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Abstract: Fruit development is a complex process that involves the interplay of cell division, expan-
sion, and differentiation. As a model to study fruit development, nectarines incapable of ripening
were described as slow ripening. Slow ripening fruits remained firm and exhibited no rise in CO2

or ethylene production rates for one month or more at 20 ◦C. Different studies suggest that this
trait is controlled by a single gene (NAC072). Transcriptome analysis between normal and slow
ripening fruits showed a total of 157, 269, 976, and 5.224 differentially expressed genes in each fruit
developmental stage analyzed (T1, T2, T3, and T7, respectively), and no expression of NAC072
was found in the slow ripening individuals. Using this transcriptomic information, we identified a
correlation of NAC072 with auxin-related genes and two genes associated with terpene biosynthesis.
On the other hand, significant differences were observed in hormonal biosynthetic pathways during
fruit development between the normal and slow ripening individuals (gibberellin, ethylene, jasmonic
acid and abscisic acid). These results suggest that the absence of NAC072 by the direct or indirect
expression control of auxins or terpene-related genes prevents normal peach fruit development.

Keywords: NAC072; slow ripening; auxins; gibberellins; ethylene; abscisic acid; jasmonic acid

1. Introduction

Fruit development is a complex process that involves the interplay of cell division,
expansion, and the differentiation of plant tissues, and it is carefully coordinated by many
metabolic pathways controlling numerous traits such as color, aroma, size, and flavor [1,2].
Moreover, in parallel with the normal ripening (NR) process, many physiological changes
occur in fruit, such as softening, fruit growth, seed development, sugar accumulation and
acidity reduction, background and color skin changes, synthesis of volatile compounds,
among others [2,3]. In peach, fruit ripening is characterized by presenting a double sigmoid
fruit growth curve in which four stages named S1, S2, S3, and S4 can be identified. The S1
period is the first fruit growth step characterized by cell division followed by cell expansion.
In S2, the fruit growth decreased significantly, and the endocarp lignification process began.
Then, the second fruit growth step occurred in S3 by cell expansion, and fruit maturation
was complete at the end of this period. Finally, ripening is the period corresponding to
S4 [4].

Several plant hormones play an essential role in this complex maturity process tem-
porarily and spatially synchronizing the different fruit developmental stages [1]. Auxins,
gibberellins (GA), cytokinins, ethylene, jasmonic acid (JA), and abscisic acid (ABA) have
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been identified to be involved in different fruit stages controlling the normal fruit growth [5].
It was reported that auxins, GA, and in some cases cytokinins play crucial roles in fruits [6].
For instance, it was suggested that an auxin-mediated promotion of GA synthesis occurs
after fertilization in the ovules and valves, thereby stimulating fruit growth [7]. While aux-
ins are described by initiating fruit development and, with gibberellins maintaining fruit
growth, ethylene is the senescence hormone. Ethylene evolution during fruit maturation in
peach was described by [8]. This hormone was observed during the early S1 stage and in
ripening (the end of S4), with the highest concentration values during ripening being posi-
tively associated with high activity levels of the enzyme 1-aminocyclopropane-1-carboxylic
acid oxidase (ACO). Jasmonic acid (JA) mediates plant responses to environmental stresses
such as wounding, insects, and pathogen attack [9], but it also plays a role during develop-
mental processes, including root growth, seed germination, pollen and fruit development,
and ripening [10]. On the other hand, the hormone abscisic acid (ABA) was related with
the stimulation of color development and sugar accumulation during fruit ripening in
peach, and associated with the modulation of the biosynthesis of ethylene and auxins by
strongly affecting related gene expression during the S3/S4 developmental stages [11].

As previously mentioned, peach fruit ripening is accompanied by changes in color,
aroma, size, and flavor. These changes are controlled by complex hormonal machinery
allowing to development of a normal ripen fruit. For the first time, a nectarine genotype
originated from Fantasia incapable of ripening and described as the slow ripening (SR)
phenotype was identified [12]. Slow ripening fruit remained firm and green and exhibited
no rise in CO2 or ethylene production rates during more than one month at 20 ◦C. Previous
studies have suggested that this trait is controlled by a single recessive gene (sr) [13], and by
comparing the seed and mesocarp development between the Fantasia and SR phenotypes,
it was evident that the mesocarp development of SR individuals seems to be blocked at
stage S3 [4].

Furthermore, a deletion of 26.6 kbp was identified in an F2 population from the self-
pollination of Venus (V × V) associated with this trait [14], and a diagnostic marker was
developed for the SR phenotype in a Belbinette and Nectalady (Bb × Nl) population [15].
Both results have the same candidate gene for the SR phenotype, described as an NAC
transcription factor (Prupe.4G186800) located in chromosome 4 of the peach genome,
suggestive of a correlation between the SR phenotype and the maturity date [16].

NAC transcription factors are a large family of structurally distinct and functionally
diverse plant-specific proteins. More than one hundred NAC genes have been iden-
tified in Arabidopsis [17]. This family was associated with several functions such as
plant development [18], lateral root formation and auxin signaling [19], defense [20],
and abiotic stress [21,22]. However, little was reported about NAC transcriptional and
post-translational regulation. In addition, it is known that NAC proteins can homo- and
hetero-dimerize and interact with other transcription factors, suggesting combinatorial reg-
ulation of transcription factor activity. Hence, an important goal of NAC protein research
is to determine the complexities of the NAC transcription factor network and to identify
possible target genes to understand this plant transcriptional machinery [23].

Although the evidence mentioned above relates NAC072 to the regulation of maturity
date and SR phenotypes, little is known about the molecular mechanisms involved in this
regulation. For this reason, this work aims to understand the molecular basis of the SR
phenotype and how the absence of NAC072 (Prupe.4G186800) acts in regulating peach fruit
development using a transcriptomic approach between NR and SR individuals.

2. Results
2.1. Slow Ripening Phenotype and Candidate Gene NAC072 Expression Profile

The SR phenotype was recently identified as a monogenic trait incapable of ripening.
Figure 1 displays a comparison between NR and SR phenotypes from T1 (37 DASF; days
after 1 September) to T7 (120 DASF), representing the period between 1 week after fruit set
and harvest time. SR fruit development seems to be stopped in T3 (65 DASF) and skin color
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changes did not develop even at fruit harvest time in T7 (Figure 1A). Also, this phenotype
is still present in the tree a few months after harvest. Differences in other traits between
both phenotypes include soluble solid content, fruit weight, and firmness (Figure 1C). A
slight difference in soluble solid content can be observed, with a higher amount observed
in the SR fruit in T5 and T7, respectively. A significant change in fruit weight starting in T5
was shown, where the NR reached approximately twice the SR weight values. In addition,
for firmness, we observed that in T4, no softening process occurred in the SR phenotype
compared to the softening process observed in NR fruit (Figure 1C).

Figure 1. Slow ripening versus normal ripening fruit phenotypes. Fruit changes between normal
and slow ripening phenotypes at different developmental stages. The evaluation stages T1, T2,
T3, T4, T5, T6 and T7 represent different days after 1 September (DASF), corresponding to 37, 51,
65, 79, 99, 112 and 120 DASF, respectively. (A) Photographic developmental evaluation of fruit
with normal (NR) and slow (SR) ripening phenotypes. (B) Expression profile of the candidate gene
Prupe.4G186800 (NAC072) during normal phenotype development. Letters a-d represent significant
expression differences. (C) Changes in soluble solid content, fruit weight and firmness between NR
(continuous lines) and SR (dashed lines) phenotypes. Significant differences between NR and SR
phenotypes are represented with asterisk (* p < 0.05; ** p < 0.01; *** p < 0.001).

In parallel, the expression profile of the SR candidate gene Prupe.4G186800 (NAC072)
was assessed in the same evaluation periods to identify the developmental stages to perform
the transcriptomic analysis. The results for the NR fruit showed negligible expression of
NAC072 in T1 followed by a peak of expression in T2 (51 DASF), that decreased immediately
in T3, maintaining a low expression level until T7 (Figure 1B). The results for the SR fruit
showed no expression of NAC072 at any developmental stage.

The transcriptomic analysis included four development stages selected based on the
NAC072 expression profile, where T2 seems to be the most critical point to understand
the molecular mechanisms by which NAC072 controls fruit ripening (Figure 1B). For this
reason, T1, T2, and T3 were selected. On the other hand, T7 was selected because it is
the developmental stage with significant differences between the NR and SR phenotypes,
considering all information presented in Figure 1.

2.2. RNA Sequencing and Bioinformatic Analysis

The selected samples and the sequencing information details are presented in Table S1.
The number of reads sequenced for each sample was 46,229,240 reads, with a GC content of
45% on average and no overrepresented libraries. When the samples were filtered, between
0.6% and 0.9% of the reads were lost by quality on each library. The alignment process
resulted in an average of 93.3% of the filtered reads correctly aligned against the reference
genome. In summary, of the total reads sequenced for each library, 92.8% on average
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were correctly aligned with the reference genome, and no overrepresented libraries and
contaminations were found.

A principal component analysis (PCA) was performed to observe the biological
replicate distribution using the expression levels of each transcript. Figure 2A shows
that the replicates of each sample presented similar behaviors and grouped close to each
other. Furthermore, the four development stages analyzed are clearly separated. Two
significant differences were identified, PC1 (41.85%) separated the T1 samples from the
other developmental stages, and PC2 (38.43%) separated the T7 samples of NR from the
SR. The T2, T3, and T7 SR samples showed a similar trend among them, and could only be
separated by PC3 (10,95%). Similar results are demonstrated in Figure 2B, which uses all
differential expression data to construct a heatmap. In general, the differences between T1
and the other three developmental stages were evident, as was the difference between the
NR and SR T7 samples.

Furthermore, the number of differentially expressed genes (DEG) in each develop-
mental stage were compared separately through the expression levels between NR and
SR individuals in a Venn diagram (Figure 2C). A total of 157, 269, 976, and 5,224 DEG
were identified between the normal and the mutant phenotypes for T1, T2, T3, and T7,
respectively. The section in gray displays the 78 transcripts differentially expressed in
all developmental stages. In this group of genes, the described candidate gene for SR
phenotype NAC072 is included (Figure 2C). Of these 78 genes related to the SR phenotype,
three stand out for their description: one WRKY transcription factor (WRKY35) and two
auxin-related genes (SAUR family proteins). These three genes presented with considerably
higher expression values in NR individuals.

A gene ontology term enrichment analysis was carried out to understands the fruit
transcriptomic differences between the normal and slow ripening phenotypes (Figure 2D).
Regarding the development of normally ripening fruits, it was possible to identify high
activity of cell wall remodeling enzymes in T3, accompanied by nucleotide-sugar biosynthe-
sis. While in the T7 NR fruits, increases in the genes associated with carotene biosynthesis,
auxin response, and oxidative stress were observed. When analyzing the transcriptomes
of slow ripening fruits, neither cell wall remodeling nor carotene biosynthesis were ob-
served. The stress response was mainly identified from T2 to T7 where the response to
hypoxia, response to chitin, response to decreased oxygen levels, host programmed cell
death, response to reactive oxygen species, and regulation of hormone levels stood out.

To identify possible candidate genes directly related to NAC072, genes with no ex-
pression in one condition (expression patterns like NAC072) were selected, resulting in 43
candidate genes. Eleven candidates seemed to be associate with the studied phenotype:
one 1-aminocyclopropane-1-carboxylate synthase 1 (ACS1), five auxin-related transcripts
(SAUR family proteins), and one cell wall remodeling enzyme described as glucosyltrans-
ferase, all of which were expressed only in the NR phenotype. Conversely, two candidate
genes described as α-farnesene synthases 1 (AFS1), one cell number regulator, and one cell
division control protein were identified, which were expressed only in the SR phenotype
(Table 1).

2.3. Hormonal Differences between Normal and Slow Ripening Phenotypes

Fruit development is a complex process that is coordinated carefully by the interplay of
many plant hormones. Furthermore, a normal ripening process involves the participation
of these hormones in specific developmental stages. Therefore, hormone biosynthetic
pathways related to fruit development were analyzed, and differences in expression profiles
were observed in the genes related to ethylene, abscisic acid (ABA), gibberellins (GA), and
jasmonic acid (JA) production (Figure 3).
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Figure 2. Differential expression analysis between NR and SR phenotypes. Graphical representation of differentially
expressed transcripts for the four developmental stages analyzed (T1, T2, T3, T7) between the NR and SR phenotypes.
(A) Principal component analysis using differentially expressed transcripts. The different stages are separated in colored
circles of red, green, blue and purple for T1, T2, T3 and T7, respectively. The NR phenotype is represented with fullly
colored figures and the SR phenotype is represented with line colored figures. (B) Heatmap of differentially expressed
genes between NR and SR phenotypes. The red and blue lines represent genes with up and down regulated expressions,
respectively. The four developmental stages are separated, and each column represents one independent biological replicate
expression result. (C) Venn diagram representing the differentially expressed transcripts. In yellow, green, blue and purple,
the differentially expressed transcripts only occurring in T1, T2, T3 and T7, respectively are represented, and the number
of identified genes differentially expressed in all developmental stages are presented in grey. (D) Gene ontology term
enrichment analysis of normal and slow ripening phenotypes in fruit development. The blue-red scale color represents the
adjusted p-value and the point size represents the DE gene ratio.
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Table 1. NAC072 candidate genes related to gene expression profiles.

GeneName
Slow Ripening * Normal Ripening * Description

T1 T2 T3 T7 T1 T2 T3 T7

Prupe.4G186800 - - - - 22.8 251.6 64.3 18.9 NAC072
Prupe.2G176900 - - - - 0.1 0.0 0.1 2.4 ACS1
Prupe.4G126600 26.4 183.7 72.7 15.3 - - - - AFS1
Prupe.4G126400 2.6 15.9 7.2 1.2 - - - - AFS1
Prupe.8G080700 - - - - 15.1 5.7 1.7 39.7 SAUR family protein
Prupe.2G085100 - - - - 0.0 0.0 0.0 30.6 Glucosyl transferase
Prupe.8G081800 - - - - 0.0 0.0 0.0 1.9 SAUR family protein
Prupe.8G081200 - - - - 0.0 0.0 0.0 1.9 SAUR family protein
Prupe.1G043300 1.1 0.0 0.5 1.1 - - - - Cell number regulator
Prupe.4G237600 0.4 0.2 0.5 0.1 - - - - Cell division control
Prupe.8G081300 - - - - 0.0 0.0 0.0 1.0 SAUR family protein
Prupe.1G442200 - - - - 0.0 0.0 0.0 0.7 SAUR family protein
Prupe.8G079700 - - - - 0.1 0.0 0.0 0.4 GA20ox3

* Normalized expression represented in FPKM values. No gene expression values in one condition are represented by hyphens (-).

2.3.1. Ethylene Production

It is well known that SR fruits do not produce ethylene, unlike NR fruits. Methio-
nine is the starting substrate to produce ethylene through the activity of 3 enzymes,
an S-adenosylmethionine (SAM) synthase that produce SAM, a 1-aminocyclopropane-
1-carboxylic acid (ACC) synthase (ACS) that produce ACC, and finally, an ACC oxidase
(ACO) that produce ethylene (Figure 3, blue section). This information was analyzed with
the transcriptomic data. Thus, in the expression profiles of three SAM synthases, one
ACS and one ACO, the most important differences were observed in the ACS and ACO
expression levels. In NR siblings, ACS showed a unique peak of expression during ripening
(T7), and no expression of this gene was observed in SR individuals. On the other hand,
unlike the expression pattern of ACS, two peaks were observed for normal ACO expression,
one in T2 without differences between NR and SR individuals, and the other at ripening
(T7). ACO was absent in SR siblings with a differential expression of this gene in T7 with a
fold change of 3.2 (Figure 3). In summary, differences in ACS and ACO expression patterns
were observed only in the last developmental stage (T7), probably associated indirectly
with the absence of NAC072 and supporting the decreased ethylene production.

2.3.2. Geranylgeranyl Diphosphate Biosynthesis, Precursor of ABA and GA Production

Abscisic acid and gibberellin biosynthesis pathways start with the same precursor,
geranylgeranyl diphosphate (GGPP), produced by the metabolism of pyruvate and glyc-
eraldehyde 3-phosphate (Figure 3, yellow section). Our results showed differences in all
enzymes that belong to the canonical GGPP biosynthetic pathway in T7, and we observed
a lower abundance of these transcripts in SR fruit. However, no differences were observed
in the early developmental stages. In addition, two other candidates were found: the
α-farnesene and α-pinene synthases (AFS and APS, respectively). The first gene was
found with an early differential expression in T2 redirecting FPP to promote α-farnesene
biosynthesis. The second gene was found differentially expressed in T7, redirecting GPP
to promote α-pinene biosynthesis (Figure 3). Both transcripts were expressed only in
SR siblings, probably decreasing the GGPP production in the SR phenotype. Thus, the
transcriptomic data suggest lower GGPP production in SR siblings during ripening by
the canonical GGPP biosynthesis pathway, ans also FPP and GPP redirection to terpene
biosynthesis, further reducing GGPP production in these individuals in the early develop-
mental stages.
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Figure 3. Graphical representation of hormone biosynthetic pathways related to fruit development. Schematic dia-
gram of different hormone biosynthetic pathways related to fruit development are represented in separated colored
boxes. Each transcript involved in a specific hormone biosynthetic step is in bold, and their expression profiles are
represented in different graphs only for genes with differential expression identified by RNAseq with FDR < 0.05 and
FC > |1|. The expression profiles of the NR and SR transcripts are represented on the left and right side of each graph,
respectively. DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate reductase; MDS,
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, hydroxymethylbutenyl 4-diphosphate synthase; HDR, hy-
droxymethylbutenyl 4-diphosphate reductase; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl diphosphate; GPPS,
GPP synthase; APS, α-pinene synthase; FPP, farnesyl diphosphate; FPPS, FPP synthase; AFS, α-farnesene synthase; GGPP,
geranylgeranyl diphosphate; GGPPS, GGPP synthase; PSY, phytoene synthase; PDS, phytoene dehydrogenase; ZDS,
ζ-carotene desaturase; LCYB, lycopene- β-cyclase; CHYB, β-carotene hydroxylase; ZEP, zeaxanthin epoxidase; NCED,
9-cis-epoxycarotenoid dioxygenase; KS, ent-kaurene synthase; KO, ent-kaurene oxidase; KAO, ent-kaurenoic acid oxi-
dase; GA20ox, gibberellin 20-oxidase; GA3ox, gibberellin 3-β-dioxygenase; GA2ox, gibberellin 2-β-dioxygenase; Met,
methionine; SAM, S-adenosylmethionine; ACC, 1-aminocyclopropane-1-carboxylic acid; ACS, ACC synthase; ACO, ACC
oxidase; LOX, lipoxygenase; AOS, allen oxide synthase; AOC, allen oxide cyclase; OPDA, 12-oxo-phytodienoic acid; OPR,
12-oxophytodienoate reductase; JAR1, jasmonic acid-amino synthetase.

The expression patterns of the transcripts belonging to the ABA biosynthesis pathway
(Figure 3, red section) resulted in a similar expression profiles between NR and SR individ-
uals in T1, T2, and T3. However, in T7, a higher abundance of all transcripts related to the
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ABA biosynthesis pathway was observed in NR fruit, suggesting a lower ABA production
on SR individuals only in T7, as previously mentioned for the GGPP.

Even though we did not observe the exact behavior of GGPP and ABA biosynthesis
in GA production (Figure 3, orange section), a significant difference was observed in the
expression profile of one GA3ox in T2 with a lower expression level in the SR siblings. The
candidate genes NAC072 (Figure 1B) and AFS (Figure 3 yellow section) had same point of
highest expression. This enzyme produces bioactive GA and is a critical enzyme in GA
activity and regulation, suggesting lower bioactive GA production in SR siblings.

In summary, SR individuals presented lower production of ABA and GA during
ripening, mainly because there was a decrease in GGPP production (a precursor of both
hormones) in T7. In addition, the lower GGPP production in T7 was accompanied by a
lower transcript abundance of ABA biosynthetic-related genes. Moreover, a lower GA3ox
expression level was identified in T2, suggesting lower bioactive GA activity in early fruit
developmental stages and a more direct relationship between NAC072, AFS and GA3ox.

2.3.3. JA Production

Linoleic acid is converted to 12-oxo-phytodienoic acid (OPDA) through the enzymes
lipoxygenase (LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC), then
is transformed through the activity of the enzyme 12-oxophytodienoate reductase (OPR)
and a series of β-oxidations to form jasmonic acid (Figure 3, green section). The results
obtained showed a higher abundance of one LOX and three OPR in normal ripening fruit,
suggesting a higher JA production only in T7. The LOX described here had an FC = 9.3 with
613.0 FPKM in the NR siblings, and low expression in the SR individuals (FPKM < 1.0).
Although other LOX genes were overexpressed in the SR siblings, their expression levels
were considerably lower than those mentioned above (data not shown). On the other hand,
there were six genes described as OPR2 in the peach genome. Three of them displayed
differences in their expression levels at T7 (Figure 3, green section), suggesting higher
OPDA accumulation and lower JA biosynthesis in SR individuals.

Finally, JA needs to be conjugated into JA-Ile through the activity of the enzyme
jasmonic acid-amino synthetase (JAR1) to perform its biological function. Our results
showed that JAR1 abundance increased significantly in T2 and remined high in NR fruit in
T7 (Figure 3, green section). The SR fruit presented similar JAR1 abundance behavior in
T1, T2, and T3, but then showed a significant decrease in T7. These results suggest that SR
fruit displays less JA production than regular ripening fruit. Thus, we hypothesize that
there might also be less JA conjugation to JA-Ile.

2.4. RNAseq Validation by qPCR

To validate the candidate genes obtained using the RNAseq information, the expres-
sion profiles of three genes were measured by qPCR in the NR and SR individuals. Figure 4
shows the relative expressions of the NAC072 (Prupe.4G186800), ERF017 (Prupe.7G194400)
and FAF (Prupe.8G241400) genes using RPII as control and compared with the expression
levels (FPKM) obtained by RNAseq analysis. For NAC072, a peak of expression in NR
individuals was in T2 and no expression values were found in SR individuals. For ERF017,
higher expression values were expected for T7 in the SR phenotypes. Finally, for FAF, two
peaks of expression in T2 and T7 for NR siblings were expected, but for the SR siblings the
only expression values were found in T2. In summary, similar results were obtained by
qPCR analysis for all genes analyzed. Thus, the the RNAseq expression results obtained
were validated.
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Figure 4. Validation of RNAseq results by qPCR. Comparison between normal and slow ripening expression profiles
determined by RNAseq and qPCR of three differentially expressed candidate genes are displayed. The left axis represents
the expression profile, in FPKM, of genes measured by RNAseq (bars). The right axis presents the relative expression profiles
of genes measured by qPCR (lines). A Pearson correlation was calculated between the RNAseq and qPCR expression data
and presented in each graph as the R value.

3. Discussion
3.1. Phenotyping

The SR phenotype was reported for the first time in 1987 in slow-ripening nectarines
derived from the cultivar Fantasia that mature approximately 2.5 months after commercially
harvested, normal ripening Fantasia, and this slow ripening phenotype did not present flesh
color and firmness changes [12]. These slow ripening nectarines failed to produce normal
ethylene levels for at least one month after harvest and their ethylene production peaks
were significantly reduced [24]. Conversely, the SR siblings displayed a more significant
accumulation of soluble solids and less titratable acidity than regular ripening fruit [12].
Similar results were observed in the V×V population (Figure 1). Significant differences
were obtained in size, color, and firmness between the NR and SR phenotypes. These
changes were identified in the S2 development stage between T3 and T4 (65–87 DASF),
the period in which the process of endocarp lignification (pit hardening) begins, and fruit
growth was consequently reduced [4]. At S3, no fruit growth was observed in the SR
siblings, suggesting fruit development stagnation in stage S2.

The expression profile of the candidate gene NAC072 was analyzed (Figure 1). One
peak of expression was observed during fruit development at T2 (51 DASF). This period was
identified as the transition from S1 (first fruit growth period) to S2 (endocarp lignification),
and is also the period when the embryo starts to develop the seed [4]. Furthermore, as
mentioned before, the differences between the NR and SR phenotypes were observed
between T3 and T4. For these reasons, it seems possible that NAC072 id involved in fruit,
seed, or embryo development, and its absence may cause the slow ripening phenotype.

3.2. Sequencing Results and Differential Expression Analysis

All developmental stages of the NR and SR phenotypes were compared at the tran-
scriptomic level. Even though significant differences between all developmental stages in
NR phenotypes were expected, the transcriptomic results showed that the fruit mesocarp
did not display such large differences between T2 and T3 (Figure 2A,B). These results
were probably because this period corresponds to a reduction in fruit growth and seed
development, and the beginning of lignification [4]. In the case of the transcriptomic
information of SR, in T1, T2, and T3 the SR information was similar to that of NR, but in T7
significant differences were observed between NR and SR, where T7 SR samples seemed to
be more similar to T2 and T3, respectively. These results suggest a stop in SR development
between the T2 and T3 developmental stages (Figure 2A). It is possible that the absence of
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NAC072 triggers an alteration in seed development or the lignification process; however,
a detailed analysis of seed development could help us better understand why the slow
ripening fruits stop their growth and how NAC072 is involved in this phenotype.

Considering the differences between NR and SR, a total of 78 genes were differentially
expressed in all developmental stages (Figure 2C), among them was NAC072. Four of
these genes seemed to have a correlation with the slow ripening phenotype either due to
their function or the metabolic pathway to which they belong. These genes were described
as an α-farnesene synthase, the transcription factor WRKY, and two auxin-related genes
described as small auxin up RNA (SAUR), thus indicating a possible correlation with the
NAC072 regulation pathway. Even though we expected to find other genes with the same
expression pattern as NAC072 in this group, none of them presented exactly the same
expression pattern.

On the other hand, it is possible to identify a developmental stagnation of the slow
ripening fruits that begins to be noticed in T3 (Figure 2D), when it is not possible to observe
the enriched gene ontology terms of the cell wall remodeling enzymes. Neither gene
ontology terms are observed for pigmentation or carotene synthesis in T7 for the slow
ripening individuals, which agrees with the phenotypes observed in Figure 1A, where the
normal ripening phenotype develops a change in pigmentation and fruit size accompanied
by the softening process (Figure 1C). In contrast, the SR phenotype seems to be stopped in
the middle of fruit development.

3.3. NAC072 and Direct Possible Target Genes

NAC072 presented a peak of expression in T2 (Figure 1), probably affecting the S1/S2
transition or altering the seed/embryo development. We know that NR and SR individuals
are similar in phenotype in T1 and T2 (Figure 1), and considering the transcriptomic
information, no significant differences were observed in T1 and T2 (Figure 2). These results
reinforce the hypothesis that NAC072 is responsible for the slow ripening phenotype.
Similar to NAC072, another 51 genes with descriptions displayed expression only in the
normal ripening phenotype. Among them, five were described as SAUR family proteins
and one as a 1-aminocyclopropane-1-carboxylate synthase 1 (ACS1), associating NAC072
with auxin and the ethylene signaling pathways. None of them presented an expression
pattern like NAC072 and for the most part they were genes that, in normal ripening fruits,
are expressed only in late stages of development (Table 1), suggesting the indirect NAC072
regulation on these genes. On the other hand, unlike NAC072, 64 genes with descriptions
were only expressed in slow ripening fruit. Of them, two α-farnesene synthases 1 (AFS1)
and two genes related to cell number regulation were distinguished, where the two AFS
(terpene biosynthesis-related proteins) showed expression patterns like that of NAC072
(Table 1).

The plant hormone auxin, or indole-3-acetic acid (IAA) is responsible for various
aspects of plant development [25], including organ initiation from the shoot apical meristem
(SAM) and flower/fruit development [26]. The auxin response is mediated by auxin
response factors (ARF) that may activate or repress the expression of early auxin-responsive
genes like the small auxin up RNA (SAUR) genes mentioned before [25]. In general, these
SAUR family genes have an unknown function, but some of them have been associated
with cell expansion on the hypocotyl and leaves (SAUR19) [27], auxin synthesis regulation
(SAUR39) [28], and leaf senescence (SAUR36) [29]. In fruit, a crucial role of endogenous
IAA was reported as controlling the onset of ripening in fleshy fruit and regulate fruit
growth and development together with GAs [7]. On the other hand, an association between
NAC072 and ethylene was identified through the differential expression of the gene ACS1
between the normal and slow ripening individuals. ACS1 was identified as a critical
enzyme in ethylene biosynthesis [30], using S-adenosylmethionine (AdoMet) to produce
1-aminocyclopropane-1-carboxylate (ACC). Therefore, its regulation at the transcriptional
level is an important factor regulating ethylene production in response to different stimuli.
ACS protein stability also plays a significant role in controlling ethylene biosynthesis [31].
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However, as ACS1 presents its expression only in late stages of development (Figure 3,
blue section), we believe that it could be a consequence of the loss of the NAC072 gene in
earlier stages of fruit development, and not a direct regulation between NAC072 and ACS1.

Moreover, α-farnesene synthase 1 (AFS1) is an enzyme that uses farnesyl diphosphate
(FPP) to produce α-farnesene [32]. This α-farnesene is a sesquiterpene described as a
lepidopteran attractant and an oviposition inducer [33]. It was reported to be produced
during the storage of apple fruit and its oxidation is hypothesized to be the causal agent
of superficial scald [34]. No correlations have been reported between AFS1 and the slow
ripening phenotype, with respect to either maturity date NAC072. However, the precursor
FPP, used to produce α-farnesene, is also used to produce geranylgeranyl diphosphate
(GGPP), a key substrate for ABA and GA biosynthesis, two plant hormone biosynthe-
sis [33]. Thus, our results suggest a possible correlation between the expression of AFS1
in SR individuals and ABA or GA production, but the regulation mechanisms involved
remain unknown.

3.4. Ethylene Production Results

The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies of
ethylene signaling components have revealed a linear transduction pathway leading to
the activation of ethylene response factors [35]. In NR fruit, ethylene is produced in the
last fruit developmental stages, beginning approximately at 80 DASF (S4) [8], participating
directly in fruit ripening, and it is biosynthesized by the action of three enzymes, S-
adenosylmethionine (SAM) synthase, 1-aminocyclopropane-1-carboxylate synthase (ACS)
and 1-aminocyclopropane-1-carboxylate oxidase (ACO). The last two enzymes (ACS and
ACO) are critical to ethylene biosynthesis [36]. The normal expression patterns of these
genes are shown in Figure 3 (blue section), where ACS displayed only one expression peak
in T7, and ACO displayed two expression peaks in T2 and T7, respectively. By comparing
the expression patterns of ACS and ACO with ethylene production (only observed in T7),
ACS seems to be the limiting enzyme in ethylene production. Similar results were reported
when comparing the ACS and ACO enzyme activity with the fruits’ 1-aminocyclopropane-
1-carboxylate (ACC) content and ethylene production [8].

No ethylene production was identified in SR individuals [13]. This observation was
validated in the transcriptomic analysis, where no ACS RNA accumulation was found in
T7; this enzyme uses ado-met to produce ACC in normal conditions (Figure 3, blue section).
These results suggest a lower accumulation of ACC in slow ripening individuals as there
is no expression of the ACS gene. On the other hand, the ACO transcript accumulation
was analyzed; this enzyme participated in converting ACC to ethylene [37]. In normal
conditions, this enzyme has two peaks of expression in T2 and T7, but in SR individuals,
transcript accumulation was found in only T2.

In summary, the slow ripening phenotype displayed no ACS and ACO transcript
accumulation in T7 (ripening period), and a lower ACC accumulation in the slow ripening
siblings is suggested. These backgrounds could explain why no ethylene production was
found in the slow ripening siblings during the ripening stage. Although we suspect an
indirect correlation between the absence of NAC072 and ACS transcript accumulation, the
mechanism by which this regulation is carried out is not yet clear. Another phenotype
of peach tree similar to the slow ripening phenotype that also does not produce ethylene
is stony hard; a candidate gene for this phenotype is YUC11 which was described as
regulating the synthesis of auxins and ethylene, having the same expression pattern as
ACS1 (both genes are absent in the stony hard phenotype) [38]. However, unlike slow
ripening fruits, fruits with the stony hard phenotype respond to exogenous applications
of ethylene (data not shown), suggesting that slow ripening is independent of the stony
hard phenotype.
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3.5. Gibberellin Production Results

Gibberellins are diterpene plant hormones described as growth regulators with a key
role in fruit development. The major bioactive GAs are GA1 and GA4 [39]. The biosynthesis
of bioactive GAs and their deactivation pathways are tightly regulated processes. In this
sense, as we show in Figure 3, the enzyme GA20ox is an intermediate in the GA biosynthesis
pathway promoting the bioactive GA synthesis together with GA3ox. In contrast, GA2ox
antagonizes GA activity by deactivating GAs [40].

The results of this research suggest that bioactive GA production in SR individuals
was significantly reduced. Three antecedents that support this statement are: (i) all genes
related to GGPP production (a precursor of GA biosynthesis pathway) at the ripening
stage decreased their accumulation, resulting in less available GGPP to produce GAs in
the SR phenotype; (ii) two α-farnesene synthases expressed only in SR individuals were
found, which use farnesyl diphosphate (an intermediate in GGPP biosynthesis) to produce
α-farnesene, decreasing GGPP biosynthesis and therefore also GA production, and (iii) a
differential transcript accumulation of GA3ox, a key enzyme in bioactive GA production
was observed, with less abundance of this gene in the SR phenotype in early stages of fruit
development, suggesting that there is even less bioactive GA biosynthesis in SR fruit.

Previous studies have reported that different plant hormones are implicated in fruit
and seed development [41]. It is well known that in fleshy fruit, the presence of seeds must
promote fruit growth. In the absence of seeds, fruit growth can be stimulated with the
exogenous application of auxins and gibberellins [1], suggesting that seed development is
necessary for auxin/gibberellin production and fruit growth. It was previously reported
that auxins induce GA production in pea fruit (Pisum sativum), increasing GA3ox transcript
accumulation and decreasing GA2ox transcript levels [39,42]. Our results suggest that
the SR phenotype may be related to changes in seed development and auxin–gibberellin
regulation in early fruit developmental stages (T2). Exogenous applications of these
hormones in early stages of development could help determine the role that auxins and
gibberellins have in fruit development, seed development, and fruit transition from stage
S1 to S2.

3.6. Abscisic Acid and Jasmonic Acid Production Results

The phytohormone abscisic acid (ABA) is an isoprenoid [43] with reported roles in
embryogenesis and seed maturation [44], seed dormancy and germination [45], and adapta-
tion to abiotic stress [46,47]. Previous studies have reported a correlation between the ABA
and GA hormonal pathways during seed development. During late embryogenesis, ABA
promoted seed germination, blocking the embryo growth by counteracting the function of
GA [48]. Transcript accumulation differences were observed in all genes related to the ABA
biosynthetic pathway at the ripening stage (T7). These results suggest less ABA production
in SR individuals at T7. In addition, since β-carotene is an intermediate substrate in the
ABA biosynthetic pathway, our results suggest that there may also be a reduction of the
accumulation of β-carotene in SR individuals. The molecular mechanism by which the
absence of NAC072 at T2 affects ABA production at T7 remains unclear.

On the other hand, jasmonic acid (JA) is an endogenous plant hormone responsible
for the plant response to biotic and abiotic stress [49]. JA is also involved in fruit ripening,
pollen survival, root growth, and plant response to injury [50,51]. JA is derived from
the octadecanoid pathway by forming a 12-oxophytodienoic acid (OPDA), a precursor of
JA [52,53]. Previous research reported that OPDA and JA act independently to promote
different plant responses [54]. The enzymes described as 12-oxophytodienoate reductase
(OPR) have a key role in regulating OPDA/JA accumulation by using OPDA to promote
JA biosynthesis [55]. In this study, the expression differences in several OPRs at ripening
were identified between the NR and SR phenotypes. These results suggest a differential
OPDA or JA accumulation and differentially signaling responses between the NR and
SR phenotypes, but experiments such as exogenous applications of OPDA or JA in slow
ripening individuals are necessary to confirm this hypothesis.
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The results obtained in this research suggest lower ABA and JA production in SR
individuals only in late stages of fruit development (T7; ripening) supported by the lesser
transcript accumulation of genes related to these hormone biosynthetic pathways (Figure 3).
Therefore, it is possible that the differences related to ethylene, ABA, and JA in T7 do not
have a direct correlation with the candidate gene NAC072. This observation was derived;
since NAC072 showed a peak of expression in T2, we believe that it causes an arrest of
the normal development of the peach fruit. Considering that ethylene, ABA and JA are
hormones with an essential function in normal fruit ripening, and that they have been
widely studied in the later stages of its development, it is possible that the observed
hormonal differences were a consequence of the effect of NAC072 in peach development,
and not a direct regulation of NAC072.

4. Materials and Methods
4.1. Vegetal Material and Phenotyping

An F2 population with 151 siblings previously used in fruit quality trait studies [14]
was assessed to perform transcriptomic analysis between normal and slow ripening indi-
viduals. This population was obtained from the self-pollination of the nectarine cultivar
Venus (Prunus persica (L.) Batsch cv. Venus). The cultivar Venus was obtained from the
intra-specific cross between Stark Red Gold and Flamekist at the INIA-Rayentué facilities
(VI Region, Rengo, Chile) and no permissions were necessary to collect plant material. This
cultivar produces freestone melting yellow-fleshed nectarines. The Venus × Venus popu-
lation (V × V) consists of 6-year-old trees grown on G × N rootstock in an experimental
orchard located at 34◦24′ S latitude and 70◦50′ W longitude (INIA-Rayentué).

Physiological fruit parameters and calculated averages for normal and slow ripening
individuals were measured using nine fruit at seven fruit developmental stages determined
as a number of days after 1 September (DASF). The measured dates were 37, 51, 65, 87, 99,
112, and 120 DASF for T1, T2, T3, T4, T5, T6, and T7, respectively. Photographic capture of
the analyzed fruits was made using a static camera with the same light and photographic
parameters, and then the weight, flesh firmness, and soluble solids content were measured.
Two siblings were selected to obtain fruit material for transcriptomic analysis: one early
ripening individuals and one slow ripening individual. Three replicates were selected for
each individual at each analyzed developmental stage (T1, T2, T3, and T7) and collected
to perform fruit RNA extractions and transcriptomic analysis (2 selected individuals ×
3 replicates × 4 developmental stages = 24 samples).

4.2. RNA Extraction, Quantification and Quality Control

Total RNA of 24 samples was extracted from 100 mg of fruit flesh using a mortar
and pestle along with the SpectrumTM plant total RNA kit, following the manufacturer’s
instructions (Sigma Aldrich, Saint Louis, MO, USA). The quantification was performed
using a Qubit® 2.0 fluorometer and a QubitTM RNA BR assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. The quality control
process of each RNA sample extracted was made using a Fragment Analyzer™ automated
CE system (Analytical Advanced Technologies, Ames, IA, USA), 0.1–0.8 µg of total RNA
were analyzed using a Standard Sensitivity RNA analysis kit (Advanced Analytical Tech-
nologies) following the manufacturer’s recommendations, and finally, ProSize 2.0 software
(Analytical Advanced Technologies) was used to determine the RNA quality, considering
an RQN value of 8.0 as useful for library construction and sequencing.

4.3. Library Construction and RNA Sequencing

The indexed libraries were built with a TruSeq® RNA Library Prep Kit v2 (Illumina
Inc., San Diego, CA, USA) using 1 µg of isolated RNA. They were validated by capillary
electrophoresis using a Fragment Analyzer™ Automated CE System with the Standard
Sensitivity NGS Analysis Kit (Advanced Analytical Technologies), followed by quantifica-
tion using qPCR with a Library Quantification Complete Kit Illumina/Universal (Kapa
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Biosystems, Wilmington, MA, USA) in an Eco™ thermocycler (Illumina Inc.) according
to manufacturer’s instructions. Validated libraries were sequenced in a HiSeq2500 with
Macrogen’s service.

4.4. Differential Expression Analysis

The sequenced data were analyzed using FastQC software. Adapters were removed
from all samples and filtered by quality (Q > 20.0) using Flexbar software. Filtered read
alignments were made using RSEM software, following the developer’s recommenda-
tions [56]. An RSEM reference was made using the Prunus persica v2.0.a1 reference
genome [57] by the rsem-prepare-reference script with the -gtf option to add the gene
annotation file. Then, read abundance estimation for each sample was performed by the
rsem-calculate-expression script using the RSEM reference previously obtained. Differen-
tial expression analysis was performed using the Bioconductor package EdgeR (FDR < 0.05;
FC > |1|), following the developer instructions [58].

4.5. RNAseq Validation by qPCR

Transcript levels were analyzed by qPCR, for which 1 µg of total RNA was treated with
DNase I (Thermo Fischer Scientific, Waltham, MA, USA) to eliminate gDNA contamination.
The Superscript II RT system (Invitrogen, Carlsbad, CA, USA) was used for complementary
DNA synthesis, according to the manufacturer’s instructions. Levels of transcripts were
quantified for six selected DEGs of interest using peach fruit flesh of normal and slow
ripening individuals. Every reaction was performed on an Eco system (Illumina Inc.) with
Evagreen mix (Biotium, Fremont, CA, USA) and specific primers.

Three biological replicates and three technical replicates were used for each gene, and
RPII was used as a control [59]. The PCR program was (i) enzyme activation at 95 ◦C for
10 min, with 40 cycles of (ii) 95 ◦C for 15 s, annealing for 15 s, and 72 ◦C for 15 s. After every
PCR, a melting curve was generated from 55 to 95 ◦C. Finally, the data were analyzed with
GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA), and standard error was used
for the biological and technical replicates. To determine the correlation between RNAseq
and qPCR expression results, a Pearson correlation coefficient was calculated for each gene
analyzed.

5. Conclusions

This study identified three regulation levels in the SR phenotype: (i) an early auxin
signaling alteration in T2, considering the identification of five auxin-related genes with
no expression values in SR individuals like NAC072; (ii) a GA3ox transcript accumulation
in SR individuals smaller than in NR individuals. Moreover, two α-farnesene synthases
expressed only in the SR siblings suggest that there was a lower production of bioactive
GA in the early stages of fruit development, and (iii) in the late fruit developmental stage
(T7) of SR individuals, probably as a consequence of the fruit developmental alteration in
T2, less transcript accumulation of enzymes related to ethylene, ABA and JA biosynthetic
pathways were observed, suggesting a hormone production misregulation associated with
the fruit ripening process.

Moreover, we hypothesize that the function of NAC072 was associated with seed
development, considering that any transcript with a similar expression pattern to NAC072
was identified in the fruit flesh transcriptome assay; the NAC072 peak expression value
coincided with the beginning of seed development; and NAC072 was associated with
auxin-related genes and previous studies have reported that the seeds are necessary for
normal auxin signaling.

In summary, the molecular mechanisms underlying the slow ripening phenotype
might begin with the NAC072 function associated with the seed development altering the
auxin signaling, followed by the regulation of the GA biosynthesis pathway decreasing
bioactive GA and fruit growth, and might be related to the production of ethylene, ABA
and JA during ripening as a consequence of fruit growth alteration in the early stages of
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fruit development. Further proposed studies include a seed transcriptomic approach to
clarify the role of NAC072 during seed development, and hormonal measurement of auxins
and gibberellins at different fruit developmental stages to identify the interplay between
these two hormones during fruit growth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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