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Abstract: Early and innovative diagnostic strategies are required to predict the risk of developing
pre-eclampsia (PE). The purpose of this study was to evaluate the performance of gingival crevicular
fluid (GCF) placental alkaline phosphatase (PLAP) concentrations to correctly classify women at
risk of PE. A prospectively collected, retrospectively stratified cohort study was conducted, with
412 pregnant women recruited at 11–14 weeks of gestation. Physical, obstetrical, and periodontal
data were recorded. GCF and blood samples were collected for PLAP determination by ELISA assay.
A multiple logistic regression classification model was developed, and the classification efficiency of
the model was established. Within the study cohort, 4.3% of pregnancies developed PE. GCF-PLAP
concentration was 3- to 6-fold higher than in plasma samples. GCF-PLAP concentrations and systolic
blood pressure were greater in women who developed PE (p = 0.015 and p < 0.001, respectively).
The performance of the multiparametric model that combines GCF-PLAP concentration and the
levels of systolic blood pressure (at 11–14 weeks gestation) showed an association of systolic blood
pressure and GCF-PLAP concentrations with the likelihood of developing PE (OR:1.07; 95% CI
1.01–1.11; p = 0.004 and OR:1.008, 95% CI 1.000–1.015; p = 0.034, respectively). The model had a
sensitivity of 83%, a specificity of 72%, and positive and negative predictive values of 12% and
99%, respectively. The area under the receiver operating characteristic (AUC-ROC) curve was 0.77
and correctly classified 72% of PE pregnancies. In conclusion, the multivariate classification model
developed may be of utility as an aid in identifying pre-symptomatic women who subsequently
develop PE.
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1. Introduction

Pre-eclampsia (PE) is defined as the new onset of hypertension and proteinuria or
as the new onset of hypertension and significant end-organ dysfunction with or without
proteinuria after 20 weeks of gestation in a previously normotensive woman [1–5]. This
hypertensive disorder complicates 3–5% of all pregnancies and is one of the leading causes
of maternal morbidity and mortality [5–7]. The severity of adverse outcomes is strongly
associated with gestational age at onset. In approximately 90% of cases, PE onset after
34 weeks of gestation is associated with good health outcomes, although the mother
and newborn are at increased risk of serious morbidity or mortality when compared to
normotensive pregnancies [8]. Early presentation of PE (i.e., <34 weeks) is associated with
poor placentation and dysfunctional spiral artery remodeling [9–11] and greater risk of
adverse outcome, and it is associated with moderately preterm, very preterm, or extremely
preterm birth [12–17]. In addition, long-term, women who developed PE are at increased
risk of developing cardiovascular and renal diseases [18].

Multiple etiologies have been proposed to play a role in the pathophysiology of PE [19],
principally related to an abnormal placentation and utero placental ischemia [20,21] that,
in turn, are associated with an increased release of cellular debris from the trophoblast into
the maternal circulation that contributes to systemic inflammation, endothelial dysfunction,
and the clinical manifestation of the disease [22,23]. Until now, the only effective treatment
of PE is preterm delivery of the fetus, thus removing the deleterious effects of the placenta
on maternal physiology [24].

The early identification of women at risk of PE would allow for the development
and evaluation of timely intervention strategies to limit immediate and long-term adverse
outcomes [25,26]. Multiparametric algorithms for the identification of women at risk of
developing PE have been previously reported [27–31]; they are based on combinations
of maternal risk factors, uterine artery Doppler pulsatility, and/or different blood-borne
biomarkers [32–34]. The development of risk assessment algorithms may increase the
adoption of such testing in clinical care and improve the patient management of PE-risk
pregnancies [32,35].

Recently, we identified placental molecules in gingival crevicular fluid (GCF) as a
source of surrogate biomarkers of placental function [36–38], and the determination of
such biomarkers in GCF may serve as a minimally invasive source of biomarkers for the
prediction of placenta-originated diseases. Among those placental molecules, placental
alkaline phosphatase (PLAP) has been linked to perinatal diseases such as preterm deliv-
ery [39,40] and PE [41,42]. PLAP is a membrane-bound glycoprotein [43] expressed by the
maternal microvillous membrane of the syncytiotrophoblast [42,44,45]. The concentration
of PLAP in maternal blood increases throughout gestation in normal pregnancy and has
been implicated in regulating fetal/maternal metabolism, the transport of nutrients, and
placental differentiation [42,44]. Moreover, in a previous case-control study, we reported
significantly higher concentrations of GCF-PLAP in pregnant women with clinical PE
during the third trimester compared to those with a normal pregnancy, even after adjusting
for smoking status, body mass index, and periodontal diagnosis [36].

The aims of the present study are (1) to determine whether or not GCF-PLAP con-
centrations are increased during early pregnancy in pregnant women who subsequently
develop PE and (2) to assess the classification performance of GCF-PLAP concentrations
when combined with other maternal clinical parameters for the identification of pregnan-
cies who will develop PE.



Diagnostics 2021, 11, 661 3 of 12

2. Material and Methods
2.1. Study Design and Participants

A prospectively collected, retrospectively stratified, observational cohort study was
performed between January 2018 and March 2019 at a public health center (Hospital Sótero
del Río, Santiago, Chile). Women with a singleton pregnancy less than 14 weeks of gestation
and with confirmed fetal viability were invited to participate in the study. Patients under
the age of 18 or with an intention of delivery at other medical centers or pregnancies with
incomplete follow-up until delivery or with an unsatisfactory periodontological evaluation
or GCF-PLAP measurements were excluded from the present research. The STROBE
(Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for
reporting cohort studies adhered to the design of the study. The study was approved by
the Scientific and Ethical Review Boards of the Hospital Sótero del Río and the Universidad
de Los Andes, and was conducted in accordance with the Helsinki Declaration of 1973, as
revised in 2003. All patients were fully informed and consented in writing to participate in
this study prior to sampling and evaluation.

A detailed maternal/obstetrical history and periodontal evaluation were scheduled.
Maternal systolic, diastolic, and mean arterial blood pressure, weight, and height were
measured with standardized instruments. One dentist, specially trained for this study, eval-
uated all participants and recorded periodontal probing depth (PPD), clinical attachment
level (CAL), bleeding on probing (BOP), plaque index (PI), and visible plaque accumula-
tion, all measured along the gingival margin and recorded as the presence (+) or absence
(−) of plaque and periodontal inflamed surface area (mm2) (PISA).

2.2. Definitions

In this study, pre-eclampsia (PE) was defined as a new-onset persistent blood pressure
(systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg) and protein-
uria (based on a 24 h urine collection with a total protein excretion > 300 mg or a urinary
spot measurement of protein-to-creatinine ratio > 0.3) or, in the absence of proteinuria,
new onset hypertension with the new onset of any of the following: thrombocytopenia
(platelets < 100 × 109/L), renal insufficiency (serum creatinine > 1.1 mg/dL or doubling
creatinine in the absence of other renal disease), impaired liver function (elevated blood
concentrations of liver transaminases to twice normal concentration), pulmonary edema,
and unexplained new-onset headache unresponsive to medications or visual symptoms
after 20 weeks of gestation, according to the American College of Obstetricians and Gyne-
cologists (ACOG 2018).

Periodontitis was defined according to the classifications established by the 2017 World
Workshop [46,47]: (1) interdental clinical attachment level (CAL) detectable in ≥2 non-
adjacent teeth or (2) buccal or oral CAL ≥ 3 mm with pocketing > 3 mm detectable
in ≥2 teeth. Gingivitis was defined in subjects who did not exhibit a periodontal probing
depth (PPD) ≥ 3 mm, who were without CAL, and who had positive bleeding upon
probing (BOP) in ≥10% of probe sites. Gingival health was defined as <10% BOP sites,
with a PPD ≤ 3 mm [48].

2.3. Gingival Crevicular Fluid Sample Collection and Elution Protocol

The collection of GCF samples was performed between 11 and 14 weeks of gestation.
Samples were obtained from four periodontal sulcus/pockets (1 × quadrant) at the most
affected periodontal site, representative of the periodontal diagnosis of the patient, and
then the PerioPaper® strips (ProFlow, Amityville, NY, USA) were pooled to make one
sample. The sampling tooth was isolated with a cotton roll, the supragingival plaque was
slightly removed with curettes, without contacting the gingival margin, and then gently
dried with an air syringe. GCF was collected by using paper strips. The strips were placed
into the sulci/pocket until mild resistance was sensed and left in place for 30 s. Strips
contaminated by saliva or blood were excluded from the study. The collected pooled strips
were subsequently eluted in 160 µL of elution buffer with added 0.5 M Tris-HCl, pH 7.5,
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NaCl2 M, 250 mM CaCl2, and Triton X100 at 25% concentration, adding EDTA-free protease
inhibitor cocktail (Complete®, Mini, EDTA-free protease Inhibitor Cocktail, EASYpack,
Roche, Basel, Switzerland). Then, the samples were vortexed for 30 s, incubated for 30 min
on ice, and centrifuged at 4 ◦C for 5 min at 12,000× g. The supernatant was kept on ice
and transferred into a new 1.5 mL Eppendorf tube and the process was repeated. The final
320 µL of the eluted sample was stored at −80 ◦C until PLAP analysis.

2.4. Blood Samples

Fasting blood samples were collected by venipuncture into EDTA-containing tubes
between 8:00 am and 10:00 am and then were separated by centrifugation at 1000× g for
15 min at 4 ◦C. All the samples were frozen and stored at −80 ◦C until ELISA analysis.

2.5. ELISA Assays

PLAP concentrations were quantified by using the commercially available Placental
Alkaline Phosphatase ELISA kit (catalog no. MBS701995; MyBiosource, San Diego, CA,
USA). The sandwich ELISA used mouse monoclonal antibodies raised against full-length
and partial-length recombinant human placental alkaline phosphatase (P05187) for the
capture and detection antibodies, respectively, and has been reported to have no significant
cross-reactivities (mybiosource.com (accessed on 30 March 2021)). Previously, this ELISA
has been used to quantify human PLAP in early pregnancy plasma [49]. The sensitivity
was 0.39 ng/mL, the intra-assay coefficient of variation (CV) was <8%, and the inter-assay
precision CV was <10%. The samples were read at a wavelength of 450 nm in an automatic
ELISA plate reader (CM Sunrise™ 350–700 nm, Tecan US, Inc., Seestrasse, Switzerland).

2.6. Sample Size Calculation

The estimated sample size was calculated based on previous observations of differ-
ences between GCF-PLAP concentrations in women with PE and normotensive pregnant
women (2044 ± 217 and 1880 ± 82 pg/mL; mean ± standard deviation, respectively) [36].
To test the hypothesis of mean differences in GCF-PLAP between patients affected by PE
and heathy controls, a minimum cohort size of 406 pregnant women was calculated based
on the following assumptions: a 6.4% prevalence of PE in the entire cohort; a significance
level of 5%; a power of 80%; a two-sided test; and a loss-to-follow-up of 5%.

2.7. Statistical Analyses

Shapiro–Wilk tests were used to assess data normality. Non-parametric tests were
used to assess statistical differences. Comparisons between proportions were performed
with a chi-squared or Fisher’s exact test, and the Mann–Whitney U test was used to
compare continuous variables. The association strength was assessed by using a multiple
logistic regression model that was adjusted by systolic blood pressure and PLAP-GCF
concentrations. Area under the receiver operating characteristic curves (AUC-ROCs)
summarized the performance of PLAP. Goodness of fit and internal validation of the model
were assessed by using the Bayesian Information Criterion (BIC) and bootstrapping. The
statistical analysis was performed by using a commercially available software package
(STATA software, StataCorp version 14.1, Lakeway Drive College Station, TX, USA). A
p-value < 0.05 was considered statistically significant.

3. Results

A study design flowchart is presented in Figure 1. Of the 460 singleton pregnant
women recruited into this study, 423 (92%) completed the follow-up until delivery. In
11 cases (2.6%), GCF-PLAP samples were unsatisfactory for analysis and were excluded
from the study; therefore, 412 cases (89.6%) were available for analysis.
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Figure 1. Flow chart of the study population.

The baseline characteristics of the study population are summarized in Table 1. Of
the 412 pregnant women recruited and followed throughout pregnancy, 18 of them subse-
quently developed PE (4.3%), and five (1.2%) required delivery before 37 weeks of gestation.
Systolic blood pressure (112 mmHg, interquartile range (IQR): 6, p-value < 0.001), diastolic
blood pressure (76 mmHg, IQR: 10, p-value = 0.007), and median arterial blood pressure
(89 mmHg, IQR: 9, p-value = 0.006), measured during early pregnancy (11–14 weeks of
gestation), were significantly higher in women who developed PE when compared to con-
trols. Of them, 30.1% of pregnancies were primiparas and 69.9% multiparas, and the rate of
prior cesarean delivery was 47.9%. Previous antecedents of PE were present in 1.6% of the
cohort, and the rates of other comorbidities presented were as follows: miscarriage 3.39%,
gestational diabetes 8.25%, spontaneous preterm delivery 3.64%, and other diseases 6.79%.
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Table 1. Clinical, demographic, and periodontal descriptions of pregnant women at 11–14 weeks of gestation.

Variable
No Pre-Eclampsia Pre-Eclampsia

(n = 394) (n = 18)

Age (years) 26 (8) 18–41 26 (9) 19–38
Weight (kg) 68 (17) 40–128 68 (25) 36–112
Height (mts) 158 (7) 129–175 159 (8) 147–170

Body mass index (kg/m2) 27 (7.1) 16.9–49 28 (8.0) 15.4–39.2
Systolic blood pressure (mmHg) 104 (10) 80–142 112 (6) 100–124
Diastolic blood pressure (mmHg) 62 (8) 40–92 67 (6) 52–80
Mean arterial pressure (mmHg) 84 (12) 60–113 87.5 (12) 78–101

Maternal active smoking (%) 72 (18.3) 5 (27.8)
First-trimester glycaemia (mg/dL) 86 (8) 66–216 89 (11) 79–95

Fasting glycaemia (mg/dL) (second trimester) 83 (3) 60–141 90 (13) 75–93
Oral glucose tolerance test (second trimester) 103 (8) 65–201 113 (46) 69–153

Plaque index (PI) (%) 67 (51) 0–100 77 (37) 14–100
Bleeding on probing (BOP) (%) 56 (43) 2–100 58 (38) 2–100

Periodontal probing depth (PPD) (mm) 2.6 (0.6) 1.4–4.4 2.6 (0.7) 1.5–4
Clinical attachment level (CAL) (mm) 1.9 (0.7) 0.9–5.3 2 (0.7) 1.3–4.2

Periodontal probing depth pockets ≥ 3 mm (%) 12.2 (18.3) 0–70.8 10.2 (18.8) 0–55.9
Periodontal inflamed surface area (mm2) 777.6 (769.8) 10.7–2604 791.6 (589.7) 11.7–2515

Results are expressed as median (interquartile range) and minimum and maximum values or frequencies and (%). p = < 0.001; p = 0.007;
p = 0.006.

No statistically significant differences in periodontal parameters were identified be-
tween patients who developed PE and controls, and no statistically significant association
was identified between periodontal clinical diagnosis and the subsequent development of
PE (p-value = 0.617). The median maternal GCF-PLAP concentration was 63.7 (interquartile
range (IQR): 88.9) pg/mL in healthy patients (12,3%), 46.6 (IQR: 47.2) pg/mL in patients
with gingivitis (28.5%), and 42.4 (IQR: 46.7), 41.1 (IQR: 51.8), 34.7 (IQR: 46.88) pg/mL at
periodontitis stage I (33.1%), stage II–III (16.1%) and stage IV (10%), respectively, without
statistically significant differences among them (p-value = 0.407).

GCF-PLAP concentrations at 11–14 weeks were compared between patients who
subsequently developed PE and controls. The median maternal GCF-PLAP concentration
was significantly higher in the PE group (77.5 pg/mL (IQR: 41.5) vs. 41.3 pg/mL (IQR:
50.1), (p-value = 0.015) (Figure 2A). In addition, PLAP concentrations were also measured in
paired plasma and GCF samples from 80 women from the same cohort. The median plasma
PLAP concentrations were 24.2 pg/mL (IQR: 2.5) and 24.6 pg/mL (IQR: 7.6) in the control
and PE groups, respectively. In the paired GCF samples, median PLAP concentrations were
66.1 pg/mL (IQR: 4.3) and 99 pg/mL (IQR: 17.8) in the control and PE groups, respectively
(p-value = 0.011) (Figure 2B). The observed amount of GCF-PLAP was 3- to 6-fold higher
than in plasma samples.

The performance of the multiparametric model that combines GCF-PLAP concen-
tration and the levels of systolic blood pressure (at 11–14 weeks gestation) showed an
association of systolic blood pressure and GCF-PLAP concentrations with the likelihood
of developing PE (OR:1.07; 95% CI 1.01–1.11; p = 0.004 and OR:1.008, 95% CI 1.000–1.015;
p = 0.034, respectively) (Table 2). The results of the bootstrap analysis were similar to
those observed in the logistic regression model (Table 2). The GCF-PLAP concentration
combined with systolic blood pressure at 11–14 weeks of gestation was found to be a good
predictor of PE, with a specificity of 72%, a sensitivity of 83%, a positive predictive value of
12%, and a negative predictive value of 99%. The positive likelihood ratio was 2.9, and the
negative likelihood ratio was 0.3. The model correctly classified 72% of the women who
developed PE. The AUC for GCF-PLAP concentrations alone at 11–14 weeks of gestation
was 0.67, for systolic blood pressure, 0.74, and for GCF-PLAP concentrations and systolic
blood pressure, 0.77 (95% CI: 0.70–0.85) (Figure 3A). In the sub-analysis, dividing the
PE pregnancies into preterm PE (≤37 weeks) and term PE (≥37 weeks), the observed
AUC was 0.85 (95% CI: 0.81–0.93) for preterm PE and 0.72 (95% CI: 0.58–0.82) for term PE
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(Figure 3B,C, respectively). All five cases (100%) of preterm PE observed in the current
study were correctly classified by the model.
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Figure 2. (A) Placental alkaline phosphatase (PLAP) concentrations (pg/mL) in gingival crevicular fluid (GCF) in pregnancy
according to the presence or absence of pre-eclampsia. (B) Plasma and GCF-PLAP concentrations at 11–14 weeks of gestation
in women with and without pre-eclampsia. GCF, gingival crevicular fluid; PLAP, placental alkaline phosphatase.

Table 2. Association between GCF-PLAP concentration and systolic blood pressure at 11–14 weeks of
gestation, according to the presence or absence of pre-eclampsia: multiple regression logistic models
(A) and bootstrap estimation of the multiple logistic regression model (B).

Primary multiple logistic regression model

Pre-eclampsia Odds ratio Standard
error p-value 95% CI

GCF-PLAP concentration: 1.008 0.0038 0.034 (1.000–1.015)
Systolic blood pressure: 1.066 0.023 0.004 (1.020–1.11)

Bootstrap estimation of the multiple logistic regression model

Coefficients Mean Standard error 95% CI Bootstrap

Intercept −10.784 1.617 (−13.956–−7.613)
GCF-PLAP (pg/mL) 0.008 0.003 (0.000–0.015)

Systolic blood pressure 0.065 0.014 (0.037–0.094)
CI, confidence interval; GCF, gingival crevicular fluid; PLAP, placental alkaline phosphatase.
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Figure 3. (A) Area under the receiver operating characteristic curve (AUC-ROC) of PLAP-GCF concentration and systolic
blood pressure at 11–14 weeks of gestation versus the development of pre-eclampsia. (B) Area under the receiver operating
characteristic curve (AUC-ROC) of the concentration of PLAP-GCF and systolic blood pressure versus the development
of preterm pre-eclampsia. (C) Area under the receiver operating characteristic curve (AUC-ROC) of the concentration
of PLAP-GCF and systolic blood pressure at 11–14 weeks gestation versus pre-eclampsia > 37 weeks of gestation. GCF,
gingival crevicular fluid; PLAP, placental alkaline phosphatase.
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4. Discussion

To our knowledge, this is the first cohort study evaluating the classification efficiency
of GCF-PLAP concentrations for early-pregnancy risk assessment of PE. The data obtained
support the hypothesis that GCF-PLAP concentrations are significantly increased in pre-
symptomatic women who subsequently develop PE. These data are consistent with and
extend our previous observations [36].

In addition, GCF-PLAP concentrations were significantly greater than those measured
in paired plasma samples. Specifically, women who developed PE presented with 3- to
6-fold greater GCF-PLAP concentrations than those measured in matched plasma samples.
Our findings support the hypothesis that potential biomarkers of obstetric diseases can be
concentrated in GCF, highlighting the opportunity to use placental biomarkers measured in
GCF to improve the performance of risk assessment models of PE. Currently available data,
however, do not provide insight into the mechanism(s) by which PLAP may concentrate in
GCF. Possible mechanisms may include PLAP-dependent targeting of sites of inflammation
and its association with complementary proteins, or the selective accumulation of PLAP-
containing extracellular vesicles at such sites.

Finally, GCF-PLAP concentrations, measured at 11–14 weeks of gestation, were pre-
dictive of PE when combined with maternal systolic blood pressure in a multivariate
predictive model. The performance of the classification model was satisfactory, with an
observed AUC of 0.77 (95% CI: 0.70–0.85) for all PE cases, 0.85 (95% CI: 0.81–0.93) for
preterm PE, and 0.72 (95% CI: 0.58–0.82) for term PE. A caveat, when interpreting the data
obtained, is that the study was neither designed nor powered to differentiate between
putative subtypes of pre-eclampsia but rather to identify pre-symptomatic women at risk
of developing PE.

Increased plasma PLAP concentrations are significantly increased in pregnant women
with hypertensive disorders [44,50] and associated with PE as a result of placental dys-
function, and also might represent an informative biomarker of the syncytiotrophoblast
function [45,51]. During pregnancy, syncytiotrophoblastic debris is normally shed into
the maternal circulation; however, shedding is significantly increased in pregnancies
complicated by PE [45,51]. Furthermore, replenishment of the syncytiotrophoblast is
intense, complicated by necrosis and aponecrosis with increased liberation into the circu-
lation of syncytiotrophoblast-derived particles in PE [19,50,52,53]. In line with our result,
syncytiotrophoblast-derived particles, such as PLAP, can reach the gingival sulcus during
early pregnancy and can be detected in the GCF. In fact, its concentrations are informa-
tive of the risk of developing PE and may be potentially used in future multiparametric
algorithms for the prediction of the disease.

The most recently developed multivariate algorithms, using different combinations of
maternal risk factors, biophysical variables such as mean maternal blood pressure, uterine
artery pulsatility index, and maternal plasmatic biomarkers such as placental growth
factor and/or pregnancy-associated plasma protein A, at 11–14 weeks of gestation, have
consistently demonstrated detection rates of preterm PE of over nearly 70% at a false-
positive rate of 10% [32,35,54]. In fact, plasmatic individuals’ biomarkers, which include a
disintegrin and metalloproteinase 12 (ADAM-12), inhibin-A, pregnancy-associated plasma
protein A (PAPP-A) and placental protein 13 (PP-13), have shown a low predictive value
for PE during the first trimester of pregnancy [55].

The results obtained in this study further support the use of multiparametric algo-
rithms for improving the prediction of PE. The model reported herein is based on the
measurement of a single biomarker in GCF and systolic blood pressure; therefore, it is
non-invasive and inexpensive. Moreover, it displays potential clinical utility in identifying
women during early pregnancy who are at increased risk of developing PE, especially
preterm PE, and, as such, warrants further clinical evaluation.

Regarding the link between periodontal disease and the risk of PE, our study did not
confirm the association between periodontal diagnoses and PE that had been previously de-
scribed in the literature [56–60]. These results, however, should be interpreted with caution
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given that the present study was powered to determine the association between GCF-PLAP
concentrations and PE but not the association between PE and periodontal diagnosis. In
addition, in our study, periodontal disease was assessed during early pregnancy and in
a young population of pregnant women. It is known that periodontal disease usually
worsens during pregnancy [61–63] and that its evaluation at a later stage of pregnancy may
be more related to the development of PE.

In summary, the development of more innovative diagnostic tests that allow for the
early identification of women at risk of developing PE is a recognized clinical need. The data
obtained in this study are consistent with the hypothesis that the accumulation of placental
molecules within GCF during early pregnancy is informative of the risk of developing PE
and could be surrogate markers of placental function. The practical translation of these
data into a clinical setting requires further validation to determine its clinical implications.
This transition will be facilitated in countries where periodontal evaluations are already
part of routine pregnancy healthcare delivery (e.g., Chile). Future studies are required to
confirm our results and to address the predictive capabilities of CGF-PLAP concentration
alone and/or in combination with more variables and risk factors, such as uterine artery
Doppler, to further increase the performance of the algorithm.
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