.

A typical example of a metric space for which (S∗) holds is the set of
real numbers R viewed as a pointed metric space, for the cone P = {φ ∈ L :
φ′ ≥ 0} (see Lemma 5.2). To obtain additional examples of metric spaces
satisfying (S∗), let us first recall definitions and results due to Godard [20],
regarding R-trees.

Definition 3.20 (R-tree). An R-tree is a metric space T satisfying:

(i) for any x, y ∈ T , there exists a unique isometry φ =: φxy of the closed
interval [0, d(x, y)] into T such that φ(0) = x and φ(d(x, y)) = y (the
range of this isometry is called the segment and is denoted by [x, y]);

(ii) any one-to-one continuous mapping ϕ : [0, 1] → T has the same range
as the isometry φa,b associated to the points a = ϕ(0) and b = ϕ(1).

Our aim is to prove that subsets of (pointed) R-trees have property (S∗).
The base point of an R-tree is denoted by 0. Then one defines a partial order
4 on T by setting x 4 y if x ∈ [0, y].
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A subset A of T is said to be measurable whenever φ−1
xy (A) is Lebesgue-

measurable for any x and y in T . If A is measurable and S is the segment
[x, y], we write λS(A) for λ(φ−1

xy (A)), where λ is the Lebesgue measure on R.
Let R be the family of all subsets of T which can be written as a finite union
of disjoints segments, and for R =

⋃n
k=1 Sk ∈ R, we set

λR(A) =
n∑
k=1

λSk
(A).

Then
λT (A) = sup

R∈R
λR(A)

defines a measure (called the length measure) on the σ-algebra of T -measur-
able sets such that

�

[x,y]

f(u) dλT (u) =

d(x,y)�

0

f(φxy(t)) dt

for any f ∈ L1(T ) and x, y ∈ T .
Definition 3.21 (Measure on an R-tree). Let T be a pointed R-tree,

and let A be a closed subset of T . We denote by µA the measure defined by

µA = λA +
∑
a∈A

L(a)δa,

where λA is the restriction of the length measure λT to A, δa is the Dirac
measure on a, and L(a) = infx∈A∩[0,a) d(a, x).

Proposition 3.22 ([20, Proposition 2.3]). Let T be a pointed R-tree, and
let A be a closed subset of T containing 0. Then L1(µA)∗ is isometrically
isomorphic to L∞(µA).

Definition 3.23 (Differentiation on an R-tree). Let T be a pointed R-
tree, A a closed subset of T containing 0, and f : A → R. For a ∈ A, let ã
be the unique point in [0, a] such that d(a, ã) = L(a). If L(a) > 0, we say
that f is differentiable at a with derivative

f ′(a) =
f(a)− f(ã)

L(a)
.

If L(a) = 0, we say that f is differentiable at a whenever the limit

lim
x→ã

x∈[0,a)∩A

f(a)− f(x)

d(x, a)

exists, and we denote by f ′(a) the value of this limit.

Proposition 3.24 ([20, pp. 4313–4314]). Let f be a real-valued Lipschitz
function defined on an R-tree T . Then f is differentiable almost everywhere
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on T and
f(x)− f(0) =

�

[0,x]

f ′ dλT

for all x ∈ T .

The following theorem characterizes subsets of R-trees in terms of their
Lipschitz free spaces.

Theorem 3.25 ([20, Theorem 4.2]). Let (X,D) be a complete pointed
metric space. Then the following assertions are equivalent:

(i) F(X) is isometrically isomorphic to a subspace of an L1-space;
(ii) (X,D) isometrically embeds into an R-tree.

We are now ready to prove our result on R-trees.

Proposition 3.26. Let (X,D) be a subset of an R-tree T . Then (X,D)
satisfies property (S∗) with respect to the cone

P = {φ ∈ Lip0(X,D) : φ′ ≥ 0}.

Proof. Thanks to Theorem 3.25, we may use Godard’s embedding, de-
noted by Φ∗, to isometrically identify F(X,D) with a subspace Y of L1(T ),
by sending δx ∈ F(X,D) to Φ∗(δx) = 1[0,x] ∈ L1(T ). This embedding is the
restriction to F(X,D) of the pre-adjoint of the (weak-star to weak-star con-
tinuous) isometry Φ : L∞(T ) → Lip0(T ) defined by Φ(g)(x) =

	
[0,x] g dµX

for any x ∈ T .
Let ι : (X,D)→ (Y, ‖ · ‖1) be the isometric injection induced by Godard’s

embedding Φ. We keep the same notation ‖ · |FP
for the asymmetric hemi-

norm induced in Y by this embedding. The P -asymmetrization of the norm
of Y is given by

‖f |FP
= sup

φ≥0
‖φ‖∞≤1

〈φ, f〉 = sup
φ≥0
‖φ‖∞≤1

�

X

fφ dµX =
�

X

f+ := ‖f |1,+

for all f ∈ Y , where f+(t) = max{f(t), 0} for any t ∈ T . Therefore,
DP (y, x) = ‖ι(x) − ι(y)|FP

= 0 whenever ι(x) ≤ ι(y) almost everywhere,
which is equivalent to x 4 y in the order of T . Then, for ϕ ∈ SL =
SLip0(X,DP ) and x, y ∈ X such that x 4 y, we have ϕ(x) − ϕ(y) ≤
‖ϕ|SDP (y, x) = 0, and therefore x 4 y yields ϕ(x) ≤ ϕ(y).

It is easy to check that Φ−1(ϕ) = ϕ′ ∈ L∞(T ) for all ϕ ∈ L. The mono-
tonicity property of semi-Lipschitz functions proved above yields ϕ′ ≥ 0, so
ϕ belongs to the cone P . Therefore, SL ⊂ P and in view of Lemma 3.10(i)
we deduce that SL = P , hence (X,D) satisfies property (S).
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Let g ∈ F(X,D), and f = Φ∗(g). Then

‖g‖F = ‖f‖1 = sup
‖φ‖∞≤1

〈φ, f〉 = 〈f, sgn(f)〉 = 〈f+, sgn(f)〉 − 〈f−, sgn(f)〉

= ‖f |1,+ + ‖−f |1,+ = ‖g|FP
+ ‖−g|FP

,

where sgn(f) denotes the sign of f . Thus (X,D) satisfies property (S∗).

Combining Propositions 3.18 and 3.26, we obtain

Proposition 3.27. Let (X,D) be a subset of an R-tree. Then there exists
a canonical asymmetrization DP of D such that the symmetrization of the
semi-Lipschitz free space Fa(X,DP ) is isometrically isomorphic to F(X,D).

4. Linearization of semi-Lipschitz functions: a universal prop-
erty. As was pointed out in Remark 2.31, Definition 2.26 (as well as Defini-
tions 2.27 and 2.32) can be readily generalized to functions between quasi-
metric spaces, as well as to the case of semi-Lipschitz functions with values
in a normed cone.

Let (C, ‖ · |) be a normed cone, and denote by dce(u, v) its corresponding
extended quasi-metric (cf. Proposition 2.20). We next introduce the notion
of semi-Lipschitz function with values in C.

Definition 4.1 (Semi-Lipschitz function with values in a normed cone).
Let (X, d) be a quasi-metric space. A function f : X → C is said to be a
semi-Lipschitz function if there exists L ≥ 0 such that for all x, y ∈ X,

(4.1) dce(f(y), f(x)) ≤ Ld(y, x).

In this case, the semi-Lipschitz conic norm of a function f : X → C is
defined by

‖f |S := inf {L > 0 : (4.1) holds}.
The class of semi-Lipschitz functions on X with values in C is denoted as
SLip(X,C). Also, if x0 ∈ X is a base point, we define the asymmetric pivot
space

SLip0(X,C) := {f ∈ SLip(X,C) : f(x0) = 0}.
As in Proposition 2.28, a function f : X → C is semi-Lipschitz if and

only if ‖f |S < ∞. Moreover, if d is a quasi-metric and f : X → C is
semi-Lipschitz, then

‖f |S = sup
x 6=y

max {dce(f(y), f(x)), 0}
d(y, x)

= sup
x 6=y

dce(f(y), f(x))

d(y, x)
<∞.

If d is a quasi-hemi-metric, we use the same expression for ‖f |S as that in
Proposition 2.28(ii).

Given a quasi-metric space (X, d) with a base point x0, consider the
isometric injection δ : (X, d) → (SLip0(X)∗, ‖ · |∗) of Proposition 3.3. We
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next show that the semi-Lipschitz free space over a quasi-metric space (X, d)
with a base point x0 is characterized by the following universal property,
which is an analog of the Lipschitz case (see [22, Lemma 2.2]).

Theorem 4.2 (Linearization of semi-Lipschitz functions). Let (X, d)
be a quasi-metric space with a base point x0. Suppose that (C, ‖ · |) is a
normed cone and f ∈ SLip0(X,C). Then there exists a unique linear map
Tf : Fa(X)→ C extending f , i.e. Tf ◦ δ = f and ‖Tf | = ‖f |S.

Proof. If f ∈ SLip0(X,C), then Tf : Fa(X)→ C∗∗ defined by

Tf (γ)(φ) = γ(φ ◦ f) (γ ∈ Fa(X), φ ∈ C∗)
belongs to the set of bounded linear mappings from Fa(X) into C∗∗, and

‖Tf | = sup
‖γ|∗≤1

‖Tf (γ)|∗∗ = sup
‖γ|∗≤1

sup
‖φ|∗≤1

Tf (γ)(φ)

= sup
‖φ|∗≤1

sup
‖γ|∗≤1

γ(φ ◦ f) = sup
‖φ|∗≤1

‖φ ◦ f |S ≤ ‖f |S .

Observe that the last inequality is achieved by taking into account that φ is
linear and

sup
‖φ|∗≤1

‖φ ◦ f |S = sup
‖φ|∗≤1

sup
d(y,x)>0

{
(φ ◦ f)(x)− (φ ◦ f)(y)

d(y, x)

}
= sup
‖φ|∗≤1

sup
d(y,x)>0

{
φ(f(x)− f(y))

d(y, x)

}
≤ sup
‖φ|∗≤1

‖φ|∗‖f |S = ‖f |S .

(By abuse of notation, we still denote by ‖Tf | = sup‖γ|∗≤1 ‖Tf (γ)|∗ the conic
norm of the linear function Tf : Fa(X)→C∗∗.) Furthermore, if iC : C→C∗∗

is the canonical injection, we have

〈Tf (δ(x)), φ〉 = Tf (δ(x))(φ) = δ(x)(φ ◦ f)

= φ(f(x)) = iC(f(x))(φ) = 〈iC(f(x)), φ〉
for every x ∈ X and φ ∈ C∗, and hence Tf (δ(x)) = iC(f(x)) ∈ iC(C)
for every x ∈ X. This yields that Tf (γ) ∈ iC(C) for every γ ∈ Fa(X).
Identifying iC(f(x)) ∈ iC(C) with f(x) ∈ C, we have Tf ∈ L(Fa(X), C)
and Tf ◦ δ = f . So, since Tf ◦ δ = f and δ is an isometry (Proposition 3.3),
we deduce that

‖f |S = sup
d(y,x)>0

{
dce(f(y), f(x))

d(y, x)

}
= sup

d(y,x)>0

{
‖Tf (δ(x))− Tf (δ(y))|

d(y, x)

}
= sup

d(y,x)>0

{
‖Tf (δ(x)− δ(y))|

d(y, x)

}
≤ sup

d(y,x)>0

{
‖Tf |‖δ(x)− δ(y)|∗

d(y, x)

}
= ‖Tf | sup

d(y,x)>0

{
‖δ(x)− δ(y)|∗

‖δ(x)− δ(y)|∗

}
= ‖Tf |.
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Thus ‖Tf | = ‖f |S . Assume now that there exists a bounded linear mapping
Sf : Fa(X) → C such that Sf ◦ δ = f . Then it is clear that Sf (δ(x)) =
Tf (δ(x)) for all x ∈ X and, by the definition of Fa(X), it follows that
Sf = Tf .

Remark 4.3 (Universal property). Equivalently, the condition Tf ◦δ = f
means that the following diagram commutes:

X

Fa(X) C

f
δ

Tf

Furthermore, as a consequence of the universal property that we have just
proved, it is not difficult to establish that the mapping f 7→ Tf is an isomet-
ric isomorphism of SLip0(X,C) into the cone of bounded linear mappings
L(Fa(X), C), which constitutes another proof of Theorem 3.5 for the par-
ticular case C = R. Indeed, we already know that the mapping f 7→ Tf is
an isometry of SLip0(X,R) onto Fa(X)∗. Now, given T ∈ L(Fa(X), C), we
can define a mapping f : X → C by f(x) = T (δ(x)) for all x ∈ X. Since

dce(f(y), f(x)) = dce
(
T (δ(y)), T (δ(x))

)
≤ ‖T | ‖δ(x)− δ(y)|∗ = ‖T |d(y, x)

for all x, y ∈ X, the function f is in SLip0(X,C). By the universal property
of Fa(X), there is a unique operator Tf ∈ L(Fa(X), C) such that Tf ◦δ = f .
Hence T = Tf and thus the mapping f 7→ Tf is a surjective isometry.

The proof of the following result is immediate from Theorem 4.2.

Corollary 4.4 (Linearization of quasi-metric morphisms). Let (X1, d1)
and (X2, d2) be pointed quasi-metric spaces, and f ∈ SLip0(X1, X2). Then
there is a unique linear map T̂f : Fa(X1) → Fa(X2) such that T̂f ◦ δX1

= δX2 ◦ f , i.e. the diagram

X1 X2

Fa(X1) Fa(X2)

δX1

T̂f

f

δX2

commutes, and ‖T̂f | = ‖f |S, where δX1 and δX2 are the isometric injec-
tions of the quasi-metric spaces (X1, d1) and (X2, d2) to their free spaces (cf.
Proposition 3.3).
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For the following proposition, we refer to the reader to [31] for a survey
on the extensions of semi-Lipschitz functions on quasi-metric spaces.

Proposition 4.5 (The free space of a quasi-metric subspace). Let (X, d)
be a quasi-metric space with a base point x0, and consider a subspace (M,d)
of (X, d) such that x0 ∈ M . Then Fa(M) is isometrically isomorphic to a
subspace of Fa(X).

Proof. Let T̂i : Fa(M) → Fa(X) be the linearization given by Corol-
lary 4.4 of the identity mapping i : M → X. Since ‖T̂i| = ‖i|S = 1,
we know that ‖T̂i(Q)|∗Fa(X) ≤ ‖Q|

∗
Fa(M). For the opposite inequality, con-

sider Q ∈ span(δ(M)). Clearly, T̂i(Q) = Q ∈ span(δ(X)). Then, for any
f ∈ SLip(M), the expression f̃(x) = infm∈M{f(m) + ‖f |Sd(m,x)}, x ∈ X
(which is an adaptation of the McShane extension of Lipschitz maps), pro-
vides a semi-Lipschitz extension with the same associated conic norm ‖f |S .
It follows that
‖Q|∗Fa(M) = sup

‖f |S≤1
f∈SLip(M)

〈Q, f〉 ≤ sup
‖f |S≤1

f∈SLip(X)

〈Q, f〉 = ‖Q|∗Fa(X) = ‖T̂i(Q)|∗Fa(X).

By continuity of T̂i (and density of span(δ(M)) in Fa(M)), we can extend
the previous inequality to any Q ∈ Fa(M).

Let us consider another conic norm on span(δ(X)) (and on Fa(X)), which
is based on a variant of the so-called Kantorovich–Rubinstein norm (see [12,
Section 8.4.5]).

Example 4.6 (Kantorovich–Rubinstein conic norm). Let X 6= ∅ be a set
equipped with a quasi-metric d and a base point x0. For γ, γ ∈ span(δ(X))
consider all representations γ − γ =

∑n
i=1 λi(ŷi − ẑi), where λi ≥ 0 and

possibly some ŷi or ẑi are equal to x̂0 = 0, and set
dKR(γ, γ) := inf {λ1d(z1, y1) + · · ·+ λnd(zn, yn)}.

Then ‖γ|KR := dKR(x̂0, γ) is an asymmetric norm on span(δ(X)) and
dKR(x̂, ŷ) = d(y, x) for all x, y ∈ X.

Moreover, ‖γ|KR coincides with the restriction of the conic norm ‖ · |∗ of
SLip0(X)∗ to span(δ(X)) and thus extends to Fa(X). Indeed, if ‖ · |′ is a
conic norm on span(δ(X)) satisfying ‖δ(x)−δ(y)|′ ≤ d(y, x) for all x, y ∈ X,
then every γ = λ1(ŷ1 − ẑ1) + · · ·+ λn(ŷn − ẑn) accomplishes

‖γ|′ = ‖λ1(ŷ1 − ẑ1) + · · ·+ λn(ŷn − ẑn)|′

≤ ‖λ1(ŷ1 − ẑ1)|′ + · · ·+ ‖λn(ŷn − ẑn)|′

≤ λ1d(z1, y1) + · · ·+ λnd(zn, yn),

which shows that ‖γ|′ ≤ ‖γ|KR. In particular, ‖γ|∗ ≤ ‖γ|KR (since the conic
norm ‖ · |∗ on Fa(X) satisfies ‖δ(x)−δ(y)|∗ = d(y, x) for all x, y ∈ X). Hence
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d(y, x) = ‖δ(x)− δ(y)|∗ ≤ ‖δ(x)− δ(y)|KR ≤ d(y, x) for all x, y ∈ X, which
implies that

‖δ(x)− δ(y)|KR = d(y, x) for all x, y ∈ X.
Consider now the mapping L : X → (span(δ(X)), ‖ · |KR) sending x to δ(x),
which is clearly an isometric embedding. By the universality property of
Fa(X) (see Theorem 4.2), L extends to L̃ : Fa(X) → (span(δ(X)), ‖ · |KR)
and ‖ · |KR ≤ ‖ · |∗, so the conic norms ‖ · |KR and ‖ · |∗ are the same.

5. Examples of semi-Lipschitz free spaces. Let us now illustrate
the semi-Lipschitz free space for three concrete examples of quasi-metric
spaces: a finite quasi-metric space consisting of three points, the set of natural
numbers N with a discrete quasi-metric and the set of real numbers R under
the quasi-hemi-metric defined by the canonical conic hemi-norm u. We also
include an example-scheme stemming from canonical asymmetrizations of
subsets of R-trees.

5.1. A 3-point quasi-metric space. Let X = {x0, x1, x2} be a set of
three points, endowed with the following quasi-metric (in a general form):

ρ(x0, x1) = a01, ρ(x1, x0) = a10, ρ(x0, x2) = a02,

ρ(x2, x0) = a20, ρ(x1, x2) = a12, ρ(x2, x1) = a21.

Taking x0 as a base point, it is clear that the set of semi-Lipschitz functions
vanishing at x0 can be algebraically identified with R2, i.e. any function
g : X → R with g(x0) = 0 is in SLip0(X), with associated semi-Lipschitz
norm equal to

‖g|S = max

{
g1 − g2

a21
,
g2 − g1

a12
,
g1

a01
,
g2

a02
,
−g1

a10
,
−g2

a20

}
,

where g1 = g(x1) and g2 = g(x2). Hence, the unit ball B of SLip0(X, ρ) ' R2

is the polygon generated by the linear inequalities defined in terms of the
asymmetric norm. The dual cone of (SLip0(X), ‖ · |S) is the vector space R2

endowed with the asymmetric norm determined by the Minkowski gauge of
the asymmetric polar Bo of the unit ball B of SLip0(X, ρ), that is,

Bo = {X ∈ R2 : 〈g,X〉 ≤ 1, ∀g ∈ B}.
As the evaluation functionals δ(x1), δ(x2) generate the vector space R2,

it follows that Fa(X, ρ) is isomorphic to R2, with the asymmetric norm
determined by the aforementioned Minkowski gauge. Furthermore, for any
g ∈ SLip0(X), its linearization Tg : Fa(X)→ R is given by

Tg(λ1x̂1 + λ2x̂2) = λ1g(x1) + λ2g(x2),

with λi ∈ R, i = 1, 2. Notice that the unit balls of SLip0(X, ρ) and its dual
cone have at most six extreme points (see Figure 2).
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(0,1)

(1,0)

(-3/2,-1)
(0,-1)

(-3/2,-1/2)

(1,1)

(-2/3,0)

(1,0)

(0,-1)

(0,1)

(-1,1)

(1,-1)

Fig. 2. Representation of the unit ball of SLip0(X, ρ) and its asymmetric polar, respec-
tively, with X = {x0, x1, x2}, ρ(x1, x0) = 3

2
and ρ(xi, xj) = 1 for i 6= j with (i, j) 6= (1, 0)

5.2. N as a metric or quasi-metric space. We now consider the set N
of natural numbers (including 0) endowed with the quasi-metric defined by

d(n,m) =

{
1 if m /∈ {0, n},
0 if m ∈ {0, n}.

We fix x0 = 0 as a base point. Let y = (y(n))n ∈ SLip0(N, d). Then y(0) = 0
and the semi-Lipschitz condition implies that the sequence (y(n))n is non-
negative: indeed,

y(0)− y(n) = −y(n) ≤ ‖y|S d(n, 0) = 0

and
y(n)− y(0) = y(n) ≤ ‖y|S d(0, n) = ‖y|S .

Therefore we have (y(n))n ∈ `∞(N) and ‖y|S ≥ ‖y‖∞. Moreover,

‖y|S = sup
d(n,m)>0

y(m)− y(n)

1
≤ sup

d(n,m)>0
y(m) = ‖y‖∞,

since y(n) ≥ 0 for all n ∈ N. It is easy to check than any bounded non-
negative sequence satisfies the semi-Lipschitz condition, so it follows that
SLip0(N, d) is (`∞+ (N), ‖·‖∞), the positive cone of `∞(N). The dual norm on
`∞+ (N)∗ is given by

‖ϕ|∗ = sup
(yn)∈`∞+ (N)

‖(yn)‖∞≤1

ϕ((yn)).

The set {δ(n) : n ∈ N} ⊂ `∞+ (N)∗ of evaluation functionals can be iden-
tified with the canonical basis of `1(N), so the linear span of δ(N) is the
set c00(N) of finitely supported sequences. On this set, the dual norm of
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SLip0(N, d)∗ becomes

‖(xn)|∗ =
∑
n∈N

max {xn, 0} =
∑
n∈N

x+
n =: ‖(xn)|1,+,

since the supremum on the dual norm is taken over the positive cone of
`∞(N) (and it is attained at the sequence (sgn(xn) ∨ 0)). It is easy to
check that the symmetrization of the asymmetric norm ‖ · |1,+ is equiva-
lent to the usual norm of `1(N), and therefore the asymmetric normed space
(`1(N), ‖ · |1,+) satisfies the conditions required to make it the bicompletion
of (c00(N), ‖ · |1,+). Therefore, the semi-Lipschitz free space Fa(N, d) is iso-
metrically isomorphic to (`1(N), ‖ · |1,+) and the linearization Ty of a function
y = (y(n))n ∈ SLip0(N, d) can be obtained from

Ty(en) = y(n), n = 1, 2, . . . ,

where en is the nth element of the canonical basis of `1(N).
It is well known that the free space F(N, D) of N equipped with the

distance

D(m,n) =


2 if n /∈ {0,m},
1 if n = 0 or m = 0,

0 if n = m

is isometric to `1(N) (see, for instance, [20, 21, 39]), and

L = Lip0(N, D) =

{
y = yn ∈ RN : ‖y‖L :=

y(n)− y(m)

D(m,n)
<∞

}
is isometric to `∞(N). If m,n ∈ N, then the canonical asymmetrization of D
(Definition 2.5) is

D+(m,n) = ‖δ̂(n)− δ̂(m)|F+ = sup
y∈`∞(N)+
‖y‖∞≤1

〈y, en − em〉 = sup
0≤yn≤1

∑
k≥0

ykxk,

where xn = 1, xm = −1, and xk = 0, for k /∈ {n,m}. According to Theo-
rem 3.12, F(N, D) = F(N, d) (as sets), with d = D+, SLip0(N, d) = `∞+ (N) =
SLip0(N, D+) and ‖x|Fa = ‖x|F+ =

∑
n≥0 x

+
n .

5.3. The quasi-metric space (R, u). Note that since the symmetrized
distance dsu is equal to the usual metric of R (which can be seen as a pointed
R-tree), F(R, u) can be obtained from Proposition 3.18. We include a direct
self-contained proof, which does not rely on Godard’s work on R-trees. Let
us start with some preliminary results.

Lemma 5.1 (Semi-Lipschitz functions in (R, u)). Let f ∈ SLip0(R, u).
Then f is a non-decreasing function in Lip0(R).

Proof. By Remark 2.33, f is Lipschitz on (R, us) = (R, |·|), and therefore
is differentiable almost everywhere. Note that if x ≤ y, then du(y, x) = 0, so
f(x) ≤ f(y). As f is non-decreasing, f ′ ≥ 0.
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Lemma 5.2. The normed cone (SLip0(R, u), ‖ · |S) is isometrically iso-
morphic to (L∞+ (R), ‖ · ‖∞).

Proof. Consider the mapping T : (L∞+ (R), ‖ · ‖∞) → (SLip0(R, u), ‖ · |S)
defined by

Tg(x) =

x�

0

g dλ =
�
1[0,x]g,

which is surjective by the previous analysis. This mapping is well defined
since for x ≥ y we have

Tg(x)− Tg(y) =

x�

y

g dλ ≤ ‖g‖∞(x− y) = ‖g‖∞du(y, x).

If x < y then

Tg(x)− Tg(y) = −
y�

x

g dλ ≤ 0 = du(y, x).

This also proves that ‖Tg|S ≤ ‖g‖∞. On the other hand, let x ∈ R be a
point of differentiability of Tg. Then

Tg′(x) = lim
y↘x

Tg(y)− Tg(x)

y − x
≤ sup

x<y

Tg(y)− Tg(x)

y − x
= ‖Tg|S ,

and since clearly (Tg)′ = g, we conclude that ‖g‖∞ ≤ ‖Tg|S and that T is
an isometric isomorphism.

For the following result, if f ∈ L1(R), recall the notation ‖f |1,+ =	
R f

+dλ, where f+(x) = max {f(x), 0} and λ denotes the Lebesgue mea-
sure, which was used in Lemma 2.43.

Theorem 5.3. The semi-Lipschitz free space Fa((R, u)) of the asymmet-
ric hemi-normed space (R, u) is isometrically isomorphic to (L1(R), ‖ · |1,+).

Proof. By Lemma 2.43, we know that (L1(R), ‖ · |1,+) is the asymmetric
predual of (L∞+ (R), ‖ · ‖). Therefore we only need to check that the isome-
try T : (L∞+ (R), ‖ · ‖∞) → (SLip0(R, u), ‖ · |S) defined in the previous proof
is (w∗-w∗)-continuous; then Lemma 2.46 will give us an isometry between
the preduals Fa(R, u) and (L1(R), ‖ · |1,+). So, let (gα) be a net on L∞+ (R)
converging to g in the w∗-topology induced by the predual (L1(R), ‖ · |1,+),
and take x ∈ R and the corresponding x̂ ∈ Fa(R, u). Then

(5.1) 〈Tgα, x̂〉 =

x�

0

gα = 〈gα,1[0,x]〉 → 〈g,1[0,x]〉,

by the w∗-convergence of (gα). Now, for an arbitrary µ ∈ Fa(X) we can
take a sequence (µn) ⊂ span(δ(R)) such that µn → µ in the symmetrized
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topology of SLip0(R, u)∗, and therefore

(5.2) 〈Tgα, µ〉 = lim
n
〈Tgα, µn〉,

where the last convergence is with respect to the usual norm on R, thanks to
the symmetrized | · |-continuity of semi-Lipschitz functions. Equations (5.1)
and (5.2) yield 〈Tgα, µ〉 → 〈Tg, µ〉 for the norm topology in R, so T is
(w∗-w∗)-continuous, and by Lemma 2.46 there exists an isometric isomor-
phism between (Fa(R, u), ‖ · |∗) and (L1(R), ‖ · |1,+).

As we show in Example 2.6, du(x, y) = u(y − x) is a canonical asym-
metrization of D(x, y) = |y − x| for the cone P = {φ ∈ L : φ′ ≥ 0}. Notice
that the canonical asymmetrization D+, based on the cone P = L+, gives a
different asymmetrization.

5.4. Canonical asymmetrization of subsets of R-trees. Proposi-
tions 3.18 and 3.26 provide a variety of examples of quasi-metric spaces
(X, d) whose corresponding semi-Lipschitz free spaces are isometrically iso-
morphic to subspaces of (L1(T ), ‖ · |1,+), where T is an R-tree containing
the symmetrized space (X, ds). We can obtain more specific examples by
applying the following recent result from [3, Theorem 1.1], which gives a
characterization of all complete metric spaces whose Lipschitz free space is
isometric to a subspace of `1(Γ ) for some set Γ .

Theorem 5.4. Let (X,D) be a complete pointed metric space. Then the
following are equivalent:

(i) F(X) is isometrically isomorphic to a subspace of `1(Γ ) for some set Γ ;
(ii) (X,D) is a subset of an R-tree such that λ(X) = 0 and λ(Br(X)) = 0,

where λ is the length measure and Br(X) is the set of branching points
of X.

Since every metric space as above satisfies property (S∗) (see Proposi-
tion 3.26), we deduce that the corresponding semi-Lipschitz free spaces are
isometrically isomorphic to (`1(Γ ), ‖ · |1,+) for some set Γ .

A careful reader might have observed that in all examples presented in
this section, the semi-Lipschitz free space of the given quasi-metric space can
be easily obtained from the Lipschitz free space of its symmetrization. We
shall now show that this is always the case, provided assumption (H) below
holds. (This is the case in all of the aforementioned examples.)

Using the same notation as in the second part of Subsection 3.3, let
(X, d) be a quasi-metric space and (X,D) its symmetrization (D is either
ds or ds0). Then P := SLip0(X, d) is a cone in Lip0(X,D) and ‖φ‖L ≤ ‖φ|S
for all φ ∈ P . Let us assume:
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(H) For every φ ∈ Lip0(X,D) there exist φ1, φ2 ∈ SLip0(X, d) such that

φ = φ1 − φ2 and max {‖φ1|S , ‖φ2|S} ≤ ‖φ‖L.
Since ‖φi‖L ≤ ‖φi‖S for i ∈ {1, 2} and in view of the triangular inequality

‖φ‖L = ‖φ1 − φ2‖ ≤ ‖φ1‖L + ‖φ2‖L,
we deduce that (H) implies in particular that P induces a canonical asym-
metrization in F(X,D) (in the sense of Remark 2.1).

Proposition 5.5. Let (X, d) be a quasi-metric space and assume (H)
holds. Then the semi-Lipschitz free space Fa(X, d) coincides (as a set) with
the free space F(X,D) of the symmetrized space (X,D) and is endowed with
the asymmetric norm

‖Q| = sup
‖φ|S≤1

φ∈SLip0(X,d)

〈Q,φ〉 for all Q ∈ Fa(X, d).

Proof. Following the method used in Subsection 3.3, we start by identi-
fying the sets

F = span {δ(x) : x ∈ X} ⊂ SLip0(X, d)∗,

F̂ = span {δ̂(x) : x ∈ X} ⊂ Lip0(X,D)∗

where δ and δ̂ are the canonical injections of (X, d) into SLip0(X, d)∗ and of
(X,D) into Lip0(X,D)∗, respectively.

It suffices to prove that the ds-symmetrization ‖ · ‖s of the asymmetric
norm ‖ · | is equivalent to ‖ · ‖F . Consider Q ∈ F . Since ‖φ|S ≥ ‖φ‖L for any
φ ∈ SLip0(X, d), it follows (by the definition of each norm) that ‖Q| ≤ ‖Q‖F ,
so ‖Q‖s ≤ 2‖Q‖F . Conversely, take φ in the unit ball of Lip0(X,D) such that
‖Q‖F = 〈Q,φ〉, and consider φ1, φ2 ∈ SLip0(X, d) such that φ = φ1 − φ2,
with max {‖φ1|S , ‖φ2|S} ≤ ‖φ‖L ≤ 1. Then

‖Q‖F = 〈Q,φ〉 = 〈Q,φ1〉+ 〈−Q,φ2〉 ≤ ‖Q|+ ‖ −Q| := ‖Q‖s.

The result follows from Fa(X, d) = F
‖·‖sFa = F

‖·‖F = F(X,D).

6. Conclusions, future research. It seems to be of paramount impor-
tance to relate symmetric and asymmetric structures in a way that remains
compatible with the embeddings to the corresponding free spaces. At the
same time, a given asymmetric space might not be equal to a canonical
asymmetrization of some (symmetric) metric space. It is even unknown if
a given quasi-distance is always topologically equivalent to a quasi-distance
with this property.

Let us observe that there are several ways to symmetrize a quasi-distance
and obtain (symmetric) metric spaces that generate the same underlying
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topology. Indeed, let φ : R2
+ → [0,∞) be any non-negative continuous func-

tion satisfying φ(a, b) ≥ max {a, b} and assume further that φ is symmetric
(i.e. φ(a, b) = φ(b, a) for all a, b ≥ 0), coercive (i.e. with bounded sublevel
sets) and φ(a, b) = 0 if and only if a = b for all a, b ≥ 0. Then for every
quasi-distance d, we obtain a symmetric distance dφ via

dφ(x, y) = φ(d(x, y), d(y, x)) for all x, y ∈ X.

(In Definition 2.7 we have only focused on the cases φ0(a, b) = max{a, b}
and φ(a, b) = a+b.) Concerning the inverse procedure (asymmetrization), we
have mainly been based on the lattice structure of the non-linear dual of the
metric spaces, which is used to induce a canonical asymmetrization on the
initial metric space (X,D). However, in some cases, canonical asymmetriza-
tions of the same space may look completely different (see Example 3.19). In
a similar spirit, starting from an asymmetric space (X, d) and considering its
symmetrization (X,D), it is not known whether or not the set SLip0(X, d) of
semi-Lipschitz functions, viewed as a cone in Lip0(X,D), induces a canoni-
cal asymmetrization on (X,D) (cf. Proposition 3.15) and in particular when
conditions (3.3) or (H) hold. Therefore, many natural questions still remain
unexplored and the whole panorama is far from being completely understood.

Another topic that merits to be further explored is the particular case
of normed spaces. Indeed, considering a normed space (X, ‖ · ‖) as a metric
space leads to a canonical asymmetrization DP of its distance D(x, y) =
‖y − x‖. If X = R (therefore, F(R) = L1(R)), then taking P = L∞+ (R)
we observe that the asymmetrized distance DP = u is associated to an
asymmetric norm; see Subsection 5.3. It would be interesting to determine
which normed spaces admit canonical asymmetrizations of their norms in
this way, and inversely, characterize asymmetric norms that can be obtained
via this procedure.

Let us finish this discussion with a more philosophical comment. Con-
vexity is a fundamental notion of variational analysis whose definition relies
on the linear structure. It particular, it is not distance-related, in sharp con-
trast with usual differential calculus, Lipschitz functions, Riemann/Finsler
geometry and metric generalizations of convexity. In particular, the class of
Lipschitz functions is clearly affected if we consider asymmetric distances or
asymmetrizations of the space. In both cases semi-Lipschitz functions are
appropriate morphisms to describe properties of the space (see [14] e.g.) and
this work outlines a natural way to define a notion of a quasi-metric free
space as well as of a canonical asymmetrization of a space. Let us recall
that in a metric space (X,D), every Lipschitz function ϕ : K → R can be
extended to a Lipschitz function ϕ̃ : X → R without any increase in the
Lipschitz constant, that is, Lip(ϕ,K) = Lip(ϕ̃,X). Indeed, McShane [30]
gave a concrete formula (based on inf-convolution) to obtain such an exten-
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sion, called minimal extension. In a completely analogous way one constructs
minimal semi-Lipschitz extensions for real-valued semi-Lipschitz functions
defined on a quasi-metric space (X, d) maintaining the semi-Lipschitz con-
stant (see proof of Proposition 4.5). An important instance of minimal Lips-
chitz extension is the so-called AMLE (absolutely minimal Lipschitz exten-
sion), which in the case of a Euclidean space corresponds to the solution
of the infinite-Laplacian operator [26]. The notion of absolutely minimal
semi-Lipschitz extension makes perfect sense in an asymmetric framework,
but it is not known whether or not such an extension always exists and, in
the case of a finite-dimensional asymmetric normed space, whether it can be
identified to a solution of some differential type operator. Concerning this
latter topic, for the time being there is no clear way to deal with differentia-
bility in asymmetric structures. Doing this in a satisfactory manner seems
to be somehow related to the fact that the asymmetric space is canonical,
since in this case, and only there, one would expect to obtain a canonical
asymmetric differential calculus. Formalizing and proving this meta-theorem
is mathematically challenging, but at the same time it will shed new light on
asymmetric analysis, a topic on which very little is known and which might
be relevant in the future.
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Shortly before the conclusion of this work, it came to our knowledge that
L. Candido, P. Kaufmann and J. Romão have been working on this topic,
and independently obtained results which partially overlap with some of the
ones presented here; see [10].
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