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Abstract: Evapotranspiration (ET) is key to assess crop water balance and optimize water-use
efficiency. To attain sustainability in cropping systems, especially in semi-arid ecosystems, it is
necessary to improve methodologies of ET estimation. A method to predict ET is by using land
surface temperature (LST) from remote sensing data and applying the Operational Simplified Surface
Energy Balance Model (SSEBop). However, to date, LST information from Landsat-8 Thermal Infrared
Sensor (TIRS) has a coarser resolution (100 m) and longer revisit time than Sentinel-2, which does not
have a thermal infrared sensor, which compromises its use in ET models as SSEBop. Therefore, in
the present study we set out to use Sentinel-2 data at a higher spatial-temporal resolution (10 m) to
predict ET. Three models were trained using TIRS’ images as training data (100 m) and later used to
predict LST at 10 m in the western section of the Copiapó Valley (Chile). The models were built on
cubist (Cub) and random forest (RF) algorithms, and a sinusoidal model (Sin). The predicted LSTs
were compared with three meteorological stations located in olives, vineyards, and pomegranate
orchards. RMSE values for the prediction of LST at 10 m were 7.09 K, 3.91 K, and 3.4 K in Cub, RF,
and Sin, respectively. ET estimation from LST in spatial-temporal relation showed that RF was the
best overall performance (R2 = 0.710) when contrasted with Landsat, followed by the Sin model
(R2 = 0.707). Nonetheless, the Sin model had the lowest RMSE (0.45 mm d−1) and showed the best
performance at predicting orchards’ ET. In our discussion, we argue that a simplistic sinusoidal
model built on NDVI presents advantages over RF and Cub, which are constrained to the spatial
relation of predictors at different study areas. Our study shows how it is possible to downscale
Landsat-8 TIRS’ images from 100 m to 10 m to predict ET.

Keywords: evapotranspiration; surface temperature; semi-arid ecosystems; remote sensing; Landsat-8;
Sentinel-2; NDVI

1. Introduction

Evapotranspiration has a key role as a component of the hydrological cycle in terres-
trial ecosystems [1]. In the past decade, ET has become an element to consider in future
climate change effects on the water cycle [2]. Besides, monitoring ET has relevance for
assessing the hydrological cycle at different levels, such as irrigation, water resource quan-
tification and use, weather forecast, and drought indexes [3]. Land surface temperature
(LST) is an important variable in the energy balance equation of the Earth’s surface and in
the estimation of ET [4]. Satellite sensors do not directly measure ET; therefore, algorithms
or models are developed for ET estimation [5,6].
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The actual evapotranspiration (ETa) is generally predicted as a fraction of maximum
evapotranspiration, which through an energy balance approach is calculated from remotely
sensed LST [7]. Furthermore, some methodologies integrate this LST approach in their ETa
estimation, such as the Operational Simplified Surface Energy Balance Model (SSEBop)
that relies on the LST, and the reference evapotranspiration (ETo) for ETa modeling [7–9].

However, satellites have different sets of optical and thermal sensors, spatial reso-
lutions, and frequency of data acquisition. Usually, higher temporal resolution satellites
have lower spatial resolutions; therefore, combining and relating different satellite sensors
measurements is necessary in order to obtain higher frequencies and resolutions in areas
with contrasting land surfaces. The development of disaggregation of remotely sensed
LST (DLST) [10] allows for the capture of greater spatial differences in LST, which become
valuable in semiarid ecosystems with bare soil and vegetation variability at short dis-
tances [11]. The DLST methodologies can be used in surface energy balance models for ETa
modeling at higher spatial resolutions [12]. Currently, machine learning algorithms, such
as cubist (Cub) [13,14] and random forests (RF) [15], have been evaluated in downscaling
LST, but not in semi-arid ecosystems. Linear models [16,17], algorithms of RF [18–21]
and cubist [19,20], have been used successfully for DLST, arguing that the use of machine
learning approaches in capturing non-linear outliers is less sensitive than using linear
functions [22].

The ET applications of DLST has been used in monitoring crop water requirements
during the growing season [23]. However, ET quantification using remote sensing monitor-
ing might get affected by the abovementioned differences between highly contrasting areas
with cultivated, low vegetation density, such as a desert [11]. The semi-arid ecosystem of
the Atacama Desert is characterized by a lack of precipitation, low humidity, and low cloud
coverage [24–26]. Furthermore, in the Copiapó valley, several water-demanding activities
coexist, increasing the stress in water use and decreasing water availability [27]. These
practices contribute to increased pressure over water use in the valley, and a clear analysis
of the water balance should be considered when evaluating the sustainable use of water,
food security, and decision making [28]. Therefore, looking for higher frequency estimation
of ET by remote sensing at a higher resolution provided by Sentinel-2 images might be a
proficient alternative to water assessment in an area where water conflicts may arise. The
aims of this study were (i) to downscale LST from optical sensor and indices derived from
Sentinel-2 at 10 m using observations from the Thermal Infrared Sensor (TIRS) of Landsat-8
using cubist, RF, and a sinusoidal model; and (ii) to estimate ETa using the DLST approach
applied in the SSEBop model in an arid or semi-arid climate of the Copiapó valley.

2. Materials and Methods
2.1. Study Area

The area of study is in the Copiapó valley in the Atacama Region, Chile. The Copiapó
river watershed is about 18,538 km2, stretching from the Andes to the Pacific Ocean coast.
The area of study is located in the nearest zone to the pacific coast (Figure 1). In this
section of the valley, the water source is mainly from aquifers, extracted through wells
and applied with high-frequency irrigation systems [29] (Figure 1). The agriculture in this
sector is dominated by olive trees, table grape orchards, pomegranates, tomatoes, and
natural vegetation. The climate is semiarid to arid, with hot and dry summer seasons, and
28 mm of mean annual precipitation [27,30].
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Figure 1. Study area delimited by a green light dashed line (top). Location of three meteorological stations distributed in 
olives (green circle), vineyards (red diamond), and pomegranates (blue triangle). 

2.2. Local Data 
Meteorological stations data were obtained from LAB-network [31], located across 

the valley over three crops, as was described in Mattar et al. [31] and Olivera-Guerra et al. 
[27]. Crop coefficients (kc) used are in concordance with those used by Olivera-Guerra et 
al. [27] for olives and vineyards (Table 1), and the pomegranates kc values were adapted 
from Franck [32] and Otárola Aliaga [33], which estimated kc values to arid and semiarid 
conditions in Chile. The stations located in olives and vineyard orchards have a continuity 
of in situ data from January 2016, while the pomegranates station started to measure in 
the winter of 2019, all orchards are under drip irrigation.  

Table 1. Olives, vineyards, and pomegranates kc values. 
Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec References 

Olives 0.65 0.65 0.65 0.65 0.6 0.5 0.5 0.5 0.6 0.6 0.65 0.65 [27] 
Vineyards 0.7 0.65 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.6 0.65 0.7 [27] 

Pomegranates 0.6 0.68 0.8 0.45 0.4 0.115 0.115 0.3 0.3 0.4 0.4 0.45 [32,33] 

2.3. Remote Sensing Data 
The product used for remote sensing was the Level 1-C Top of Atmosphere Reflec-

tance (TOA) and Surface Reflectance from Landsat 8 Level 2-A product. Thermal data 
were obtained from band 10 digital numbers (ND) of Landsat 8 Thermal Infrared Sensor 
(TIRS) for the 2016–2020 period. Landsat-8 and Sentinel-2 images were cloud masked us-
ing the Fmask 4.0 algorithm [34], and spatially matched according to the study area and 
study period. There were 27 dates that match between Landsat-8, and Sentinel-2 used for 
model calibration and validation. For each match date of Sentinel-2 and Landsat-8 TIRS 

Figure 1. Study area delimited by a green light dashed line (top). Location of three meteorological stations distributed in
olives (green circle), vineyards (red diamond), and pomegranates (blue triangle).

2.2. Local Data

Meteorological stations data were obtained from LAB-network [31], located across
the valley over three crops, as was described in Mattar et al. [31] and Olivera-Guerra
et al. [27]. Crop coefficients (kc) used are in concordance with those used by Olivera-Guerra
et al. [27] for olives and vineyards (Table 1), and the pomegranates kc values were adapted
from Franck [32] and Otárola Aliaga [33], which estimated kc values to arid and semiarid
conditions in Chile. The stations located in olives and vineyard orchards have a continuity
of in situ data from January 2016, while the pomegranates station started to measure in the
winter of 2019, all orchards are under drip irrigation.

Table 1. Olives, vineyards, and pomegranates kc values.

Crop Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec References

Olives 0.65 0.65 0.65 0.65 0.6 0.5 0.5 0.5 0.6 0.6 0.65 0.65 [27]
Vineyards 0.7 0.65 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.6 0.65 0.7 [27]

Pomegranates 0.6 0.68 0.8 0.45 0.4 0.115 0.115 0.3 0.3 0.4 0.4 0.45 [32,33]

2.3. Remote Sensing Data

The product used for remote sensing was the Level 1-C Top of Atmosphere Reflectance
(TOA) and Surface Reflectance from Landsat 8 Level 2-A product. Thermal data were
obtained from band 10 digital numbers (ND) of Landsat 8 Thermal Infrared Sensor (TIRS)
for the 2016–2020 period. Landsat-8 and Sentinel-2 images were cloud masked using the
Fmask 4.0 algorithm [34], and spatially matched according to the study area and study
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period. There were 27 dates that match between Landsat-8, and Sentinel-2 used for model
calibration and validation. For each match date of Sentinel-2 and Landsat-8 TIRS images,
18 pairs of images were used in calibration of the Cub, RF, and sinusoidal (Sin) models,
and 9 pairs of images for validation of the LST were estimated.

2.4. Methodology
2.4.1. Surface Reflectance Retrieval

The Sentinel 2 Level 2-A Surface Reflectance product was retrieved using a sen2cor
processor [35], which corrects the image using Water Vapour (WV) and Aerosol Optical
Thickness (AOT). This method performs atmospheric correction using Look-Up tables
from libRadtran [36] using as baseline the mid-latitude summer (MS) for the aerosol and
water vapour concentration for the study area. Water Vapour is obtained with Atmosphere
Pre-Corrected Differential Absorption algorithms [37] using the B8A and B9 bands for
reference channels in the atmospheric window and absorption region, respectively. The
Aerosol Optical Thickness is derived from 550 nm using the Dense Dark Vegetation (DDV)
algorithm [38], which correlates B12 versus VIS (B2, B3, B4). In order to determine the
impact atmospheric inputs of the imagery, we assessed the mean value, standard deviation
and coefficient of variation (cv) per pixel of WV and AOT for the study period. We
evaluated the impact of topographic illumination relating the hillshade of every image
versus the bands and NDVI determining the coefficient of determination of the imagery.

2.4.2. Land Surface Temperature Retrieval

The Landsat-8 LST was determined by a single-channel algorithm using the band
10 [39], which is defined as

LST = γ

[
1
ε
(ϕ1·Lsen +ϕ2) +ϕ3

]
+ δ (1)

where γ, δ are two parameters that depend on the at-sensor brightness temperature, ε is
surface emissivity, and ϕ1, ϕ2, ϕ3 are the atmospheric functions versus atmospheric water
vapor content [40,41]. These input data of the atmospheric functions were obtained by
polynomial equations proposed by Cristóbal et al. [40] using NCEP/NCAR Reanalysis
data, which models the ascending, descending, and ascending atmospheric radiance and
transmittance (Lup, Ldown, and T, respectively). The ε input was obtained from the ASTER
Global Emissivity Dataset (ASTER GED) [42]. Thermal radiance (Lsen) was obtained from
radiometric calibration of band 10. This LST obtained from Landsat-8 will be used as the
observed data, and Sentinel-2 bands and spectral indices were considered as predictors for
the LST modeling.

2.4.3. Predictors

The dataset used as predictors were 13 bands from Sentinel-2 plus 22 remote sensing
indices (Table 2), which were used as calibration data for the Cub and RF methods. The
pixel resolution for Landsat-8 LST and NDVI was 100 m as the observation data, and 10 m
for the Sentinel-2 bands and indexes. Sentinel-2 data were resampled to 100 m at each date
for modeling as predictors at 100 m and 10 m. The range of images acquisition was from
February 2016 to January 2019 in the calibration data, and from April 2019 to April 2020 in
the validation data in the matching dates, and Sentinel-2 data between February 2016 and
June 2020.
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Table 2. Set of sentinel bands and indexes tested for LST modeling.

Name Variables Sentinel-2 Variables Expression References

B1 Band 1

B2 Band 2

B3 Band 3

B4 Band 4

B5 Band 5

B6 Band 6

B7 Band 7

B8 Band 8

B8A Band 8A

B9 Band 9

B11 Band 11

B12 Band 12

NDVI Normalized difference vegetation index NIR−Red
NIR+Red [43]

SAVI Soil adjusted vegetation index NIR−Red
NIR+Red+L × (1 + L) [44]

EVI Enhanced vegetation index G× NIR−Red
NIR+C1×Red−C2×+L [45]

GNDVI Green normalized difference vegetation index NIR−Green
NIR+Green [46]

NDWI Normalized difference water index Green−NIR
Green+NIR [47]

MSAVI2 Modified soil vegetation index 2 2·NIR+1−
√
(2·NIR+1)2−8·(NIR−Red)

2
[48]

ALBEDO Albedo α = ∑B i|ρB i·ωB i| [49]

SELI Sentinel-2 LAIgreen index B8a−B5
B8a+B5 [50]

TCARI Transformed chlorophyll absorption ratio index 3·((B5− B4)− 0.2·(B5− B3)(B5/B4)) [51]

OSAVI Optimized soil adjusted vegetation index (1+0.16)(NIR−Red)
NIR+Red+0.16 [52]

TCARI/OSAVI TCARI
OSAVI [51,52]

GRVI Green-Red vegetation index Green−Red
Green+Red [53]

WDRVI Wide dynamic range vegetation index 0.1·NIR−Red
0.1·NIR+Red [54]

BWDRVI Blue-wide dynamic range vegetation index 0.1·NIR−Blue
0.1·NIR+Blue [55]

TVI Transformed vegetation index
√

NDVI + 0.5 [43]

ARVI Atmospherically resistant vegetation index NIR−Red−y(Red−Blue)
NIR+Red−y(Red−Blue) [56]

SIPI Structure insensitive pigment index B8−B1
B8−B4 [57]

BSI Bare soil index (SWIR+Red)−(NIR+Blue)
(SWIR+Red)+(NIR+Blue) [58]

MSI Sentinel-2 Moisture stress index B11
B8 [59]

GCI Green chlorophyll index B9
B3 − 1 [60]

NDMI Normalized difference moisture index NIR−SWIR
NIR+SWIR [61]

CLRE Red-edge-band Chlorophyll Index B9
B5 − 1 [60]

G, C1, C2: Coefficients; NIR: Near infrared; SWIR: short wave infrared; ρBi: surface reflectance at band Bi; ωBi: weighting coefficient at
band Bi.

2.4.4. Spatial Relationship between Landsat-8 LST and Sentinel-2

The spatial relationship between Landsat-8 LST and predictors from Sentinel-2 were
by two machine learning algorithms, cubist [13,14] and random forests [15,62], and one
through a sinusoidal relationship between LST and NDVI [27], based on Bechtel et al. [16]
and Bechtel [63,64]. For building each model, the LST at 100 m is the target variable,
excepting NDVI at 100 m, which is also needed for the sinusoidal model. The Sentinel-2
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images at 100 m are used to predict LST at 100 m according to each model; later, each
Sentinel-2 at 100 m calibrated model was used to predict LST using 10 m Sentinel-2
predictors.

A cubist model is a tree of rules limited by conditions based on values or ranges of
predictors. Each rule has a linear model that predicts the target value of a pixel in that
condition. In this approach, the 27 calibration dates were spatially matched using the
whole set of predictors using the Cubist package [65] in R open source software [66].

A random forest model consists of many decision trees that use several random
subsampling creating a learning model based on classification or regression trees. The
same 27 calibration dates of Sentinel-2 images were applied for prediction targeting LST
from Landsat-8 with the randomForest package [67,68]. Furthermore, the variable selection
for random forest algorithm (VSURF) was applied to allow parsimony and evaluate which
predictors performed better predicting LST with random forests. The VSURF algorithm
is implemented in R software by Genuer et al. [69,70]. Due to its high computational
demand, the algorithm was run in Wageningen University’s High Performance Computing
Cluster (HPC), Anunna. The process involved 25 random samples of 11,000 points from
the whole calibration dataset per each VSURF run. Then, 50 RF with 2000 trees each were
run at each sample, and then the results were ranked by variable importance averaging of
50 RF runs [69]. Later, VSURF has three outcomes of the selected variables: thresholding,
interpretation, and the prediction step. We chose interpretation, because it involves more
variables than a prediction step, and it reduces overfitting from the thresholding step.
Finally, the sum of the variables selected from those 25 VSURF runs were used as the set of
variables in the RF prediction.

The sinusoidal modeling is based on a general linear relationship between LST and
NDVI [71]:

LST10m = a + b·NDVI10m (2)

Furthermore, this relation is seasonal during the year, allowing estimation of annual
cycle parameters according to Bechtel et al. [16] and Bechtel [63,64]. The relationship
between LST and NDVI was validated for DLST in the study by Olivera-Guerra et al. [27].

LSTL8 100m = ci + di·NDVIS2 100m (3)

where c is intercept and d is the slope from the fitted linear values of Landsat-8 LST and
Sentinel-2 NDVI at each i-calibration date. Therefore, the linear coefficients c and d can
be modeled as annual cycle parameters depending on the day of the year relative to the
spring equinox.

c = e + f · sin
(

DOY as equinox·2π

365

)
(4)

d = g + h· sin
(

DOY as equinox·2π

365

)
(5)

where c and d are linear coefficients of the LST–NDVI relationship to each image date. The
e, f, g, and h are fitted coefficients of the relationship between the day of the year with c
and d. The spring equinox is 21 September in the southern hemisphere, with a value of 0
to that day of DOY as equinox; therefore, −182.5 ≤ DOY as equinox ≤ 182.5. These c and d
coefficients from the calibration dates were used for estimating a and b from Equation (2)
using the fitted values of e, f, g, and h for a 10 m resolution.

2.4.5. Estimation of Actual Evapotranspiration

The ET estimation method was the Operational Simplified Surface Energy Balance
(SSEBop) [9]. The SSEBop model has been widely applied at different hydroclimatic
regions [7], which is based on the estimation of the ET fraction (ETf), which is the ratio
of latent heat flux to the Net Radiation. The ETf is retrieved using surface temperature
(Ts), cold/wet (Tc), and hot/dry (TH) idealized surface temperature conditions from
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Bastiaanssen et al. [72]. Thus, ETf is calculated using the following equations from Senay
et al. [9]:

ETf =
TH − Ts

TH − Tc
=

TH − Ts

dT
(6)

dT =
Rn ·rah
ρa·Cp

(7)

where dT is the difference in surface temperature between the idealized conditions and is
calculated under clear-sky conditions and is unique for location and day of the year (DOY),
but with the assumption of not changing from year to year [8]. rah is the aerodynamic
resistance to heat in an idealized bare and dry surface (s m−1), which was used the value of
110 sm−1 from Senay et al. [9]; ρa is the air density estimated by a function of air pressure
and the virtual temperature (Tkv) [73]. Cp is the specific heat at a constant air pressure
(1.013 kJ kg−1 K−1). TH is calculated by TH = Tc + dT, and Tc is calculated by the relation of
the maximum air temperature and a correction factor of 0.093 (Tc = 0.093 Tmax) [9,27]. The
Rn is clear-sky net radiation (W m−2), and Rn was obtained calculating the ratio between
daily net radio and instantaneous radiation (Cdi) in the function of DOY from Sobrino
et al. [74], adapted by Moletto-Lobos [75] to the southern hemisphere:

Cdi =

{
DOY ≥ 183⇒ −7·10−6(DOY− 183)2 + 0.0027(DOY− 183) + 0.124
DOY < 183⇒ −7·10−6(DOY + 183)2 + 0.0027(DOY + 183) + 0.124

(8)

Then ETf is calculated using the Ts derived from the downscaled LST of Cub, RF,
and Sin method. ETa is calculated using ETf, the maximum crop coefficient (kc) during
the phenological season by an aerodynamically rougher crop of 0.65 according to Olivera-
Guerra et al. [27,76], and the calculated evapotranspiration of reference (ETo) using the
standardized Penman–Monteith equation [73,77]:

ETa = ETf × kc × ETo (9)

The ETo was calculated using the atmospheric inputs from the ERA5 product [78].
In previous studies using the SSEBop model by Senay et al. [8], they have defined those
negative values of ETf are set to zero and maximum ETf are capped at 1.05. According to
Senay et al. [7], ETf should vary between 0 and 1; therefore, in this study negative ETf were
set to zero and capped to 1.

2.4.6. Validation In Situ

The validation of the downscaled LST and measured Landsat-8 LST were with the in
situ LAB-net stations, and their thermal infrared sensor (Apogee SI-111®). This sensor is
located at 5 m height with the inclination to measure the same fraction of vegetation cover
of the terrain. The values of LST were extracted from the downscaled images to compare
them with in situ stations. The in situ value were obtained by the mean of the surrounded
pixels at the position of the corresponding olive, vineyard, and pomegranate stations. For
the comparison of in situ ET, the crop evapotranspiration (ETc) was calculated using the
ET calculated by the weather station and multiplying the monthly corresponding kc of
each crop (ETc = ETo ·kc), following the coefficients shown in Table 1. The performance
metrics were the root mean square error (RMSE), standard deviation (sigma), bias, and
correlation coefficient (r) for the nine LST validation dates that match between Landsat-8
and Sentinel-2.

3. Results
3.1. Atmospheric Inputs and Topographic Variation

The atmospheric inputs of Sentinel 2 correction are shown in Supplementary Figure S1
for AOT. The mean value shows values related to clear sky places, such as the Atacama
Desert, with a mean value of 0.17 and standard deviation of 0.01, without variability over
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the time series. The WV (Supplementary Figure S2) had a mean value of 1.13 cm and
coefficient of variation of 13.4%. The atmospheric inputs show an artifact due to the method
of calculation on the center of study area; however, the low values of atmospheric water
vapor do not change over values of an atmospheric profile for a semi-arid ecosystem. On
the other hand, the coefficient of determination of hillshade of every image versus the
input bands does not show any relation due to the flat terrain in the study area, with an
average slope of 3%. The part that reaches the highest correlation is in the red band with
an R2 of 0.2 in the place steeper area of 41%.

The atmospheric inputs of Landsat 8 are in Supplementary Table S1, where Ldown
shows the most variation, with a maximum value of 5.70 W m−2 sr−1, minimum of
1.29 W m−2 sr−1, and coefficient of variation up to 28.41%. The Lup showed lower vari-
ability, with a cv of 16.06% and transmittance with cv of 9.42% and mean of 0.77 for the
study period.

3.2. Cubist

The Cub output created a hundred rules for predicting LST, showing that almost all
the predictors are used for prediction, but not all of them in defining the set of rules of the
trees (Figure 2A). The most used variables in the algorithm to separate the conditions were
B9 (all conditions) and then B11 and TCARI, participating in 63% and 53% of the rules,
respectively.

3.3. Random Forest

The results of the VSURF algorithm (Figure 2B) show that in the 25 runs in the HPC
computer, the variables selected for model interpretation after running 50 RF with 2000
trees per HPC run are B9, B11, B12, and TCARIOSAVI, which were selected in all VSURF
runs, secondary CLRE in 23, and B1 in 20. The other variables were selected in a minor
proportion but were included in the set of predictors used in the RF spatial prediction of
LST at 100 m. Therefore, the RF model parsimony from VSURF that was used in the RF
prediction of LST resulted in a total of 11 variables (Figure 2B,C). The variable importance
as a percentage of increase in MSE, when one of these variables is out of the model, shows
that the most important variables are B9, TCARIOSAVI, CLRE, and B1 (Figure 2C).

3.4. Sinusoidal

The sinusoidal model and observed fitted values according to the day of year relative
to the spring equinox are shown in the Figure 2D,E, resulting in an intercept and slope
modeling equation c and d of

c = 306.148 + 9.977· sin
(

DOY as equinox·2π

365

)
(10)

d = −14.118− 5.047· sin
(

DOY as equinox·2π

365

)
(11)

The validation results (Figure 3) showed that for 100 m, the RMSE values were 5.77 K
for Cub, 4.81 K for RF, 3.97 K for Sin models, and 6.4 K of Landsat-8 at 100 m. In terms of
variation, the values of sigma followed the same previous trend with Cub with the higher
values, followed by RF and then Sin. The RF and Cub models slightly overestimate and
Sin underestimates LST, but also the correlation coefficient is the lowest for RF, followed by
Cub and Sin with the best performance. In the 10 m prediction model, the trend in RMSE
is similar: Cub performed with the highest RMSE 7.09 K, RF with 3.91 K, and 3.4 K for Sin.
Besides, Cub shows a higher variation and overestimation of LST compared to the in situ
values. RF at 10 m has a higher correlation coefficient and lower RMSE compared with
100 m. The Sin model shows an underestimation, the highest correlation coefficient, and
lowest variation in the two-resolution LST estimation compared to in situ.
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The models are applied in a temporal series of LST at 100 m and 10 m (Figures 4 and 5,
respectively) after validation dates in each crop, showing a general trend according to the
bias validation results (Figure 3). For olives, the LST in all models is very similar to the
LST trend during the seasons. However, Cub and RF overestimates the LST values of the
station in winter and estimating in an opposite trend to the seasonal LST decrease in winter.
The Sin model shows a tendency of seasonal variation of LST with a slight underestimation
of LST, similar to bias validation results in Figure 3. In vineyards, the standard deviation of
the surrounding pixels at the station of LST in Cub are higher than the other models and
showed an increase in the winter LST estimated. The main difference in the 10 m resolution
(Figure 5) is that Cub evidently has a higher standard deviation and is overestimating LST
compared to the station in winter.
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the LST measured by the in situ stations at (a) olives, (b) vineyards, and (c) pomegranates orchards. The error bars are
showing the standard deviation of the 9 pixel cells surrounding the LST station of each LST model.

The spatial prediction images (Figure 6) showed that in winter LST is higher for Cub
and RF and lower for Sin at a 10 m resolution. Warmer pixels next to vegetation can be
attributed to be bare soil captured by Landsat-8, which are colder in the Sin model. The
Cub model shows a high variation in predicted LST pixels in a short range of spatial
variation. Pixels varied between 280 to 290 K next to the warmest without a spatial relation
to vegetation according to Landsat-8. In summer, all models showed spatially colder values
than Landsat-8. The Sin model shows a clear distinction between vegetation areas, and RF
does not show a clear spatial trend with vegetation, but the coldest pixels are related to
areas with vegetation.
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Figure 6. Land surface temperature by Landsat-8 at 100 m and the spatial predictions of LST from Sentinel-2 data using
cubist, random forest, and sinusoidal models. The predictions are shown at two dates apr 04 2019 (winter) and nov 11 2020
(late spring) in three locations next to the olives (a), vineyards (b), and pomegranates (c) stations.

After being applied, the ETa spatial prediction of olives, vineyards, and pomegranates
at 10 m were generated (Figure 7). The results showed winter (left) and a summer (right)
images to each model of ETa per day, Cub and RF showed lower values of ETa compared
to Sin in winter, and summer images are spatially similar in values with a clear distinction
of crops by Sin. Although, with abrupt changes in closer pixels for Cub. In vineyards,
a distinction is clear in winter for Sin, with higher values of ETa in the valley compared
to Cub and RF. In the summer, the condition of short-range variation in ETa values in
Cub continued similar to what was observed in the LST prediction, and RF and Sin also
performed similarly. Pomegranate spatial values show a distinction of Sin in winter,
showing higher values of ETa in the entire valley compared with Cub and RF. In the
summer it performed similarly, but Cub continuously showed abrupt changes in a short
range of pixels.
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When the ETa temporal series is analyzed at 100 m (Figure 8) and 10 m (Figure 9), the
values estimated for olives match almost entirely with ETc from the stations and kc values
defined in Table 1. The Cub model shows an underestimation in winter, but all the other
models followed the ETc seasonal variation in situ with an underestimation in summer.
For pomegranates, the trend is the opposite, where generally all the models overestimate
the ETc of station from winter to summer; however, in late 2019 summer to 2020 autumn,
the estimated ETa followed the same trend as the station.
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Figure 8. Temporal series of the predicted ETa at 100 m with cubist, random forest, and sinusoidal models versus the ETa
measured by the in situ stations at (a) olives, (b) vineyards, and (c) pomegranates orchards. The error bars are showing the
standard deviation of the 9 pixel cells surrounding the ETc station of each ETa model.
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Figure 9. Temporal series of the predicted ETa at 10 m with the cubist, random forest, and sinusoidal models versus the ETa
measured by the in situ stations at (a) olives, (b) vineyards, and (c) pomegranates orchards. The error bars are showing the
standard deviation of the 9 pixel cells surrounding the ETc station of each ETa model.

4. Discussion

Testing and comparing new methods that quantify ET from irrigation crops is vital
in areas with water scarcity, and detailed prediction maps allow a better decision-making
process among water users [4]. The model applied for DLST in ETa based on Kmax are
different spatially (Figure 7) and temporally (Figures 8 and 9), but the strength showed by
the SSEBop ET model is consistent (Table 3), making these differences in LST predicted
by each model (Figures 4–6) lower between Cub, RF, and Sin in ETa compared to ETc
(Figure 10). The best model overall predicting ETa analyzed over ETc was RF with an
R2 = 0.710, Sin with 0.707, and an R2 of 0.69 for Cub. However, the Sin model was with
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the lowest RMSE of 0.45 mm d−1, smallest bias, standard deviation, relative root mean
square error (RRMSE), and mean absolute error. Besides, the Sin model is the best in olives
and vineyards in all statistical indices, with the highest R2 in all stations, but with the
highest RMSE in pomegranates. The Cub model showed the lowest performance in all
stations and overall analysis. This low ETa performance of Cub was noticed in the spatial
ETa (Figure 7), with high variation of pixels over a short distance range. The performance
of RF and Sin are consistent and similar in ETa at 10 m; nevertheless, there is a practical
advantage of using the Sin model based in NDVI calibration compared with the RF model
that is dependent on predictors to build a model by an empirical relation in one spatial
area only. The meta-analysis obtained from the machine learning algorithms also gave
approximations of a general approach estimating ET, which are evidenced by variables
related with LST that showed high importance in the algorithms and may be important
for improving future indices, equations, and models for calculating ET. However, the
performance of the Sin model and its calibration process showed that it might be easier
to apply with Sentinel-2 NDVI and without several calibration parameters that might be
needed or differ for an RF model in a different region.

Table 3. Model performance statistics of ETa estimated using cubist, random forest, and sinusoidal
models compared with the ETc over olives, vineyards, and pomegranates orchards.

ETa Cubist Random Forest Sinusoidal

Olives RMSE 0.75 0.56 0.39
Bias −0.35 −0.25 −0.12

Sigma 0.56 0.42 0.29
R2 0.673 0.750 0.798

RRMSE 29.21 16.52 7.85
MAE 0.62 0.46 0.26

Vineyards RMSE 0.72 0.62 0.49
Bias −0.15 −0.12 0.00

Sigma 0.42 0.36 0.29
R2 0.651 0.675 0.692

RRMSE 26.01 19.66 12.26
MAE 0.59 0.50 0.33

Pomegranates RMSE 0.48 0.44 0.50
Bias −0.03 −0.02 0.07

Sigma 0.25 0.23 0.26
R2 0.764 0.802 0.837

RRMSE 12.96 10.96 14.30
MAE 0.39 0.35 0.44

Overall RMSE 0.69 0.56 0.45
Bias −0.18 −0.13 −0.02

Sigma 0.43 0.35 0.28
R2 0.641 0.710 0.707

RRMSE 24.85 16.29 10.51
MAE 0.56 0.45 0.32
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Figure 10. Predicted ETa at the 10 m resolution of the cubist, random forest, and sinusoidal model compared to the ETc
station in (a) olives, (b) vineyards, and (c) pomegranates.

The SSEBop approach in arid ecosystems has been applied in quantification of irri-
gation in California [79], but it also might be a useful tool in ET estimations of semi-arid
agroecosystems, such as the Copiapó valley. According to Anderson et al. [4], ET methods
from vegetation indices tend to overestimate ET under stress conditions, showing higher
crop demands before biomass can adjust. However, an estimation based on vegetation
indices, such as the Sin method, might be useful as a primary approach in demand es-
timations in areas where water crop demand cannot be estimated using an ETc station
with kc by calendar, and used in other areas of the valley as well. Furthermore, a spa-
tial ET estimation based on Sentinel-2 frequency and spatial resolution would improve
water demand quantifications in semiarid ecosystems such as the Copiapó valley, where
groundwater demand is under pressure [29]. Monitoring these ecosystems will be crucial
in order to minimize and prevent future conflicts over water in arid and semiarid climates,
where higher water requirements will increase in the future [80,81]. It should be considered
that the topographic effect can bring noise to NDVI retrieval, especially for these areas.
According to previous studies, the topographic effect can be reduced by band ratios, due to
the spectrum similarity between the NIR and visible bands [82,83]. About the limitations of
the approach, our study used non-supervised areas for calibration of the LST models, using
images of the whole study area instead of a selection of areas with vegetation, bare soil, or
other surfaces. Besides, the models were evaluated during the seasonal variation of the
agricultural vegetation; thus, they can perform differently in non-agricultural vegetation
or in non-irrigated agriculture.

5. Conclusions

In this study, we evaluated three models to estimate and downscale LST using Sentinel-
2 images and remote sensing indices as predictors, comparing them with Landsat-8 LST
as the training data. The results of the LST predictions showed that the best model to
downscale LST was a sinusoidal model, which showed the lowest RMSE of 3.97 K at 100 m
and 3.4 K in 10 m, and with the highest correlation coefficients. The machine learning
analysis showed that the variable with the greatest importance in predicting LST was
Sentinel-2 band 9, as it was included in the majority of internal model conditions and
prediction rules. These models were applied in ETa estimation using the operational
surface energy balance method (SSEBop) with the downscaled LST, showing that the RF
and Sin models are useful in estimating ETa in a semi-arid region. On the contrary, the Cub
model was not reliable across space, not in the ETa predictions overall nor for the olives,
vineyards, and pomegranates compared to Sin and RF.

This approach shows an advantage of the Sin model, which relies on NDVI and an
equation related to the day of the year, and not on a set of other predictors. Therefore, a Sin
model approach makes it possible to predict LST using previous date matches of Landsat
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and Sentinel, without training a dataset that might vary between locations. The RF model
showed the best overall performance estimating ET compared to all ETc stations, but a Sin
model showed a similar performance to RF with the lowest RMSE in ETa in comparison to
ETc overall and in olives, vineyards, and pomegranates. Future research should focus on
improvements in Kc in situ measurements using ETa stations instead of Kc values from
calendar, also testing the model quantification in irrigation scheduling considering the soil
water content, saline stress, and plant ecophysiological variables.

Finally, this study contributes to estimating water demand in a semi-arid region by
providing ETa maps at higher temporal and spatial resolutions and are reliable for crop
water requirements and irrigation scheduling compared to ETc calculated with the kc
values from the calendar.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13204105/s1. Table S1. Statistics of Atmospheric inputs over Landsat 8 series. Figure S1.
Mean, Standard Deviation and Coefficient of Variation of Aerosol Optical Thickness (AOT) retrieved
from Sen2Cor for all images during study period over Copiapó valley. Figure S2. Mean, Standard
Deviation and Coefficient of Variation of Water Vapor (WV) retrieved from Sen2Cor for all images
during study period over Copiapó valley. Figure S3. Coefficient of determination (R2) between
Illumination and Sentinel 2 Bands, NDVI during study period in Copiapó valley.
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