

Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview

Pamela Seron, PT, PhD, MSc^{1,*}, María-Jose Oliveros, PT, MSc¹, Ruvistay Gutierrez-Arias, PT, MSc², Rocío Fuentes-Aspe, PT, MSc¹, Rodrigo C. Torres-Castro, PT, MSc³, Catalina Merino-Osorio, PT, MSc⁴, Paula Nahuelhual, PT, MSc^{5,6}, Jacqueline Inostroza, PT, MSc⁷, Yorschua Jalil, PT, MSc^{8,9}, Ricardo Solano, PT, MSc¹⁰, Gabriel N. Marzuca-Nassr, PT, PhD⁷, Raul Aguilera-Eguía, PT, MSc¹¹, Pamela Lavados-Romo, PT, MSc¹², Francisco J. Soto-Rodríguez, PT, MSc^{13,14}, Cecilia Sabelle, PT, MSc^{15,16}, Gregory Villarroel-Silva, PT, MSc^{17,18}, Patricio Gomolán, PT, MSc¹⁹, Sayen Huaiquilaf, PT²⁰, Paulina Sanchez, PT²¹

²Instituto Nacional del Tórax and Escuela de Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Santiago, Chile

³Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile

⁴Carrera de Kinesiología, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile

⁵Departamento de Evaluación de Tecnologías Sanitarias y Salud Basada en Evidencia, Ministerios de Salud, Santiago, Chile

⁶Facultad de Medicina, Clínica Alemana de Santiago – Universidad del Desarrollo, Santiago, Chile

⁷Internal Medicine Department, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

⁸Escuela de Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello

⁹Programa de Doctorado Ciencias Medicas, Pontificia Universidad Católica de Chile, Escuela de Medicina, Santiago, Chile

¹⁰Medical Specialties Medicine Department, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

¹¹Departamento de Salud Pública and Carrera de Kinesiología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile

¹²Departamento Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile

¹³Internal Medicine Department, Faculty of Medicine, Universidad de La Frontera

¹⁴Facultad de Ciencias de la Salud, Carrera de Kinesiología, Universidad Autónoma de Chile, Temuco, Chile

¹⁵Universidad Santo Tomás, Temuco, Chile

¹⁶Servicio de Salud Araucanía Sur, Temuco, Chile

¹⁷Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile ¹⁸Hospital Josefina Martínez, Santiago, Chile

¹⁹Escuela de Medicina, Universidad de Santiago de Chile, Santiago

²⁰Pediatrics and Child surgery Department, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile

²¹Hospital Dr. Hernán Henríquez Aravena, Temuco, Chile

*Address all correspondence to Dr Seron at: pamela.seron@ufrontera.cl

Abstract

Objective. The purpose of this article was to summarize the available evidence from systematic reviews on telerehabilitation in physical therapy.

Methods. We searched Medline/PubMed, EMBASE, and Cochrane Library databases. In addition, the records in PROSPERO and Epistemonikos and PEDro were consulted. Systematic reviews of different conditions, populations, and contexts— where the intervention to be evaluated is telerehabilitation by physical therapy—were included. The outcomes were clinical effectiveness depending on specific condition, functionality, quality of life, satisfaction, adherence, and safety. Data extraction and risk of bias assessment were carried out by a reviewer with non-independent verification by a second reviewer. The findings are reported qualitatively in the tables and figures.

Results. Fifty-three systematic reviews were included, of which 17 were assessed as having low risk of bias. Fifteen reviews were on cardiorespiratory rehabilitation, 14 on musculoskeletal conditions, and 13 on neurorehabilitation. The other 11 reviews addressed other types of conditions and rehabilitation. Thirteen reviews evaluated with low risk of bias showed results in

Received: October 31, 2020. Revised: December 20, 2020. Accepted: January 11, 2021

 $\ensuremath{\mathbb{C}}$ The Author(s) 2021. Published by Oxford University Press on behalf of the American Physical Therapy Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommo ns.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com favor of telerehabilitation versus in-person rehabilitation or no rehabilitation, while 17 reported no differences between the groups. Thirty-five reviews with unclear or high risk of bias showed mixed results.

Conclusions. Despite the contradictory results, telerehabilitation in physical therapy could be comparable with in-person rehabilitation or better than no rehabilitation for conditions such as osteoarthritis, low-back pain, hip and knee replacement, and multiple sclerosis and also in the context of cardiac and pulmonary rehabilitation. It is imperative to conduct better quality clinical trials and systematic reviews.

Impact. Providing the best available evidence on the effectiveness of telerehabilitation to professionals, mainly physical therapists, will impact the decision-making process and therefore yield better clinical outcomes for patients, both in these times of the COVID-19 pandemic and in the future. The identification of research gaps will also contribute to the generation of relevant and novel research questions.

Keywords: Digital Health, E-Health, Remote Physical Therapy, Telehealth, Telemedicine, Telerehabilitation

Introduction

Rehabilitation is necessary to improve people's ability to live, work, and learn as much as possible and to maximize their functionality and quality of life. The impact extends to the community, society, and the economy.^{1,2} While rehabilitation is a comprehensive, multicomponent, and multidisciplinary intervention, the specific health condition and other determinants of the health system or resources available determine the minimum components required, which often include physical therapy.

Physical therapist interventions are required when movement and function are threatened to develop, maintain, and reestablish movement and functional capacity under the consideration that functional movement is fundamental to health and an optimal quality of life.³

Despite the knowledge of the benefits of rehabilitation and physical therapy, these services are under-used.⁴ If to this is added, on the one hand, that services or patient resources are scarce,⁵ and on the other that high demand leads to the saturation of services and the generation of waiting lists,⁶ the limitation of access becomes a reality.

In this scenario, where rehabilitation is necessary but insufficiently implemented, alternative rehabilitation models have been created using new resources such as digital practice to improve coverage. Thus, telerehabilitation, considered a branch of telehealth, is set up as a system for the control or monitoring of remote rehabilitation using telecommunications technologies, the purpose of which is to increase accessibility and improve continuity of care in vulnerable, geographically remote populations with disabilities with the potential for saving time and resources in health care.^{7,8}

In the context of infection by SARS-CoV-2 and the spread of the COVID-19 pandemic, health services have had to adapt and prioritize safe delivery of care, limiting outpatient care. Thus, in addition to finding a way to address patients affected by COVID-19, an innovative method had to be found to provide rehabilitation or physical therapy.^{9,10} Although the main task is to contain the spread of the infection and treat patients affected by COVID-19, health systems cannot ignore other health problems that will inevitably require attention in the future. This crisis will undoubtedly impact the way health services work, and telerehabilitation could become a standard way of working since the previously identified barriers have had to be quickly overcome.^{11,12}

There are several telerehabilitation models implemented globally.^{13,14} There are also many studies that have examined its effectiveness. To date, so many telerehabilitation trials are

available that many systematic reviews have summarized the scattered and contradictory findings. $^{15-23}$

To provide support to rehabilitation professionals, mainly physical therapists, with the best evidence available, this study aims to summarize the available information from systematic reviews on telerehabilitation in physical therapy in terms of clinical effectiveness, functionality, and quality of life. Additionally, adherence, satisfaction, and safety outcomes are evaluated.

Methods

An overview was conducted in a rapid review format adhering to the PRISMA declaration for systematic reviews.²⁴ The protocol is registered in PROSPERO under number CRD42020185640, and the methodology has already been extensively described elsewhere.²⁵ Likewise, the critical methods aspects of the overview are described below.

Data Sources and Searches

A systematic search was carried out in electronic databases (Medline/PubMed, EMBASE, Cochrane Library) up to May 4, 2020. The search strategy is available in Supplementary Table 1. In addition, the records in PROSPERO and the filtered databases Epistemonikos and PEDro were consulted. No restriction on language or date was applied.

Study Selection

Systematic reviews about several conditions of interest (musculoskeletal, neurological, respiratory, cardiovascular, etc), populations (infants, children, adults, and the elderly), and contexts (primary, secondary, and tertiary or specialist attention) were considered eligible if they included an explicit systematic review methodology and the primary studies included were clinical trials. If a systematic review included studies with other designs, they were considered only if they contained disaggregated data from clinical trials.

Systematic review protocols and conference proceedings were excluded if the full text was not available.

The intervention must have been telerehabilitation by physical therapy, defined as the provision of rehabilitation with interventions in any area of physical therapy carried out remotely or outside a usual session by a therapist distant from the patient and using telecommunications technologies. A systematic review was included if it considered comprehensive telerehabilitation with at least 1 component of physical therapy or if it contained a physical therapy treatment only. Physical therapy had to be therapeutic exercises, functional training, manual therapy, respiratory techniques and exercises, integumentary repair and protection techniques, electrotherapy and physical agents, or education as defined by the World Confederation for Physical Therapy.³

Reviews were excluded if they focused on physical activity without considering clinical outcomes (eg, blood pressure control) and on self-management of health conditions (eg, hypertension) where exercise and its effect on a clinical outcome were not included. Similarly, reviews were excluded that considered mobile applications and monitors (eg, pedometer) without involving the active action of a physical therapist. Finally, systematic reviews assessing virtual reality, without remote supervision by a therapist and not performed outside the health center, were also excluded.

Regarding comparisons, reviews were included if the telerehabilitation was compared with usual rehabilitation (inperson rehabilitation or center-based rehabilitation) or no rehabilitation (including usual care and waiting list).

Primary outcomes that had to be included in the reviews were clinical effectiveness for each condition (eg, decreasing low-back pain). Functionality was defined as the physical abilities that enable functional independence and enhance health-related quality of life (HRQL). Secondary outcomes were satisfaction with the care, adherence, and adverse effects.

The selection process was performed in the Rayyan software²⁶ by 2 investigators, first screening by title and abstract and then by reviewing full texts of the relevant records. The discrepancies were resolved by a third reviewer with more than 10 years of experience.

Data Extraction and Quality Assessment

The relevant information from each eligible document was extracted through the REDCap platform (Research Electronic Data Capture software).²⁷ The risk of bias of the included reviews was assessed with the Risk of Bias in Systematic Reviews (ROBIS) tool.²⁸ ROBIS was applied in 3 consecutive phases. First, the relevance of the review for the research question was assessed. Then, concerns with the review process were identified for 4 domains: study eligibility criteria, identification and selection of the studies, data collection and study appraisal, and synthesis and findings. Finally, a judgment of overall bias in the review was generated. Both the data extraction and the appraisal with ROBIS were performed by 1 investigator, and a non-independent verification was carried out by a second experienced investigator. Additionally, information related to the methodological quality or risk of bias of the primary studies contained in the reviews assessed as having a low risk of bias was extracted to consider this aspect in formulating the conclusions of the overview.

Data Synthesis and Analysis

A qualitative report of the characteristics and effectiveness findings is summarized in the figures and tables by clinical area of rehabilitation or physical therapist interventions. In the design and presentation of the tables and figures, the risk of bias of the included reviews is considered.

Role of the Funding Source

The funder played no role in the design, conduct, or reporting of this study.

Results

Study Selection

In the initial search of electronic databases, 3298 potential studies were identified. Additionally, 8 records were identified through searches of filtered databases. After elimination of duplicates, 3089 unique entries were obtained, which were screened by title and abstract, excluding 2830 studies because they did not meet at least 1 of the eligibility criteria of our overview. Of the 259 studies reviewed in full text, 206 were excluded, with 53 systematic reviews finally being included. Supplementary Figure 1 shows the PRISMA flowchart and the reasons for excluding studies at the full-text stage are presented in Supplementary Table 2.

Characteristics of Included Studies

Twenty-one reviews were performed in Europe, 12 in Oceania, 11 in North America, 7 in Asia, 1 in Africa, and 1 in South America. All 53 reviews included 754 studies, of which 425 were included because they were clinical trials and considered outcomes of interest. Regarding synthesis, 26 were systematic reviews with qualitative synthesis only and 27 included a meta-analysis.

The most common areas of physical therapy included were: cardiorespiratory rehabilitation (15 studies), musculoskeletal rehabilitation (14 studies), and neurorehabilitation (13 studies). The other 11 reviews addressed other or mixed types of conditions and rehabilitation.

Most of the studies included adults (n = 41), older people (n = 2), the infant population (n = 2), and others (n = 8). In addition to physical therapists, other professionals participated, including psychologists (24 reviews), nurses (15 reviews), physicians (13 reviews), occupational therapists (8 reviews), and speech therapists (4 reviews).

Characteristics of Interventions

The most common interventions were therapeutic exercises (48), functional training (27), and education (25). Three reviews included only synchronous interventions, and 1 included solely asynchronous interventions. Most of the reviews (49) included mixed interventions. The majority of the platforms implemented to deliver the rehabilitation were webpages in 43 reviews, phone calls in 37 reviews, teleconference software in 31 reviews, and messaging services in 14 reviews. Virtual reality, understood as its use with remote assistance by the therapist, was also used and reported in 9 reviews.

Comparisons

The comparisons evaluated were telerehabilitation versus inperson rehabilitation (or usual rehabilitation) in 24 reviews, telerehabilitation versus no rehabilitation (or usual care or waiting list) in 27 reviews, and mixed comparisons (eg, telerehabilitation plus in-person intervention versus in-person intervention alone) in 22 reviews.

Outcomes

The most-reported outcomes were clinical effectiveness in 48 reviews, functionality in 35 reviews, quality of life in 32 reviews, user satisfaction and adherence in 15 reviews each, and adverse events in 13 reviews.

Characteristics by Area

Specific characteristics of included reviews are presented in Table 1 for musculoskeletal, neurological, cardiopulmonary, and other health conditions.

Musculoskeletal Rehabilitation

Musculoskeletal rehabilitation was reported in 14 systematic reviews,^{16,22,29-40} including 6 reviews that reported metaanalyses. The majority of conditions included were lowback pain, hip arthroplasty, total knee arthroplasty, and osteoarthritis, and the most common outcomes reported were pain intensity as an expression of clinical effectiveness, functionality—mostly measured by the WOMAC tool—and HRQL.

Neurorehabilitation

Neurorehabilitation was reported in 13 systematic reviews,^{17, 20,41–51} including 7 reviews that reported meta-analyses. The majority of conditions included were stroke, multiple sclerosis, and physical impairment in children. The most common outcomes reported were motor function, mobility, balance, activities of daily living, and HRQL.

Cardiorespiratory Rehabilitation

The cardiorespiratory rehabilitation was reported in 15 systematic reviews,^{15,19,21,52–63} including 9 reviews that reported meta-analyses. The majority of conditions included were coronary artery disease, heart failure, and chronic obstructive pulmonary disease (COPD). The most common outcomes reported were related to clinical effectiveness as exercise capacity and HRQL.

Others Health Conditions

Other types of rehabilitation were reported in 11 reviews,^{8,18,64–72} of which 5 included meta-analyses. The majority of conditions covered were associated with metabolic disorders (such as obesity or diabetes) and cancer. The most common outcome reported was physical or exercise capacity.

Risk of Bias

Of the 53 reviews included, 35 were relevant for the research question while the other 18 were partially relevant. Regarding the overall review process, 17 (32%) reviews were assessed as having a low risk of bias, 24 (45%) as having a high risk of bias, and 12 (23%) as having an unclear risk of bias in the evaluation with the ROBIS tool.

By clinical area, there were 7 of 14 (50%) musculoskeletal,^{16,22,36-40} 4 of 13 (31%) neurological,^{17,20,50,51} and 7 of 15 (46%) cardiovascular^{15,19,21,60-63} reviews considered to be at high risk of bias, while 5 of 11 (46%) also had a high risk of bias assessment in reviews covering other health conditions.⁶⁸⁻⁷² On the other hand, musculoskeletal, neurological, cardiovascular, and other health conditions were evaluated as being at low risk of bias in 7 (50%),²⁹⁻³⁵ 3 (24%),⁴¹⁻⁴³ 4 (27%),⁵²⁻⁵⁵ and 3 (27%)^{18,64,65} reviews, respectively.

The domain with the greatest concerns was synthesis and findings, with 22 (42%) reviews assessing it as being at high risk of bias, and 12 (23%) reviews as being at an unclear risk of bias. Meanwhile, the domain with the best rating was that of data collection and study appraisal, with 37 (70%) reviews being evaluated as at low risk of bias.

The ratings for each of the 4 domains in the ROBIS tool and the overall evaluation for the included reviews by clinical area are presented in Table 2. Complementarily, Supplementary Table 1 shows the reported assessment of the methodological quality or risk of bias of the primary studies included, specifically in the systematic reviews evaluated as having a low risk of bias.

Effect of Interventions

Supplementary Tables 4–7 show specific findings for several comparisons in each review included with the specification of outcomes and their measurements, source of results, conclusion of the review authors, and risk of bias overall evaluation.

Musculoskeletal

A summary of results is presented in Figure 1. Only 1 low risk of bias review compared telerehabilitation with in-person rehabilitation. This review reported the effectiveness of telerehabilitation for clinical (pain intensity) and functionality outcomes and no difference between groups for HRQL in unspecified musculoskeletal conditions.²⁹

Seven low risk of bias reviews compared telerehabilitation with a control group without rehabilitation. Of these, 6, 4, and 1 reviews reported no difference between groups for clinical effectiveness evaluated as pain intensity,^{29–31,33–35} functionality,^{29,30,34,35} and HRQL,³⁴ respectively. On the other hand, 2 reviews showed differences between groups in all primary studies included in favor of telerehabilitation for functionality in patients with osteoarthritis of knee³¹ and with low-back pain.³² Another 5 reviews reported better results of telerehabilitation for HRQL, specifically in lowback pain,^{30,32} symptomatic osteoarthritis of the knee,³¹ total knee,^{33,35} and hip arthroplasty.³⁵ Additionally, 1 review reported clinical effectiveness for pain in 1 of 3 primary studies and for pain-related disability in non-specific lowback pain.³² Only 1 review considered the other outcomes, reporting no differences for satisfaction and adherence but more adverse effects for the intervention group.³⁵

Another 6, 3, and 3 reviews evaluated as having a high risk of bias, reported no differences between telerehabilitation and in-person rehabilitation groups for clinical effectiveness,^{22,36-40} functionality,^{36,37,39} and HRQL,^{22,37,38} respectively. For the same comparison, 3 reviews reported better functionality in the telerehabilitation group,^{16,38,40} and 1 review showed same result in some primary studies included.²² On the other hand, for the telerehabilitation versus no-rehabilitation comparison, 1 high-risk-of-bias review showed better health status with telerehabilitation,³⁶ and another high-risk-of-bias review reported better effectiveness for pain and functionality in some primary studies included.¹⁶

Neurorehabilitation

A summary of results is presented in Figure 2. Three low-riskof-bias reviews compared telerehabilitation with in-person rehabilitation. One, 2, and 1 reviews reported no difference between groups for clinical effectiveness evaluated as balance,⁴² functionality,^{42,51} and HRQL,⁴² respectively. Two reviews showed better results in telerehabilitation groups for balance⁴¹ and physical activity⁵¹ in patients with multiple sclerosis. Two reviews considered other outcomes showing no adverse effects⁴¹ and no differences for satisfaction⁴² in the telerehabilitation group.

Table 1.	Characteristic of Included Reviews ^a	

Author/Year	Search Date	Specific Population/Ages	No. of Studies Included in Original Review	No. of Studies Included in Overview ^b	Physical Therapist Intervention	Characteristics of Telerehabilitation	Type of Synthesis
Telerehabilitation in r	nusculoskeletal conditions						
Cottrell et al, 2017 ²⁹	November 2015	Any diagnosed primary musculoskeletal condition/>19 y	13	7	Therapeutic exercises, functional training and education	Mixed (synchronous and asynchronous) phone, internet	Qualitative and quantitative
Dario et al, 2017 ³⁰	August 2015	Non-specific low-back pain/>19 y	11	8	Therapeutic exercises and education	Mixed (synchronous and asynchronous) phone, internet	Qualitative and quantitative
Heapy et al, 2015 ³⁶	September 2014	Chronic, noncancer, nonheadache pain/> 19 y	44	4	Therapeutic exercises and functional training	Mixed (synchronous and asynchronous) phone, internet	Qualitative
Jansson et al, 2020 ²²	February 2020	Total hip arthroplasty and total knee arthroplasty/>19 y	9	7	Therapeutic exercises, functional training, and education	Mixed (synchronous and asynchronous) phone, internet, devices	Qualitative
Jiang et al, 2018 ⁴⁰	May 2016	Total knee arthroplasty/>65 y	4	4	Therapeutic exercises	Synchronous internet, devices	Qualitative and quantitative
Joice et al, 2017 ³⁷	1996 to May 2016	Total knee arthroplasty/19 y or more	17	3	Therapeutic exercises	Mixed (synchronous and asynchronous) phone, internet	Qualitative
Grona et al, 2018 ³⁸	December 2016	Chronic musculoskeletal disorders (>3 mo duration)/>19 y	17	2	Therapeutic exercises and education	Synchronous internet	Qualitative
Schäfer et al, 2018 ³¹	July 2017	Symptomatic unilateral or bilateral Osteoarthritis of knee/all ages	7	6	Therapeutic exercises	Synchronous phone, devices	Quantitative
Nicholl et al, 2017 ³²	2000 to March 2016	Non-specific low-back pain/19 y or more	9	3	Therapeutic exercises, manual therapy, physical therapy, and education	Mixed (synchronous and asynchronous) phone, internet	Qualitative
Pastora-Bernal et al, 2017 ³⁹	2000 to October 2016	Surgical procedures as result of orthopedic condition/>19 y	15	9	Therapeutic exercises	Mixed (synchronous and asynchronous) phone, internet	Qualitative
Pietrzak et al, 2013 ¹⁶	November 2011	Osteoarthritis/>19 y	5	3	Therapeutic exercises and use of physical agents	Mixed (synchronous and asynchronous), internet	Qualitative

Table	1.	Continued
-------	----	-----------

Author/Year	Search Date	Specific Population/Ages	No. of Studies Included in Original Review	No. of Studies Included in Overview ^b	Physical Therapist Intervention	Characteristics of Telerehabilitation	Type of Synthesis
Shukla et al, 2017 ³³	2014	Total knee arthroplasty/>65 y	6	2	Therapeutic exercises and functional training	Mixed (synchronous and asynchronous) phone, internet	Qualitative and quantitative
Srikesavan et al, 2019 ³⁴	January 2016	Clinical diagnosis of rheumatoid arthritis/>19 y	4	3	Therapeutic exercises, functional training, manual therapy, and education	Mixed (synchronous and asynchronous) phone, internet, devices	Qualitative
Wang et al, 2019 ³⁵	November 2018	Total hip arthroplasty and total knee arthroplasty/>19 y	21	14	Therapeutic exercises and functional training	Mixed (synchronous and asynchronous) phone, internet, devices	Qualitative and quantitative
Telerehabilitation in n	eurological conditions					-	•
Appleby et al, 2019 ⁴⁴	November 2019	Stroke survivors/> 18 y	13	10	Neurorehabilitation	Mixed (synchronous and asynchronous) Videoconferencing, virtual reality, messaging, phone, devices	Qualitative
Camden et al, 2019 ⁴⁷	March 2018	Children with disabilities/>12 y	23	4	Neurorehabilitation	Mixed (synchronous and asynchronous) webpage, videoconferencing, virtual reality, phone, devices	Qualitative
Chen et al, 2015 ⁴⁵	March 2015	Stroke survivors/> 18 y	11	8	Neurorehabilitation	Mixed (synchronous and asynchronous) phone, videoconferencing, robot-assisted rehabilitation, virtual reality	Quantitative
Di Tella et al, 2020 ⁵⁰	December 2018	Multiple sclerosis/all ages	10	5	Integrated rehabilitation approach (ITA)	Mixed (synchronous and asynchronous) phone, email, web platform	Quantitative
Johansson et al, 2011 ¹⁷	November 2009	Stroke survivors/> 18 y	9	2	Neurorehabilitation	Mixed (synchronous and asynchronous) webpage, videoconferencing, devices	Qualitative
Khan et al, 2015 ⁴¹	July 2014	Multiple sclerosis/> 18 y	9	7	Neurorehabilitation	Mixed (synchronous and asynchronous). Videoconferencing, virtual reality	Qualitative
Laver et al, 2020 ⁴²	June 2019	Stroke survivors/all ages	22	9	Neurorehabilitation	Mixed (synchronous and asynchronous) webpage, videoconferencing, virtual reality, devices, phone	Quantitative

Table 1. Continued

Author/Year	Search Date	Specific Population/Ages	No. of Studies Included in Original Review	No. of Studies Included in Overview ^b	Physical Therapist Intervention	Characteristics of Telerehabilitation	Type of Synthesis
Rintala et al, 2018 ⁴³	December 2015	Multiple sclerosis/> 18 y	11	7	Integral rehabilitation	Mixed (synchronous and asynchronous) devices, virtual reality, web platform, phone	Quantitative
Rintala et al, 2019 ⁵¹	May 2018	Stroke survivors/all ages	13	7	Neurorehabilitation	Mixed (synchronous and asynchronous) devices, virtual reality, web platform, phone	Qualitative and quantitative
Sarfo et al, 2018 ²⁰	June 2017	Stroke survivors/not reported	22	18	Neurorehabilitation	Mixed (synchronous and asynchronous) phone, devices, webpage, educational platform, virtual reality	Qualitative
Schröder et al, 2019 ⁴⁶	January 2018	Stroke survivor/> 18 y	7	4	Motor training, balance training	Mixed (synchronous and asynchronous) devices, virtual reality	Qualitative
Tchero et al, 2018 ⁴⁸	January 2018	Stroke survivors/> 18 y	15	7	Integral rehabilitation	Mixed (synchronous and asynchronous) web platform, videoconferencing, devices	Qualitative and quantitative
Xiaoyan et al, 2019 ⁴⁹	January 2019	Stroke survivors/> 18 y	11	7	Therapeutic exercise	Mixed (synchronous and asynchronous) devices, virtual reality, videoconferencing	Qualitative and quantitative
Telerehabilitation in ca Almojaibel et al, 2016 ¹⁹	irdiopulmonary conditions September 2014	COPD/>19 y	7	2	Pulmonary rehabilitation (aerobic and resistance exercise, incentive of physical	Mixed (synchronous and asynchronous) internet, devices	Qualitative
Brørs et al, 2019 ⁵⁶	January 2003 to March 2018	Coronary artery disease/>19 y	24	9	activity) Physical activity and exercise management through exercise plans, supervision, and counselling	Mixed (synchronous and asynchronous) internet, devices, other	Qualitative
Chan et al, 2016 ⁶²	July 2015	COPD and with cardiovascular disease/>19 y	9	8	Cardiac and pulmonary rehabilitation	Mixed (synchronous and asynchronous) phone, internet, devices	Qualitative and quantitative
Cristo et al, 2018 ²¹	Not reported	Cardiovascular diseases/>19 y	7	3	Cardiac rehabilitation (videogames, incentive of walking, Nordic training,	Mixed (synchronous and asynchronous) devices	Qualitative
Frederix et al, 2015 ⁶³	Not reported	Cardiac patients/not reported	37	13	cycle-ergometer) Cardiac rehabilitation and telemonitoring	Synchronism not reported phone, internet, devices	Qualitative and quantitative

Author/Year	Search Date	Specific Population/Ages	No. of Studies Included in Original Review	No. of Studies Included in Overview ^b	Physical Therapist Intervention	Characteristics of Telerehabilitation	Type of Synthesis
Hamilton et al, 2018 ⁶⁰	August 2016	Acute coronary syndrome and at least 1 coronary risk factor/>19 y	9	2	Cardiac rehabilitation	Mixed (synchronous and asynchronous) phone	Qualitative
Huang et al, 2015 ⁵²	April 2014	Myocardial infarction, angina, or underwent vascularization/>19 y	9	9	Cardiac rehabilitation	Mixed (synchronous and asynchronous) phone, other	Qualitative and quantitative
Hwang et al, 2015 ⁶¹	August 2013	Cardiopulmonary diseases/>18 y	11	11	Integral rehabilitation	Mixed (synchronous and asynchronous) phone	Qualitative
Jin et al, 2019 ⁵⁷	April 2018	Coronary heart disease with at least 3 mo follow-up/>19 y	29	26	Cardiac rehabilitation	Mixed (synchronous and asynchronous) phone, internet, devices, other	Qualitative and quantitative
Lundell et al, 2015 ⁵³	August 2013	COPD according to GOLD, ERS, ATS, or BTS/>40 y	9	7	Cardiovascular exercises, pedometer, pursed lips, relaxation exercises	Mixed (synchronous and asynchronous) phone, internet, devices	Qualitative and quantitative
McCabe et al, 2017 ⁵⁸	November 2016	COPD according to GOLD 2016 and at any stage of illness/>19 y	3	3	Incentive of physical activity (pedometer, web incentive, and digital coaching)	Mixed (synchronous and asynchronous) internet	Quantitative
Munro et al, 2013 ¹⁵	May 2013	Cardiac patients/>19 y	9	7	Cardiac rehabilitation	Mixed (synchronous and asynchronous) phone, internet	Qualitative
Neubeck et al, 2009 ⁵⁹	December 2008	Coronary heart disease with at least 3 mo follow-up/>19 y	11	11	Cardiac rehabilitation	Mixed (synchronous and asynchronous) phone, internet	Qualitative and quantitative
Rawstorn et al, 2016 ⁵⁴	May 2015	Coronary heart disease/>19 y	11	8	Cardiac rehabilitation	Asynchronous phone	Qualitative and quantitative
Su et al, 2020 ⁵⁵	April 2019	Coronary heart disease/>19 y	14	7	Cardiac rehabilitation	Mixed (synchronous and asynchronous) website, mobile application, email, text message, phone	Qualitative and quantitative
	other health conditions or			_			
Adamse et al, 2018 ⁶⁶	2015	Chronic pain in adults/>19 y	16	9	Exercise, physical activity, or training prescription	Mixed (synchronous and asynchronous) phone, internet	Qualitative and quantitative
Agostini et al, 2015 ⁶⁸	January 2014	Different conditions with impaired motor function/all ages	12	12	Motor training	Mixed (synchronous and asynchronous) phone, internet, devices	Quantitative

Author/Year	Search Date	Specific Population/Ages	No. of Studies Included in Original Review	No. of Studies Included in Overview ^b	Physical Therapist Intervention	Characteristics of Telerehabilitation	Type of Synthesis
An et al, 2009 ⁶⁹	April 2009	Children and adolescents with overweight/6–18 y	8	8	Physical activity incentive within comprehensive rehabilitation	Mixed (synchronous and asynchronous) internet	Qualitative
Connelly et al, 2013 ⁷⁰	March 2013	Type 2 diabetes in adults/>19 y	15	5	Physical activity, training or exercise prescription, education	Mixed (synchronous and asynchronous) internet	Qualitative
van Egmond et al, 2018 ⁷²	November 2016	Cardiac, orthopedic surgery, and oncological surgery/>19 y	23	23	Physical exercise training within comprehensive rehabilitation	Mixed (synchronous and asynchronous) phone calls, internet platform, videoconference and devices	Qualitative and quantitative
Geraedts et al, 2013 ⁶⁷	July 2012	Older adults/>19 y	32	25	Structured physical activity or exercise	Mixed (synchronous and asynchronous) phone, internet platform and devices	Qualitative
Huang et al, 2019 ⁶⁵	August 2014	Adults/>19 y	25	25	Exercise or physical activity incentive, education	Mixed (synchronous and asynchronous) internet-based system, phone, text messaging, videoconferencing	Quantitative
Kairy et al, 2009 ⁸	February 2007	Cardiac, respiratory, musculoskeletal, or neurological conditions/>19 y	28	4	Therapeutic exercise, functional training within comprehensive rehabilitation	Mixed (synchronous and asynchronous) internet, mobile phone, devices and software	Qualitative
Kopp et al, 2017 ⁷¹	November 2015	Cancer survivors/all ages	6	3	Cardiorespiratory and physical training, education	Mixed (synchronous and asynchronous) phone, devices, apps, webpage, virtual reality, email, text messaging, video games	Qualitative
Seiler et al, 2017 ⁶⁴	November 2016	Cancer survivors with fatigue/>19 y	15	2	Resistance and aerobic exercise training	Mixed (synchronous and asynchronous) online interventions or smartphone apps	Qualitative
Wieland et al, 2012 ¹⁸	May 2011	Overweight or obesity/>18 y	18	13	Physical activity and exercise education within a weight maintenance programs	Mixed (synchronous and asynchronous) computer- based intervention requiring user to interact directly with computer	Qualitative and quantitative

^{*a*}ATS = American Thoracic Society; BTS = British Thoracic Society; COPD = Chronic Obstructive Pulmonary Disease; ERS = European Respiratory Society; GOLD = Global Initiative for Chronic Obstructive Lung Disease. ^{*b*} Clinical trial including physical therapy intervention and comparison group with in-person intervention, no intervention (usual care or wait list), or mixed intervention.

	Phase 1		Phase	2		Phase 3
Systematic Review	Corresponding Question	Study Eligibility Criteria	Identification And Selection of the Studies	Data Collection and Study Appraisal	Synthesis and Findings	Overall Evaluation

Table 2. Risk of Bias of Systematic Reviews (ROBIS) Included by Clinical Area^a

Telerehabilitation in Musculoskeletal Conditions

Cottrell et al, 2017 ²⁹	Partially		©	<mark>©</mark>	<mark>©</mark>	©
Dario et al, 2017 ³⁰	Partially	<mark>©</mark>	☺	<mark>©</mark>	<mark>©</mark>	<mark>©</mark>
Heapy et al, 2015 ³⁶	Partially	55	8	8	<mark>8</mark>	8
Jansson et al, 2020 ²²	Yes	<mark>8</mark>	<u>;</u> }	O	<mark>8</mark>	<mark>8</mark>
Jiang et al, 201840	Yes	<mark>©</mark>	<u>;</u> ?	<mark>8</mark>	<u>;</u> }	8
Joice et al, 2017 ³⁷	Partially	<u>;</u> ?	8	8	<mark>8</mark>	<mark>8</mark>
Grona et al, 2018 ³⁸	Yes	<u>;</u> ?	8	O	8	<mark>8</mark>
Schäfer et al, 2018 ³¹	Yes	☺	☺	<mark>©</mark>	☺	<mark>©</mark>
Nicholl et al, 2017 ³²	Partially	©	O	O	<mark>©</mark>	<mark>©</mark>
Pastora-Bernal et al, 2017 ³⁹	Yes	e	C	8	8	8
Pietrzak et al, 2013 ¹⁶	Yes	55	?5	8	<mark>8</mark>	8
Shukla et al, 2017 ³³	Partially		☺	<mark>©</mark>	<mark>©</mark>	☺
Srikesavan et al, 2019	³⁴ Yes	©	☺	<mark>©</mark>	<mark>©</mark>	☺
Wang et al, 2019 ³⁵	Yes	©	O	O	<mark>©</mark>	O

Telerehabilitation in Neurological Conditions

Appleby et al, 2019 ⁴⁴ Yes	<mark>©</mark>	2?	<mark>©</mark>	55	:5
Camden et al, 2019 ⁴⁷ Yes	<mark>©</mark>	<mark>©</mark>	<mark>©</mark>	<u>;</u>	÷5
Chen et al, 2015 ⁴⁵ Yes	☺	<mark>©</mark>	<mark>©</mark>	<u>;</u> ?	53
Di Tella et al, 2020 ⁵⁰ Yes	?5	<mark>©</mark>	?خ	8	8
Johansson et al, 2011 ¹⁷ Yes	?غ	8	8	8	8
Khan et al, 2015 ⁴¹ Partially	☺	<mark>©</mark>	<mark>©</mark>	<mark>©</mark>	<mark>©</mark>
Laver et al, 2020 ⁴² Yes	©	<mark>©</mark>	©	<mark>©</mark>	
Rintala et al, 2018 ⁴³ Yes	©	©	©	<mark>©</mark>	<mark></mark>
Rintala et al, 2019 ⁵¹ Yes	©	<mark>©</mark>	©	8	<mark>8</mark>
Sarfo et al, 2018 ²⁰ Yes	©	8	8	8	<mark>8</mark>
Schröder et al, 2019 ⁴⁶ Yes	8	; ۶	©	8	8
Tchero et al, 2018 ⁴⁸ Yes	©	<mark>©</mark>	?خ	?خ	?غ
Xiaoyan et al, 2019 ⁴⁹ Yes	e	<mark>0</mark>	<mark>0</mark>	<u>;</u>	<u>;</u>

Two low-risk-of-bias reviews compared telerehabilitation with a control group without rehabilitation. Of these, 1, 2, and 1 reviews reported no difference between groups for clinical effectiveness evaluated as balance,⁴² functionality,^{41,42} and HRQL,⁴² respectively. One review about multiple sclerosis reported clinical effectiveness for disability in 2 of 3 primary studies and for HRQL in 2 of 4 primary studies.⁴¹ Two

reviews considered the other outcomes reporting no adverse effects^{41,42} and no differences⁴² or better satisfaction⁴¹ in the telerehabilitation group.

Three, 2, and 1 reviews evaluated as having an unclear risk of bias reported no differences for clinical effectiveness,^{44–46} functionality,^{44,45} and HRQL,⁴⁴ respectively, between telere-habilitation and in-person rehabilitation groups. For the same

Table 2. Continued

et al

	Phase 1		Phase	Phase 3		
Systematic Review	Corresponding Question	Study eligibility criteria	Identification and selection of the studies	Data collection and study appraisal	Synthesis and findings.	Overall evaluation

Telerehabilitation in Cardiopulmonary Conditions

Almojaibel et al, 2016 ¹⁹ Yes	8	8	8	8	8
Brørs et al, 2019 ⁵⁶ Partially	<u>;</u> ?	?غ	©	©	?غ
Chan et al, 2016 ⁶² Partially	<u>;</u> ?	8	8	8	<mark>8</mark>
Cristo et al, 2018 ²¹ Yes	©	<mark>©</mark>	<mark>©</mark>	8	8
Frederix et al, 2015 ⁶³ Yes	8	?غ	8	8	<mark>8</mark>
Hamilton et al, 201860 Partially		C	<mark>©</mark>	8	<mark>8</mark>
Huang et al, 2015 ⁵² Yes	©	C	©	©	
Hwang et al, 2015 ⁶¹ Yes	<u>;</u> ?	<mark>©</mark>	<mark>©</mark>	8	<mark>8</mark>
Jin et al, 2019 ⁵⁷ Yes	©	C	ć?	<u>;</u> ?	<u>;</u> ?
Lundell et al, 2015 ⁵³ Yes	©	C	<mark>©</mark>	<mark>©</mark>	©
McCabe et al, 2017 ⁵⁸ Yes	©	C	©	<u>;</u> ?	?غ
Munro et al, 2013 ¹⁵ Partially	<u>;</u> ?	8	<mark>©</mark>	8	<mark>8</mark>
Neubeck et al, 2009 ⁵⁹ Yes	8	C		©	?غ
Rawstorn et al, 2016 ⁵⁴ Yes	©	?غ	<mark>©</mark>	<mark>©</mark>	
Su et al, 2020 ⁵⁵ Partially	O	©	©	O	<mark>©</mark>

Telerehabilitation in Others Health Conditions or Mixed Reviews

et al,								
Adamse et al, 2018 ⁶⁶	Yes	©	C	©	55	53		
Agostini et al, 2015 ⁶⁸	Partially	?5	? :	<mark>©</mark>	B	<mark>8</mark>		
An et al, 2009 ⁶⁹	Yes	©	?5	8	B	<mark>8</mark>		
Connelly et al, 2013 ⁷⁰	Partially	8	8	8	B	8		
Van Egmond et al, 2018 ⁷²	Yes	©	☺		8	8		
Geraedts et al, 2013 ⁶⁷	Partially	©	<mark>©</mark>	<mark>©</mark>	÷?	; ج		
Huang et al, 2019 ⁶⁵	Yes	?غ	<mark>©</mark>	<mark>©</mark>	C	C		
Kairy et al, 2009 ⁶⁸	Partially	©	<mark>©</mark>	<mark>©</mark>	<u>;</u> ?	; ج		
Kopp et al, 2017 ⁷¹	Partially	53	? :	8	55	8		
Seiler et al, 2017 ⁶⁴	Yes	©	<mark>©</mark>	<mark>©</mark>	©			
Wieland et al, 2012 ¹⁸	Partially	©	©	<mark>©</mark>	C			
🐵 = Low Risk of Bias; 2? = Unclear Risk of Bias; 🕴 = High Risk of Bias								

comparison, 1 review showed mixed results for HRQL in patients with stroke.⁴⁵ On the other hand, for the telerehabilitation versus no-rehabilitation comparison, 1 unclear-risk-of-bias review showed better motor function in children with disabilities in the telerehabilitation group and also reported better effectiveness for functionality in some of the primary studies included.⁴⁷

Finally, of 4 high-risk-of-bias reviews, 1 review about multiple sclerosis reported better results for motor disability in the telerehabilitation group compared with the in-person group and no differences for functionality.⁵⁰ The other 3 reviews reported no differences between groups for clinical effective-ness in stroke survivors^{17,20,51} in the same comparison. Additionally, 1 review at high risk of bias showed no differences

Comparison	Low Risk of Bias Systematic Reviews			Unclear Risk of Bias Systematic Reviews			High Risk of Bias Systematic Reviews		
Carpansar	Clinical Effectiveness	Functionality	HRQL	Clinical Effectiveness	Functionality	HRQL	Clinical Effectiveness	Functionality	HRQL
							Heapy 2015 ³⁶ [a]	Heapy 2015 ³⁶	
Telerehabilitation							Jansson 2020 ²² [a]	Jansson 2020 ²²	Jansson 2020 ²²
VS.							Jiang 2018 ⁴⁰ [a]	Jiang 2018 ⁴⁰	
In-person	Cottrell 2017 ²⁹ [a]	Cottrell 2017 ²⁹	Cottrell 2017 ²⁹				Joice 2017 ³⁷ [d]	Joice 2017 ³⁷	Joice 2017 ³⁷
Rehabilitation							Grona 2018 ³⁸ [a]	Grona 2018 ³⁸	Grona 2018 ³⁸
							Pastora-Bernal 2017 ³⁹ [a]	Pastora-Bernal 2017 ³⁹	
								Pietrzak 2013 ¹⁶	
	Cottrell 2017 ²⁹ [a]	Cottrell 2017 ²⁹							
	Dario 2017 ³⁰ [a]	Dario 2017 ³⁰	Dario 2017 ³⁰						
Telerehabilitation	Schäfer 2018 ³¹ [a]	Schäfer 2018 ³¹	Schäfer 2018 ³¹				Heapy 2015 ³⁶ [a]	Heapy 2015 ³⁶	
vs. No-Rehabilitation	Nicholl 2017 ³² [a,b]	Nicholl 2017 ³²	Nicholl 2017 ³²						
	Shukla 2017 ³³ [a]		Shukla 017 ³³				Pietrzak 2013 ¹⁶ [c]		
	Srikesavan 2019 ³⁴ [a]	Srikesavan 2019 ³⁴	Srikesavan 2019 ³⁴						
	Wang 2019 ³⁵ [a]	Wang 2019 ³⁵	Wang 201935						
NOTES:	Results favour telerehabilitation; Results favour telerehabilitation in some studies; Pain; b= pain-related disability; c=health status; d= various								groups;

Figure 1. Summary of effectiveness results of telerehabilitation in musculoskeletal conditions by risk of bias assessment.

Comparison	Low Risk o	Low Risk of Bias Systematic Reviews			Unclear Risk of Bias Systematic Reviews			High Risk of Bias Systematic Reviews		
Companson	Clinical Effectiveness	Functionality	HRQL	Clinical Effectiveness	Functionality	HRQL	Clinical Effectiveness	Functionality	HRQL	
Telerehabilitation vs. In-person Rehabilitation	Khan 2015 ⁴¹ [h] Laver 2020 ⁴² [h] Rintala 2018 ⁴³ [j]	Laver 2020 ⁴² Rintala 2018 ⁴³	Laver 2020 ⁴²	Appleby 2019 ⁴⁴ [e] Chen 2015 ⁴⁵ [f] Schröder 2019 ⁴⁶ [h]	Appleby 2019 ⁴⁴	Appleby 201944 Chen 201545	Di Tella 2020 ⁵⁰ [g] Johansson 2011 ¹⁷ [e] Rintala 2019 ⁵¹ [f] Sarfo 2018 ²⁰ [e]	Di Tella 201950		
Telerehabilitation VS No-Rehabilitation	Khan 2015 ⁴¹ [i] Laver 2020 ⁴² [f]	Khan 2015 ⁴¹ Laver 2020 ⁴²	Khan 2015 ⁴¹ Laver 2020 ⁴²	Appleby 2019 ⁴⁴ [e] Camden 2019 ⁴⁷ [e] Tchero 2018 ⁴² [f] Xiaoyan 2019 ⁴⁹ [e]	Appleby 2019 ⁴⁴ Camden 2019 ⁴⁷ Tchero 2018 ⁴⁸ Xiaoyan 2019 ⁴⁹	Tchero 2018 ⁴⁸ Xiaoyan 2019 ⁴⁹	Rintala 2019 ^a [f]			
NOTES:	Results favour telerehabilitation; Results favour telerehabilitation in some studies; Po differences between groups; a= motor function; b= activities of daily living; c=motor disability; d= balance; e=disability; f= physical activity								n groups;	

Figure 2. Summary of effectiveness results of telerehabilitation in neurological conditions by risk of bias assessment.

between telerehabilitation and no-rehabilitation groups for activities of daily living in stroke survivors. 51

Cardiopulmonary Rehabilitation

A summary of results is presented in Figure 3. Four reviews were evaluated as having a low risk of bias. Only 1 review with patients with coronary heart disease found better results for the telerehabilitation group compared with in-person rehabilitation in clinical effectiveness measured as all-cause mortality.⁵² On the other hand, 1 review with patients with COPD⁵³ and 2 reviews with coronary heart disease patients^{54,55} reported no differences in clinical effectiveness between groups, regardless of the comparison group. One review included the HRQL outcome, reporting no differences between cardiac telerehabilitation and in-person cardiac

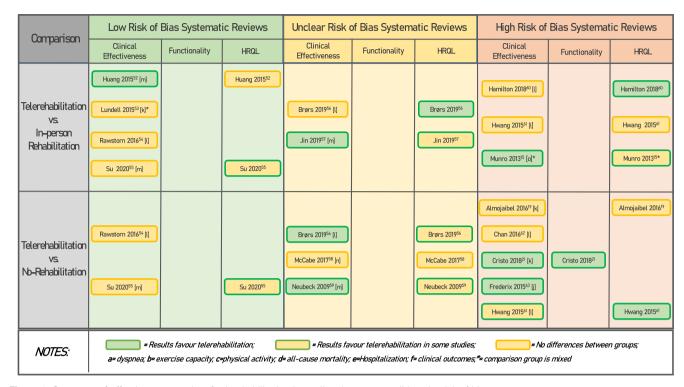


Figure 3. Summary of effectiveness results of telerehabilitation in cardiopulmonary conditions by risk of bias assessment.

rehabilitation,⁵² and another review also about cardiac rehabilitation showed mixed results for HRQL for both telerehabilitation versus in-person and telerehabilitation versus norehabilitation comparisons.⁵⁵ Finally, 1 review showed better adherence for telerehabilitation compared with usual care.⁵⁴

Another 4 reviews were evaluated as having an unclear risk of bias. Two of them, comparing telerehabilitation and inperson rehabilitation in patients with coronary heart disease, reported contradictory results. One review found a better HRQL in the telerehabilitation group and no> differences for clinical effectiveness measured as exercise capacity.⁵⁶ In contrast, the other review reported no differences between groups for HRQL in most of the primary studies included, but better clinical effectiveness measured as prevention of allcause mortality.⁵⁷ On the other hand, for the telerehabilitation versus no-rehabilitation comparison, 2 and 1 unclear-riskof-bias reviews showed better clinical effectiveness^{56,59} with telerehabilitation and no difference between groups,⁵⁸ respectively. Two reviews reported better results for HRQL^{56,59} in some primary studies included.

Seven reviews were evaluated as having a high risk of bias. Of these, 2 reviews^{60,61} presented no differences between groups for exercise capacity when telerehabilitation was compared with in-person rehabilitation. One review¹⁵ reported better results with telerehabilitation for clinical outcomes and same comparison, and mixed results were reported for HRQL.^{15,60,61} For the telerehabilitation versus no-rehabilitation comparison, 2, 1, and 1 reviews showed better effectiveness for clinical outcomes,^{21,63} functionality,²¹ and HRQL,⁶¹ respectively. Another 2 and 1 reviews reported no differences between groups for clinical effectiveness^{19,62} and HRQL,¹⁹ respectively. Finally, 1 review obtained mixed results for clinical effectiveness.⁶¹

Other Health Conditions

A summary of results is presented in Figure 4. Three low-riskof-bias reviews evaluated telerehabilitation (more extensive than telemedicine) versus usual care. One reported clinical effectiveness to decrease body mass index,⁶⁵ another found that an eHealth intervention was effective at managing fatigue in cancer survivors,⁶⁴ and the last review, about overweight or obesity, reported lower weight regain in the intervention group.¹⁸ Two reviews also compared telerehabilitation with an in-person intervention, 1 of them reported no differences between groups for physical capacity but better results for HRQL in the telerehabilitation group,⁶⁴ and the other found better clinical effectiveness with telerehabilitation.¹⁸

Three reviews evaluated as having unclear risk of bias and comparing telerehabilitation with in-person intervention reported no difference between groups for clinical effectiveness^{8,66,67} and HRQL.⁶⁶ The same reviews also compared telerehabilitation with no intervention, and while one found no difference for pain and HRQL,⁶⁶ the other 2 reported mixed results for clinical effectiveness.^{8,67}

Three and 1 reviews with a high risk of bias compared telerehabilitation with an in-person intervention and no intervention, respectively. From the first comparison, 1 reported a better result for clinical effectiveness measured as body mass index with telerehabilitation⁶⁹ and the other reported mixed results.⁶⁸ A third review showed better functionality in patients undergoing surgery and mixed results for HRQL in primary studies.⁷² For the second comparison, 1 review found better glycated hemoglobin control in adults with type 2 diabetes with telerehabilitation.⁷⁰

Finally, 1 review with no comparison identified reported mixed results for physical activity in cancer survivors.⁷¹

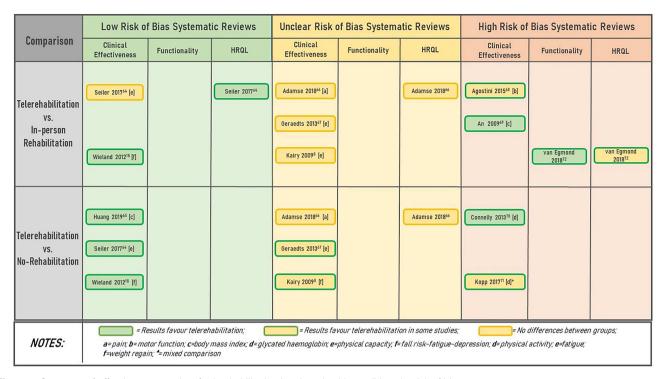


Figure 4. Summary of effectiveness results of telerehabilitation in others health conditions by risk of bias assessment.

Discussion

Fifty-three systematic reviews on telerehabilitation in physical therapy were included in this overview, 27 of which also included meta-analyses. These reviews covered different areas of the practice of physical therapy, mainly in the musculoskele-tal, neurological, and cardiopulmonary areas.

Although there are global reviews and overviews that assess the effectiveness of telerehabilitation in some specific conditions,^{7,13,73-75} to our knowledge this is first comprehensive overview that compiles results on the effectiveness of telerehabilitation, including various clinical areas in the remit of the physical therapist. This makes the available evidence so widely applicable in different areas of rehabilitation even more so today where, in addition to having greater access to various technologies, it has been made urgently necessary for such rehabilitation services to reach users without them having to leave the home because they are geographically remote and due to the COVID-19 pandemic. This latter global situation has clearly produced a collateral damage to the users of rehabilitation and physical therapy services.^{76,77} The reported experiences in this scenario, although scarce,⁷⁸ reveal opportunities and challenges that must be faced, such as technological barriers, ethical and legal regulations, health insurance coverage, and cultural difficulties that preclude the understanding that telehealth and digital practice can be an effective means of rehabilitation.75

The population for which there is effectiveness data is mainly adult, with few studies on children or adolescents. In the musculoskeletal area, the conditions they address include chronic musculoskeletal pain, arthroplasties, osteoarthritis, and low-back pain in addition to surgically treated orthopedic conditions. On the other hand, in the area of neurorehabilitation, the evidence focuses on stroke and multiple sclerosis. In the cardiopulmonary area, the conditions are those typically included in cardiac rehabilitation, such as coronary disease, or pulmonary rehabilitation, such as COPD. In other health conditions, the most frequently addressed were cancer and ageing, with these being observed as emerging areas.

With respect to the means by which telerehabilitation is implemented, the most frequently studied is the use of the mobile telephone with its messaging services and telephone calls, with knowledge emerging of the effectiveness of the applications available on smartphones as a digital practice tool. The internet, including web pages mainly with educational content, videos, or interactive gaming, is also frequently studied. Studies have investigated electronic devices that are basically used as remote monitors with physical therapy interventions. Also studied were specialized platforms (eg, for videoconferencing), especially when synchronous communication is required. Finally, and especially in the neurological area, virtual reality has been positioned as an intervention tool, also within telerehabilitation, and was included in this work only if reviews explicitly stated that virtual reality was used outside a health center.

Other factors must be considered in the extrapolation of the results. One is the fact that the reviews generally include studies from the past 2 decades, during which there has been great technological growth at the same time as the widespread use of these media by the population, which makes the first studies in the area very different from the most recent. The other factor is that most of the reviews and their primary studies were concentrated in Europe, North America, and Oceania, with little information originating from low-resource settings, which could affect the feasibility of using the technologies on a more global scale because these may be the places that have the least access as well as conventional rehabilitation and would benefit most from its implementation and reduce health disparities.

Although the knowledge available with these systematic reviews is broad and up to date, care must be taken in the interpretation of the results, basically due to the risk of bias present in the design process, conducting and analysis of the results from the systematic reviews, as well as the risk of inherent bias in the primary studies included in them. Only one-third of the reviews were assessed as having a low risk of bias, from which interpretations and extrapolations can be established with more certainty. Of these, however, in almost one-half of the clinical trials included, the evaluations of the quality or the risk of bias were deficient, which is why the uncertainty about the conclusions of the reviews continues to be high.

Although the establishment of the eligibility criteria, identification of primary studies, and data collection were not elements of great concern, the main issue with the systematic reviews included in this overview has to do with the process of synthesizing and interpreting the results. A specific aspect identified regards the results being synthesized in many reviews with no consideration as to which comparison groups were included in the clinical trials (eg, no rehabilitation or in-person or usual rehabilitation in a health center, an aspect that is a significant source of heterogeneity). To correct this problem to some extent, efforts were made to disaggregate data from the primary studies included in the reviews where it was feasible to do so, because tables were available, and there was a direct relation between the information they contained and the information in the text and the references of the studies, which only left a couple of reviews with a mixed comparison in results.

Another aspect of relevance in the interpretation of the findings was the lack of consideration of the risk of bias of the primary studies in establishing the conclusions of some of the reviews included, which may confuse readers, especially because the tendency in these cases is to overestimate the effects of telerehabilitation on physical therapy. One way to be able to draw valid conclusions in systematic reviews is to associate the results of the reviews or meta-analyses, that is, the estimator of the effect, their magnitude and accuracy, with the risk of bias. This is called certainty of evidence, which can be addressed in the process of interpreting the findings with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) tool,⁸⁰ which was used in no more than one-third of the reviews included.

Consideration must be given to interpreting the results of no differences between groups, a finding present in more than one-half of the reviews. This may be due to the fact there were effectively no differences between the groups or to statistical power achieved with the sum of patients in the studies included in the reviews being insufficient to find differences. The importance here is that—although assuming that telerehabilitation is not inferior to in-person rehabilitation or, on the other hand, that telerehabilitation produces the same effects as not doing rehabilitation—caution should be taken in interpreting this finding in light of the accuracy of the results, that is, the size of the sample reached.

This overview has some limitations related basically to having been conducted as a rapid review, and within these limitations it should be recognized that the grey literature was not searched and that the data extraction process and evaluation of the risk of bias were not performed in duplicate, in addition to having been conducted by a large group of reviewers, which could have affected the reliability of the data. To minimize this bias, a second reviewer with experience in systematic reviews extracted data and assessed the risk of bias. Another limitation to consider in the extrapolation of the results is the fact that physical therapy can be delivered alone or within a more comprehensive rehabilitation program. Although this distinction was not specifically considered in the selection criteria of most reviews or in the description of interventions, it could be observed that physical therapy was often provided with other rehabilitation interventions.

Although the aim of this overview was broad, it was possible to cover, but it must be clearly understood that the scope of the interventions included are about physical therapy and related with therapeutic or secondary prevention and not those of assessment or primary prevention.

Implications for Clinical Practice

The available evidence shows that telerehabilitation could be comparable or better than the conventional methods of rehabilitation to reduce pain and improve physical function in musculoskeletal conditions generally. Additionally, telerehabilitation could improve functionality in patients with osteoarthritis in the knee and non-specific low-back pain in addition to improving quality of life in patients with nonspecific low-back pain, osteoarthritis in the knee, and total arthroplasty in the knee and hip.

In the area of neurorehabilitation, telerehabilitation seems to contribute to balance and to increasing the levels of physical activity in patients with multiple sclerosis, but its contribution in terms of balance, functionality, and quality of life in patients with stroke is unclear.

On the other hand, cardiac rehabilitation via telematic means is possibly better than in-person cardiac rehabilitation at reducing mortality by any cause and also seems to contribute to a better ability to exercise and HRQL. On the other hand, pulmonary telerehabilitation could have results similar to conventional rehabilitation in terms of reducing dyspnea in patients with COPD.

Finally, the interventions performed by physical therapists using technological media could be effective at reducing overweight and obesity as well as improving the physical capacity and quality of life in cancer survivors.

Clinicians must bear in mind that these conclusions come from 17 low-risk-of-bias reviews while there are another 36 reviews with methodological issues and contradictory results. Regardless of this, and in a context where it is not possible to perform center-based or in-person rehabilitation—because patients cannot access a health center, the health centers cannot provide services to all those who need it, or, during the COVID-19 pandemic, where outpatient or in-person services have been reduced or suspended in many health centers telerehabilitation seems to be a suitable and feasible strategy to implement. On this point it must be recognized that the previously identified barriers had to be circumvented quickly, making it increasingly more likely that this form of rehabilitation service will become a new standard during and after this pandemic.

Implications for Research

This rapid overview provides evidence that it is necessary to continue research in the area of telerehabilitation. On the one hand, systematic reviews must improve their processes of planning, execution, and synthesis of results, incorporating solid methodologies such as the GRADE approach. Future overviews in specific clinical areas could incorporate a global quantitative synthesis of results, doing new meta-analyses and even performing analyses of indirect comparisons. On the other hand, and perhaps most critically, is that clinical trials are conducted under strict considerations of internal validity and with optimal sample sizes. It is important to recognize that the results of a systematic review are only as valid as the results of the primary studies included. Another suggestion on this point is that non-inferiority studies be conducted, with their well-developed methodological particularities, so that they may conclude that telerehabilitation is not inferior to standard rehabilitation. Finally, a challenge to face is that these primary studies must be conducted in various resource settings, especially in the more precarious ones where there is less information.

Author Contributions

Concept/idea/research design: P. Seron, M.J. Oliveros

- Writing: P. Seron, M.J. Oliveros, R. Gutierrez-Arias, R. Fuentes-Aspe,
- R. Torres-Castro, C. Merino-Osorio, J. Inostroza, R. Solano,
- G. Marzuca-Nassr, R. Aguilera, P. Lavados-Romo, F. Soto, C. Sabelle,
- G. Villarroel, P. Gomolán, S. Huaiquilaf, P. Sanchez
- Data collection: P. Seron, M.J. Oliveros, R. Gutierrez-Arias,
 - R. Fuentes-Aspe, R. Torres-Castro, C. Merino-Osorio,
 - P. Nahuelhual, J. Inostroza, Y. Jalil, R. Solano, G. Marzuca-Nassr,
 - R. Aguilera, P. Lavados-Romo, F. Soto, C. Sabelle, G. Villarroel,
 - P. Gomolán, S. Huaiquilaf, P. Sanchez
- Data analysis: P. Seron, M.J. Oliveros, R. Gutierrez-Arias, R. Fuentes-Aspe, R. Torres-Castro
- Project management: P. Seron, M.J. Oliveros, R. Gutierrez-Arias, R. Fuentes-Aspe
- Fund procurement: P. Seron
- Consultation (including review of manuscript before submitting): Y. Jalil, F. Soto

Funding

This work was supported by a grant from the Fondecyt Program of National Agency for Research and Development (ANID), Chile (Grant number 1181734).

Systematic Review Registration

This protocol is registered in PROSPERO (CRD42020185640).

Disclosures

The authors completed the ICMJE Form for Disclosure of Potential Conflicts of Interest and reported no conflicts of interest.

References

- World Health Organization. World Report on Ageing and Health. 2015. Accessed July 2020. https://www.who.int/ageing/events/wo rld-report-2015-launch/en/.
- World Health Organization. Rehabilitation in Health Systems. 2017. Accessed July 2020. https://www.who.int/disabilities/rehabilitation_health_systems/en/.
- World Confederation for Physical Therapy. Policy statement: description of physical therapy. 2017. Accessed June 2020. https:// www.wcpt.org/policy/ps-descriptionPT
- Falvey JR, Murphy TE, Gill TM, Stevens-Lapsley JE, Ferrante LE. Home health rehabilitation utilization among Medicare beneficiaries following critical illness. J Am Geriatr Soc. 2020;68: 1512–1519.
- 5. Zziwa S, Babikako H, Kwesiga D, et al. Prevalence and factors associated with utilization of rehabilitation services among people

with physical disabilities in Kampala, Uganda. A descriptive cross sectional study. *BMC Public Health*. 2019;19:1–11.

- Deslauriers S, Déry J, Proulx K, et al. Effects of waiting for outpatient physiotherapy services in persons with musculoskeletal disorders: a systematic review. *Disabil Rehabil*. 2019;43:611–620.
- Rogante M, Grigioni M, Cordella D, Giacomozzi C. Ten years of telerehabilitation: a literature overview of technologies and clinical applications. *Neuro Rehabilitation*. 2010;27:287–304.
- Kairy D, Lehoux P, Vincent C, Visintin M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. *Disabil Rehabil*. 2009;31: 427–447.
- 9. Bettger JP, Resnik LJ. Telerehabilitation in the age of COVID-19: an opportunity for learning health system research. *Phys Ther.* 2020;100:1913–1916.
- Turolla A, Rossettini G, Viceconti A, Palese A, Geri T. Musculoskeletal physical therapy during the COVID-19 pandemic: is telerehabilitation the answer? *Phys Ther.* 2020;100: 1260–1264.
- 11. Quigley A, Johnson H, McArthur C. Transforming the provision of physiotherapy in the time of COVID-19: a call to action for telerehabilitation. *Physiother Can.* 2020;73:e20200031.
- Alpalhão V, Alpalhão M. Impact of COVID-19 on physical therapist practice in Portugal. *Phys Ther.* 2020;100:1052–1053.
- Peretti A, Amenta F, Tayebati SK, Nittari G, Mahdi SS. Telerehabilitation: review of the state-of-the-art and areas of application. *JMIR Rehabil Assist Technol.* 2017;4:e7.
- Hailey D, Roine R, Ohinmaa A, Dennett L. Evidence of benefit from telerehabilitation in routine care: a systematic review. J Telemed Telecare. 2011;17:281–287.
- Munro J, Angus N, Leslie SJ. Patient focused internet-based approaches to cardiovascular rehabilitation—a systematic review. *J Telemed Telecare*. 2013;19:347–353.
- Pietrzak E, Cotea C, Pullman S, Nasveld P. Self-management and rehabilitation in osteoarthritis: is there a place for internet-based interventions? *Telemed e-Health*. 2013;19:800–805.
- 17. Johansson T, Wild C. Telerehabilitation in stroke care—a systematic review. J Telemed Telecare. 2011;17:1–6.
- Wieland L, Falzon L, Sciamanna C, et al. Interactive computerbased interventions for weight loss or weight maintenance in overweight or obese people. *Cochrane Database Syst Rev* 2012;8:CD007675.
- 19. Almojaibel A. Delivering pulmonary rehabilitation for patients with chronic obstructive pulmonary disease at home using telehealth: a review of the literature. *Saudi J Med Med Sci.* 2016;4: 164.
- Sarfo FS, Ulasavets U, Opare-Sem OK, Ovbiagele B. Telerehabilitation after stroke: an updated systematic review of the literature. J Stroke Cerebrovasc Dis. 2018;27:2306–2318.
- Cristo D D, Nascimento NP D, Dias AS, Sachetti A. Telerehabilitation for cardiac patients: systematic review. *Int J Cardiovasc Sci.* 2018;31:443–450.
- 22. Jansson MM, Rantala A, Miettunen J, Puhto AP, Pikkarainen M. The effects and safety of telerehabilitation in patients with lowerlimb joint replacement: a systematic review and narrative synthesis. *J Telemed Telecare*. 2020;1357633X20917868.
- 23. Liu P, Li G, Jiang S, et al. The effect of smart homes on older adults with chronic conditions: a systematic review and meta-analysis. *Geriatr Nurs (Minneap)*. 2019;40:522–530.
- 24. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.
- 25. Serón P, Oliveros MJ, Fuentes-Aspe R, Gutiérrez-Arias R. Efectividad de la telerehabilitación en terapia física: protocolo de una revisión global en tiempos que exigen respuestas rápidas. *Medwave*. 2020;20:e7970.
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyana web and mobile app for systematic reviews. *Syst Rev.* 2016;5: 1–10.

- 27. Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: building an international community of software platform partners. *J Biomed Inform*. 2019;95:103208.
- Whiting P, Savović J, Higgins JPT, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225–234.
- 29. Cottrell MA, Galea OA, O'Leary SP, Hill AJ, Russell TG. Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: a systematic review and meta-analysis. *Clin Rehabil*. 2017;31:625–638.
- Dario AB, Moreti Cabral A, Almeida L, et al. Effectiveness of telehealth-based interventions in the management of non-specific low back pain: a systematic review with meta-analysis. *Spine J*. 2017;17:1342–1351.
- Schäfer AGM, Zalpour C, Von Piekartz H, Hall TM, Paelke V. The efficacy of electronic health-supported home exercise interventions for patients with osteoarthritis of the knee: systematic review. J Med Internet Res. 2018;20:1–16.
- 32. Nicholl BI, Sandal LF, Stochkendahl MJ, et al. Digital support interventions for the self-management of low back pain: a systematic review. *J Med Internet Res.* 2017;19:e179.
- Shukla H, Nair SR, Thakker D. Role of telerehabilitation in patients following total knee arthroplasty: evidence from a systematic literature review and meta-analysis. J Telemed Telecare. 2016;23:339–346.
- 34. Srikesavan C, Bryer C, Ali U, Williamson E. Web-based rehabilitation interventions for people with rheumatoid arthritis: a systematic review. *J Telemed Telecare*. 2019;25:263–275.
- 35. Wang X, Hunter DJ, Vesentini G, Pozzobon D, Ferreira ML. Technology-assisted rehabilitation following total knee or hip replacement for people with osteoarthritis: a systematic review and meta-analysis. *BMC Musculoskelet Disord*. 2019;20:506.
- Heapy AA, Higgins DM, Cervone D, Wandner L, Fenton BT, Kerns RD. A systematic review of technology-assisted self-management interventions for chronic pain: looking across treatment modalities. *Clin J Pain*. 2015;31:470–492.
- Joice MG, Bhowmick S, Amanatullah DF. Perioperative physiotherapy in total knee arthroplasty. Orthopedics. 2017;40: e765–e773.
- Grona SL, Bath B, Busch A, Rotter T, Trask C, Harrison E. Use of videoconferencing for physical therapy in people with musculoskeletal conditions: a systematic review. *J Telemed Telecare*. 2018;24:341–355.
- Pastora-Bernal JM, Martín-Valero R, Barón-López FJ, Estebanez-Pérez MJ. Evidence of benefit of telerehabilitation after orthopedic surgery: a systematic review. J Med Internet Res. 2017; 19:1–13.
- 40. Jiang S, Xiang J, Gao X, Guo K, Liu B. The comparison of telerehabilitation and face-to-face rehabilitation after total knee arthroplasty: a systematic review and meta-analysis. *J Telemed Telecare*. 2018;24:257–262.
- Khan F, Amatya B, Kesselring J, Galea M. Telerehabilitation for persons with multiple sclerosis. Cochrane Database Syst Rev. 2015;4:CD010508.
- 42. Laver KE, Adey-Wakeling Z, Crotty M, Lannin NA, George S, Sherrington C. Telerehabilitation services for stroke. *Cochrane Database Syst Rev.* 2020;1:CD010255.
- 43. Rintala A, Hakala S, Paltamaa J, Heinonen A, Karvanen J, Sjögren T. Effectiveness of technology-based distance physical rehabilitation interventions on physical activity and walking in multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. *Disabil Rehabil*. 2018;40:373–387.
- 44. Appleby E, Gill ST, Hayes LK, Walker TL, Walsh M, Kumar S. Effectiveness of telerehabilitation in the management of adults with stroke: a systematic review. *PLoS One.* 2019;14:1–18.
- Chen J, Jin W, Zhang XX, Xu W, Liu XN, Ren CC. Telerehabilitation approaches for stroke patients: systematic review and metaanalysis of randomized controlled trials. *J Stroke Cerebrovasc Dis*. 2015;24:2660–2668.

- 46. Schröder J, van Criekinge T, Embrechts E, et al. Combining the benefits of tele-rehabilitation and virtual reality-based balance training: a systematic review on feasibility and effectiveness. *Disabil Rehabil Assist Technol.* 2019;14:2–11.
 47. On the O. The Comparison of the c
- 47. Camden C, Pratte G, Fallon F, Couture M, Berbari J, Tousignant M. Diversity of practices in telerehabilitation for children with disabilities and effective intervention characteristics: results from a systematic review. *Disabil Rehabil*. 2019;0:1–13.
- 48. Tchero H, Teguo MT, Lannuzel A, Rusch E. Telerehabilitation for stroke survivors: systematic review and meta-analysis. J Med Internet Res. 2018;20:1–10.
- 49. Xiaoyan Z, Pu W, Lijiao Y, et al. Home-based telerehabilitation for stroke survivors: a systematic review. *Chinese J Evidence-Based Med*. 2019;19:1226–1232.
- Di Tella S, Pagliari C, Blasi V, Mendozzi L, Rovaris M, Baglio F. Integrated telerehabilitation approach in multiple sclerosis: a systematic review and meta-analysis. *J Telemed Telecare*. 2020;26: 385–399.
- Sintala A, Päivärinne V, Hakala S, et al. Effectiveness of technology-based distance physical rehabilitation interventions for improving physical functioning in stroke: a systematic review and meta-analysis of randomized controlled trials. *Arch Phys Med Rehabil.* 2019;100:1339–1358.
- 52. Huang K, Liu W, He D, et al. Telehealth interventions versus center-based cardiac rehabilitation of coronary artery disease: a systematic review and meta-analysis. *Eur J Prev Cardiol*. 2015;22: 959–971.
- Lundell S, Holmner Å, Rehn B, Nyberg A, Wadell K. Telehealthcare in COPD: a systematic review and meta-analysis on physical outcomes and dyspnea. *Respir Med.* 2015;109:11–26.
- 54. Rawstorn JC, Gant N, Direito A, Beckmann C, Maddison R. Telehealth exercise-based cardiac rehabilitation: a systematic review and meta-analysis. *Heart*. 2016;102:1183–1192.
- 55. Su JJ, Yu DSF, Paguio JT. Effect of eHealth cardiac rehabilitation on health outcomes of coronary heart disease patients: a systematic review and meta-analysis. *J Adv Nurs*. 2020;76:754–772.
- 56. Brørs G, Pettersen TR, Hansen TB, et al. Modes of e-health delivery in secondary prevention programmes for patients with coronary artery disease: a systematic review. *BMC Health Serv Res.* 2019;19:364.
- Jin K, Khonsari S, Gallagher R, et al. Telehealth interventions for the secondary prevention of coronary heart disease: a systematic review and meta-analysis. *Eur J Cardiovasc Nurs.* 2019;18: 260–271.
- McCabe C, McCann M. Brady. AM. Management in chronic obstructive pulmonary disease (review). *Cochrane Database Syst Rev.* 2017;5:CD011425.
- Neubeck L, Redfern JU, Fernandez R, Briffa T, Bauman A, Ben FS. Telehealth interventions for the secondary prevention of coronary heart disease: a systematic review. *Eur J Prev Cardiol*. 2009;16: 281–289.
- 60. Hamilton SJ, Mills B, Birch EM, Thompson SC. Smartphones in the secondary prevention of cardiovascular disease: a systematic review. *BMC Cardiovasc Disord*. 2018;18:25.
- Hwang R, Bruning J, Morris N, Mandrusiak A, Russell T. A systematic review of the effects of telerehabilitation in patients with cardiopulmonary diseases. J Cardiopulm Rehabil Prev. 2015;35: 380–389.
- 62. Chan C, Yamabayashi C, Syed N, Kirkham A, Camp PG. Exercise telemonitoring and telerehabilitation compared with traditional cardiac and pulmonary rehabilitation: a systematic review and meta-analysis. *Physiother Can.* 2016;68:242–251.
- Frederix I, Vanhees L, Dendale P, Goetschalckx K. A review of telerehabilitation for cardiac patients. *J Telemed Telecare*. 2015;21: 45–53.
- 64. Seiler A, Klaas V, Tröster G, Fagundes CP. eHealth and mHealth interventions in the treatment of fatigued cancer survivors: a systematic review and meta-analysis. *Psychooncology*. 2017;26: 1239–1253.

- 65. Huang JW, Lin YY, Wu NY. The effectiveness of telemedicine on body mass index: a systematic review and meta-analysis. *J Telemed Telecare*. 2019;25:389–401.
- Adamse C, Dekker-Van Weering MGH, van Etten-Jamaludin FS, Stuiver MM. The effectiveness of exercise-based telemedicine on pain, physical activity and quality of life in the treatment of chronic pain: a systematic review. *J Telemed Telecare*. 2018;24: 511–526.
- Geraedts H, Zijlstra A, Bulstra SK, Stevens M, Zijlstra W. Effects of remote feedback in home-based physical activity interventions for older adults: a systematic review. *Patient Educ Couns*. 2013;91: 14–24.
- Agostini M, Moja L, Banzi R, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21:202–213.
- 69. An JY, Hayman LL, Park YS, Dusaj TK, Ayes CG. Web-based weight management programs for children and adolescents: a systematic review of randomized controlled trial studies. *Adv Nurs Sci.* 2009;32:222–240.
- Connelly J, Kirk A, Masthoff J, Macrury S. The use of technology to promote physical activity in type 2 diabetes management: a systematic review. *Diabet Med.* 2013;30:1420–1432.
- Kopp LM, Gastelum Z, Guerrero CH, Howe CL, Hingorani P, Hingle M. Lifestyle behavior interventions delivered using technology in childhood, adolescent, and young adult cancer survivors: a systematic review. *Pediatr Blood Cancer*. 2017;64:13–17.
- van Egmond MA, van der Schaaf M, Vredeveld T, et al. Effectiveness of physiotherapy with telerehabilitation in surgical patients: a systematic review and meta-analysis. *Physiother (United Kingdom)*. 2018;104:277–298.

- 73. Ambrosino N, Fracchia C. The role of tele-medicine in patients with respiratory diseases. *Expert Rev Respir Med.* 2017;11: 893–900.
- 74. Amatya B, Khan F, Galea M. Rehabilitation for people with multiple sclerosis: an overview of Cochrane reviews. *Cochrane Database Syst Rev.* 2019;1:CD012732.
- Oldridge N, Pakosh M, Grace SL. A systematic review of recent cardiac rehabilitation meta-analyses in patients with coronary heart disease or heart failure. *Future Cardiol.* 2019;15: 227–249.
- Negrini S, Grabljevec K, Boldrini P, et al. Up to 2.2 million people experiencing disability suffer collateral damage each day of COVID-19 lockdown in Europe. *Eur J Phys Rehabil Med*. 2020;56: 361–365.
- 77. Boldrini P, Garcea M, Brichetto G, et al. Living with a disability during the pandemic. "Instant paper from the field" on rehabilitation answers to the COVID-19 emergency. *Eur J Phys Rehabil Med.* 2020;56:331–334.
- Negrini S, Donzelli S, Negrini A, Negrini A, Romano M, Fabio Z. Feasibility and acceptability of telemedicine to substitute outpatient rehabilitation services in the COVID-19 emergency in Italy: an observational everyday clinical-life study. *Arch Phys Med Rehabil.* 2020;101:2027–2032.
- 79. Negrini S, Kiekens C, Bernetti A, et al. Telemedicine from research to practice during the pandemic. "Instant paper from the field" on rehabilitation answers to the COVID-19 emergency. *Eur J Phys Rehabil Med.* 2020;56:327–330.
- Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–394.