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Abstract
Parkinsonism defines certain symptoms compatible with people who suffer from Parkin-

son’s disease (PD), Essential Tremor, among other neurological disorders. Currently,

PD is the second most important neurodegenerative pathology after Alzheimer. Today,

the efforts of science are focused on knowing its causes and looking for biomarkers that

facilitate an early diagnosis, as well as monitoring the evolutionary process of the disease

due to the loss of dopamine in the substantia nigra pars compacta (SNpc) [2].

In this context, clinicians can identify a patient compatible with PD by attending to motor

and nonmotor manifestations. According to [5], motor symptoms remain as the core

feature for diagnosis, defined as bradykinesia plus rest tremor or rigidity. Since a vast

experience is required to give an accurate diagnosis, which still might not be error free,

making it early may not always be possible, but certainly necessary. Once first symptoms

have slightly appeared on stage one, the progression throughout all five stages of the

disease is unstoppable. Although there’s no cure, early treatments increase the chances

of slowing dopamine deficiency, and therefore, delay the appearance of more severe

symptoms.

The possibility of delaying the set of symptoms that characterizes last stages makes more

urgent an early diagnosis, but doctors prefer to wait until the symptoms allow an accurate

and differential diagnosis. Studies have proved that PD is directly related to the dopamine

loss in the dopaminergic system, and therefore, detectable through molecular imaging

techniques such as positron emission tomography (PET). The question is: what´s the

probability of accuracy of pre-diagnose a patient compatible with PD by detecting the loss

of dopamine neurons using machine learning (ML) and deep learning (DL) approaches

on neuroimaging, that is, imaging processing?

With this finality, we used a sample of PET/CT images with [18F]PR04.MZ, a new PET

imaging tracer, in order to diagnose the illness, and discussed the possibility of present-

ing a better precision using machine learning versus a movement-disorder specialist.

The development of five models, Support Vector Machine (SVM), Random Forest, Logis-

tic Regression, K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN), allowed

an extensive comparison between traditional classifiers. Performances were greater than

96% for ML algorithms, and over 98% for the DL model, proving [18F]PR04.MZ tracer

allows image-based algorithms have high precision for the identification of PD patterns.

Key Words: Parkinson Disease, Machine learning, Deep learning, Positron Emission

Tomography, [18F]PR04.MZ radiotracer.
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Resumen ejecutivo
El parkinsonismo define aquellos síntomas compatibles con personas que padecen la

enfermedad de Parkinson (EP), Temblor Esencial, entre otros trastornos neurológicos.

Actualmente, la EP es la segunda enfermedad neurodegenerativa más importante de-

spués del Alzheimer. Hoy en día, los esfuerzos de la ciencia buscan conocer sus

causas y estudiar biomarcadores que faciliten un diagnóstico precoz, así como en el

seguimiento de la pérdida de dopamina en la sustancia nigra pars compacta (SNpc) [2].

En este contexto, los médicos pueden identificar un paciente compatible con EP aten-

diendo las manifestaciones motoras y no motoras. Según [5], los síntomas motores

siguen siendo la característica central del diagnóstico, definida como bradicinesia más

temblor de reposo o rigidez. Dado que se requiere una vasta experiencia para dar un

diagnóstico preciso, que aún así podría no estar libre de error, no siempre es posible

hacerlo en su fase más temprana, pero ciertamente es necesario. Una vez que los

primeros síntomas han aparecido levemente en la etapa uno, la progresión a lo largo de

las cinco etapas de la enfermedad es imparable. Aunque no existe cura, los tratamientos

tempranos aumentan las posibilidades de retrasar la aparición de síntomas más graves.

La posibilidad de retrasar el conjunto de síntomas que caracterizan las últimas etapas

hace más urgente un diagnóstico precoz, pero los médicos prefieren esperar hasta que

los síntomas permitan un diagnóstico preciso y diferencial. Los estudios han demostrado

que la EP está directamente relacionada con la pérdida de dopamina en el sistema

dopaminérgico y, por tanto, detectable mediante técnicas de imagen molecular como la

tomografía por emisión de positrones (PET). La pregunta es: ¿cuál es la probabilidad

de precisión de pre-diagnosticar a un paciente compatible con EP al detectar la pér-

dida de neuronas dopaminérgicas utilizando enfoques de aprendizaje automático (ML)

y aprendizaje profundo (DL) en neuroimagen, es decir, procesamiento de imágenes?

Con esta finalidad, utilizamos [18F]PR04.MZ PET, un nuevo trazador de imágenes PET,

y discutimos la posibilidad de presentar una mejor precisión de diagnóstico usando

aprendizaje automático versus la de un especialista en trastornos del movimiento. Para

esto desarrollamos cinco modelos: máquina de vectores de soporte (SVM), bosque

aleatorio, regresión logística, K-vecinos más cercanos (KNN) y red neuronal artificial

(ANN), lo que permitió comparar el desempeño de distintos clasificadores tradicionales.

Los rendimientos fueron superiores al 96 % para los algoritmos aprendizaje automático

(ML) y superiores al 98 % para el modelo de aprendizaje profundo (DL), lo que demues-

tra que el trazador [18F]PR04.MZ permite que los algoritmos basados en imágenes

tengan una alta precisión para la identificación de patrones compatibles con la EP.
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Introduction and Context

Chapter 1

1.1 Background

Parkinson’s Disease (PD) is the second most important neurodegenerative pathology after

Alzheimer. A study of the global burden of PD [47] revealed that among Latin American

countries, Chile leads the ranking of Parkinson’s disease prevalence (Figure 1.1) [45, 47],

which may be related with an aging population and an increasing life expectancy.

Considering this, PositronMed’s team of technological innovation and clinical research

collected two datasets of a balanced group of patients with written informed consent for this

investigation. The first one described a slice with the best brain uptake, and the second

one included the 3D normalized neuroimaging of a PET/CT scanner (Biograph mCT Flow,

Figure 1.1: Prevalence percentage change due to Parkinson’s disease in Latin America between 1990 and
2016. Data adjusted for age, extracted from [47].
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Siemens Healthineers, Erlangen, Germany) 1 using [18F]PR04.MZ radiotracer [15].

This dataset was the input used to achieve the final objective: classify [18F]PR04.MZ

PET/CT images of 204 subjects (aged 61.54 ± 12.9 years, 118 males, 86 women) between

healthy or PD-compatible using machine learning, an artificial intelligence (AI) application

widely used in the past decade in the medical imaging field [1]. In order to achieve this,

five different classifiers were implemented, and their performance compared. These were

Support Vector Machine (SVM), Random Forest, Logistic Regression, k-Nearest Neighbor (k-

NN) and Artificial Neural Network (ANN). They were trained with the classification results of

the blinded diagnosis of three specialists, who considered the visual and qualitative evaluation

of the data to separate the scans in two groups:

• Normal controls (NC), describing symmetric binding in the striatal region.

• PD compatible, where rostro-caudal gradient (RCG) reached high values.

Expect results of this image-based ML to be limited by the conditions and characteristics

of the sample previously described.

1.1.1 Diagnosis

Nowadays, the diagnosis of PD is defined with clinical criteria [4]. Bradykinesia, combined

with cogwheel rigidity and/or rest tremor, are the main motor symptoms of this disease. Differ-

ential diagnosis require both identifying the parkinsonism and defining it’s cause, since typical

features plus atypical ones, or even non-motor symptoms, can be caused by many other syn-

dromes. While first stage PD patients can present tremor and other movement disorders

on one side of the body, fifth, and last, stage patients may require a wheelchair, nursing is

needed for every activity, and frequently present non-motor symptoms as dementia.

Time has shown formal diagnostic PD guidelines improves diagnostic accuracy. The Inter-

national Parkinson and Movement Disorder Society (MDS) published back in 2015 a method-

ology that enables reproducibility across medical centers and inexperienced clinicians [5].

Studies have validate this criteria [6, 11], proving high performance (accuracy > 90%).
1The three-dimensional dataset wasn’t sent in its entirety, so augmentation method was used to offset the

incomplete dataset.
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Despite the MDS-PD criteria relies the diagnosis on the presence of motor syndromes,

the challenge of a valid diagnosis at early stages of PD is pushing the use of neuroimaging

for a differential diagnosis categorization. Within the variety of imaging techniques finding

patterns in presynaptic striatal binding using neuroimaging tracers, studies have shown they

can improve diagnosis certainty and reinforce clinicians decisions [7].

Furthermore, the exponential development of machine and deep learning applied in neu-

roimaging diagnosis has shown advantageous results [8, 9, 10]. Artificial intelligence ap-

proaches allows statistical estimation of the resemblance between the training set and an

input, leading to predictions based on classification.

1.1.2 Terminology

PD Parkinson’s Disease: progressive neurodegenerative disease without a

defined cause, known to respond to dopaminergic drugs.

PET Positron Emission Tomography: imaging technique which allows to quan-

tify the number of existing dopaminergic neurons in PD patients.

DAT Dopamine Active Transporter: a transmembrane protein used as tracer

in PET imaging [3].

DICOM Digital Imaging and Communications in Medicine: international

standard used to manipulate medical imaging information

[18F]PR04.MZ PET tracer of dopaminergic deficit [15].

1.2 Goals

1.2.1 General Objectives

The objective of this thesis is to discriminate healthy subjects from early compatible PD pa-

tients with image-based ML algorithms. This purpose is combined with PositronMed’s re-

search work with the [18F]PR04.MZ biomarker as a highly selective PET tracer for imaging

dopamine transporters (DAT). Still, both investigations intend to generate a method using

artificial intelligence to facilitate the diagnosis for patients in the earliest stage of the disease.
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1.2.2 Specific Objectives

• Define and follow the pipeline for image processing, and to guarantee a high-quality

dataset. The algorithm created most include preprocessing the images before using

them for training and classification.

• Create a first image-based ML approach using a 2D-selected slice; followed by a second

approach that automates that selection in a 3D database.

• Construct and train various classification algorithms and compare their results using

standardized metrics.

• Select the best model with the help of performance analysis.

• Present an statistical estimation of the resemblance between training and testing sets,

that is, the probability of belonging to one group or the other.

1.2.3 Expected Results

For the volumetric data, the research procedure should play the role of a radiologist by using

an unsupervised preprocessing image algorithm. The results of this process will submit the

input for the image supervised algorithm classifier, intending the role of a neurologist by using

the optimized dataset to identify PD subjects.

The investigation on its totality should allow us to discuss the specificity and sensitivity

of the machine learning algorithm in comparison to the specialized radiologist-neurologist

diagnose, using [18F]PR04.MZ PET images.

1.3 Structure of the thesis

Following Chapter 1, Chapter 2 compile the related work research, setting the AI-gold stan-

dard for this thesis. We will also add PositronMed’s related publications, pointing out their

achievements.

Since the whole investigation was possible thanks to the contribution of PositronMed’s

team, Chapter 3 will describe to the initial steps of this project. It includes the comparison
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between Google Cloud MR Vision algorithm used by one of PositronMed’s member, with a

set of hand-craft algorithms created for the same finality. This chapter describes the first

approach of the procedure that will be used with the tough data.

Motivated by the first approach, Chapter 4 provides the description of the 3D image pro-

cessing, using as baseline the previous algorithms and adding the corresponding modifica-

tions for tough data.

Chapter 5 collects the results of each model, clarifying the performance of accuracy, pre-

cision, recall and F1-score achieved in all cases, and pointing the best model according to

this indicators.

Finally, Chapter 6 presents this work conclusions, limitations and future work lines.
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State-of-the-art for neuroimaging CADs

Chapter 2

2.1 Methodology

Using a guideline may help staying within the bounds proposed for this research. Figure 2.1

provides the general structure through which the investigation was carried out.

Figure 2.1: Image Processing Pipeline described by: brain scan acquisition through [18F]PR04.MZ PET tech-
nique, two different databases (2D/JPG and 3D/DICOM) which will be processed differently, specialists labeling
using predetermined criteria, data preprocessing for standardization (unfolded in subsection 2.1.1), ML and DL
modeling (unfolded in subsection 2.1.2) and finally the statistical estimation for predictions.
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This general framework leads to discriminating healthy subjects from PD, going through

the six steps described below:

1. First of all, [18F]PR04.MZ PET/CT images of 204 subjects (aged 61.54 ± 12.9 years,

118 males, 86 women) were collected for the purposes of this research. Between them,

96 were healthy subjects and the rest were PD compatibles (dopamine deficient).

2. There are two different format datasets. The first one includes 2D JPG images per

subject, preselected by a radiologist from the raw data, which is the second dataset: 91

slices in rostro-caudal direction per subject. Both of them will be processed differently.

3. Three specialists blindly assessed the images, assigning to each sample two different

labels according to three criteria: if the scan is either normal (0) or abnomal (1), if it

shows asymmetric binding (1) or not (0) and if the scan shows a high rostro-caudal

gradient (1) or not (0). The agreement of at least two of the three clinician’s statements

set the final label of the scan as Normal (0) or PD compatible (1).

4. The data preprocessing for standardization depends on the dataset used as input. First

and second approaches will be destined to chapters 3 and 4 respectively. A more de-

scriptive explanation will be found in subsection 2.1.1.

5. To found out the behavior patterns of the labeled images, the resulting datasets from

the previous step will train five different algorithms: Support Vector Machine (SVM),

Random Forest, Logistic Regression, k-Nearest Neighbor (KNN) and Artificial Neural

Network (ANN). A more descriptive explanation will be found in subsection 2.1.2.

6. Finally the statistical estimation for predictions of binary classes will be done using the

following indicators: accuracy, precision, recall and F1-score.

P redicted

0 1

True 0 TN FP
1 FN TP

7



T P + TN
T P + TN +FP +FN

(Accuracy) (2.1)
T P

T P +FP
(Precision) (2.2)

T P
T P +FN

(Recall) (2.3)

2 ∗
precision ∗ recall
precision+ recall

(F1-score) (2.4)

Where equation (2.1) measures the percentage of samples the model has correctly

classified, (2.2) measures the quality of the ML model in classification tasks rated ac-

cording to the number of TP in a total of PD-compatible predictions, (2.3) reports the

amount of PD-compatible subjects the ML model is able to identify and (2.4) combines

both (2.2) and (2.3) to measure the performance of precision and recall among various

models.

2.1.1 Data pre-processing pipeline

Data preprocessing pipeline is illustrated in Figure 2.2, and seeks the standardization of dif-

ferent datasets. 2D database in the first approach was used as an approximation of what we

want to achieve in the second one.

Even though the final goal was the same, the different type of input in each approach

marked a different course of operations. In general terms, while dataset (1) seeks the selec-

tion of the ROI (region of interest) in 2D images, the striatal region on each image, dataset

(2) focuses on the VOI (volume of interest), a volumetric scan of 10 final slices.

Since dataset (2) wasn’t sent complete, we used an image augmentation method to in-

crease the number of full-head scans. The data-augmentation technique consisted on a flip of

the right and left hemispheres of the brain for each PET, which double the size of the dataset

and improved its disadvantageous position against dataset (1). Out of the flip, everything

else in the images remain the same. The full process and resulting dataset will be detailed in

Chapter 4.
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Figure 2.2: Data preprocessing for standardization pipeline

2.1.2 Machine Learning model pipeline

ML and DL model pipelines are illustrated in Figure 2.3. Starting with the output of step 4, a

selected percentage of the preprocessed images flow through the pipeline to build a trained

model. The proposed image-based algorithms include Support Vector Machine (SVM), Ran-

dom Forest, Logistic Regression, k-Nearest Neighbor (KNN) and Artificial Neural Network

(ANN), all of them reinforced with validation techniques such as ten-fold cross validation over

a split dataset.

The methods and techniques used for each dataset will be made explicit in Chapters 3

and 4. All of these models were finally used to classify the remaining images in order to test

the model performance in step 6. Results were presented in Chapter 5 of this thesis.

However, this framework remains in general lines, since machine learning and deep learn-

ing PET image processing workflows differ in feature extraction, selection and classification

techniques. While ML algorithms clearly separate this steps, in ANN feature extraction and

selection is an automatic one-step process [10] and will be clarified later.

9



Figure 2.3: Machine and Deep Leaning model pipeline

2.2 Related machine learning algorithms

The research work of this section aims to provide a general view of the artificial intelligence

implementation as a potential resource of pathology diagnosis. There’s plenty of studies

that support the diagnosis and analysis of diseases through image processing with machine

and deep learning. That’s why in this section we summarize the state of art in computer

aided diagnosis (CAD) systems in the latest years. To target the publications related with this

research, we used the boolean search strings shown in Table 2.1, in the advanced search

engine of four journals: PubMed, Springer, ScienceDirect and IEEE Xplore.

Table 2.1: Boolean search strings used to retrieve the publications on four journals: PubMed, Springer, Sci-
enceDirect and IEEE Xplore.

Journal database Boolean search string

PubMed ’machine’ AND ’deep’ AND
Springer ’learning’ AND ’neuroimaging’

ScienceDirect AND ’machine learning’
IEEE Xplore AND ’deep learning’

10



Although the use of artificial intelligence for medical applications began several years

ago, we will focus on finding those that were published in the last 10 years. There are many

symptoms that may describe PD, that’s why studies use different types of database to make

an accurate diagnosis: speech data, video recordings, force sensors, handwriting dynamics,

among others [12]. As said before, we are interested in CADs, but above all, those who use

neuroimaging as source for the diagnosis of diseases. Publications that did not include the

use of neuroimaging for computational methods were taken out of the count. The result of

this review is illustrated in Figure 2.4.

Figure 2.4: Number of publications in PubMed, Springer, ScienceDirect and IEEE Xplore per year (January
2010 to October 2021) using the boolean search strings shown in Table 2.1.

The graph demonstrates the exponential growth of this research area, specially in the last

5 to 6 years. This prompted us to select those studies, in the range of 2015-2021, whose

aims were similar to ours. Table 2.2 summarizes the results of this research, presenting

approaches that seek to discriminate PD patients from normal controls (NC) using artificial

intelligence models to neuroimage data. In order to compare them with the achievements and

contributions of the present thesis, we extract the dataset size, radiotracer applied, machine

or deep learning classifier and best results. The table also includes a column of comments

and achievements, which expand other research proposals for future lines of work.

11



Table 2.2 puts on evidence the uniqueness of this study, since we use a new radiotracer:

[18F]PR04.MZ. The research also helped to detect the classifiers that perform the best with

this type of dataset, as well as to give an idea of which is the gold-standard in algorithmic

terms. Throughout this research, we found out accuracy, sensitivity, specificity, among other

parameters may achieve high levels using complex algorithmic structures such as artificial

neural networks. Still, there are classifiers reliable enough that may provide interpretability in

an algorithmic approach. The combination of simple and complex classifiers here presented

validates this thesis as a complete research work for the previously established objectives.

2.3 [18F]PR04.MZ PET tracer

Improving tools that support the diagnosis of neurodegenerative diseases is a challenge that

include scientific advancement in radiotracers for the visualization and identification of struc-

tural and functional changes in the brain, which may describe neurodegenerative features.

Traditional radiotracers used in neuroimaging techniques, such as SPECT and PET, are em-

ployed to assessed diagnostic decisions, quantify dopaminergic activity, track disease pro-

gression and treatment monitoring [7, 14].

Among other neurodegenerative diseases, Parkinson’s disease (PD) is below Alzheimer’s

disease (AD), Huntington’s disease (HD) and Multiple System Atrophy (MSA), as a focus

for investigation. Compared to AD, studies on PD brain imaging tracers are barely moving

forward [13]. The benefits of finding appropriate radiotracers can be decisive early-stage

diagnosis of PD and avoiding misdiagnoses.

A new PET tracer, [18F]PR04.MZ, has shown very high selectivity, specificity and affinity

for DAT uptake [15]. On the present investigation, the reader will find the first approaches on

computer-aided diagnosis of PD-compatible using [18F]PR04.MZ PET tracer. [18F]PR04.MZ

has shown in previous studies excellent properties of imaging and quantification outcomes

[15, 16, 17]. The purpose of the following chapters is to validate [18F]PR04.MZ PET as

a new radiotracer which, combined with computational methods, can provide an accurate

diagnosis.
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Table 2.2: State of art reference results of PD detection comparing dataset size, radiotracer applied, ML
classifier and best metric results. As baseline, all studies aim to classify PD patients from NC using AI models to
neuroimage data (n_databases = 21) between 2015-2021.

Ref erence Y ear Dataset size Radiotracer ML classif ier Best result Comments and achievements

[26] 2021 42 [11C]raclopride PET SVM Accuracy=0.967 Included patients with multiple system atrophy (MSA n = 8),
corticobasal degeneration (CBD n = 6), and dementia with
Lewy bodies (DLB n = 5), vs HC and achieved Acc=0.921.

[27] 2020 202 99mTc-TRODAT-1 SPECT AlexNet Accuracy=0.825, For each subject, CNNs analyzed and compared two
Recall=0.753 input image types: grayscale and pseudo color, both
Precision=0.874 with five selected slices. Other CNNs used: GoogLeNet,
F1-score=0.809 Residual Neural Network, VGG, and DenseNet.

[28] 2020 642 [123I]FP-CIT SPECT CNN (VGG16) Accuracy=0.952 Used Local Interpretable Model-Agnostic Explainer
Sensitivity=0.975 (LIME) to provide a plausible reason for the prediction
Specificity=0.909 of PD patients, making the model more interpretable.

[29] 2020 406 3T T1-weighted MRI 3D CNN Accuracy=0.9529 MRI may be used with or without a biomarker to
Recall=0.943 capture internal organs, but if it does, it is different
Precision=0.927 from the one used for computed tomography (CT).

[36] 2019 408 T2-weighted MRI ResNet50 Accuracy=0.886 Idem. Used a slice-based subset of randomly picked slices.

[37] 2019 204 MRI SSAE Accuracy=0.8524 This study extracted features of brain regions from MRI
Sensitivity=0.681 data to obtain 116-dimensional feature matrix of gray
Precision=0.9583 matter (GM), white matter (WM) and mean diffusivity
AUC=0.8604 (MD). It also used SSAE to identify scans without
F1-score=0.7064 evidence of dopamine deficit (SWEDD).

[30] 2019 189 [123I]FP-CIT SPECT SVM Accuracy=0.94 Used morphological feature extraction through
parcellation of the striatum before applying SVM.

[31] 2019 550 [123I]FP-CIT SPECT SVM Accuracy=0.784 This study also aimed to identify SWEDD patients as a
PD with motor symptoms or PD with nonmotor symptoms
or just a control lookalike. Other ML classifiers used:
RF, multilayer perceptron (MLP) NN, LR and K-NN.

[32] 2019 578 [123I]FP-CIT SPECT SVM Accuracy=0.929 Studied general degenerative parkinsonian syndromes: PD,
multiple system atrophy-parkinsonian type, progressive
supranuclear palsy and corticobasal syndrome.
Also used striatal VOIs uptake, VOIs asymmetry indices
and caudate/putamen (C/P) ratio as input for SVM.

[33] 2019 350 18F-(FDG) PET GLS-DBN Accuracy=0.90 Applied Locally linear embedding (LLE) to reduce the
Sensitivity=0.96 dimensionality of pre-processed PET data in all subjects and
Specificity=0.84 used two different batches of data to validate the model’s
AUC=0.912 performance and test model’s robustness on other datasets.

[34] 2019 645 [123I]FP-CIT SPECT CNN Accuracy=0.972 Proved that a high-dimensional CNN can be trained to
deal with variable image characteristics.

[35] 2019 182 18F-(FDG) PET SVM radial basis Accuracy=0.9126 Used 3 kernel (linear, sigmoid, and radial basis) functions
Specificity=0.9327 and random forest classifier to detect feature generalization

ability and classification reliability. It proved that radiomic
48 18F-(FDG) PET SVM radial basis Accuracy=0.9018 features provide additional classification information for

Specificity=0.9205 the traditional voxel values information.

[38] 2018 642 [123I]FP-CIT SPECT ALEXNET3D Accuracy=0.941 Showed that sufficiently complex model, i.e. three-
ROC-AUC dimensional version of the ALEXNET, can effectively
score=0.984 account for spatial differences.

[39] 2018 652 [123I]FP-CIT SPECT SVM Accuracy=0.979 Showed that, individually, the length of the striatal region, the
Sensitivity=0.98 putaminal binding potential and the striatal binding potential,
Specificity=0.976 generated high Acc. Other classifiers used: KNN and LogReg.

[40] 2017 624 [123I]FP-CIT SPECT CNN-PD Net Accuracy=0.96 The study compared CNN-PD Net versus visual analysis
Sensitivity=0.942 combined with conventional quantification. The quantification
Specificity=1.0 method calculated regional DAT binding ratio (BR) in target

regions (putamen/caudate and occipital cortex), segmented
through automated anatomical labeling (AAL) template.

[41] 2017 715 [123I]FP-CIT SPECT SVM Accuracy=0.9729 The study also included SWEDD subjects to compute
Sensitivity=0.9737 shape- and surface-fitting-based features.
Specificity=0.9718 Other classifiers used: NB, boosted trees and RF.

[42] 2017 304 local DB [123I]FP-CIT SPECT SVM Accuracy=0.88-0.92 Compared ML methods with semi-quantification approaches
based on striatal binding ratios (SBRs) from both putamen,

657 PPMI DB [123I]FP-CIT SPECT SVM Accuracy=0.95-0.97 with and without consideration of the caudates.

[43] 2017 172 T1-weighted MRI Multi-kernel SVM Accuracy=0.8578 Multilevel-ROI-features-based machine learning method
Sensitivity=0.8764 proved to be superior in characterizing the brain structural
Specificity=0.8779 alterations and brain connections for PD patients.

[44] 2015 604 [123I]FP-CIT SPECT EPNN Accuracy=0.986 It also classified PD patients vrs SWEDDs and obtained a
classification accuracy of 92.5% using EPNN. Other classifiers
used: probabilistic neural network (PNN), SVM, k-NN and DT.
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First ML and DL approach

Chapter 3

3.1 Dataset description

A total of 204 patients (118 men, 86 women, 61.6 ± 12.9 years) referred for routine WB

PET/CT scanner (Biograph mCT Flow, Siemens Healthineers, Erlangen, Germany) with

[18F]PR04.MZ were included for this first approach (Table 3.1). Using the same split from

a previous experiment performed by PositronMed, the training set had a size of 129 2-

dimensional PET/CT images, each one of them selected by a radiologist from a 3-dimensional

full scan. The remaining 75 images were saved for the testing set. This dataset was given in

JPG image format.

For the purposes of this research, three specialists blindly assessed the images, assigning

to each scan two different labels according to three criteria:

(a) If the scan was either normal (0) or abnormal (1).

(b) If the scan showed asymmetric binding (1) or not (0).

(c) If the scan showed a rostro-caudal gradient (1) or not (0).

According to the previous criteria, each scan was classified as compatible with PD (1) or not

(0). Comparing the results of all three specialists, each scan was finally labeled as normal (0)

or abnormal (1), requiring the agreement of at least two of them. This visual and quantitative

imaging interpretation is going to be the gold standard of the further analysis.
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Table 3.1: Group composition and demographic details of the data used in this work.
Normal Abnormal Normal Abnormal
T raining T raining T esting T esting

Amount 54 75 39 36
Age 63.3±13.9 59.0±13.9 60.9±11.5 65.3±9.5

3.1.1 [18F]PR04.MZ PET images

No studies have been made about machine learning algorithms for neuroimages using

[18F]PR04.MZ PET tracer. PositronMed research group has worked to deepen the quali-

ties of this new radiotracer, and the present investigation contains the first approaches of

creating an effective automated computer-aided diagnosis of PD.

After the tracer-injection and the PET scan, the raw projection data is transferred and

reconstructed by a medical technologist, who then uses PMOD software for stereotactic nor-

malization using a normal space template image. After the transformations are applied to the

PET, final pre-processed images are exported in the two formats used for this investigation:

(a) 2D image, which is a pseudo-color image pre-selected among the full head scan.

(b) 3D image, a full head scan in DICOM format with 91 x 109 x 91 resolution.

This chapter describes the approach that focused on the first dataset, while the procedures

in Chapter 4 were performed using the second one. The region of interest (ROI), putamen

and caudate, was outlined before exporting for image processing, as seen in Figure 3.1.

Figure 3.1: Axial and coronal section images at the level of the normalized striatum in A. Normal Control. B.
Dopamine deficit patient.
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3.2 Google Cloud MR Vision AI platform

The trial version of Google platform was used to train a model that classifies the images of

the dataset previously described. The procedure taken for the task didn’t exceed uploading

the 129 2D images, respectively labeled, and start running the software for training.

The training time was of about approximately thirteen hours, and the information about the

model used very limited. The results of the Google platform algorithm were used to compare

the ones obtained from hand-craft computer methods.

3.3 Machine learning classification models development

Entering into the specifications of the procedure illustrated in Figure 2.2, extra margins from

each pseudo-color image were removed, automating the cropping for the whole set, to select

the target-region. Then, we resized the scans into a resolution of 40 x 80, which homoge-

nizes the input of the model. Since this set contains only 2D images, the preprocess only

contemplates these steps.

For the development of this investigation, a total of 129 PET normalized images were

used to train five of the most common ML algorithms, and detect the behavior pat-

terns between the labeled images of each group: Normal Control (NC) or PD com-

patible. These were: Support Vector Machine (SVM), Random Forest, Logistic Re-

gression, K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). Concretely,

we used scikit-learn functions (http://scikit-learn.org) for ML models and tensorflow-keras

(https://www.tensorflow.org/guide/keras/sequential_model) for the ANN deep learning model,

and implemented them in Python. The hyper-parameter optimizer applied to each model will

be describe respectively. From the total training data, and using the same distribution as in

the Google Cloud platform algorithm, we separate 63% of the data for training and 37% for

verification.

Unfolding the ML/DL Model, Step 5 in Figure 2.1, the pipeline is illustrated in Figure 2.3.

Firstly, 63% of the preprocessed images were input. Then the set was randomized, and split

into training (80%) and validation (20%). Applying cross validation method, each of the five

train models were executed. Details of each algorithm will be described in the next section.
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We measured the performance of each model, and then predicted the probability of the testing

dataset to be NC or PD compatible. The final step of the ML model pipeline match with step

6 of the main pipeline methodology: the statistical analysis.

3.3.1 Support Vector Machine (SVM)

Support Vector Machine (SVM), first proposed in 1995 [22], is a technique that seeks to find

a hyperplane that allows a binary classification of data, maximizing the margin between the

hyperplane and the classes. [20, 21] are some examples of how SVM has been used to

achieve effective diagnosis. The results there shown encourage us to try its performance on

this experiment.

We selected GridSearchCV to optimize the parameters of our classifier estimator, includ-

ing C, kernel and gamma, to find the best parameter grid across all possible parameter value

combinations. Then, we applied the cross-validation method to avoid overfitting.

Applying this method to the SVM model, the best combination was retained, assessing its

performance according to the precision, recall, F1-score and accuracy.

3.3.2 Random Forest

Random Forest, proposed in 1995 by Ho et al [24], is a ensemble method that fits decision

trees into subsamples of the data set and averages them to improve predictive accuracy and

control overfitting. This averaging method was also used in [23] as PD patients classifier,

although with a different database type, and selected as the best performing classifier versus

logistic regression and KNN. In this work, we will compare their performance based on the

precision, recall, F1-score and accuracy of each model.

As in SVM, this classifier was also submitted into GridSearchCV to find the best parameter

combination.
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3.3.3 Logistic Regression

Logistic regression model makes possible binary classification transforming a linear regres-

sion value into a value between 0 and 1 with a logistic function. GridSearchCV was also ap-

plied to found out the hyper-parameters to use in the model. The resulting combination was

C=10, penalty=’l1’, random_state=0, solver=’liblinear’. Since we are using ’liblinear’ solver,

which favor us for having a small dataset, the training model is limited to one-vs-rest scheme.

The model performance will be measured according to the precision, recall, F1-score and

accuracy.

3.3.4 k-Nearest Neighbors (k-NN)

K-Nearest Neighbor (KNN), a classical classifier, chooses the most similar “K” records, that is,

the closest K neighborhood data points. Although it’s commonly used in comparative research

such as in previously mentioned [23], it will mainly help us to compare the performance of a

simple algorithm versus others more complex applied here such as ANN.

3.3.5 Artificial Neural Networks (ANN)

Unlike previous ML algorithms, artificial neural networks (NN) are a more complex set of

algorithms, that honoring his name, aims to imitate human brain neural networks. Known

for their performance on image processing, ANN arrange layers in a way that captures the

complexity of a pattern.

This algorithm feature extraction structure is composed of three convolutional layers, each

one with a 3x3 kernel layer, a ReLU activation function, followed by one max pooling layer

size of (2, 2) and one flatten with activation ’relu’. The classification layer included a dense

layer, activation function ’sigmoid’, that allows full connectivity between neurons in preceding

and succeeding layers. Finally, compile the model using a ‘binary_crossentropy’ loss, ‘adam’

optimizer and measure the performance of the model with metric ‘accuracy’. We validate

each model with a cross-validation method, which also avoid overfitting due to the limited

data sample. The structure is illustrated in Figure 3.2.
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Figure 3.2: Detailed structure used in ANN model.

Beyond comparison indicators between the different algorithms, to select the best ANN

model, we tested multiple layer combinations until the one that best behaved was selected.

Accuracy and loss value metrics were used in this task. Graphing both indicators allowed

us to compare how the model performed with the training and validation data after each

iteration. On one hand, the graphical interpretation of the accuracy allow us to visualize the

performance of the model, that is, how precisely it is to classify the pattern of an image. On the

other hand, the loss value indicates the error that adds each training epoch. The convergence

behavior of both graphs makes it easier to select the best model for later classification of the

test set. After 20 epochs, the model converged as shown in Figure 3.3.

Figure 3.3: A. Accuracy value graph B. Loss value graph
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3.4 Validation dataset results

As said before, the dataset was separated into 37% for test (75 subjects) and 63% (129

subjects) for train. From this 63%, we split into 80%-20% for validation. This second split,

plus cross-validation application, provide an unbiased evaluation of a model fit on the training

dataset, while adjusting the model hyper-parameters. The preliminary classification results

are shown in Table 3.2.

Classif ier P recision Recall F1− score Accuracy

SVM 0.97 0.95 0.96 96.15%

Random Forest 0.96 0.96 0.96 96.15%

Logreg 0.94 0.97 0.96 96.15%

k-NN 1.00 1.00 1.00 100.0%

ANN 0.95 0.97 0.96 96.15%

Table 3.2: Classification performance of five hand-craft classifiers measuring precision, recall, F1-score and
accuracy with 2D validation dataset.

Still k-Nearest Neighbor (k-NN) is the best rated model, we will verify in Chapter 5 if it

doesn’t describes a overfitted model. The other models also present promising results, but

as well as k-NN, all of them will be tested with an unseen dataset in Chapter 5 for statistical

analysis.
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Second ML and DL approach

Chapter 4

4.1 [18F]PR04.MZ PET 3D normalized scans

Three-dimensional [18F]PR04.MZ-PET/CT scans were acquired within 60-90 min after intra-

venously injected 5.16±1.03 mCi (191±38 MBq, range: 88.8-322 MBq), using a WB PET/CT

scanner (Biograph mCT Flow, Siemens Healthineers, Erlangen, Germany). Raw data was

corrected on TrueX software, reconstructed with an ordered subset expectation maximiza-

tion (OSEM) algorithm, followed by post-reconstruction smoothing (Gaussian, 4 mm FWHM).

PMOD (PMOD Technologies, Zurich, Switzerland) was used for spatial normalization to Mon-

treal Neurological Institute (MNI) space. Manual inspection allows identification of motion-

related and intensity technicalities. Final preprocessed images were 91 slices of 109x91

voxels1 1.59x1.59x1.5 mm3, exported on DICOM format. Among the many different lan-

guages that allow reading and analyzing DICOM data, we decided to use Python, due to it’s

functionality with neuroimaging, open source and free access [25].

Despite efforts to complete the 3D database, for different reasons only 144 were obtained

out of a total of 204 full-head scans. We used an augmentation method, which was respec-

tively added to the data preprocessing pipeline in Figure 2.2, to compensate the disadvan-

tageous sample. For this end, Python Imaging Library (PIL) was essentially useful, whose

parameter transpose(method=Image.FLIP_LEFT_RIGHT) returns a flipped copy of the im-

1Volumetric pixel.
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age, keeping everything else the same. This step doubled the size of the dataset.

The augmentation step was followed by a procedure that aims to play the role of a radi-

ologist by using an unsupervised learning algorithm to select from the DICOM data the best

10 on-a-row slices, from a scan with 91 x 109 x 91 dimension. The results of this process will

submit the input for the supervised algorithm classifier, intending the role of a neurologist to

discriminate PD subjects versus NC.

4.2 Unsupervised learning and preprocessing

Even though the basic pipeline is the same for both approaches (Figure 2.1), in this section,

we are going to see how feature selection and extraction gets complicated in parallel with the

input dataset.

The process suggested in Figure 2.2 aim the automated selection of 10 in-a-row slices

from PD and NC subjects for the subsequent analysis. The selection of ”in-a-row slices”

submits small ”brain boxes” for image classification. The image augmentation process was

followed by five steps detailed below:

1. Select volume of interest (VOI). From the full head scan, 45% and 30% were removed

from the upper and lower slices respectively. This standardized inner volume was used

as a first filter to select the VOI. Figure 4.1 illustrates the process applied for all scans.

Figure 4.1: 3D superior-inferior margin removal.

2. Apply DBSCAN to select slices. Density-based spatial clustering of applications with

noise (DBSCAN), is a technique of cluster building around an initial arbitrary point.
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The parameter ’eps’ marks the neighborhood radius of the point to analyze if it has

’min_samples’, the minimum number of points that the cluster can contain. If not, it’s

considered as noise. We used sklearn.cluster.DBSCAN function (http://scikit-learn.org)

to select, for each scan, the slices with the highest density. In other words, each cluster

reflects the dopamine uptake in the target region of interest (ROI), i.e. anterior putamen,

posterior putamen, anterior caudate and posterior caudate of both left and right brain

hemispheres.

3. Crop selected slices. From the selected high-density slices, we reduced the target ROI

for a second DBSCAN application. Since the initial point for cluster building is arbitrary,

reducing the area into 20 x 14 pixels decrease computational cost.

4. Apply DBSCAN to select single slice. To improve the clusters quality, we increased both

’eps’ and ’min_samples’ in 300 and 10 times respectively for the cropped selected slices

from the previous step. This allowed us to select the highest density slice, which will be

the central slice of the output optimized ”brain box”.

5. Select 10 slice margin. Finally, we crop a ”margin” around the previous step highest

density slice, getting an output of 10 x 109 x 91 dimension scan.

The success of this process allowed reducing the input of the next step from 18564 to

2040 images, to split them into the training/validation set and the test set for the supervised

learning classification.

4.3 Supervised learning classification models development

As in the first approach, we select four ML algorithms and one ANN for image exploration. The

biggest difference in this second approach is the input dimensions. The output dataset from

the unsupervised learning algorithm submitted a three-dimensional array. For each subject,

we reduced the 10 x 109 x 91 scan down into a vector of pixels.
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4.3.1 ML models

Machine learning models used the grid search technique for hyper-parameter optimization,

and applied the cross-validation to avoid overfitting. Table 4.2 summarizes the results from

the train/validation dataset. Comparison between the different models will be made thought

the indicators used up to now: Precision, Recall, F1-score and Accuracy.

4.3.2 DL model

To select the best combination of hyperparameters, we used Ax (Adaptive Experimentation

Platform), https://ax.dev, that simplifies the search an optimal neural network configuration.

The metric that we defined in the network compile seeks a ’binary_accuracy’ optimization.

AX library .get_next_trial () allows to iteratively create a neural network with a combination of

parameters for 25 experimental trials. Finally, ax_client.get_best_parameters() gets the best

set of parameters, the structure of which is summarized in Table 4.1.

Hyperparameter Best combination

’learning_rate’ 0.000402981024536774

’dropout_rate’ 0.013573833052722957

’num_hidden_layers’ 1

’neurons_per_layer’ 17

’batch_size’ 64

’activation’ ’tanh’

’optimizer’ ’rms’
’keras_cv’ 1.0

Table 4.1: Summary of the best set of parameters for neural network binary accuracy optimization.

Figure 4.2: Neural Network Train/Validation Model: A. Accuracy value graph. B. Loss value graph.
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We carry out 10-fold cross-validation for the best parameter combination model. Cross

validation method, a data partitioning strategy, avoids overfitting by creating a generalized

model, adaptive to unseen data. After 100 epochs, our model converged into the best

val_binary_accuracy between all trials, as shown in Figure 4.2. The monotonously decreas-

ing loss behaviour indicates that the model is not overfitted and therefore, the testing dataset

is classifiable.

4.4 Validation dataset results

The results we got from the second approach process are summarized in Table 4.2. As in

Chapter 3, all of the models are highly qualified and will be tested for the final classification

in the next chapter to verify overfitting.

Classif ier P recision Recall F1− score Accuracy

SVM 0.94 0.93 0.93 93.48%

Random Forest 1.00 1.00 1.00 100.0%

Logreg 1.00 1.00 1.00 100.0%

k-NN 1.00 1.00 1.00 100.0%

ANN 1.00 1.00 1.00 100.0%

Table 4.2: Classification performance of machine and deep learning classifiers measuring precision, recall,
F1-score and accuracy.
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Results of CADs Approaches

Chapter 5

In this chapter, we will see the test results obtained for each approach. Section 6.1 summa-

rizes the best results of the first approach, discussed in Chapter 3, while Section 6.2 presents

the best results for the second approach, developed in Chapter 4. Finally, Section 6.3 compile

the achievements made through this research.

5.1 First approach Test dataset results

After the point where we left it in Chapter 3, the trained models were tested with the remaining

dataset, followed by statistical analysis. Results are shown in Table 5.1.

Classif ier P recision Recall F1− score Accuracy

Google Cloud AI 0.93 0.93 0.93 93.33%

SVM 0.83 0.82 0.81 81.33%

Random Forest 0.74 0.63 0.57 61.33%

Logreg 0.78 0.74 0.73 73.33%

k-NN 0.69 0.56 0.47 54.66%

ANN 0.99 0.99 0.99 98.67%

Table 5.1: Classification performance of the Google Cloud algorithm versus five image-based ML classifiers
measuring precision, recall, F1-score and accuracy with 2D testing dataset.

Table 5.1 also show the results from the Google Cloud Vision API. Google’s efforts to stay
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on the top of the IA battle couldn’t miss the use of deep learning for pathology predictions

through image recognition. Vision API can ”assign labels to images and quickly classify them

into millions of predefined categories. Detect objects and faces, read printed and handwritten

text, and build valuable metadata into your image catalog”. As far as the experiment went,

it didn’t required file preparation or image preprocessing. Still, this row will only be used as

a gold-standard CADs to compare the Python classifiers, the replicability of which we can

guarantee.

As supposed in Chapter 3, test-dataset results using k-NN showed that the model was

overfitted. In this case, all four indicators presented the worst performance versus other

models.

Due to it’s intrinsic purpose of correlating the probability of class membership, SVM it’s

widely used to solve binary classification problems. Still, results using test dataset were less

accurate that the ones for training; moreover, it doesn’t reach the proposed Google Vision

API gold-standard .

Finally, we have the ANN applied for this first approach. The last model outperformed

all previous ones in terms of metric performance: precision, recall, F1-score and accuracy.

This results were better than the Google Vision API, which exceeded the expectations of the

PositronMed research team.

5.2 Second approach Test dataset results

Table 5.2 shows the best results achieved by each model. With the exception of the deep

learning model, all ML classifiers performed equally, and also very accurately. Even so, they

differ in the predicted probability of class membership, which is displayed in the Appendix.

In this second approach, as in the first one, artificial neural network outperformed over

the other models in identifying PD compatible patients. Despite its closeness to the 100%,

this much accuracy is not desirable due to the overfitting potential and labeling errors. The

Ax Platform was very useful to select the best parameter combination, that otherwise would

have consumed a lot of time and work.

Even though k-NN showed a poor performance in 2D images, the 3D-input-model man-
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Classif ier P recision Recall F1− score Accuracy

SVM 1.00 0.97 0.98 98.28%

Random Forest 1.00 0.97 0.98 98.28%

Logreg 0.97 0.97 0.97 96.55%

k-NN 1.00 0.94 0.97 96.55%

ANN 1.00 0.97 0.98 98.28%

Table 5.2: Classification performance of four ML classifiers and a ANN measuring precision, recall, F1-score
and accuracy with 3D testing dataset.

aged to improve its results. In general terms, we found out models performed much better

with more 3D dataset than 2D dataset, but this topic is going to be discussed in Chapter 6.

5.3 Achievements

Computational development in healthcare systems for decision-making is gaining importance.

Computer-aided diagnosis is iteratively overcoming medical imaging analysis. In Chapter 2,

we took a view on the gold-standard in PD detection. Studies vary in terms of radiotracers

such as [123I]FP-CIT, 18F-(FDG), 99mTc-TRODAT-1, and image techniques as MRI, SPECT

and PET; and even more, computational approaches open to branches of an infinite set of

model structures and performance metrics.

This investigation studied the ability of Machine and Deep Learning to discriminate Nor-

mal Controls (NC) versus Parkinson’s Disease compatible patients using [18F]PR04.MZ PET

tracer, and deliver the probability of diagnosis. There’s still no literature for a computational

approach with the radiotracer we used, so the results here presented mark the state-of-art for

dopamine transporter imaging with these specifications.

PET/CT [18F]PR04.MZ is a non-invasive imaging technique used in PositronMed molec-

ular imaging lab, for the study of movement disorders associated with neurodegenerative dis-

eases such as Parkinson’s. Previous work [15, 16, 17] found out [18F]PR04.MZ radiotracer

is highly selective for imaging dopamine transporters. Now, we validate this knowledge with

several image-based algorithms designed for the detection of patterns.
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Conclusions and future work lines

Chapter 6

Almost at the end of this research, we can intuit artificial intelligence can facilitate the diagno-

sis for patients in the earliest stage of Parkinson’s desease. In this chapter, we compile this

work conclusions, limitations and future work lines.

6.1 Conclusions

Neurodegenerative disorders are making presence in an increasingly aging world popula-

tion, and Parkinson’s disease (PD) patients have globally doubled to over 6 million in 26

years(1990-2016), a greater increase compared to other neurological disorders [47]. Studies

attribute it to specific factors, such as the increasing life expectancy, diagnostic and thera-

peutic advances, and better health education of the population [45, 46, 47].

For a disease that still has no cure, early diagnosis is an important factor in curbing symp-

toms, which include motor and non-motor deficits. PD is characterized by a dopaminergic

degeneration in the ventral area of the substantia nigra pars compacta (SNpc) of the mid-

brain, where nigro-striatal neurons originate. This behavior is detectable with the quantifica-

tion of dopamine transporters (DAT) through nuclear medicine imaging. Positron emission

tomography (PET) is a nuclear medicine technique to extract and project images, enabling

the measure of metabolic activity in specific cells of the body. The close relationship between

the presence of DAT in the SNpc and the diagnosis of PD motivates the study of radiophar-
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maceuticals clinically validated and with high-affinity [15].

Latest approaches study CADs performance through DAT PET image processing. Chap-

ter 2 summarized the research done for various tracers, also showing image recognition

can improve diagnosis certainty and reinforce clinicians diagnostic decisions especially when

there’s lack of expertise. Up to date, no research has studied the performance of a CADs

using [18F]PR04.MZ PET radiotracer, a DAT-selective, high-affinity [15, 16, 17], monoamine

reuptake inhibitor [18, 19].

Throughout this thesis, we achieved our main objective by presenting the first computer-

aided diagnosis performance using [18F]PR04.MZ PET radiotracer that discriminates NC vrs

early PD compatible patients with above 98% of accuracy, providing an assisting resource for

early PD detection. The resulting image-based algorithms can preprocess, train and classify

2D and 3D datasets, and allows comparison between five different ML techniques.

6.1.1 Comparison between datasets

The approaches performed in five different models used two and three-dimensional datasets.

The results highlighted in both cases the performance of artificial neural networks, but differ

in the other models when looking at both databases separately. Figure 6.1 illustrates a com-

parison between 2D/3D dataset performance. With the exception of the ANN, models with

an three-dimensional input performed much better than those that used 2D images, although

all images were processed in the algorithms as a vector of pixels.

Computational complexity required for running every algorithm differs from one approach

to another, since it varies on the input size. Let’s remember that first approach images were

resized into 40 x 80 resolution, while 3D images used in the second approach were prese-

lected with the help of an unsupervised learning algorithm, which delivered an output of 10

on-a-row slices of 109 x 91 resolution. However, studies have shown image resolution does

not necessarily reduce model performance [48, 49]. This lead us to conclude that amount

of slices provided by the second approach allowed the algorithm to be trained with a higher

sensibility and specificity of [18F]PR04.MZ uptake in DAT midbrain regions.
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Figure 6.1: State-of-the-art versus performance based on accuracy, precision, recall and F1-score metrics of
the five models used in this research: Support Vector Machine, Random Forest, Logistic Regression, k-Nearest
Neighbor and Neural Network.

6.1.2 Interpretable and Explainable

The increasingly use of computational development to make highly risk decisions, as medical

diagnosis, has brought ethical dilemmas to debate: are we going to trust in artificial intelli-

gence rather than human intelligence? Do more accurate performance make more trustful

the use of artificial neural networks than human brain neural networks?

In Machine Learning, interpretable models correlate with the level of trust, given the trace-

ability of its prediction or decision steps. Models with low interpletability but high accuracy are

less explainable, either called black-box models. In the higher degree of explainable mod-

els we found logistic regression, while neural networks tend to be more accurate but lowly

explainable. Figure 6.2 illustrates a graphic representation of the degrees of accuracy and

explainability for the models used in this research work.

The computer-aided diagnosis approach we worked on suggest the use of artificial neural

networks as an assisting resource for early PD compatible detection due to it’s outperfor-

mance over the other models. However, it’s by definition a poorly interpretable model. Some

studies use techniques to incorporate interpretability in neural networks such as Local Inter-

pretable Model-Agnostic Explanations(LIME) [28], but this approach is beyond the scope of

this investigation. Still, other models developed in this work performed very well.

Artificial intelligence, which hasn’t even reached its mature age, still distantly sees the

goal to become a multi-tasking tool comparable to human behavior. The models here used
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Figure 6.2: Accuracy and Explainable representation of the models used in this research: SVM, RF, LogReg,
k-NN and ANN.

analyze the problem within a research framework, call it the same Parkinsonian syndrome.

Unprecedentedly in medicine, ML and DL techniques certainly have opened up possibilities

to identify neurodegenerative disorders. However, it does not manage to receive the infinite

variables that could come before a final diagnosis. So even though the expectations for the

CADs we created is to employ it as a clinical tool for a quantifiable diagnostic examination, it

remains on the side of the physician and the patient to take the step of trusting it.

6.2 Limitations and Future work lines

The gold standard on which the accuracy and other performance metrics reported are based

was the criteria issued by three specialists. Thus, the CAD system that resulted from this

investigation intended to reproduce this assessment, which may even not be exempt of mis-

diagnosis. The definite diagnosis is only obtained at an autopsy [4], and to date, all PD

compatible patients participating in this study are still alive.

Future work lines should improve 2D model results combining images with clinical data,

including a feature selection and extraction approach. With this projection, PositronMed team

have started the compilation of qualitative information, but it’s still work in progress.

Another investigation field of deepening is the differentiation of atypical Parkinsonian syn-
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dromes. A dataset with variation in medical diagnosis, i.e. patients suffering other disorders,

could train an algorithm that classifies subjects with PD, MSA (multiple system atrophy), cor-

ticobasal degeneration (CBD), dementia with Lewy bodies (DLB), etc. Studies that apply this

multiclass classification, although they work on a limited database [26], showed future work

lines for different image and computational techniques.

Within the framework of [18F]PR04.MZ PET tracer validation, a dataset that not only tag

early PD compatible subjects, but also follow the deterioration of patients in mid and advanced

stages of PD, could allow the classification of multiple stages of Parkinson’s disease.
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Appendix

Appendix A - PD burden in Latinamerican countries (1990-2016)

Figure 8.1: Deaths, prevalence, and DALYs for Parkinson’s disease and percentage change between 1990

and 2016 in age-standardised rates by Latinamerican location. Data extracted from [47].
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Appendix B - Results for ML and DL models applied to 2D dataset

B.1 Logistic Regression

Figure 8.2: Predicted probability of class membership for Logistic Regression model using 2D dataset.
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B.2 Artificial Neural Network (ANN)

Figure 8.3: Predicted probability of class membership for ANN model using 2D dataset.
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Appendix C - Results for ML and DL models applied to 3D dataset

C.1 Support Vector Machine (SVM)

Figure 8.4: Predicted probability of class membership for SVM model using 3D dataset.

Figure 8.5: Confusion matrix of SVM model using 3D dataset.
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C.2 Random Forest

Figure 8.6: Predicted probability of class membership for Random Forest model using 3D dataset.

Figure 8.7: Confusion matrix of Ranfom Forest model using 3D dataset.
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C.3 Logistic Regression

Figure 8.8: Predicted probability of class membership for Logistic Regression model using 3D dataset.

Figure 8.9: Confusion matrix of Logistic Regression model using 3D dataset.
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C.4 K-Nearest Neighbor (KNN)

Figure 8.10: Predicted probability of class membership for KNN model using 3D dataset.

Figure 8.11: Confusion matrix of k-NN model using 3D dataset.
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C.5 Artificial Neural Network (ANN)

Figure 8.12: Predicted probability of class membership for ANN model using 3D dataset.

Figure 8.13: Confusion matrix of ANN model using 3D dataset.

50



51


	Introduction and Context
	Background 
	Diagnosis 
	Terminology 

	Goals
	General Objectives 
	Specific Objectives 
	Expected Results 

	Structure of the thesis 

	State-of-the-art for neuroimaging CADs
	Methodology 
	Data pre-processing pipeline 
	Machine Learning model pipeline 

	Related machine learning algorithms 
	[18F]PR04.MZ PET tracer

	First ML and DL approach
	Dataset description
	[18F]PR04.MZ PET images

	Google Cloud MR Vision AI platform
	Machine learning classification models development
	Support Vector Machine (SVM) 
	Random Forest 
	Logistic Regression 
	k-Nearest Neighbors (k-NN) 
	Artificial Neural Networks (ANN) 

	Validation dataset results

	Second ML and DL approach
	[18F]PR04.MZ PET 3D normalized scans
	Unsupervised learning and preprocessing 
	Supervised learning classification models development 
	ML models
	DL model 

	Validation dataset results

	Results of CADs Approaches
	First approach Test dataset results
	Second approach Test dataset results
	Achievements

	Conclusions and future work lines
	Conclusions
	Comparison between datasets
	Interpretable and Explainable

	Limitations and Future work lines

	Bibliography
	Appendix

