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“Nor need we fear that this philosophy, while it endeavours to limit our enquiries to
common life, should ever undermine the reasonings of common life, and carry its
doubts so far as to destroy all action, as well as speculation. Nature will always
maintain her rights, and prevail in the end over any abstract reasoning whatsoever.
Though we should conclude, for instance, as in the foregoing section, that, in all
reasonings from experience, there is a step taken by the mind which is not supported
by any argument or process of the understanding; there is no danger that these
reasonings, on which almost all knowledge depends, will ever be affected by such a
discovery. If the mind be not engaged by argument to make this step, it must be
induced by some other principle of equal weight and authority; and that principle will
preserve its influence as long as human nature remains the same. What that principle is
may well be worth the pains of enquiry.”

— David Hume
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ABSTRACT

Anthropogenic climate change is a major threat to biodiversity, the development of
models that reliably predict its effects on species distributions is a priority for
conservation biogeography. Common issues for accurate predictions of Species
Distribution Models (SDM) across time are model extrapolation and realistic
incorporation of dispersal capacities. We investigated the consequences of these
issues on the success of predicting recent (1970-2010) climate-driven changes in the
distribution of Darwin’s frog Rhinoderma darwinii. We built SDMs that incorporate
dispersal processes and compared their predictions with predictions from SDMs without
dispersal limitations. We generated new dataset of bioclimatic variables for three time
periods (1970, 1990, 2010), and calibrated SDMs with historical occurrences (1950-
1975) fitted to 1970s climate, and projected them to conditions of the 2010s. Accuracy
of models was assessed through AUC, sensitivity and specificity rates, contrasting
binary model predictions across time against current presences/absences. The
incorporation of dispersal capacity enhanced accuracy, reducing the false presence
rate in model predictions, and this was consistent with discrimination of suitable but
inaccessible habitat. This enhancement also had consequences on range size changes
over time, a metric commonly used to assess extinction risk from climate change.
Comparing the climates of 1970 and 2010, the area of current climates that was absent
in the 1970s (no-analogue climates) represents 39% of the study area (35°-46°S;71°-
75°W). As a consequence models showed a high degree of environmental
extrapolation, leading to a decrease in accuracy of model predictions for no-analogue
climate areas compared to analogue ones. Our results highlight the consequences of
two acknowledged issues of species distribution forecasts on the accuracy of SDM
predictions, proposing ways to improve model predictability and reduce uncertainties of
over-simplistic full/no dispersal scenarios, hoping to provide more reliable information

for conservation decision makers.
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RESUMEN

Desarrollar modelos que permitan predecir de manera confiable los efectos del cambio
climatico sobre la biodiversidad es una prioridad para su gestién. Problemas comunes
a la precision predictiva de los Modelos de Distribucion de Especies (MDE) al
transferirlos en el tiempo son la extrapolacion ambiental y una incorporacion realista de
las capacidades de dispersion de las especies. Investigamos las consecuencias de
tales problemas sobre el éxito al predecir cambios recientes en la distribucién de la
ranita de Darwin Rhinoderma darwinii (1970-2014). Construimos MDEs que incorporan
explicitamente procesos de dispersion biolégica, comparando sus predicciones con las
de MDEs que no los incorporan. Para esto, generamos capas bioclimaticas para tres
periodos (1970, 1990 y 2010), y calibramos los MDEs ajustando las ocurrencias
histéricas (1950-1975) y proyectandolas al clima mas reciente. La precision de los
modelos fue evaluada contrastando predicciones binarias de los modelos a través del
tiempo, con presencias y ausencias actuales (2000-2014). La incorporaciéon de
procesos de dispersiéon mejora la precision, reduciendo la tasa de falsas presencias de
las predicciones, lo cual es consistente con la discriminaciéon de habitats adecuados
pero inaccesibles. El espacio climatico de 2010 que no se encontraban en 1970 (no-
analogos climaticos) representa el 39% del area de estudio (35°-46°S;71°-75°Q). Como
consecuencia, las transferencias temporales de los modelos presentaron un alto grado
de extrapolacion, resultando en una disminucién en la precisién de las predicciones en
areas no-analogas climaticas respecto de areas analogas. A partir de estos resultados
se proponen alternativas para mejorar la precision de las predicciones temporales de
los MDEs, reduciendo incertezas de escenarios demasiado simplificados de dispersion,
y haciendo un llamado a comunicar las areas geograficas donde los MDEs sean
extrapolados. Con esto esperamos se proporcione informacion mas fiable de los

efectos del cambio climatico a los tomadores de decisiones de conservacion.




INTRODUCTION

Anthropogenic climate change is a major threat to biodiversity; the prediction of its
effects on species distributions is a priority for conservation biology (Botkin et al. 2007).
Predicting changes in species distributions and their extent is a key factor in extinction
risk assessment (Rowland et al. 2011), and therefore fundamental to support
conservation decisions (Guisan et al. 2013). The most commonly used tools to forecast
climate-driven changes of species distribution are Species Distribution Models (SDM),
which associate occurrences and environmental conditions at a given time to estimate
the probability of occurrence in space (Guisan and Zimmermann 2000). By updating
environmental variables, these models can be used to forecast shifts in species
distributions over time (Fitzpatrick and Hargrove 2009). Recently, growing evidence is
questioning their temporal predictability (i.e. capacity to predict potential distributions
accurately over time; Aradjo and Rahbek 2006, Dobrowski et al. 2011, Rapacciuolo et
al. 2012), and therefore their utility to decide how scarce funds should be allocated in

large-scale conservation projects (Sinclair et al. 2010).

There are some shortcomings regarding the temporal predictability of SDMs. These
include, but are not limited to, the lack of species-environment equilibrium due to
dispersal limitations and the emergence of novel environments outside the range of
conditions used to calibrate the models (i.e. model extrapolation to no-analogue
climates, Rapacciuolo et al. 2012). However, the consequences of these shortcomings
on model predictions are not well understood, because they have not been tested using
independent temporal records to validate model predictions through time, despite the
recent calls for the need to assess the effects of dispersal constraints on predictive
performance of SDMs over time (Eskildsen et al. 2013, Miller and Holloway 2015).

Dispersal is a key process in range dynamics (Davis et al. 1998), but its consequences
on the accuracy of SDM predictions over time have received little attention.
Furthermore, most SDM studies have ignored dispersal or dealt with it in overly
simplistic ways (e.g. no dispersal versus unlimited dispersal). Incorporating dispersal
processes could allow distinguishing the suitable area that is accessible from which that
is not, a critical issue to predict range shifts successfully (Soberon and Peterson 2005,



Barve et al. 2011); by doing so it is expected to result in more accurate projections of
range shifts (Miller and Holloway 2015).

While the inclusion of dispersal processes in mechanistic models usually requires
information that is lacking for most species (e.g. dynamic range models; Schurr et al.
2012), alternative dynamic SDMs which need little species knowledge and that couple
habitat suitability with dispersal rates have been proposed to improve the prediction of
range shifts under climate change (Engler and Guisan 2009, Franklin 2010, Bateman et
al. 2013). Species with limited dispersal capacity may be expected to be more
vulnerable to climate change, since those species won't be able to track climatic
changes at current or future rates (Schloss et al. 2012, Zhu et al. 2012), generating
non-equilibrium conditions that challenge range shift predictions (Schurr et al. 2012).
The study of Dobrowski et al. (2011) on temporal predictability of SDMs suggested that
dispersal-limited species would have lower predictive accuracy over time than species
with high dispersal capacity, but the consequences of explicitly incorporating dispersal
processes remain untested.

Model extrapolation into environments dissimilar to those characterizing the conditions
for which the model was originally calibrated is another factor that could undermine
temporal predictability of SDMs and has received scarce attention (Fitzpatrick and
Hargrove 2009). In fact, environmental factors that limit distributions may change
substantially under a new climatic regime, and observed trends may not be valid
beyond the range of initial environmental conditions (Dormann 2007). The emergence
of non-analogue climates challenges the capacity to forecast the effects of climate
change, because little information exists to predict how species will respond in novel
environments (Fitzpatrick and Hargrove 2009). Using an independent temporal dataset
to assess the accuracy of model predictions over time (model evaluated at a time
window different than the calibration time, using observed presence/absence data),
Dobrowski et al. (2011) found that model predictions for no-analogue areas had similar
accuracy to those of analogue areas but significantly greater variance, indicating a

higher uncertainty in model predictions in no-analogue areas.

Within this framework, we assessed the consequences of incorporating dispersal
constraints and model extrapolation on the temporal predictability of climate-based



SDMs, measured as the accuracy of predictions over time. We addressed two
questions: (1) Can the incorporation of dispersal constraints in SDMs improve the
temporal predictability of SDMs? and (2) Are environmental extrapolations of SDMs to
no-analogue climates leading to decreased temporal predictability? We hypothesize
that a) incorporating dispersal processes to SDMs transferred in time will restrict range
shifts to suitable climates that are accessible, with the consequence that predictions of
SDMs transferred in time that explicitly incorporate dispersal processes will outperform
those of SDMs that do not, and b) as it is not possible to characterize fully the
relationship between environment and species distribution from the realized niche (i.e.
occurrence data), geographic areas where no-analogue climates have arisen will
experience not only higher uncertainties, but also lower temporal predictability than
climate analogue areas. We tested our hypotheses using observed distributional data of
Darwin’s frog (Rhinoderma darwinii), a species with apparently low dispersal capacity
(Valenzuela-Sanchez et al. 2014), which could highlight consequences of dispersal
processes in the accuracy of SDMs when transferred in time. This species is also
endemic to temperate rainforests of South America, a region where climate is already

changing (Jacques-Coper and Garreaud 2015).

METHODS

Based on historical occurrence records (1950-1975) and data on observed climatic
change over the last 40 years, we constructed SDMs including and not including
dispersal processes, and projected them to the current climate to predict potential range
shifts of R. darwinii. In order to assess model accuracies, we contrasted model
predictions with time-independent present day presence/absence for 2000-2014. We
then compared model accuracy between SDMs that incorporated dispersal limitations
and those that did not. Finally, to assess the effects of environmental extrapolation of
SDMs on temporal predictability, we stratified model projections to no-analogue
climates and climatic analogue areas.




Study case

Rhinoderma darwinii was chosen as subject of study because of its: 1) low mobility,
small home range and low net displacement (Crump 2002, Valenzuela-Sanchez et al.
2014); 2) well-studied distribution, with a number of known present and past
georeferenced occurrences, from which updated distribution range maps have been
produced (Soto-Azat et al. 2013a); 3) endangered condition, undergoing rapid
population declines in recent years due mainly to habitat loss, while climate change and

infectious diseases are cited as potential main threats (Soto-Azat et al. 2013a, 2013b).

The study area covers central and southern Chile and adjacent areas of Argentina (35°-
46°S; 71°-75°W, Figure 1). In this area the greatest decrease in precipitation is
expected to occur along with the greatest increase in temperature; it is also where most
vulnerable ecosystems of Chile occur (Santibafiez et al. 2013). It spans about 37,000
km? and is characterized by a highly irregular topography, including the Pacific Coast
Range, the western slope of the Andes Range and part of the fiords of northern
Patagonia. Its territory includes the Chilean Winter Rainfall-Valdivian Forests, a
recognized biodiversity hotspot (Mittermeier et al. 1999).

Occurrence data

Both historical and current occurrences were obtained from the most recently published
review of Darwin’s frog’s distribution (Soto-Azat et al. 2013a) and include additional
non-published records. Historical occurrence records for the species were restricted to
all archived specimens found in museums around the world that were collected
between 1950 and 1975 (Soto-Azat et al. 2013a; ti), while current presences and
absences (i.e. sites prospected but no individual found) included georeferenced records
from individuals captured between 2000 and 2014 from 35 field campaigns across the
entire historical distribution of R. darwinii carried out between 2008 and 2014 (if). The
historical dataset included 97 records, corresponding to 28 unique occurrences (i.e.
information regarding a single cell in a grid-based georeferenced data with ~1x1 km
resolution); the present-day dataset included 1,422 records, corresponding to 83 unique

occurrences plus 54 unique absences. It was assumed that the absence of a record



from a sampled grid cell corresponds to a true absence of the species. Details on

georeferenced records are available in Table S1.
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Figure 1. Study area, geographic distribution and location of historical and current

presence-absence datasets for Rhinoderma darwinii.



Characterizing recent climate change

Using point data of meteorological stations between 34°-48°S and 70°-75°W, climatic
surfaces for three recent past periods (1970; 1990; 2010) were built. Meteorological
data encompassed 293 weather stations, and were extracted from the Direccion
Meteoroldgica de Chile (DMC), Direccidn General de Aguas de Chile (DGA) and the
FAOCIim-NET Agroclimatic database management system (FAO 2001), recording
monthly records of mean daily minimum temperature, mean daily maximum
temperature and total rainfall for 5-year periods (1965-1969; 1985-1989; 2005-2009).
For each period monthly values of each climatic variable were interpolated to generate
surfaces using Anusplin v.4.4 (Hutchinson and Xu 2006), which applies the same
algorithm used to derive the WorldClim bioclimatic surfaces (Hijmans et al. 2005).
Interpolations weré fitted at a ~1x1 Km resolution with the second-order spline method
using elevation as an independent variable (Hutchinson and Xu 2006, Pliscoff et al.
2014). Finally, surfaces of 19 bioclimatic variables were generated using the dismo
package in R (Hijmans et al. 2014). To investigate the observed change in recent
climate (last 40 years), we assessed differences between the bioclimatic values of the
1970s and 2010s for a random subset of 10000 grid cells using non-parametric
Friedman analysis of variance of ranks for repeated measures.

Habitat suitability models

Habitat suitability models were fitted using the maximum entropy algorithms
implemented in the Maxent software (Phillips et al. 2006), which have better
performance with limited presence data (Elith et al. 2010) and a combination of high
spatial and temporal predictability (Heikkinen et al. 2012, Rapacciuoclo et al. 2012).
Historical occurrences were randomly subsampled by distance to reduce the effects of
spatial autocorrelation (Marino et al 2011), avoiding occurrences that were less than 4
km apart, resulting in a subsample of 24 occurrences, which shows non-significant
autocorrelation levels by Moran’s | Test (Moran 1950), as well as exceeding the
theoretical minimum sample size (i.e. 13) required to obtain good model performance
(i,e. AUC > 0.9) in an ideal, balanced and orthogonal world (van Proosdij et al. in
press). All models were calibrated using 70% of the dataset points (training data), while



the remaining 30% were used for internal evaluation of model performance (“internal
evaluation® [IE] sensu Dobrowski et al. 2011). To reflect the relationship between
habitat suitability and local abundance better (Brown et al. 1995) climate variables that
were closely related to local abundance were prioritized, selecting a subset of 5 of the
19 bioclimatic variables by their degree of correlation with the population density of 15
populations across the entire distribution of Rhinoderma darwinii but avoiding the
incorporation of pairs of collinear bioclimatic variables (i.e. Pearson’s r 2 0.7). Using this
selection procedure, temperature seasonality (standard deviation *100), mean
temperature of the wettest quarter, annual precipitation, precipitation seasonality
(coefficient of variation) and precipitation in the coldest quarter were selected. To
characterize the effects of model extrapolation to no-analogue climates, “do clamping”
was not used; this is the default option in the Maxent software that constrains the upper
and lower bounds of future values of environmental variables to the range in which the
model was calibrated; Phillips et al. 2008). Fifty replicates were conducted, and using
the IE 15 replicates that had the best performance on 1970 projections (i.e. highest
Area Under Curve [AUC] values of the receiver operating characteristic ROC function)
were selected. The models were projected to 1990 and 2010 for the 15 replicates
selected. Finally, projections of those replicates were transformed from logistic output
(an estimate of probability of occurrence) to binary maps of presence-absence. To do
so, the maximum training sensitivity plus specificity threshold was used, calculated for
each SDM, to transform predicted probabilities of occurrence above the selected
threshold to presences, and those below to absences. This threshold algorithm has
previously been found to perform better than others (Swets 1988, Jiménez-Valdeverde
and Lobo 2007).

Incorporating dispersal processes

To simulate species-specific dispersal constraints we used MigClim (Engler and Guisan
2009), a cellular automaton-based dynamic SDM, which can be used in conjunction
with habitat suitability and demographic information to explore the spatial
consequences of climate change. In this model the colonization probability of an

unoccupied cell is a function of propagule production and distance from nearby



occupied cells, dispersal barriers and habitat “invasibility” (based on habitat suitability
at a given time; Engler and Guisan 2009). Using inputs of dispersal and demographic
parameters, maps of initial distribution (1970), and climatic habitat distributions based
on changing climate conditions (i.e. environmental steps: 1990 and 2010) it was
possible to distinguish suitable climates that were accessible from those which were
not. The initial distribution was the potential climate distribution modeled from habitat
suitability models fitted and projected on 1970, while the environmental steps were the
same climate envelope model projected to 1990 and 2010, transformed to binomial
maps (suitable/unsuitable) using thresholds as described above. Since the dispersal
kernel of R. darwinii has not been fitted, extreme values from currently published
dispersal kernels of amphibians were used, as minimum (Triturus cristatus; Kovar et al.
2009) and maximum (Rana temporaria; Kovar et al. 2009) potential dispersal scenarios
(see Table S2 for all published dispersal kernels fitted for amphibian species). Finally,
first reproduction age was estimated from the experience of ex-situ conservation,
establishing the age of first reproduction and sexual maturity at 3 and 6 years,
respectively (Busse 2002, Bourke 2010). As probability densities of dispersal by
distance at annual time periods were incorporated and the environmental steps (1990,
2010) were separated by twenty years, the CA model produced had a total of 40 annual
steps (or “dispersal steps”). All dynamic models were developed using the MigClim
package in R (Engler et al. 2012).

Quantifying emergence of no-analogue climates

To measure the emergence of no-analogue climates from past (1970) to present (2010;
i.e. the degree of extrapolation in SDM projections over time) we used the Extrapolation
Detection tool (ExDet), based on Mahalanobis distances (Mesgaran et al. 2014). The
Exdet tool, implemented in the ExDet software, measures the similarity between the
reference and projection domains by accounting for both the deviation from the mean
(novelty type |) and changes in the correlation between variables (novelty type I,
Mesgaran et al. 2014). The novelty (i.e. no-analogue climates) was assessed
employing the same climatic variables used to calibrate SDMs, by using the 1970 layers

as reference and the 2010 layers as projected climates.



Assessment of temporal predictability of SDMs

Usually accuracy of SDM projections is assessed using a data-split or a resampled set
of the distribution records used to build the models. This involves a limited approach
that can overestimate the predictive accuracy (Dobrowski et al. 2011). An emerging and
more robust approach to assess the temporal predictability of SDMs is contrasting
model predictions across a time period different than that with which the model was
originally calibrated with presence/absence data from that new time period (e.g.
Pearman et al. 2008, Kharouba et al. 2009, Dobrowski et al. 2011, Rapacciuolo et al.
2012, Watling et al. 2013). Thus to quantify the temporal predictability of SDMs, we
estimated the models’ ability to discriminate between occupied and non-occupied sites,
comparing model predictions with contemporary (2000-2014) presences and absences
(“external evaluation” [EE] sensu Dobrowski et al. 2011). This was done for each of the
15 replicates of the three different model parametrizations separately by calculating
three alternative measures of prediction accuracy: i) AUC, the area under the ROC-
curve (Fielding and Bell 1997), (ii) sensitivity (i.e., proportion of correctly predicted
presences) and (iii) specificity (i.e., proportion of correctly predicted absences), using
the SDMTools package (Van Der Wal et al. 2011). Interpretation of AUC scores
followed the guidelines recommended by Swets (1988). excellent AUC > 0.90; good
0.80 < AUC < 0.90; fair 0.70 < AUC < 0.80; poor 0.60 < AUC < 0.70; and fail 0.50 <
AUC < 0.60.

Dispersion and exirapolation on temporal predictability of SDMs

To assess the effects of dispersal processes on the temporal predictability of SDMs, the
Kruskal-Wallis test was conducted to compare medians of the three measures of
prediction accuracy between SDMs with and without dispersal limitation (both
scenarios), followed by post-hoc pairwise comparisons among model treatments using
Tukey's HSD test when differences were found. To assess the effect of model
extrapolation, the predictive accuracy between stratified validation datasets was
compared for extrapolation and no extrapolation areas (i.e. analogue climates vs no-

analogue climates) using a Mann-Whitney test. All analyses were performed in R v.
3.1.2.
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RESULTS

Predicted shifts of suitable climates

All five bioclimatic variables showed significant changes between 1965-1969 (ti) and
2005-2009 (tf). Temperature seasonality (standard deviation *100), mean temperature
of wettest quarter, precipitation seasonality (coefficient of fariation) and precipitation of
coldest quarter experienced significant increases, while annual precipitation showed a
significant decrease (Friedman repeated measures analysis of variance on ranks, all p
< 0.001). Over the last 40 years, the suitable climates for R. darwinii predicted by SDMs
have shifted, experiencing upward spread and resulting in increases in the climatically

suitable area by 46% on average under no dispersal limitations (Figure 4).
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Figure 2. Maps showing predicted suitable climates for 1970 and predictions for 2010
through temporal transference of SDMs without dispersal limitations. Hatched area

indicates probability of occurrence probability greater than the cutoff threshold.
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Identifying suitable but inaccessible climates

The MigClim output allows distinguishing between suitable habitats that are accessible
from suitable habitats that are not accessible due to dispersal limitations (Figure 3).
This geographic area where dispersal limitations were identified was also consistent
with populations of R. darwinii that were identified as potential recent local extinctions
(2000-2014).
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Figure 3. Differences in predicted range change for the last 40 years (1970-2010) for
Rhinoderma darwinii using simple SDMs and dispersal-constrained SDMs that
incorporate dispersal capacity (maximum dispersal rate). Range change categories
following Engler & Guisan (2009), defined for simple SDM projections using presence-
absence predicted distributional changes since 1970 to 2010 using geographic

intersections.
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SDMs that explicitly incorporated dispersal constraints restricted the upward
extensions, resulting in decreases in the range areas by 35% or 12% over the last 40
years using minimum and maximum dispersal capacity scenarios for dynamic SDMs,
respectively. These contrasting patterns in predicted range size changes (a metric
usually used to assess extinction risk under climate change scenarios) between simple
SDMs and dispersal-constrained SDMs were significantly different (Kruskal-Wallis Test
H=16.29, p<0.001; Figure 4).

200

150 4

100

Range size change (%)

Figure 4. Boxplot (median, 25" and 75" percentiles) showing the consequences of
dispersal constraints on predicted range size change (%) from 1970 to 2010. Significant
effects are denoted by *. Different letters indicate statistical differences in model
accuracy between different modeling treatments.
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Dispersal limitations on temporal predictability of SDMs

Model accuracy estimated using EE was significantly less than using |IE, independently
of dispersal constraints (Kruskal-Wallis test H = 36.31, p > 0.01; Figure 5). The median
AUC estimated for SDMs without dispersal process projections was 0.71 (with 25th
percentile = 0.67, 75th percentile = 0.75), which corresponds to overall poor to fair
accuracy (sensu Swets 1988). For SDMs with dispersal constraints the median AUC
estimated was 0.74 (25 th percentile = 0.71, 75 th percentile = 0.79) for the minimum
dispersal capacity scenario and 0.76 for the maximum dispersal capacity scenario (25th
percentile = 0.73, 75th percentile = 0.80; Figure 5) which corresponds to overall fair to
good accuracy (sensu Swets 1988). Accuracy of SDM projections over time (AUC from
a time-independent dataset) significantly increased when dispersal limitations were
incorporated (Kruskal-Wallis test H = 8.44, p < 0.05; Figure 5), but pairwise
comparisons showed that only SDM projections with maximum dispersal capacity
outperform projections of SDMs without dispersal constraints (Figure 5). Also, both
dynamic SDM projections (maximum and minimum dispersal capacity) exhibited
significantly greater sensitivity values than SDM projections that do not incorporate
dispersal processes (Kruskal-Wallis test H = 12.19, p < 0.01; Figure 5). Otherwise, no
significant differences in model specificity were found, independently of the SDM
framework (Kruskal-Wallis test H = 2.12, p > 0.34; Figure 5).

Model environmental extrapolation on temporal predictability of SDMs

No-analogue climates have arisen in >39% of the study area over the last 40 years,
including both projected suitable and non-suitable habitats for R. darwinii (Figure 6).
Thereby, SDMs had to extrapolate into 2010 climatic conditions unrepresented in the
calibration dataset to be projected. The climatic novelties reported by the ExDet tool
only occurred in the range of univariate variation (i.e. exceeding the range of values of
at least one climatic variable that occurred under the initial climatic conditions), with

novel combinations between covariates not being observed.
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Figure 5. Boxplot (median, 25" and 75" percentiles) of different measures of accuracy
of SDM predictions over time of Darwin’s frog (Rhinoderma darwinii), for each modeling
treatment (maximum dispersal, minimum dispersal and no dispersal constraints) and
data stratification (analogue vs no-analogue climates). Significant effects of dispersal
processes and model exirapolations are denoted by *. Different letters indicate

statistical differences in model accuracy between different modeling treatments.
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We found that no-analogue climate samples showed significantly lower AUC (all Mann-
Whitney test U < 59, all p-values < 0.05) and sensitivity values (all Mann-Whitney test U
< 29, all p-values < 0.001) than analogue samples, but no significant differences in
model specificity were observed (all Mann-Whitney U>74, all p-values > 0.1),
independently of the SDM framework (Figure 5).

A

“77/ No-analogue climates
Predicted absence
9 predicted presence

6°0'0"S

-38°0'0"S

~40°0'0"8

-42°0'0"S

-44°0'0"S

-46°0'0"S

Figure 6. Predicted geographical distribution map for Darwin’s frog (Rhinoderma
darwinii) for 2010 using dispersal-constrained SDM with minimum dispersal capacity;
and the extent of model extrapolation (no-analogue climate areas) after 40 years of
observed recent climate change (1970-2010).
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DISCUSSION

Predicting species range shifts under global climate change is a major challenge for
conservation biogeography (Aratjo et al. 2005, Botkin et al. 2007, Carvalho et al. 2011).
However, the most commonly used approach to forecast range shifts, the SDMs, have
shortcomings that could limit their predictive accuracy over time (Elith and Leathwick
2009, Franklin 2013). Two key obstacles to predicting range shifts reliably under globai
change scenarios are: i) no incorporation of dispersal processes in SDMs (Miller and
Holloway 2015), and ii) the environmental extrapolation of these models (Fitzpatrick and
Hargrove 2009). Here we demonstrated the consequences of these shortcomings on
temporal predictability using historical data to predict the present distribution of the
dispersal-limited frog R. darwinii, assessing the accuracy of predictions contrasted with
current presence/absence data.

Our results offer new insights to predict range shifts reliably. They support for the first
time with empirical and time-independent results the recognized idea that incorporating
dispersal processes would significantly improve the temporal predictability of SDMs
(e.g. Pitelka et al. 1997, Midgley et al. 2006, Schurr et al 2012, Eskildsen et al. 2013,
Miller and Holloway 2015). This might help to reduce one of the most common sources
of uncertainty of SDM predictions, the difference between full and no dispersal
scenarios (Thuiller et al. 2006). Our results also showed that model extrapolations could
lead not only to higher uncertainties (Dobrowski et al. 2011), but also to lower predictive
accuracy over time. This is especially relevant as the rise of no-analogue climates is
expected to be inevitable, and therefore reporting the geographic distribution of model
extrapolation is key to better informed conservation decisions. Qur results also support
previous reports that model evaluation with non-independent data (e.g. data-splitting of
the calibration dataset) provides overly optimistic assessments of predictive accuracy
over time; the time-independent dataset is the most robust way to assess model
accuracy over time (Aradjo et al. 2005, Kharouba et al. 2009, Dobrowski et al. 2011,
Eskildsen et al. 2013).

While SDM forecasts usually show good predictability over time (i.e. AUC > 0.8;
Kharouba et al. 2009, Dobrowski et al. 2011), the ability to predict changes in
occupancy status due to climate change using SDMs that do not incorporate dispersal
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processes is at best weak (Rapaccioulo et al. 2012, Eskildsen et al. 2013). Two key
processes that could limit the accuracy of SDMs in range shift predictions are the
persistence of populations in habitats initially suitable and occupied, but that have
become unsuitable; and the dispersal capacity to colonize new suitable habitats (i.e. to
track climate change; Thuiller et al. 2008, Poyry et al. 2009, Devictor et al. 2012, Lenoir
and Svenning 2015). Incorporating dispersal processes not only has consequences for
reducing the uncertainty of projected range shifts needed in conservation planning
(Carvalho et al. 2011), but also for extinction risk assessments. Usually, SDM
projections using full dispersal assumptions overestimate the geographical range area
because these models are not able to distinguish an accessible habitat from that one
that is inaccessible (Miller and Holloway 2015), and therefore might lead to incorrect
estimations of extinction risk (Hamann and Aitken 2013). Moreover, the relationship
between projected suitable habitat (accessible and inaccessible) and extinction risk is
often weak (Fordham et al. 2012), and this apparent weakness could be explained by
differences between incorporating or not the dispersal capacity of species when
assessing the risk of extinction due to climate change through SDMs. For R. darwinii,
simple SDM forecasts predicted an increase in potential climatically suitable area.
However, dispersal-constrained SDMs predicted decreases in the range area for 14 out
of 15 replicates, highlighting that dispersal capacity plays an important role in accurate

assessment of extinction risk.

Improvement in temporal predictability when dispersal constraints are included in
dispersal-constrained SDMs is clearly explained by the desirable increase in model
sensitivity (i.e. a decrease in false presence predictions). Model sensitivity has been
suggested as more critical to model reliability to support conservation decisions than
model specificity (Jiménez-Valverde et al. 2011). This is important in conservation
management because the former aliows more accurate reports of where the species is
expected to spread and where the species should not colonize due to dispersal
limitations, even though the model predicts suitable climates. The increase in model
sensitivity for R. darwinii using dispersal-constrained SDMs with respect to projections
from simple SDMs is consistent with large areas of habitat that have become suitable,
but which R. darwinii cannot access due to dispersal limitations (e.g. high latitude

islands in Patagonian fjords and high altitudes in the Andes; Figure 3). However, we did
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not observe improvements in SDM specificity (i.e. no decrease in false absence
predictions) when dispersal capacity was incorporated. This could be interpreted as a
limitation in the ability of SDMs to predict species distributional responses to climate
change at the trailing edge of a species’ range, which is not explained by dispersal
constraints. Two alternative explanations compete for false absence predictions: First,
SDM projections are probably pessimistic in predicting habitat loss at the trailing edge
of a species’ range, because SDMs are based on the realized climatic niche, which can
be much narrower than the fundamental niche (Jackson and Overpeck 2000). This is
also consistent with non-climatic range limitations, which have been recently proposed
as likely the norm rather than the exception (Early and Sax 2014). Second, anocther
overly pessimistic issue of SDM projections in face of climate change is the assumption
that populations under unsuitable conditions are committed to local extinction (e.g.
Thomas et al. 2004). Therefore, these models rarely incorporate persistence of
populations when the climate of a given area became unsuitable, which could explain at
least part of false absence predictions. This highlights the need for incorporating not
only dispersal processes in dynamic SDMs, but also population persistence under
unsuitable conditions (Schurr et al. 2007, Thuiller et al. 2008), disentangling the effects
of misrepresented niche and persistence in unsuitable habitats on the temporal
predictability of SDMs. An example of incorporating both processes is presented in
Early and Sax (2011), who demonstrated that population persistence could be critical to
predict species range shifts. However, to our understanding the consequences of
incorporating population persistence in temporal predictability of SDMs have not been
demonstrated so far (e.g. through time-independent validation of predictions).
Moreover, if persistence has an effect on the predictability of SDMs over time, its effects
should be greater in long-lived species because of a greater temporal lag for local
extinctions (climatic extinction debts; Devictor et al. 2012), assuming that it is somewhat
unlikely that these populations could evoive to adapt to new conditions. Although most
amphibians are expected to live for only few years, R. darwinii appears to live longer.
Field studies have recorded adults a minimum of eight years-old (Soto-Azat, pers.
comm), while in captivity individuals have survived up to 15 years (Busse 2002); this is
a reason why the persistence of populations under unsuitable conditions should be

considered in future forecasts of range dynamics for this species.
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Current climate conditions are changing, with some climates disappearing and new
ones emerging. However, reports of no-analogue climates to take account of prediction
uncertainty are still an uncommon practice in species distribution forecasts (Elith and
Leathwick 20089). Instead studies typically extrapolate models into no-analogue
conditions and assume such extrapolations are valid (Fitzpatrick and Hargroove 2009).
Our results suggest that, similarly to spatial extrapolation (Heikkinen et al. 2012), a
good capability of SDMs to predict species distributions under training conditions does
not automatically guarantee equally good performance when these are transferred in
time. In spite of decreased predictive accuracy and increased uncertainty of SDMs for
no-analogue climate areas, environmental extrapolation seems to be a situation that
often cannot be avoided when these correlative SDMs are being transferred in space or
time. For this reason, it is strongly recommended to report the degree of environmental
extrapolation both for temporal and spatial transference of SDMs (e.g. Elith et al. 2010,
Mesgaran et al. 2014) to prevent erroneous or imprecise predictions, or at least
communicate where model predictions are reliable and where they are not.

Significant improvements in temporal model predictability can be obtained when
realistic dispersal constraints are included in dynamic SDMs, reducing the uncertainty
of the over-simplistic approach of no/full dispersal. This may be more important for
dispersal-limited species, which have shown lower temporal predictability than species
with high mobility. However, the predictive performance of SDMs significantly
decreases in non-analogue climate areas, and as the rise of climatic novelty is
inevitable, reporting the geographic distribution of model extrapolation is key to better
informed conservation decisions. Studies performing time-independent evaluations of
SDM projections over time are needed, since this is a more robust way to assess the
predictive accuracy of SDMs in a context of environmental change. Furthermore, the
development of new dynamic SDMs should include, in addition to dispersal processes,
population persistence in unsuitable habitats, thus reporting projected climatic extinction

debts and thereby reducing false absences in model predictions.
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Table S1. Georeferenced records for R. darwinii for both historical (1950-1975) and

present-day datasets.

Dataset Latitude Longitude Presence-absence
-36.83437 -73.05178 1
-37.31148 -73.25317 1
-37.71274 -73.11200 1
-37.80194 -72.86081 1
-37.82122 -73.02545 1
-37.90961 -73.29110 1
-37.92543 -73.21368 1
-38.01743 -73.17208 1
-38.01824 -73.22494 1
-38.35393 -73.92694 1
-39.43464 73.21289 1
g -39.63808 -72.33494 1
£ -39.80236 -73.25997 7
o -39.84517 -73.29478 1
S -39.86961 -73.39462 T
S -39.88607 -73.43211 1
T -40.16117 -73,66398 1
-40.52833 -73.70771 1
-40.55296 -73.71374 1
-41,03432 -71.88996 1
-41.04311 -71.98007 1
-41,20839 -72.53852 1
-41.,22545 -72.27370 1
-41.22847 -72.26451 1
-41.46915 -72.93076 1
-41,86629 -73.82231 1
-42.01883 -72.69432 1
-44.32650 -72,55200 1
-35.83300 -72.50805 0
-35.93611 -71.60738 0
-36.85260 -73.04167 0
-36.90967 -73.01728 0
-36.91013 -73.01607 0
-36.92058 -72.96992 0
-37.02125 -72.97117 0
-37.03293 -73.01263 0
-37.24473 -73.48612 0
= -37.29798 -73.25164 0
é -37.30058 -73,25038 0
= -37.31148 -73.25317 0
& -37.77235 -73.19883 0
*é -37.82122 -73.02545 0
o -37.82487 -73.01365 0
= -37.82600 ~73.02467 0
-37.82785 -73.01005 0
-37.82894 73.17269 0
-37.82925 -73.16339 0
-37.83083 -73.16167 1
-37.83150 -73.16228 1
-37.84153 -72.99883 0
-37.88992 -73.27578 0
-37.89042 -73.27553 1
-37.89306 -73.28550 0




-37.89419 -73.28636 1
-37.90961 -73.29110 0
-38.01158 -73.18225 1
-38.01743 -73.17208 1
-38.03058 -73.20472 1
-38.28658 -72.09952 0
-38.72866 -72.58804 0
-35.13722 -71.71312 0
-39.13854 -71.70967 1
-39.13500 -71.70995 1
-39.148859 -71.71183 Q
-39.15092 -71.71506 0
-39.48650 -71.85310 1
-39.48683 -71.85328 1
-39.48694 -71.85292 1
-35.48700 -71.85281 1
-38.51612 -71.86251 0
-39.55036 -71.58803 1
-39.55047 -71.98817 1
-39.57967 -71.53383 0
-39.69815 -73.30187 1
-39.69840 -73.30220 1
-39.71520 -73.40242 0
-39.77497 -71.63925 1
-39.79155 -71.66504 1
-39.80089 -71.52733 1
-39.85315 -71.96065 1
-39.85325 -71.96061 1
-39.85856 -71.93550 1
-39.86367 -71.91728 1
-39.86761 -71.91192 1
-39.86988 -71.91832 1
-39.87022 -71.91175 1
-39.87025 -71.81181 1
-39.87258 -71.91975 1
-39.87261 -71.91367 1
-39.87267 -71.91353 1
-39.87436 -71.92047 1
-39.87483 -71.92164 1
-40.13725 -71.65843 0
-40.19792 -73.43711 1
-40.54800 -73.69117 0
-40.66376 -72.17085 1
-40.66456 -72.17550 1
-40.66798 -72.18556 1
-40.68189 -72.14317 0
-40.68206 -72.14317 1
-41.01469 -71.82191 1
-41.44117 -72.19175 0
-41.83893 -73.60075 1
-41.88080 -73.67605 1
-41.88130 -73.67605 1
-41.88147 -73.67623 1
-41.88197 -73.67557 1
-41.88200 -73.67562 1
-41.88789 -72.38294 0
-42.37586 -72.41082 0
-42.38760 -72.40110 0
-42.85128 -74.08827 1
-42.85308 -74.07853 1

26



-42.93910 -73.49431 1
-42.97203 -72.46464 1
-43.02533 -73.79739 1
-43.08475 -72.45835 0
-43.12542 -73.98862 1
-43.13892 -74.04710 1
-43.15005 -74.08957 1
-43.16478 -74.12077 0
-43.16478 -74.12077 1
-43.19575 -74.11463 1
-43.24677 -74,12463 1
-43.27587 -72.43217 0
-43.28540 -74.12175 1
-43.29893 -74.11620 1
-43.35332 -74.11199 1
-43.35654 -74.10807 1
-43.35797 -74.11114 1
-43.35878 -74.11147 1
-43.35956 -74.11136 1
-43.35976 -74.13733 0
-43.36118 -74.11108 1
-43.36128 -74.11130 1
-43.36137 -74.11902 1
-43.36150 -74.11058 1
-43.36267 -74.11093 1
-43.36378 -74.12273 0
-44.08778 -73.08242 1
-44.08806 -73.08356 1
-44.08806 -73.08376 1
-44.08919 -73.08369 1
-44.09643 -73.09682 0
-44.09650 -73.09682 0
-44.10821 -73.11854 1
-44,11045 -73.11899 0
-44.23100 -72.50677 1
-44.23210 -72.50663 0
-44.23222 -72.50660 1
-44.23225 -72.50618 1
-44.23303 -72.53877 0
-44.23327 -72.50933 1
-44.23332 -72.50930 1
-44.23340 -72.50922 1
-44.23366 -72.50869 1
-44.23430 -72.506596 1
-44.31407 -72.53257 4]
-44.32168 -72.54320 0
-44.46984 -72.54042 0
-44.62046 -72.91527 0
-44.62804 -72.96297 0
-44.63034 -72.96633 0
-45.09967 -72.95541 1
-45.18970 -72.95238 1
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Table S2. Published dispersal kernels fitted for amphibian species.

Publication Specie Distance [m] Probability of movement {1 year period)

Kovar et al. 2009 Lissotriton vulgaris 1000 0.0018182014
2000 0.0000694200

2500 0.0000205998

3000 0.0000071912

4000 0.0000012243

5000 0.0000002825

Mesotriton alpestris 1000 0.0403505354
2000 0.0137354567

2500 0.0093302509

3000 0.0067039344

4000 0.0038736591

5000 0.0024742116

Triturus cristatus 1000 0.0000408084
MINIMUM DISPERSAL SCENARIO 2000 0.00006000904
2500 0.0000000090

3000 0.0000000012

4000 0.0600000000

5000 0.0000000000

Bombina bombina 1000 0.0006589338
2000 0.0000653491

2500 0.0000287510

3000 0.0000143359

4000 0.0000045353

5000 0.0000017796

Bufo bufo 1000 0.0124026118
2000 0.0009243800

2500 0.0003452872

3000 0.0001462269

4000 0.0000340830

5000 0.0000101130

Rana arvalis 1000 0.0500623583
2000 0.0070545444

2500 0.0033107077

3000 0.0017034202

4000 0.0005475031

5000 0.0002113160

Rana temporaria 1000 0.1094610939
MAXIMUM DISPERSAL 2000 0.0557328485
SCENARIO 2500 0.0437945153
3000 0.0356519798

4000 0.0253576971

5000 0.0192029822

Sinsch et al. 2012 Epidalea calomita 1000 0.3092340000
(Sandy soils- empirical) 2000 0.0907676000
3000 0.0268259000

4000 0.0037003600

5000 0.0009762080

Epidalea calamita 1000 0.4841060000
(Sandy soils- potential) 2000 0.2454920000
3000 0.1192100000

4000 0.0584622000

5000 0.0297608000

Sinsch 2014 Epidalea calamita 1000 0.3123390000
{empirical) 2000 0.0964010000
3000 0.0295630000

4000 0.0077120800

Tingley et al. 2013 Rhinella marina 1000 0.0003963590
2000 0.0001411400

3000 0.0069561900

4000 0.0000407579

5000 0.0000270461
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