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Research in modern data-driven dynamical systems is
typically focused on the three key challenges of high
dimensionality, unknown dynamics and nonlinearity.
The dynamic mode decomposition (DMD) has
emerged as a cornerstone for modelling high-
dimensional systems from data. However, the quality
of the linear DMD model is known to be fragile with
respect to strong nonlinearity, which contaminates the
model estimate. By contrast, sparse identification of
nonlinear dynamics learns fully nonlinear models,
disambiguating the linear and nonlinear effects, but is
restricted to low-dimensional systems. In this work,
we present a kernel method that learns interpretable
data-driven models for high-dimensional, nonlinear
systems. Our method performs kernel regression
on a sparse dictionary of samples that appreciably
contribute to the dynamics. We show that this
kernel method efficiently handles high-dimensional
data and is flexible enough to incorporate partial
knowledge of system physics. It is possible to recover
the linear model contribution with this approach,
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thus separating the effects of the implicitly defined nonlinear terms. We demonstrate our
approach on data from a range of nonlinear ordinary and partial differential equations. This
framework can be used for many practical engineering tasks such as model order reduction,
diagnostics, prediction, control and discovery of governing laws.

1. Introduction
Discovering interpretable patterns and models from high-dimensional data is one of the principal
challenges of scientific machine learning, with the potential to transform our ability to predict
and control complex physical systems [1]. The current surge in the quality and quantity of
data, along with rapidly improving computational hardware, has motivated a wealth of machine
learning techniques that uncover such patterns for dynamical systems. Successful recent methods
include the dynamic mode decomposition (DMD) [2–5] and extended DMD (eDMD) [6,7], sparse
identification of nonlinear dynamics (SINDy) for ordinary and partial differential equations [8,9],
genetic programming for model discovery [10], physics-informed neural networks (PINNs) [11],
Lagrangian neural networks [12], time-lagged autoencoders [13], operator theoretic methods [14]
and operator inference [15]. Techniques based on generalized linear regression, such as DMD and
SINDy, are widely used because they are computationally efficient, require less data than neural
networks, are highly extensible and provide interpretable models. However, these approaches
are either challenged by nonlinearity (e.g. DMD) or do not scale to high-dimensional systems
(e.g. SINDy). In this work, we present a machine learning algorithm that leverages sparse kernel
regression to address both challenges, efficiently learning high-dimensional nonlinear models
that admit interpretable spatio-temporal coherent structures and robust locally linear models.

A central goal of modern data-driven dynamical systems is to identify a model

d
dt

x = F(x) = Lx + N(x), (1.1)

that describes the evolution of the state of the system, x. Here, we explicitly indicate that
the dynamics F have a linear L and nonlinear N contribution, although many techniques do
not model these separately or explicitly. However, several approaches obtain interpretable and
explicit models of this form. For example, DMD seeks a best-fit linear model of the dynamics,
while SINDy directly identifies sparse nonlinear models of the form in (1.1).

Our approach synthesizes favourable aspects of several approaches mentioned above;
however, it most directly complements and addresses the challenges of DMD for strongly
nonlinear systems. The DMD was originally introduced by Schmid [2] in the fluid dynamics
community as a method for extracting spatio-temporal coherent structures from high-
dimensional data, resulting in a low-rank representation of the best-fit linear operator that maps
the data forward in time [4,5]. The resulting linear DMD models have been used to characterize
many systems in fluid mechanics, where complex flows admit dominant modal decompositions
[16]. DMD has also been adopted in a wide range of fields beyond fluid mechanics, and much of
its success stems from the formulation of DMD as a linear regression problem [4], based entirely
on measurement data, resulting in several powerful extensions [5]. However, because DMD uses
least-squares regression to find a best-fit linear model dx/dt ≈ Ax to the data, the presence of
measurement noise [17], control inputs [18] and nonlinearity bias the regression. Mathematically,
the noise, control inputs and nonlinearity may all be lumped into a forcing b

d
dt

x = Lx + b ≈ Ax. (1.2)

The forcing b contaminates the linear model estimate, so A from DMD does not approximate the
true linear contribution from L. It was recognized early on that the DMD algorithm was highly
sensitive to noise [17], resulting in noise-robust variants, including forward backward and total
least-squares DMD [17], optimized DMD [19] and DMD based on robust principal component
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best linear fit best nonlinear fit

local 
linear models

(a) (b)

Figure 1. Learning regression models in linear (a) and nonlinear (b) feature spaces. Our approach disambiguates linear and
nonlinear model contributions to accurately extract local linear models. (Online version in colour.)

analysis (PCA) [20]. Similarly, DMD with control [18] was introduced to disambiguate the effect of
the linear dynamics from actuation. For statistically stationary systems with stochastic inputs, the
spectral proper orthogonal decomposition [21] produces an optimal basis of modes to describe the
variability in an ensemble of DMD modes [22]. The bias due to nonlinearity, shown in figure 1a,
has been less thoroughly explored and is the topic of the present work.

Despite these challenges, DMD is frequently applied to strongly nonlinear systems, with
theoretical motivation from Koopman operator theory [3,5,14,23]. Williams et al. [6] developed
the eDMD, which augments the original state with nonlinear functions of the state to better
approximate the nonlinear eigenfunctions of the Koopman operator for nonlinear systems.
However, because this approach still fundamentally results in a linear model (in the augmented
state), it also suffers from the same issues of not being able to handle multiple fixed
points or attracting structures, and it also typically suffers from closure issues related to the
irrepresentability of Koopman eigenfunctions. Delay embedding methods, such as Hankel DMD
[24] and higher-order DMD [25], are effective for computing Koopman eigenfunctions but do
not separate the linear and nonlinear mechanisms of the system. The SINDy [8] algorithm is
a related regression approach to model discovery, which identifies a fully nonlinear model as
a sparse linear combination of candidate terms in a library. While SINDy is able to effectively
disambiguate the linear and nonlinear dynamics in (1.1), resulting in the ability to obtain de-
biased locally linear models as in figure 1b, it only applies to relatively low-dimensional systems
because of poor scaling of the library with state dimension.

(a) Contributions of this work
In this work, we develop a custom kernel regression algorithm to learn accurate, efficient and
interpretable data-driven models for strongly nonlinear, high-dimensional dynamical systems.
This approach scales to very high dimensions, unlike SINDy, yet still accurately disambiguates
the linear part of the model from the implicitly defined nonlinear dynamics. Thus, it is
possible to obtain linear DMD models, local to a given base state, that are robust to strongly
nonlinear dynamics. Our approach, referred to as the linear and nonlinear disambiguation
optimization (LANDO) algorithm, may be viewed as a generalization of DMD that enables a
robust disambiguation of the underlying linear operator from nonlinear forcings. The learning
framework is illustrated in figure 2, and open-source code is available at www.github.com/
baddoo/LANDO.

To achieve this robust learning, we improve upon several leading kernel and system
identification algorithms. Recent works have successfully applied kernel methods [26,27] to study
data-driven dynamical systems [7,28–31]. A key inspiration for the present work is kernel DMD
(kDMD, [7]), which seeks to approximate the infinite-dimensional Koopman operator as a large
square matrix evolving nonlinear functions of the original state. An essential difference between
kDMD and the present work is that our goal is to implicitly model the (non-square) nonlinear
dynamics in (1.1) in terms of the original state x, enabling the robust extraction of the linear
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optional: learn dictionary and model 
online from streaming data

(2) organize as data matrices (3) define kernel function

linear:
k(u,  ) = uT 

k(u,  ) = (c + uT    )d

k(u,u) = exp (–||u – u ||2/2s2)

Gaussian:

polynomial:

(4) build sparse dictionary (5) perform regression (6) extract model

time

spans the largest 
subspace in the
feature space
defined by k  

linear operatorp

d

t X =

X =

x1 xm

y1 ymY =

Y W̃

W̃

k(X̃,X)

X̃ =

predictionmodes

f(x) = Lx + N(x)

arg min ||Y – W̃  k(X̃,X)||F

nonlinear forcing

y(t) = x(t + Dt) or y(t) = ẋ(t)

(1) collect data pairs (x, y)

Figure 2. The linear and nonlinear disambiguation optimization (LANDO) framework. Training data in the form of snapshot
pairs are collected from either simulation or experiment in (1). The data are organized into matrices in (2). In (3), an appropriate
kernel is defined, which can be informed by expert knowledge of the underlying physics of the system or through cross-
validation. In (4), a sparse dictionary of basis elements is constructed from the training samples, and in (5), the regression
problem is solved. Finally, in (6), an interpretable model is extracted. (Online version in colour.)

component L, as opposed to analysing the Koopman operator over measurement functions.
Further differences between LANDO and other DMD methods are elucidated in the electronic
supplementary material, SI §C. In our work, we present a modified kernel recursive least-squares
(KRLS) algorithm [32] to learn a nonlinear model that best characterizes the observed data.
To reduce the training cost, which typically scales with the cube of the number of training
samples for kernel methods, we use dictionary learning to iteratively identify samples that
appreciably contribute to the dynamics. This dictionary learning approach may be seen as a
sparsity promoting regularizer, significantly reducing the high condition number that is common
with kernel methods, thus improving robustness to noise. We introduce an iterative Cholesky
update to construct the dictionary in a numerically stable manner, significantly reducing the
training cost while also mitigating overfitting. Similarly to KRLS, our model has the option of
operating online by parsing data in a streaming fashion and exploiting rank-one matrix updates
to revise the model. Therefore, our approach is also suitable for model order reduction in practical
applications where data become available ‘on-the-fly’. Furthermore, we show how to incorporate
partially known physics, or uncover unknown physics, by designing or testing tailored kernels,
much as with the SINDy framework [8,33].

We demonstrate our proposed kernel learning approach on a range of complex dynamical
systems that arise in the physical sciences. As an illustrative example, we first explore the chaotic
Lorenz system. We also consider partial differential equations, using the LANDO framework
to uncover the linear and nonlinear components of the nonlinear Burgers’, and Kuramoto–
Sivashinsky (KS) equations using only nonlinear measurement data. The algorithm accurately
recovers the spectrum of the linear operator for these systems, enabling linearized analyses,
such as linear stability, transient growth and resolvent analyses [34,35], in a purely data-driven
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manner [36], even for strongly nonlinear systems. We also demonstrate the approach on a
high-dimensional system of coupled nonlinear Kuramoto oscillators.

Whether the linear and nonlinear dynamics can be separated depends on both the underlying
system and the available data. Our results indicate that the effectiveness of LANDO depends on
the sampling rate, whether the data is near an attractor, and the amplitude of measurement noise.
These issues are discussed throughout, but resolving them fully is the subject of ongoing work.

The remainder of the work is organized as follows. Section 2 provides a mathematical
background overview of the DMD and kernel methods. Section 3 introduces our kernel learning
procedure for dynamical systems, including the sparse dictionary learning with Cholesky
updates. We demonstrate how to extract interpretable structures from these kernel models, such
as robust linear DMD models, in §4. Results on a variety of nonlinear dynamical systems are
presented in §5. Finally, §6 concludes with a discussion of limitations and suggested extensions of
the method. The appendices (in the electronic supplementary material) explicate the connection
between LANDO and DMD, demonstrate how to incorporate the effects of control, present the
equations for online updating and investigate the noise sensitivity of the algorithm.

2. Problem statement and mathematical background
In this section, we will define our machine learning problem and review some relevant
mathematical ideas related to DMD (§2a) and kernel methods (§2b).

We consider dynamical systems describing the evolution of an n-dimensional vector x ∈ R
n

that characterizes the state of the system. We will consider both continuous-time and discrete-time
dynamics in this work. The dynamics may be expressed either in continuous time as

d
dt

x(t) = F(x(t))

or in discrete time as
xj+1 = F(xj).

For a given physical system, the continuous-time and discrete-time representations of the
dynamics will correspond to different functions F, although we use the same function above
for notational simplicity. In general, the dynamics may also vary in time and depend on control
inputs u and parameters β; however, for simplicity, we begin with the autonomous dynamics
above.

Our goal is to learn a tractable representation of the dynamical system F : R
n → R

n that is
both accurate and interpretable, informing tasks such as physical understanding, diagnostics,
prediction and control. We suppose that we have access to a training set of data pairs {(xj, yj) ∈
R

n × R
n|j = 1, . . . , m}, which are connected through the dynamics by

yj = F(xj). (2.1)

If the dynamics are expressed in continuous time then yj = ẋj where the dot denotes
differentiation in time, and if the dynamics are expressed in discrete time then yj = xj+1. The
discrete-time formulation is more common, as data from simulations and experiments are often
sampled or generated at a fixed sampling interval�t, so xj = x(j�t). However, this work applies to
both discrete and continuous systems, and the only practical difference arises in the eigenvalues
of linearized models.

The training data correspond to m snapshots in time of a simulation or experiment. For ease of
notation, it is typical to arrange the samples into snapshot data matrices of the form

X =

⎡
⎢⎣ | | |

x1 x2 · · · xm

| | |

⎤
⎥⎦ and Y =

⎡
⎢⎣ | | |

y1 y2 · · · ym
| | |

⎤
⎥⎦ . (2.2)

In many applications, the state dimension is much larger than the number of snapshots, so m � n.
For example, the state may correspond to a fluid velocity field sampled on a discretized grid.
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Our machine learning problem consists of finding a function f that suitably maps the training
data given certain generalizability, interpretability and regularity qualifications. In our notation,
F is the true function that generated the data whereas f is our model for F; it is hoped that F and f
share some meaningful properties. The function f is typically restricted to a given class of models
(e.g. linear, polynomial, etc.), so that it may be written as the expansion

f (x) =
N∑

j=1

ξ jφj(x) �⇒ f (x) =Ξφ(x). (2.3)

Here, φ describes the feature library of N candidate terms that may describe the dynamics, and Ξ
contains the coefficients that determine which model terms are active and in what proportions.

Mathematically, the optimization problem to be solved is

argmin
Ξ

||Y − Ξφ(X)||F + λR(Ξ ), (2.4)

where || · ||F is the Frobenius norm. The first term in (2.4) corresponds to the error between
training samples and our model prediction, whereas the second term λR(Ξ ) is a regularizer. For
example, in SINDy, the feature library φ will typically include linear and nonlinear terms, and
the regularizer will involve the number of non-zero elements ||Ξ ||0, which may be relaxed to the
1-norm ||Ξ ||1. In DMD, the features φ will simply contain the state x, Ξ will be the DMD matrix
A, and instead of a regularizer R(Ξ ), the minimization is constrained so that the rank of A =Ξ

is less than or equal to r. Similarly, in eDMD, the feature φ will include nonlinear functions of the
state, and the minimization is modified to argminΞ ||φ(Y) − Ξφ(X)||F + λR(Ξ ), resulting in a Ξ
that is a large square matrix evolving the nonlinear feature space forward in time.

For even moderate state dimensions n and feature complexity, such as the monomials of order
d, the feature library of φ becomes prohibitively large and the optimization in (2.4) is intractable.
This scaling issue is the primary challenge in applying SINDy to high-dimensional systems.
Instead, it is possible to rewrite the expansion (2.3) in terms of an appropriate kernel function
k as

f (x) =
m∑

j=1

wjk(xj, x) �⇒ f (x) = Wk(X, x). (2.5)

In this case, the sum is over the number of snapshots m instead of the number of library elements
N, dramatically improving the scaling. The optimization in (2.4) now becomes

argmin
W

||Y − Wk(X, X)||F + λR(W). (2.6)

We will show that it is possible to improve the scaling further by using a kernel defined on a sparse
dictionary X̃. Figure 3 shows our dictionary-based kernel modelling procedure, where the explicit
model on the left is a SINDy model, and the compact model on the right is our kernel model. Thus,
our kernel learning approach may be viewed as a kernelized SINDy without sparsity promotion.

Based on the implicit LANDO model, it is possible to efficiently extract the linear component
L of the dynamics, along with a matrix for the nonlinear forcing

Y = LX + N, (2.7)

where here N =
[
N(x1) N(x2) · · · N(xm)

]
is a nonlinear snapshot matrix, where each column

is the nonlinear component of the dynamics at that instant in time. Although this is not an explicit
expression for the nonlinear dynamics, as in SINDy, knowing the linear model and nonlinear
forcing will enable data-driven resolvent analysis [36], even for strongly nonlinear systems.
Technically, (2.7) may be centred at any base point x̄, resulting in

y′
j = L′x′

j + N(x′
j), (2.8)

where x′ = x − x̄. We will also show that the linear model L may be represented efficiently without
being explicitly constructed, as in DMD.
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explicit model implicit kernel model dictionary-based
kernel model

f(x) = W W̃
(n × N) (n × m) (n × m̃)

k(x̃1, x)

k(x̃m̃ , x)

k(x1, x)x1

x1
2

xd
n

x1x2

xn

k(xm, x)

X

Figure 3. Schematic relationships between different models for N 	 n,m	 m̃. An explicit model (e.g. SINDy) produces
explicitweights that connectN features ton outputs. A kernelmodel uses fewerweights but the relationships between variables
are stored implicitly. The dictionary-based kernel model selects the most active samples and therefore uses fewer weights still.
(Online version in colour.)

Electronic supplementary material SI §C includes further comparison of LANDO to related
data-driven architectures. The eDMD algorithm has already been kernelized [6,7], enabling
efficient approximations to the Koopman operator with very large feature spaces. Although it
is related to the present work, the goal of eDMD/kDMD is to obtain a square representation of the
dynamics of measurement functions in a Hilbert space or feature space φ(x), rather than a closed
representation of the dynamics in the original state x. In this way, our approach more closely
resembles the SINDy procedure, but kernelized to scale to arbitrarily large problems. We will
also show that even though the representation of the dynamics is implicit, it is possible to extract
explicit model structures, such as the linear component and other relevant quantities, from the
kernel representation.

In the following subsections, we will outline the DMD algorithm and provide an introduction
to the kernel methods that will be used throughout this work.

(a) Dynamic mode decomposition
The original DMD algorithm of [2] was developed as a data-driven method for decomposing
high-dimensional snapshot data into a set of coherent spatial modes, along with a low-
dimensional model for how these mode amplitudes evolve linearly in time. As such, DMD may
be viewed as a hybrid algorithm combining PCA in space and the discrete-time Fourier transform
in time [37]. DMD has been adopted in a wide range of fields beyond fluid mechanics, including
epidemiology [38], neuroscience [39], video processing [40], robotics [41] and plasma physics [42].
Much of this success stems from the formulation of DMD as a linear regression problem [4], based
entirely on measurement data, resulting in several powerful extensions [5], including for control
[18], sparsity promoting DMD [43], for non-sequential time series [4,19] and for data that are
under-resolved in space [44] or time [45].

The original algorithm was refined by [4] who phrased DMD in terms of the Moore–Penrose
pseudoinverse thereby allowing snapshots that are not equally spaced in time; this variant is
called exact DMD and will be the main form of DMD used in this paper. In the electronic
supplementary material, appendix C(a), we will show that exact DMD may be viewed as a special
case of our new method.

As mentioned in the previous section, it is assumed that each xj and yj are connected by a
dynamical system of the form yj = F(xj). The aim of DMD is to learn information about F by
approximating it as a linear operator and then performing diagnostics on that approximation. In
particular, DMD seeks the linear operator A that best maps the sets {xj} and {yj} into one another:

yj ≈ Axj for j = 1, . . . , m. (2.9)
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Expressed in terms of the snapshot matrices in (2.2), (2.9) becomes

Y ≈ AX, (2.10)

and the minimum-norm solution is

A = argmin
A

||Y − AX||F = YX†, (2.11)

where † indicates the Moore–Penrose pseudoinverse [46]. If X has the singular value
decomposition (SVD) X = UΣV∗ then A = YVΣ†U∗. Note that A is an n × n matrix so may be
extremely large in practice where n 	 1. Thus, it is common to use a rank-r approximation for
A, denoted by Â, where r � n. To construct Â, we build a rank r approximation for X using the
truncated SVD: X ≈ UrΣrV∗

r = Xr. This approximation is optimal according to the Eckart–Young
theorem [47]. The matrix A is then projected onto the column space of Xr as

Â = U∗
r AUr = U∗

r YVrΣ
−1
r . (2.12)

Since Â is an r × r matrix, it is now feasible to compute its eigendecomposition as

ÂΨ̂ = Ψ̂ Λ. (2.13)

It was proved by [4] that the eigenvectors of the full matrix A can be approximated from the
reduced eigenvectors Ψ by

Ψ = YVΣ−1Ψ̂ . (2.14)

This eigendecomposition has many favourable properties. Firstly, it is an approximation to the
spectrum of the underlying Koopman operator of the system [3]. Secondly, if the snapshots
are equally spaced in time and yj = xj+1 then the data can be reconstructed in terms of the
eigenvectors and eigenvalues as

xj =ΨΛj−1a, (2.15)

where the vector a contains the mode amplitudes often computed as a =Ψ †x1. The above
provides a clear physical interpretation of the modes: the eigenvectors Ψ are the spatial modes
whereas the eigenvalues Λ correspond to the temporal evolution.

(b) Kernel methods
Kernel methods are a class of statistical machine learning algorithms that perform efficient
computations with high-dimensional nonlinear features [26]. Kernel methods have found
applications in adaptive filtering [48], nonlinear principal component analysis [49], nonlinear
regression [32], classification [50] and support vector machines [51]. The broad success of kernel
machines stems from their ability to efficiently compute inner products in a high-dimensional, or
even infinite-dimensional, nonlinear feature space. Thus, if a conventional linear algorithm can
be phrased exclusively in terms of inner products then it can be ‘kernelized’ and adapted for
nonlinear problems. This ‘kernel trick’ has been used to great effect in the above applications.

Kernels are continuous functions k : R
n × R

n → R, and a kernel is a Mercer kernel if it is
positive definite; i.e. for any collection of vectors x′

j ∈ R
n, the matrix K defined by [K]i,j = k(x′

i, x′
j)

is positive definite. By Mercer’s theorem [52], it follows that there exists a Hilbert space Hk and a
mapping φ : R

n →Hk such that k(x, x′) = 〈
φ(x),φ(x′)

〉
. In other words, every Mercer kernel can be

interpreted as an inner product in the Hilbert space Hk, which may be of an otherwise inaccessible
dimension. Every element g ∈Hk can be expressed as a linear combination

g(x) =
M∑

j=1

αjk(x′
j, x), (2.16)

for some M ∈ N, αi ∈ R
n and x′

j ∈ R
n. We drop the word ‘Mercer’ in the remainder of the article,

and assume that all kernels are Mercer kernels.
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An important result in the theory of kernel learning is the representation theorem. First proved
by [53] and then generalized by [54], the representation theorem provides very general conditions
where kernel methods can be used to solve machine learning problems. For the purposes of the
present work, the representation theorem may be stated thus: for a set of pairs of m training
samples, (x1, y1), . . . , (xm, ym), the solution to the minimization problem

argmin
f∈Hk

||Y − f (X)||F + λR(f ), (2.17)

may be expressed as

f (x) =
m∑

j=1

wjk(xj, x), (2.18)

for vectors wj ∈ R
n. One important consequence of the representation theorem is that the solution

to the optimization problem (2.17) can be expressed as a linear combination of kernel functions
whose first arguments are the training data. Contrast this with the general representation of
members of Hk in (2.16) where the parameters x′

j are not known. The representation theorem
allows us to avoid an exhaustive search for the optimal parameters, thereby reducing the problem
to a (linear) search for the weights wj. In the above, λ> 0 is a regularization parameter and the
regularizer on f is to be interpreted as the norm associated with k [27].

(i) An illustrative example

The discussion of kernels has thus far been rather abstract; we now make the theory concrete by
illustrating an application of the usefulness of kernel methods. This simple example is often used
in kernel tutorials [7,26].

Consider a three-dimensional state, x ∈ R
3, upon which we want to perform some machine

learning task such as regression or classification. Suppose that we know—from either physical
intuition, empirical data or experience—that the system is governed by pairwise quadratic
interactions between the state variables. Thus, our machine learning model should operate in
the nonlinear feature space defined by

φ(x) = [x1x2 x1x3 x2x3 x2
1 x2

2 x2
3]T ∈ R

6. (2.19)

Almost every machine learning algorithm uses inner products to measure correlations between
samples. Computing inner products in a feature space of dimension N costs 2N − 1 operations:
N products and N − 1 summations. Thus, in this example, computing inner products in the
nonlinear feature space would usually require 11 operations. However, we still need to form the
two feature vectors φ(x) and φ(x′), which cost a further six operations each, raising the total count
to 23 operations.

Equivalently, we could build our model in the slightly rescaled feature space

ϕ(x) =
[√

2x1x2
√

2x1x3
√

2x2x3 x2
1 x2

2 x2
3

]T
. (2.20)

Now note that inner products in this feature space may be expressed as〈
ϕ(x),ϕ(x′)

〉= 2x1x′
1x2x′

2 + 2x1x′
1x3x′

3 + 2x2x′
2x3x′

3 + x2
1(x′

1)2 + x2
2(x′

2)2 + x2
3(x′

3)2

= (x1x′
1 + x2x′

2 + x3x′
3)2

= (〈
x, x′〉)2 . (2.21)

Thus, we can compute the inner product
〈
ϕ(x),ϕ(x′)

〉
in merely six operations by computing the

inner product
〈
x, x′〉 and then squaring the result. In other words, computing the inner product

amounted to evaluating the kernel k(u, v) = (uTv)2. Moreover, while computing the inner product
with the kernel, we never explicitly formed the feature space, and therefore did not need to store
ϕ(x) in memory. In summary, if we use expression (2.21) then the cost of computing inner products
falls from 23 operations to six operations.
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This may seem a modest saving but the cost of computations in feature space explodes as
the state dimension or degree of nonlinearity increase. For a state of dimension n, the number
of degree d monomial features is N = (n+d−1

d
)= (n + d − 1)!/(d! (n − 1)!).1 Thus, explicitly forming

vectors in this feature space is extremely expensive, as is computing inner products. For example,
for an n-dimensional state, the number of possible quadratic interactions between states is
n(n − 1)/2. This scaling of the feature vector is the prime limitation of SINDy.

Instead of explicitly forming this vast feature space, we instead work with suitably chosen
kernels. The feature space of degree d monomials can be represented using the polynomial kernel

k(u, v) = (uTv)d. (2.22)

Thus, using the kernel (2.22) to compute inner products reduces the operation count from 2N − 1
to 2n, which is significant when the state space is large and the nonlinearity is quadratic or higher.

3. Learning kernel models with sparse dictionaries
We now develop the main machine learning method presented by this paper. The procedure is
based on the KRLS algorithm of [32] but is more stable and allows further interpretation and
analysis of the learned model. We specifically tailor this approach to learn dynamical systems in a
robust and interpretable framework. Recall that we are solving the optimization problem defined
in (2.4) for a nonlinear function f that approximates the dynamics. By the representation theorem,
we may express the dynamical system approximation f from (2.3) in the kernelized form (2.18) as

f (x) =
N∑

j=1

ξ jφj(x) =
m∑

j=1

wj
〈
φ(xj),φ(x)

〉= m∑
j=1

wjk(xj, x). (3.1)

Arranging the column vectors wj into a matrix W allows us to write f (x) = W k(X, x) so the
optimization problem is

argmin
W

||Y − Wk(X, X)||F + λR(f ). (3.2)

Theoretically, a solution to (3.2), in the absence of regularization, is provided by the Moore–
Penrose pseudoinverse:

W = Yk(X, X)†. (3.3)

As noted by [32], there are three practical problems with the above solution

— Numerical conditioning: even though the kernel matrix may formally have full rank,
it will usually have a very large condition number since the samples can be almost
linearly dependent in the feature space. When the condition number is large, the
condition number of the pseudoinverse will also be large and W will amplify noise by a
corresponding amount.

— Overfitting: the weight matrix W has mn entries, which is equal to the number of
constraining equations in (3.2). Thus, there is a risk of overfitting, which can limit the
generalizability of the model and make it sensitive to noise.

— Computational complexity: in nonlinear system identification, we usually need a large
number of samples to adequately learn the system. When there are m 	 1 samples,
constructing the pseudoinverse k(X, X)† requires O(m3) operations to construct and O(m2)
space in memory, which can become prohibitively expensive. Additionally, evaluating the
model f for prediction or reconstruction requires multiplying the n × m weight matrix by
the m-vector of kernel evaluations, which will also become expensive for large sample
sets.

1This can be thought of as the number of ways of distributing d unlabelled balls into n labelled urns.
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To address these issues, Engel et al. [32] proposed an online form of dimensionality reduction that
iteratively constructs a dictionary of samples that capture the salient features of the underlying
dynamics. The key idea is that the model f defined in (2.18) can be approximated by

f (x) ≈ W̃k(X̃, x), (3.4)

for a suitable choice of X̃ known as the dictionary (in this paper the tilde symbol indicates that a
quantity is connected to the dictionary). Then, the optimization (3.2) may be approximated as

argmin
W̃

||Y − W̃k(X̃, X)||F + λR(f ). (3.5)

The dictionary is constructed by considering each sample and determining whether it should be
included in the dictionary. Membership of a sample in the dictionary is decided by checking if
the sample can be approximated in the feature space using the current dictionary. This scheme is
called the ‘almost linearly dependent’ (ALD) test: if a sample is almost linearly dependent on the
current dictionary then it is not added, otherwise the dictionary must be updated with the current
sample. Thus, the dictionary is a sparse2 subset of samples that spans the largest subspace in the
data. Usually, the size of the dictionary is much smaller than the number of samples. Physically,
the selected samples are those that most substantially contribute to the dynamics, as measured by
the kernel k.

The dictionary learning procedure searches the high-dimensional feature space for a low-
dimensional subspace where most of the dynamics take place. This approach is similar to kernel
principal component analysis (KPCA [49]), though we argue that ALD dictionary learning is
more physically interpretable. KPCA conflates the feature space representations of samples,
and the result usually has no interpretation in the original physical space. For example, if the
feature space is φ(x) = [x1 x2 x1x2]T then certain datasets could produce a principal component
of φ̂ = [1 1 0]T. However, such a vector is unrealizable in the original physical space because if
the x1x2 component is zero then at least one of x1 and x2 must also be zero. It was shown in [32]
that ALD dictionary learning may be viewed as an approximate form of KPCA. Additionally, the
dictionary has a clear physical interpretation since every member it contains is simply the state
vector system at a specific time. Thus, ALD dictionary learning may be preferable to KPCA when
studying physically motivated problems.

(a) Sparse dictionary learning
The dictionary at time t is defined as a collection of m̃t vectors, Dt = {x̃j|j = 1, . . . , m̃t}, and is
initialized with D1 = {x1}. We write

Xt =

⎡
⎢⎣ | | |

x1 x2 · · · xt

| | |

⎤
⎥⎦, (3.6)

to represent the data matrix including all samples up to snapshot t. We may also represent the
dictionary in terms of data matrices in the state space and feature space, respectively, as

X̃t =

⎡
⎢⎣ | | |

x̃1 x̃2 · · · x̃m̃t

| | |

⎤
⎥⎦ and Φ̃t =

⎡
⎢⎣ | | |
φ(x̃1) φ(x̃2) · · · φ(x̃m̃t

)
| | |

⎤
⎥⎦. (3.7)

When a new element is introduced, we determine how much new information it could add to
our model. In other words, how well can the new element be approximated using the members

2We use the term ‘sparse’ carefully here. The dictionary is actually a dense matrix but consists of a small number of the total
samples. This is the terminology used in the original work of [32].
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of the current dictionary. The degree to which the current sample can be well represented by the
dictionary in feature space is quantified by

δt = min
π t

||φ(xt) − Φ̃t−1π t||22. (3.8)

The number δt represents the minimum (squared) distance between the current sample and the
span of the current dictionary and π t specifies the linear combination of dictionary elements that
minimizes this distance. Having calculated δt as detailed below, we compare it with a user-defined
sparsification threshold ν. If δt ≤ ν then the new sample xt can be approximated in the feature
space using linear combinations of members of the dictionary. Thus, the new sample is ALD
on the dictionary elements in the implicit feature space. If δt > ν then the new sample cannot
be well approximated by the current dictionary. Thus, the new sample contributes meaningful
information that was not already present in the dictionary and the dictionary should be updated
with the current sample.

By expanding the norm in (3.8) and using properties of kernels, we can show that

δt = ktt − k̃
∗
t−1π t, (3.9)

where the minimizer is

π t = K̃
−1
t−1k̃t−1 (3.10)

and

ktt = k(xt, xt) and k̃t−1 = k(X̃t−1, xt) ∈ R
m̃t−1 . (3.11)

The kernel matrix K̃
−1
t−1 and its inverse should be updated whenever an element is added to the

dictionary. The updated equations are, respectively,

K̃t =
[

K̃t−1 k̃t−1

k̃
∗
t−1 ktt

]
and K̃

−1
t =

⎡
⎢⎢⎣

K̃
−1
t−1 + π tπ

∗
t

δt

−π t

δt

−π∗
t

δt

1
δt

⎤
⎥⎥⎦ . (3.12)

The above expression for K̃
−1
t is mathematically correct but numerically unstable. This issue is

typical of kernel methods, which are often plagued with problems of numerical stability due to
the large condition numbers associated with kernel matrices. This seems to not be an issue for
the Gaussian kernels that were used in the original KRLS formulation of [32], but it becomes
important when working with the polynomial kernels that arise in physical applications. To

circumvent these issues, we avoid constructing the ill-conditioned matrices K̃t and K̃
−1
t explicitly.

In particular, as K̃t is positive definite it admits a unique Cholesky decomposition K̃t = CtC∗
t

where Ct is a lower-triangular m̃t × m̃t matrix. Instead of updating K̃t according to (3.12), we
instead update and store its Cholesky factor. The Cholesky factor is initialized as C1 = √

k11 and
the updated rule is

Ct =
[

Ct−1 0
s∗

t ct

]
, (3.13)

where st = C−1
t−1k̃t−1 can be formed in O(m̃2

t ) operations by backsubstitution and ct =
√

ktt − ||st||22.
Rounding errors can still accumulate and produce an imaginary value for ct, so in practice

one can use ct = max(0,
√

ktt − ||st||22). In summary, multiplication by the inverse K̃
−1
t should be

interpreted and implemented as solving a linear system with two back substitutions of Ct. Thus,
we can compute the distance of a sample from the dictionary (3.9) without ever forming the

ill-conditioned matrices K̃t and K̃
−1
t . The full dictionary can be learned in O(mm̃2 + nmm̃) time.

Note that st is formed implicitly in (3.10) so need not be computed explicitly. Before learning the
dictionary, we strongly recommend that the order of samples in X is randomly permuted. This
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Figure 4. Comparing the ALD dictionaries computed by the original KRLS algorithm, the Cholesky updating variant and a batch
offline algorithm when applied to a solution of the viscous Burgers’ equation. The kernel here is quadratic and the sparsity
parameter is ν = 0.1. (a) The computed distance of each sample from the span of the current dictionary, which determines
whether the current sample should be added to the dictionary. (b) Plots the growth of the dictionary as more samples are
considered. The original KRLS algorithm misidentifies dictionary elements and the corresponding dictionary is larger than
necessary. (Online version in colour.)

step avoids the situation where the first few samples are almost linearly independent, which can
lead to dictionaries with large condition numbers.

Updated Cholesky factors significantly improve dictionary learning. Figure 4 illustrates the
improvement by comparing three methods of dictionary learning. We evaluate the efficacy of
each method by their accuracy in computing δt for each sample, which represent the algorithm’s
estimate of the distance of sample t from the current dictionary. Recall that δt determines whether
the current sample should be included in the dictionary so accurate computation of δt is essential.
The first method is the original KRLS formulation, which uses (3.12) to compute δt with (3.10).
The second method is the Cholesky updating formulation presented here, which uses (3.13) to

compute δt as opposed to constructing K̃t or K̃
−1
t explicitly. The third method is a batch method

that computes K̃
−1
t from scratch at each iteration and does not use the estimates of K̃

−1
t−1 or Ct−1

at the previous iteration. We take the batch method to be the ground truth, although there will
still be some numerical instability associated with the large condition number of K̃t. Although
accurate, the batch method is also prohibitively expensive at large scales, with each iteration
costing O(m̃3) as opposed to the updating methods, which cost merely O(m̃2). The data here
are chronologically ordered samples from a simulation of the viscous Burgers’ equation (see §5c),
and we use a quadratic kernel with sparsity threshold ν = 0.1. Figure 4a indicates that the first
seven samples are all added to the dictionaries. After this transient period, most new samples
are well represented by the current dictionary and are therefore excluded. Occasionally, the data
drift sufficiently far from the dictionary that a new sample must be included. This is illustrated
by the spikes appearing in the batch method and the Cholesky updating method in figure 4a.
Physically, this indicates that the solution of the PDE has departed from what can be adequately
described by the dictionary of previous samples. The results indicate that the batch method and
Cholesky updating method select identical dictionaries, whereas the KRLS dictionary learning
algorithm misidentifies a large number of dictionary elements. Moreover, figure 4b shows that
the KRLS dictionary is more than twice the size of the correct dictionary. In summary, figure 4
indicates that the Cholesky factor method significantly improves the accuracy of the learned
dictionaries.

Pseudocode for the dictionary learning procedure may be found in the electronic
supplementary material, SI §A.
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(b) Batch regression learning
Once the dictionary has been learned, the optimization becomes the tractable problem defined in
(3.5). There are many methods available to find the weights W̃ from (3.5); in the absence of further
regularization on W̃, we use the Moore–Penrose pseudoinverse

W̃ = Y k(X̃, X)†. (3.14)

The computation of the pseudoinverse is far cheaper than the full solution (3.3) and avoids the
issues described earlier. Thus, we are left with two quantities that together define the nonlinear
model in (3.4): the final dictionary matrix X̃ with m̃ columns and the final set of weights W̃.

The model may also be learned in a purely online fashion (see the electronic supplementary
material, appendix D), which is useful when working with streaming data. The algorithm is also
applicable to situations where the system is forced by an exogenous control variable: details are
provided in the electronic supplementary material, appendix E.

4. Extracting and enforcing physical structure with kernel machines
Having calculated the kernel weights W̃, we may now construct our model f (x) = W̃ k(X̃, x) from
(3.4). This kernel model is implicit: without further analysis we cannot interpret the model and
understand the physical relationships that the model has learned. In this section, we present
techniques that extract physically interpretable structures from the kernel model f .

(a) Extracting structure from kernel machines: the linear operator
One means of providing insight and interpretability is to analyse the linear component of f
relative to some state. In particular, suppose we consider perturbations (not necessarily of small
amplitude) about a base state x which may correspond to the mean of the data, an equilibrium
solution, or simply the zero vector. We define the perturbations about the base state as x′ so that
x = x + x′. A typical approach is to seek a representation of our model of the form

f (x) = c + Lx′ + N(x′), (4.1)

where L is a linear transformation, c is a constant and N is a nonlinear operator such that

lim
||x′||2→0

||N(x′)||2
||x′||2

= 0. (4.2)

In words, condition (4.2) restricts N so that it is purely nonlinear with respect to the base state x.
If L and c are known, then rearranging (4.1) obtains the nonlinear fluctuations as N(x′) = f (x) −
L(x′) − c.

Numerically computing the linear component of a high-dimensional nonlinear operator can
be computationally expensive. For example, neural networks use stochastic gradient descent to
estimate the local slopes of high-dimensional functions for optimization. By virtue of our use of
kernels, we can extract the linear component analytically.

We consider the Taylor expansion of f about x

f (x) = f (x) + ∇f (x)|x=xx′ + higher-order terms. (4.3)

Thus, f (x) can be expressed in the form (4.1) where

c = f (x), L = ∇f (x)|x=x and N(x′) = f (x) − f (x) − ∇f (x)|x=xx′.

Accordingly, to compute c, L and N, we need only compute f and ∇f . Since our model consists of
linear combinations of kernels (3.4), the gradient is simply

∇f (x)|x=x = W̃∇k(X̃, x). (4.4)
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Evidently, the linearization depends on the choice of kernel, so the kernel should be carefully
designed with this in mind (§4d). The gradients ∇k can usually be computed analytically in a
straightforward manner. For example, for polynomial kernels (see (4.20) and §4d), we have

∇k(X̃, x) = diag[d(c + x̃T
j x)d−1]X̃

∗
. (4.5)

For Gaussian kernels (see (4.21)), the gradient is

∇k(X̃, x) = diag

[
−1
σ 2 exp

(
−||x̃j − x||22

2σ 2

)]
(X̃ − X)∗, (4.6)

where X is an n × m̃ matrix where each column is x. Similar expressions can be derived for any
kernel function or any combination of kernels.

Note that the gradients (4.5) and (4.6) all take the form ∇k = S(X̃ − ρX)∗, where S is a diagonal
matrix and either ρ = 0 or ρ = 1. Indeed, an application of the chain rule shows that ∇k takes this
form for any distance kernel (ρ = 1) or inner product kernel (ρ = 0) as defined in §4d. Thus, for
these extremely broad classes of kernels, the linear operator may be expressed in the general form

L = W̃S(X̃ − ρX)∗. (4.7)

In the case m̃ � n, the expression (4.7) is computationally attractive since L need not be stored
explicitly; instead of storing a large n × n matrix, it is sufficient to store two n × m̃ matrices and
a diagonal m̃ × m̃ matrix. Additionally, the potentially expensive matrix multiplications involved
in forming L can be avoided. For example, it is not necessary to form L explicitly if all that is
required is its eigendecomposition, as with DMD.

(b) Extracting structure from kernel machines: the dynamic mode decomposition
We can exploit the factorization in (4.7) to perform a DMD of the linear operator L. This step
can be computationally expensive as L is an n × n matrix so the eigendecomposition costs O(n3)
operations. However, we can obtain the leading eigenvectors and eigenvalues by computing the
eigendecomposition of a much smaller matrix that is (at most) m̃ × m̃. This idea is formalized in
the following lemma.

Lemma 4.1 (Dynamic mode decomposition of the linear operator). Let (X̃ − ρX)S = UΣV∗ be
the (economy) SVD of the rescaled and shifted dictionary and L̂ = U∗LU be the projection of L from (4.7)
onto the columns of U. If L̂ψ̂ = λψ̂ with λ �= 0 then

ψ = 1
λ

W̃VΣψ̂ , (4.8)

is an eigenvector of L with eigenvalue λ. Additionally, all non-zero eigenvalues of L are eigenvalues of L̂.

The operator L̂ represents the projection of the full linear operator L onto the principal
components (proper orthogonal decomposition modes) of the rescaled and shifted dictionary
(X̃ − ρX)S. This lemma is significant since it implies that every non-zero eigenvalue of L can
be obtained by computing the eigendecomposition of the smaller matrix L̂. Furthermore, the
eigendecomposition produces an eigenvector of L that corresponds to each eigenvalue.

We now prove the lemma using similar arguments to those used in theorem 1 of [4].

Proof. We first show that the pair (ψ , λ) is indeed an eigenvector/eigenvalue pair. Assume that
L̂ψ̂ = λψ̂ for λ �= 0 and define

G = W̃VΣ , (4.9)

so that ψ = (1/λ)Gψ̂ . By (4.7) and the economy SVD, we may write L as

L = W̃(UΣV∗)∗=W̃VΣU∗=GU∗. (4.10)

Similarly,
L̂ = U∗(W̃(UΣV∗)∗)U = U∗W̃VΣ = U∗G. (4.11)
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Thus,

Lψ = 1
λ

(GU∗)(Gψ̂) = 1
λ

GL̂ψ̂ = Gψ̂ = λψ (4.12)

as required.
We will now prove that every non-zero eigenvalue of L is also an eigenvalue of L̂. Let (ψ , λ) be

a non-zero eigenvector/eigenvalue pair and define u = U∗ψ . Then

L̂u = U∗GU∗ψ = U∗Lψ = λU∗ψ = λu. (4.13)

Note also that u is not the zero vector. If it were, then Lψ = GU∗ψ = Gu = 0 and therefore λ= 0,
which contradicts our assumption that λ �= 0. Combining this observation with (4.13) shows that
λ is also an eigenvalue of L̂. �

Pseudocode for extracting the linear operator and computing the DMD is available in the
electronic supplementary material, SI §A. In the electronic supplementary material, SI §C, we
demonstrate that we recover the exact DMD formulation [4] in the special case of a linear kernel.

(c) Extracting structure from kernel machines: querying nonlinear relationships
The analysis of §4a showed that we can extract linear relationships from otherwise opaque kernel
machines. This section demonstrates that we can also extract specific nonlinear relationships
between the input and output states.

Suppose that we know that the implicit feature space consists of a specific nonlinear scalar
feature of interest labelled φj(x). For example, we may be interested in the effect of quadratic
interactions between two states: φj(x) = x1x2. To ‘query’ φj(x) is to determine the n-dimensional
vector that represents the effect of the nonlinearity φj(x) on the elements of the output vector f (x).
Without loss of generality, we can decompose the implicit feature vector φ(x) into φj(x) and φ′(x),
where φ′(x) is the original feature vector with the φj(x) element removed. Applying (3.1) allows
us to write

y = f (x) = W̃((φj(X̃))∗φj(x) + (φ′(X̃))∗φ′(x)).

Thus, the effect of the features φj(x) on f (x) can be determined by simply reading off its coefficient
as W̃(φj(X̃))∗. The result corresponds to the jth column of the explicitΞ matrix of coefficients from
(2.3).

(d) Using partial knowledge of system physics to design kernels
An informed choice of kernel is critical to the success of kernel machines. Prior knowledge
about the physical properties of a system can and should be considered when designing the
kernel used for learning. This physical knowledge may include specific symmetries, invariants
and conservation laws that are known to exist in the system under consideration. Moreover, in
addition to enforcing known physics, it is possible to uncover these physical properties when
they are unknown based on which kernel functions provide the best validated performance. In
the next section, we will also see that it is possible to test several kernels, and by choosing the
kernel with the best validated performance gain insight into what terms might be present in the
governing equations.

The choice of kernel has many different perspectives as outlined in ch. 13 of [26]; the most
useful perspective in this work is that the kernel defines the function space used by our model. For
example, the kernel chosen in §2b(i) corresponded to the function space of quadratic monomials.
Thus, that kernel can be used to model systems that are dominated by quadratic interactions
between the states.

There are several strategies that can be used to design suitable kernels for a given physical
problem. Useful references are ch. 13 of [26] and ch. 3 of [27]. Kernels can be combined to obtain
new kernels, which affords significant flexibility when constructing kernels for a given problem.
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For example, the set of (Mercer) kernels forms a convex cone: for kernels k1 and k2, the conical
combination

k(u, v) = α2
1k1(u, v) + α2

2k2(u, v), (4.14)

is also a kernel. When two kernels are combined in this way, their feature space representations
are scaled and stacked. If the kernels k1,2 induce features φ1,2 then the features induced by k in

(4.14) is
[
α1φ1
α2φ2

]
. This construction is useful when designing kernels for a given physical problem.

For example, we may know that a system is dominated by linear and cubic interactions between
its states. Thus, we may propose a kernel consisting of conical combinations of appropriate
monomial kernels

k(u, v) = α2
1uTv + α2

3(uTv)3. (4.15)

This kernel induces a feature space consisting of purely linear and cubic terms

φ(x) =
[
α1x1 · · · α1xn α3x3

1

√
3α3x2

1x2 · · · √
6α3xn−1xn−2xn−3 α3x3

n

]T
. (4.16)

The constants α1,3 represent the relative importance of the linear and cubic terms and can be
chosen through physical intuition or cross-validation.

Another useful result is that kernels are closed under direct sums. If k1 : X1 × X1 → R and
k2 : X2 × X2 → R are kernels then their direct sum

(k1 ⊕ k2)(u, u′, v, v′) = k1(u, v) + k2(u′, v′) (4.17)

is a kernel on (X1 × X2) × (X1 × X2). This fact can be exploited to design kernels where the inputs
have different meanings or known physics implies different governing laws for the different
states. For example, we could have a state space consisting of two types of measurements so

x =
[

x(1)

x(2)

]
where x(j) are n(j)-dimensional vectors. Suppose also that it is known that the system is

governed by a linear response to x(1) and quadratic interactions of x(2). An appropriate kernel for
our model would then be

k(u, v) = α2
1(u(1)Tv(1)) + α2

2(u(2)Tv(2))2, (4.18)

which induces the feature space

φ(x) =
[
α1x(1)

1 · · · α1x(1)
n(1) α2(x(2)

1 )2
√

2α2x(2)
1 x(2)

2 · · · α2(x(2)
n(2) )

2
]T

. (4.19)

Thus far we have only explained how to design kernels for purely polynomial models. Non-
polynomial terms play an important role in many nonlinear systems [55], and these can easily be
incorporated into kernel design. For example, l may represent a vector of pointwise trigonometric
functions that we wish to incorporate into our feature space. The corresponding kernel is simply
k(u, v) = l(u)Tl(v), which can be combined with any other kernel to supplement the feature space
with the non-polynomial nonlinearities l.

Two classes of kernels have received significant attention in applications. Inner product kernels
take the form k(u, v) = κ(uTv), where κ is a scalar function. Inhomogeneous polynomial kernels
are inner product kernels that take the form

k(u, v) = (c + uTv)d, (4.20)

where c is a constant and d ∈ N is the degree of polynomial. These inhomogeneous polynomial
kernels are linear combinations of the monomial kernels in (2.22). The special case c = 0 and d = 1
corresponds to a linear feature space.

Distance kernels are another important class of kernels and take the form k(u, v) = κ(||u − v||2).
A popular example used in several applications is the Gaussian kernel

k(u, v) = exp

(
−||u − v||22

2σ 2

)
, (4.21)

where σ is a constant.
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Supplementing the feature space with a bias term can be achieved by combining a kernel with a

constant, such as k = α2
0 + α2

1k1, so that the feature space becomes
[
α0
α1φ1

]
. Additionally, pointwise

products of kernels (k = k1k2) are also kernels and the corresponding features are the products of
all pairs of features from the first and second feature space.

Kernels can also be designed to respect known physical invariances or symmetries [56]. For
example, Klus et al. [57] recently derived analogues of the Gaussian and polynomial kernels that
respect the symmetries of quantum physics. Models that respect such invariances and symmetries
are highly desirable as they usually require less training data and are less prone to overfitting.
Techniques for incorporating invariances into kernel machines are available in ch. 11 of [26].

To summarize this section, we have demonstrated that

(i) kernels can efficiently compute dense polynomial interactions between states that would
otherwise be combinatorially complex;

(ii) kernels can be combined to generate a range of feature spaces;
(iii) if the features have different physical meanings or governing laws then one can construct

separate models and combine the kernels using a direct sum;
(iv) non-polynomial and constant terms can be incorporated into kernels; and
(v) kernels can be designed to respect symmetries and invariances.

These observations indicate that there is significant flexibility for incorporating partially known
physics into our models through a suitable choice of kernel. Similarly, the validated performance
of a handful of candidate kernels may provide insight into underlying physics, such as
symmetries and terms in the governing equations.

5. Results
We now demonstrate our approach on a range of physically relevant systems. We will consider
both dynamical systems and high-dimensional discretized PDEs. The results of LANDO applied
to these systems is summarized in figure 5. It can be seen that the true linear and nonlinear forcing
components are accurately recovered by LANDO, while DMD fails to identify the correct linear
model. For the dynamical systems considered, the linear operators are known exactly; for the
PDEs, we express the ‘true’ linear operators as the appropriate spectral differentiation matrices. In
addition to the Lorenz system (§5a), the viscous Burgers’ equation (§5c) and the KS equation (§5d),
we also consider a 9D analogue of the Lorenz system [58]. Reiterer et al. derived this analogue
by modelling dissipative Rayleigh–Benard convection in a three-dimensional cell and applying
a triple Fourier expansion to the associated Bousinnesq–Oberbeck equations. The resulting
analogue exhibits similar asymptotic behaviour to the original Lorenz system, including a low-
dimensional chaotic attractor and a period-doubling cascade. We do not repeat the equations
here for the sake of brevity, but they are analogous to the original Lorenz system and can be
found in equation 18 of [58]. In particular, the equations consist of a linear operator and quadratic
interactions between the states. We observe in figure 5 that we recover the linear component of
the operator to a high degree of accuracy.

(a) Implicit learning of the chaotic Lorenz system
We first illustrate our approach on the Lorenz system [59], which is a prototypical example of
chaos and is often used in demonstrations of nonlinear system identification [8]

ẋ = ς (y − x), ẏ = x(γ − z) − y and ż = xy − βz, (5.1)

where ς , β and γ are constants that parametrize the system. Our goal here is to use the LANDO
framework to find data-driven local linearizations of (5.1). We are also interested in the predictive
abilities of the full nonlinear model (3.4) learned by LANDO. Both the state dimension of the
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system 

Burgers’ equation

KS equation

ut + uxxxx
+ uxx + ½ ux

2 = 0

ut + uux = nuxx

ẋ  =   (y – x),

ẏ  = x(g – z) – y,

ż  = xy – bz

9D Lorenz

Lorenz ‘63

(Reiterer et al. 1998)

exact 
linear part

LANDO
linear part

DMD 
linear part

exact 
nonlinear forcing

LANDO
nonlinear forcing

z
y

x

x

tu

x
x

t

tu

x3 x1

x2

data

Figure 5. A comparison of learned linear operators for dynamical systems and PDEs. In the linear operators, red represents
positive quantities whereas blue represents negative quantities. The problem sizes are provided in §5. (Online version in colour.)

system (n = 3) and the order of polynomial nonlinearity (d = 2) are relatively small, so the benefits
of kernel methods here are limited. As such, the system is considered here only for demonstration.

We take the standard parameter values ς = 10, γ = 28 and β = 8/3 and initial condition x = −8,
y = 8 and z = 27. The system (5.1) is integrated from t = 0 to t = 10 and the solution is sampled at
time intervals of�t = 10−3 resulting in 10 000 samples. The data matrix X comprises snapshots of
the solution at each time step so that xj = [x(j�t) y(j�t) z(j�t)]T, and the columns of Y are
the derivatives at each time: yj = ẋj. The order of the samples is randomly permuted so that
the sparse dictionary is as rich as possible. The data used in this example are free of noise, and
we demonstrate that the algorithm can be made robust to noise in the electronic supplementary
material, appendix F.

The results of our kernel learning algorithm are illustrated in figure 6. We use LANDO to
calculate four quantities: a reconstruction of the dynamics, a prediction of the dynamics for
a different initial condition, the model error at a known equilibrium point and a local linear
model at that equilibrium point. For each such quantity, we consider three types of kernels: linear
(k(u, v) = uTv), quadratic (k(u, v) = (1 + uTv)2) and Gaussian (k(u, v) = exp(−||u − v||22/(2σ 2)) with
σ = 1.1). These kernels are not optimized, and the best kernel parameters may be chosen through
cross-validation. The top row of figure 6 illustrates the reconstructions achieved by each model
on the same initial condition used for training. Each reconstruction is created by integrating the
learned kernel model ẋ = f (x). The linear model performs poorly and reconstructs a decaying
spiral. By contrast, the quadratic and Gaussian models accurately capture the behaviour of
the underlying system. The quadratic model has a training error of O(10−12). Higher-order
polynomial kernels produce similar training errors to the quadratic model.

This example also illustrates the value of a sparse dictionary: applying a standard kernel
regression to this problem would require inverting a large 10 000 × 10 000 matrix. Instead, the
dictionary sizes are m̃ = 3, 7 and 84 for the linear, quadratic and Gaussian kernels, respectively.

We also present the trajectories predicted by our models with the different initial condition
of x = 10, y = 14 and z = 10. The linear model prediction is poor and decays to the origin, while
the Gaussian kernel model reproduces a trajectory that is roughly similar to the Lorenz system.
Finally, as expected, the quadratic kernel model generates an excellent prediction, which indicates
the generalizability of the model to trajectories away from the initial data.
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Figure 6. Kernel learning of the Lorenz system.We compare the learnedmodels and predicted trajectories for linear, quadratic
and Gaussian kernels. The training data are discrete-time snapshots of the state [x y z]T and the corresponding velocity
measurements. The top row shows the models’ reconstructions of the training data, the middle row shows the predicted
trajectory from a different initial conditions, and the bottom row shows the learned linear model near the equilibrium point
x = [−√β(γ − 1) −√

β(γ − 1) γ − 1]T , which is indicated by square. The parameter values are ς = 10, γ = 28
andβ = 8/3 and the initial conditions are represented by circle. (Online version in colour.)

We now extract meaningful physical information from the kernel models. Specifically, we
extract linear models near the equilibrium x = [−√β(γ − 1) −√

β(γ − 1) γ − 1]T, indicated by
a square in the top row of figure 6. Note that x is not included in the training data, and different
equilibrium points will produce different models and eigenvalues. Nevertheless, the quadratic
and Gaussian models both identify x as an equilibrium since ||f (x)|| is close to zero for both
models. Moreover, applying the results of §4a to each model generates local linear models for the
behaviour near x. The true linearized model and the learned local linear models are reported in the
third row of figure 6. All models capture the first row of the linearization, where the true system
is also linear. However, the linear kernel model fails to estimate the rest of the linearization, while
the quadratic and Gaussian kernel models provide excellent agreement; the local linear model
learned by the quadratic kernel is correct to O(10−4).

(b) Extracting natural frequencies from densely coupled oscillators
We now use our framework to study systems of coupled oscillators from a data-driven
perspective. The Kuramoto model is a prototypical model of coupling and synchronization, and
has been applied to biological, chemical, physical and social systems [60]. We consider a forced
Kuramoto model of n coupled oscillators of the form

ϑ̇i =ωi + 1
n

n∑
j=1

aij sin(ϑj − ϑi) + h sin(ϑj), i = 1, . . . , n, (5.2)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 J

un
e 

20
22

 



21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210830

..........................................................

exact

LANDO

cos(Ji)

si
n(

J i)

training data
(2000 coupled oscillators; 500 snapshots)

exact versus learned natural frequencies
(LANDO average error <1%)

oscillator number, i

na
tu

ra
l f

re
qu

en
ci

es
, w

i

DMD

Kuramoto synchronization model:

00 0
0.5

1.0
1.5

2.00

1

1
–1

–1

2

4

6

8

10

500
time, t

1000 1500 2000

J̇i = wi +       aij sin(Jj  – Ji) + h sin(Jj)
n

j = 1

(a) (b)

Figure 7. Learning the natural frequencies of coupled oscillators. The training data are generated from a forced Kuramoto
model and are illustrated in (a). The LANDO framework extracts the natural frequencies of the model. These learned natural
frequencies are comparedwith the true natural frequencies in (b) and the frequencies learned by a linear (DMD)model; because
there are 2000 oscillators, only a handful of frequencies are plotted. (Online version in colour.)

where {ϑi(t)} are the phases, {ωi} are the natural frequencies, h is a forcing constant and ai,j are
constants representing the nonlinear coupling between the ith and jth oscillators. This example
is inspired by similar recent studies of [61] and [62], which sought to learn predictive models for
the Kuramoto system. Instead, our aim here is to extract structural model information from the
system. In particular, we wish to learn the natural frequencies of each oscillator, ωi.

To train our model, we follow [61] and use the kernel

k(u, v) =
⎛
⎝c +

[
sin(u)
cos(u)

]T [
sin(v)
cos(v)

]⎞⎠
2

, (5.3)

to produce a feature space consisting of constant, linear and quadratic trigonometric terms. This
is an example of a kernel with non-polynomial terms, as was discussed in §4d. We seek f that
defines the dynamical system 5.2 such that ẋ = f (x). The natural frequencies are the constant term
in (5.2) so, by §4a, the natural frequencies are approximated by ω≈ f (0).

We consider a system of 2000 coupled oscillators with state vector x = [ϑ1, . . . , ϑ2000]T. The
data are plotted in figure 7. The feature space, which is implicitly defined by (5.3), has over 2 × 106

elements, which is prohibitively expensive to work with explicitly. We consider a strongly coupled
system and randomly sample the coupling constants aij from a normal distribution with mean
15 and variance 5. We take a forcing value of h = 2, and randomly sample ωi from a uniform
distribution on the interval [0, 10]. The system is integrated to t = 2, and we consider only a single
simulation.

Figure 7b reports the results of the learned natural frequencies. The average error of the
estimates made by LANDO is less than 1%. The deviations of the predictions are slightly worse at
the upper and lower ends of the spectrum; the cause of this may be that the oscillators synchronize
on the average natural frequency, which is 5 here, and the model is more accurate for frequencies
close to the average. We also compare the results on a DMD model trained on linear combinations
of sin(x), cos(x) and a constant vector. The learned natural frequencies of the linear model are very
inaccurate, which illustrates the need of incorporating nonlinearities when attempting to learn the
underlying natural frequencies.
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Figure 8. Learning the spectrum of the viscous Burgers’ equation. A typical simulation is illustrated in (a) with the initial
condition highlighted in green. The algorithm is trained on discrete time snapshots yj = xj+1; velocity measurements ẋ are
not used in the training set. The figures in (b) indicate that the algorithm accurately learns the eigenvalues, λn = −νn2π 2,
and eigenfunctions, sin(λnx) and cos(λnx), of the linearized operator at the state u≡ 0. (Online version in colour.)

(c) Learning the spectrum of the viscous Burgers’ equation
We now apply our learning framework to study a partial differential equation. The Burgers’
equation is a simplified version of the Navier–Stokes equations and is a prototypical nonlinear
hyperbolic PDE. The one-dimensional Burgers’ equation takes the form

ut = νuxx − uux, (5.4)

where u(x, t) is the velocity at position x ∈ [−1, 1] and time t ≥ 0, and ν is the kinematic viscosity.
We simulate (5.4) with periodic boundary conditions using the spin operator in Chebfun

(www.chebfun.org [63]). The solver uses exponential time differencing with fourth-order stiff
time-stepping (ETDRK4 [64]). The same method is used to solve the other PDEs in this paper.
The kinematic viscosity is ν = 0.01 and we use initial conditions

u(x, 0) = 3A1 sech2(3 sin(π (x − 2s1))) + 5A2 sech2(3 sin(π (x − 2s2))),

where A1,2 and s1,2 are constants randomly distributed in the interval [0, 1]. We perform 10
simulations and integrate to t = 1; a typical simulation is shown in figure 8a.

We train our model on the state vector defined by the solution u sampled at spatial grid points
separated by �x at time intervals of �t so that

xj =
[
u(−1, j�t) u(−1 +�x, j�t) · · · u(1 −�x, j�t)

]T
.

We use 1024 spatial grid points and take �t = 10−3. We learn a discrete-time flow map that
advances the state vector forward in time by �t, so yj = xj+1. The data are uncorrupted by noise;
learning the Burgers’ equation in the presence of noise is explored in the electronic supplementary
material, §F.

We use a quadratic kernel to learn a model of this system, and from this model extract a local
linearization relative to the equilibrium base state x = 0. The analytical linear operator is simply
the Laplacian operator Au = νuxx. Since the boundary conditions are periodic, the eigenvalues
are λn = −νn2π2 for n = 0, ±1, ±2, . . .. All non-zero eigenvalues have multiplicity two and the
eigenfunctions are simply sines and cosines: ψn(x) = sin(λnx), cos(λnx).
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The analytical spectrum is compared with that learned by the kernel method in figure 8b. The
eigenvalues are plotted on a square-root scale so that their spacing is uniform, and the results
are compared with the spectrum learned by exact DMD [4]. The present algorithm accurately
learns the true spectrum of the underlying linear operator whereas a naive DMD implementation
results in substantial errors. The accuracy is best for eigenvalues with larger real part that are
associated with slower dynamics, and deteriorates for the eigenvalues associated with quickly
dampened modes. Similarly, the kernel method accurately recovers the linear eigenfunctions. The
DMD eigenfunctions are very inaccurate and are therefore omitted from the figure.

This example is particularly challenging, as indicated by the poor performance of DMD. The
choice of ν = 0.01 makes the effect of the linear operator νuxx small compared with the nonlinear
component −uxu. As such, it is particularly difficult for the algorithm to extract the underlying
linear operator that is buried beneath nonlinear mechanisms. Additionally, the choice of initial
conditions did not provide a particularly rich set of data for the algorithm to work with.

The relatively large size of the state space (approx. 103) and the high number of samples
(approx. 104) emphasize the necessity of the dimensionality reduction techniques employed in
this paper. The kernel trick means that the quadratic feature space need not be constructed
explicitly. The dictionary size of this system is approximately 100, which indicates that there
are around 100 states that significantly contribute to the underlying dynamics in the high-
dimensional feature space. These states are then selected to form the basis of the dynamical
model.

This example demonstrates that the algorithm can be used to uncover linear structure highly
nonlinear PDEs. We now progress to a more challenging example.

(d) Learning the spectrum of the KS equation
The KS equation is a PDE that is used to model a range of physical phenomena including
turbulence, chemical reactions and flame fronts. The PDE is defined by

ut = −uxx − uxxxx − 1
2

u2
x,

for x ∈ [−L/2, L/2], periodic boundary conditions and some given initial condition. The KS
equation has been described as the ‘simplest chaotic PDE’ [65] and therefore represents a useful
test case for our algorithm.

We use our kernel learning algorithm to recover the spectrum of the underlying linear operator
relative to the equilibrium state u = 0. The linearized operator is Af = −fxx − fxxxx. Again, we
consider periodic boundary conditions so the eigenvalues are λn = (2nπ/L)2 − (2nπ/L)4 with
eigenfunctionsψn = sin(λnx), cos(λnx). The initial conditions are now taken to be random periodic
functions: in particular, the initial conditions are finite Fourier series with distributed coefficients
of equal variance. We define the box length as L = 14π , which is sufficiently large to generate
chaotic behaviour. The data matrices are constructed in a similar way to that of the Burgers’
equation except we now use velocity measurements in the training data so yj = ẋj. Again, we
use 1024 spatial grid points and the samples are separated in time by �t = 0.05. We integrate the
PDE to t = 60 and use 25 different simulations in the training dataset.

The results of the learned spectrum are illustrated in figure 9b. The algorithm accurately learns
the eigenvalues with the correct multiplicity. Similarly to the Burgers’ equation, the recovery
of the smallest eigenvalues is most accurate, but the accuracy decreases for eigenvalues with
larger negative real part. The close-up figure also indicates that the algorithm recovers the
intricate behaviour of the spectrum for small eigenvalues. Although they are not plotted, the
eigenfunctions are also recovered to a high degree of accuracy.

This example demonstrates that our implicit learning method can extract accurate information
about the underlying linear operator of a chaotic PDE. This performance is encouraging given
our eventual goal of studying chaotic, turbulent fluid flows.
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Kuramoto–Sivashinsky equation: ut + uxx + uxxxx +    ux = 0

learned spectrum of linear operatortraining data

analytical DMD LANDO
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Figure 9. Learning the spectrum of the Kuramoto–Sivashinsky equation with a domain size L= 14π , for which the system
exhibits chaotic dynamics. A typical simulation is illustrated in (a). The algorithm is trained on discrete time snapshotsyj = ẋj .
(b) The algorithm accurately learns the eigenvalues of the linearized operator at the state u≡ 0. The size of the markers of the
LANDO eigenvalues correspond to the average projection of the training data onto the associated eigenvectors. (Online version
in colour.)

6. Discussion
We have presented a data-driven kernel method that robustly extracts dynamic modes from high-
dimensional, nonlinear data. The method may be viewed as a confluence of DMD, the SINDy and
kernel methods. Specifically, we use a kernelized identification of nonlinear dynamics (INDy, i.e.
SINDy without the sparsity promoting regularizer) to robustly disambiguate linear and nonlinear
dynamics, enabling the extraction of an explicit linear DMD model and forcing snapshot matrix.
Access to the disambiguated DMD model and forcing snapshot matrix opens up the possibility
of performing data-driven resolvent analysis of strongly nonlinear flows [36]. Our approach is
based on the KRLS algorithm [32] and kDMD [7] but introduces several innovations, including
stabilized dictionary learning, improved interpretability and extraction of locally linear models
and forcing. We have demonstrated our approach on a range of nonlinear dynamical systems
and PDEs, and shown in each case that we can effectively disambiguate the roles of linearity and
nonlinearity. The nature of kernel methods, along with the online learning variant, render our
approach suitable for data that are high-dimensional in both space and time.

(a) Limitations of the method
There is significant scope for modifications, improvements and generalizations of our framework.
In this section, we outline a few key issues; the effects of noise are discussed in detail in the
electronic supplementary material, §F.

Our application to the Lorenz system (§5a) demonstrated that the learned linear models
depend crucially on the choice of kernel.3 A less obvious fact is that, in the underdetermined
case, the learned linear model depends on the kernel’s specific hyper-parameters. For example,
two quadratic kernels (e.g. uTv + (uTv)2 and 2uTv + (uTv)2) can produce different linear models.
This ambiguity stems from the lack of unique solutions to underdetermined systems of equations
and emphasizes that kernel hyper-parameters should be selected carefully. These parameters can
be chosen via cross-validation, an optimization routine, a hierarchical Bayesian framework [66],
or the recently proposed kernel flows [30].

3Note that, once the kernel is selected, the linear operator is uniquely specified by condition (4.2).
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Nonlinear system identification is typically data intensive, and our algorithm is no exception.
Our experience indicates that learning an adequate approximation of the linear spectrum of a PDE
usually requires a relatively large number of snapshots. For example, we used a space-discretized
grid of approximately 103 points and 104 snapshots when learning the viscous Burgers’ equation.
One reason for the large number of samples is that the sampling rate must be sufficiently high
to resolve the nonlinear dynamics, which may evolve on a faster timescale than the linear
component. Since LANDO is generally focused on extracting the linear operator, it needs less data
than would be required to identify the full dynamics. However, the difference is not dramatic, and
future extensions should reduce the data requirements further by exploiting known physics [67],
regularizing the nonlinear component, or employing compressed sensing and random sampling
techniques [1].

The right choice of regularizer is essential to the success of any machine learning algorithm.
In this work, we used sparse dictionary selection as a regularizer to address the challenges
described in §3. However, there are many opportunities to include additional or alternative
regularizers within our framework. For example, regularization can be incorporated into the
minimization problem (3.5) in a number of ways. The simplest approaches involve modifying
the pseudoinverse k(X̃, X)† in the solution (2.16) to incorporate Tikhonov regularization or
truncated-SVD regularization.

(b) Extensions and applications of the method
In addition to the extensions outlined in the previous section, there are many other possible
generalizations and applications of our method. This study began with the ultimate aim of
performing resolvent analysis [34,35,68] of turbulent flows from a purely data-driven perspective.
Over the past decades, advances in numerical methods [69,70] and the growing availability of
computational power have enabled analysis of the linearized Navier–Stokes equations for flows
of increasing complexity [71]. The authors recently proposed a ‘data-driven resolvent analysis’
[36] based on the DMD, but this approach is currently only applicable for linear flows because
strong nonlinearity corrupts the linear DMD model. By separating the roles of linearity and
nonlinearity, the present work opens the door to data-driven resolvent analysis of nonlinear and
actively controlled PDEs. The ability to perform resolvent analysis in a completely equation-free
and adjoint-free manner removes the need to have intrusive access to a numerical solver. We are
currently pursuing this approach for low-dimensional PDEs, though we expect that significant
modifications to our approach will be needed before we can consider fully turbulent flows.

It is important to note that, in this work, we considered examples with known linearizations,
providing a ground truth with which to compare our data-driven linearization. The ground
truth is unavailable in practical scenarios, so future work should focus on developing rigorous
a posteriori methods for validating the LANDO linearization, possibly through cross-validation.

Models that are constrained to respect known physics require fewer training samples and are
more robust to noise. In §4d, we explored incorporating partial physical knowledge to design the
kernel k, but there is also scope to incorporate known physics into the weight matrix W: efforts
are already underway to incorporate such constraints into the learning framework. The LANDO
algorithm can be combined with the recently proposed lift and learn framework [72], which uses
prior knowledge of a system’s governing equations to construct a coordinate mapping where the
dynamics are quadratic. The stabilized dictionary learning step of this work could also reduce the
computational cost of the original kDMD algorithm [7].

Data accessibility. Further information is provided in the electronic supplementary material [73]. Data and codes
are available at www.github.com/baddoo/LANDO.
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