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Reconocimiento de entidades anidadas
en diagnósticos de la lista de espera
en hospitales públicos

En el sistema de salud público Chileno, las interconsultas realizadas por el médico general se
presentan en forma de texto libre. Dentro de estos textos, podemos encontrar palabras (en-
tidades) con relevancia cĺınica, como enfermedades, medicamentos, hallazgos cĺınicos, entre
otros. La naturaleza no estructurada de estos textos, hace que el análisis manual sea com-
plejo, incluso para los especialistas. Es por esto, que el desarrollo de un sistema de extracción
automática de estas entidades, seŕıa un importante apoyo tanto para la gestión de la lista de
espera Chilena, aśı como el uso secundario de la información.

Con el propósito de desarrollar estos modelos, nuestro grupo de investigación utilizó
el conocimiento experto para anotar entidades con relevancia cĺınica dentro de estos di-
agnósticos, consolidando aśı el corpus de la Lista de Espera Chilena. Este conjunto de datos
contiene un alto porcentaje de entidades anidadas (46.7%), lo que constituye una tarea más
conocida como el Reconocimiento de Entidades Nombradas Anidadas (NER anidado).

En esta tesis, utilizamos los avances recientes en aprendizaje profundo para desarrollar el
modelo Multiple LSTM-CRF (MLC), un método capaz de reconocer entidades anidadas en
nuestro corpus. Para validar su efectividad, llevamos a cabo un estudio emṕırico compara-
ndo nuestra arquitectura con varios modelos del estado del arte y otros datasets, prestando
especial atención al impacto del uso de modelos del lenguaje pre-entrenados. Los resulta-
dos experimentales confirman la eficacia del modelo MLC, alcanzando el estado del arte en
nuestro corpus con un micro F1-score de 80.5 y un rendimiento competitivo en el resto.

Adicionalmente, se proponen nuevas métricas de evaluación que nos permiten medir la
capacidad de los modelos para detectar entidades anidadas, lo cual no ha sido abordado en
trabajos previos. Los resultados señalan que la métrica de NER anidado no mide correcta-
mente la capacidad de un modelo para detectar entidades anidadas, mientras que nuestras
métricas proporcionan nuevas pruebas sobre cómo los enfoques existentes manejan la tarea.
Finalmente, nuestro modelo fue incorporado a una página web, permitiendo que profesionales
de la salud puedan probarlo y entregar retroalimentación para mejorar su rendimiento. Este
trabajo constituye el primer intento de resolver la tarea de NER anidado en un corpus en
Español, siendo además una herramienta importante para el estudio de la lista de espera.
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Nested Named Entity Recognition in
diagnoses from the Chilean Waiting
List in public hospitals

In the public health system in Chile, general practitioner referrals are presented in the form
of free text. Within these texts, we can find words (entities) with some clinical relevance,
such as diseases, medications, clinical findings, among others. The unstructured nature of
these texts makes manual analysis complex, even for specialists. Therefore, the development
of an automatic extraction system of these entities could be an important support for both
the management of the Chilean Waiting List and the secondary use of the information.

In order to develop these models, our research group used expert knowledge to annotate
clinically relevant entities within these diagnoses, thus consolidating the Chilean Waiting List
corpus. This dataset contains a high percentage of nested entities (46.7%), which constitutes
a task known as Nested Named Entity Recognition (Nested NER).

In this thesis, we used recent advances in deep learning to develop the Multiple LSTM-
CRF (MLC) model, a method capable of recognizing nested entities in our corpus. To validate
its effectiveness, we conducted an empirical study comparing our architecture with several
state-of-the-art models and other nested NER datasets, paying particular attention to the
impact of using pre-trained language models. Experimental results confirm the effectiveness
of the MLC model, achieving state-of-the-art in our corpus with a micro F1-score of 80.5 and
competitive performance in the rest.

In addition, we proposed new evaluation metrics that allow us to adequately measure
the model’s ability to detect nested entities, which has not been addressed in previous work.
The results indicate that the nested NER metric does not correctly measure the model’s
ability to detect nested entities, while our metrics provide new evidence on how existing
approaches handle the task. Finally, our model was incorporated into a web page, allowing
healthcare professionals to test it and provide feedback to improve its performance. This
work constitutes the first attempt to solve the nested NER task in a Spanish corpus, being
also an important support for the study of the Chilean Waiting List.
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Chapter 1

Introduction

The Chilean health system is composed of a mixed public-private system that includes public
insurance through the National Health Fund (FONASA) and insurance provided by a private
institution (known as ISAPRE), where the former contains 77% of the Chilean population [9].
Primary health care represents the first contact level of individuals, families, and communities
with the public health system, providing ambulatory assistance.

Statistics show that beneficiaries of FONASA present a high demand for visits to special-
ists, which is previously evaluated by general physicians in primary health care [82]. This
demand problem is currently handled through the so-called Waiting List (WL). The WL is
divided into “GES” (Spanish acronym for Explicit Health Guarantees) that covers 85 pri-
oritized health conditions, and the “non-GES”, which covers the remaining consultations.
Nevertheless, the problem with this system lies in the long waiting times, which has severe
consequences for the Chilean population. According to the information obtained through
transparency law, about 15,665 patients died in 2020-01 while waiting for their first consul-
tation with a specialist. In 2021, there were 1,965,653 people in the non-GES WL pending
for a specialist’s appointment, with an average waiting time above 501 days [31], which has
increased to 543 days in 2021.

Every public health institution in Chile uploads weekly spreadsheets with information on
GES and non-GES referrals. These referrals from general physicians contain data such as the
patient’s personal information, the healthcare provider that emits and receives the patient,
the medical specialty, and the suspected diagnosis in the form of unstructured text. There are
different sequences of words (entities) within these diagnoses, with medical relevance, such
as diseases, laboratory results, therapeutic procedures, among others. The analysis of these
entities could be used for epidemiological studies and the secondary use of the information.
For example, it can support the prioritization of patients, the selection of cases that can be
solved by telemedicine, the estimated number of people who present more than one disease
(comorbidity) or that take more than one medication (polypharmacy), study the genetic
burden of diseases, statistics of the pending procedures, or the family background of diseases
when mentioned.

However, the manual extraction of these entities could be time-consuming, resource-
intensive, and error-prone, even with skilled personnel. The main reasons are the extensive

1



use of non-standardized abbreviations, the variability of the clinical language across medical
specialties and health professionals, and its restricted availability for privacy reasons, to men-
tion some [25]. These difficulties can be efficiently addressed by implementing computational
solutions to extract key information automatically.

Natural Language Processing (NLP) is a branch of artificial intelligence that deals with
the interaction between humans and machines through language. The aim is to develop
computational systems used for solving practical problems involving human language, better
known as NLP tasks. In medicine, typical applications of NLP are text classification, detec-
tion of drug interactions, clinical concept extraction, automatic codification of diseases, or
anonymization of electronic health records [25].

In our context, the task that better suits our problem is called Named Entity Recognition
(NER), which aims to automatically identify essential pieces of information (named entities)
in a text written in natural language. Most of the proposed methods for solving NER are
based on neural networks, as they have recently demonstrated high performance in many
NLP tasks. In particular, NER is commonly regarded as a sequence labeling problem, which
assumes that each word has at most one associated label. This approach is known as Flat
NER.

In order to train NER models, our research group collected non-GES referrals from 23
out of the 29 Chilean health services through the Transparency Law [87]. Then, using a
specific annotation guide and the BRAT annotation software, the team have been manually
annotated medical entities within these diagnoses using expert knowledge. To date, 5,000
diagnoses have been analyzed, thus consolidating the Chilean Waiting List corpus [11].

Compared to other corpora, this corpus has some characteristics that make it more chal-
lenging for the NER task. First, due to a lack of data and human resources, there are few
studies on applying Named Entity Recognition models to Spanish clinical resources, such as
ours. Second, this corpus has a high percentage of nested entities, which are entities con-
tained within other entity mentions [33]. An example is “cancer de colon”, where a Body Part
(colon) is contained in a Disease. This task is better known as nested NER, and although
several methods have been proposed to address the nesting problem, we realized that most
of them rely on complex task-specific, ignoring some more intuitive and potentially useful
baselines when comparing their approaches.

To address these issues, we follow two main lines of research in this work. First, we
develop two simple, overlooked, yet powerful architectures to recognize nested entities in our
medical corpus. Then, to validate the effectiveness of these methods, we conduct an empirical
study comparing our models with several state-of-the-art nested NER architectures. These
experiments are conducted in other corpora from different languages, focusing on the impact
of using pre-trained language models. In the following section, we describe in detail the
technical problem and challenges of automatically recognizing nested entities in our corpus.
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1.1 Problem Statement

Recognizing entities in the Chilean Waiting List has significant challenges in terms of the
nested NER task. First, the percentage of nested entities in this corpus (46.7%) is much more
significant than other related corpora. Second, we found that most of the previous research
in this task ignores the case in which the same span of text is tagged with more than one
entity type, as shown in Figure 1.1. This case is very common in our corpus, and it was first
noticed by Alex et al. [5] but was not analyzed further in the literature. Third, the corpus
size is considerably smaller than other related corpora, which could affect the performance
of deep learning models. In addition, to the best of our knowledge, no one has studied the
nested NER task applied to Spanish resources. Hence, studying this corpus represents an
opportunity to extend research on this task to other languages.

Figure 1.1: An example of a multi-label entity in our corpus, followed by a nesting of different
types. The annotation was translated from its original language.

Regarding the second line of research, we have found two gaps in previous work on nested
NER, which prevent a clean comparison between different approaches. First, we argue that
the way the NLP community is evaluating the nested NER task does not adequately measure
the effectiveness of a model at identifying nested entities, which is the main goal of the task.
Specifically, the current metric calculates the micro F1-score by considering all entities in the
partition separately, i.e., it does not distinguish between nested and flat entities. However,
since flat entities are much more common than nested entities, the above metric ends up
confusing flat and nested results and, consequently, is not able to reflect well the ability of
a model to detect nesting. Second, although several approaches have been taken to deal
with nested entities, we state that most of them rely on complex task-specific structures and
ignore potentially useful baselines based on sequence labeling. We argue that this creates an
overly optimistic impression of their performance.

That said, it is not clear whether we can achieve good performance on recognizing nested
entities in our corpus by making simple modifications to sequence labeling-based architec-
tures. On the other hand, considering the shortcomings in the area, it is interesting to study
how generalizable these proposed models are, comparing them with other state-of-the-art
architectures and testing them on other nested NER corpora.
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1.2 Hypothesis

This work hypothesizes that it is possible to build a robust model for recognizing nested
entities in the Chilean Waiting List corpus by using simple but powerful architectures based
on sequence labeling. Besides, we believe that adding recent advances in deep learning, such
as pre-trained language models, will give us even better results in finding as many entities
as possible measuring with F1-Score value. Finally, we expect that these simple models will
also have competitive performance compared to other state-of-the-art architectures and on
different nested NER corpora.

1.3 Objectives

1.3.1 General Objective

The main objective of our research is to develop deep learning architectures to solve the
nested NER task in our corpus, thus providing support for the Waiting List management
through the secondary use of information. The idea is to establish which components of
existing state-of-the-art architectures suit our problem and which ones do not. Applying
and testing the proposed methods on other related corpora and comparing them with other
state-of-the-art architectures is also part of the goal of this work.

1.3.2 Specific Objectives

1. Propose and develop deep neural architectures for solving the nested NER task in the
Chilean Waiting List corpus.

2. Provide an empirical study comparing the proposed models with other state-of-the-art
architectures in the nested NER task and testing these models on other related corpora
to validate their effectiveness.

3. Introduce a formalization of the task by identifying the different types of nesting and
then propose new task-specific evaluation metrics that adequately measure the model’s
performance on nesting.

4. Integrate the proposed models in a test environment, allowing health professionals to
test them.

1.4 Methodology

In order to accomplish the specific objectives described above, this section presents the
methodology proposed for our research. Precisely, our work mainly consists of the following
steps:
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1. Design a module to pre-process the annotations coming from the BRAT software and
convert them to a format suitable for solving the flat NER and nested NER tasks.

2. Implement a baseline model following the flat NER approach, comparing it with differ-
ent variants in its base architecture. The idea is to determine which components best
suit our problem and which ones do not. For this purpose, different components com-
monly used in sequence labeling architectures will be tested, such as domain-specific
word embeddings, character-level embeddings, LSTMs, transformers, and CRFs.

3. Characterize the occurrence of nested entities in our corpus, together with their clin-
ical relevance and other characteristics that may be determinant when choosing an
appropriate architecture.

4. Develop two deep neural architectures based on sequence labeling capable of addressing
the nested NER task.

5. Replicate several state-of-the-art architectures in the nested NER task to study their
performance on the Chilean Waiting List and compare their results with our best
performing model.

6. Test the performance of our proposed model and baselines on other nested NER corpora
from different domains and languages.

7. Implement new task-specific evaluation metrics that adequately measure the perfor-
mance of these models on nested entities, which is the primary goal of nested NER.

8. Incorporate the best performing model into an existing web page, where through a
simple interface, people in the medical field can test their performance on recognizing
medical entities such as diseases, procedures, or clinical findings. Additionally, to speed
up the annotation process by humans, this model would be included in a pre-annotation
process.

1.5 Thesis Structure

The rest of the thesis is organized as follows:

In Chapter 2, we give a brief overview of the theoretical background needed to understand
our research and a review of the related work in nested NER. Chapter 3 presents the data
analysis and preliminary experiments following the flat NER approach. Next, Chapter 4
describes the deep neural architectures proposed to address the nested NER task in our
corpus. In Chapter 5, we validate the effectiveness of the best-performing model by providing
an empirical study comparing our approach with several state-of-the-art architectures and
different corpora. Finally, the last chapter summarizes the conclusions of this work and
discusses some of the future research lines for the project.
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Chapter 2

Background and Related Work

This chapter reviews the scientific disciplines involved in our research and the related liter-
ature. First, it explains the technical background, briefly introducing the reader to the area
of knowledge in which the thesis is developed and its methods. Then, it describes several
corpora related to the clinical domain, such as ours. Finally, it presents a review of the
different approaches proposed to handle the flat NER and nested NER tasks.

2.1 Scientific Disciplines

2.1.1 Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science that seeks to develop algorithms
capable of performing tasks that require human intelligence. As shown in Figure 2.1, there
are three main fields in AI that aim to create systems or algorithms with intelligent behaviors:
robotics, computer vision, and natural language processing.

Figure 2.1: Diagram with the main disciplines belonging to the Artificial Intelligence field.

In recent years, several applications have been developed based on AI systems, such as
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speech recognition systems, chatbots for customer service, recommendation engines, and im-
age recognition applications. The development of these algorithms is based on three cognitive
capabilities that allow them to be considered artificially intelligent: learning, reasoning, and
adaptation. The subfield of AI that aims to integrate these three concepts through mathe-
matical models is Machine Learning.

2.1.2 Machine Learning

Machine learning is an application of artificial intelligence that provides systems the ability
to automatically learn and improve from experience without being explicitly programmed
[101].

These algorithms are usually classified as unsupervised or supervised models. Unsuper-
vised learning uses machine learning algorithms to analyze and cluster unlabeled datasets.
In other words, it seeks to learn patterns within the data and group them according to those
patterns. On the other hand, the supervised learning approach seeks to learn a mathemat-
ical function that connects the input data to an output prediction. The difference with the
previous approach is that it requires a dataset composed of pairs of input and output data,
better known as a labeled dataset. The word “supervised” comes from the fact that a human
“supervisor” has previously categorized each input value with its corresponding output. In
our work, we will use this approach since the Chilean Waiting List consists of labeled data.

Several methods have been proposed to tackle supervised learning problems, which can
be divided into two main groups: classical machine learning and neural networks.

Classical Machine Learning

This approach consists of developing models that make certain assumptions about the data.
This process is carried out through a complex feature engineering step, which means that
human experts determine which features are best suited to understand the patterns between
the input and output data. The main drawback of using this approach is the high cost in
terms of money, time, and human resources. Later, we will discuss how this process has been
sidelined due to recent advances in neural networks.

Neural Networks

One of the most widely used approaches to address supervised learning problems is using
artificial neural networks [99], which have shown very positive results in many AI disciplines.
The name comes from the shape of these architectures, which mimic the way the human
brain works [84].

As shown in Figure 2.2, a neural network architecture is typically compound of hierarchical
layers of neurons, where each layer processes certain information and propagates it to the next
layer. This process is repeated until it reaches the final layer that produces the final output.
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The first layer of a neural network is known as the input layer, the last layer is the output
layer, and the layers in between are called hidden layers. Conventionally, a neural network is
considered fully connected when each neuron in one layer is connected to all neurons in the
next layer.

Figure 2.2: Fully connected artificial neural network.

Technically, artificial neurons can transmit information from the input to generate output
through a series of mathematical operations. For example, Figure 2.3 shows a graphical
representation of the simplest architecture of an artificial neural network, one that contains
only one neuron. The inputs and output are numbers, and each input connection is associated
with a weight. The unit (neuron) computes a weighted sum of its inputs and the bias, then
applies an activation function to that sum and generates the final result. When neural
networks have multiple neurons and layers, the information computed by one neuron is
propagated to the neurons of the next layer, and so on. The particular arrangement and
linking of these neurons allow the recognition of the underlying relations in a given dataset,
which generates learning and allows the resolution of many computer application problems

Figure 2.3: Diagram representing an artificial neuron.
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Deep Learning

When neural networks grow considerably in size, i.e., the number of layers and neurons, we
reach the field of Deep Learning (DL). Formally, it describes a family of learning algorithms
rather than a single method that can be used to learn complex prediction models by using
multi-layer neural networks with many hidden units [66]. The main advantage of using these
large models is that they can learn highly complex patterns, leaving feature engineering aside
and learning these representations by the algorithms themselves.

In recent years, these algorithms have become more popular due, in part, to improvements
in hardware and computational capacity, the increased availability of data to train the models,
and advances in the field of machine learning [27]. Classic examples of these architectures are
Recurrent Neural Networks (RNN) [100], Convolutional Neural Networks (CNN) [65], and
Transformers [118]. These models are potentially useful when working with unstructured
data, such as audio, images, videos, and text, which is the focus area of this thesis.

2.1.3 Natural Language Processing

The analysis of unstructured texts written by humans is challenging since it is complex to
formally understand and describe the rules governing human language, as it is very ambiguous
and constantly evolving.

Natural Language Processing (NLP) is an interdisciplinary field of artificial intelligence
that involves computer science and linguistics disciplines. NLP aims to develop algorithms
capable of understanding, interpreting, and manipulating natural human language. Precisely,
it seeks to develop computational systems used for solving practical problems involving hu-
man language. These problems are better known as NLP tasks, which can be divided into
three main groups:

• Text Classification: This task aims to classify documents into predefined categories,
typically using machine learning algorithms. These systems can be used to organize,
structure, and categorize unstructured text based on its context. Typical applications
belonging to this category are sentiment analysis, spam filtering, language detection,
and hate speech recognition.

• Sequence Labeling: This task aims to assign a class or label to each token in a given
input sequence. These labels are useful to create statistics about the data, summarize
key information, and in other cases, are used as features in downstream models. Classic
examples of sequence labeling problems are part-of-speech tagging (POS), word sense
disambiguation, word segmentation, and named entity recognition (NER).

• Sequence to Sequence: This task aims to map a fixed-length input with a fixed-length
output, where the length of the input and output may differ [111]. It is commonly
used in sequence prediction tasks, such as language modeling and machine translation.
Practical problems associated with this task are chatbots, language translators, sum-
marization, question answering, or any application that generates new sequences of
natural language texts.
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Several computational methods have been proposed to address these natural human lan-
guage tasks, which can be divided into three main approaches:

• Rule-based Systems: This approach consists of designing hand-crafted rules to incor-
porate knowledge and reasoning mechanisms into intelligent NLP systems. In simple
words, the aim is to find linguistic rules, patterns, or regularities in data that can be
expressed using “IF-ELSE” statements. The major drawback of using this method lies
in the inability to model larger corpora rules optimally, the difficulty of their mainte-
nance, and the requirement of skilled developers and linguists to manually encode each
rule.

• Classical Machine Learning: As explained in section 2.1.2, another classic approach in
NLP is to use expert knowledge to determine which are the best features associated
with the model’s input sentences. Here, the algorithm starts analyzing the corpus and
features to produce its own rules, classifiers, and knowledge. The most commonly used
algorithms are Naive Bayes, Hidden Markov Models, and Support Vector Machines.
The creation of these models is simpler than the previous approach, achieving better
performance and also speeding up the development of NLP systems. However, the main
limitation with this approach is the lack of training data, which requires a great deal
of human effort to build the corpora. Additionally, it is not an end-to-end system since
most of these systems are accompanied by complex feature engineering.

• Deep Learning: Currently, the best results in NLP tasks have been obtained using deep
learning-based architectures. Under this approach, the most commonly used models
are recurrent neural networks, convolutional neural networks, encoder-decoder archi-
tectures, and transformers. In addition, the representation of words into numerical rep-
resentations is usually performed by using domain-specific word embeddings, character-
level embeddings, and contextual word embeddings. This means that an expert is no
longer required to encode rules or features by hand, as in the previous two appoaches.

The following sections describe the NLP task addressed in our research, which is called
Named Entity Recognition (NER). This problem belongs to the sequence labeling category
and is commonly addressed using deep learning techniques.

2.2 Named Entity Recognition

Named Entity Recognition (NER) is an important task in NLP that seeks to identify se-
quences of words (entities) expressing references to predefined categories (entity types). NER,
or in general the task of recognizing entity mentions1, has drawn the attention of the research
community due to its relevance in several NLP applications such as relation extraction [88],
entity linking [40] and co-reference resolution [19].

In early work, NER was used to identify personal names, organizations, and locations
[20]. For example, in Figure 2.4, four different entity types are identified: personal names,

1Mentions are defined as references to entities that could be named, nominal or pronominal [36].
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organization, numbers, and dates. However, entities have been extended to various domains
and applications in recent years, such as the example of our clinical corpus.

Figure 2.4: Example of named entities extracted using the Stanford NER system [34].

Task Formalization

In most NLP tasks, a formal definition is usually introduced in order to understand the
problem better. This process consists of identifying the input and output variables of the
task under study. In our context, we present below a definition proposed by us for the NER
task.

Definition 1 (NER) Given an input sequence X = {x1, x2, ..., xn} of words, an entity Q is
defined by a tuple (Sq, Eq, Tq), where Sq and Eq ∈ [1, n] represents entity boundaries in X,
and Tq in E (the entity space) corresponds to entity type. The aim of NER is to correctly
identify the boundaries for every entity Q in X and assign it the correct entity type from a
predefined list of categories.

Evaluation Metrics

Once the task has been formally defined, it is important to establish which evaluation metrics
will be used to compare the predictions of NER systems against real labels.

The official NER metric was proposed in the CoNLL-03 conference [102] and consists of
calculating the micro F1-score using a strict evaluation approach. This metric considers an
entity correct when both entity types and boundaries are predicted correctly. Most of the
studies use micro over macro measurement when there is an imbalance of possible classes,
and it is necessary to weigh the results according to the frequencies of each class. Below, we
describe each of the concepts needed to calculate the F1 measure.

Precision (P), which is also known as the positive predictive value, is computed based on
the count of true positives (TP) and false positives (FP). Intuitively, this metric calculates
which percentage of named entities found by the NER system is present in the real labels.

P =
TP

TP + FP

Recall (R), which is also called sensitivity, is calculated out from the number of true
positives (TP) and false negatives (FN). Intuitively, this metric calculates which percentage
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of named entities present in the real labels is found by the NER system.

R =
TP

TP + FN

Finally, the F1-score (F1) is the harmonic mean of precision and recall scores, reaching
its best value at 1 (perfect precision and recall) and worst at 0:

F1 =
2 · P ·R
P + R

2.2.1 Nested Named Entity Recognition

Nested Named Entity Recognition is a particular case of NER where entities are nested within
each other [33]. In Figure 2.5 we show an example in the Chilean Waiting List corpus. For
instance, the entity “ovarios con 2 quistes” is a Disease containing “ovarios”, which is a Body
Part.

Figure 2.5: An example of an annotation in the Chilean Waiting List corpus, which contains
nested entities.

Traditional NER systems simplify nested entities by keeping the outermost entity and
eliminating the inner ones. This simplified problem is better known as flat NER and is
commonly regarded as a sequence labeling task ([61], [79], [97]). Under this approach, the
main assumption is that each token can be associated with at most one label, thus ignoring
nested entities.

In the clinical domain, it is more common to see flat NER solutions in publications.
However, the nested NER task is more complex and challenging because of the relations
between entities in this field. Therefore, removing part of these entities could be a problem
in model performance due to losing relevant clinical information.
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Task Formalization

One of the main issues in our knowledge of nested NER is that the task definition has not
been addressed in-depth, and clarification of the different nesting cases is needed. After
analyzing three corpora containing nested entities, we have identified the following nesting
cases:

• Multi-label entities (ME): This case has been little explored in the literature. As
explained in Alex et al. [5], it consists of entities tagged with more than one entity type.
With the release of the Chilean Waiting List corpus, it is interesting to study this case
since 10.75% of the entities are involved in this type of nesting. For example, the entity
“HTN”, which stands for hypertension, is tagged as a disease and an abbreviation.

• Nested entities of different types (NDT): This is the most frequent type of nesting
in nested NER datasets. It consists of an entity containing a shorter entity tagged with
a different type. An example is “colon cancer”, where a body part (colon) is contained
in a disease.

• Nested entities of the same type (NST): This case usually occurs when entities
are originally represented by a hierarchy, which is later pruned to reduce the entity
space, resulting in the merging of entities of different levels of granularity. Although it
appears in most corpora, it is much more frequent in GENIA [52]. For example, the
DNA “Drosophila homeodomain” contains another DNA, “homeodomain”.

To better understand these cases, we formally define what we mean by nested entities
and the nested NER task.

Definition 2 (Nested entities) Given an input sequence X = {x1, x2, ..., xn} of words, an
entity Q is defined by a tuple (Sq, Eq, Tq), where Sq and Eq ∈ [1, n] represents entity bound-
aries in X, and Tq in E (the entity space) corresponds to entity type. Given two entities Q
and R, we say that Q is nested in R if Sr ≤ Sq and Eq ≤ Er. The particular case of Sq = Sr

and Eq = Er corresponds to an entity with multiple labels. Note that under this definition
we consider the three types of nesting described above.

Definition 3 (Nested NER) Given an input sequence X = {x1, x2, ..., xn}, nested NER aims
to correctly identify the boundaries for every entity Q in X and assign it the correct entity
type from a predefined list of categories. This identification must be made for cases where
nested entities are involved and when not.

To the best of our knowledge, this is the first effort to provide a formal definition of the
nested NER task. This contribution may improve future work by paying particular attention
to the different nesting cases described. For example, deciding which model to use in a given
dataset could be based on the model’s ability to identify these cases.
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Evaluation Metrics

Regarding the evaluation of nested NER systems, the standard metric used to compare
different approaches is the one described for the flat NER case but considering all entities in
the test partition. However, since entities in nested NER corpora are mostly not nested, we
argue that this metric may not adequately measure the performance of models on nesting.
Using the above metric implies that models that recognize flat entities well will have a
high metric even though they do not recognize nested entities correctly. Given these facts,
proposing new evaluation metrics for this task is another part of our work.

2.3 Related Work

This section describes annotated corpora related to the Spanish clinical domain, such as ours.
Then, it summarizes the methods used by different authors to address the flat NER task.
Finally, it reviews the current state-of-the-art models used to address the nested NER task,
which is the primary goal of this research.

2.3.1 Annotated corpora

Machine understanding of clinical texts requires dealing with a non-standardized use of the
language, mainly due to the heavy use of abbreviations, local jargon, and significant spelling
errors. Because of this, there is a need to build annotated corpora that allow the development
of models that can address these challenges automatically.

Although Spanish is the fourth most spoken language globally, there is still a lack of an-
notated resources. In terms of linguistic resources using clinical text in Spanish, publications
from Spain are predominant, such as the work by Oronoz et al. [94] that annotated diseases,
drugs, and substances in medical records. The same group published a corpus afterward for
adverse drug reactions [95]. From Spanish-speaking countries besides Spain, and to the best
of our knowledge, the only published work is by Cotik et al. [22] in Argentina for the annota-
tion of clinical findings, body parts, negation, temporal terms, and abbreviations in radiology
reports. These works inspired part of the creation of our corpus since they annotated similar
entities.

Some of the work done on Spanish biomedical texts is also noteworthy; Moreno-Sandoval
and Campillos-Llanos [90] annotated Part-of-Speech in biomedical documents written in
Spanish, Japanese, and Arabic, and Krallinger et al. [56] annotated PubMed abstracts in
Spanish with chemicals and drugs. Several works have created resources in Spanish for en-
tity recognition and clinical coding to internationally recognized classification systems; Kors
et al. [55] created a multilingual corpus for biomedical concept recognition, Campillos-Llanos
[15] created a medical lexicon and a clinical trials corpus [16] with words and entities mapped
to the Unified Medical Language System (UMLS) [72] identifiers, while Intxaurrondo et al.
[47] manually annotated abbreviation mentions and their definitions from clinical case studies
and mapped them to control vocabulary resources such as the Systematized Nomenclature of
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Medicine – Clinical Terms (SNOMED-CT). Finally, there is the work of Miranda-Escalada
et al. [89] who published resources and methods for automatic clinical coding to the Interna-
tional Statistical Classification of diseases and Related Health Problems (ICD-10) on medical
documents.

Regarding the nested NER task, there is a scarcity of annotated resources. The closest
work is an English biomedical corpus called GENIA [52], which was obtained from thousands
of MEDLINE abstracts. Later, we will describe this resource in-depth since it has served as
inspiration for many nested NER works.

2.3.2 Named Entity Recognition

Named Entity Recognition (NER) has been studied for decades by the NLP research commu-
nity. In early work, the entity types had a more general-purpose, such as locations, person
names, and organizations. Nowadays, we can see named entities belonging to varied domains
and applications, such as the case of our clinical corpus. Regarding the methods proposed
to recognize entities, we can categorize the related work into three main groups: rule-based
methods, classical machine learning models, and neural networks.

Rule-based Systems

This approach is strongly related to the design of hand-crafted rules based on semantic and
syntactic patterns. In most cases, these rules tend to have the form of IF-ELSE statements.
Some examples of rule-based NER systems include LaSIE-II [46], FASTUS [42], and LTG
[85]. Although this approach seems to be very simple and effective, the problem lies in the
scalability of these models on huge and complex text corpora. Since there are large volumes
of data nowadays, it has become infeasible to continue developing these systems for the NER
task.

Classical Machine Learning

This approach aims to develop supervised NER systems, in which, unlike more recent ar-
chitectures, feature engineering is a fundamental building block. Most of the work is based
on the design of reliable word-level features, such as morphology and part-of-speech tags.
Then, based on these features, many machine learning algorithms have been proposed. Clas-
sic examples are hidden markov models (HMMs), decision trees, maximum entropy models,
support vector machines (SVMs), and conditional random fields (CRFs).

In Bikel et al. [14], they proposed the first HMM-based NER system, named IdentiFinder.
This model was implemented to identify and classify names, dates, time expressions, and
numerical quantities. Another work by Szarvas et al. [112] developed a multilingual NER
system by using the C4.5 decision tree and AdaBoostM1 learning algorithm. In addition,
CRF-based systems have been widely used in NER, even in the most modern architectures.
Early work from Kim et al. [51] proposed a feature induction method for CRFs in NER.
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Similarly, Krishnan and Manning [57] proposed a two-stage approach based on two coupled
CRF classifiers. The second CRF makes use of the latent representations derived from the
output of the first CRF. As mentioned above, the problem with these methods is that they
rely on human feature engineering, which is not optimal in terms of time, and resources.

Neural Networks

In recent years, neural networks have proven to build reliable NER systems without hand-
crafted features or task-specific knowledge. Most of the existing work formulates NER as a
sequence labeling problem, which makes the central assumption that each token is tagged
with at most one label. This approach is better known as flat NER and does not consider
nested entities. The analysis of flat NER models is generally divided into three main layers:
the embedding, encoder, and classification layers.

Representing words into numerical vectors has proven to be a fundamental building block
when constructing neural network architectures. The most traditional representation is word
embeddings, a vector representation that allows words with similar meanings to have a similar
representation. Along with these embeddings, it is common to concatenate embeddings at
the character level to enhance the representation of rare and out-of-vocabulary words. These
embeddings are usually generated by using a LSTM [61], or CNN [79].

With recent advances in deep neural networks, there are more robust token representations
retrieved from pre-trained language models, such as BERT [29], Flair [3] and LUKE [126].
This type of representation has made it possible to achieve the state-of-the-art in the flat
NER task, for example, with Flair-based architectures. In our experiments, we leverage these
contextualized embeddings to obtain a significant improvement in the model’s performance.

Several techniques have been proposed in the literature regarding the classification layer,
which seeks to transform the representations obtained in previous layers to their respective
categories. The main one is the linear chain CRF [59], which obtains the most probable
sequence of labels associated with the input. This method has reached the state of the art
in several articles ([79], [61], [3], [122]).

2.3.3 Nested Named Entity Recognition

As mentioned above, the problem of using the flat NER approach is to assume that a token
can be tagged with a single label, which does not allow the appearence of nested entities.
Therefore, it is necessary to propose models that are capable of dealing with these types of
entities.

The first solutions that attempted to predict nested structures used a combination of
Hidden Markov Models (HMM) to detect subsets of named entities and handcrafted rules to
expand these subsets [104, 129, 133]. Support vector machines (SVM) have also been used
to identify nested entities. Zhou [132] combined such a model with a rule-based approach,
while Gu [39] used two separate SVM models to detect the innermost and outermost entities.
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In the last years, there has been a growing interest from the research community in
designing neural models to address the nested NER task. Several studies have been con-
ducted, which can be mainly divided into three categories: region-based, structure-based,
and sequence labeling-based.

Region-based

These approaches divide the problem into two sequential stages: identifying entity boundaries
and then categorizing these regions. In Sohrab and Miwa [107], they designed a model
that enumerates all possible spans within a limited length. The entity types are predicted
by using boundary and average internal token representation. Another region-based model
was proposed by Zheng et al. [131], which uses a sequence labeling layer to detect entity
boundaries, and then classifies selected regions into their categorical types. In recent work
by Yu et al. [127], they used ideas from a biaffine model, scoring all possible start-end tokens
in a sentence to predict nested entities.

Although these methods have proven effective, they often suffer from high time complex-
ity, fail to capture the interaction between outermost and inner entities, and cannot identify
entities tagged with more than one entity type, a frequent nesting type in our corpus.

Structure-based

There have also been attempts to capture the structure of nested entities. In other words, the
aim is to create data structures capable of finding the relations between inner and outermost
entities. Finkel and Manning [33] represented each input sentence as a constituency tree
of nested entities and used a CRF-based approach to predict entity types. Lu and Roth
[76] proposed a mention hypergraph representation to extract entity mentions. Next, Muis
and Lu [91] improved on previous work by modeling nested NER with mention separators
and handcrafted features. However, their method requires multiple graphs if there is more
than one entity type. Similarly, Katiyar and Cardie [50] designed a directed hypergraph
using LSTM features to learn the nesting structure. Finally, Wang et al. [123] recursively
introduce the embedding of tokens and regions into flat NER layers simulating the shape of
a pyramid and extracting nested entities from the innermost to the outermost entities. This
method is precisely the state of the art in nested NER.

Structure-based approaches are capable of modeling proprietary structures to explicitly
capture nested entities. However, although this approach has achieved good performance
on nested NER, most of them need extra annotation, complex feature engineering, or suffer
from spurious structures and structural ambiguities, as explained in Wang and Lu [120].

Sequence labeling-based

Some authors state that sequence labeling methods can also be adapted and perform well on
this task. This approach transforms the nested NER task into a special sequential labeling
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task by designing a suitable tagging schema.

Early work mainly exploited the potential of conditional random fields (CRF). In Alex
et al. [5], they proposed three CRF-based methods to reduce the nested NER as several BIO
tagging problems. Their best approach, called cascaded CRF, uses one model per entity type
using the output of the previous flat NER model as a feature for the current one. However,
this approach cannot handle nested entities of the same entity type because type-specific CRF
models generate flat predictions. Ju et al. [49] took advantage of inner entity information to
encourage outer entity recognition. They dynamically stacked LSTM-CRF layers predicting
entities in an inside-to-outside way until no entities were extracted. Although this method
can deal with nested entities of the same type, it suffers from error propagation from lower to
higher layers. The wrong entities extracted by the previous layer will affect the recognition
performance in the next layer.

Straková et al. [110] proposed modeling nested NER in two ways: First, using a sequence
labeling approach by concatenating multiple labels into one single label. Second, treating
nested NER as a sequence-to-sequence problem using an LSTM to decode entity types.
Finally, Shibuya and Hovy [106] recognized entities iteratively from outermost ones to inner
ones using a recursive method based on CRFs. As a preview, in Table 2.1, we can see the
main results obtained by some of the mentioned architectures on two nested NER datasets,
which will be used to test the effectiveness of our final model and our datasets.

GENIA GermEval
Model P(%) R(%) F1(%) P(%) R(%) F1(%)
Ju et al. [49] 73.9 68.7 71.2 71.8 64.1 67.7
Sohrab and Miwa [107] 74.1 69.7 71.8 78.6 64.6 70.9
Zheng et al. [131] 76.7 71.8 74.2 74.4 65.5 69.7
Wang et al. [124] - - - 74.8 70.5 72.6
Wang et al. [123] 78.1 72.8 75.3 77.8 66.9 71.9
Yu et al. [127] 79.1 73.7 76.3 89.0 77.4 82.8
Shibuya and Hovy [106] 75.8 75.2 75.5 85.1 78.2 81.5
LM-based
Dadas and Protasiewicz [24] [BERT + Flair] - - - 86.6 80.6 83.5
Luan et al. [77] [ELMO] - - 76.2 - - -
Straková et al. [110] [BERT + Flair] - - 78.3 - - -
Wang et al. [123] [BERT + Flair] 80.3 78.3 79.3 - - -
Yu et al. [127] [BERT] 79.9 76.5 78.1 88.3 85.0 86.6
Shibuya and Hovy [106] [Flair] 77.1 78.0 77.6 83.4 82.9 83.2
Wang et al. [123] [BERT] 79.1 76.9 78.0 87.7 85.8 86.7

Table 2.1: Overall results of the revisited models on two nested NER corpora.

In this research, we argue that the NLP community has little explored the sequence
labeling-based approach despite its effectiveness. Precisely, we found some simple but over-
looked sequence labeling-based models with a competitive performance compared to more
sophisticated methods specifically designed to address this task.
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Chapter 3

Flat Named Entity Recognition in the
Chilean Waiting List

This chapter describes preliminary NER experiments performed in the Chilean Waiting List
corpus. First, it explains the steps needed to pre-process the annotations provided by the
research group, together with a detailed analysis of the data. Then, several components
commonly used in sequence labeling architectures are tested, following the flat NER approach,
i.e., without considering nested entities. The aim is to provide an initial exploration of
the dataset and establish which components best suit our problem and which ones do not.
This information will be helpful to design our nested NER architectures and establish the
importance of considering nested entities in our corpus.

3.1 Data Description

This section describes how the annotation process was previously carried out. Then, we
describe the steps needed to transform the annotations to the standard NER format. Finally,
we provide a detailed description of the data and the challenges in our corpus.

3.1.1 Annotation Process

In 2018, the group requested the non-GES Waiting List from the 29 health services in the
country through Transparency Law. These requests were answered positively by 23 of the
health services and sent WL datasets for years between 2008 and 2018. Considering only the
reasons for referral, we collected 994,946 different diagnoses.

A random subset of these diagnoses was selected for annotation, with the criterion of
selecting those with more than 100 characters. Using this condition, we reduce the corpus to
107,235 unique candidates. Moreover, we removed diagnoses with text imperfections. After
filtering, one of the managers inspected each remaining diagnosis to ensure that they fully
met the conditions. Even though the referrals come de-identified from the source, this person
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also checked for any personal information.

Having these referrals, the purpose of the annotation process was to build a corpus with a
considerable volume of labeled text to train NER models. Specifically, this process consisted
of using expert knowledge to identify pieces of text with medical relevance. For this purpose,
the manual annotation of the referrals was done using the BRAT annotation software, a
web-based tool for adding notes to existing text documents [109]. This platform offers an
intuitive user interface, flexible configuration of the annotation scheme, and workflow support
for annotation stages.

The annotation process involved three stages. Figure 3.1 illustrates the process used
to create the first 900 annotations, but the rest of the annotations have been consolidated
in the same way to date. Here, four annotators (three medical students and one medical
doctor) were selected for the initial stage, who were permanently supported by three project
managers. To improve the quality of the annotations, the clinical experts followed a strict
annotation guide, which is freely available here1.

A test version of the annotation guidelines was written in the first stage. These guidelines
were evaluated during the annotation of 25 referrals. In the second stage, the three med-
ical students annotated 50 identical referrals in weekly annotation rounds for three weeks.
In an iterative improvement process, the medical students were retrained after each round
of annotation. At this point, the guidelines were further modified to clarify the task and
improve consistency. At the end of this stage, the first accepted version of the guidelines
was established and released. In stage three, a medical doctor joined the group (namely a
senior annotator) and was asked to annotate the same 150 referrals done by the students
independently. Finally, for the consolidation process, we decided to have each annotation
revised by a team of four researchers, including the senior annotator, a dentist, the postdoc
that created the annotation guidelines, and the principal investigator.

Figure 3.1: Annotation stages for the creation of annotation guidelines, the training of the
senior annotator, and the production stage where referrals were consolidated.

In summary, Figure 3.2 shows all the entity types agreed upon by the research team. In

1https://plncmm.github.io/annodoc/
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the case of clinical findings and procedures, we only used the parent entities of the hierarchy,
leaving a total of seven entity types. The choice of these categories was based on literature
revision and our interest in the Waiting List. For example, we were interested in describ-
ing how many procedures were pending or mining the family history of diseases. A brief
description of each entity type is presented below the figure.

Finding

Attributes

Negated
Implicit family
background

Laboratory or test
result

Attributes

Negated

Sign or symptom

Attributes

Negated
Implicit family
background

Procedure

Attributes

Negated
Pending

Diagnostic
procedure

Attributes

Negated
Pending

Therapeutic
procedure

Attributes

Negated
Pending

Family member

Attributes

Maternal
Paternal

Disease

Attributes

Negated
Implicit family
background

Body part

Medication

Abbreviation

Laboratory
procedure

Attributes

Negated
Pending

Parent Entity

Entity

Figure 3.2: List of entity types (in bold) in the Chilean Waiting List.

• Abbreviation: Linguistic procedure to shorten the morphology of certain words.

• Body Part: An organ or an anatomical part of a person.

• Disease: An alteration or deviation of the physiological state in one or more parts
of the body due to generally known causes. These causes manifest themselves with
characteristic symptoms and signs, whose evolution is more or less predictable.

• Finding: Observations, judgments, or evaluations made about patients.

• Procedure: Activities derived from patient care and attention.

• Medication: Mentions of medicines or drugs used in the treatment and prevention of
diseases, including brand names and generics, as well as names for groups of medicines.

• Family Member: Consanguineous and non-consanguineous relatives mentioned in the
diagnoses.
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To date, our research group has consolidated 5,000 annotations of non-GES list referrals.
Although the annotation process is still ongoing, we will work with this fixed number of
annotations to be consistent in our experiments. The Chilean Waiting List corpus is freely
available for non-commercial use2.

Data Preprocessing

Figure 3.3 shows a medical annotation using the BRAT platform. We will use this example
to show how to convert these annotations into a standard flat NER format.

DOLOR ABDOMINAL DE +- 8 MESES DADO POR DOLOR ABDOMEN FLANCO DERECHO CON ECO ....QUE MUESTRA LITUS RENAL IZQ

Sign or Symptom Abbreviation Body Part

Sign or Symptom

Abbreviation
Diagnostic Procedure

Abbreviation

Disease
Laboratory or Test Result

Has

1

Figure 3.3: Text fragment of a referral annotated with the BRAT software.

Initially, the BRAT annotation platform generates a file in a format called standoff. As
shown in Figure 3.4, this format follows a basic structure with columns containing an ID
per annotation, the entity type, the indices of start-end characters of the annotation, and
the string that constitutes the entity. Since it is uncommon to use this format to represent
corpora in the NER task, we implemented a pre-processing tool3 to transform the standoff
files to the CoNLL format [115], which corresponds to the standard input representation for
training NER models.

Figure 3.4: Annotation of Figure 3.3, transformed to the standoff file format.

Figure 3.5 shows the general structure of CoNLL files. This format consists of two
columns: one column contains the tokens, and the other contains their associated labels.
To separate one sentence from another, a blank line is used. Unfortunately, this format does
not support nested entities since each token is associated with at most one label. Therefore,
we have to choose which nested entity to use. In this preliminary experiments, and for the
sake of simplicity, we kept only the outermost entities that compose a nesting, thus facilitat-
ing the creation of the CoNLL files. When a span is annotated with more than one entity
type, we arbitrarily keep one of them.

2https://zenodo.org/record/5518225
3https://github.com/plncmm/acm_health_msen

22

https://zenodo.org/record/5518225
https://github.com/plncmm/acm_health_msen


Figure 3.5: Annotation of Figure 3.4, transformed to the CoNLL file format.

To convert sentences into sequences of tokens, we used the esnewslg model, which is a
Spanish statistical tokenizer available at the Spacy library [45]. This model was trained
using the Spanish AnCora and WikiNER datasets. In addition, to handle misspellings and
out-of-vocabulary words, we added a second tokenizer based on regular expressions. The
labels were encoded following the standard IOB2 format, which assigns a label to a token
depending on its position in the entity found. The B- prefix is assigned to the tokens located
at the beginning of an entity, and the I- prefix when the token is within an entity. If the
token does not belong to any entity type, we use the O label.

3.1.2 Data Exploration

Data exploration is one of the most critical steps when designing NLP systems. This process
allows us to find relations in the data that could be an important support when developing
NER models. As previously mentioned, to perform an initial exploration of the corpus,
we followed the traditional flat NER approach, in which nested entities are not considered.
Later, we will discuss how these results varied when considering the deleted nested entities.

The corpus is a collection of 5,000 referrals divided into 2,067 dental and 2,933 medical.
The documents distribution among the dental and medical specialties are described in Tables
3.1 and 3.2, respectively. It is interesting the large number of specialties involved in these
referrals, which means that there will be greater variability in the terms and abbreviations
used in these texts.

Table 3.3 shows the overall statistics of our corpus. After preprocessing 5,000 referrals,
we obtained 9,894 sentences. 8,014 were used for training, 890 for validation, and 990 for
testing, leading to a ratio of 0.81: 0.09: 0.1, the same ratio used in GENIA [52], which is the
most similar corpus in nested NER. These partitions can be found in the official repository
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Dental specialty Documents Percentage
Oral rehabilitation: Removable dentures 515 10.30 %
Endodontics 501 10.02 %
Orthodontics 343 6.86 %
Periodontology 343 6.86 %
Maxillofacial surgery 142 2.84 %
Oral Surgery 114 2.28 %
Oral rehabilitation: Crowns 51 1.02 %
Operative dentistry 23 0.46 %
Temporomandibular disorders and orofacial pain 3 0.06 %
General dentistry 3 0.06 %

Table 3.1: Documents distribution by dental specialty.

Documents Percentage
Traumatology 489 9.78 %
Gynecology 277 5.54 %
Otorhinolaryngology 223 4.46 %
Ophthalmology 216 4.32 %
Neurology 197 3.94 %
Internal medicine 174 3.48 %
Surgery 168 3.36 %
Pediatrics 158 3.16 %
Cardiology 150 3.00 %
Gastroenterology 131 2.62 %
Dermatology 105 2.10 %
Urology 96 1.92 %
Psychiatry 80 1.60 %
Vascular surgery 64 1.28 %
Endocrinology 56 1.12 %
Pediatric surgery 53 1.06 %
Nephrology 53 1.06 %
Pulmonology 43 0.86 %
Obstetrics 43 0.86 %
Neurosurgery 38 0.76 %
Abdominal surgery 23 0.46 %
Rheumatology 20 0.40 %
Hematology 15 0.3 %
Physical medicine and rehabilitation 13 0.26 %
Infectology 10 0.20 %
Oncology 9 0.18 %
Genetics 9 0.18 %
Colorectal surgery 7 0.14 %
Breast Surgery 6 0.12 %
Plastic Surgery 3 0.06 %
Geriatrics 2 0.04 %
Cardiothoracic Surgery 1 0.02 %
Anesthesiology 1 0.02 %

Table 3.2: Documents distribution by medical specialty.

of our corpus.

Concerning the number of tokens, we have about four times fewer data than other nested
NER datasets, such as GENIA [52] or GermEval [12], which could affect the performance of
deep learning models. In terms of the annotated tokens, we observe that more than 50% of
the tokens are associated with some entity in each partition, proving to be an excellent NER
dataset. Regarding the average number of tokens and entities per sentence, we can see that
the numbers are similar between different partitions, which provides more reliability on the
data distribution obtained at the time of partitioning.

The chart presented in Figure 3.6 shows the frequency of entity types in our corpus. These
values are calculated after cleaning the nested entities, i.e., leaving only the outermost entities
in each nesting. First, we observe an imbalance in the classes, where the most frequent entity
types correspond to findings and diseases. According to experts, these entity types are also
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Metric Train Dev Test
Sentences 8,014 890 990
Entities 26,391 2,949 3,192
Tokens 149,574 16,754 18,436
Annotated tokens 78,050 8,557 9,804
Vocabulary 17,421 4,281 4,680
Lexical diversity 11.6% 25.6% 25.4%
Mean tokens per sentence 18.7 18.8 18.6
Mean tokens per entity 2.96 2.90 3.07
Mean entities per sentence 3.29 3.31 3.22

Table 3.3: Statistics of the Chilean Waiting List corpus without considering nested entities.

the most difficult to recognize manually. Besides, they state that the easiest categories to
recognize are medications and family members, the least frequent in the chart. For this
reason, it is important to choose an appropriate evaluation metric capable of handling this
class imbalance.

Figure 3.6: Frequency of entity types in our corpus without considering nested entities.

In Figure 3.7, we study the distribution of the lengths for each entity type. We can
observe that the most frequent entities are also the longest ones, which makes recognizing
these entities an even more complex task. The main reason is the strict evaluation metric
employed, where an entity is considered correct when both the entity type and the boundaries
coincide. Thus, having very long entities makes the model more vulnerable to making errors
in the boundaries. Finally, we observe that Abbreviation is the entity type with the highest
average number of occurrences in the annotations, which evidence the difficulty of manual
analysis of these texts.
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Figure 3.7: Frequency distribution and median (white point) of (a) tokens per entity across
the subcorpus, and (b) annotated entities per document by subcorpus.

3.2 Methods

In this section, we present preliminary experiments performed in the Chilean Waiting List
corpus. Specifically, we tested different sequence labeling-based architectures, which have
shown outstanding performance in the flat NER task. For ease of reading, Figure 3.8 shows
the elements studied according to the following layers of the neural network: embedding,
encoder, and classification layers.

Figure 3.8: Diagram with the different architectures tested in our experiments.
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3.2.1 Embedding Layer

In order to create an architecture based on neural networks, the first step is to represent words
as mathematical structures, thus allowing a computer to operate on them. In the following
lines, we describe the different numerical representations chosen in our experiments.

Word Embeddings

Word embedding is one of the most popular and efficient ways to convert words into nu-
merical vectors. It is capable of capturing the semantics of words in dense, low-dimensional
continuous vectors. This process allows words with similar meanings to have a similar vector
in the embeddings space, which is better known as the distributional hypothesis.

There are two main approaches used to incorporate word embeddings into deep learning
models. The first method consists of adding an embedding layer in the neural network, which
allows learning the word representations at the same time as the model is trained. The second
approach, and the most popular in NER, uses representations of words previously trained in
other corpora instead of starting from scratch. This allows the transfer of knowledge between
different tasks but belonging to similar domains.

In our experiments, we used domain-specific embeddings previously trained with 11 mil-
lion unstructured free text diagnostics obtained from the Chilean Waiting List. This corpus
was composed of 56,079,828 tokens, where the vocabulary length was 252 thousand different
words. The original Mikolov’s implementation of the Word2Vec algorithm was used to com-
pute the embeddings with the default hyperparameters, except for the vector size, which was
changed to 300. These 300-dimensional clinical embeddings can be downloaded from here4.
Furthermore, during the training stage of our models, these embeddings were not left static,
so the weights were updated.

Character Embeddings

In contrast to the previous method, the character-level model encodes each character in a
sentence with a numerical vector. These embeddings have proven to be particularly useful
for corpora with a large number of out-of-vocabulary words, misspelled words, emoticons,
new words, and infrequent words [130]. Given the unstructured nature of medical diagnoses,
this type of data is very common in our corpus.

The addition of these representations has improved the performance of models in a wide
variety of NLP tasks. Two main architectures are used to create these embeddings: Convo-
lutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). The former uses
a one-dimensional CNN to find the numerical representation of words by looking at their
character-level compositions, while the second approach uses the concatenation of its for-
ward and backward representations retrieved from a bidirectional LSTM. In this chapter, we

4http://doi.org/10.5281/zenodo.3924799
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explore the CNN-based approach for our experiments, while in the following chapters, we
will use the LSTM-based approach.

3.2.2 Encoder Layer

After establishing the embedding layer, another fundamental step to consider is contextual-
ization, which enriches the word representation by considering the dependencies of the words
within the current sentence. This process is carried out in the encoding layer, for which we
have chosen the following architectures:

Recurrent Neural Networks

Recurrent Neural Networks [100], also known as RNNs, are a class of neural networks that has
significantly improved models’ performance in sequence labeling tasks, such as NER. Unlike
traditional neural networks, it can process sequential input data with variable lengths, such
as text, video, and music.

The recurrence comes from the fact that each output is calculated based on the elements
that precede it. For this reason, it uses a kind of memory to generate the desired output.
The main advantage is that these neural networks can consider the correlation between the
different data in the sequence, which is essential to improve word representations according
to their context.

However, the main drawback of RNNs is the vanishing gradient problem, which hampers
the learning of long data sequences. In other words, this phenomenon consists of the low
weight given to the initial inputs in calculating the far outputs due to the activation functions
applied in the intermediate states.

Long Short-Term Memory

Long Short-Term Memory (LSTM) [43] is a special kind of RNN explicitly designed to avoid
the vanishing gradient problem. To alleviate this issue, LSTMs can eliminate or add the
information they consider relevant to their processing sequence through additional cells,
input and output gates.

In this research, we use the Bidirectional LSTM (BiLSTM), an architecture consisting of
two LSTMs: one of the LSTMs takes the input in the forward direction, and the other in the
backward direction, thus taking into account both contexts. Hence, the final representation
of words depends not only on the previous words but also on the future words in the sentence.
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Multi-Head Attention

In recent years, the emergence of attention-based architectures [118] has revolutionized the
area of NLP. Attention is a technique that enhances the important parts of the input data and
fades out the rest to capture long-term dependencies. This mechanism can be applied directly
to the input or higher-level representation, such as embeddings or LSTM representations.

Multi-head attention is a module that allows the model to jointly attend to information
from different representation subspaces at different positions, which would, otherwise, not
be possible with a single attention head [118]. This mechanism runs through an attention
module several times in parallel, avoiding the recursion characteristic of the LSTM. This is
beneficial to reduce the training time considering the vast amount of data processed in NER
datasets.

In the next chapter, we will see how this module has inspired the creation of some famous
language models such as Flair and BERT. These models allow, among other things, to obtain
contextualized embeddings, improving the representation of words according to their context.

3.2.3 Classification Layer

Finally, the word representations obtained in the Encoder layer has to be mapped into pre-
defined categories. This process is carried out in the classification layer, for which we have
chosen the following two methods:

Softmax

Mathematical function commonly used as the output layer in deep neural networks. As
shown in Equation 3.1, this function transforms the vector representation of each word xi

into a vector of probabilities. Since it returns a probability distribution, the output values
are in the range of [0, 1], with the sum of the probabilities equaling 1. Intuitively, the output
of this function represents the probability of belonging to each class, with the target class
having the highest probability.

softmax(xi) =
exp(xi)∑
j exp(xj)

(3.1)

Although many NER systems use the Sigmoid function in their output layer, it is not the
best approach for two main reasons. First, this function calculates the output probability
distribution for each label based on the features of that particular word, i.e., it does not
consider the information of its neighboring words. Second, the main assumption is that the
true class labels are independent, therefore it can predict invalid transitions according to the
IOB2 format. For example, it may tag a token at the beginning of an entity with the I-
prefix.
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Conditional Random Field

Conditional Random Field (CRF) is a probabilistic classification method used in NLP to
obtain the most likely label sequence associated with a sentence, which is precisely the goal
of NER. This model uses the contextual information from previous labels, thus increasing
the amount of information to predict the labels accurately.

In order to map the representation of each word to the respective categories, the CRF
algorithm needs two elements. First, it uses a transition matrix, where each cell represents
the probabilities of transitioning from one label to another. Second, it uses the Viterbi
algorithm [119], which takes the output vector obtained in the encoder layer, and the values
in the transition matrix to obtain the best label sequence of the sentence.

The main advantage of using this approach is that, when classifying a token into one
of the possible categories, it considers strong label dependencies by adding transition scores
between neighboring labels. This allows us to handle the Softmax issue, avoiding specific
invalid transitions in the IOB2 format.

3.2.4 Experimental Settings

Baseline

To study the contribution of each architecture described in the previous section, we start
by designing a baseline model from which different changes will be made to improve its
performance in the flat NER task. This baseline consists of four main components (1) an
input layer that receives the tokens represented as indexes in the corpus vocabulary, (2) a
word embedding layer to represent these indexes into numerical vectors from scratch, (3) an
RNN encoding layer to contextualize the previous representation of tokens according to their
context in the sentence, (4) a Softmax function to decode the most likely label sequence.

Ablation Study

Following the objectives stated at the beginning of this thesis, we would like to determine
the best architectures for the embedding, encoding, and output layers. For this purpose, six
modifications to the baseline were tested, as shown in Table 3.4. In these experiments, we
compared the performance of models when using traditional RNNs against LSTMs, LSTMs
against BiLSTM, word embeddings trained from scratch against pre-trained word embed-
dings, and Softmax against CRF algorithm. In addition to these direct comparisons, we
measured the impact of adding elements such as character-level embeddings (setting 4) and
the attention mechanism (setting 6).
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Embedding layer Encoder layer Classification layer
Baseline Word Embeddings RNN Softmax
Setting 1 Word Embeddings LSTM Softmax
Setting 2 Word Embeddings BiLSTM Softmax
Setting 3 Medical Embeddings BiLSTM Softmax
Setting 4 Medical Embeddings + Character Embeddings BiLSTM Softmax
Setting 5 Medical Embeddings + Character Embeddings BiLSTM CRF
Setting 6 Medical Embeddings + Character Embeddings BiLSTM + Attention CRF

Table 3.4: Settings used in our experiments. The first model corresponds to the baseline.

Hyperparameters

Since we are working with neural networks, we must define the hyperparameter space and
best values found in our experiments. For this purpose, we performed the random search
strategy, which selects the best values by exhaustively testing different combinations of hy-
perparameters over a range of values.

In Table 3.5, we list the hyperparameters used as well as the range of values to perform the
random search. To establish which is the best combination, we measured the performance
using the validation partition. The initial weights of our models were set from a normal
probability distribution with zero mean and variance of 0.1. In addition, we added seeds to
ensure the reproducibility of the experiments.

Parameter Range
batch size {8, 16, 32, 64}
epochs {10, 50, 100}
optimizer {SGD, Adam, AdamW}
learning rate {0.0001, 0.001, 0.1}
static embeddings {True, False}
char emb dim {20, 30, 40, 50}
LSTM depth {1, 2, 3}
LSTM hidden size {64, 128, 256}
attention heads {8, 16}
dropout {0.2, 0.3, 0.4, 0.5, 0.6}

Table 3.5: Hyperparameter search space.

Evaluation Metric

The performance was evaluated using the strict evaluation metric explained in Section 2.2,
this is, calculating precision, recall, and micro F1-score. Due to the randomness present in
these experiments, the models were run ten times with different initialization parameters.
The reported results correspond to the mean and standard deviation (SD) of the evaluation
rounds.
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3.3 Results on flat NER

Table 3.6 shows the overall results obtained in our experiments. Interestingly, the best
performing model (highlighted in bold) uses the concatenation of medical and character-
level embeddings for word representation, a BiLSTM for contextualization, and the CRF
algorithm for decoding. This setting achieves a mean micro F1-score of 74.8, far superior to
the baseline score, which was 53.1.

Model Precision Recall F1-score
Word Embeddings + RNN (Baseline) 59.3 (2.47) 48.3 (1.58) 53.1 (0.43)
Word Embeddings + LSTM (Setting 1) 68.3 (0.97) 65.9 (0.54) 67.0 (0.55)
Word Embeddings + BiLSTM (Setting 2) 72.6 (0.57) 69.8 (0.72) 71.1 (0.51)
Medical Embeddings + BiLSTM (Setting 3) 74.5 (0.75) 73.4 (0.79) 73.9 (0.62)
Medical Embeddings + Character Embeddings + BiLSTM (Setting 4) 74.2 (0.72) 73.8 (0.52) 74.0 (0.61)
Medical Embeddings + Character Embeddings + BiLSTM + CRF (Setting 5) 75.1 (0.52) 74.4 (0.55) 74.8 (0.48)
Medical Embeddings + Character Embeddings + BiLSTM + Attention Layer + CRF (Setting 6) 73.7 (0.74) 73.2 (0.62) 73.5 (0.65)

Table 3.6: Results for flat NER experiments on the Chilean Waiting List corpus. Data shown
are mean (SD).

Starting the analysis from the baseline model, we can see that replacing the RNN archi-
tecture with an LSTM contributes to a significant increase according to the micro F1-score,
which is further improved by incorporating bidirectionality into the LSTM. This finding con-
firms the importance of considering the past and future context of the words in the sentence
since it leverages the representation of words.

Another significant increase is due to the addition of pre-trained word embeddings in
the medical context. This was expected due to the nature of these vector representations,
which come from a clinical context similar to our corpus, providing a better representation
compared to the approach where embedding are trained from scratch.

Concerning the impact of adding character-level embeddings, the increase is not much
significant than the previous setting but still achieves better results. One possible reason is
that there are many misspelled and out-of-vocabulary words in our corpus, which is the main
advantage of using these representations.

In addition, we can observe that adding the CRF algorithm to the classification layer
contributed to achieving the best result according to the F1 measurement. We suspect that
the main reason is that this algorithm allows finding the dependencies between possible labels
in a sentence and does not allow invalid transitions in the IOB2 format, which could affect
the model’s performance.

Finally, and contrary to expectations, we can see that including the multi-head attention
layer caused a decrease in the performance of our architecture, which can be explained by the
overfitting generated by having such a complex architecture for a problem where the amount
of data is not very large.
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3.4 Discussion

Although our experimental results show a good performance according to the F1-score metric,
we believe that they can be improved considerably. One of the main problems affecting the
performance of flat NER models was the amount of data available for training. By ignoring
the occurrence of nested entities, we lose many entities to train the model.

Metric Train Dev Test
Sentences 8,014 890 990
Entities 35,480 3,971 4,289
Tokens 149,574 16,754 18,436
Annotated tokens 92,870 10,268 11,672
Vocabulary 17,421 4,281 4,680
Lexical diversity 11.6% 25.6% 25.4%
Mean tokens per sentence 18.7 18.8 18.6
Mean tokens per entity 2.62 2.59 2.72
Mean entities per sentence 4.43 4.46 4.33

Table 3.7: Statistics of the Chilean Waiting List corpus considering nested entities.

To illustrate this problem, Table 3.7 presents the statistics of the corpus considering
nested entities. Compared to Table 3.3, we can see that the total entities per partition is
much higher, which supports our theory that many inner entities are lost when transforming
from standoff files to the CoNLL flat NER format. This is also evident in the average
number of entities per sentence, which increases by approximately 30% for each partition
when considering the deleted entities.

Another way to visualize this fact is to analyze the number of examples per entity type.
Figure 3.9 shows the frequency of entities before transforming the problem to the flat NER
task. Compared to Figure 3.6, we notice that some entity types such as abbreviations and
body parts have lost almost 50% of the examples. In contrast, other categories such as
diseases and clinical findings were not significantly affected. This is because the average
token length of these entities is much longer than the rest, which means that they tend to
be retained when eliminating shorter entities.

Figure 3.10 illustrates the appearance of nested entities in our corpus, with numbers
indicating how many times the entity in the row is nested in the entity in the column. Please
note that this matrix is not symmetric, as it is much more common to find, for example, a
body part in a finding than the other way around. In fact, body parts are nested 3,136 times
in findings, while findings are four times part of a body part. When nested annotations have
the same length, we count them as nested into each other for both entities. An example of
that is HTA (hypertension), which is both a Disease and an Abbreviation. In summary, the
maximum nesting depth is three and 48.17% of the entities in the corpus contain other entities
or are contained within another entity. This finding suggests that the Chilean Waiting List
corpus is an excellent resource for the nested NER task.

From this analysis, we consider it necessary to design architectures that can deal with the
nesting problem in our corpus. Therefore, in the following chapter, we propose two simple
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Figure 3.9: Frequency of entity types considering nested entities.
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Figure 3.10: Characterization of nested entities. The numbers in each cell indicate how many
times the entity in the row is nested in the entity in the column.

neural networks inspired by the sequence labeling approach, which are explicitly designed to
deal with nested entities. In addition, we will describe an existing web page in which the
best-performing model was incorporated. This application allows healthcare professionals to
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use this tool to recognize key information in clinical diagnoses automatically. ¡
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Chapter 4

Nested Named Entity Recognition in
the Chilean Waiting List

This chapter presents two sequence labeling-based architectures for the nested NER task.
Both models are capable of recognizing nested entities without relying on complex struc-
tures or heavy feature engineering. The aim is to improve the results obtained in Chapter
3, where nested entities were not considered. For this purpose, we first develop two simple
but overlooked models that are potentially useful for solving the task. Then, to measure
the effectiveness of the proposed methods, we compare the results against the Layered ar-
chitecture, one of the state-of-the-art models in nested NER. Finally, we describe the main
applications in which the best-performing architecture is currently used.

4.1 Nested NER Architectures

With recent advances in deep learning, neural networks based on the sequence labeling ap-
proach have substantially improved the results on the flat NER task. However, we argue that
the NLP research community has little explored adapting these models for the nested NER
task. Inspired by this approach, this section describes two methods for recognizing nested
entities in our corpus.

4.1.1 Multiple LSTM-CRF (MLC)

The first architecture proposed consists of training multiple flat NER models, one for each
entity type. The predicted labels of the input sentence correspond to the union of the outputs
of each of these models, thus retrieving the nested entities. The main advantage of using this
approach is that it can easily incorporate all the advances made for flat NER into the nested
NER task. Another advantage is that each independent model can be trained in parallel to
reduce the computational time of the training process.

Figure 4.1 shows an overview of the MLC model. Specifically, to create each flat NER
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module, we follow the LSTM-CRF approach proposed by [61], one of the most widely used
architectures for sequence labeling. To encode sentences, we use different combinations of
embeddings in the stacked embedding layer. First, we concatenate domain-specific word
embeddings with character embeddings retrieved from a bidirectional character-level LSTM.
Next, we enrich word representations by adding contextualized embeddings from Flair [3] and
BERT [28], which have proven to be particularly effective on NER. The output is fed into a
BiLSTM encoding layer to obtain long-contextual information. Finally, we use a CRF-loss
and the Viterbi algorithm to decode the most likely label sequence using the IOB2 tagging
format in the classification layer.

BiLSTMBiLSTMBiLSTMBiLSTM

Patient with cancer

CRFCRFCRF CRF

OO B-DISEASE I-DISEASE

Input sentence

Stacked embedding
layer

Encoder layer

Classification
layer

Disease entity model

Predicted label
sequence

         Finding            

           Medication             

           Abbreviation          

           Family Member            

         Body Part         

         
 Procedure          

colon

Patient

with

colon

cancer

           Disease          

Single entity model

Figure 4.1: Overview of the MLC architecture, where each entity type has an associated flat
NER model. The right side of the figure shows, as an example, the flat NER module for the
Disease label in the Chilean Waiting List corpus.

4.1.2 Sequence Multi-Labeling (SML)

The second approach formulates the nested NER task as a multi-label token classification
problem. The name comes from the idea of taking full advantage of the token-level represen-
tation provided by the embedding and encoder layers to perform a token-level classification.
It is multi-label since each token can be tagged with more than one label. Despite its sim-
plicity, no one has proposed to handle nested entities using this approach to the best of our
knowledge.

SML is similar to the MLC architecture, but the aim is to use a single model for all entity
types, thus improving the computational time of the training process. As shown in Figure
4.2, to keep the model as simple as possible, we do not use pre-trained language models
but only word-level and character-level embeddings. We use the BiLSTM encoder layer to
capture the dependencies of words, and the output is fed to a Feed-Forward Neural Network
(FFNN) layer to reduce the size of word representation to the number of entity types. Next,
we employ the following method to address the classification problem: First, we use a Sigmoid
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function to estimate the probability that a token belongs to each class independently of the
others. This mechanism allows us to have more than one label per token. Second, to improve
model performance, the overall Sigmoid threshold of each class is adjusted in the validation
set using a random search. Finally, we use a binary cross-entropy function to compute the
loss.

It is worth mentioning that having a multi-label token classification makes it hard to
apply the CRF algorithm in this architecture since the CRF algorithm calculates the most
likely label sequence given a sentence. Therefore, the assumption is that each token can have
at most one possible label, which contradicts our multi-label approach. However, one of the
baselines that we will see in the next chapter makes modifications to the CRF algorithm to
incorporate it in an architecture similar to ours.

Figure 4.2: Overview of the SML architecture. The numbers at the end of the figure mean
that the token belongs to each category (1) or not (0).

4.2 Methods

In this section, we present the baseline, the experimental settings, and the methodology used
to validate the effectiveness of the best-performing model.

4.2.1 Baseline

To adequately measure the performance of the proposed models, it is necessary to perform
a comparison against state-of-the-art models in the nested NER task. For this reason, we
chose the Neural Layered architecture proposed by Ju et al. [49], one of the most popular
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models in this task. Both this architecture and our methods belong to the sequence labeling
category.

The decision was based on how this architecture treats nested entities and the ease of
adapting the code to our corpus. Furthermore, 10.75% of the entities are involved in spans of
text tagged with multiple entity types, which is a problem little addressed in the literature,
and this approach can deal with it. In addition, the Neural Layered model is inspired by the
LSTM-CRF architecture [61], which facilitates the comparison of hyperparameters with our
proposed models since they share similar components.

As detailed in Figure 4.3, this model works by dynamically stacking flat NER layers to
predict entities in an inside-to-outside way until no entities are extracted. Each layer is built
with the popular LSTM-CRF approach, an architecture that is precisely the backbone of our
MLC model. Specifically, it merges the output of the LSTM in the current flat NER layer to
build a new representation for detected entities and subsequently feeds them into the next
layer. This process allows the model to identify external entities by taking full advantage of
the inner entity’s representations.

Figure 4.3: Overview of the Layered model.

The source code is freely available1 to reproduce the experiments, and input files can be
obtained using our preprocessing module described in Section 3.1.1.

4.2.2 Word Representation

To encode the sentences, we used the medical word embeddings described in Section 3.4.
These representations were not left static during the training process, and out-of-vocabulary
words were initialized using a zero vector. Additionally, we concatenated a character-level
representation, following the LSTM-based method proposed by Lample et al. [61].

1https://github.com/meizhiju/layered-bilstm-crf
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One of the main drawbacks of traditional word embeddings is that words can have different
meanings in different contexts. For example, the word Bank does not have the same meaning
in the sentence Central Bank of Chile as it does in Blood Bank. This suggests that it is not
optimal to have a unique representation for each word, as we have done so far. To address
this issue, the so-called contextualized embeddings were introduced, which have improved the
performance of several NER systems. In the following lines, we describe two linguistic models
used to retrieve these representations: Flair and BERT.

Flair

Flair [3] is a character-level language model, which represents words as sequences of characters
contextualized by the surrounded text. As shown in Figure 4.4, to create these embeddings,
they retrieve the internal states of a bidirectional character-level LSTM for each word. Specif-
ically, the model extracts the hidden state output after the last character in the word and the
hidden state output before the first character in the word. This process allows us to obtain
the context of the word in the sentence in both directions.

Figure 4.4: Overview of the Flair character-level language model.

Since there was not an available version of this model for clinical text in Spanish, we
trained and added new language models2 to the Flair framework: es-clinical-forward and
es-clinical-backward. To train these models, we used the same medical corpus on which the
pre-trained word embeddings were trained. In addition, we followed the same settings and
assumptions as stated in the Flair article.

BERT

BERT [28] is a transformer-based architecture, which represents a general language model
that supports transfer learning and fine-tuning on specific tasks. The use of this model for cre-
ating contextual word embeddings has led to significant improvements on several NLP tasks,

2https://github.com/plncmm/bio-flair
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including NER. In our experiments, we used the cased version of Spanish BERT (BETO) [17]
without fine-tuning. This model was trained on an extensive Spanish unannotated corpus
composed of 3 billion words. To create each word representation, we concatenate the values
of the last four hidden layers of the model without fine-tuning. Besides, since BERT uses
word-piece tokenization, we computed the word embeddings using the average representation
of the subtokens embeddings.

4.2.3 Settings

To choose the best hyperparameters for each model, we used the same methodology as the
previous chapter. That is, we performed a random search over the hyperparameter space
described in Table 4.1. In addition, to ensure a fair comparison between our methods and
the baseline, we tried to use hyperparameters as similar as possible.

The MLC architecture was trained up to a maximum of 100 epochs using the CRF loss.
For optimization, we used SGD with a mini-batch size of 16 and an initial learning rate of
0.1. In the case of SML, the loss function was the binary cross-entropy, and the training
consisted of 20 epochs. The optimizer used to train SML was Adam, with a learning rate
of 0.01 and mini-batches of 16. For both models, we used a learning rate scheduler and
an early stopping strategy based on the performance of the development partition to avoid
overfitting. We reduced the learning rate by 0.3 if there was no performance improvement
after three epochs. We also applied dropout regularization [108] after the embedding layer
and BiLSTM. The BiLSTM settings were the same, using three layers with 128 units each.

Parameter Range SML MLC
max epochs [20, 100] 20 100
optimizer {SGD, Adam, AdamW} Adam SGD
batch size {8, 16, 32} 16 16
learning rate {0.0001, 0.001, 0.1} 0.001 0.1
char emb dim [20, 50] 50 25
dropout [0.2, 0.8] 0.5 0.3
BiLSTM depth {1, 2, 3} 3 3
BiLSTM hidden size {128, 256, 512} 128 128

Table 4.1: Hyperparameter search space and the best values found for our models. In the
case of continuous intervals, 5 values were selected in the interval with the same distance.

The MLC model was implemented using the Flair framework [4], and the SML model
by using the PyTorch library [96]. All the experiments were performed using a Tesla V100
GPU, and RAM with 192GB of capacity. To ensure reproducibility, the source code of our
experiments is freely available in our repository3.

3https://github.com/plncmm/acm_health_msen
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4.2.4 Model Evaluation

To compare the predictions against the real data, we used the standard evaluation metric
described in Section 2.2.1. This is, calculating the precision, recall, and micro F1 score over
all entities in the test partition. An entity is considered correct when both entity types and
boundaries are correctly predicted.

However, we argue that reporting a single performance score is insufficient to compare non-
deterministic approaches since results might change when using different subsets. Therefore,
we would like to determine whether the differences between the performance of the best
model and the baseline are reliable or are just due to statistical chance.

According to work described in Dietterich [30], creating a statistical test to compare two
machine learning models is beneficial to guarantee reproducibility. Therefore, we performed
a k-fold cross-validated paired t-test, comparing the model with the best performance in the
test partition with the Layered baseline. This test consists of the following procedure:

1. We perform the standard k-fold cross-validation technique to estimate the skill of mod-
els on unseen data. First, we randomly separate the original data into k mutually
exclusive subsets, known as folds. Then, we repeat the following algorithm. First,
we select one of the subsets for testing and the remaining (k − 1) subsets for training
and validation. Second, we train the MLC and Layered models on these partitions,
computing the difference in the performance of the models. We repeat this process k
times so that the test sets do not overlap each other. Thus, we will have k differences
calculated (diff).

2. Then, after demonstrating that both models’ results follow the Gaussian distribution,
we define our null hypothesis as follows: there is no difference between the performance
of both ML models. To validate or refute this hypothesis, we calculate the t-score as
shown in equations (4.1, 4.2). If the p-value associated with this t-score is less than the
significance level (typically 0.05), we reject the null hypothesis, suggesting that both
ML models perform differently.

std =

√√√√ 1

k − 1

k∑
i=1

(diffi − diff)2 (4.1)

tscore =
diff

std

√
k (4.2)

The problem is that this statistical hypothesis test also assumes the independence of ex-
periments. However, in cross-validation, the training sets overlap between different folds.
The main consequence of violating this assumption is a slightly high type I error. Thus, we
implemented the corrected version of this test proposed in Kononenko and Kukar [54], which
showed that the violation of the independence t-test might lead to underestimating the vari-
ance of the differences. To solve this problem with the paired Student’s t-test, they proposed
to correct the variance estimate by taking this dependency into account. Specifically, the
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factor k in Equation (4.2) is replaced with the reciprocal squared root of its inverse plus
the ratio between numbers of testing subsets (n1) and training (n2) subsets for each step in
cross-validation, leaving the final formula as shown in Equation (4.3).

tscore =
diff

std
√

( 1
k

+ n1

n2
)

(4.3)

Finally, since neural network models are stochastic processes, it is worth mentioning that
replicating these experiments may lead to slightly different results in different runs. To ensure
the reproducibility of our experiments, we made public in the repository the partitions used
for this process and the original subsets on which the experiments were tested.

4.2.5 Error Analysis

For better understanding and explainability of the best model, we propose to do an error
analysis using the work proposed by Nejadgholi et al. [92] but modified for nested entities.
An error analysis is necessary to understand the output of neural models, which operate as
a black box. The output of an entity recognition model may be incorrect because either the
span is incorrect or the label is incorrect (or both). Based on these principles, we distinguish
five types of errors listed below and exemplified in Figure 4.5.

1. False-positive: the model predicts one or more entities not annotated in the test subset.

2. False-negative: the model predicts no entities for a given span, but the test subset
contains entities. This malformed addition can be complete (the model predicted no
entities for the span) or partial (the model predicted an incomplete list of entities for
the given span)

3. Wrong label, right span: an annotated entity in the test subset and the predicted entity
have the exact spans but different entity types.

4. Wrong label, overlapping span: the annotated entity in the test subset and the predicted
entity have overlapping spans and different entity types.

5. Right label, overlapping span: the annotated entity in the test subset and the predicted
entity have the same entity types but overlapping spans.

4.3 Results on nested NER

4.3.1 Main Results

Table 4.2 shows the overall results of our experiments. Interestingly, each configuration of the
MLC architecture outperforms the Layered baseline by a wide margin according to the F1
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True annotation
abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

Error type Predicted annotation

False-positive
abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

False-negative
abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

Wrong label, right span
abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

Wrong label, overlapping
span

abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

Right label, overlapping
span

abdominal pain of +- 8 months given by right

flank abdominal pain with usg .... showing

left kidney stone

Figure 4.5: Example annotations for each error type. A correctly annotated span of text
is described in the head, and malformed annotations are described below. For illustrative
purposes, we are only showing annotations for Finding (in light purple) and Procedure (in
dark green). Malformed annotations are shown in bold. Note that we are using the first
referral shown in Figure 3.3.

measure. These results are further improved by adding new representations to the embedding
layer. The model with the best performance (highlighted in bold) is the MLC setting that
used medical word embeddings concatenated with character and Flair embeddings, achieving
a micro F1-score of 80.27. In contrast, although the SML model does not perform better
than MLC, it obtained competitive results and outperformed the baseline used. Since these
results were obtained on a corpus with a high percentage of nested entities, we believe that
both proposed approaches are reliable models for the nested NER task, despite their apparent
simplicity.

Regarding the best model, Table 4.3 shows precision, recall, and micro F1-score per
entity type, as well as the number of examples in the test partition. The entity type with
the best results was Abbreviation, which is expected since it is easy to recognize from the
morphological point of view. This entity is usually one token long; therefore, the chances of
being mistaken due to wrong boundaries are low. The opposite occurs with the entity type
Finding, which is four tokens long on average, thus very easy to have it wrong in the limits.
Moreover, Findings are the hardest to have consistently annotated by humans.

The most clinically relevant category is Disease, which reached a micro F1-score of 82.92.
Although these results can be improved, we believe they are good for two reasons: First,
it is difficult to recognize diseases even by medical specialists. Second, considering the high
average number of tokens per entity, using strict metrics is challenging to obtain good re-
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Model Precision Recall F1-score
Neural Layered Model [49] (baseline) 77.0 72.12 74.48
SML 76.6 72.7 74.60
MLC [Word] 76.59 74.84 75.71
MLC [Word+Char] 77.75 78.29 78.02
MLC [Word+Char+BERT] 79.72 78.83 79.27
MLC [Word+Char+Flair] 80.24 80.30 80.27
MLC [Word+Char+Flair+BERT] 79.90 78.13 79.01

Table 4.2: Results obtained with different models and settings on the Chilean Waiting List
corpus. Here, Word stands for word embedding, Char is character embedding, and the Flair
and BERT models were implemented as described in the text.

Entity Precision Recall F1-score Support
Abbreviations 93.65 95.07 94.35 993
Disease 82.65 83.19 82.92 1,071
Medication 87.21 81.52 84.27 92
Finding 62.31 62.13 62.22 1,059
Body Part 85.91 87.01 86.46 708
Family Member 96.55 87.50 91.80 32
Procedure 72.96 69.46 71.17 334

Table 4.3: Results for each entity type using the best MLC setting in the test subset.

sults. Finally, we observe that Family Member was easy to recognize by the model, which is
explained by the fact that it is a kind of dictionary of terms, where few words can refer to
this entity.

4.3.2 Hypothesis Test Results

We used the best MLC setting to perform a statistical comparison with the baseline. The
cross-validation process demonstrated the efficacy and high level of generalization of the MLC
model on unseen data, significantly outperforming the baseline in all measurements (Table
4.4), consistent with the results in Table 5.5. In practical terms, the statistical results and
the k-fold cross-validation provide convincing evidence that the MLC and Layered models
perform differently.

4.3.3 Error Analysis Results

Our best MLC model made 1,302 errors on the test subset. The highest proportion of errors
corresponds to right label, overlapping span (38%), followed by false negatives (29.6%) and
false positives (22%) (Figure 4.6a). Finding is the entity type with the highest proportion of
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Neural Layered
Model [49] (baseline)

MLC
[Word + Char + Flair]

P value

Mean 73.20 79.81 8.8e−9

SD 0.752 0.469
Min 72.16 79.16
Max 74.65 80.66

Table 4.4: Results of the 10-fold cross-validation on the best MLC setting and the baseline.
Results are calculated based on the micro F1-score.

these three types of errors, covering almost 60% of right label, overlapping span error, 40%
of false negatives, and 35% of false positives (Figure 4.6b). It has previously been reported
that better NER models generate more right label, overlapping span errors, suggesting that
it could be because the span information may be vaguer in the representation resulting
from contextualized embeddings by combining the meaning of words through an attention
mechanism. Consequently, proper treatment of this type of error is essential in the comparison
of modern NER systems [92].

False positive

21.9% (285)

False negative

29.6% (386)

Wrong label, right span
5.1% (66)
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Figure 4.6: Distribution of the errors types found by the error analysis. This analysis was
done using the incorrect best models’ predictions on the test subset. Panel (a) shows the
overall distribution of the error types, and panel (b) shows the distribution of entities inside
error types.

Regarding the wrong label errors, the confusion matrix (Figure 4.7) shows that the Finding
and Disease entity types are more often confused by the model, and this could be mainly
because of the close semantic relatedness of both entity types; these categories are often
subject to discussion even by the expert annotators.
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Figure 4.7: Confusion matrix for the wrong label errors found by the error analysis on the
incorrect best models’ predictions using the test subset.

4.4 Demo of our Medical Entity Recognition Model

One of the main motivations of our work is that people from the health area can test the
nested NER system. Apart from publicizing our research, this provides a more reliable
measure of model generalization on unseen data.

As shown in Figure 4.8, we integrated the MLC model into an existing web page4. The
functioning of the web page is quite simple: Using an intuitive interface, people can manually
enter some text in Spanish with medical relevance. By pressing a button, the tool will
automatically tag the entities found using our MLC architecture. Finally, a google docs form
provides the possibility to write some comments about the results obtained. This feedback
could be an important support to improve the model performance in future work. The figure
shows an example of a medical text labeled with the platform.

4.5 Discussion

In this chapter, we described two simple yet powerful architectures for solving the nested NER
task, obtaining excellent results on the Chilean Waiting List corpus. The results obtained are
much better than the previous chapter, demonstrating the importance of including nested
entities in our experiments. Specifically, the best results were obtained using the MLC model,
which proved to be superior to the baseline by a wide margin through statistical tests. In
addition, although the SML architecture did not obtain the best performance, it has also
proven to be a valuable approach to solving this task, and we believe it should be included
in future work.

Given the promising results, we would be interested to know whether the MLC architec-
ture is the most suitable approach for solving the nested NER in our corpus or there are
models with better performance. Moreover, we wonder if this model can obtain good results

4https://pln.cmm.uchile.cl/clinical-ner/index.xhtml
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Figure 4.8: Web application created to test our model.

on other nested NER corpora from different domains and languages, which might evidence
a gap in the nested NER task by underestimating this model.

To answer these questions, in the next chapter, we provide an empirical study comparing
our MLC architecture with several state-of-the-art models in nested NER. These architec-
tures are tested in three datasets from different languages (including ours), with particular
attention to the impact of using pre-trained language models. In addition, we propose new
task-specific evaluation metrics to adequately measure the performance of models in nestings,
which is the primary goal of the task. Conducting this study will allow us to understand
better the nested NER problem we face and help us to decide which model better suits our
problem.
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Chapter 5

Nested Named Entity Recognition
Revisited

This chapter aims to validate the effectiveness of the MLC model proposed in the previous
chapter by comparing it with other state-of-the-art models and on other datasets from differ-
ent languages. Moreover, to better understand the problem of nested entities in the Chilean
Waiting List corpus, we identify some gaps in nested NER literature related to the task for-
malization, model selection, and evaluation metrics. To address these issues, we provide an
empirical study of different nested NER architectures, proposing new task-specific evaluation
metrics.

5.1 Motivation

Although the previous chapter showed promising results using the MLC architecture, analyz-
ing other state-of-the-art models and other datasets is essential to validate the effectiveness
of our model. For this reason, in this chapter, we study in-depth the current state-of-the-art
solutions in nested NER. Even though these studies have shown competitive performance,
we realized that most of them have three critical problems discussed below.

First, we noticed that most of the literature ignores the case in which the same text span
is tagged with more than one entity type. This case is very common in the Chilean Waiting
List corpus, and it was first noticed by Alex et al. [5], but was not analyzed further. One of
the main advantages of our architecture is that it addresses this problem.

Second, with the incorporation of large pre-trained language models, the standard LSTM-
CRF [61] sequence labeling architecture received substantial improvements for flat NER tasks
[74]. However, little research has been conducted on adapting this architecture to the nested
NER task using the single entity approach proposed in the previous chapter, i.e., training
independent flat NER models for each entity type. This chapter studies the multiple LSTM-
CRF (MLC) architecture in-depth, testing it on three nested NER corpora and comparing
the performance with several state-of-the-art models.
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The apparent simplicity of MLC would lead us to believe that it should be considered
as a natural baseline for any proposed architecture in nested NER. However, we realized
that the few research that has incorporated this model had used it as a baseline [91, 71, 32],
but their reported results are not competitive. We believe that the problem lies in the fact
that they do not use the full potential of recent advances in flat NER architectures, such as
adding pre-trained language models. These elements are incorporated in our work to show the
effectiveness of this model. Despite the apparent simplicity, we show that this architecture
yields very positive results on several datasets, achieving state-of-the-art on our corpus and
outperforming several recent approaches explicitly designed for nested entities.

Finally, we argue that the way the community is evaluating this task does not adequately
measure the effectiveness of a model at identifying nested entities. Specifically, the current
metric calculates the micro F1-score over all entities in the test partition, which is the same
metric used in flat NER. Consequently, a model that performs well over flat entities but not
nested ones may also obtain good results. To alleviate this problem, we identify the different
types of nesting by formalizing the nested NER task and then propose new task-specific
metrics for these cases.

Addressing these problems encountered in the nested NER literature allows us to un-
derstand the nesting problem better and validate the MLC architecture’s effectiveness. In
addition, it serves as a support to make the final decision on which model will be in production
for the applications described in the previous chapter.

5.2 Datasets

To provide empirical evidence for the effectiveness of the proposed model, and since most
previous work on nested NER focused on English datasets, we conducted our experiments
using corpora from three different languages and domains. The statistics for each corpus are
shown in Table 5.1, and below, we give a brief explanation of the two datasets studied apart
from our corpus.

GENIA GermEval Chilean Waiting List
Train Test Dev Train Test Dev Train Test Dev

tokens 454,882 57,021 48,932 452,853 96,499 41,653 149,574 18,436 16,754
sentences 15,023 1,854 1,669 24,000 5,100 2,200 8,014 990 890
avg sent len 30.3 30.8 29.3 18.9 18.9 18.9 18.7 18.6 18.8
entities 45,929 5,474 4,337 31,545 6,693 2,886 35,480 4,289 3,971
avg entity len 2.9 2.9 3.1 1.4 1.4 1.5 2.6 2.7 2.6
nested entities (%) 17.0 20.6 16.8 15.0 14.7 14.1 46.4 45.9 46.7
nested entities 7,795 1,130 727 4,721 986 407 16,456 1,969 1,856
- different type 3,712 589 369 4,230 892 366 12,635 1,555 1,398
- same type 4,132 547 358 536 93 44 0 0 0
- multi-label entities 0 0 0 2 2 0 4,241 470 502

Table 5.1: Statistics of the datasets involved in our study.
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5.2.1 GENIA

English GENIA V3.021 [52] is an annotated biomedical corpus collected from 2,000 MED-
LINE abstracts. This corpus was created to support the development and evaluation of
information extraction and text mining systems for the domain of molecular biology. It com-
prises 36 fine-grained entity types and 55,740 entity mentions, of which 17.3% are involved
in nesting. Figure 5.1 shows an example of an annotation with nested entities in GENIA.

Figure 5.1: Example of nested entities in GENIA [1].

To pre-process the data, we followed the same setup as the previous work [33, 76, 131],
collapsing sub-types into their five super-types, including DNA, RNA, protein, cell line, and
cell type categories. We used the first 90% of the sentences for the training set and the
remaining 10% in the test set for training NER models.

5.2.2 GermEval

The GermEval NER Shared Task is an event that makes available German data with NER
annotations. The aim is to significantly advance state-of-the-art in German NER and push
the field of NER towards nested representations of named entities. The competition has
been organized annually, and the first edition of the competition (2014) was dedicated to the
recognition of named entities.

In our experiments, we used the GermEval 2014 corpus 2, which is a nested NER resource
sampled from German Wikipedia and online news. This dataset consists of 41,124 entity
mentions, where 14.9% of them are involved in nesting. It contains two levels of nesting
and 12 entity types. Figure 5.2 shows an example of an annotation with nested entities in
GermEval.

Figure 5.2: Example of nested entities in GermEval.

For a fair comparison, in both the GENIA and GermEval datasets, we used the pre-
processed version released in [131] while in our corpus, we used the public files released in
this repository3. These files are already tokenized and follow a format similar to CoNLL but

1http://www.geniaproject.org/genia-corpus/pos-annotation
2https://sites.google.com/site/germeval2014ner/data [13]
3https://zenodo.org/record/3926705
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with some modifications to support nested entities. All these details can be found in the
documentation of the code of our experiments.

5.3 Methods

5.3.1 Baselines

We compared the MLC architecture with several state-of-the-art models in GENIA and
GermEval datasets. According to the classification of nested NER approaches described
in Chapter 2.3.3, we included one structure-based, two sequence labeling-based, and three
region-based baselines. In addition, we used the Layered [49] baseline described in the pre-
vious chapter. Based on the published source code, in the following lines, we describe the
models used as a reference for analyzing both traditional and task-specific metrics.

Exhaustive model

Exhaustive neural architecture proposed by Sohrab and Miwa [107], which considers all
possible subsequences up to a defined length as potential named entity candidates. As shown
in Figure 5.3, to enhance the word-level representation, they concatenate domain-specific
word embeddings with character-level embeddings retrieved from a character-level BiLSTM.
The output is fed to a BiLSTM to obtain a contextualized representation of these words
according to the neighbor words in the sentence. Then, to obtain a span-level representation,
they concatenate the representations of the start-end tokens in the span with the inside
representation, which is the average of internal word embeddings. Finally, to classify these
spans into their entity type, they use a Softmax output layer.

Figure 5.3: Overview of the Exhaustive architecture.
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Boundary model

Model proposed by Zheng et al. [131] that combines ideas from Layered and Exhaustive
architectures but correct their weaknesses. Figure 5.4 shows an overview of the model, which
is called boundary-aware. Under this approach, the nested NER task is divided into two
sub-tasks: first, the entity boundary detection and then the label prediction.

To represent each word in the sentence, they use the same method as the Exhaustive
model, i.e., word-level and character-level embeddings are concatenated. Then, following the
flat NER architecture of the baseline Layered, they use a BiLSTM sequence labeling layer
to detect boundary-relevant regions within a limited length. The output of this layer follows
the IOB2 format, i.e., a token is classified as B when it is the beginning of an entity, I when
it belongs to the body of the entity, or O when it does not belong to any entity. Finally,
they represent each pair of B and E tokens by averaging the representations of each token
that falls within these boundary regions. This information is used to classify these regions
into predefined categories using either a Softmax function or CRF algorithm.

Figure 5.4: Overview of the Boundary architecture.

Recursive-CRF model

Sequence labeling-based approach that iteratively extracts nested entities from outermost to
innermost using a CRF-based algorithm [106]. Figure 5.5 shows an overview of the model,
which works as follows: First, they use a separate CRF for each entity type, which allows
finding the best label sequence associated with that category in the sentence, thus retrieving
the outermost entities. Then, they analyze each of these entities found to obtain the inner
entities. Since each entity is a sequence of tokens, they calculate the second-best CRF score
over that span using the previously calculated scores, obtaining the first level of inner entities.

This process is repeated until no more entities are extracted for that entity type, or all
possible sub-sequences of the sentence are analyzed. Then, the algorithm is repeated for
the entity types in the corpus to obtain all the entities. One of the main advantages of this
architecture is that it can handle the situation where the same span is assigned to multiple
entity types, which we have already seen is very common in our corpus. Moreover, it can
recognize nested entities of the same type, a frequent case in the GENIA corpus.
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Figure 5.5: Overview of the Recursive-CRF architecture.

Pyramid model

Structure-based method proposed by Wang et al. [123]. Currently, this approach is the
state-of-the-art in GENIA without using external supervision. Figure 5.6 shows that, unlike
previous baselines, they incorporate contextualized embeddings to enrich the word represen-
tation in the encoding layer. These embeddings are retrieved using two language models,
Flair, and BERT. Then, this information is passed to a decoding layer that recognizes en-
tities in a bottom-up manner, assimilating the shape of a pyramid. The mode of operation
is simple; they use L flat-NER layers, where the i− th layer recognizes entities with lengths
equal to i. Each layer is created using an LSTM to decode i-length entity mention and a
CNN to pass the text region embeddings enriched with layer information to the next layer.
The total number of entities found in the sentence is obtained by joining the output of these
L layers.

Figure 5.6: Overview of the Pyramid architecture.
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Biaffine model

Region-based architecture proposed by Yu et al. [127], which uses a biaffine model to score
pairs of start and end tokens in a sentence. Then, using specific constraints for nested entities,
they classify these regions into the predefined list of categories.

Figure 5.7 shows a simple illustration of this architecture. To encode words, they concate-
nate domain-specific embeddings, character-level embeddings, and contextual embeddings
retrieved from BERT. Unlike previous work, the contextual representation is created using
the paragraph-level context of the document rather than sentence-level context. The output
of the embedding layer is passed to a BiLSTM to obtain the sentence context of each token.
Next, each token representation is passed through two separate Feed-Forward Neural Net-
works (FFNN). The first is used to obtain a representation that the token is a start token,
and the second is used to obtain a representation that the token is an end token. Finally, to
classify these candidate spans into the possible entity types, they use a ranking to compute a
score. To perform the multi-class classification step, they applied the following constraint to
the computed scores: an entity is selected as long as it does not collide with the boundaries
of higher-ranked entities.

Figure 5.7: Overview of the Biaffine architecture.

We compared the MLC model with the Layered, Exhaustive, and Boundary approaches,
as they performed well in both GENIA and GermEval. This is important as few papers
have been tested on the German corpus due to the centralization of nested NER research
on English resources. Considering baselines that include pre-trained language models, we
reproduced the Recursive-CRF model as it belongs to the sequence labeling-based category
like ours, thus facilitating an ablation study and hyperparameters comparison. Moreover, as
shown in Table 5.2, it is one of the few architectures capable of addressing the three types of
nesting. Finally, we replicated the Biaffine and Pyramid models since they are the current
state-of-the-art models in GENIA.
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Model ME NDT NST
Layered ✓ ✓ ✓

Exhaustive ✗ ✓ ✓
Boundary ✗ ✓ ✓

Recursive-CRF ✓ ✓ ✓
Biaffine ✗ ✓ ✓
Pyramid ✓ ✓ ✓

MLC ✓ ✓ ✗

Table 5.2: Nesting types identified by the architectures used in our experiments. Multi-label
entities (ME), nesting of different types (NDT), and nesting of the same type (NST).

5.3.2 Implementation Details

Pre-trained Word Embeddings

To encode sentences, we selected pre-trained word embeddings belonging to the same domain
of each corpus. In experiments with GENIA, we used biomedical embeddings trained on
MEDLINE abstracts [21]. For GermEval, we incorporated German FastText embeddings [38],
and for the Chilean dataset, we used the medical pre-trained embeddings used in previous
chapters. Again, we found that leaving the embeddings dynamic during training led to better
results than leaving them static.

Contextual Word Embeddings

To study the impact of adding pre-trained language models in the embedding layer, in Table
5.3 we list the language models used for each corpus:

Corpus BERT Flair
GENIA bert-large-uncased pubmed-forward and pubmed-backward

GermEval bert-base-german-uncased de-forward and de-backward
Chilean Waiting List bert-base-spanish-wwm-uncased es-clinical-forward and es-clinical-backward

Table 5.3: Pre-trained language models used in our experiments.

Regarding the Biaffine model, the BERT embeddings were created using the paragraph-
level context rather than sentence-level context. However, Fu et al. [37] explains that this
method provides better performance in resolving correlations. Therefore, it is not an entirely
fair comparison with baselines that use sentence-level context. For this reason, we do not
make a comprehensive comparison with this model in terms of contextualized embeddings.

Parameters

We used a unified setting for all the experiments with MLC. The best hyperparameters were
chosen by performing a random search over the range of values shown in Table 5.4, selecting
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the best configuration based on performance on the development set.

To perform a fair comparison with baselines, we used the best hyperparameters reported
in their papers. All the baselines were executed with the official code provided by the au-
thors. To ensure reproducibility, the source code of our experiments is freely available in our
repository4.

Parameter Range MLC
max epochs {20, 100, 150} 150, 100, 100
optimizer {SGD, Adam, AdamW} SGD
batch size {8, 16, 32} 32, 16, 16
learning rate {0.0001, 0.001, 0.1} 0.1
char emb dim [20, 50] 25, 35, 25
dropout [0.2, 0.8] 0.3, 0.3, 0.5
BiLSTM depth {1, 2, 3} 3
BiLSTM hidden size {128, 256, 512} 128

Table 5.4: Hyperparameter search space and the best values found for the MLC model. In
the case of continuous intervals, 5 values were selected in the interval with the same distance.
If three values are given, they represent the best values found for the GENIA, GermEval and
Chilean Waiting List datasets, respectively.

5.3.3 Evaluation Metrics

We divided our metrics analysis for the models into the standard metrics already described
in previous chapters and nested metrics proposed by us.

Overall Performance

Performance was evaluated using precision, recall, and micro F1-score over all entities in the
test partition, the same metric used in previous chapters. One of the main drawbacks of
using this metric is that a model that can recognize flat entities accurately but not nested
entities will also have outstanding performance. In other words, since flat entities are much
more common than nested entities, the above metric confounds flat and nested results and,
consequently, cannot reflect well the ability of a model to detect nesting. To alleviate this
issue, we analyze task-specific metrics proposed in previous work that adequately measure
the model’s ability to detect nested and non-nested entities.

Nested Performance

In our research about model’s performance concerning the nesting cases, we were interested
in studying four specific metrics: First, we wanted to know how well models can recognize

4https://github.com/matirojasg/nested-ner-mlc

57

https://github.com/matirojasg/nested-ner-mlc


entities that do not participate in nesting, better known as flat entities (mflat). Then,
we calculated the opposite case, i.e., measuring how well the models handle entities that
participate in a nesting (mnested). We consider an entity nested if it is nested within another
entity or contains another entity. Finally, to analyze the score obtained with the mnested

metric, we calculated the ability of the models to detect inner entities (minner) and the
outermost entities of a nesting (mouter), which could provide us valuable information to
improve the models in the future. Note that mnested encompasses the minner and mouter

metrics.

However, none of these existing metrics capture the ability of the models to recognize
both inner and outer entities simultaneously. For this reason, and to demonstrate whether
the choice of a model in a dataset depends on the types of nesting present, we computed
a score for nesting (mnesting) and on the different types of nesting described in the task
formalization (mME, mNDT , mNST ). A nesting is considered correct if both inner and outer
entities are recognized correctly.

In Figure 5.8, we can see an example of an annotation with the different cases we are
measuring. First, we observe that there are no cases of flat entities or NST nestings. Secondly,
we recognize two complete nestings: “INSUFICIENCIA CARDIACA CF II” and “HTA”,
where the first one corresponds to the NDT case, while the second one is a ME case. In
both nestings, all participating entities are considered nested entities. In addition, “CF” is
considered an inner entity, while “INSUFICIENCIA CARDIACA CF II” would be an outer
entity. In the case of “HTA”, since it belongs to the case of multilabel entities, both entities
involved are considered inner and outer at the same time.

Figure 5.8: Example of an annotation in the Chilean Waiting List corpus to explain the
different types of nesting.

The above metrics were calculated using precision, recall, and micro F1-score, but we
only report the last one for brevity. We emphasize that most of these metrics have not been
used before in nested NER research. Therefore, we believe it is crucial to incorporate them in
future work as it allows us to measure and differentiate the performance of models on nested
and non-nested entities.

5.4 Results

5.4.1 Main Results

Table 5.5 shows the overall performance of the proposed model against baselines on three
different datasets. Despite its simplicity, we observe that the MLC architecture outperforms
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GENIA GermEval Chilean Waiting List
Model P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
Layered 73.9 68.7 71.2 71.8 64.1 67.7 75.0 72.8 73.9
Exhaustive 74.1 69.7 71.8 78.6 64.6 70.9 76.3 71.7 68.2
Boundary 76.7 71.8 74.2 74.4 65.5 69.7 74.0 67.6 70.7
Wang et al. [124]† - - - 74.8 70.5 72.6 - - -
Pyramid 78.1 72.8 75.3 77.8 66.9 71.9 79.6 75.4 77.5
Biaffine 79.1 73.7 76.3 89.0 77.4 82.8 81.5 67.1 73.6
Recursive-CRF 75.8 75.2 75.5 85.1 78.2 81.5 75.1 77.2 76.1
MLC 77.6 74.2 75.8 86.8 77.2 81.7 77.7 78.3 78.0
LM-based
Dadas and Protasiewicz [24] [BERT + Flair]† - - - 86.6 80.6 83.5 - - -
Luan et al. [77] [ELMO]† - - 76.2 - - - - - -
Straková et al. [110] [BERT + Flair]† - - 78.3 - - - - - -
Wang et al. [123] [BERT + Flair] 80.3 78.3 79.3 - - - - - -
Biaffine [BERT] 79.9 76.5 78.1 88.3 85.0 86.6 78.7 70.8 74.5
Recursive-CRF
- Flair 77.1 78.0 77.6 83.4 82.9 83.2 78.0 79.9 78.9
- BERT 76.4 77.4 76.9 84.3 83.0 83.6 76.6 77.8 77.2
- BERT+Flair 77.4 76.8 77.1 84.8 82.1 83.4 77.1 77.9 77.5
Pyramid
- Flair 77.8 75.6 76.7 83.4 80.0 81.7 80.1 77.2 78.6
- BERT 79.1 76.9 78.0 87.7 85.8 86.7 78.0 73.6 75.7
- Flair + BERT 80.4 75.0 77.6 87.7 84.4 86.0 78.5 77.2 77.9
MLC
- Flair 80.1 75.2 77.6 85.3 82.4 83.8 80.6 80.5 80.5
- BERT 79.4 74.3 76.8 85.1 80.3 82.6 79.7 78.8 79.3
- BERT+Flair 78.8 75.2 75.5 84.7 80.1 82.3 79.9 78.1 79.0

Table 5.5: Overall results on three nested NER corpora, including ours. † Indicates that
scores are taken from the original papers. The rest of the experiments were reproduced by
us. In addition, the “-” symbol means that there are no reported results for this corpus.

existing state-of-the-art models on the Chilean Waiting List by +1.6% in terms of the F1
measure. By contrast, although state-of-the-art is not obtained in GENIA and GermEval,
we can see that MLC outperforms many specialized nested NER architectures, thus being
a competitive approach. One possible reason for the excellent performance is that we use
one model per entity type, which means that the number of possible labels is only one
per model, avoiding the problem of nested entities and making the classification step more
straightforward compared to other architectures. Compared with the statistics in Table 5.1,
we can conclude that it is more challenging to obtain good results when the corpora have
entities of a more considerable length. This can be explained by the strict metric we are
using, where the boundaries and the entity types are requested to match.

We further analyze the effect of adding pre-trained language models in our experiments.
As we believed, all models benefit from incorporating contextual word embeddings, improving
their performance considerably compared to their base version. In GermEval, a general-
purpose corpus, the language model that best improves the model’s performance is BERT,
while in the other corpora, it is Flair. Also, we can see that stacking Flair and BERT
embeddings does not produce better results. We attribute this to the high dimensionality of
these representations and to the fact that the two language models were trained on different
corpora.

Regarding the Chilean corpus, which contains the highest percentage of nested entities,
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we observe that the MLC model with Flair embeddings improves by +2.5% compared to
its base version without pre-trained language models. This demonstrates the effectiveness
of using Flair over BERT in this corpus. We suspect that it is due to the large number of
misspelled and out-of-vocabulary words found in the unstructured clinical text. As pointed
out in Akbik et al. [3], handling these types of words is one of the main advantages when
using its character-level language model.

Despite the promising results, we hypothesize that benchmarking against the standard
nested NER metric may not be a good indicator of model performance on nesting since most
of the entities are not nested. Therefore, we analyze the results using nested metrics.

5.4.2 Nested Results

In most cases, the revisited nested metrics presented in Table 5.6 are relatively consistent
with results in Table 5.5. This means that models which obtain state-of-the-art using the
standard metrics also perform well according to these metrics. For example, in the Chilean
Waiting List, the best model (MLC) achieves the best results according to the mflat, minner,
mouter, mnested metrics, which is a remarkable result considering the large number of nestings
present in this corpus. Another observation is that, unlike the other datasets, in GENIA
is more complex to recognize inner entities over the outermost ones. This finding could be
helpful when designing future architectures for this corpus.

As expected, the models with better performance according to the standard metric are
also associated with good results using the mflat metric. This may not be a good indicator
in the nested NER task since most of the entities in these corpora are not nested, and the
proper performance on nestings is not reflected. This issue becomes much more evident
when analyzing our proposed nesting metrics, presented in Table 5.7. We observe that the
results are significantly lower than those for the previous metrics of Tables 5.5 and 5.6. This
reveals the difficulty of correctly recognizing the nesting cases. One possible reason for this
low performance is that these metrics are strict, as internal and external entities must be
correctly predicted.

Although the selected baselines are designed to deal with nestings of the same type,
their mNST results in GENIA and GermEval are poor, while the results using the mNDT

metric are much higher. This suggests that NST is the most difficult case to identify for all
models. Therefore, we believe that a model should not be prematurely discarded based on its
limitation to handle a particular type of nesting. For example, although the MLC architecture
cannot strictly identify the NST case in GENIA and GermEval, it obtains excellent results
on the NDT case and the outermost entities involved in the NST. In contrast, concerning the
mME metric, we note that the performance of the four models addressing this case is quite
good, suggesting that it is not a complex case to recognize but still not taken into account
when building nested NER models.

Another interesting point is that although our corpus has a smaller number of tokens
compared to the other datasets, there is no correlation between the results obtained and the
size of the corpus, as hypothesized in Section 1.1. As we can see in Tables 5.6 and 5.7, the
factors that most affect the performance of these deep learning models are the different types
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GENIA
Model mflat mnested minner mouter

Layered 73.2 62.3 42.9 79.8
Exhaustive 76.6 55.0 42.6 67.9
Boundary 77.4 59.5 42.0 75.6
Biaffine [BERT] 81.2 65.8 49.3 80.5
Pyramid [BERT] 81.1 65.2 46.1 82.4
Recursive-CRF [Flair] 81.5 62.3 46.9 77.4
MLC [Flair] 80.7 63.8 41.7 82.2

GermEval
Model mflat mnested minner mouter

Layered 68.8 60.9 62.0 59.7
Exhaustive 73.4 56.1 65.7 45.7
Boundary 70.9 54.5 54.1 55.0
Biaffine [BERT] 88.4 76.6 78.1 75.0
Pyramid [BERT] 88.5 76.7 77.3 76.1
Recursive-CRF [BERT] 85.5 73.0 74.9 71.0
MLC [Flair] 86.0 71.6 74.5 68.4

Chilean Waiting List
Model mflat mnested minner mouter

Layered 73.4 74.5 82.4 64.5
Exhaustive 71.7 63.8 71.5 53.4
Boundary 73.4 61.1 65.5 55.4
Biaffine [BERT] 76.2 72.5 75.2 69.2
Pyramid [Flair] 79.0 78.1 84.7 69.3
Recursive-CRF [Flair] 80.3 77.4 82.8 70.4
MLC [Flair] 80.9 80.1 86.2 72.5

Table 5.6: Results on nested and non-nested entities.

of nesting present in the corpus and the ability of the models to identify those cases.

Finally, we highlight that in the Chilean corpus where the state-of-the-art is reached,
almost half of the complete nestings (mnesting) are correctly recognized, which is a reliable
indicator of our model performance on the nested NER task. These results suggest that the
MLC architecture is the model that better suits our problem and also should be considered
in future state-of-the-art comparisons due to its effectiveness. Besides, we argue that there
is still much work to be done in nested NER, as most models fail to simultaneously recognize
the internal and external entities of nesting, which is one of the main objectives of the task.
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GENIA
Model mnesting mME mNDT mNST

Layered 26.2 - 41.7 9.7
Exhaustive 25.8 - 41.2 17.7
Boundary 26.6 - 40.5 17.8
Biaffine [BERT] 34.5 - 51.9 22.9
Pyramid [BERT] 33.4 - 49.5 20.9
Recursive-CRF [Flair] 31.5 - 49.1 19.4
MLC [Flair] 27.9 - 47.8 0

GermEval
Model mnesting mME mNDT mNST

Layered 37.3 - 40.4 16.2
Exhaustive 27.8 - 38.2 9.7
Boundary 21.2 - 25.5 7.8
Biaffine [BERT] 55.7 - 64.3 20.8
Pyramid [BERT] 56.5 - 63.8 21.4
Recursive-CRF [BERT] 51.1 - 58.9 23.9
MLC [Flair] 49.1 - 59.3 0

Chilean Waiting List
Model mnesting mME mNDT mNST

Layered 51.6 71.1 49.5 -
Exhaustive 28.4 0 41.7 -
Boundary 28.2 0 35.4 -
Biaffine [BERT] 41.1 0 55.1 -
Pyramid [Flair] 54.9 73.7 57.9 -
Recursive-CRF [Flair] 56.0 71.7 58.8 -
MLC [Flair] 60.6 72.5 60.0 -

Table 5.7: Our task-specific metrics. If columns have no results, it means that there was not
a significant number of examples in the test partition.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we proposed a simple yet powerful architecture for recognizing nested entities
in the Chilean Waiting List corpus. Specifically, we revisited the multiple LSTM-CRF (MLC)
sequence labeling-based approach, which uses a single flat NER model per entity type. We
compared its performance with several state-of-the-art architectures and three nested NER
datasets. Our experimental results show that adding a character-level language model to the
MLC architecture contributes to achieving state-of-the-art in our corpus.

In addition, to alleviate some gaps found in current evaluation metrics used for nested
NER, we proposed new task-specific metrics that adequately measure the performance of
models on nested entities. The results according to these metrics are low, especially when it
comes to recognizing complete nestings. This finding shows that most nested NER models
are better at identifying flat entities or part of nested entities, which is not the primary goal
of the task. This demonstrates that there is still much work to be done on the nested NER
task.

The results obtained suggest that the MLC architecture is the model that best suits the
nested NER task in our corpus, demonstrating that the performance of this model is far
superior to other state-of-the-art models. We hope that our study will help raise awareness
in the research community that overlooking intuitive models and using only standard metrics
when evaluating a new complex solution can be misleading and create an overly optimistic
impression of the new solution’s performance.

Regarding our case study, i.e., the Chilean Waiting List, we believe that the MLC model
can be used for many studies to understand the high demand present in this system. For
example, using the interface described in Chapter 4, we can support the recognition of new
cases of psoriasis within the Waiting List [64], which could be extended to the detection of
all diseases. In addition, telemedicine has been proposed as one of the solutions to reduce
waiting times in the public health system [86], especially in times of pandemic. To correctly
estimate the effect, it is necessary to summarize the suspected diagnoses and check which
ones are suitable for telemedicine consultations. We believe that the use of our model can
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speed up these tasks.

6.2 Future Work

Future directions include modifying the MLC architecture to improve performance for all
nesting cases. For example, we could train separate models for outer and inner entities for
each entity type to handle the case of nestings of the same type. We also plan to analyze
two underexplored issues in the NER task: crossing-entities and discontinuous entities. The
first corresponds to cases where entities are not fully nested in other entities, but there is an
overlap, and the second case is when entities do not necessarily have consecutive tokens in
the sentence.

In terms of developing NER models for this corpus, future work includes improving the
recall score for procedures and findings due to the importance of identifying these entities.
The low scores for Findings are mainly explained by the lack of agreement on the bound-
aries since it is an entity with a very large average number of tokens. Therefore, this is a
complex task even for a specialist. In addition, it is interesting to note that the error analy-
sis performed also helped us to identify inconsistencies in the annotations, which should be
corrected in future work.

Finally, our annotated corpus has hierarchical entities (for example, test result and
sign/symptom are part of the entity finding), and we plan to investigate the hierarchical
nested NER using architectures as in Marinho et al. [81]. In addition, our corpus has at-
tributes and relations which we have not addressed yet. Once we have a higher amount of
annotated referrals, we plan to host a shared task to advance this corpus’s multiple challenges.

6.3 Contributions

Besides this thesis, our work has contributed to two published articles listed below, plus a
third article in the process of being published.

• Pablo Báez, Fabián Villena, Mat́ıas Rojas, Manuel Durán, and Jocelyn Dunstan. The
Chilean waiting list corpus: a new resource for clinical named entity recognition in
Spanish. In Proceedings of the 3rd Clinical Natural Language Processing Workshop,
pages 291–300, Online, November 2020. Association for Computational Linguistics.

• Pablo Báez, Felipe Bravo-Marquez, Jocelyn Dunstan, Mat́ıas Rojas, and Fabián Vil-
lena. 2021. Automatic extraction of nested entities in clinical referrals in Spanish.
Accepted in ACM Transactions on Computing for Healthcare.

• Simple yet Powerful: An Overlooked Architecture for Nested Named Entity Recognition
(In the process of being published).
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