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Abstract. Many studies estimate the impact of exposure to some quasi-experimental
policy or event using a panel event study design. These models, as a generalized
extension of ‘difference-in-differences’ designs or two-way fixed effect models, al-
low for dynamic leads and lags to the event of interest to be estimated, while also
controlling for fixed factors (often) by area and time. In this paper we discuss the
set-up of the panel event study design in a range of situations, and lay out a num-
ber of practical considerations for its estimation. We describe a Stata command
eventdd that allows for simple estimation, inference, and visualization of event
study models in a range of circumstances. We then provide a number of examples
to illustrate eventdd’s use and flexibility, as well as its interaction with various
native Stata routines, and other relevant user-written libraries such as reghdfe
and boottest.

Keywords: , event studies, difference-in-differences, estimation, inference, visual-
ization

1 Introduction
Recent developments in quasi-experimental methods have brought increasing attention
to panel event study models. Using data covering a panel of observations (such as
states) over time, the design seeks to estimate the impact of some event which occurs,
or ‘switches on’ in certain units and certain time periods.1 These models seek to use
as counterfactuals the areas in which the policy or event does not occur, or has not yet
occurred. By considering the variation in outcomes around the adoption of the event
compared with a baseline reference period, both event leads and lags are estimated,
allowing for a clear visual representation of the event’s causal impact provided that key
identifying assumptions are met.

These methods have been borne out of older difference-in-differences designs, or
two-way fixed effect models. These models often seek to examine the impact of natural
experiments, where events are assigned to certain units due to some process beyond the
control of the analyst but owing to environmental or political factors (among others),

1Throughout this paper, for expositional purposes we will refer to a geographical and a temporal
dimension to these panel event study designs. However, we note that such models are suitable to other
settings where one wishes to estimate the impact of an event which is assigned to certain units, and
where there is some temporal variation in outcomes to be studied. For example, rather than being based
on different geographical units at different times, these models could be based on an event occurring
in different age groups at different times. All results discussed in this paper extend to settings such as
these.
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and as such, generally do not assume that assignment is random. Indeed, as we lay
out at more length in the following section, the key assumption underlying consistent
estimation in event study models is that the occurrence of the event in a particular area
is not systematically related to the changes in levels that would have occurred in the
future in the absence of the event.

These models are widely used in empirical analyses in a range of contexts, hav-
ing been applied to (among many others themes) automotive plant closures and opioid
overdoses (Venkataramani et al. 2020), family planning access and childhood economic
circumstance (Bailey et al. 2018), health care reform and ambulatory care usage (Dim-
itrovová et al. 2020) and university reform and intergenerational mobility (Suhonen
and Karhunen 2019). These cases suggest usage across a range of fields including so-
cial sciences, medicine and public health, and additional reviews of their frequency of
use in a number of economic journals are provided in Abraham and Sun (2018); Roth
(2019). A burgeoning literature has laid out a number of identification requirements
in this setting (Freyaldenhoven et al. 2019; Borusyak and Jaravel 2018; Abraham and
Sun 2018; Athey and Imbens 2018; Schmidheiny and Siegloch 2019). These methods
can be used, with some restrictions, both in cases where events occur at the same time
period in each unit, and in cases where the adoption of events is staggered. Indeed,
Athey and Imbens (2018) refer to these as “Staggered Adoption Designs”, although
here we follow the more common nomenclature of panel event studies.2 Additionally,
these methods are related to a much broader literature on staggered adoption of policies
and the estimation of a single-coefficient model (de Chaisemartin and D’Haultfoeuille
2019; Callaway and Sant’Anna 2018; Goodman-Bacon 2018). While we briefly discuss
these models in the methods section, our principal interest is on full panel-event study
specifications which come with their own considerations.

In this paper we provide a discussion of these panel-event study models, and practi-
cal issues related to their estimation and to inference in these settings. We also present
the eventdd command, a Stata command allowing for estimation and inference in event
studies, as well as a number of post-estimation procedures and the graphical presenta-
tion of estimates and confidence intervals.3 This command can flexibly interact with
both in-built Stata commands such as regress and xtreg, as well as the user-written
regression command reghdfe which is highly convenient in two-way fixed effect mod-
els such as those described in this paper (Correia 2016). We provide discussion of
both estimation and inference in event study models. As well as standard inference
procedures such as robust and cluster-robust inference, the eventdd command allows
for wild-bootstrap based inference respecting the clustered nature of the occurrence of
events, and specifically the user-written boottest command (Roodman et al. 2019).
After reviewing the theory behind panel event study models in section 2, we discuss the
command syntax in section 3, before documenting the command’s usage, applied to a

2An older literature, often related to the analyses of financial events and information shocks, refers
to event studies. These event studies in finance are generally based on time-series observations, and
have quite different properties to the panel event studies used in policy analysis that we discuss in
this paper. A useful discussion of these finance-style event studies, and their application in Stata, is
provided in Pacicco et al. (2018).

3An earlier version of this command is available as Clarke and Tapia Schythe (2020).
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particular empirical example, in Section 4.

2 Methods
2.1 Estimation
Consider a panel covering a group, indexed as g and time periods t. We are interested
in estimating the impact of the passage of an event which may occur at different times
in different groups. We will denote as Eventg a variable recording the time period t
in which the event is adopted in group g. Denoting the outcome of interest as ygt, the
panel event study specification can be written as4:

ygt = α+

J∑
j=2

βj(Lead j)gt +

K∑
k=1

γk(Lag k)gt + µg + λt +X ′
gtΓ + εgt. (1)

Here µg and λt are group and time fixed effects, Xgt are (optionally) time-varying
controls, and εgt is an unobserved error term. In equation 1, leads and lags to the event
of interest are defined as follows:

(Lead J)gt = 1[t ≤ Eventg − J ], (2)
(Lead j)gt = 1[t = Eventg − j] for j ∈ {1, . . . , J − 1}, (3)
(Lag k)gt = 1[t = Eventg + k] for k ∈ {1, . . . ,K − 1}, (4)
(Lag K)gt = 1[t ≥ Eventg +K]. (5)

Leads and lags are thus binary variables indicating that the given group was a given
number of periods away from the event of interest in the respective time period. J and
K leads and lags are included respectively, and, as indicated in equations 2 and 5, final

4There are a number of ways to specify such a model. Slightly different notations are used by
Schmidheiny and Siegloch (2019) who define the model as:

ygt =

j∑
j=j

βjb
j
gt + µg + λt + εgt,

where

bjgt =


1[t ≤ Eventg + j] if j = j

1[t = Eventg + j] if j < j < j

1[t ≥ Eventg + j] if j = j,

and where j is equivalent to our definition of J and j is equivalent to our L. In the case of Freyaldenhoven
et al. (2019), they define a version of this model as:

ygt = δ−K+(1− zg,t+(K−1)) + δL+zg,t−L +

K−1∑
k=−(L−1)

δ−k∆zg,t+k + µg + λt + εgt,

where zgt ≡ PostEventgt as defined in Table 1, zg,t+k and zg,t−k refer to leads and lags of this variable
respectively, and ∆ refer to the first difference of these lead/lag terms. These models, and that laid
out in equations 1-5 are equivalent.



4 Panel Event Studies

leads and lags “accumulate” leads or lags beyond J and K periods. A single lead or lag
variable is omitted to capture the baseline difference between groups where the event
does and does not occur. In specification 1, as standard, this baseline omitted case is
the first lead (one period prior to the reform), where j = 1.

A stylized example of such a setting is provided in Table 1. We consider four groups
forming a balanced panel of years from 2000-2009. The Eventg variable occurs at
different times in different groups, and in the case of one group, does not occur. Here
both four leads and four lags are included, such that J = K = 4. Lead and Lag 4
(exclusively) are switched on for periods in which the “Time to Event” exceeds 4 leads
or lags respectively.

Groups in which the event never occurs (such as Group C in Table 1) act as pure
controls. These units have 0s in all lead and lag terms, and act as the counterfactual
on which the estimation of impacts is based. Differences between these pure control
groups and groups which adopt the event of interest are anchored at 0 in the omitted
base period, ie the first lead in equation 1. Hence, leads and lags capture the difference
between treated and control groups, compared to the prevailing difference in the omitted
base period. Unbiased estimation of post-event treatment effects thus relies fundamen-
tally on the so called “parallel trends assumption”. In the absence of treatment, it is
assumed that treated and control groups would have maintained similar differences as
in the baseline period. For this reason, these models have been demonstrated to be
under-identified, or identified only up to a linear trend, when all units adopt treatment
at some point in time (Schmidheiny and Siegloch 2019; Borusyak and Jaravel 2018).
Schmidheiny and Siegloch (2019) show that in this case, it is necessary to bin leads and
lags beyond certain maximum lead (J) and lag (K) periods.

The panel event study is an extension of the standard two-way fixed effect (sometimes
called difference-in-differences) model, where a single “Post Event” indicator is included
for all periods posterior to the occurrence of the event in treated groups. This is simply:

ygt = α+ βPostEventgt + µg + λt +X ′
gtΓ + εgt, (6)

where following the notation from (2)-(5), PostEventgt = 1[t ≥ Eventg]. Estimation
of event specification 1 provides two key pieces of information not observable in this
single-coefficient model. Firstly, the full set of event leads allows for the inspection
of parallel trends in the pre-treatment period. While this does not provide evidence
that the units in which the event was adopted and not adopted would have necessarily
followed similar trends in the post-reform period (Kahn-Lang and Lang 2019) (which
is the identifying assumption of these models), if trends in treated and untreated areas
were not parallel even pre-event, it is unlikely that they would be parallel post-event.
Secondly, the policy lags allow for inspection of the temporal nature of treatment effects,
noting any dynamics in the appearance of effects, for example increasing or decreasing
effects over time, and whether effects are transitory or permanent.

A developing literature including papers by de Chaisemartin and D’Haultfoeuille
(2019); Callaway and Sant’Anna (2018); Goodman-Bacon (2018) point to challenges in
interpreting the estimated β̂ from two-way fixed effects models when treatment effects
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Group Year Event Post Time to Lead Lead · · · Lag Lag · · · Lag
(g) (t) Event Event 4 3 0 1 4
Group A 2000 2004 0 -4 1 0 · · · 0 0 · · · 0
Group A 2001 2004 0 -3 0 1 · · · 0 0 · · · 0
Group A 2002 2004 0 -2 0 0 · · · 0 0 · · · 0
Group A 2003 2004 0 -1 0 0 · · · 0 0 · · · 0
Group A 2004 2004 1 0 0 0 · · · 1 0 · · · 0
Group A 2005 2004 1 1 0 0 · · · 0 1 · · · 0
Group A 2006 2004 1 2 0 0 · · · 0 0 · · · 0
Group A 2007 2004 1 3 0 0 · · · 0 0 · · · 0
Group A 2008 2004 1 4 0 0 · · · 0 0 · · · 1
Group A 2009 2004 1 5 0 0 · · · 0 0 · · · 1
Group B 2000 2005 0 -5 1 0 · · · 0 0 · · · 0
Group B 2001 2005 0 -4 1 0 · · · 0 0 · · · 0
Group B 2002 2005 0 -3 0 1 · · · 0 0 · · · 0
Group B 2003 2005 0 -2 0 0 · · · 0 0 · · · 0
Group B 2004 2005 0 -1 0 0 · · · 0 0 · · · 0
Group B 2005 2005 1 0 0 0 · · · 1 0 · · · 0
Group B 2006 2005 1 1 0 0 · · · 0 1 · · · 0
Group B 2007 2005 1 2 0 0 · · · 0 0 · · · 0
Group B 2008 2005 1 3 0 0 · · · 0 0 · · · 0
Group B 2009 2005 1 4 0 0 · · · 0 0 · · · 1
Group C 2000 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2001 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2002 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2003 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2004 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2005 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2006 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2007 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2008 . 0 . 0 0 · · · 0 0 · · · 0
Group C 2009 . 0 . 0 0 · · · 0 0 · · · 0
Group D 2000 2007 0 -7 1 0 · · · 0 0 · · · 0
Group D 2001 2007 0 -6 1 0 · · · 0 0 · · · 0
Group D 2002 2007 0 -5 1 0 · · · 0 0 · · · 0
Group D 2003 2007 0 -4 1 0 · · · 0 0 · · · 0
Group D 2004 2007 0 -3 0 1 · · · 0 0 · · · 0
Group D 2005 2007 0 -2 0 0 · · · 0 0 · · · 0
Group D 2006 2007 0 -1 0 0 · · · 0 0 · · · 0
Group D 2007 2007 1 0 0 0 · · · 1 0 · · · 0
Group D 2008 2007 1 1 0 0 · · · 0 1 · · · 0
Group D 2009 2007 1 2 0 0 · · · 0 0 · · · 0

Table 1: A Stylized Example
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are heterogeneous (across either groups or time periods). Goodman-Bacon (2018) for
example, demonstrates that treatment effects which are heterogeneous in time since
treatment in contexts where treatments are adopted in different time periods in different
groups, can result in estimates which are biased away from a weighed average of the
average treatment effect on the treated, a problem which is resolved in the panel event
study design. However, results from Abraham and Sun (2018) suggest that specific types
of heterogeneity concerns remain even in panel event study models examined here. In
particular, they note undesired weighting of treatment effects if there is heterogeneity
across treatment groups in particular lead and lag terms. Other concerns exist in
event study designs, such as possible inferential problems related to selective survival of
models based on pre-trend tests (Roth 2019). The eventdd command will not account
for corrections raised in these particular settings, as these are inherent to empirical
estimation of panel event study designs. We do however note that there are a number
of alternative estimators which are complementary to panel event study designs, and
which should be considered as part of a complete estimation and testing procedure, such
as the stacked DD procedure of Abraham and Sun (2018), sensitivity tests described
in Roth (2019); Rambachan and Roth (2019), and alternative models to account for
dynamic paths of treatment effects, such as those described in de Chaisemartin and
D’Haultfoeuille (2019); Callaway and Sant’Anna (2018). As many of these have existing
estimation libraries in some languages, when discussing the command syntax of eventdd
in section 3 and examples of use in section 4 we discuss ways which eventdd and its
returned objects have been designed to facilitate interaction with these other commands.

2.2 Inference
A standard inference concern where policies are assigned by some group such as a
state, and outcomes are followed over time within these groups, is related to potential
serial-correlation in the outcome variable over time (Bertrand et al. 2004). While the
derivations from Bertrand et al. (2004) are based on single-coefficient models of the form
of equation 6, the crux of the concern relates to high serial correlation in the outcome
variable of interest, and relatively little change in the independent variables of interest.
This setting is replicated in event study models described in equations 1-5. It is thus
fundamental to account for this within-cluster correlation when conducting inference in
such models.

The standard solution is to allow for within-cluster auto-correlation by using a
cluster-robust variance-covariance estimator (CRVE) to estimate standard errors and
confidence intervals on regression parameters. Such an estimator is provided as standard
in Stata by specifying the vce(cluster clustvar) option in e(class) models.5 However,

5Denoting the matrix of k independent variables as X, the dependent variable vector as y and the
vector of regression coefficients as β, this CRVE is estimated in Stata for a linear regression model with
N observations in G clusters as:

V̂CR(β̂) = (X′X)−1

 G∑
g=1

Xgũgũ
′
gX

′
g

 (X′X)−1.
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as has been extensively documented, standard CRVEs are only asymptotically valid,
where the asymptotic behavior depends on the number of clusters (or groups) G → ∞
(see for example the comprehensive review in Cameron and Miller (2015)). When stan-
dard clustering is used based on ‘too few’ clusters, the CRVE is generally downward-
biased, resulting in over-rejection of null hypotheses. This bias can be severe (Cameron
and Miller 2015; Mackinnon and Webb 2018).

In practice, knowing how many clusters is ‘too few’ depends on a number of factors.
While there are rules of thumb such as the rule of 42 laid out in Angrist and Pischke
(2008) which suggests that standard clustering provides a good approximation if G ≥ 42
clusters, the performance of these methods under simulation has been shown to depend
also on the relative size of clusters (Mackinnon and Webb 2017). A range of results
surveyed in Cameron and Miller (2015) leads to their suggestion that if one is analyzing
data with fewer than 50 clusters in a group-year panel (such as the case with panel-event
studies), alternative inference methods should be considered.

In this case where the quasi-experimental set-up is based on fewer than around 50
clusters, the wild cluster bootstrap has been documented to be a successful resampling-
based method to take account of auto-correlation in variables underlying panel event
studies, even in cases with fewer clusters (see eg Cameron et al. (2008); Cameron and
Miller (2015); Roodman et al. (2019)). This has been efficiently implemented in Stata as
described in Roodman et al. (2019), and programmed for Stata as boottest (Roodman
2015). Finally, note that in the case of very few clusters, and in particular few clusters
where an event occurs, inference is further complicated. In cases such as this a number
of potential solutions have been proposed, such as those described in Mackinnon and
Webb (2018); Conley and Taber (2011). As we lay out in the following sections, the
eventdd command allows simple access to various inference options depending on the
context of interest, including standard clustering, bootstrap, and wild cluster bootstrap
in various guises based on both Stata’s native CRVE procedures, as well as the user-
written boottest command.

3 The eventdd command
Panel event studies can be implemented in Stata using the following command syntax:

eventdd depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, timevar(timevar)

[
ci(type,

. . .) method(type,
[
absorb(absvars)

]
∗ . . .) baseline(#) accum leads(#)

lags(#) noend noline keepbal(varname) wboot wboot_op(string) balanced
inrange graph_op(string) coef_op(string) endpoints_op(string) keepdummies]
The required depvar should specify the dependent variable of interest, and then

Here ũg =
√
cûg , where c is a small sample correction c = (G/(G − 1)) × ((N − 1)/(N − k)) and

û = y −Xβ̂ are standard regression residuals (Cameron et al. 2008).
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indepvars should specify (where relevant) the optional controls including fixed effects
to be included in the panel event study model (equation 1), but not including leads
and lags, that should be entered in the regression. The method option specifies the
estimation procedure for the underlying model, and can be ols (ordinary least squares),
fe (fixed effects) or hdfe (absorbing multiple levels of fixed effects with the user-written
reghdfe command). If no estimation method is specified, ols is used by default. In
the case of fixed effects (fe) or high-dimension fixed effect (hdfe) models, fixed effects
can be absorbed (as discussed in the options below), and as such need not be entered
in the standard varlist syntax. In the case of fe specifications, data must first be xtset
in Stata. Based on this syntax, eventdd takes care of the generation of all lead and
lag terms, estimation and inference, and the production of an event study plot. The
eventdd command requires previous installation of the matsort command from SSC.
Examples of usage of eventdd are provided in section 4 of this document.

Options

timevar is a required option. The time variable specified should contain a standardized
value, where 0 corresponds to the time period in which the event of interest occurs for
a given unit, −1 refers to one year prior to the event, 1 refers to one year following the
event, and so forth. For any units in which the event does not occur (pure controls),
this variable should contain missing values.

ci(type, . . .) Specifies the type of graph for the confidence intervals. The types available
are rarea for an interval with area shading (twoway rarea), rcap for an interval with
capped spikes (twoway rcap) and rline for an interval with lines (see twoway rline).
Only one type can be specified and all intervals will be the same type. The appearance
can be modified with the inclusion of any graphing option for the confidence intervals
permitted in rarea, rcap or rline depending on the type of CI indicated; including
area options, line options and connect options, respectively. This does not allow the
use of the general options such as titles and legends, which should be specified in
the graph_op() option. If not specified, a standard rcap graphical output will be
provided.

baseline(#) Specifies the reference period for the event study, which is a baseline
omitted category to which all other periods should be compared in the event study
output. By default this value is set at −1 as in equation 1.

accum Specifies that all periods beyond some specified values should be accumulated into
final points, indicated as J and K in equation 1. For example if accum is specified and
leads(#) and lags(#) are both set equal to 10, a single coefficient will be displayed
in regressions and graphical output capturing 10 or more periods pre/post reform.
If accum is not specified, all possible leads and lags will be included in models and
graphical output.

leads(#) Indicates the maximum amount of pre-event periods to consider in the event
study. This can only be specified (and must be specified) if either accum, keepbal or
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inrange are also specified. Only integer values are permitted.

lags(#) Indicates the maximum amount of post-event periods to consider in the event
study. This can only be specified (and must be specified) if either accum, keepbal or
inrange are also specified. Only integer values are permitted.

noend Requests that accumulative end points are not shown on graphical output when
the accum option is specified.

keepbal(varname) Specifies that only units which are balanced in the panel should
be kept for estimation. Here varname indicates the panel variable (eg State) which
indicates units. In this case “balance” refers to balance over calendar time. An
alternative option (balanced), discussed below, allows for only balanced leads and
lags relative to treatment to be considered in graphical output.

method(type,
[
absorb(absvars)

]
∗ . . .) Specifies the method of estimation for the

event study model underlying graphical output. ols requests that the model should
be estimated by OLS using Stata’s regress command, fe requests that the model
should be estimated by fixed-effects (within) estimation, using Stata’s xtreg, fe
command, and hdfe requests that the model should be estimated using the user-
written reghdfe command (if installed). * represents any other estimation options
included and permitted by regress, xtreg, or reghdfe that will be passed to the
specified estimation command. This allows for the inclusion of clustered standard
errors or other variance estimators (see vce options) and allows for alternative levels
for confidence intervals to be used (see level). For ols, unit-specific fixed effects
and time-specific fixed effects must be included in the indepvars indicated in the
command syntax. For fe unit-specific fixed effects should not be included in the
indepvars indicated but time-specific fixed effects still need to be. Finally, for hdfe
the absorb(absvars) option should also be specified to indicate which fixed effects
should be controlled in the regression (refer to reghdfe (if installed) for additional
details) and any fixed effects indicated in absorb(absvars) should not be included in
the indepvars indicated. hdfe cannot be used in combination with the wboot option.
ols is the default estimation method.

wboot Indicates that inference in the event study plot produced by the command should
be based on wild cluster bootstrapped confidence intervals. When indicated, confi-
dence intervals for each lead and lag term will the be calculated using a wild cluster
bootstrap. This requires the user-written boottest command of Roodman (2015) (if
installed). This option may not be combined with the hdfe estimation option.

wboot_op(string) Allows for the inclusion of any other wild bootstrap option permit-
ted in boottest, including seed(#) to set the seed for simulation-based calculations
allowing replication of the confidence intervals, and bootclust(varname) to specify
which variable(s) to cluster the wild bootstrap upon, among others. When setting the
level (which is 95 by default), this should be indicated in the method option of the
command, and this will be passed to wboot_op(). The nograph option is specified
automatically when the wboot option is used.

balanced Requests that only “balanced” leads and lags are plotted. This will produce
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a graph only showing leads and lags for which each treated unit has data, and as such,
all coefficients plotted will be based on all units in the data. While only balanced leads
and lags will be plotted, all units and time periods will be included in the estimation
of the event study.

inrange Requests that only the specified leads and lags are plotted. While only leads
and lags indicated in leads(#) and lags(#) will be plotted, all units and time periods
will be included in the estimation of the event study.

noline Requests that the line before the event on the x-axis is not shown on graphical
output.

graph_op(string) Allows for the inclusion of any other graphing options permitted in
twoway_options, including title_options, added_lines_options, axis_label_options,
among others. This also allows for the use of alternative labels for graph axes. If not
specified, a standard graphical output will be provided.

coef_op(string) Allows for the inclusion of any graphing option for the coefficients
permitted in the scatter plot including marker_options and marker_label_options
among others. This does not allow the use of the general options of graph_op(). If
not specified, a standard graphical output will be provided.

endpoints_op(string) Allows for the inclusion of any graphing option for the end point
coefficients permitted in scatter including marker_options, marker_label_options,
among others. This is only available if specifying the accum option and does not allow
the use of the general options of graph_op(). If not specified, a standard graphical
output will be provided.

keepdummies Requests that the dummy variables of all leads and lags used in the
estimation be included in the database. It is necessary to save the data before running
the command with the keepdummies option (the first time this option is used), or
otherwise data in memory will be lost. This option is necessary to perform joint
significance tests using a wild or score bootstrap with the postestimation commands
(see discussion below).

Returned Objects

eventdd stores the following in e():

Scalars:
e(baseline) baseline period specified
e(level) confidence level

Macros:
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e(cmd) eventdd
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.

Matrices:
e(b) coefficient vector
e(V) variance-covariance matrix of the estimators
e(leads) all event leads, their lower bound, the point estimate, and

their upper bound
e(lags) all event lags, their lower bound, the point estimate, and

their upper bound
e(V_leads_lags) variance-covariance matrix of the leads and lags estimators

Note that methods related to event study models such as that described by Rambachan
and Roth (2019) rely on access to point estimates and standard errors of lead and lag
terms, which are available through the matrices returned here.

Postestimation commands

A number of post-estimation commands are available after using the eventdd com-
mand. These are available for joint tests of leads, lags, or the joint significance of all
lead and lag parameters. Specifically, the below-listed postestimation commands are
of special interest after eventdd.

Command Description
estat leads Joint significance test for leads
estat lags Joint significance test for lags
estat eventdd Joint significance test for leads and lags

Unless otherwise requested, these post-estimation commands conduct F -tests of joint
significance of parameters. However, wild-clustered bootstrap versions of the joint
tests can be conducted with the following options:

Options Description
wboot Joint significance test using boottest command. Requires

specifying the keepdummies option in eventdd. nograph
option is already specified in boottest.

∗ Specifies any additional options which should be passed to
the joint significance test. Options should be permitted by
test or boottest (if specifying the wboot option).
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boottest does not work after reghdfe with more than one set of fixed effects.

4 Examples based on an Empirical Application
We now provide a number of illustrations of the performance of eventdd to estimate
the panel event study in empirical applications. We use data from Stevenson and
Wolfers (2006) of the no-fault divorce reforms and female suicide in United States.
These data have been used in other papers to demonstrate the functionality of recent
advances in two-way fixed effect models (see Goodman-Bacon (2018)) and are drawn
from examples used in documenting such methods when used in Stata (Goodman-
Bacon et al. 2019).6 The data consists of a balanced panel with 49 states observed
from 1964 to 1996 with different timing of unilateral divorce reforms across the states.

The specification of the baseline two-way fixed effect “difference-in-differences” (DD)-
style model of female suicide on no-fault divorce reforms used is:

asmrsst = γs + λt + τpostst +X ′
stΓ + εst. (7)

This is the analogue of equation 6 applied to this case in particular. Here, asmrs refers
to the female suicide rate for all women in state s at time t, γ is a fixed effect by state,
λ is a temporal (year) fixed effect, post takes the value of 1 after the implementation
of a no-fault divorce reform and ε is a stochastic error. The controls (Xst) include
Per-Capita Income (pcinc), Homicide Mortality (asmrh) and the Aid to Families with
Dependent Children (AFDC) rate for a family of four (cases). Here τ is the parameter
which captures the average impact of unilateral divorce on suicide rate assuming a
standard DD parallel-trends assumption.7

4.1 Estimation of the Panel Event Study
In order to estimate a panel event study specification corresponding to the no fault
divorce reform, the first step is to create the standardized version of the time to reform
variable, presuming such a variable is not already available in the data. In this case in
particular, the creation of the variable in Stata simply requires subtracting the reform
period, called Events in section 2 (and _nfd, for ‘no fault divorce’, in the data) from
the time period t, (called year in the data):

. webuse set www.damianclarke.net/stata/
(prefix now "http://www.damianclarke.net/stata")
. webuse bacon_example.dta, clear
(Stevenson and Wolfers (2006) divorce example, provided by Goldring et al.)

6This data is available online at the following URL: http://www.damianclarke.net/stata/bacon_example.dta,
and can be imported directly into Stata typing webuse set www.damianclarke.net/stata/ and then
webuse bacon_example.dta.

7In reality, as laid out in section 2, in the case that this effect is heterogeneous over time, this will
not capture the ATE, but rather a weighted average of pair-wise comparisons (Goodman-Bacon 2018;
de Chaisemartin and D’Haultfoeuille 2019; Callaway and Sant’Anna 2018).
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. gen timeToTreat = year - _nfd
(429 missing values generated)

Note that as expected, missing values are generated for states in which the reform is
not adopted at any point in this period, and which act as pure controls in the panel
event study. Below, you can see how the data is set for the first 10 observations,
documenting the relationship between the absolute time period (year), the time the
reform was implemented (_nfd), and the relative time to the reform’s implementation
(timeToTreat):

. sort stfips year

. list stfips year _nfd timeToTreat in 1/10, noobs sepby(stfips) abbreviate(11)

stfips year _nfd timeToTreat

1 1964 1971 -7
1 1965 1971 -6
1 1966 1971 -5
1 1967 1971 -4
1 1968 1971 -3
1 1969 1971 -2
1 1970 1971 -1
1 1971 1971 0
1 1972 1971 1
1 1973 1971 2

The second step is to estimate the event study, as per equations 1-5. In this example,
the general form of the event study model including all leads and lags available is:

asmrsst = α+ β21(Lead 21)st + . . .+ β2(Lead 2)st

+γ0(Lag 0)st + . . .+ γ27(Lag 27)st

+X ′
stΓ + µs + λt + εst (8)

where as above asmrs is the female suicide rate for all women, and a series of J = 21
leads and K = 27 lags are considered relative to the event of interest (fully saturating
the model). As is generally standard, the reference period is set as −1: the period
immediately preceding the adoption of the event in each state. Fixed effects for state
and time are included as µ and λ, respectively.

The eventdd command provides a simple syntax to generate all necessary leads
and lags for equation 8, estimate the event study model, and plot point estimates
and confidence intervals. The command requires the timevar(timeToTreat) option to
indicate the standardized “time to treatment” variable generated previously. Below
we request that the command runs quietly (qui), however later in this section we
document an example where full regression output is displayed. In the following syntax
the method(,) option is used to pass specific options to the underlying regression
command.

. #delimit ;
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delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year i.stfips, timevar(timeToTreat)
> method( , cluster(stfips)) graph_op(ytitle("Suicides per 1m Women")
> xlabel(-20(5)25));
. #delimit cr
delimiter now cr

The command stores all event leads, their lower bound, the point estimate, and
their upper bound. For example, if we wish to visualize the estimates on the full set
of leads, as well as their upper and lower confidence intervals, we can simply examine
the returned leads matrix:

. mat list e(leads)
e(leads)[21,4]

Lead LB Est UB
r21 1 0 0 0
r20 2 -5.6533713 -.51573968 4.621892
r19 3 -8.3800554 -2.3125875 3.7548807
r18 4 -4.6691194 .22835743 5.1258345
r17 5 -8.129283 -2.7754233 2.5784359
r16 6 -6.8603821 -.75055814 5.3592658
r15 7 -10.123232 -1.2564343 7.6103635
r14 8 -10.710829 -2.7376504 5.2355275
r13 9 -12.330478 -5.0007019 2.3290732
r12 10 -11.226175 -1.1506662 8.9248428
r11 11 -17.51306 -9.3819475 -1.2508357
r10 12 -14.165311 -.04345011 14.078411
r9 13 -10.856544 -1.3885684 8.0794067
r8 14 -6.3317404 4.3279953 14.987731
r7 15 -7.7231503 .84775668 9.418664
r6 16 -8.3638954 -1.022577 6.3187418
r5 17 -17.12311 -4.4348736 8.2533636
r4 18 -10.074435 -.51595128 9.0425329
r3 19 -3.328351 8.8427277 21.013805
r2 20 -34.54834 -12.084179 10.379983
r1 21 -31.114813 -22.920727 -14.72664

Since we do not specify the estimation method in the method(,) option, eventdd
uses Stata’s regress command to estimate the model by ordinary least-squares regres-
sion (if we were to specify method(ols, cluster(stfips)), the same result would be
obtained). We can also request other estimators for the underlying event study model;
if we specify the fe option, the model would be estimated with the fixed-effects (FE)
estimator.8

8Assuming the data has been xtset, this would simply be:

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat)
> method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m Women")
> xlabel(-20(5)25));
. #delimit cr
delimiter now cr
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In the same way, we can estimate the results efficiently absorbing multiple levels of
fixed effects via the reghdfe command by indicating hdfe in the method() option,
which is quite useful when we have to control for many fixed effects. Note that in this
case, the fixed effects of interest must be indicated using the absorb() option which
is passed to the reghdfe command. For instance, if we wish to absorb the temporal
and geographic fixed effects, the necessary syntax is as follows:

. #delimit ;
delimiter now ;
. eventdd asmrs pcinc asmrh cases, timevar(timeToTreat)
> method(hdfe, absorb(i.stfips i.year) cluster(stfips))
> graph_op(ytitle("Suicides per 1m Women") xlabel(-20(5)25));
(MWFE estimator converged in 2 iterations)
warning: missing F statistic; dropped variables due to collinearity or too few clusters
HDFE Linear regression Number of obs = 1,617
Absorbing 2 HDFE groups F( 51, 48) = .
Statistics robust to heteroskedasticity Prob > F = .

R-squared = 0.7212
Adj R-squared = 0.6964
Within R-sq. = 0.0731

Number of clusters (stfips) = 49 Root MSE = 10.8116
(Std. Err. adjusted for 49 clusters in stfips)

Robust
asmrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

pcinc -.0011046 .0004071 -2.71 0.009 -.0019232 -.0002861
asmrh 1.08064 .5968879 1.81 0.076 -.119483 2.280764
cases -190.3716 134.4991 -1.42 0.163 -460.8002 80.05698

lead21 -22.92073 4.011063 -5.71 0.000 -30.98551 -14.85594
lead20 -12.08418 10.99637 -1.10 0.277 -34.19385 10.0255
lead19 8.842727 5.957829 1.48 0.144 -3.13629 20.82174
lead18 -.5159513 4.678946 -0.11 0.913 -9.923602 8.891699
lead17 -4.434874 6.210982 -0.71 0.479 -16.92289 8.053142
lead16 -1.022577 3.593627 -0.28 0.777 -8.248049 6.202895
lead15 .8477567 4.19552 0.20 0.841 -7.587901 9.283414
lead14 4.327995 5.218016 0.83 0.411 -6.163529 14.81952
lead13 -1.388568 4.634641 -0.30 0.766 -10.70714 7.930001
lead12 -.0434501 6.912751 -0.01 0.995 -13.94247 13.85557
lead11 -9.381948 3.980237 -2.36 0.023 -17.38475 -1.379145
lead10 -1.150666 4.932033 -0.23 0.817 -11.06718 8.765851
lead9 -5.000702 3.587977 -1.39 0.170 -12.21481 2.213409
lead8 -2.73765 3.902927 -0.70 0.486 -10.58501 5.10971
lead7 -1.256434 4.34036 -0.29 0.773 -9.983313 7.470445
lead6 -.7505582 2.990802 -0.25 0.803 -6.763968 5.262852
lead5 -2.775423 2.620752 -1.06 0.295 -8.044798 2.493952
lead4 .2283574 2.39735 0.10 0.925 -4.591837 5.048552
lead3 -2.312587 2.970068 -0.78 0.440 -8.28431 3.659136
lead2 -.5157397 2.514907 -0.21 0.838 -5.572299 4.54082
lag0 .2507466 2.722144 0.09 0.927 -5.222491 5.723984
lag1 -1.619351 2.941537 -0.55 0.585 -7.533709 4.295006
lag2 -1.687107 3.898178 -0.43 0.667 -9.524919 6.150706
lag3 -.7444709 2.862572 -0.26 0.796 -6.500058 5.011116
lag4 -2.956354 2.832628 -1.04 0.302 -8.651735 2.739027
lag5 -2.377841 2.75474 -0.86 0.392 -7.916617 3.160935

where note we no longer include the state fixed effects, as these will be taken care of given the panel
fixed-effect (xtreg) estimator used to estimate the regression.
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lag6 -3.311888 3.568157 -0.93 0.358 -10.48615 3.862372
lag7 -5.136502 3.401946 -1.51 0.138 -11.97657 1.70357
lag8 -6.991146 3.086374 -2.27 0.028 -13.19672 -.785575
lag9 -4.82321 3.089481 -1.56 0.125 -11.03503 1.388607
lag10 -8.814158 3.6746 -2.40 0.020 -16.20244 -1.42588
lag11 -7.27331 3.631759 -2.00 0.051 -14.57545 .0288304
lag12 -6.151559 4.089512 -1.50 0.139 -14.37407 2.070957
lag13 -8.276837 3.946249 -2.10 0.041 -16.2113 -.3423707
lag14 -6.593221 3.867273 -1.70 0.095 -14.3689 1.182453
lag15 -7.850839 4.070836 -1.93 0.060 -16.0358 .3341258
lag16 -7.234422 4.270836 -1.69 0.097 -15.82151 1.35267
lag17 -8.516898 4.344278 -1.96 0.056 -17.25166 .2178592
lag18 -9.991582 3.758781 -2.66 0.011 -17.54912 -2.434046
lag19 -11.53613 3.861769 -2.99 0.004 -19.30074 -3.771526
lag20 -9.219165 4.501869 -2.05 0.046 -18.27078 -.167551
lag21 -10.79088 4.417864 -2.44 0.018 -19.67359 -1.908173
lag22 -10.65478 4.608349 -2.31 0.025 -19.92049 -1.389076
lag23 -12.08658 5.29214 -2.28 0.027 -22.72714 -1.446016
lag24 -10.67796 6.147523 -1.74 0.089 -23.03838 1.682466
lag25 -10.26777 7.459044 -1.38 0.175 -25.26518 4.729644
lag26 -16.69255 10.54234 -1.58 0.120 -37.88934 4.504239
lag27 -.4344752 8.147106 -0.05 0.958 -16.81533 15.94638
_cons 85.59069 10.90519 7.85 0.000 63.66433 107.5171

Absorbed degrees of freedom:

Absorbed FE Categories - Redundant = Num. Coefs

stfips 49 49 0 *
year 33 0 33

* = FE nested within cluster; treated as redundant for DoF computation
. #delimit cr
delimiter now cr

The standard command output consists of the regression output (all of the above out-
put including the warning comes directly from the regression estimated by reghdfe),
and the event study lead and lag coefficients along with their confidence intervals are
plotted as in Figure 1. As discussed in Stevenson and Wolfers (2006), the event study
plot provides evidence of a reduction in rates of female suicide following the passage of
no fault divorce laws, with significant declines observed 8 years following reform pas-
sage. We note that in this specification where all possible leads and lags are included
(the default behavior of eventdd), we do observe a number of significant differences in
the pre-reform period, in lag 11, and lag 21. It is important to note however that these
lags are sufficiently far from the time-period of treatment that not all treated states
are observed, and so these significant declines likely owe to compositional changes in
these variables. We discuss this further below, and limit analysis to balanced periods
when discussing the balanced option of the command. Nevertheless, if desired, we
can also formally test the joint significance of all the lead terms simultaneously with
the hypothesis:

H0 : β21 = β20 = · · · = β2 = 0 versus H1 : H0 does not hold.

This can be simply assessed post-estimation using one of the post-estimation routines
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designed for use with eventdd:

. estat leads

Joint significance test for leads

F-stat: 32.1312
P-value: 0.0000

Degrees of freedom (20,48)

Similar such post-estimation commands exist to test the joint significance of the post-
implementation coefficients (estat lags), or both the lead and lag terms in a single
sequence (estat eventdd).
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Figure 1: Event Study Example Based on No-fault Divorce Reforms

Notes: Event study model follows the No-Fault Divorce analysis described in (Stevenson and Wolfers
2006), and replication/extension of Goodman-Bacon (2018). Point estimates are displayed along with
their 95% confidence intervals as described in equation 8. The baseline (omitted) base period is 1 year
prior to the adoption of the reform in each reforming state, indicated by the vertical line in the plot.

This ‘fully-saturated’ model where all possible leads and lags are plotted is the default
output in the eventdd command. However many alternative estimation procedures are
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permitted, and indeed are likely preferred, for example to avoid the behavior observed
above where leads and lags far from treatment will not be balanced given that only
states adopting in certain early or late time periods will be observed in these lead/lag
terms. Here we discuss a number of such alternatives, documenting their syntax in
the eventdd command. Graphical output in each case is summarized in Figure 2.

Limiting Visualized Leads and Lags It may be a matter of interest to only show some
lead/lag periods in the plot. For example, one such case discussed below relates to only
plotting those lead/lag terms in which each treated state is observed. Generically, the
inrange option allows for specifying that only certain coefficients and CIs should be
included in plot. We note here that in this case, the underlying regression model will
include all periods as in the first case, and as such, these lead/lag terms will simply
correspond to a restricted range from Figure 1. For instance, if we want to show only
the results between the time periods -10 and 10, the command will be:

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) inrange leads(10)
> lags(10) method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m Women"));
. #delimit cr
delimiter now cr

The output in this case is displayed in Figure 2(a). A special case of plotting limited
leads/lags consists of the case in which one only wishes to show coefficients and CIs
for which all states have a lead and lag term. We refer to this as a balanced plot,
which can be produced quite simply using the balanced option. In this case, while
all leads and lags are included in the underlying panel event study model, and only
certain periods are plotted on the graph (like inrange), we do not need to know a
priori which periods are balanced, as eventdd automatically identifies them. As panel
(b) shows, in our case the balanced periods comprise periods between 5 years pre-
reform and 11 years post-reform.9 In this case, the syntax simply requires indicating
the balanced option:

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) balanced
> method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m Women"));
. #delimit cr
delimiter now cr

9This can also be seen quite simply by tabulating (tab) the time variable used to indicate time to
treatment. For example, in the case of the timeToTreat variable indicating relative time to the arrival
of the divorce reform, we observe that for each of leads -5 up until lag 11, all periods are observed in
the 36 states in which the event occurs. However, earlier leads and later lags are only observed in a
sub-sample of states given that for others, these leads (lags) are earlier (later) than the first (last) year
in the data sample.
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Restricting Samples or Accumulating Leads/Lags In contrast to simply focusing on
particular coefficients in the un-altered baseline model, one may wish to work with
particular sub-samples which meet inclusion criteria, or accumulate leads and lags into
periods which exceed some defined time, as an alternative way to avoid unbalanced
leads and lags, as well as to avoid problems related to under-identification where all
units are treated (Schmidheiny and Siegloch 2019). Consider the case where we wish to
include 15 leads and 10 lags, but to only estimate the model with units that effectively
have data for each of these periods. In the case of these data in particular which are
yearly from 1964-1996, any units adopting no fault divorce reform between 1978 and
1996 will have (at least) 15 leads and 10 lags. Units adopting prior to 1978 will have
fewer than 15 leads, and units adopting after 1996 will have fewer than 10 lags. To
implement an estimation based on a balanced panel of observations with these lead/lag
terms, the keepbal(varname) option is available, where varname indicates the panel
unit over which balance should be applied (stfips in this case where the treatment
unit is states). It is additionally necessary to explicitly indicate the period of interest
for plotting within the balanced panel, for instance leads(15) and lags(10). This is
all implemented in the below command.

. #delimit ;
delimiter now ;
. eventdd asmrs pcinc asmrh cases, timevar(timeToTreat) keepbal(stfips) leads(15)
> lags(10) method(hdfe, absorb(i.stfips i.year) cluster(stfips))
> graph_op(ytitle("Suicides per 1m Women"));
(MWFE estimator converged in 5 iterations)
warning: missing F statistic; dropped variables due to collinearity or too few clusters
HDFE Linear regression Number of obs = 507
Absorbing 2 HDFE groups F( 28, 15) = .
Statistics robust to heteroskedasticity Prob > F = .

R-squared = 0.4758
Adj R-squared = 0.3831
Within R-sq. = 0.1416

Number of clusters (stfips) = 16 Root MSE = 10.1003
(Std. Err. adjusted for 16 clusters in stfips)

Robust
asmrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

pcinc -.0019977 .0007185 -2.78 0.014 -.0035291 -.0004663
asmrh 2.287467 1.540722 1.48 0.158 -.996504 5.571437
cases -390.4487 180.673 -2.16 0.047 -775.544 -5.353367

lead15 1.292386 6.839513 0.19 0.853 -13.28569 15.87046
lead14 4.959406 8.015248 0.62 0.545 -12.12469 22.0435
lead13 4.003705 9.322968 0.43 0.674 -15.86773 23.87514
lead12 -3.997656 5.732168 -0.70 0.496 -16.21548 8.22017
lead11 -2.629473 4.276906 -0.61 0.548 -11.74548 6.486536
lead10 -3.987131 5.759912 -0.69 0.499 -16.26409 8.289831
lead9 -7.773707 4.653677 -1.67 0.116 -17.69278 2.145371
lead8 -6.673529 6.393574 -1.04 0.313 -20.30111 6.954051
lead7 -3.861924 4.692105 -0.82 0.423 -13.86291 6.13906
lead6 -6.44329 3.524894 -1.83 0.088 -13.95642 1.069845
lead5 -7.389526 3.375333 -2.19 0.045 -14.58388 -.1951743
lead4 -11.18006 6.114788 -1.83 0.087 -24.21342 1.853305
lead3 -2.146437 5.282028 -0.41 0.690 -13.40481 9.111939
lead2 -2.254288 3.599554 -0.63 0.541 -9.926557 5.41798
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lag0 -3.458685 2.757283 -1.25 0.229 -9.335696 2.418325
lag1 -2.050697 3.988558 -0.51 0.615 -10.55211 6.450712
lag2 3.8915 4.477937 0.87 0.399 -5.652997 13.436
lag3 -5.949 5.387559 -1.10 0.287 -17.43231 5.53431
lag4 1.151061 3.715023 0.31 0.761 -6.767323 9.069445
lag5 4.283462 6.478434 0.66 0.519 -9.524993 18.09192
lag6 -3.08539 2.849672 -1.08 0.296 -9.159321 2.988541
lag7 1.776614 7.27749 0.24 0.810 -13.73499 17.28822
lag8 .7996726 5.648138 0.14 0.889 -11.23905 12.83839
lag9 -1.215031 4.864573 -0.25 0.806 -11.58362 9.15356
lag10 -2.948988 4.776411 -0.62 0.546 -13.12967 7.231691
_cons 98.91732 14.70189 6.73 0.000 67.58098 130.2536

Absorbed degrees of freedom:

Absorbed FE Categories - Redundant = Num. Coefs

stfips 16 16 0 *
year 33 0 33

* = FE nested within cluster; treated as redundant for DoF computation
. #delimit cr
delimiter now cr

Given that we now restrict to only certain states based on their period of adoption
(as well as non-adopting states) the lead and lag estimates will differ to those from
the fully saturated model discussed previously. In the output of the above command,
we observe that the estimation sample consists only of 507 observations for adopting
states with balance in the indicated leads/lags, as well as states which do not adopt
(versus 1617 observations in the full sample specification). The corresponding event
study plot is presented in panel (c), where we note that the considerable change in
estimation sample (chosen simply for expositional reasons) produces quite different
results.

An alternative way to work with the imbalance in standardized time periods is to
stipulate that all periods beyond some specified values should be accumulated into final
lead and lag points, as indicated in equation 2 and 5. This is implemented with the
accum option. When this is specified, the panel event study is provided based on the
number of leads and lags indicated in the leads(#) and lags(#) option respectively,
accumulating all periods beyond these periods into the final lead and lag term. For
instance, if we specify leads(15) and lags(10), a single coefficient will capture the
period −15 and earlier and the period 10 and later. This is illustrated in the following
syntax, with the resulting graphical output presented in panel (d) of Figure 2.

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(10) method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m Women"));
. #delimit cr
delimiter now cr

As these end points have a different interpretation to additional leads and lags, acting
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as an estimate of long-term impacts of the event for all periods beyond intermediate
leads/lags, by default the end point estimates will be plotted in an alternative color.
This behavior can be controlled fully using the endpoints_op() options, allowing
for options such as marker styles and colors to be passed to the underlying scatter
plot (additional discussion is provided in sub-section 4.3 of this paper). Alternatively,
as documented below, the noend option can be invoked which will omit these final
accumulative end points from graphical output, as shown in panel (e):

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(10) noend method(fe, cluster(stfips)) graph_op( ytitle("Suicides per
> 1m Women"));
. #delimit cr
delimiter now cr

Finally, as discussed in section 2, the reference period for any panel event study
estimated will be assumed to be the period immediately prior to the occurrence of
the event in each state, unless otherwise indicated. This can be simply changed via
the baseline(#) option. While the choice of −1 as the baseline period is arbitrary,
it is frequently adopted, and so alternative baseline periods should be based on some
empirical or theoretical consideration, although both models will be equivalent up to
a single constant shift. Below we provide the syntax setting an alternative baseline
period, with all coefficients and standard errors referring to differences relative to 11
years prior to the event of interest. By default, the eventdd ado places a vertical refer-
ence line at period -1 to visually indicate the period immediately prior to the passage
of the event. However, if this reference line is not desired, the noline option can be
specified, as documented in Figure 2f. If one wishes to provide alternative reference
periods, these can be passed directly to the graphing command. For example, to add
an alternative reference line in period 0 one should specify graph_op(xline(0)).

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) baseline(-11)
> noline method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m Women")
> xlabel(-20(5)25));
. #delimit cr
delimiter now cr
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4.2 Inference Options
The previous sub-section describes a number of alternative estimation procedures
which are potentially of relevance in the estimation of a panel event study design.
However, as discussed in section 2 of this paper, there are a number of inference con-
siderations which must be weighed when implementing a panel event study model. Up
until this point, the command has always been implemented with cluster(stfips),
indicating that a CRVE should be estimated, where clusters are based at the level
of the state — the level at which the event is assigned in this case. As discussed in
section 2.2, in this example based on 49 states, and hence 49 clusters, a CRVE is likely
the appropriate inference mode for this model.

However, the eventdd command allows for inference using a wild clustered boot-
strap as a post-estimation procedure, via its interaction with the boottest command
(provided this command is installed on the user’s system). This is indicated by the
wboot option, which by default assumes that a clustered wild bootstrap is desired,
with the cluster variable indicated in the cluster() option. This is especially useful
when there are few clusters in the panel. However, note that given that this procedure
is based around bootstrap resampling, the inference procedure likely will take longer
than inference based on Stata’s native CRVE, and additionally, that the wboot option
may not be combined with the hdfe estimation option. However, boottest offers
considerable other benefits, including the option to undertake inference with two way
clustering which may exhibit preferable size properties in the case of very few clusters
(Mackinnon and Webb 2018). Any option which should be passed directly to boottest
can be indicated in the wboot_op() option, as illustrated with the seed option below,
ensuring replicability in pseudo-random bootstrap resamples if desired. Figure 3 con-
trasts the differences between the previous CRVE-based inference procedure with the
wild cluster bootstrap inference procedure illustrated here.

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(10)
> lags(10) method(fe, cluster(stfips)) wboot wboot_op(seed(1303)) graph_op(ytitle(
> "Suicides per 1m Women"));
. #delimit cr
delimiter now cr

Finally, note that as standard, eventdd provides 95% confidence intervals in the
command’s output, returned objects, and the resulting graph and legend. The level()
option (which should be specified as a sub-option to method()) allows for alternative
levels to be indicated, where for example 90% CIs are requested below. Graphical
output only differs in the confidence intervals provided (Figure 5(a) versus (b)).

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(10) method(fe, cluster(stfips) level(90)) graph_op(ytitle("Suici
> des per 1m Women"));
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. #delimit cr
delimiter now cr
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(a) Cluster-Robust VCE
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(b) Wild cluster boot-strapped, seed(1303)

Figure 3: Visualizing Alternative Inference Procedures for Event Study Models
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(a) 95% Confidence level
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Figure 4: Default Event Study Plots with Alternative Confidence Intervals

4.3 Altering Standard Appearance
eventdd, allows for a number of ways to visualize the confidence intervals using a
range of Stata’s standard twoway graph types. The command requires that the user
specify one of the following types of confidence intervals by specifying ci(rarea) for an
interval with area shading, ci(rcap) for an interval with capped peaks, and ci(rline)
for an interval with lines. Figure 5 shows the initial event study from Figure 1, however
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(b) ci(rcap): Interval with capped peaks
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Figure 5: Alternative Visualization Options for Event Study Confidence Intervals
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now with the three alternative types of plots available. If a ci type is specified, this
will apply for all intervals displayed. If not specified, an rcap plot is provided.

These graph types can be fully controlled using suboptions within the ci option
(for example ci(rline, lcolor(black)) to specify lcolor), though the sub-options
included must be compatible with the actual type of confidence interval requested. The
compatibility of options can be confirmed in Stata’s help files for twoway rcap, twoway
rarea, or twoway rline for each of the accepted ci() options. Similarly, we can
specify any options desired for the graphing of the the coefficients in the plot with the
coef_op() option and if we are accumulating periods into final points, we can specify
graphing options for these points in endpoints_op(). In both cases, these accept any
valid options for Stata’s twoway scatter plot type. Finally, a graph_op() option
allows for the inclusion of any general graphing options, such as alternative labelling
schemes, graph schemes or title options. In Figure 6 we compare a standard output
(left) with an alternative output (right) taking advantage of Stata’s transparency
options and alternative color schemes. The eventdd syntax used to generate Figure
7(b) is provided below, followed by the resulting output.

. #delimit ;
delimiter now ;
. qui
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(20) method(fe, cluster(stfips)) ci(rarea, fcolor(ltblue%45))
> graph_op(xlabel(-15 "{&le} -15" -10 "-10" -5 "-5" 0 "0" 5 "5" 10 "10" 15 "15"
> 20 "{&le} 20") scheme(s1mono) ytitle("Suicides per 1m Women")) coef_op(msymbol(Oh))
> endpoints_op(msymbol(O));
. #delimit cr
delimiter now cr
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Figure 6: Event study plots No-fault Divorce Reforms: Appearance options
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5 Conclusions
The panel event study is an increasingly frequently used tool in the applied analysts’
toolbox. It allows for the clear presentation of estimated impacts in quasi-experimental
(observational) contexts, when one wishes to consider the impact of some event which
occurs at (potentially) different times in different geographical areas. What’s more
while the discussion and examples provided in this paper are structured around ge-
ographical clustering of events (such as the application of divorce reforms studied in
Stevenson and Wolfers (2006), and applied to demonstrate other two-way fixed effects
methods (Goodman-Bacon 2018), this setting can similarly be applied where there is
the temporal arrival of some event of interest in other dimensions, such as by age or
other demographic groups.

In this paper we discuss a growing literature laying out panel event study designs,
and introduce a flexible command eventdd which allows for their estimation and
visualization in Stata. We introduce a number of estimation and inference concerns,
and show how the command can simply deal with such concerns in an applied setting.
While eventdd can be based on Stata’s native routines such as regress or xtreg
and cluster robust variance-covariance estimators, it is also able to interact with a
number of extremely powerful user-written commands, allowing for extensions such
as the efficient estimation of high-dimensional fixed effects equations, and the use of
a wild cluster bootstrap for inference.
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