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Porcine Astrovirus (PoAstV) causes mild diarrhea in young pigs and is considered an

emerging virus in the swine industry worldwide. PoAstV has high genetic diversity and has

been classified into five genetic lineages, PoAstV1–5. In Chile, only human astroviruses

have been reported. This study aimed to determine the presence and genetic diversity of

PoAstV circulating in intensive pig farms in Chile. Seventeen Chilean intensive swine farms

from Valparaíso, Metropolitana, O’Higgins, Ñuble and Araucanía regions were sampled.

A selection of oral fluid and fecal material samples from 1–80 days-old pigs were

collected and analyzed using next-generation sequencing. The circulation of PoAstV was

confirmed in all studied farms. We obtained complete or partial sequences of PoAstV-2

(n = 3), PoAstV-4 (n = 2), and PoAstV-5 (n = 7). In 15 out of 17 farms, we detected

more than one lineage co-circulating. Phylogenetic analyses grouped the seven PoAstV-5

strains in a monophyletic cluster, closely related to the United States PoAstV-5 strains.

The three PoAstV-2 were located into two separate sub-clusters. PoAstV-4 sequences

are also grouped in two different clusters, all related to Japanese strains. Thus, our results

indicate that PoAstV circulates in Chile with high frequency and diversity. However, the

lack of reference sequences impairs local evolution patterns establishment and regional

comparisons. This is the first contribution of PoAstV genomes in Latin America; more

studies are needed to understand the diversity and impact of PoAstV on swine health.
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INTRODUCTION

Astroviruses (AstVs) are emerging pathogens, belonging to members of the family Astroviridae.
These viruses are divided into two genera:Mamastrovirus and Avastrovirus, which infect mammals
and birds, respectively (1). AstV infections cause a wide range of clinical signs from gastroenteric
(e.g., human, turkey, sheep, and pig) to neurologic (e.g., human,mink, cattle, sheep, and pig) disease
(2–10). They are non-enveloped small viruses (30 nm) with a positive-sense single-stranded RNA
genome of 6.4–7.9 kb (11). The genome contains three open reading frames (ORFs): the ORF1a
and ORF1b, encoding non-structural proteins, and the ORF2, which encodes the capsid (11, 12).

In humans, AstV is the third most common cause of viral diarrhea in young children
worldwide, with high seroprevalences as 94% in children of 6–9 years old (13, 14). Despite this
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high prevalence, due to the lack of cell culture systems and
animal models, AstV are among the least studied enteric RNA
viruses (12). However, advances in sequencing technologies
have increased the availability of genome sequences and
the identification of new strains. Typically, human AstV
(HAstV) infections cause acute self-limiting mild diarrhea
(12). Nevertheless, immunocompromised patients occasionally
exhibit systemic spread, resulting in neurologic disease (15). In
addition, a zoonotic potential of AstV is suspected but remains
unclear (16–18). Genetic and evolutionary studies support the
idea that both cross-species transmission and recombination
events among AstV of human, porcine, and other species origin,
may have occurred (11, 16).

Porcine astrovirus (PoAstV) has high genetic diversity, it is
worldwide distributed, and it is commonly detected and shed
by healthy and diarrheic swine (19). Five lineages of porcine
AstV (PoAstV1–5) have been described by Laurin, Dastor (20),
but only PoAstV-1 has been officially classified under the species
Mamastrovirus 3 (21). In the US, pigs are commonly (13.9%) co-
infected with multiple astrovirus strains (19). High prevalence
and co-infections may create appropriate conditions for viral
recombination and the potential emergence of viral variants
that pose a higher risk of clinical disease. Recently, PoAstV
has been linked to extraintestinal infections suggesting more
complex pathogenesis and serious outcomes than previously
thought (3, 4, 22).

In Chile, a recent study reported humanAstV infections (14%)
as a predominant cause of viral gastroenteritis in rural zones, in
addition to norovirus (15%) and rotavirus (14%) (23). However,
animal AstV has not been described in Chile. Considering
the high prevalence and worldwide distribution of the AstV
and PoAstV, the suspected zoonotic potential, and the lack of
information regarding these viruses in a regional context, this
study aims to determine the presence and genetic diversity of
PoAstV circulating in Chilean intensive pig farms. These samples
were taken in the context of other viral disease surveillance
programs .

MATERIALS AND METHODS

Sample Collection
During influenza virus and rotavirus surveillance and diagnosis
programs, we collected oral fluids and fecal samples from 1–
80 days-old pigs in 17 intensive pig farms from mainland
Chile in 2015 and 2017. The sampled farms are located
in an area that concentrates 95% of the national intensive
pig production (Valparaíso, Metropolitana, Libertador General
Bernardo O’Higgins, Maule, Ñuble, and Araucanía Regions),
which represents approximately 50% of the pig inventory in
Chile (24, 25). Each fecal sample corresponds to a pool of
5 diarrheic feces, which were collected using nylon gloves,
deposited in sterile 50mL tubes with 20mL of viral transport
media (Minimum Essential Medium, 1X Trypsin TPCK, 2%
bovine serum albumin, and 1% antifungal antibiotic solution),
and then centrifuged at 7,000 rpm for 5min. Oral fluids were
collected by groups of 20–30 healthy pigs kept in pens. Briefly,
a 16mm braided cotton rope was hung in each pen for about

30min. The ropes were deposited inside plastic ziplock bags and
squeezed to obtain the oral fluid and deposited into 50mL tubes.
All samples were kept at−20◦C until processing. One sample per
farm (n = 17) was selected for next-generation sequencing. The
criteria to select the samples included the location, geographic
distance between farms and detection of other pathogens such as
rotavirus and influenza.

Viral RNA Extraction and Whole-Genome
Sequencing
The RNA extraction was carried out using the Chomczynski-
phenol solution (Winkler, BM-1,755, Chile) following the
manufacturer’s recommendations. The Next-generation
sequencing (NGS) was performed at the Molecular Diagnostic
Development Laboratory at the Veterinary Diagnostic
Laboratory of the University of Minnesota (MVDL, UMN),
USA, using the Illumina MiSeq platform. Library pre-paration
was performed using the SMARTer Stranded Total RNA-Seq
Kit v2–Pico Input Mammalian (Takara bio, USA). De novo
assembly of the reads was carried out using an automated
pipeline that identifies viral reads using DIAMOND protein
alignment and the Swissprot Uniref90 database. The viral reads
are then grouped by the lowest common ancestor and assembled
using SPAdes and subsequently, the contigs are joined using an
Advanced Genome Aligner (http://www.genomedetective.com/
app/typingtool/virus/). Complementary, the assembly using
PoAstV reference sequences was performed using Geneious
Prime R© 2021.2.2.

Phylogeny
Complete or near to complete Chilean PoAstV genomes, with
>77% of coverage, were used for phylogenetic analysis (Table 1).
These sequences were compared with all complete or near
complete PoAstV genome available in GenBank database. We
used the lineage classification described by Lee et al. (26).
The final data set comprised 93 Astrovirus genome sequences
that were aligned using MUSCLE (27). The phylogeny was
constructed using RAxML with the GTR+G+I substitution
model and 1,000 bootstrap replications in Geneious Prime R©

2021.2.2. Additionally, the phylogeny was constructed for the
ORF2 region with the same methodology, and p-distances at the
nucleotide and amino acid level of the ORF2 sequences were
estimated using MEGA X (28).

RESULTS AND DISCUSSION

All samples were successfully sequenced by Illumina. The most
consistent virus family found in the samples was Astroviridae.
Additionally, reads that belong to other families, such as
Caliciviridae, Parvoviridae, and Reoviridae, were found at lower
rates and were not considered for further analysis as they are
beyond the aim of this study. Porcine astrovirus reads were
observed in all samples/farms included, confirming its ubiquity
in Chilean swine intensive production. Overall results of PoAstV
identified 229,496 reads for PoAstV-5, 33,917 for PoAstV-4 and
31,751 for PoAstV-2. Only 10 reads were classified as PoAstV3,
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TABLE 1 | Summary of porcine astroviruses whole-genome sequencing results obtained from intensive farms in Chile.

Farm Region Sample Strains Accession

number

Sequencing ORF1a ORF1b ORF2

Coverage

(%)

Contigs Astrovirus

reads

Reads

total

Astrovirus

reads

rate (%)

Length AAC Length AAC Length AAC

1 V Feces PoAstV-
5/Swine/CHI/
FB016/2017

MZ819168 100 1 187,438 259,201 72.3 2,634 877 1,452 483 2,346 781

1 V Feces PoAstV-
4/Swine/CHI/
FB016/2017

MZ819174 87 2 19,482 259,201 7.5 2,622 873 NA NA 2,448 815

2 RM Feces PoAstV-
5/Swine/CHI/
FB036/2017

MZ819170 100 1 35,538 76,494 46.5 2,619 872 1,452 483 2,346 781

2 RM Feces PoAstV-
4/Swine/CHI/
FB036/2017

MZ819173 77 1 2,828 76,494 3.7 2,622 873 1,098 365 2,217 739

2 RM Feces PoAstV-
2/Swine/CHI/
FB036/2017

MZ819164 100 1 5,429 76,494 7.1 2,490 829 1,119 372 2,445 814

3 VI Oral
fluid

PoAstV-
5/Swine/CHI/
FB033/2017

MZ819171 100 NA NA NA NA 2,619 872 1,452 483 2,346 781

9 IX Oral
fluid

PoAstV-
5/Swine/CHI/
FB0148/2015

MZ819166 96 1 2,531 5,670 44.6 2,619 872 1,452 483 2,241 747

9 IX Oral
fluid

PoAstV-
2/Swine/CHI/
FB0148/2015

MZ819163 91 4 2,326 5,670 41 1,143 380 885 294 1,539 512

14 VII Oral
fluid

PoAstV-
5/Swine/CHI/
CF2671/2017

MZ819167 99 1 1,003 5,365 18.7 2,619 872 1,452 483 2,346 781

15 VII Oral
fluid

PoAstV-
5/Swine/CHI/
CF2672/2017

MZ819169 99 1 1,684 16,506 10.2 1,347 448 1,452 483 2,346 781

16 VII Oral
fluid

PoAstV-
2/Swine/CHI/
CF2673/2017

MZ819165 100 1 1,717 15,736 10.9 2,502 833 1,119 372 2,436 811

17 VI Feces PoAstV-
5/Swine/CHI/
FB032/2017

MZ819172 100 NA NA NA NA 2,619 872 1,452 483 2,346 781

V, Valparaíso; RM, Metropolitana; VI, Libertador General Bernardo O’Higgins; VII, Maule; IX, Araucanía; NA, Not available.
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FIGURE 1 | PoAstV strains with >77% of sequencing coverage were detected in Porcine intensive farms from different regions of Chile. Regions are labeled as V,
Valparaíso; RM, Metropolitana; VI, Libertador General Bernardo O’Higgins; VII, Maule; XVI, Ñuble; IX, Araucanía.

however, the limited reads do not provide sufficient evidence to
confirm the presence of this lineage.

PoAstV-4 was identified in 16 out of 17 farms, PoAstV-2 in
15 and PoAstV-5 in 13 farms (Supplementary Table 1). These
results are in agreement with estimations made in the US and
some European and Asian countries, where the most prevalent
lineage is PoAstV-4, mainly followed by PoAstV-2 (19, 29–
33). Contrary to the situation in China, where the most widely
distributed strain is presumably PoAstV-2 (34).

We identified at least two different PoAstV lineages co-
circulating in 15 out of 17 farms (Supplementary Table 1). Thus,
the Chilean swine exhibits conditions for PoAstV recombination
events. The circulation of multiple PoAstV strains in the
same farm has been reported previously in China, Denmark,
Slovakia, Thailand, and the USA (31, 35–37). Co-infection of
different lineages in the same individual has also been reported
(19, 38).

Eleven complete or near-to-complete genomes of PoAstV
were obtained, which were used for the phylogenetic analysis
(Table 1). The genomes were obtained from both fecal and
oral fluids samples and were recovered from 8 different farms.
Figure 1 shows the geographic distribution of the sequences
obtained (Figure 1). Interestingly, from farm two, it was possible
to obtain the genome of PoAst-2, 4, and 5.

The phylogenetic analysis grouped the Chilean strains
into 5 (Figure 2 and Supplementary Figure 1). The seven
PoAstV-5 strains are grouped into one monophyletic cluster
(97.4% pairwise identity), closely related to strains detected

in the USA. Interestingly, the PoAstV-5 were obtained from
seven different farms distributed in five geographic regions.
The three PoAstV-2 genomes were detected from three
different farms in different regions and grouped into two
separate sub-clusters. The PoAstV-2/Swine/CHI/FB036/2017
(Metropolitan region) and PoAstV-2/Swine/CHI /CF2673/2017
(Maule region) genomes formed one sub-cluster, while PoAstV-
2 /Swine/CHI/FB0148/2017 (Araucania region) grouped with
sequences from USA and Japan. Finally, the two PoAstV-4 from
two different farms and regions (Metropolitan and Valparaiso
region) were phylogenetically distant also related to Japanese
strains. The phylogeny demonstrates a genetic relationship
between Chilean PoAstV-5 strains, suggesting the same origin for
those strains. On the contrary, PoAstV-2 and PoAstV-4 results
indicate more diversity even with fewer sequences (For details on
genetic distances see Supplementary Tables 2, 3).

Due to the limited number of sequences obtained in this study
and the scarce of sequences in GenBank database, conclusions
about the origin of the viral strains cannot be elucidated. Indeed,
most of the available sequences in GenBank database are from
the USA, Japan, and China. Other limitations of the phylogenetic
analysis are the incomplete genome coverage in several samples
(Table 1) and the potential errors derived from sequencing
methods, as these may alter the phylogenetic tree estimation.

This is the first report characterizing the PoAstV sequences
circulating in Chile.

This result represents, in turn, the first PoAstV genomes
from swine in Latin America. PoAstV studies in Latin
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FIGURE 2 | Phylogenetic tree of PoAstV by using the complete genome. The final dataset included 93 genomes. Chilean sequences are highlighted in red. Clusters
by species are highlighted in colors: PoAstV-5 (Red), PoAstV-4 (Green) and PoAstV-2 (Blue).

America are very scarce, and only two have been published.
One study identified PoAstV in healthy pigs from a farm
in Brazil (39), and another study conducted in Colombia,
which obtained partial PoAstV sequences from diarrheic
piglets and humans (40). To date, most of the PoAstV
sequences available in GenBank database were obtained in the
Northern hemisphere.

Our results support the detection of PoAstV in the Chilean
swine population, similar to other observations worldwide.
Further studies are needed to understand the relevance of PoAstV
to swine health and the evolution and spread of PoAstV locally
and globally.
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