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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR JORGE SEBASTIÁN AGUAYO ARANEDA
FECHA: 2022
PROF. GUÍAS: AXEL OSSES ALVARADO, ROEL VERSTAPPEN

UN PROBLEMA INVERSO DE MECÁNICA DE FLUIDOS APLICADO EN
BIOMEDICINA

En esta tesis se presentan nuevos avances en problemas inversos de Mecánica de Fluidos en
estado estacionario, con aplicaciones directas en la recuperación de deformaciones de dominio
y obstáculos, y cuyo propósito es contribuir a la detección de afecciones de la válvula aórtica
(como insuficiencia o estenosis).

Como primer resultado de esta tesis, se presenta un resultado de aproximación asintótica
entre los problemas de detección de obstáculos y de recuperación de un parámetro de per-
meabilidad no negativo que asume valores significativamente grandes en las regiones con
obstáculos o el valor 0 en otras partes. Este resultado es respaldado con pruebas numéricas
que confirman el resultado de aproximación.

El segundo resultado de esta tesis presenta una desigualdad logaŕıtmica para el problema
de identificación del parámetro de permeabilidad en la ecuación de Navier-Stokes a partir de
mediciones locales de la velocidad del fluido. Se incluyen también pruebas numéricas sobre
la recuperación de parámetros suaves y no suaves mediante algoritmos de minimización y de
refinamiento adaptativo.

Finalmente, se estudia un problema de identificación de parámetros para las ecuaciones
de Oseen y Navier-Stokes que permite recuperar un parámetro de permeabilidad a partir de
mediciones locales o globales de la velocidad de un fluido. Varios experimentos numéricos
con flujo de Navier-Stokes ilustran la aplicabilidad del método, para la localización de una
válvula card́ıaca 2D simulada a partir de una resonancia magnética sintética en 2D y también
para la recuperación del parámetro de permeabilidad a partir de una resonancia magnética
sintética en 3D.

i



SUMMARY OF THE THESIS TO OBTAIN THE DEGREE OF
DOCTOR EN CIENCIAS DE LA INGENIERÍA,
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AN INVERSE PROBLEM IN FLUID MECHANICS APPLIED IN BIOMEDICINE

In this thesis, new advances are presented in inverse problems of Fluid Mechanics in steady
state, with direct applications in the recovery of domain deformations and obstacles, and
whose purpose is to contribute to the detection of aortic valve conditions (such as insufficiency
or stenosis).

The first main result of this thesis is an asymptotic approximation result between the
obstacle detection problems and the recovery of a non-negative permeability parameter that
assumes significantly large values in the regions with obstacles or the value 0 in other parts.
This result is supported by numerical tests that confirm the approximation result.

The second result of this thesis presents a logarithmic inequality for the identification
problem of the permeability parameter on Navier-Stokes equations from local measurements
of fluid velocity. Numerical tests on the recovery of smooth and non-smooth parameters by
a minimization problem and adaptive refinement algorithms are also included.

Finally, a parameter identification problem for the Oseen and Navier-Stokes equations
is studied in order to recover a permeability parameter from local or global measurements
of the fluid velocity. Several numerical experiments using Navier-Stokes flow illustrate the
applicability of the method, for the localization of a simulated 2D cardiac valve from synthetic
MRI and also recovering of the permeability parameter from 3D synthetic MRI.
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“Sometimes, the best way to solve your own problems is to
help someone else”

— Iroh to Avatar Korra, The Legend of Korra

“A veces, la mejor forma de resolver tus propios problemas
es ayudando a alguien más”

— Iroh al Avatar Korra, La Leyenda de Korra

“Soms is de beste manier om je eigen problemen op te
lossen, iemand anders te helpen”

— Iroh naar Avatar Korra, De Legende van Korra
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sus constantes bromas serán algo que atesoraré toda mi vida.
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ciones de todo tipo. A Paz, Catalina, Nathalie, Natalia, Daniel, Alejandro, Rodrigo, Felipe
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Chapter 1

Introduction

In this thesis, new advances are presented in inverse problems of Fluid Mechanics in steady
state, with direct applications in the recovery of domain deformations and obstacles, and
whose purpose is to contribute to the detection of aortic valve conditions (such as insufficiency
or stenosis).

The partial differential equations (PDEs) are equations where the unknowns are functions
and where not only the functions themselves appear in the equations but also their derivatives.
PDEs are used in the mathematical modelling, distributed in space and time, of processes in
engineering, physics and other sciences such that propagation of heat, electrodynamics, fluid
dynamics, elasticity and many others. In the analysis of PDEs, a problem is considered direct
when, knowing the domain, smoothness conditions and all the parameters of an equation
or system of equations, the solution of the equation or system of equations is obtained in
response. A problem is considered inverse when, knowing total or partial information of the
solution of the equation or system of equations, some of the required data (generally one of
these data) are unknown.

The human blood is a body fluid that delivers necessary substances such as nutrients
and oxygen to the cells and transports metabolic waste products away from those same cells.
Blood is circulated around the body through blood vessels by the pumping action of the
heart. The aortic valve is one of the four valves of the human heart located between the left
ventricle and the aorta. It usually has three leaflets, however in 1-2% of the population it
is found that it has two leaflets due to congenital conditions. This valve is the last heart
structure that blood travels through before stopping flow through the systemic circulation.
A proper aortic valve closure helps maintain high pressure in the systemic circulation while
lowering ventricular pressure and allowing blood flow from the lungs to fill the left ventricle.
An inadequate closure produces diastolic pressure losses and aortic regurgitation, with the
possibility of developing heart failure and pulmonary edema. Inadequate opening of the
aortic valve, often due to calcification, results in higher velocities through the valve and
higher pressure gradients. The diagnosis of aortic stenosis depends on the quantification of
this gradient. The insuffiency and stenosis can lead to left ventricular hypertrophy.
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Chapter 1. Introduction

Figure 1.1: Aortic Valve Stenosis

One of the medical challenges about aortic valve malfunctions is early detection of them.
In this context, it is desirable to obtain an estimate of the valve shape when the valve is
fully open, where it is possible to consider that the blood is a Newtonian fluid following a
steady state. Then, the aortic valve can be modeled as an obstacle or a domain deformation
from a control domain. For instance, the aortic valve is very thin (0.5 mm), and therefore
its shape can be imaged nowadays using only two modalities: computerized tomography
(CT) and transesophageal echocardiography (TEE). Since CT is based on X-rays, it is only
used in patients that are selected for valvular replacement in order to obtain the aortic root
dimensions for sizing the prosthesis. Such CT images are usually obtained when the valve is
closed. Obtaining the image at open valve position requires about 5 times larger radiation
dose since the complete cardiac cycle has to be imaged. This is equivalent to the annual
recommended total radiation dose. TEE is a newer technique, but highly invasive: a wire
is inserted through the esophagus of the patient involving a cumbersome procedure. TEE
is most of the time applied to monitor valve surgeries, and is therefore rarely applied in a
diagnostic phase.

Magnetic resonance imaging (MRI) allows to image anatomical structures in a non-
invasive and nonionising way. Unfortunately, the aortic valve geometry is not directly visible
with MRI, since the valve thickness is smaller than the image voxel size. However, visual
inspection of 3D Flow MRI Imaging data sets clearly shows that the valvular shape could be
retrieved from the flow pattern in the valve surroundings. This fact motivates to formulate,
analyze and numerically assess the inverse problem of inferring rigid obstacles from interior
velocity measurements, with the ultimate goal of recovering the shape of cardiac valves at
the opening position from velocity images.

One of the difficulties of this problem is the mathematical modeling as a parameter
identification problem. Although the problem consists of recovering the shape of an obstacle
or domain deformations, which is the explicit problem, this problem can be asymptotically
approximated to a problem of recovery of a permeability parameter (also called porosity
parameter) that follows Brinkham’s law, which is the implicit problem. Then, the focuses
of this thesis are the deduction of the asymptotic approximation between the explicit and
implicit problems using homogenization techniques and the analysis of the inverse problem
of recovering the permeability coefficient, presenting stability estimates and a technique to

2



1.1. RESEARCH OBJECTIVES

find numerical approximations of this permeability coefficient from synthetic data.

1.1 Research objectives

The objectives of this thesis are the following

1. Establish equivalences between the explicit and the implicit problem. In Chapter 2, re-
sults are presented that allow the explicit problem to be approximated asymptotically
by one where the obstacles or domain deformations are represented by a permeabil-
ity parameter. For this, this parameter is a non-negative function that is equal to
a sufficiently large constant R > 0 in regions where there are obstacles or domain
deformations or equal to 0 otherwise.

2. Establish uniqueness and stability results for the implicit problem from local mea-
surements of the velocity. In Chapter 3, a stability result for the inverse problem of
recovering a smooth scalar permeability parameter given by the Brinkman’s law ap-
plied on steady Navier-Stokes equations with local observations of the fluid velocity on
a fixed domain is studied and deducted from Carleman inequalities. This logarithmic
estimate requieres a weaker version of a non-degeneracy condition, but it is based in
a strategy that does not require pressure observations, showing a new way to deduce
Carleman estimates for the linearized Navier-Stokes equations.

3. Model the inverse problem using the Oseen and Navier-Stokes equations, designing an
approximated problem that allow us to reconstruct a realistic estimate of the valve. In
Chapters 4 and 5, a penalization parameter method for obstacle identification in an
incompressible fluid flow for modified versions of the Oseen equations and the Navier-
Stokes equations is presented. The proposed method consists in adding a permeability
term following the Brinkman’s law to the system such that some subset of its boundary
support represents the obstacle. This allows to work in a fixed domain and highly
simplify the solution of the inverse problem via some suitable cost functional. Existence
of minimizers and first and second order optimality conditions are derived through the
differentiability of the solutions of the Oseen and Navier-Stokes equations with respect
to the permeability coefficient. Finally, several numerical experiments using Navier-
Stokes flow illustrate the applicability of the method, for the localization of a simulated
2D cardiac valve from synthetic MRI and also recovering of the permeability parameter
from 3D synthetic MRI.

1.2 A review of Navier-Stokes equations with some

variations

The Navier-Stokes equations are nonlinear PDEs which describe expressions for the conser-
vation of momentum and mass for Newtonian viscous fluids as a function of fluid velocity and
pressure, knowing the permeability of the media, viscosity and density of the fluid. These
equations are elliptic in space and parabolic in time. These equations are very useful for

3



1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

describing physics and engineering phenomena, with applications in meteorology, aerody-
namics and ocean currents, among others. In their simplified variational formulation, the
Navier-Stokes equations contribute, for example, to the design of vehicles, chemical and
metallurgical reactors, and the study of hemodynamics. In this section, notations and the
Navier-Stokes equations with the respective boundary conditions are presented, emphasiz-
ing the results of existence and uniqueness of solution with non-homogenous Dirichlet and
directional do-nothing boundary conditions.

1.2.1 Notations

Consider a non-empty bounded domain Ω ⊆ Rd, with d ∈ {2, 3}. The Lebesgue measure of
Ω is denoted by |Ω|, which extends to lesser dimension spaces. The norm and seminorms for
Sobolev spaces Wm,p (Ω) is denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm,

seminorms and inner product of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω
and (·, ·)m,Ω, respectively. Also, Cm (Ω) and C∞ (Ω) denote the space of functions with m
continuous derivatives and all continuous derivatives, respectively. For Ω1 and Ω2 two open
subsets of R3, we denote Ω1 b Ω2 when there exists a compact set K such that Ω1 ⊆ K ⊆ Ω2.
The spaces Hm (Ω), Wm,p (Ω), Cm (Ω) and C∞ (Ω) are defined by Hm (Ω) = [Hm (Ω)]d,
Wm,p (Ω) = [Wm,p (Ω)]d, Cm (Ω) = [Cm (Ω)]d and C∞ (Ω) = [C∞ (Ω)]d. The notation for
norms, seminorms and inner products will be extended from Wm,p (Ω) or Hm (Ω). Given
a, b ∈ R3, [a]j denotes the j−th component of vector a, aT denotes the transpose vector of
a and a× b denotes the cross product given by

a× b = ([a]2 [b]3 − [a]3 [b]2 , [a]3 [b]1 − [a]1 [b]3 , [a]1 [b]2 − [a]2 [b]1)T

Also, ∇× u (or curlu) denotes the curl of u, given by

∇× u =

(
∂ [u]3
∂x2

− ∂ [u]2
∂x3

,
∂ [u]1
∂x3

− ∂ [u]3
∂x1

,
∂ [u]2
∂x1

− ∂ [u]1
∂x2

)T
For a, b ∈ R2, w ∈ H1(Ω) and w ∈H1(Ω), we define

a× b = [a]1 [b]2 − [a]2 [b]1

curlw =

(
∂w

∂x2

,
∂w

∂x1

)T
curlw =

∂ [w]2
∂x1

− ∂ [w]1
∂x2

1.2.2 The equations for the direct problem

This thesis studies the steady state Navier-Stokes equations following the Brinkman’s law for
imcompressible fluids, where the density is constant, which are given by

−ν4u + (∇u)u +∇p + γu = f

divu = 0

4



1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

where the unknowns are the pair (u, p), where u is the velocity and p is pressure of the fluid,
resepctively. The parameters of this equations are the kinematic viscosity of the fluid ν, the
permeability media coefficient γ and the external source f .

The first equation is the convective form of the conservation of momentum equation. The
term γu is given by the Brinkman’s law, where a porous media offers some resistance to fluid
movement. The coefficient γ is non-negative. When γ = 0, the media is completely porous
and we can recover the original version of the Navier-Stokes equations. The fluid movement
is damped in regions where γ assumes large values. The second equation represents the
conservation of mass.

Defining a suitable control volume given by a bounded domain Ω and defining appropriate
boundary conditions on ∂Ω, it is possible to study some characteristics of the solutions of the
Navier-Stokes equations and model some specific phenomena. If Ω has a Lipschitz boundary
∂Ω = ΓD∪ΓN with a outer normal vector n, where int(ΓD)∩int(ΓN) = ∅ and |ΓD| 6= 0 6= |ΓN |,
the equations with the respective boundary condition can be written as

−ν4u + (∇u)u +∇p + γu = f in Ω (1.1)

divu = 0 in Ω

u = g on ΓD

−ν ∂u
∂n

+ pn +
1

2
(u · n)− u = 0 on ΓN

where f ∈H−1 (Ω), g ∈H1/2 (ΓD) and

(∀x ∈ R) (x)− =

{
0 if x ≥ 0
x if x < 0

for all x ∈ R. The boundary condition u = g on ΓD is a classical Dirichlet condition.
Particularly, in some subsets of ΓD where g = 0 it is called no-slip condition. The boundary

condition −ν ∂u
∂n

+pn+
1

2
(u · n)− u = 0 on ΓN is known as directional do nothing condition.

In comparison with the traditional do nothing condition given by −ν ∂u
∂n

+ pn = 0 on ΓN ,

the directional do nothing condition imposed on ΓN allows to prove the existence of solution
using energy estimates (see [22]) for stable backflow on the open boundary.

1.2.3 Existence and uniqueness of weak solutions for the direct
problem

The study of existence and uniqueness of weak solutions to the Navier-Stokes equations has
been analyzed for two general cases: and directional do-nothing condition on ΓN ⊆ ∂Ω with
homogenous Dirichlet boundary condition on ∂Ω\ΓN (see [22]), and inhomogenous Dirichlet
boundary conditions (see Section IX.4 in [48]). Then, it is necessary to establish the existence
and uniqueness of weak solutions of Equations (1.1). In order to simplifying this analysis, an
equivalent formulation with homogeneous Dirichlet boundary condition is proposed. First,
it is necessary to cite a version of Trace Theorem and other auxiliary results.
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1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

Theorem 1.2.1. Let Ω ⊆ RN be a bounded domain with locally Lipschitz boundary ∂Ω.
There exists a linear operator T : H1 (Ω) → H1/2 (∂Ω) such that there exists a constant
cT > 0 only depending of Ω such that

(∀u ∈ H1(Ω)) ‖T (u)‖1/2,∂Ω ≤ cT ‖u‖1,Ω ‖u‖1,Ω ≤ cT ‖T (u)‖1/2,Ω

and T (u) = u on ∂Ω when u is also a continuous function in Ω.

Proof. See Theorem II.4.1 in [48]

Lemma 1.2.1. Let η > 0 and M > 0 such that ‖g‖1/2,ΓN
≤ M . There exists h ∈ H1 (Ω)

such that divh = 0, h = uD on ΓD and(
∀v ∈H1 (Ω)

)
|((∇h)v,v)| ≤ η |v|21,Ω

and a constant c1 > 0, that only depends of Ω, ΓN , ε and M such that

‖h‖1,Ω ≤ c ‖uD‖1/2,ΓN

Proof. Let ε > 0 and g∗ ∈ H1/2 (∂Ω), with g∗ an extension of g such that ‖g∗‖1/2,ΓN
≤

2 ‖g‖1/2,ΓD
and ∫

∂Ω

g∗ · n dS = 0

Applying Lemma IV.2.3 in [50], we obtain the existence of h ∈H1 (Ω) such that divh = 0,
h = g∗ on ∂Ω and (

∀v ∈H1 (Ω)
)
|((∇h)v,v)| ≤ ε |v|21,Ω

In particular, h = g on ΓD, proving the first part of the lemma. The existence of c is obtained
using Lemma IX.4.2 in [48].

Let h ∈ H1 (Ω) constructed in Lemma 1.2.1 for η =
ν

4β
, taking v = u − h and F =

f + ν4h− (∇h)h− γh in H−1 (Ω), the model problem can be written in a new equivalent
form.

−ν4v + (∇v)v + ((∇v)h + (∇h)v) +∇p+ γv = F in Ω (1.2)

div v = 0 in Ω

v = 0 on ΓD

−ν ∂v
∂n

+ pn +
1

2
((v + h) · n)− (v + h) = ν

∂h

∂n
on ΓN

A first step is to introduce some helpful notations.

Definition 1.2.1. The space H1
ΓD

(Ω), subspace of H1 (Ω), is defined by

H1
ΓD

(Ω) =
{
v ∈H1 (Ω) | v = 0 on ΓD

}
.

6



1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

Analogously, the space L2
0 (Ω) is defined by

L2
0 (Ω) =

{
p ∈ L2 (Ω) | (p, 1)0,Ω = 0

}
.

Also, it is denoted H = H1
ΓD

(Ω)× L2
0 (Ω), which is a Banach space behind the norm

‖[v, p]‖H = ν |v|1,Ω + ‖p‖0,Ω

Theorem 1.2.2. Let Γ ⊆ ∂Ω with |Γ| > 0. There exists CFP > 0, only dependent of Ω, such
that (

∀v ∈H1
ΓD

(Ω)
)
‖v‖1,Ω ≤ CFP |v|1,Ω(

∀v ∈H1 (Ω)
)
‖v‖2

1,Ω ≤ CFP

(
|v|21,Ω + ‖v‖2

0,Γ

)
Proof. See Section 6.6 in [36].

Lemma 1.2.2. The application a : H1 (Ω)×H1 (Ω)×H1
ΓD

(Ω)→ R, defined by

a (u,v,w) = ((∇v)u,w)0,Ω

is continuous and there exists a constant κ1 > 0, only depending of Ω, such that

(∀(u,v,w) ∈H1 (Ω)×H1 (Ω)×H1
ΓD

(Ω)) |a (u,v,w)| ≤ κ1 ‖u‖1,Ω |v|1,Ω |w|1,Ω

Proof. See Lemma IX.1.1 in [48].

Lemma 1.2.3. The application b : H1/2 (∂Ω)×H1/2 (∂Ω)×H1/2 (∂Ω)→ R, defined by

b (u,v,w) =

∫
ΓN

(u · n) (v ·w) dS,

is continuous and there exists a constant κ2 > 0, only depending of Ω, such that(
∀u,v,w ∈H1/2 (∂Ω)

)
|b (u,v,w)| ≤ κ2 ‖u‖1/2,ΓN

‖v‖1/2,ΓN
‖w‖1/2,ΓN

Proof. From Hölder inequality, we obtain

|b (u,v,w)| ≤ κ2 ‖u‖0,ΓN
‖v‖0,4,ΓN

‖w‖0,4,ΓN

Applying Sobolev Embedding Theorem, Theorems 1.2.2 and 1.2.1, the embedding from
H1/2 (Ω) to Lq (ΓN) is continuous for q ∈ [2, 4] and there exists a constant c1 > 0, only
depending of Ω, such that

|b (u,v,w)| ≤ ‖u‖0,ΓN
‖v‖0,4,ΓN

‖w‖0,4,ΓN

≤ ‖u‖0,ΓN

(
c1 ‖v‖1/2,ΓN

)(
c1 ‖w‖1/2,ΓN

)
≤ c2

1 ‖u‖1/2,ΓN
‖v‖1/2,ΓN

‖w‖1/2,ΓN

Taking κ2 = c2
1 > 0, the lemma is proved.
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1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

Definition 1.2.2. We define κ = max
j,k∈{0,1,2,3}

{
κ1CFP , κ2c

j
TC

k
FP

}
.

The existence and uniqueness of weak solutions is proved in [22] in the case where uD = 0.
However, the difference between Equation (1.2) and the equation analyzed in [22] is given by
a modification on the “directional do nothing condition”. Then, it is necessary to repeat the
analysis of existence and uniqueness of solution.

Theorem 1.2.3. Let uD ∈H1/2 (ΓD). If 2κ ‖uD‖1/2,Ω ≤ ν, then Equation (1.2) has at least
one weak solution (u, p) ∈ H and there exist C1, C2 > 0, such that

ν |u|1,Ω ≤ C1

(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)
‖p‖0,Ω ≤ C1C2

(
‖f‖−1,Ω + |u|1,Ω + ‖g‖1/2,ΓD

+
(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)2
)

Furthermore, if
3κC1

2ν2

(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)
< 1, then Equation (1.2) has a

unique weak solution.

Proof. First, testing the equations of (1.2) with w ∈ H1
ΓD

(Ω) and q ∈ L2
0 (Ω), respectively,

and applying integration by parts, we obtain

ν (∇v,∇w)0,Ω + ((∇v)v,w)0,Ω + ((∇v)h,w)0,Ω + ((∇h)v,w)0,Ω

− (p, divw) + (γv,w)0,Ω −
1

2

(
((v + h) · n)− (v + h) ,w

)
0,ΓN

= 〈F ,w〉
(q, div v) = 0

where 〈·, ·〉 denotes the duality product between H−1 (Ω) and H1 (Ω). Taking w = v and
q = p, we obtain

ν |v|21,Ω + ((∇v)v,v)0,Ω + ((∇v)h,v)0,Ω + ((∇h)v,v)0,Ω + (γv,v)0,Ω

− 1

2

(
((v + h) · n)− v,v

)
0,ΓN
− 1

2

([
((v + h) · n)− − (h · n)−

]
h,v

)
0,ΓN

= 〈F ,v〉+
1

2

(
(h · n)− h,v

)
0,ΓN

where

((∇v)v,v)0,Ω + ((∇v)h,v)0,Ω −
1

2

(
((v + h) · n)− v,v

)
0,ΓN

=
1

2

(
((v + h) · n)+ , |v|

2)
0,ΓN
≥ 0

and ∣∣∣∣−1

2

([
((v + h) · n)− − (h · n)−

]
h,v

)
0,ΓN

∣∣∣∣ ≤ 1

2
κ ‖h‖1/2,ΓD

|v|21,Ω

≤ 1

2
κ ‖g‖1/2,ΓD

|v|21,Ω

8



1.2. A REVIEW OF NAVIER-STOKES EQUATIONS WITH SOME VARIATIONS

If 2κ ‖g‖1/2,ΓD
≤ ν, then

−1

2

([
((v + h) · n)− − (h · n)−

]
h,v

)
0,ΓN
≥ −ν

4
|v|21,Ω

((∇h)v,v) ≥ −ν
4
|v|21,Ω

In consequence, there exists c1 > 0, only depending of ΓN and Ω, such that

ν

4
|v|21,Ω ≤ 〈F ,v〉H−1(Ω) +

1

2

(
(h · n)− (h) ,v

)
0,ΓN

≤
(
‖f‖−1,Ω +

(
ν + c1 ‖γ‖0,Ω

)
‖g‖1,Ω + κ1 ‖g‖2

1,Ω +
1

2
κ2cTCFP ‖g‖2

1/2,Ω

)
|v|1,Ω

Then, due to ‖h‖1,Ω ≤ c ‖g‖1/2,ΓN
there exist a constant C > 0, independent of v, such that

ν |v|1,Ω ≤ C
(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)
and

ν |u|1,Ω ≤ ν
(
|v|1,Ω +M1c ‖g‖1/2,ΓD

)
≤ C1

(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)
when C1 = C + νc. Furthermore, there exists β > 0, depending at most of Ω and ΓN , such
that

‖p‖0,Ω = β sup
|w|1,Ω=1

∣∣∣(p, divw)0,Ω

∣∣∣
≤ βC1

(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

+
(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)2
)

The deduction of existence of weak solutions is similar to the proof of Theorem 3.1 in [22].
The following step is to deduce the uniqueness of solution.

Denoting H =
{
v ∈H1

ΓD
(Ω) | div v = 0

}
, consider the mapping O : H → H given by

O (a) = v, where (v, p) ∈ H is the unique solution of the linear variational formulation

(∀w ∈H) ν (∇v,∇w)0,Ω + ((∇v) (a + h,w)0,Ω + ((∇h)v,w)0,Ω

+ (γv,w)0,Ω −
1

2

(
((a + h) · n)− v,w

)
0,ΓN

= 〈F ,w〉 − 1

2

(
((a + h) · n)− h,w

)
0,ΓN

Then,

ν |v|1,Ω ≤ C1

(
‖f‖−1,Ω + ‖g‖1,Ω + ‖g‖2

1,Ω

)
Choosing a1,a2 ∈H , v1 = O (a1), v2 = O (a2) and w = v1 − v2, it follows that

ν |w|21,Ω + ((∇w)h,w)0,Ω + ((∇h)w,w)0,Ω

9
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≤ ((∇v1) (a2 − a1) ,w)0,Ω +
1

2

([
((a1 + h) · n)− − ((a2 + h) · n)−

]
v1,w

)
0,ΓN

Then,

ν

2
|w|21,Ω ≤

(
κ1CFP +

κ2

2
c3
TC

3
FP

)
|v1|1,Ω |a2 − a1|1,Ω |w|1,Ω

|w|1,Ω ≤
3κC1

ν2

(
‖f‖−1,Ω + ‖g‖1,Ω + ‖g‖2

1,Ω

)
|a2 − a1|1,Ω

Since
3κC1

ν2

(
‖f‖−1,Ω + ‖g‖1/2,ΓD

+ ‖g‖2
1/2,ΓD

)
< 1, then

|w|1,Ω = |v1 − v2|1,Ω < |a2 − a1|1,Ω = |O (v1)−O (v2)|1,Ω
proving that O is a contraction. Applying Banach Fixed Point Theorem, we deduce the
existence and uniqueness of solution.

Then, supposing that g verifies the hypotheses of Theorem 1.2.3, the Equation (1.2) has
a unique solution. Similar results can be obtained when ΓN = ∅. Then, ∂Ω = ΓD and
g ∈H1/2 (ΓD) must verify the compatibility condition∫

∂Ω

g · n dS = 0
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Chapter 2

Analysis of obstacles immersed in
viscous fluids using Brinkman’s law
for steady Stokes and Navier-Stokes
equations

The content of this chapter was published in J. Aguayo and H. Carrillo. “Analysis of ob-
stacles immersed in viscous fluids using Brinkman’s law for steady Stokes and Navier-Stokes
equations” in SIAM Journal on Applied Mathematics, 2022. [4].

From the steady Stokes and Navier-Stokes models, a penalization method has been con-
sidered by several authors for approximating those fluid equations around obstacles. In this
chapter, we present a justification for using fictitious domains to study obstacles immersed
in incompressible viscous fluids through a simplified version of Brinkman’s law for porous
media. If the scalar function ψ is considered as the inverse of permeability, it is possible
to study the singularities of ψ as approximations of obstacles (when ψ tends to ∞) or of
the domain corresponding to the fluid (when ψ = 0 or is very close to 0). The strong con-
vergence of the solution of the perturbed problem to the solution of the strong problem is
studied, also considering error estimates that depend on the penalty parameter, both for
fluids modeled with the Stokes and Navier-Stokes equations with inhomogeneous boundary
conditions. A numerical experiment is presented that validates this result and allows to
study the application of this perturbed problem simulation of flows and the identification of
obstacles.

2.1 Introduction

When modeling flows containing obstacles or enclosed by solid walls with a complex geometry,
there are at least two main approaches: using body-fitted unstructured meshes to simulate the
geometries or using a simplified mesh adding a penalization term in the differential equations.

In numerical methods relying on the discretization with body-fitted geometry, solid walls
are treated by Dirichlet boundary conditions on a mesh refined in the neighborhood of the
wall. However, in this methods it is necessary to rebuild the meshes whenever the geometry

11



2.1. INTRODUCTION

changes, which could be a disadvantage for the computing performance.

The approach given by the addition of penalization terms has been reported in the pio-
neering work of Angot [10] and [64], where the authors in addition show a numerical validation
of the model. Instead of considering Dirichlet boundary conditions on solid walls, in these
methods the addition of a penalization or forcing term is considered in order to make the
flow immovable inside the obstacles. The additional term can be seen as porosity Brinkman’s
law for imposing porous wall conditions [24] and it corresponds to the limit to null porosity.
This method is versatile in terms of geometry: the mesh does not need to depend on the
shape of the solid body, so that several geometries can be simulated in a simpler way.

Several extensions for Brinkman’s penalty method have been studied, for example, the
penalization was used to model the interface of multiphase flows [17, 20], to study gas-particle
flows coupling weakly compressible formulation of the Navier-Stokes equations with mass and
heat transfer [53], moving obstacles [77], and penalizing Dirichlet or Neumann conditions ap-
plied on obstacle boundaries [79, 80]. In [27] the authors propose an extension to Brinkman
penalization for generalized Neumann and Robin boundary conditions by introducing hyper-
bolic penalization terms with characteristics pointing inward on solid obstacles. In [81] the
authors also study the Brinkman penalization method for Neumann and Robin boundary
conditions. This method has been extended even for other equations, see for example [63]
and [78].

In addition, beyond the simulation of flows, the inverse problem of the obstacles or wall
shapes estimation also can be studied considering the approaches mentioned above, that
is, body-fitted unstructured meshes or the addition of a penalization term. For the first
approach, we can find, for example, works of [15] and [37], where the authors provide iden-
tifiability and stability results, and [7] where the authors use shape derivatives arguments
for the reconstruction. However, those methods need the geometry of the obstacle is not too
complex, usually assuming a circular nature. For the second approach we can find works of
[3] and [46] not depending on the geometry. However, either we study the direct or inverse
problem, the penalized problem is seen as an approximation, so it is necessary to establish
how accurate it is.

In the literature, there are several works showing numerical validations of the approx-
imation between the penalized problem and the problem with the simulated geometry, for
example [61] and references above. However, there are not much works showing in a theo-
retical way the effectiveness of the method as an approximation of obstacles. We mention
previous works in [8, 9], where the authors formally established H1 error bounds for the ap-
proximate and exact problem in the steady Stokes system and unsteady Stokes, respectively.
In both works, only Dirichlet conditions are considered for the entire domain boundary.

In this chapter, we study the modeling of obstacles immersed in viscous fluids that sat-
isfy the Stokes and Navier-Stokes equations for inhomogeneous boundary conditions, by the
approximation of the fluid equations with the addition of a penalization term. For the sta-
tionary Stokes problem the boundary conditions consist on: a known velocity entry, no-slip
conditions in the walls and a Neumann boundary condition in the outlet, while for the
stationary Navier-Stokes we consider known velocities of entry and outlet, and no-slip con-
ditions for the walls. We establish new convergence results, consisting in the steady Stokes
and Navier-Stokes equations in the fluid domain, approximated by the respective penalized
equations in a bigger domain containing both the fluid and solid part. We follow techniques
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of [8, 9], that is, we make problems to have homogeneous boundary conditions and we study
the weak convergence of a sequence of functions depending on the penalization term in order
to establish the strong convergence with rates depending on the penalization term going to
infinite.

The results presented in this chapter have not been reported before in these particular
settings, which have been chosen motivated by the applied problem of modeling blood flow in
the presence of heart valves. In particular, this work justifies the use of a penalizing term in
[3], where the authors study the inverse problem of determining the geometry of heart valves
given velocity measurements in the whole virtual domain, using as model the equations we
present in this work. An important aspect to mention is that in such work the authors
assume the velocity measurements consist of one snapshot obtained from magnetic resonance
imaging (MRI) measurements using a technique known as phase-contrast MRI [26, 65], in
which the time derivative of the velocity is assumed to be negligible due to the very short
timescale of the data acquisition.

This chapter is organized as follows. In Section 2, we provide the reader the basic notations
of the fluid and solid domains, and the functional spaces involved in the main theorems. In
Sections 3 and 4, we show estimates of the error in norm H1 induced by the penalization.
In Section 3, we show the analysis for the Stokes equations with mixed boundary conditions,
which are the conditions usually considered in problems such that parts of the boundary are
not walls. In Section 4, we show the analysis for the Navier-Stokes case with inhomogeneous
Dirichlet boundary conditions, which is also an extension of [8] to the nonlinear case. We
closely follow ideas of [8, 9]. Finally, in Section 5, we show numerical tests to validate our
theoretical findings.

2.2 Preliminaries and notations

Consider a non-empty bounded domain Ω ⊆ Rd, d ∈ {2, 3}. The Lebesgue measure of Ω
is denoted by |Ω|, which extends to lesser dimension spaces. The norm and seminorms for
Sobolev spaces Wm,p (Ω) is denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm,

seminorms and inner product of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω
and (·, ·)m,Ω, respectively. Also, ‖·‖∞,Ω denotes the norm of L∞ (Ω). The spaces Hm (Ω) and

Wm,p (Ω) are defined by Hm (Ω) = [Hm (Ω)]d and Wm,p (Ω) = [Wm,p (Ω)]d. The notation
for norms, seminorms and inner products will be extended from Wm,p (Ω) or Hm (Ω).

We assume that Γ = ∂Ω is piecewise C1 and Ω contains N regular obstacles given by
nonempty open sets Ωj

S ⊆ Ω for j ∈ {1, . . . , N}.
Definition 2.2.1. The sets ΩS, ΩF , Σj

S (for j ∈ {1, . . . , N}) are defined by

ΩS =
N⋃
j=1

Ωj
S, ΩF = Ω \ Ωs

Σi
s = ∂Ωj

S, Γ = ∂Ω

We also define ΓI ,ΓW ,ΓO ⊂ Γ, disjoint subsets of Γ, such that

ΓI ∪ ΓW ∪ ΓO = Γ,
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ΓI ⊂ ∂ΩF ∩ ∂Ω, ΓO ⊂ ∂ΩF ∩ ∂Ω

Finally, we define ΓF,W = ∂ΩF \ (ΓI ∪ ΓO)

The set ΩF models a fluid domain where the Stokes or Navier-Stokes equations is fulfilled.

Ω2
S

ΓW

ΓO

ΓWΓW

ΓI

Ω1
S

Figure 2.1: Example of Ω with two obstacles Ω1
S and Ω2

S.

Definition 2.2.2. Let γ ⊆ ∂Ω. We define the following spaces

H1
0(Ω) =

{
v ∈H1 (Ω) | v = 0 on ∂Ω

}
H1

γ(Ω) =
{
v ∈H1 (Ω) | v = 0 on ∂Ω \ γ

}
Hdiv(Ω) =

{
v ∈H1 (Ω) | div v = 0 on Ω

}
V γ(Ω) = H1

γ(Ω) ∩Hdiv(Ω)

V (Ω) = H1
0(Ω) ∩Hdiv(Ω)

L2
0 (Ω) =

{
p ∈ L2 (Ω) | (p, 1)0,Ω = 0

}
Hγ (Ω) = V γ(Ω)× L2

0 (Ω)

H (Ω) = V (Ω)× L2
0 (Ω)

We extend these definitions to ΩF and ΩS.

2.3 Stokes system with mixed boundary conditions

Let ν > 0, uD ∈ H1/2(ΓI) such that uD = 0 on ΓI ∩ ΓW and (u, p) ∈ H (Ω) the unique
solution of the Stokes system with mixed boundary conditions over ΩF given by

−ν4u +∇p = 0 in ΩF (2.1)

divu = 0 in ΩF

u = uD on ΓI

u = 0 on ΓF,W

−ν ∂u
∂n

+ pn = 0 on ΓO

extended by (0, 0) in ΩS.
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On the other hand, for each R > 0, let (uR, pR) ∈ H (Ω) the unique solution of the
modified Stokes system with a L2 penalization term over Ω given by

−ν4uR +∇pR + ψRuR = 0 in Ω (2.2)

divuR = 0 in Ω

uR = uD on ΓI

uR = 0 on ΓW

−ν ∂uR
∂n

+ pRn = 0 on ΓO

where ψR = RχΩS , and

χΩS(x) =

{
1 if x ∈ ΩS,

0 otherwise.

2.3.1 Preliminary results

We start stating some previous results in order to use them in the proof of Theorems 2.3.1
and 2.3.2.

Lemma 2.3.1. Let η > 0 and M > 0 such that ‖uD‖1/2,ΓI
≤M . There exists g ∈H1 (ΩF )

such that div g = 0, g = uD on ΓI , g = 0 on ΓF,W and(
∀v ∈H1 (ΩF )

) ∣∣∣((∇g)v,v)0,ΩF

∣∣∣ ≤ η |v|21,ΩF

and a constant c > 0, that only depends of Ω, ΓI , ΓW and M such that

‖g‖1,Ω ≤ c ‖uD‖1/2,ΓI

Proof. Let u∗D ∈ H1/2 (∂ΩF ), with u∗D an extension of uD such that ‖u∗D‖1/2,∂ΩF
≤

2 ‖uD‖1/2,ΓI
and ∫

∂ΩF

u∗D · n dS = 0

Applying Lemma IV.2.3 in [50], there exists g ∈H1 (ΩF ) such that div g = 0 in ΩF , g = u∗D
on ∂ΩF and (

∀v ∈H1 (ΩF )
) ∣∣∣((∇g)v,v)0,ΩF

∣∣∣ ≤ η |v|21,ΩF
In particular, g = uD on ΓI and g = 0 on ΓW , proving the first part of the lemma. Using
Lemma IX.4.2 in [48], we can deduce the existence of c.

Remark 2.3.1. Since g = 0 on ΓF,W , it is possible to extend g ∈ H1 (ΩF ) to g ∈ H1 (Ω)
such that g = uD on ΓI and g = 0 on ΓW .

Proposition 2.3.1. Let vR = uR − g, where g is given by Lemma 2.3.1. Then

|vR|1,Ω ≤ |g|1,Ω and ‖vR‖0,ΩS ≤
ν

R
|g|1,Ω
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Proof. Consider the penalized equation (2.2) after introducing vR given by

−ν4vR +∇pR + ψRvR = ν4g in Ω

div(vR) = 0 in Ω

vR = 0 on ΓI ∪ ΓW

−ν ∂vR
∂n

+ pRn = ν
∂g

∂n
on ΓO

Testing this equations by w ∈ V ΓO(Ω) and q ∈ L2
0(Ω), we obtain

ν(∇vR,∇w)0,Ω +R(vR,w)0,ΩS = −ν(∇g,∇w)0,Ω (2.3)

Taking w = vR, we deduce

ν|vR|21,Ω +R‖vR‖2
0,ΩS

= −ν(∇g,∇vR)0,Ω ≤ ν|g|1,Ω|vR|1,Ω
and then we conclude.

Proposition 2.3.2. vR converges weakly to v in V ΓO(Ω).

Proof. By the result of Proposition 2.3.1, we see that there exists a subsequence vR (we call it
the same way) weakly convergent in H1(Ω) to ṽ. Since ṽ = 0 in ΩS, applying Trace Theorem
(see Theorem II.4.1 in [48]), we can see that ṽ = 0 on ∂ΩS. Later, for all w ∈ V ΓO(Ω) we
have

(ψRvR,w)0,Ω = −
(
ν(∇g,∇w)0,Ω + ν(∇vR,∇w)0,Ω

)
→ −

(
ν(∇g,∇w)0,Ω + ν(∇ṽ,∇w)0,Ω

)
Hence ψRvR converges weakly to some h ∈ [V ΓO(Ω)]′, where supp(h) ⊆ Ω. Then,

ν(∇ṽ,∇w)0,Ω + 〈h,w〉H−1(Ω),H1(Ω) = −ν(∇g,∇w)0,Ω (2.4)

Since vR = 0 on ΓI ∪ ΓW , we have ṽ = 0 on ΓI ∪ ΓW as well, by the continuity of the trace
operator. Now, applying the De Rham’s Theorem (see Theorem I.2.3 in [50]), there exists
p̃ ∈ L2

0(Ω) such that

−ν4ṽ +∇p̃+ h = ν4g in Ω

divṽ = 0 in Ω

ṽ = 0 on (ΓI ∪ ΓW ) ∩ ∂ΩF

Taking (w, q) ∈ H(Ω) such that (w, q) = (0, 0) in ΩS, we have

ν(∇ṽ,∇w)0,ΩF +
(
− ν ∂(ṽ + g)

∂n
+ p̃n,w

)
0,ΓO

= −ν(∇g,∇w)0,ΩF (2.5)

and then

−∂(ṽ + g)

∂n
+ pn = 0

on ΓO. Hence, (ṽ, p̃) is a weak solution for Equation (2.1). Since Equation (2.1) has a unique
solution, we conclude (ṽ, p̃) = (v, p). Finally, extending the solution by (0, 0) in ΩS, we have
that for all (w, q) ∈ H(Ω),

ν(∇ṽ,∇w)0,Ω = −ν(∇g,∇w)0,Ω

In conclusion, (ṽ, p̃) = (v, p) in Ω and ṽR ⇀ v in H1
ΓO

(Ω) as R→∞.
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2.3.2 Main results

Now we can establish the first convergence result.

Theorem 2.3.1. Let R > 0, u be solution of (2.1) and uR solution of (2.2). With the
previous assumptions, there is strong convergence of {uR}R>0, that is

lim
R→∞

|uR − u|1,Ω = 0

and there there exists a constant C > 0 independent such that for all R > 0

‖u− uR‖0,ΩS ≤
C

R1/2

Proof. Let wR = vR−v. Subtracting the variational formulations (2.3) and (2.4) for vR and
ṽ, respectively, we obtain for all w ∈ V

ν(∇wR,∇w)0,Ω +R(wR,w)0,ΩS = 〈h,w〉V ′,V (2.6)

since v = g = 0 in ΩS. Taking w = wR and using that wR ⇀ 0 in V as R→∞, we obtain

ν|wR|21,Ω +R‖wR‖2
0,ΩS

= 〈h,wR〉V ′,V → 0

proving the theorem.

Imposing more regularity to uD and ∂ΩF , the first convergence theorem can be upgraded
to this new result.

Theorem 2.3.2. Let R > 0, u be solution of (2.1) and uR solution of (2.2). With the
previous assumptions, where we assume in addition that ∂ΩF is piecewise C2 class and uD ∈
H3/2(ΓI), then there is strong convergence of {uR}R>0 in H1(Ω) when R→∞. Furthermore,
there exists a constant C > 0 independent of R such that for all R > 0

|u− uR|1,Ω ≤
C

R1/4
, ‖u− uR‖0,ΩS ≤

C

R3/4
.

Proof. We can assume that the function g given by Lemma 2.3.1 is now in H2 (Ω). Hence,
results about regularity of solution to the Stokes equations (see Theorem IV.6.1 in [48]) allow
us to consider (v, p) ∈ H2 (Ω) ×H1 (Ω). Let us replace the Dirichlet condition of u in (6)
on ∂ΩS \ Γ by

−ν ∂u
∂n

+ pn = k.

Then, for v = u− g,

k = −ν ∂v + g

∂n
+ pn on ∂ΩS \ Γ.

where k ∈H1/2(ΓO). For all w ∈H1
(∂ΩS\Γ)∪ΓO

(ΩF ):

ν (∇v,∇w)0,ΩF
+ (k,w)0,∂ΩS

= −ν (∇g,∇w)0,ΩF

Since (
∀w ∈H1

ΓO
(Ω)
)

ν (∇v,∇w)0,Ω + 〈h,w〉V ′,V = −ν (∇g,∇w)0,Ω
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and considering v = g = 0 in ΩS, then we have(
∀w ∈H1

ΓO
(Ω)
)

〈h,w〉V ′,V = (k,w)0,∂ΩS\Γ (2.7)

Then, from (2.6) and (2.7), applying Hölder and Cauchy-Schwartz inequalities, we have

ν |wR|21,Ω +R ‖wR‖2
0,ΩS

= (k,wR)0,∂ΩS

≤ C ‖k‖0,∂ΩS
|wR|1/21,ΩS

‖wR‖1/2
0,ΩS

≤

(
C ‖k‖0,∂ΩS

)2

2 (νR)1/2
+

1

4

(
ν |wR|21,Ω +R ‖wR‖2

0,ΩS

)
where C > 0 is a constant independent of R. Then,

ν |wR|21,Ω +R ‖wR‖2
0,ΩS
≤

2
(
C ‖k‖0,∂ΩS

)2

3 (νR)1/2

In conclusion, |wR|1,Ω = O
(
R−1/4

)
and ‖wR‖0,ΩS

= O
(
R−3/4

)
, proving this theorem.

2.4 Navier-Stokes equation with Dirichlet boundary

conditions

2.4.1 Preliminary results

Let us consider Ω,ΩF and ΩS as described in Section 2.3. Let (u, p) ∈ H(ΩF ) a solution of
the Navier-Stokes system with Dirichlet boundary conditions over ΩF

−ν4u + (∇u)u +∇p = 0 in ΩF (2.8)

divu = 0 in ΩF

u = uD on ΓI ∪ ΓO

u = 0 on ∂ΩF \ (ΓI ∪ ΓO)

and for all R > 0, let (uR, pR) ∈ H(Ω) a solution of the following modified Navier-Stokes
system over Ω, with a L2 penalization term, given by

−ν4uR + (∇uR)uR +∇pR +RχΩSuR = 0 in Ω (2.9)

divuR = 0 in ΩF

uR = uD on ΓI ∪ ΓO

uR = 0 on ΓW

provided uD ∈H1/2 (Ω) and∫
ΓI

uD · n dS +

∫
ΓO

uD · n dS = 0

18
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The uniqueness of solution of both problems is guaranteed under certain additional hy-
potheses. In order to establish those hypotheses, it is necessary to cite the following results.

Theorem 2.4.1. There exists g ∈ H1 (Ωf ) such that div g = 0, g = uD on ΓI ∪ Γ0, g = 0
on Γf \ (ΓI ∪ ΓO) and (

∀w ∈H1
0 (Ω)

)
|((∇g)w,w)| ≤ α |w|21,Ω

for all α ∈ (0, ν).

Proof. See Lemma IV.2.3 in [50] and Lemma IX.4.2 in [48].

Theorem 2.4.2. There exists a constant κ > 0 only depending on Ω, such that(
∀ (u,v,w) ∈H1

0 (Ω)×H1 (Ω)×H1
0 (Ω)

)
|((∇v)u,w)| ≤ κ |u|1,Ω |v|1,Ω |w|1,Ω(

∀ (u,v,w) ∈H1 (Ω)×H1 (Ω)×H1
0 (Ω)

)
|((∇v)u,w)| ≤ κ ‖u‖1,Ω |v|1,Ω |w|1,Ω

Proof. Direct consequence of Hölder inequalty and Sobolev Embedding Theorem.

Then, as for the Stokes problem, we consider the extension of g to H1 (Ω) such that
g = 0 en ΩS. Let us define v = u− g, so we have the following equation

−ν4v + (∇v)v + (∇v) g + (∇g)v +∇p = ν4g − (∇g) g in ΩF (2.10)

div v = 0 in ΩF

v = 0 on ∂ΩF

where we extend (v, p) ∈ H(Ω) by (0, 0). In addition, let vR = uR − g, so we have

−ν4vR + (∇vR)vR + (∇vR) g + (∇g)vR +∇pR +RχΩvR = ν4g − (∇g) g in Ω

div vR = 0 in Ω

vR = 0 on ∂Ω
(2.11)

Remark 2.4.1. Defining the constant C ≥ 0 given by

C = ν ‖g‖1,ΩF
+ κ ‖g‖2

1,ΩF

we can proceed similarly than Section IV.2 in [50] and conclude that the solutions of (2.8)
and (2.10) are unique provided

Cκ

(ν − α)2 < 1.

Repeating the same arguments as in Section 2.3, it is possible to obtain the same con-
vergence results deduced in Theorems (2.3.1) and (2.3.2). The first step is the uniformly
boundedness of {vR}R>0

Proposition 2.4.1. There exists a constant C > 0 only depending of g such that

|vR|1,Ω ≤
C

ν − α R ‖vR‖2
0,ΩS
≤ C2

ν − α
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Proof. Let us testing first equation of (2.10) by w ∈ V (ΩF ). Then,

ν (∇v,∇w)0,ΩF
+ ((∇v)v,w)0,ΩF

+ ((∇v) g,w)0,ΩF
+ ((∇g)v,w)0,ΩF

=− ν (∇g,∇w)0,ΩF
− ((∇g) g,w)0,ΩF

Considering the extension to Ω, we have that for all w ∈ V (Ω)

ν (∇v,∇w)0,Ω + ((∇v)v,w)0,Ω + ((∇v) g,w)0,Ω + ((∇g)v,w)0,Ω

=− ν (∇g,∇w)0,ΩF
− ((∇g) g,w)0,ΩF

Testing the penalized equation (2.11) by w ∈ V (Ω), we obtain

ν (∇vR,∇w)0,Ω +R (vR,w)0,ΩS
+ ((∇vR)vR,w)0,Ω

+ ((∇vR) g,w)0,Ω + ((∇g)vR,w)0,Ω

=− ν (∇g,∇w)0,ΩF
− ((∇g) g,w)0,ΩF

(2.12)

Taking w = vR, we have

((∇vR) g,vR)0,Ω = ((∇vR)vR,vR)0,Ω = 0

since div g = 0, and then

ν |vR|21,Ω + ((∇g)vR,vR)0,Ω +R ‖vR‖2
0,ΩS

= −ν (∇g,∇vR)0,ΩF
− ((∇g) g,vR)0,ΩF

and due to Theorems 2.4.1 and 2.4.2,

(ν − α) |vR|21,Ω +R ‖vR‖2
0,ΩS
≤
(
ν ‖g‖1,ΩF

+ κ ‖g‖2
1,ΩF

)
|vR|1,Ω

Hence, defining
C = ν ‖g‖1,ΩF

+ κ ‖g‖2
1,ΩF

we conclude

|vR|1,Ω ≤
C

ν − α R ‖vR‖2
0,ΩS
≤ C2

ν − α

The second step is to prove the weakly convergence of {vR}R>0

Proposition 2.4.2. vR converges weakly to v in V (Ω).

Proof. From Proposition 2.4.1, we see that vR is bounded in H1
ΓD

(Ω) = V and χΩSvR → 0 as
R→ +∞. Then there exists a subsequence of vR (denoted by the same way) that converges
weakly in H1 (Ω) to a function ṽ ∈H1(Ω). In particular, ṽ = 0 in ΩS. Moreover, by Trace
Theorem, ṽ = 0 on ∂ΩS. On the other hand, applying (2.12), we have that for all w ∈ V (Ω):

(RχΩSvR,w)0,Ω = −
[
ν (∇ (vR + g) ,∇w)0,Ω + ν ((∇ (vR + g)) (vR + g) ,∇w)0,Ω

]
→ −

[
ν (∇ (ṽ + g) ,∇w)0,Ω + ν ((∇ (ṽ + g)) (ṽ + g) ,∇w)0,Ω

]
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as R → ∞, since vR → ṽ in Lp (Ω), for p ∈ [2, 6). Then RχΩSvR converges weakly to a
function h ∈ [V (Ω)]′ such that supph ⊆ ΩS. Then, taking the limit R → ∞ in (2.12), we
have that for all w ∈ V (Ω):

ν (∇ṽ,∇w)0,Ω + ((∇ṽ) ṽ,w)0,Ω + ((∇ṽ) g,w)0,Ω + ((∇g) ṽ,w)0,Ω + 〈h,w〉V ′,V
=− ν (∇g,∇w)0,ΩF

− ((∇g) g,w)0,ΩF
(2.13)

Since vR = 0 on ∂Ω, we have ṽ = 0 on ∂Ω due the continuity of the trace operator. By the
De Rham’s Theorem, there exists p̃ ∈ L2

0 (Ω) such that

−ν4ṽ + (∇ṽ) ṽ + (∇ṽ) g + (∇g) ṽ +∇p̃ + h = ν4g − (∇g) g in Ω

div ṽ = 0 in Ω

ṽ = 0 on ∂Ω

And since supph ⊆ ΩS, we have that for all w ∈ V (Ω) such that w = 0 on ΩS,

ν (∇ṽ,∇w)0,ΩF
+ ((∇ṽ) ṽ,w)0,ΩF

+ ((∇ṽ) g,w)0,ΩF
+ ((∇g) ṽ,w)0,ΩF

=− ν (∇g,∇w)0,ΩF
− ((∇g) g,w)0,ΩF

so (ṽ|ΩF , p̃|ΩF ) is a weak solution for (2.8). Since such a solution is unique, (ṽ, p̃) = (v, p) in
ΩF . Therefore, (ṽ, p̃) = (v, p) in Ω and vR ⇀ v in H1

0 (Ω).

2.4.2 Main results

Finally, we can enunciate and prove the strong convergence results.

Theorem 2.4.3. Let R > 0, u be solution of (2.10) and uR solution of (2.11). With the
previous assumptions, there is strong convergence of {uR}R>0, i.e.,

lim
R→∞

|uR − u|1,Ω = 0

and there exists C > 0 such that for all R > 0

‖u− uR‖0,ΩS
≤ C

R1/2

Proof. Let wR = vR−v. From the variational formulations (2.12) and (2.13) we obtain that
for all w ∈ V (Ω)

ν (∇wR,∇w)0,Ω + ((∇vR)vR,w)0,Ω − ((∇ṽ) ṽ,w)0,Ω + ((∇wR) g,w)0,ΩF

+ ((∇g)wR,w)0,ΩF
− 〈h,w〉V ′,V +R (vR,w)0,ΩS

= 0

Writing in terms of wR,

ν (∇wR,∇w)0,Ω + ((∇wR)vR,w)0,Ω + ((∇ṽ)wR,w)0,Ω + ((∇wR) g,w)0,ΩF

+ ((∇g)wR,w)0,ΩF
+R (wR,w)0,ΩS

= 〈h,w〉V ′,V

21



2.4. NAVIER-STOKES EQUATION WITH DIRICHLET BOUNDARY CONDITIONS

Then we take w = wR, and thus

ν |wR|21,Ω + ((∇ (ṽ + g))wR,wR)0,Ω +R ‖wR‖2
0,ΩS

= 〈h,wR〉V ′,V (2.14)

Let c2 = α +
Cκ

ν − α , then

0 < c2 = α +
Cκ

ν − α < α + ν − α = ν

Hence, from Theorems 2.4.1 and 2.4.2,

((∇ (ṽ + g))wR,wR)0,Ω ≤
(
α + κ |ṽ|1,Ω

)
|wR|21,Ω

≤
(
α +

Cκ

ν − α

)
|wR|21,Ω = c2 |wR|21,Ω

and using this inequality in (2.14), we have

(ν − c2) |wR|21,Ω +R ‖wR‖2
0,ΩS
≤ 〈h,wR〉V ′,V

Also we have,

〈h,wR〉V ′,V = −
[
ν (∇ (ṽ + g) ,∇wR)0,Ω + ν ((∇ (ṽ + g)) (ṽ + g) ,∇wR)0,Ω

]
→ 0

as R→∞. Therefore

(ν − c2) |wR|21,Ω +R ‖wR‖2
0,ΩS

= 〈h,wR〉V ′,V → 0

so we have proved that |wR|1,Ω → 0 and ‖wR‖0,ΩS
= O

(
R−1/2

)
.

Theorem 2.4.4. Let R > 0, u be solution of (2.10) and uR solution of (2.11). With
the previous assumptions, where we assume in addition that ∂ΩF is piecewise C2 and uD ∈
H3/2(Ω), then there is strong convergence of {uR} in H1(Ω) and moreover there exists a
constant C > 0 such that for all R > 0

|u− uR|1,Ω ≤
C

R1/4
, ‖u− uR‖0,ΩS ≤

C

R3/4

Proof. We can assume that g ∈H2 (Ω) because uD ∈ H3/2(Ω), then there is strong conver-
gence of {uR} in H1(Ω). Reasoning as in Theorem 2.3.2, we can apply a regularity result
(see Theorem IX.5.2 in [48]) and consider (v, p) ∈ H2 (Ω)×H1 (Ω). Defining k ∈ H1/2 (Ω)
by

k = −ν ∂v + g

∂n
+ pn +

1

2
((v + g) · n) (v + g) = −ν ∂v + g

∂n
+ pn

and taking w ∈ V ∂ΩS\Γ (ΩF ) extended by 0 to ΩS, we have

ν (∇v,∇w)0,Ω + ((∇v)v,w)0,Ω + ((∇v) g,w)0,Ω + ((∇g)v,w)0,Ω + (k,w)0,∂ΩS\Γ

=− ν (∇g,∇w)0,ΩF
− ((∇g) g,w)0,ΩF
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Since

ν (∇v,∇w)0,Ω + ((∇v)v,w)0,Ω + ((∇v) g,w)0,Ω + ((∇g)v,w)0,Ω + 〈h,w〉V ′,V
=− ν (∇g,∇w)0,ΩF

− ((∇g) g,w)0,ΩF

we have (
∀w ∈ V ∂ΩS\Γ (Ω)

)
〈h,w〉V ′,V = (k,w)0,∂ΩS\Γ

Hence, applying Trace Theorem, Hölder inequality and Sobolev Embedding Theorem (see
Section 6.6 in [36]), there exists a constant C > 0, independent of R > 0, such that

(ν − c2) |wR|21,Ω +R ‖wR‖2
0,ΩS
≤ (k,wR)0,∂ΩS\Γ

≤ C ‖k‖0,∂ΩS
|wR|1/21,ΩS

‖wR‖1/2
0,ΩS

≤

(
C ‖k‖0,∂ΩS\Γ

)2

2 (νR)1/2
+

1

4

(
ν |wR|21,Ω +R ‖wR‖2

0,ΩS

)
which can be rewritten as

ν |wR|21,Ω +R ‖wR‖2
0,ΩS
≤

2
(
C ‖k‖0,∂ΩS\Γ

)2

3 (νR)1/2

Therefore, |wR|1,Ω = O
(
R−1/4

)
and ‖wR‖0,ΩS

= O
(
R−3/4

)
, proving this result.

2.5 Numerical examples

In this section, we report a simple 2D numerical experiment to validate the use of fictitious
domains in the study of obstacles, to verify the convergence orders obtained in Sections 2.3
and 2.4. We also present numerical estimates in this experiment, although our theory does
not consider an error estimate for the pressure p in ΩF . This experiment is motivated for
numerical implementations performed in [3], where the approach consists in reconstructing
a potential via the minimization of a least-squares functional with a regularization term
in order to reconstruct obstacles which could be either immersed or added to the virtual
boundary domain.

First, we consider the domain Ω = ΩF ∪ΩS = (−2, 2)× (−1, 1) given in Figure 2.2 where
ΩF ∩ ΩS = ∅ and ΩS is given by

ΩS = (−1.1,−0.9)× (0.4, 1) ∪ {(x, y) ∈ R2 | (x− 1)2 + (y − 0.5)2 = (0.3)2}

0 1 2−1−2

0

−1

1

Ω2
S

ΓW

ΓO

ΓWΓW

ΓI

Ω1
S

Figure 2.2: Fictitious domain Ω with obstacles Ω1
S and Ω2

S.
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This example is representative for our purposes, since it consists of a domain with two
types of obstacles: the first one, Ω1

S is added to the boundary of the whole virtual domain,
while the other obstacle, Ω2

S is such that its closure is totally embedded in the fluid.

In order to determine the reference solutions (u, p) for Stokes and Navier-Stokes equations,
we consider the following boundary conditions for the domain ΩF :

• The inflow ΓI = −2× [−1, 1] has a parabolic profile following Poiseuille’s Law given by

uD (x, y) = −U(1 + y)(1− y)n,

where U > 0, x = (x, y) are the Cartesian coordinates of the domain and n is the outer
normal vector.

• The do-nothing conditions are imposed on the outflow ΓO = 2× [−1, 1], given by

−ν ∂u
∂n

+ pn = 0.

• No-slip boundary condition for ΓF,W = ∂ΩS \ (ΓI ∪ ΓO).

Given R > 0, we use the same boundary conditions for ΓI = −2× [−1, 1] and ΓO = 2× [−1, 1]
to calculate the penalized solutions (uR, pR). The no-slip boundary condition is now applied
to ΓF = [−2, 2]× {−1, 1}.

The numerical solutions of Stokes and Navier-Stokes equations are computed by the Finite
Element Method (FEM) with Taylor-Hood elements (P2 for velocity and P1 for pressure) on
an unstructured triangular mesh generated for Ω by domain triangulation with h = 0.05,
which corresponds to 8416 elements and 4329 nodes. The mesh was designed to approach
obstacles ΩS as smoothly as possible.

Figure 2.3: Plots of structure mesh of ΩF (black), Ω1
S (red) and Ω2

S (blue).

The mesh is generated by Gmsh [49] and the numerical solvers are implemented using
the Finite element library FEniCS [5] with the default configuration. To solve the nonlinear
problems, a Newton’s method was used.

The parameters ν = 1 and U = 100 will be used for the Stokes and Navier-Stokes
equations. Considering d = 2 as the length of ΓI , the peak Reynolds number on the inflow is

Re =
Ud

ν
= 200.
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2.5. NUMERICAL EXAMPLES

2.5.1 Stokes equation

First, we consider the reference solution (u, p) as the solution computed on the real domain
ΩF . Then, for R ∈ {10n | n ∈ {0, 1, . . . , 10}}, the solution (uR, pR) is calculated on the
fictitious domain Ω. Finally, we compute the errors ‖uR‖0,ΩS

, |u− uR|1,Ω, |u− uR|1,Ω and
‖p− pR‖0,ΩF

, where u is extended by 0 on ΩS.

‖uR‖0,ΩS |u− uR|0,ΩF ‖p− pR‖0,ΩF
R Error Rate Error Rate Error Rate

100 4.2961 · 101 − 4.2961 · 102 − 2.5866 · 103 −
101 3.7983 · 101 0.0535 3.9663 · 102 0.0347 2.3619 · 103 0.0395
102 1.9419 · 101 0.2914 2.6400 · 102 0.1768 1.4234 · 103 0.2199
103 4.4546 · 100 0.6394 1.2827 · 102 0.3135 4.6572 · 102 0.4852
104 7.6739 · 10−1 0.7638 6.2586 · 101 0.3116 1.1085 · 102 0.6234
105 1.2696 · 10−1 0.7813 1.8038 · 101 0.5403 1.6119 · 101 0.8374
106 1.5054 · 10−2 0.9260 2.3898 · 100 0.8778 1.7153 · 100 0.9730
107 1.5396 · 10−3 0.9902 2.4761 · 10−1 0.9846 1.7268 · 10−1 0.9971
108 1.5432 · 10−4 0.9990 2.4851 · 10−2 0.9984 1.7280 · 10−2 0.9997
109 1.5436 · 10−5 0.9999 2.4860 · 10−3 0.9998 1.7281 · 10−3 1.0000
1010 1.5436 · 10−6 1.0000 2.4861 · 10−4 1.0000 1.7281 · 10−4 1.0000

Table 2.1: History of convergence for Stokes equations.
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Figure 2.4: History of convergence for Stokes equations.

Table 2.1 and Figure 2.4 show that in this experiment the numerical error orders are
better than we deduced in Theorem 2.3.2. When R is going to +∞, the errors ‖uR‖0,ΩS

and |u− uR|1,Ω decrease with order O(R−1). The error orders are similar to O(R−3/4) and

O(R−1/4) for ‖uR‖0,ΩS
and |u− uR|1,Ω, respectively, until R = 104. For higher values of R,

the error order grows up to O(R−1). Hence these results suggest that the obtained error
estimates might not be optimal. The error ‖p− pR‖0,ΩF

follows a behavior very similar to
the errors ‖uR‖0,ΩS

and |u− uR|1,Ω.

From the isovalues and streamlines plots for u and uR in Figures 2.5, 2.6 and 2.7, we
observe that the numerical solution of uR effectively approximates the reference velocity u
for large values of R.
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2.5. NUMERICAL EXAMPLES

Isovalues Streamlines

Figure 2.5: Reference solution, Stokes equations on ΩF .

Isovalues Streamlines

Figure 2.6: Solution for penalized Stokes equations for R = 106 on Ω.

Isovalues Streamlines

Figure 2.7: Solution for penalized Stokes equations for R = 102 on Ω.

2.5.2 Navier-Stokes equation

We repeat the same calculations now for the Navier-Stokes equations. We consider the
reference solution (u, p) as the solution computed on the real domain ΩF and the solution
(uR, pR) on the fictitious domain Ω for R ∈ {10n | n ∈ {0, 1, . . . , 10}}. The errors ‖uR‖0,ΩS

,
|u− uR|1,Ω and ‖p− pR‖0,ΩF

are computed the same way as in Stokes equations.
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2.5. NUMERICAL EXAMPLES

‖uR‖0,ΩS |u− uR|1,Ω ‖p− pR‖0,ΩF
R Error Rate Error Rate Error Rate

100 4.3520 · 101 − 7.0881 · 102 − 1.5482 · 104 −
101 4.2667 · 101 0.0086 7.0356 · 102 0.0032 1.5227 · 104 0.0072
102 3.5656 · 101 0.0780 6.5737 · 102 0.0295 1.2880 · 104 0.0727
103 1.5385 · 101 0.3650 4.5125 · 102 0.1364 4.8714 · 103 0.4223
104 3.0413 · 100 0.7040 2.0814 · 101 0.3361 9.4603 · 102 0.7117
105 4.6066 · 10−1 0.8197 6.0166 · 101 0.5390 1.5174 · 102 0.7948
106 5.3538 · 10−2 0.9347 8.0308 · 100 0.8746 1.7796 · 101 0.9308
107 5.4639 · 10−3 0.9912 8.3281 · 10−1 0.9842 1.8164 · 100 0.9911
108 5.4755 · 10−4 0.9991 8.3593 · 10−2 0.9984 1.8202 · 10−1 0.9991
109 5.4767 · 10−5 0.9999 8.3625 · 10−3 0.9998 1.8206 · 10−2 0.9999
1010 5.4768 · 10−6 1.0000 8.3628 · 10−4 1.0000 1.8203 · 10−3 1.0001

Table 2.2: History of convergence for Navier-Stokes equations.
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Figure 2.8: History of convergence for Navier-Stokes equations.

While the theory developed in Section 2.4 considers only inhomogeneous Dirichlet bound-
ary conditions, we obtain similar results as in Stokes equations using mixed boundary con-
ditions (Dirichlet and Neumann). Indeed, Table (2.2) and Figure 2.8 show that in this
experiment the numerical error orders are better than O(R−3/4) and O(R−1/4) for ‖uR‖0,ΩS

and |u− uR|1,Ω when R is going to +∞, obtaining an order O(R−1) for both errors. Similar
result were obtained for the error ‖p− pR‖0,ΩF

with a behavior very similar to the errors
‖uR‖0,ΩS

and |u− uR|1,Ω. Again, the error estimates obtained in Theorem 2.4.4 might not
be optimal, with similar conclusions as in the Stokes problem.

From the isovalues and streamlines plots for u and uR in Figures 2.9, 2.10 and 2.11, we
observe that the numerical solution of uR effectively approximates the reference velocity u,
including the vortex after the upper obstacle, for large values of R.
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Isovalues Streamlines

Figure 2.9: Reference solution, Navier-Stokes equations on ΩF .

Isovalues Streamlines

Figure 2.10: Solution for penalized Navier-Stokes equations for R = 106 on Ω.

Isovalues Streamlines

Figure 2.11: Solution for penalized Navier-Stokes equations for R = 102 on Ω.

2.6 Conclusions

We have rigorously established and analyzed a penalization method for steady Stokes and
Navier-Stokes equations to approximate the fluid equations around obstacles. The error
estimations obtained in Sections 2.3 and 2.4 allow us to consider the penalization parameter
R as large as necessary to reduce the penalty error, verifying the robustness of the method.

The numerical test proves that this method is easy to implement and is a way to analyze
obstacles that does not change the domain when working with a fictitious domain. Hence,
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2.6. CONCLUSIONS

we have shown both theoretically and with numerical experiments that the equations pre-
sented constitute a valid model for fluids going through obstacles in which the numerical
implementation is much simpler and cheap for computations since it will not depend on
the geometry of the obstacles. As a consequence, it is possible to avoid shape optimization
methods and work with this penalization term and thus to simplify the models and their
numerical implementation.

About future work, the numerical experiments developed in this work allows us to conjec-
ture that it would be possible to improve theoretically the penalty error from R−3/4 to R−1

and possible estimate for the pressure error ‖p− pR‖0,ΩF
. In addition, for the time dependent

setting, it would be possible to prove similar estimates, and if we use similar techniques, we
expect to find the penalty error observed in [9], since here we obtained the penalty error
observed in [8].
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Chapter 3

A stability result for the identification
of a permeability parameter on
Navier-Stokes equations

The content of this chapter was published in J. Aguayo and A. Osses. “A stability result
for the identification of a permeability parameter on Navier-Stokes equations” in Inverse
Problems, 2022. [4].

In this chapter, we present a stability result for the inverse problem of recovering a
smooth scalar permeability parameter given by the Brinkman’s law applied to the steady
Navier-Stokes equations from local observations of the fluid velocity on a fixed domain. In
comparison with [34], we prove a logarithmic estimate under weaker assumptions, since our
proof is based in a strategy that does not require pressure observations. This kind of results
are useful for inverse problems in soft tissue elastography (see [54]). Finally, we present some
numerical tests that validate our theoretical findings. All the results presented in this chapter
are also valid when Ω ⊆ R2, adapting the definitions of cross product and curl to the two
dimensional case.

3.1 An historic introduction to Carleman inequalities

and its applications

In 1939, a new method for proving uniqueness of solution for 2D elliptic equations were
presented by Torsten Carleman in [30]. One of the principal advantages of this new method
is the relaxation of some hypothesis, where the previous results require that the solutions of
the elliptic equation must be analytical. Particularly, Carleman established a L2 weighted
inequality similar to the following one:

‖esϕu‖0,Ω ≤ C ‖esϕPu‖0,Ω

for all u ∈ C∞0 (Ω) and s ≥ s0 > 1, where P is an elliptic differential operator, ϕ is a suitable
non-negative function and s0, C ∈ R are positive constants independent on ϕ, s and u, to
prove the unique continuation property given by:
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3.2. INTRODUCTION AND MAIN MODEL

Let Ω be a connected open non-empty subset of R2 and V ∈ L∞ (Ω). If u ∈ H2(Ω) is a
solution to

−4u+ V u = 0 in Ω

such that u = 0 in a non-empty open subset ω b Ω, then u = 0 in Ω.

The use of Carleman estimate has allowed to relax hypotheses of smoothness of solutions
of different PDEs to verify or deduce some energy estimates, allowing to establish the stability
of the solution of some direct, inverse and ill-posed problems.

3.2 Introduction and main model

Let Ω be a C2−bounded domain in R3 with boundary ∂Ω and outer normal vector n, ν ∈ R
with ν > 0, M ∈ R with M > 0, γj ∈ H1 (Ω) such that 0 ≤ γj ≤ M for j ∈ {1, 2} and
uD ∈H3/2 (∂Ω). The model problem

−ν4uj + (∇uj)uj +∇pj + γjuj = 0 in Ω (3.1)

divuj = 0 in Ω

uj = uD on ∂Ω

admits an unique solution (uj, pj) ∈H2 (Ω)×H1 (Ω) with (pj, 1)Ω = 0. For ε > 0, we define

Ωε = {x ∈ Ω | d (x, ∂Ω) ≥ ε} .

We suppose
γj ∈ H (Ω) =

{
f ∈ H1

0 (Ω) | f = 0 in Ω \ Ωε

}
.

Then, there exists a constant c1 > 0 only dependent on Ω and M such that.

‖uj‖2
2,Ω + ‖pj‖2

1,Ω ≤ c1 ‖uD‖2
1/2,∂Ω .

Defining γ = γ1− γ2, u = u1−u2 and p = p1− p2, (u, p) is the unique solution of the Oseen
equations given by

−ν4u + (∇u)u1 + (∇u2)u +∇p+ γ1u = −f in Ω (3.2)

divu = 0 in Ω

u = 0 on ∂Ω,

where f = γu2. In this case, we have a constant cNS > 0 such that

‖u‖2
2,Ω + ‖p‖2

1,Ω ≤ cNS ‖γ‖2
0,Ω .

We pose the following assumptions:

1. There exists a constant K > 0 such that ‖γ‖1,Ω ≤ K.

2. There exist constants M2 > 0 and cNS > 0 such that ‖u‖2
2,Ω + ‖p‖2

1,Ω ≤M2
2 ≤ cNSK

2.

3. There exists a constant M3 > 0 such that ‖u‖3,Ω ≤M3
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3.2. INTRODUCTION AND MAIN MODEL

4. The velocity u2 verifies curlu2 ∈ L∞(Ω).

Remark 3.2.1. Assumption 1 is usual in problems where the permeability coefficient is stud-
ied. Assumptions 2 and 3 are similar to the one used in [14]. Finally, assumption 4 is similar
to smoothness assumptions in [14] and [34].

In order to avoid an analysis of the gradient of the pressure p we eliminate this variable
using the curl operator. If we define z = curlu, where u is the solution of Equation (3.2),
then u verifies the following second-order elliptical equation:

−4u = curl (curlu)−∇ (divu) = curl z in Ω (3.3)

u = 0 on ∂Ω.

Thanks to curl(∇p) = 0, the vector field z verifies the following equations

−ν4z + (∇z)u1 + γ1z = −(curlf + h) in Ω (3.4)

div z = 0 in Ω

z = curlu on ∂Ω,

where h ∈ L2 (Ω) is defined by

h = ∇γ1 × u + (∇ curl (u2))u +
3∑
j=1

∇ [u1]j ×
∂u

∂xj
+∇ [u]j ×

∂u2

∂xj
.

From an open connected non-empty subset ω ⊆ Ω, the inverse problem we studied here
is to determinate γ = γ1 − γ2 in Ω from the observation data u|ω = (u1 − u2)|ω, where u1

and u2 verify the Navier-Stokes equations given in (3.1) for γ1 and γ2, respectively.

The main objective of this work is to obtain a stability result for this parameter identifica-
tion problem, where we search a permeability parameter γ from a measured velocity u. This
problem was already studied in [3] by minimizing a quadratic functional for a model based
in Oseen equations, so this article validates the strategy by ensuring the uniqueness of the
quadratic functional minimizer in those cases where the hypotheses of this article are verified.
A first approach to this problem is given in [14] and [34]. In [14], the authors describe Car-
leman inequalities for steady Oseen equations applied to find stability results for Navier and
Robin boundary coefficients in a compact subset K ⊆ ∂Ω such that |u2| ≥ m in K, where
m > 0 is a constant. That estimates need an analysis of pressure to be computed. In [34],
the authors obtain a Lipschitz stability result for the right-hand side of a unsteady linearized
Navier-Stokes equation, recovering a source scalar term f using a global observation of u
and curlu in a fixed time and local observations of u in a time interval. The source term
represent the density of external force with a form fR, where R is a vector field that verifies
a non-degeneracy condition. Both ideas can be adapted to this new problem, obtaining a
Carleman inequality and a stability result with no observation data of p.

This chapter is structured as follows. In Section 3, we have adapted the technique used
to prove Theorem 2.3 in [14] to obtain an improved version of a Carleman inequality for
weak solutions of Equation (3.2). In Section 4, we present a modified version of the non-
degeneracy condition introduced in [34] that allow us to prove a logarithmic stability result
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3.3. A CARLEMAN ESTIMATE

using a Carleman estimate obtained in Section 3 and a similar Carleman estimate obtained
for strong solutions of Equation (3.3). Finally, in Section 5 we present two numerical test
that validates the main result recovering a smooth and a discontinuous parameter solving a
minimization problem. The second test, inspired in [3], is not covered by our main result.
However, we add an adaptive refinement algorithm that improves the numerical results.

3.3 A Carleman estimate

This first result allows us to define the Carleman weights for our estimates.

Lemma 3.3.1. Let c0 ≥ 0. There exists a function ϕ ∈ C∞
(
Ω
)

such that ϕ = c0 on ∂Ω,

ϕ > c0 in Ω and ∇ϕ 6= 0 in Ω \ ω.

Proof. See Lemma 1.1 in [47].

The following lemma is the Carleman inequality for weak solutions of linear second-order
elliptic PDE with homogenous Dirichlet boundary conditions.

Lemma 3.3.2. Let f ∈ L2 (Ω), F ∈ H1 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω)
and u ∈ H2 (Ω) solution of

−ν4u+ a · ∇u+ div (ub) + cu = f + divF in Ω

u = 0 on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ {0, 1},
λ ≥ λ̃ and s ≥ s̃,

∫
Ω

(
e(k−1)λϕ |∇u|2 + s2λ2e(k+1)λϕ |u|2

)
e2seλϕdx

≤C
(∫

Ω

1

sλ2
e(k−2)λϕ |f |2 e2seλϕdx+

∫
Ω

sekλϕ |F |2 e2seλϕdx

+

∫
ω

s2λ2e(k+1)λϕ |u|2 e2seλϕdx

)
.

Proof. For k = 1, the result is given by Theorem A.1 in [57] . When k = 0, define z = e−λϕ/2u
and use the result for k = 1.

To determine a Carleman estimate for our problem, a first step is to analyze the Equation
(3.3). Each component of curl z can be written as a divergence of a vector field resulting
from a linear transformation of u. Applying Lemma 3.3.2 with k = 1 in each component, we
can obtain that there exist C > 0, λ̃ > 1 and s̃ > 1, such that for all λ ≥ λ̃ and s ≥ s̃,∫

Ω

(
|∇u|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx ≤C

(∫
Ω

seλϕ |z|2 e2seλϕdx

≤
∫
ω

s2λ2e2λϕ |u|2 e2seλϕdx

)
. (3.5)
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3.3. A CARLEMAN ESTIMATE

Later, it is clear that we need an upper bound for the first term on the right-hand side of
Equation (3.3) in terms of u. A second step is to establish a similar result from Equation
(3.4), rewriting each component of the right-hand side of that equation to the form f+divF .
Because of the counts are analogous, we only show the analysis of the first component of
curlf + h.

h1 =
3∑
j=1

∂ [u1]j
∂x2

∂ [u]3
∂xj

−
∂ [u1]j
∂x3

∂ [u]2
∂xj

+
3∑
j=1

∂ [u]j
∂x2

∂ [u2]3
∂xj

−
∂ [u]j
∂x3

∂ [u2]2
∂xj

+
3∑
j=1

∂

∂xj

(
∂ [u2]3
∂x2

− ∂ [u2]2
∂x3

)
[u]j +

∂γ1

∂x2

[u]3 −
∂γ1

∂x3

[u]2 +
∂ [f ]3
∂x2

− ∂ [f ]2
∂x3

=
∂γ1

∂x2

[u]3 −
∂γ1

∂x3

[u]2 +
∂ [f ]3
∂x2

− ∂ [f ]2
∂x3

+
3∑
j=1

∂

∂xj

(
[u]3

∂ [u1]j
∂x2

− [u]2
∂ [u1]j
∂x3

)

+
3∑
j=1

∂

∂x2

(
[u]j

∂ [u2]3
∂xj

)
− ∂

∂x3

(
[u]j

∂ [u2]2
∂xj

)

−
3∑
j=1

(
[u]3

∂2 [u1]j
∂xj∂x2

− [u]2
∂2 [u1]j
∂xj∂x3

+ [u]j
∂2 [u2]3
∂xj∂x2

− [u]j
∂2 [u2]2
∂xj∂x3

)

=
∂γ1

∂x2

[u]3 −
∂γ1

∂x3

[u]2

−
3∑
j=1

(
[u]3

∂2 [u1]j
∂xj∂x2

− [u]2
∂2 [u1]j
∂xj∂x3

+ [u]j
∂2 [u2]3
∂xj∂x2

− [u]j
∂2 [u2]2
∂xj∂x3

)

+
∂

∂x1

(
[u]3

∂ [u1]1
∂x2

− [u]2
∂ [u1]1
∂x3

)
+

∂

∂x2

(
[u]3

∂ [u1]2
∂x2

− [u]2
∂ [u1]2
∂x3

+ [f ]3 +
3∑
j=1

[u]j
∂ [u2]3
∂xj

)

+
∂

∂x3

(
[u]3

∂ [u1]3
∂x2

− [u]2
∂ [u1]3
∂x3

− [f ]2 −
3∑
j=1

[u]j
∂ [u2]2
∂xj

)

However, Equation (3.4) does not have homogenous Dirichlet boundary conditions. A Car-
leman inequality in the case of non-homogeneous boundary data can be obtained following
the same arguments that in Section 2.2 in [14]. In the following, we consider a function
ϕ ∈ C∞

(
Ω
)

that verifies Lemma 3.3.1 for a constant c0 > 0.

Definition 3.3.1. We define the following space

H2
0 (Ω) =

{
u ∈H2 (Ω) | u = 0 and ∇u = 0 on ∂Ω

}
In order to simplify the proof of our Carleman inequality, we present the following tech-

nical result. We present a similar proof to the one for Theorem 2.2 in [14] for the sake of
self-containedness.
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3.3. A CARLEMAN ESTIMATE

Lemma 3.3.3. Let (u, p) ∈H2
0 (Ω0)×H1

0 (Ω0) solutions of (3.2). There exist C > 0, s̃ > 1
and λ̃ > 1 such that for every s ≥ s̃ and λ ≥ λ̃∫

Ω

(
seλϕ |curlu|2 + |∇u|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx

≤C
(∫

Ω

1

λ2
|−ν4u +∇p|2 e2seλϕdx+

∫
ω

s3λ2e3λϕ |u|2 e2seλϕ dx

)
.

Proof. First, we define g = −ν4u +∇p. Then, we have

−ν4 (curlu) = curl g

Let ω0 b ω a non-empty open subset. Applying Lemma 3.3.2 with k = 0, there exist C1 > 0,
s̃ > 1 and λ̃ > 1 such that for every, s ≥ s̃ and λ ≥ λ̃, we obtain∫

Ω

(
e−λϕ

sλ2
|∇ curlu|2 + seλϕ |curlu|2

)
e2seλϕdx

≤C1

(∫
Ω

1

λ2
|g|2 e2seλϕdx+

∫
ω0

seλϕe2seλϕ |curlu|2 dx

)
Let ρ ∈ C∞0 (ω) such that 0 ≤ ρ ≤ 1 and ρ = 1 in ω0. Then, for all s > 0, we obtain∫

ω0

seλϕe2seλϕ |curlu|2 dx =

∫
ω0

seλϕρ |curlu|2 e2seλϕdx ≤
∫
ω

seλϕρ |curlu|2 e2seλϕdx

Applying integration by parts and triangular inequality, there exists a constant C2 > 0 only
dependent of ρ such that∫

ω

seλϕρ |curlu|2 e2seλϕdx (3.6)

=

∫
ω

(
seλϕρe2seλϕ curlu

)
· curlu dx

=

∫
ω

u · curl
(
seλϕρe2seλϕ curlu

)
dx−

∫
∂ω

seλϕρe2seλϕ curlu× u dx

=

∫
ω

u · curl
(
seλϕρe2seλϕ curlu

)
dx

≤C2

(∫
ω

s2λe2λϕe2seλϕ |curlu| |u| dx+

∫
ω

seλϕe2seλϕ |∇ curlu| |u| dx
)

(3.7)

Using Hölder inequality, there exists a constant C3 > 0 independent of u such that for all
ε > 0, ∫

ω0

seλϕ |curlu|2 e2seλϕdx

≤C2

(∫
ω

s2λe2λϕe2seλϕ |curlu| |u| dx+

∫
ω

seλϕe2seλϕ |∇ curlu| |u| dx
)

≤ε
(
s

∫
Ω0

eλϕe2seλϕ |curlu|2 dx+
1

sλ2

∫
Ω0

e−λϕe2seλϕ |∇ curlu|2 dx

)
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+
C3

ε

∫
ω

s3λ2e3λϕe2seλϕ |u|2 dx

Then, ∫
Ω

(
e−λϕ

sλ2
|∇ curlu|2 + seλϕ |curlu|2

)
e2seλϕdx

≤C3

(∫
Ω

1

λ2
|g|2 e2seλϕdx+

1

ε

∫
ω

s3λ2e3λϕe2seλϕ |u|2 dx

+
ε

C3

(
s

∫
Ω0

eλϕe2seλϕ |curlu|2 dx+
1

sλ2

∫
Ω0

e−λϕe2seλϕ |∇ curlu|2 dx

))
Choosing ε > 0 small enough, we can absorb the first term of the right-hand side with the
terms of the left-hand side. Thus, there exists C4 > 0 such that∫

Ω

seλϕ |curlu|2 e2seλϕdx ≤ C4

(∫
Ω

1

λ2
|g|2 e2seλϕdx+

∫
ω

s3λ2e3λϕe2seλϕ |u|2 dx

)
Applying this result to (3.5), we finally obtain∫

Ω

(
seλϕ |curlu|2 + |∇u|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx

≤C
(∫

Ω

1

λ2
|g|2 e2seλϕdx+

∫
ω

s3λ2e3λϕ |u|2 e2seλϕ dx

)
proving this lemma.

Now we can formulate our new Carleman estimate.

Theorem 3.3.1. There exist C > 0, s̃ > 1 and λ̃ > 1 such that for every s ≥ s̃ and λ ≥ λ̃∫
Ω

(
seλϕ |z|2 + |∇u|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx

≤C
(
e2seλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+

∫
Ω

1

λ2
|f |2 e2seλϕdx+

∫
ω

s3e3λϕe2seλϕ |u|2 dx

)
.

where (u, p) are the solutions of Equation (3.2) and z = curlu.

Proof. The proof is similar to the proof of Theorem 2.3 from [14] with some modifications
due to the permeability term. Let Ω0 ⊆ R3 be a bounded domain with a C2 boundary ∂Ω0

such that Ω b Ω0. We can extend ϕ to Ω0 (keeping the same name) such that ϕ ∈ C2
(
Ω0

)
,

ϕ > 0 in Ω0 ϕ = 0 on ∂Ω0 ϕ = c0 on ∂Ω

0 < ϕ < c0 in Ω0 \ Ω ϕ > c0 in Ω ∇ϕ 6= 0 in Ω0 \ ω.
It is easy to see that that this extension exists thanks to the regularity of the domain and
Lemma 3.3.1. Taking the extension operator A : H2 (Ω)×H1 (Ω)→H2

0 (Ω0)×H1
0 (Ω0) given

by the Stein’s theorem (see [2]) such that A (u, p) = (u, p) in Ω, we define (ũ, p̃) = A (u, p).
We also denote by ũ1, ũ2, γ̃1 and f̃ the continuous extensions of u1, u2, γ and f in the
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H2 (Ω0), L∞ (Ω0) ∩H1
0 (Ω0) and L2 (Ω0) spaces, respectively, where γ is extended by 0 in

Ω0 \ Ω. Then, (ũ, p̃) is solution to the system

−ν4ũ + (∇ũ) ũ1 + (∇ũ2) ũ +∇p̃+ γ̃1ũ = f̃ in Ω0 (3.8)

div ũ = 0 in Ω0

ũ = 0 on ∂Ω0

∂ũ

∂n
= 0 on ∂Ω0

p̃ = 0 on ∂Ω0,

where f̃ ∈ L2 (Ω0) is given by

f̃ =

{
−f in Ω

−ν4ũ + (∇ũ) ũ1 + (∇ũ2) ũ +∇p̃+ γ̃1ũ in Ω0 \ Ω

Using the continuity of A, there exists a constant C1 > 0 depending only on ũ1, ũ2, γ̃1, ν
and the continuity constant of A such that∥∥∥f̃∥∥∥2

0,Ω0

≤ C1

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
.

Now, taking z̃ = curl ũ and applying Lemma 3.3.3, we obtain∫
Ω0

(
seλϕ |z̃|2 + |∇ũ|2 + s2λ2e2λϕ |ũ|2

)
e2seλϕdx

≤C2

(∫
Ω0

1

λ2
|−ν4ũ +∇p̃|2 e2seλϕdx+

∫
ω

(
s3λ2e3λϕ |u|2

)
e2seλϕdx

)
≤C2

(∫
Ω0

1

λ2

∣∣∣f̃ − ((∇ũ) ũ1 + (∇ũ2) ũ + γ̃1ũ)
∣∣∣2 e2seλϕdx (3.9)

+

∫
ω

(
s3λ2e3λϕ |u|2

)
e2seλϕdx

)
(3.10)

for all λ ≥ λ̃ and s ≥ s̃, where C2 > 0, λ̃ > 1 and s̃ > 1 are independent of u. Applying the
Sobolev Embedding Theorem, we can see that ũ1 ∈ L∞ (Ω0). Since γ̃ ∈ L∞ (Ω0), we have∫

Ω0

|(∇ũ) ũ1|2 e2seλϕdx ≤ ‖ũ1‖2
0,∞,Ω0

∫
Ω0

|(∇ũ)|2 e2seλϕdx

Now, applying again Sobolev Embedding Theorem and Hölder inequality, there exist a con-
stant C3 > 0 independent of u such that∫

Ω0

|(∇ũ2) ũ|2 e2seλϕdx ≤
∫

Ω0

|(∇ũ2)|2
∣∣∣eseλϕũ∣∣∣2 dx

≤ ‖ũ2‖2
1,3,Ω0

∥∥∥eseλϕũ∥∥∥2

0,6,Ω0

≤ ‖ũ2‖2
1,3,Ω0

∥∥∥∇(eseλϕũ)∥∥∥2

0,2,Ω0

≤ C3 ‖ũ2‖2
1,3,Ω0

∫ (
|∇ũ|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx.
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Analogously, we have∫
Ω0

|γ̃1ũ|2 e2seλϕdx ≤ C4 ‖γ̃1‖2
0,3,Ω0

∫ (
|∇ũ|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx

for a constant C4 > 0 independent on u. Hence, there is a constant C5 > 0 independent on
u such that the integral term with f̃ verifies∫

Ω0

1

λ2

∣∣∣f̃ − ((∇ũ) ũ1 + (∇ũ2) ũ + γ̃1ũ)
∣∣∣2 e2seλϕdx

≤
∫

Ω0

1

λ2

(∣∣∣f̃ ∣∣∣2 + C5

(
|∇ũ|2 + s2λ2e2λϕ |u|2

))
e2seλϕdx,

where the last terms can be absorbed by the left-hand side of Inequality (3.9) for λ ≥ λ2,
with λ2 large enough and independent on u. Then, there exists a constant C6 > 0 such that∫

Ω0

(
seλϕ |z̃|2 + |∇ũ|2 + s2λ2e2λϕ |ũ|2

)
e2seλϕdx

≤C6

(∫
Ω0

1

λ2

∣∣∣f̃ ∣∣∣2 e2seλϕdx+

∫
ω

(
s3λ2e3λϕ |u|2

)
e2seλϕdx

)
Finally, we have∫

Ω0

1

λ2

∣∣∣f̃ ∣∣∣2 e2seλϕdx =

∫
Ω

1

λ2
|f |2 e2seλϕdx+

∫
Ω0\Ω

1

λ2

∣∣∣f̃ ∣∣∣2 e2seλϕdx

≤
∫

Ω

1

λ2
|f |2 e2seλϕdx+ C1

e2seλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
,

proving that there exist C > 0, s̃ > 1 and λ̃ > 1 such that for every s ≥ s̃ and λ ≥ λ̃∫
Ω

(
seλϕ |z|2 + |∇u|2 + s2λ2e2λϕ |u|2

)
e2seλϕdx

≤
∫

Ω0

(
seλϕ |z̃|2 + |∇ũ|2 + s2λ2e2λϕ |ũ|2

)
e2seλϕdx

≤C6

(∫
Ω

1

λ2
|f |2 e2seλϕdx+

e2seλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+

∫
ω

(
s3λ2e3λϕ |u|2

)
e2seλϕdx

)
,

concluding the proof of the theorem.

3.4 Main result

In this section, we present a logarithmic local stability result for our inverse problem. Unlike
[14], the right-hand side is more complex and requires a special treatment. We need to prove
the following result as a preliminary step.

Theorem 3.4.1. Let β ∈ C2
(
Ω
)
, a ∈ C1

(
Ω
)
. There exist s0 > 1 and C > 0 such that for

all g ∈ H (Ω), λ > λ0 and s > s0

s2

∫
Ω

(
|a · ∇β|2 − C

s

)
|g|2 e2sβdx ≤ C

∫
Ω

|a · ∇g|2 e2sβ dx.
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Proof. Let us consider s > 0 and define w = esβg. Then,

esβa · ∇g = esβa · ∇
(
e−sβw

)
= a · ∇w − sw (a · ∇β) .

Later, ∫
Ω

e2sβ |a · ∇g| dx

=

∫
Ω

|a · ∇w|2 dx+ s2

∫
Ω

e2sβ |g|2 |a · ∇β|2 dx− 2s

∫
Ω

w (a · ∇β) (a · ∇w) dx

≥s2

∫
Ω

e2sβ |g|2 |a · ∇β|2 dx− 2s

∫
Ω

w (a · ∇β) (a · ∇w) dx

Integrating by parts,

2s

∫
Ω

w (a · ∇β) (a · ∇w) dx =s

∫
Ω

∇
(
w2
)
· (a · ∇β) dx

=s

∫
∂Ω

e2sβg (a · ∇β) (a · n) dx

− s
∫

Ω

w2 div ((a · ∇β)a) dx

=− s
∫

Ω

e2sβ |g|2 div ((a · ∇β)a) dx

because g = 0 on ∂Ω. Also, div ((a · ∇β)a) is bounded in Ω. Then, there exists a constant
C1 > 0 only dependent of a, β and Ω such that

2s

∫
Ω

w (a · ∇β) (a · ∇w) dx ≥ −C1s

∫
Ω

e2sβ |g|2 dx

Thus, there exist s0 > 1 and C > 0 such that for all s > s0

C

∫
Ω

e2sβ |a · ∇g| dx ≥ s2

∫
Ω

e2sβ

(
|a · ∇β|2 − C

s

)
|g|2 e2sβ dx

proving the theorem.

The previous theorem reduces the study of curlf recovering a non-degeneracy condition
very similar to Theorem 1 in [34] given by |∇ϕ× u2| 6= 0 in Ω or Ω \ ω.

Remark 3.4.1. Despite the fact that ∇ϕ vanishes at some points of ω, we can always
consider two regions of the observation zone, a small open subset ω0 included in Ω \ Ω̄ε

containing the critical points of ϕ and another open subset of Ωε with absence of them.
Velocity and vorticity measurements are required in both sets.

Now, we have
curl (f) = γ curlu2 +∇γ × u2

Taking a1 = (0, [u2]3 ,− [u2]2)T , g = γ and β = eλϕ in Theorem 3.4.1, we obtain

s2

∫
Ω

(
λ2e2λϕ |a1 · ∇ϕ|2 −

C1

s

)
|γ|2 e2seλϕdx ≤ C

∫
Ω

|a1 · ∇γ|2 e2seλϕdx
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We can repeat this with a2 = (− [u2]3 , 0, [u2]1)T and a3 = ([u2]2 ,− [u2]2 , 0)T obtaining

s2

∫
Ω

(
λ2e2λϕ |a2 · ∇ϕ|2 −

C1

s

)
|γ|2 e2seλϕdx ≤ C1

∫
Ω

|a2 · ∇γ|2 e2seλϕdx

s2

∫
Ω

(
λ2e2λϕ |a3 · ∇ϕ|2 −

C1

s

)
|γ|2 e2seλϕdx ≤ C1

∫
Ω

|a3 · ∇γ|2 e2seλϕ dx

where

(a1 · ∇ϕ,a2 · ∇ϕ,a3 · ∇ϕ)T = ∇ϕ× u2

(a1 · ∇γ,a2 · ∇γ,a3 · ∇γ)T = ∇γ × u2

In conclusion, adding the three inequalities, we can obtain that

s2

∫
Ω

(
λ2e2λϕ |∇ϕ× u2|2 −

3C1

s

)
|γ|2 e2seλϕdx

≤C1

∫
Ω

|∇γ × u2|2 e2seλϕdx

≤C1

∫
Ω

(
|curl (f)|2 + |γ curlu2|2

)
e2seλϕdx (3.11)

recovering the term |∇γ × u2| on the left-hand side of this inequality. Furthermore, the
left-hand side of this inequality can be simplified thanks to the following lemma.

Lemma 3.4.1. Let f ∈ C
(
Ω
)

such that f (x) 6= 0 for all x ∈ Ω. There exist constants
R > 0, λ1 > 0 and s1 > 0 such that for all g ∈ L2 (Ω), s > s1 and λ > λ1,∫

Ω

(
λ2 |f (x)|2 − 1

s

)
|g (x)|2 dx ≥ Rλ2

∫
|g (x)|2 dx.

Proof. The property is fulfilled when ‖g‖0,Ω = 0. Then, we suppose that ‖g‖0,Ω 6= 0. Since

f ∈ C
(
Ω
)

and f 6= 0, there exists R1 > 0 such that |f (x)| ≥ R1 for all x ∈ Ω. Then,∫
Ω

(
λ2 |f (x)|2 − 1

s

)
|g (x)|2 dx ≥

(
λ2R1 −

1

s

)∫
Ω

|g (x)|2 dx.

Now, choosing λ1 = 1, s1 =
2

R1

and R =
R1

2
, we obtain that for all s > s1 and λ > λ1,

∫
Ω

(
λ2 |f (x)|2 − 1

s

)
|g (x)|2 dx ≥

(
R1λ

2 − 1

s

)∫
Ω

|g (x)|2 dx

≥
(
R1λ

2 − R1

2

)∫
Ω

|g (x)|2 dx

≥ R1

2
λ2

∫
Ω

|g (x)|2 dx = Rλ2

∫
Ω

|g (x)|2 dx.

proving the lemma.
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Remark 3.4.2. Note that there exist R > 0, s1 > 1 and λ1 > 1 such that, for all s > s1 and
λ > λ1, ∫

Ωε

(
λ2e2λϕ |∇ϕ× u2|2 −

3C1

s

)
|γ|2 e2seλϕdx ≥ R

∫
Ωε

λ2 |γ|2 e2seλϕdx. (3.12)

Since u2 ∈H2 (Ω), Theorem 5.8.4 in [41] states that u2 ∈ C (Ω). Then, |∇ϕ× u2| ∈ C (Ω)
and |∇ϕ× u2| 6= 0 in Ωε almost everywhere. Then, choosing f (x) = eλϕ |∇ϕ (x)× u2 (x)|
and g (x) = ese

λϕ |γ (x)| on Lemma 3.4.1, we can deduce the Inequality (3.12).

It is possible to prove, similar to Lemma 3.3.2 and Theorem 3.3.1 in Section 3.3, the
following Carleman estimates for strong solutions of linear second-order elliptic PDE with
homogenous and nonhomogeneous Dirichlet boundary conditions.

Lemma 3.4.2. Let f ∈ L2 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω) and u ∈ H2 (Ω)
solution of

−ν4u+ a · ∇u+ div (ub) + cu = f in Ω

u = 0 on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ N ∪ {0},
λ ≥ λ̃ and s ≥ s̃,

∫
Ω

((
sλeλϕ

)k−2 |4u|2 +
(
sλeλϕ

)k |∇u|2 +
(
sλeλϕ

)k+2 |u|2
)
e2seλϕdx

≤C
(∫

Ω

1

λ

(
sλeλϕ

)k−1 |f |2 e2seλϕdx+

∫
ω

(
sλeλϕ

)k+2 |u|2 e2seλϕdx

)
. (3.13)

Proof. See Theorem A.1 in [57].

Lemma 3.4.3. Let f ∈ L2 (Ω), F ∈ L2 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω),
g ∈ H3/2 (∂Ω) and u ∈ H2 (Ω) solution of

−ν4u+ a · ∇u+ div (ub) + cu = f + divF in Ω

u = g on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ N ∪ {0},
λ ≥ λ̃ and s ≥ s̃,∫

Ω

((
sλeλϕ

)k−2 |4u|2 +
(
sλeλϕ

)k |∇u|2 +
(
sλeλϕ

)k+2 |u|2
)
e2seλϕdx

≤C
(
e2seλc0

λ

(
sλeλc0

)k−1 ‖u‖2
2,Ω +

∫
Ω

1

λ

(
sλeλϕ

)k−1 |f |2 e2seλϕdx (3.14)

+

∫
Ω

1

λ

(
sλeλϕ

)k+1 |F |2 e2seλϕdx+

∫
ω

(
sλeλϕ

)k+2 |u|2 e2seλϕdx

)
.

Proof. See Theorem 2.2 in [57].
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Then, we can present our local stability result.

Theorem 3.4.2. Consider an non-empty open subset ω ⊆ Ω such that |∇ϕ (x)× u2 (x)| 6= 0
for all x ∈ Ωε. Then, defining a constant M4 = (M2

3 + K2)1/2 > 0, there exists a constant
C > 0 independent on u1 and u2 such that

‖γ‖0,Ωε
≤ CM4[

ln

(
1 +

M4

‖u‖0,ω + ‖curlu‖0,ω

)]1/2
,

Proof. Let us consider c = ‖ϕ‖0,∞,Ω and z = curlu. From the equation

−ν4z + (∇z)u1 + γ1z = − (curlf + h)

there exists a constant C2 > 0 that only depends of u1, u2 and M such that

|curlf |2 e2seλϕ ≤ C2

(
|4z|2 + |∇z|2 + |z|2 + |∇u|2 + |u|2

)
e2seλϕ

Applying Theorem 3.4.3 with k = 2, then there exist constants C3 > 0, λ̃ ≥ 1 and s̃ ≥ 1
such that for all λ ≥ λ̃ and s ≥ s̃∫

Ω

(
|4z|2 + |∇z|2

)
e2seλϕdx

≤C3

(
seλc0e2seλc0 ‖z‖2

2,Ω +

∫
Ω

seλϕ |(curlf + h)|2 e2seλϕdx∫
ω

(
sλeλϕ

)4 |z|2 e2seλϕdx

)
≤C3

(
seλc0e2seλc0 ‖u‖2

3,Ω +

∫
Ω

seλϕ
(
|curlf |2 + |u|2 + |∇u|2

)
e2seλϕdx

+

∫
ω

(
sλeλϕ

)4 |z|2 e2seλϕdx

)
≤C3

(
seλc0e2seλc0 ‖u‖2

3,Ω +

∫
Ω

seλϕ
(
|∇γ|+ |γ|2 + |u|2 + |∇u|2

)
e2seλϕdx

+

∫
ω

(
sλeλϕ

)4 |z|2 e2seλϕdx

)
≤C3

(
seλc0e2seλc0M2

3 + seλce2seλcK2 +

∫
Ω

seλϕ
(
|γ|2 + |u|2 + |∇u|2

)
e2seλϕdx

+

∫
ω

(
sλeλϕ

)4 |z|2 e2seλϕdx

)
,

where we use that u1,u2, curlu2 ∈ L∞ (Ω) and the Assumption 1. Now, applying Theorem
3.3.1, there exists a constant C4 > 0 such that for all λ ≥ λ̃ and s ≥ s̃∫

Ω

(
|z|2 + |∇u|2 + |u|2

)
e2seλϕdx

≤
∫

Ω

(
seλϕ |z|2 + |∇u|2 +

(
sλeλϕ

)2 |u|2
)
e2seλϕdx
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≤C4

(
e2seλc0

λ2
M2

2 +

∫
Ω

1

λ2
|γ|2 e2seλϕdx+

∫
ω

s3e3λϕe2seλϕ |u|2 dx

)
Then, there exists a constant C5 > 0 such that for all λ ≥ λ̃ and s ≥ s̃∫

Ω

|curlf |2 e2seλϕdx

≤C2

∫
Ω

(
|4z|2 + |∇z|2 + |z|2 + |∇u|2 + |u|2

)
e2seλϕdx

≤C5

(
seλce2seλcM2

4 +

∫
Ω

seλϕ |γ|2 e2seλϕdx+

∫
ω

(
sλeλϕ

)4
e2seλϕ

(
|u|2 + |z|2

)
dx

)
Replacing this in Inequality (3.11) and using that curlu2 ∈ L∞ (Ω), we deduce that there
exists a constant C6 > 0 such that

Rs2

∫
Ωε

|γ|2 e2seλϕdx

≤s2

∫
Ωε

(
λ2e2λϕ |∇ϕ× u2|2 −

3C1

s

)
|γ|2 e2seλϕdx

≤C1

∫
Ω

(
|curlf |2 + |γ curlu2|2

)
e2seλϕ dx

≤C6

(
seλce2seλcM2

4 +

∫
Ω

seλϕ |γ|2 e2seλϕdx∫
ω

(
sλeλϕ

)4
e2seλϕ

(
|u|2 + |z|2

)
dx

)
where |∇ϕ× u2| ∈ C (Ω) and |∇ϕ× u2| 6= 0. Then, taking s > 0 sufficiently large and
fixing λ = λ̃, we can absorb the second term of the right-hand side by the left-hand side.
Thus, there exist constants C7 > 0, ŝ > 0 and c∗ > 1 such that for all s ≥ ŝ

s2

∫
Ωε

|γ|2 e2seλϕdx ≤ C7

(
seλ̃ce2seλ̃cM2

4 +

∫
ω

(
sλ̃eλ̃ϕ

)4

e2seλ̃ϕ
(
|u|2 + |z|2

)
dx

)
‖γ‖2

0,Ωε
≤ M2

4

s
+ e2sc∗

(
‖u‖0,ω + ‖z‖0,ω

)2

(3.15)

If ‖u‖0,ω + ‖z‖0,ω = 0, then for all s ≥ ŝ we have ‖γ‖0,Ωε
≤ M4

s1/2
for all s ≥ ŝ. Later,

‖γ‖0,Ωε
= 0.

Now, we assume that ‖u‖0,ω + ‖z‖0,ω 6= 0. We have two cases. In the first case, if we
suppose that

1

2c∗
ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

)
≤ ŝ

Later,

M4 ≤ e2ŝc∗
(
‖u‖0,ω + ‖z‖0,ω

)
Then, taking s = ŝ in Inequality (3.15), and using ‖u‖0,ω + ‖z‖0,ω ≤M4 and

1

x
≤ 1

ln (x+ 1)
for all x > 0, we obtain

‖γ‖2
0,Ωε
≤ M2

4

ŝ
+ e2ŝc∗

(
‖u‖0,ω + ‖z‖0,ω

)2
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≤ e4ŝc∗

ŝ

(
‖u‖0,ω + ‖z‖0,ω

)2

+ e4ŝc∗
(
‖u‖0,ω + ‖z‖0,ω

)2

≤ 2e4ŝc∗
(
‖u‖0,ω + ‖z‖0,ω

)2

≤ 2e4ŝc∗M4

(
‖u‖0,ω + ‖z‖0,ω

)
≤ 2e4ŝc∗M2

4

(
‖u‖0,ω + ‖z‖0,ω

)
M4

≤ 2e4ŝc∗M2
4[

ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

)] (3.16)

In the second case, if we suppose that

1

2c∗
ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

)
≥ ŝ

Taking s =
1

2c∗
ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

)
in Inequality (3.15), using ‖u‖0,ω + ‖z‖0,ω ≤M4 and

(x+ 1) ln (1 + x)

x2
≤ 2

for all x > 1, we obtain

e2sc∗ = 1 +
M4

‖u‖0,ω + ‖z‖0,ω

and

‖γ‖2
0,Ωε
≤ M2

4

s
+ e2sc∗

(
‖u‖0,ω + ‖z‖0,ω

)2

≤ M2
4

s

(
1 +

[
1

2c∗
ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

)](
1 + M4

‖u‖0,ω+‖z‖0,ω

)
(‖u‖0,ω+‖z‖0,ω)

2

M2
4

)
≤ M2

4

s

(
1 +

1

c∗

)
=

(2c∗ + 1)M2
4

ln
(

1 + M4

‖u‖0,ω+‖z‖0,ω

) (3.17)

From (3.16) and (3.17), we can deduce that there exists a constant C > 0 such that

‖γ‖0,Ωε
≤ CM4[

ln

(
1 +

M4

‖u‖0,ω + ‖curlu‖0,ω

)]1/2

proving the theorem.

Remark 3.4.3. The result obtained in Theorem 3.4.2 allows us to conclude a stability re-
sult for the problem of recovering the permeability coefficient from local observations of the
velocity and vorticity of a fluid. However, those velocity and vorticity measurements must be
highly precise in order to recover an accurate permeability coefficient due to the logarithmic
estimate. This stability result is similar to the result obtained in [14] (see Theorem 1.4) for
the stability of the problem of recovering a Robin coefficient. In general, logarithmic esti-
mates are often obtained in steady problems, while it is possible to obtain Hölder estimates
in unsteady problems (see Theorem 1 in [34]).
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3.5 Numerical results

In this section, we present two numerical tests that support the stability result proved in
Theorem 3.4.2. We perform numerical experiments in 2D, but the theory of the previous
sections is valid both in 2 and 3 dimensions. In both examples will use the sames 2D
domain Ω = [−1, 1]2, subset Ωε = [−0.9, 0.9]2 (with a ε = 0.1), and observation region
ω = [−0.5, 0.5]2, similar Dirichlet boundary conditions, and a different function γR (R for
reference) such that γR = 0 in Ω \Ωε. We obtain numerical approximations for the solutions
(uR;pR) of Equation (3.1) with γ = γR using the Finite Element method with Taylor-Hood
elements (P2 for the velocity uR and P1 for the pressure pR) on an unstructured hyperfine
triangular mesh (with mesh size h = 0.01.) We recover the coefficient γR as the solution of
the following minimization problem

minimize J (γ,u) =
1

2
‖u− uR‖2

0,ω +
1

2
‖curlu− curluR‖2

0,ω (3.18)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (3.19)

divu = 0 in Ω

u = uD on ∂Ω

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤M a.e. in Ω,

where M = max
x∈Ω

γR(x). The functional J was chosen because it is differentiable with respect

to γ and is equivalent to ‖u− uR‖0,ω + ‖curlu− curluR‖0,ω. This problem is numerically
solved approximating the Navier-Stokes equations with Finite Element method using stable
pairs of spaces (in terms of the inf-sup condition, see Section 3.6 in [62]) in a coarse structured
mesh, where γ is approximated by P1 elements. It should be noted that the second example
is based on recovering a discontinuous coefficient γR, which is not covered by Theorem 3.4.2,
but it complements the work of Aguayo et al [3]. The FEM solver is implemented using
the finite element library FEniCS 2019.1.0 [5] with the default configuration. The nonlinear
problems were solved using the Newton method with a relaxation parameter α ∈ [0.9999, 1].
The dolfin-adjoint library [71] were used to numerically solve the optimization problems with
the L-BFGS-B algorithm (see Section 4.3 in [39]). Furthermore, we explain more details of
the parameters, domains, meshes, numerical methods and tolerances used on each example.

3.5.1 Recovering a smooth function

In this first test, we consider ν = 1, f = 0, Dirichlet boundary conditions given by a function
uD such that

uD (x, y) =

{
(5 (1− y2) , 0)

T
if x ∈ {−1, 1}

0 if y ∈ {−1, 1}
and a function γR ∈ H(Ω) such that

γR (x, y) =

{
100
16

(
1 + cos

(
πx
0.9

))2 (
1 + cos

(
πy
0.9

))2
if x = (x, y) ∈ Ωε

0 if x = (x, y) ∈ Ω \ Ωε
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Ωε

ω

uD uD

uD = 0

uD = 0

Figure 3.1: Domain Ω for the numerical tests and boundary conditions.

The reference solutions are the numerical solutions (uR;pR) of Equation (3.1), obtained
by Finite Element Method with Taylor-Hood elements (P2 for the velocity u and P1 for the
pressure p) in a hyperfine unstructured triangular mesh (mesh size h = 0.01, 53649 nodes
and 107296 elements), using the function γR defined previously.

Figure 3.2: Plots of the Brinkman’s law reference permeability parameter γR and the corre-
spondent reference isovalues and flow uR.

The optimization problem was discretized with the same FEM scheme for a coarse struc-
tured triangular mesh. The function γ was discretized using P1 elements. The discretized
Navier-Stokes equations were solved using Newton method with a tolerance of 10−7 for the
discrete `2 residual norm. The tolerance criterion for the L-BFGS-B algorithm was 5 · 10−9

for consecutive evaluations of functional J or approximations of the Riesz representant of
∇J , the Fréchet derivative of J , in norms L2(Ω) or `2. We used γ0 = 0 as a initial guess for
the L-BFGS-B algorithm. If we denote γk and uk as the optimal control and their respective
state on the k iteration of the L-BFGS-B algorithm, we can define the errors γE,k = γk − γR
and uE,k = uk − uR. Also we define γ∗ as the optimal function obtained by the L-BFGS-B
algorithm and (u∗, p∗) as the optimal states. Table 3.1 and Figures 3.3 and 3.4 summarize
the numerical results obtained.

Comparing Figures 3.2 and 3.3, we can see that there is a fast convergence of the velocity
at the optimal uR, both in the measurement region ω and in the rest of Ω. However, the
convergence rate of γ is low, according to the Theorem3.4.2. In the measurement region ω,
γ∗ has a similar shape to γR, with differences of less than 4% in L∞ norm. Outside the
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measurement region ω, γ∗ presents some noise, as can be seen in Figures 3.3 and 3.4, which
is mainly associated with the measurement region, the chosen objective function J and the
Finite Element approximation.

Figure 3.3: Plots of reference parameters and velocity (top), recovered permeability param-
eter γk and velocity uk on iteration 198 (bottom).
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Figure 3.4: Cut lines of the optimal γk on iteration 198 and γR on y = 0 (left) and y = x
(right).
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k J (γk) ‖∇J (γk)‖0,Ω ‖uE,k‖0,ω + ‖curluE,k‖0,ω ‖γE,k‖0,Ωε

0 4.8156 · 101 1.7378 · 10−2 1.1536 · 101 4.9219 · 101

3 8.9908 · 100 4.6005 · 10−3 5.0507 · 100 3.6516 · 101

5 1.3860 · 100 1.1846 · 10−3 2.0324 · 100 2.5782 · 101

8 1.5234 · 10−1 1.8093 · 10−4 6.9552 · 10−1 1.6227 · 101

14 1.0747 · 10−2 1.1264 · 10−5 2.0450 · 10−1 1.1485 · 101

41 1.0969 · 10−3 2.0214 · 10−6 6.1340 · 10−2 6.1686 · 100

68 1.0095 · 10−4 4.0138 · 10−7 1.9318 · 10−2 5.0834 · 100

196 5.0897 · 10−5 3.3451 · 10−8 1.0601 · 10−2 4.6065 · 100

Table 3.1: Evolution of L-BFGS-B algorithm.

3.5.2 Recovering a non-smooth function

Unlike the previous test, in this one we are looking for recovering a function γR ∈ L2(Ω)
with γR = 0 in Ω \ Ωε such that γR /∈ H1(Ω). Then, in this test we do not expect to recover
the theoretical results, since the hypothesis of the main theorem is not fulfilled, but rather
to present a strategy that allows recovering a discontinuous coefficient γ. This example
is motivated by [3], where the authors solved numerically an inverse problem to recover a
discontinuous coefficient that represent an obstacle.

We consider the sames domains Ω and Ωε as in the first test and the same the parameters
ν = 1 and f = 0. The Dirichlet boundary condition is given by a function uD such that

uD (x, y) =

{
(30 (1− y2) , 0)

T
if x ∈ {−1, 1}

0 if y ∈ {−1, 1}

and a function γR ∈ H(Ω) such that

γR (x, y) =

{
10000 if (x, y) ∈ B

0 if (x, y) ∈ Ω \B

where B = {(x, y) ∈ R2 | x2 + y2 ≤ 0.22}
The reference solutions are the numerical solutions (uR;pR) of Equation (3.1), obtained

by Finite Element Method with the Taylor-Hood elements (P2 for the velocity uR and P1

for the pressure pR) in a hyperfine unstructured triangular mesh (mesh size h = 0.01, 53649
nodes and 106496 elements), using the function γR defined previously.
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Figure 3.5: Plots of γR and uR.

The optimization problem were discretized with the MINI element (P1 ⊕ Vbub for the
velocity u and P1 for the pressure p, where Vbub is the space of the bubble functions, see
Section 3.6.1 in [62]) for a coarse structured triangular mesh. The discretized Navier-Stokes
equations were solved using Newton method with a tolerance of 10−7 for the discrete `2

residual norm. Thanks to we can recover a discontinuous L2 function, we decided to use P1

elements for γ discretization combined with a new algorithm for this optimization problem
based in adaptive refinement. If Th is a triangulation for Ω, we denote by T the elements of
Th and by Eh the set of all edges Th. Also Eh = EΩ ∪ E∂, where EΩ and E∂ are the sets of
edges lying in the interior and the boundary of Ω, respectively. We use hT as the diameter
of T and hF = |F | for each F ∈ EΩ. Then, for each T ∈ Th, we define ηγ,T > 0 and ηT > 0
such that

η2
γ,T =

∑
F∈∂T∩EΩ

hF ‖J∇γF KF‖
2
0,F

η2
T =h2

T ‖−ν4u + (∇u)u + γu +∇p‖2
0,T + ‖divu‖2

0,T

+
∑

F∈∂T∩EΩ
hF

∥∥∥∥sν ∂u∂n − pn
{∥∥∥∥2

0,F

where J·KF denotes the vectorial jump operator on the edge F ∈ EΩ. The term ηγ,T corre-
sponds to a quantification of the jumps of γ for the element T , which we want to reduce
in order to obtain a better resolution The expression ηT is the a-posteriori error estimator
presented by Verfürth calculated in the element T (see Section 8 in [83]).

At each stage of the algorithm, we partially solve the optimization problem until reaching
a maximum number of iterations or a convergence criterion of the L-BFGS-B algorithm.
Next, we quantify the error estimators, mark some elements and refine the marked elements
following the algorithm. The next stage uses the Lagrange interpolation of the optimal
control obtained in the last stage. Also we increment the maximum number of iterations for
L-BFGS-B algorithm for the next stage because the descent directions of that algorithm are
not compatible with the discrete spaces obtained after the adaptive refinement.
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Algorithm 1 Algorithm of each adaptive refinement stage.

Require: A coarse mesh Th, N,∆ ∈ N, γ = 0.
1: Run N iterations of the L-BFGS-B algorithm for the problem (3.18) on the current mesh.
2: For each T ∈ Th, compute the estimators ηγ,T and ηT using the optimal function and the

optimal states.
3: Given T ∈ Th such that ηγ,T ≥ 0.8 max

K∈Th
ηγ,K or ηT ≥ 0.5 max

K∈Th
ηK , mark T and generate a

new mesh Th refining the marked elements.
4: If the stop criterion is not satisfied, choose γ as the Lagrange interpolation of the optimal

control in the new finite element space obtained in the step 1, increase N to N + ∆ and
go to the step 1.

The tolerance criterion for the L-BFGS-B algorithm were 2 · 10−5 for consecutive evalua-
tions of functional J or approximations of the Riesz representant of∇J , the Fréchet derivative
of J , in norms L2(Ω) or `2. We used γ0 = 0 as a initial prediction for the L-BFGS-B al-
gorithm. We choose N = 60 as the maximum number of iterations for the first stage, with
increments of 30 iterations for the following stages. If we denote γk and uk as the optimal
control and their respective state on the k stage of the refinement algorithm, we define the
errors γE,k = γk − γR and uE,k = uk − uR, and γ∗ as the optimal function obtained by the
L-BFGS-B algorithm withe the optimal state (u∗, p∗) as in the previous test. Figures 3.7 and
3.6, and Table 3.2 summarize the numerical results obtained.

Figure 3.6: Plots of refined meshes on stages 1 (top left), 3 (top right), 7 (bottom left) and
13 (bottom right).
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Figure 3.7: Plots of γk (first row) and uk (second row) after stages 1, 3, 7 and 13 (from left
to right).

k It. J (γk) ‖∇J (γk)‖0,Ω ‖uE,k‖0,ω + ‖curluE,k‖0,ω ‖γE,k‖0,Ωε

0 0 7.3218 · 103 6.8677 · 10−1 1.3714 · 102 3.4662 · 103

1 60 2.4691 · 102 1.0367 · 10−3 2.5022 · 101 2.1659 · 103

3 270 8.4010 · 101 2.6439 · 10−4 1.4178 · 101 1.8784 · 103

5 600 5.0553 · 101 8.4971 · 10−5 1.0996 · 101 1.7416 · 103

7 1050 2.9497 · 101 4.3242 · 10−5 8.4704 · 100 1.6257 · 103

9 1620 2.5874 · 101 3.6794 · 10−5 7.9048 · 100 1.5348 · 103

11 2310 2.0731 · 101 2.4171 · 10−5 7.0901 · 100 1.5229 · 103

13 2848 1.9714 · 101 1.9335 · 10−5 6.9145 · 100 1.5304 · 103

Table 3.2: Evolution of the adaptive refinement algorithm.

We appreciate that the convergence of the numerical solution to the real solution is slow,
similar to the previous test, which is benefited by the adaptive refinement strategy. The
adaptive refinement strategy allows to recover smoothly the boundary of the set B, where
γR = 10000. However, we can obtain numerical noise in the boundary of ω, drawn with
magenta lines in Figure 3.7. Indeed, we can see that the prediction of γ is not accurate
outside ω due to the same explanations of the previous test: the measurement region, the
chosen objective function J and the Finite Element approximation. Furthermore, the values
of the numerical noise are sufficient to significantly modify the magnitude of u outside ω
with respect to the reference uR, but that noise is slightly attenuated by the effect of the
optimization solver and the adaptive refinement algorithm.

3.6 Conclusions

We have presented a new stability result for the inverse problem of recovering a smooth scalar
permeability parameter for a steady Navier-Stokes equations with permeability modeled by
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Brinkman’s law from local observations of the fluid velocity and vorticity in a fixed subdo-
main. Our main result is a logarithmic estimate obtained from H1 and H2 global Carleman
inequalities for second-order elliptical equations. We followed similar extension technique
used as the one used in [14] under an analogous non-degeneracy condition as the one intro-
duced in [34]. The approach of eliminating the pressure and measuring only velocity u is
useful not only for fluids, but also in some problems appearing in elastography (see [31]).

Our numerical test for recovering a smooth parameter shows a slow convergence of the
optimization solver, which is directly related to our stability result. Likewise, the numerical
test that recovers a discontinuous coefficient with an adaptive refinement strategy follows a
similar behavior to the first test, which allows us to observe that we could relax the regularity
hypotheses of our main theorem. Also, one of the problems was the numerical noise generated
by the discrete scheme. An alternative is to consider the vorticity curlu as a new unknown
in the finite element system.

In [4], authors describe that an obstacle immersed in a fluid can be represented asymp-
totically by a discontinuous permeability coefficient. The adaptive refinement strategy is
effective to recover discontinuous coefficients with greater precision, facilitating the detec-
tion of obstacles with better resolution. However, the use of error estimators may not be
appropriate. Then, one of the future improvements for this work is to apply new techniques,
for example the one explained in [38] based in basis adaptation, as a new strategy of mesh
adaptivity.
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Chapter 4

A distributed resistance inverse
method for flow obstacle identification
from internal velocity measurements:
the Oseen problem

The content of this chapter was published in J. Aguayo, C. Bertoglio and A. Osses. “A
distributed resistance inverse method for flow obstacle identification from internal velocity
measurements” in Inverse Problems, 2021. [3].

We present a penalization parameter method for obstacle identification in an incompress-
ible fluid flow for a modified version of the Oseen equations. The proposed method consist
in adding a high resistance potential to the system such that some subset of its boundary
support represents the obstacle. This allows to work in a fixed domain and highly simplify
the solution of the inverse problem via some suitable cost functional. Existence of minimizers
and first and second order optimality conditions are derived through the differentiability of
the solutions of the Oseen equation with respect to the potential. Finally, several numeri-
cal experiments using Navier-Stokes flow illustrate the applicability of the method, for the
localization of a bi-dimensional cardiac valve from MRI and ultrasound flow type imaging
data.

4.1 Introduction

The pathway of blood flow through the heart is regulated by four membrane structures or
valves, opening and closing by differential blood pressures. Valvular heart diseases affect 20%
of the population. Among them, aortic valve stenosis is the most prevalent one in developed
countries [60].

Imaging the 3D shape of the valves is a challenging task. For instance, the aortic valve is
very thin (0.5 mm), and therefore its shape can be imaged nowadays using only two modal-
ities: computerized tomography (CT) and transesophageal echocardiography (TEE). Since
CT is based on X-rays, it is only used in patients that are selected for valvular replacement
in order to obtain the aortic root dimensions for sizing the prosthesis. Such CT images are
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usually obtained when the valve is closed. Obtaining the image at open valve position re-
quires about 5 times larger radiation dose since the complete cardiac cycle has to be imaged.
This is equivalent to the annual recommended total radiation dose (see [69]). TEE is a newer
technique, but highly invasive: a wire is inserted through the esophagus of the patient in-
volving a cumbersome procedure. TEE is most of the time applied to monitor valve surgeries
(see [43]), and is therefore rarely applied in a diagnostic phase.

Magnetic resonance imaging (MRI) allows to image anatomical structures in a non-
invasive and non-ionising way. Unfortunately, the aortic valve geometry is not directly visible
with MRI, since the valve thickness is smaller than the image voxel size.

However, visual inspection of 3D Flow MRI Imaging (4D Flow, see [40]) data sets clearly
shows that the valvular shape could be retrieved from the flow pattern in the valve surround-
ings. This fact motivates to formulate, analyze and numerically assess the inverse problem
of inferring rigid obstacles from interior velocity measurements, with the ultimate goal of
recovering the shape of cardiac valves at the opening position from velocity images.

Available approaches studied and reported in the mathematical literature are limited to
the detection of obstacles in viscous fluid flows using boundary stress measurements, which
limits the inverse problem to oversimplified shapes, usually of circular nature [6, 15, 32, 33].
Noteworthy, boundary stress measurements would mean in practice to introduce a catheter
close to the valve.

The novelty of this work is the identification of flow obstacles by a distributed resistance
inverse method. That is, we propose the incorporation of a large resistance term that allows
to model the effect of an obstacle in the viscous fluid. This method reduces the obstacle
identification to a simpler potential inverse problem. This idea is inspired by [29, 12, 44],
who model cardiac valves using a resistive immerse surface (RIS) given by a Dirac distribu-
tion. The problem of using RIS for valve identification would be the need of modifying the
discretization of the domain at every iteration of the identification procedure. In contrast,
the distributed resistance term that we propose here allows us to work in a fixed domain to
solve the valve shape identification problem. This distributed resistance method can also be
useful to estimate porosity in porous media flows following Brinkman’s law [24, 13].

The paper is structured as follows. In Section 2, a parameter identification problem
is defined for the Oseen equations (as a linearization of Navier-Stokes equations) adding
a resistive potential term with the form γu, where u is the velocity field and γ ≥ 0 is a
function that takes large values in zones where is the obstacle should be located, or 0. In
Section 3, a proof of the existence of minimizers using appropriate techniques is presented.
In Sections 4 and 5, first and second order optimality conditions for some suitable cost
functions are established, motivating the choice of suitable spaces for the parameter and
the feasibility of implementing optimization algorithms to numerically solve this problem.
Section 6 presents numerical examples that illustrate the feasibility of the proposed penalty
method using Navier-Stokes equations from a 2D reference case representing the blood flow
passing through the aortic valve. We reconstruct the position of the valve from global or
local velocity field measurements. For this purpose, synthetic images based on MRI and
ultrasound type measurements are used. Finally, conclusions and future work are presented
in Section 7.
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4.2 Model problem

Consider a non-empty bounded domain Ω ⊆ RN , N ∈ {2, 3}. The Lebesgue measure of Ω
is denoted by |Ω|, which extends to lesser dimension spaces. The norm and seminorms for
Sobolev spaces Wm,p (Ω) is denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm,

seminorms and inner product of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω
and (·, ·)m,Ω, respectively. Also, ‖·‖∞,Ω denotes the norm of L∞ (Ω). The spaces Hm (Ω) and

Wm,p (Ω) are defined by Hm (Ω) = [Hm (Ω)]N and Wm,p (Ω) = [Wm,p (Ω)]N . The notation
for norms, seminorms and inner products will be extended from Wm,p (Ω) or Hm (Ω).

Consider α > 0, ν > 0, s ≥ 0, M > 0, Ω with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN such
that int(ΓD) ∩ int(ΓN) = ∅, an open subset ω ⊆ Ω, uR ∈ H1 (ω)d, uD ∈ H1/2 (ΓD) and
a ∈W 1,∞ (Ω) such that diva = 0 and a ·n ≥ 0 on ΓN , where n is the outer normal vector.
The model problem is defined by

minimize J (γ,u) =
1

2
‖u− uR‖2

0,ω +
α

2
‖γ‖2

s,Ω (4.1)

subject to −ν4u + (∇u)a +∇p+ γu = 0 in Ω (4.2)

divu = 0 in Ω

u = uD on ΓD

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ Hs (Ω)

0 ≤ γ ≤M a.e. in Ω.

The modified version of Oseen equations given by Equation (4.2) models the velocity u
and pressure p of a fluid that passes through the control volume Ω. The term γu, with
γ ≥ 0, represents the distributed resistance that Ω imposes to the fluid. A zero value of γ
represents that the fluid follows the Oseen equations. As the γ values increases in a certain
area, the magnitude of u tends to decrease to 0. According to Brinkman’s law [24, 13], 1/γ
is an indicator of permeability. The media is completly permeable when γ = 0, while γ tends
to +∞ in zones where there are obstacles. Bounded values of γ model porous media, where
porosity decreases as γ increases.

In order to simplifying the analysis of this problem, an equivalent formulation with ho-
mogeneous Dirichlet boundary condition is proposed. Let G ∈H1 (Ω) such that G = uD on
ΓD. Taking v = u −G, f = ν4G − (∇G)a − γG in H−1 (Ω), g = − divG in L2(Ω) and

h = ν
∂G

∂n
in H1/2 (ΓN), the model problem can be written in a new equivalent form.

minimize J (γ,v) =
1

2
‖v + G− uR‖2

0,ω +
α

2
‖γ‖2

s,Ω (4.3)

subject to −ν4v + (∇v)a +∇p+ γv = f in H−1 (Ω) (4.4)

div v = g in Ω

v = 0 on ΓD
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−ν ∂v
∂n

+ pn = h on ΓN

v ∈H1 (Ω) , γ ∈ Hs (Ω)

0 ≤ γ ≤M a.e. in Ω.

Remark 4.2.1. The boundary condition imposed in ΓN strongly depends of a·n ≥ 0, but that
hypothesis can be restrictive for some existing phenomena in the applied case. For example,
if a vortex crosses the outlet, there may be a region where the flow returns to the domain. To
overcome this problem, the so called “backflow” stabilization techniques [18] can be applied.
For example, directional do-nothing condition can be used for this problem. This condition
verifies

−ν ∂u
∂n

+ pn +
1

2
(a · n)− u = 0

where (x)− = min {x, 0}. For this case, the existence of a solution of the Oseen equations is
verified [22].

4.3 Existence of solution

The demonstration of the existence of an optimal solution presented follows the same scheme
as [11]. A first step is to introduce some helpful notations.

Definition 4.3.1. Let s ≥ 0. The set of admissible parameter functions is defined by

A = {γ ∈ Hs (Ω) | 0 ≤ γ ≤M} .

Definition 4.3.2. The space H1
ΓD

(Ω), subspace of H1 (Ω), is defined by

H1
ΓD

(Ω) =
{
v ∈H1 (Ω) | v = 0 on ΓD

}
.

Definition 4.3.3. Let γ ∈ L∞ (Ω), the map A : L∞ (Ω) → H1
ΓD

(Ω) × L2
0 (Ω) is defined

by A (γ) = [A1 (γ) , A2 (γ)] = [v, p], where v ∈ H1
ΓD

(Ω) and p ∈ L2
0 (Ω) are the unique

variational solutions of the Problem (4.4). In what follows, it is denoted H = H1
ΓD

(Ω) ×
L2

0 (Ω), which is a Banach space behind the norm

‖[v, p]‖H = ν |v|1,Ω + ‖p‖0,Ω

Remark 4.3.1. It is possible to ensure that A is well defined, because (4.4) has an unique
solution for every γ ∈ A (see Lemma 5.8 on [62]). Futhermore, there exists a constant C > 0,
independent of γ, ν, uD and G, such that

ν |v|21,Ω + (γv,v)0,Ω ≤ C max

{
ν,
‖a‖2

∞
ν

, ‖γ‖∞,Ω

}
‖G‖2

1,Ω

‖p‖2
0,Ω ≤ C max

{
ν, ‖a‖∞,Ω ,

‖a‖2
∞,Ω
ν

, ‖γ‖∞,Ω

}
‖G‖1,Ω .

The uniformly boundedness of ‖v‖1,Ω and ‖p‖0,Ω are obtained because ‖γ‖∞,Ω ≤M .
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4.4. FIRST ORDER NECESSARY OPTIMALITY CONDITION

Theorem 4.3.1. Problem (4.3) has at least one solution γ∗ ∈ A with optimal states A (γ∗) =
[v∗, p∗], i.e.

(∀γ ∈ A) J (γ,A1 (γ)) ≥ J (γ∗,v∗) .

Proof. First, J (γ) = J (γ,A (γ)) is bounded below by 0 and

(∀γ ∈ A) J (γ) ≥ α

2
‖γ‖2

s,Ω .

Thus, m = inf
γ∈A

J (γ) is well defined. Let {γn}n∈N ⊆ A and {[vn, pn]}n∈N ⊆H1
ΓD

(Ω)×L2
0 (Ω)

such that A (γn) = [vn, pn], {J (γn)} is decreasing and J (γn)→ m. It is clear that

(∀n ∈ N) J (γn) ≤ J (γ1) .

Then, {γn}n∈N is uniformly bounded in Hs (Ω). Since A is weakly closed, there exists a
subsequence (denoted by {γn}n∈N) such that γn ⇀ γ∗ in Hs (Ω), with γ∗ ∈ A. In particular,
γn ⇀ γ∗ in L2 (Ω). By the same way, {vn}n∈N and {pn}n∈N are also uniformly bounded
(see Remark 4.3.1) on H1

ΓD
(Ω) and L2

0 (Ω), respectively. Applying the Sobolev embedding
Theorem (see Section 6.6 in [36]), there exists a subsequence (also denoted by {vn}n∈N) such
that vn ⇀ v∗ weakly in H1

ΓD
(Ω), with v∗ ∈ H1

ΓD
(Ω), and vn → v∗ in Lp (Ω) for p ∈ [2, 6)

when N ≥ 3, or for p ≥ 2 when N = 2. In particular,

vn → v∗ in L4 (Ω) and L2 (Ω) .

Let w ∈H1
ΓD

(Ω). Since d ∈ {2, 3}, then w ∈ L4 (Ω). Later, vn ·w → v∗ ·w in L2 (Ω) and

(∇vn)a⇀ (∇v)a weakly in L2 (Ω). Thus, for every w ∈H1
ΓD

(Ω)

(γnvn,w)0,Ω → (γ∗v∗,w)0,Ω ((∇vn)a,w)0,Ω → ((∇v∗)a,w)0,Ω .

Repeating this argument, there exists a subsequence also denoted by {pn}n∈N such that

pn ⇀ p∗ in L2
0 (Ω) .

In conclusion, (v∗, p∗) ∈ H is the variational solution of Equation (4.4). In other words,
A (γ∗) = [v∗, p∗]. Now, γ∗ is optimal. Indeed,

m = lim
n→∞

J (γn)

≥ lim
n→∞

1

2
‖vn + G− uR‖2

0,ω +
α

2
lim inf
n→∞

‖γn‖2
s,Ω

≥ 1

2
‖v∗ + G− uR‖2

0,ω +
α

2
‖γ∗‖2

s,Ω = J (γ∗) ≥ m.

Hence, J (γ,A1 (γ)) ≥ J (γ∗,v∗) for every γ ∈ A, proving this theorem.

4.4 First order necessary optimality condition

In order to implement a descent method to numerically solve this problem, it is necessary
to establish the differentiability of functional J . However, this directly depends on the
differentiability of map A. From this result, it is possible to establish necessary optimality
conditions.
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4.4. FIRST ORDER NECESSARY OPTIMALITY CONDITION

Theorem 4.4.1. The map A is Fréchet-differentiable. For each γ, γ1 ∈ A, if A (γ) = [v, p],
then the Fréchet derivative A′ (γ) [γ1] = [v′1, p

′
1] can be described by the weak solution of the

following problem

−ν4v′1 + (∇v′1)a +∇p′1 + γv′1 = −γ1 (v + G) in Ω (4.5)

div v′1 = 0 in Ω

v′1 = 0 on ΓD

−ν ∂v
′
1

∂n
+ p′1n = 0 on ΓN .

Proof. Let γ, γ1 ∈ A, it will be proved that there is a linear application D : L∞ (Ω) → H
such that

A (γ + γ1)− A (γ) = D (γ1) + r (γ, γ1) ,

where

‖γ1‖∞,Ω → 0⇒ ‖r (γ, γ1)‖H
‖γ1‖∞,Ω

→ 0.

Let [v1, p1] = A (γ + γ1). Taking D (γ1) = [v′1, p
′
1] and r (γ, γ1) = [δv, δp] =

[v1 − v − v′1, p1 − p− p′1], it is possible to see that D (γ1) is linear. Also, r (γ, γ1) is solution
of the problem

−ν4 (δv) + (∇δv1)a +∇ (δp) + γ (δv) = γ1 (v − v1) in Ω

div (δv) = 0 in Ω

(δv) = 0 on ΓD

−ν ∂ (δv)

∂n
+ (δp)n = 0 on ΓN .

Thus, there exists a constant c1 > 0, independent of γ and γ1 (see Lemma 5.8 on [62]), such
that

‖r (γ, γ1)‖H = ν |δv|1,Ω + ‖δp‖0,Ω ≤ c1 ‖γ1‖0,Ω ‖v − v1‖0,Ω .

subtracting the equations of v y v1 and using integration by parts,

ν |v − v1|21,Ω + (γ (v − v1) ,v − v1)0,Ω = (γ1 (G + v1) ,v − v1)0,Ω .

Applying Cauchy-Schwarz and Friedrichs-Poincaré inequalities, there exists c2 > 0 such that

ν |v − v1|21,Ω ≤ (γ1 (G + v1) ,v − v1)0,Ω

≤ ‖γ1‖∞,Ω ‖G + v1‖0,Ω ‖v − v1‖0,Ω

≤ c2 ‖γ1‖∞,Ω ‖G + v1‖0,Ω |v − v1|1,Ω .

But, using Friedrichs-Poincaré inequality again, there exists c3 > 0 such that ‖G + v1‖0,Ω ≤
c3 ‖G‖1,Ω (see Remark 4.3.1). Then, there exists C1 > 0 such that

ν |v − v1|1,Ω ≤ C1 ‖γ1‖∞,Ω ‖G‖0,Ω .

Finally, applying Friedrichs-Poincaré inequality, there exists a constant C > 0 such that

‖r (γ, γ1)‖H = ν |δv|1,Ω + ‖δp‖0,Ω ≤ C ‖γ1‖2
∞,Ω ‖G‖0,Ω .
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4.4. FIRST ORDER NECESSARY OPTIMALITY CONDITION

Thus,
‖r (γ, γ1)‖H
‖γ1‖∞,Ω

≤ C ‖γ1‖0,Ω ‖G‖0,Ω

‖γ1‖∞,Ω→0
−→ 0,

proving the theorem.

Defining B (v) =
1

2
‖v + G− uR‖2

0,ω and C (γ) =
α

2
‖γ‖2

s,Ω, an expression for Frechét

derivatives of B and C is given by

B′ (v) [w] = (v + G− uR,w)0,ω C ′ (γ) [β] = α (γ, β)s,Ω .

Applying chain rule, it is obtained that

J ′ (γ) [γ1] = B′ (v) [A′1 (γ) [γ1]] + C ′ (γ) [γ1]

= (v + G− uR,v
′
1)0,ω + α (γ, γ1)s,Ω .

In order to reduce this expression, the following definition is introduced similarly to [1].

Definition 4.4.1. Let γ ∈ A and A (γ) = [v, p]. The adjoint states A∗ (γ) = [ϕ, ξ] are
defined as the unique weak solution of the problem

−ν4ϕ− (∇ϕ)a +∇ξ + γϕ = χω (v + G− uR) in Ω (4.6)

divϕ = 0 in Ω

ϕ = 0 on ΓD

−ν ∂ϕ
∂n

+ ξn− (a · n)ϕ = 0 on ΓN .

where χω is the indicator function of ω.

Using this defintion, it is possible to rewrite J ′ (γ1) depending of the adjoint state. That
expression is simpler to analyze, since it depends on the adjoint state, allowing a simple form
of a first order optimality condition using a variational inequality.

Theorem 4.4.2. Let γ, γ1 ∈ A and s ≥ 0. Then,

J ′ (γ) [γ1] = − (γ1 (v + G) ,ϕ)0,Ω + α (γ, γ1)s,Ω ,

where A (γ) = [v, p]. If γ∗ ∈ A is an optimal for Problem (4.3), then

(∀γ ∈ A) − ((γ − γ∗) (v∗ + G) ,ϕ)0,Ω + α (γ∗, γ − γ∗)s,Ω ≥ 0

where A (γ∗) = [v∗, p∗] and A∗ (γ∗) = [ϕ, ξ] are the states and adjont states of γ∗, respectively.

Proof. First, using integration by parts with the adjoint states [ϕ, ξ] as tests functions, it is
obtained that

−ν
∫

Ω

4v′1 ·ϕ dx = −ν
∫

Ω

4ϕ · v′1 dx +

∫
∂Ω

ϕ ·
(
−ν ∂v

′
1

∂n

)
− v′1 ·

(
−ν ∂ϕ

∂n

)
dS∫

Ω

[(∇v′1)a] ·ϕ dx = −
∫

Ω

[(∇a)v′1] ·ϕ dx +

∫
∂Ω

(a · n) (ϕ · v′1) dS
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4.5. SECOND ORDER SUFFICIENT OPTIMALITY CONDITION.

∫
Ω

∇p′1 ·ϕ dx = −
∫

Ω

p′1 divϕ dx +

∫
∂Ω

ϕ · (p′1n) dS

−
∫

Ω

ξ div v′1 dx =

∫
Ω

∇ξ · v′1 dx−
∫
∂Ω

v′1 · (ξn) dS.

Then,

− (γ1 (v + G) ,ϕ)0,Ω

=− ν
∫

Ω

4v′1 ·ϕ dx +

∫
Ω

[(∇v′1)a] ·ϕ dx +

∫
Ω

∇p′1 ·ϕ dx +

∫
Ω

γv′1 ·ϕ dx

−
∫

Ω

ξ div v′1 dx

=− ν
∫

Ω

4ϕ · v′1 dx−
∫

Ω

[(∇ϕ)a] · v′1dx +

∫
Ω

∇ξ · v′1 dx +

∫
Ω

γv′1 ·ϕ dx

−
∫

Ω

p′1 divϕ dx +

∫
ΓN

ϕ ·
(
−ν ∂v

′
1

∂n
+ p′1n

)
−
∫

ΓN

v′1 ·
(
−ν ∂ϕ

∂n
+ ξn− (a · n)ϕ

)
dS

=− ν
∫

Ω

4ϕ · v′1 dx−
∫

Ω

[(∇v′1)a] ·ϕ dx +

∫
Ω

∇ξ · v′1 dx +

∫
Ω

γv′1 ·ϕ dx

−
∫

Ω

p′1 divϕ dx

= ((v + G− uD) ,v′1)0,ω

Thus,
J ′ (γ) [γ1] = − (γ1 (v + G) ,ϕ)0,Ω + α (γ, γ1)s,Ω

Later, if γ∗ ∈ A is optimal for the problem, then

(∀γ ∈ A) J (γ) ≥ J (γ∗) ,

Finally, it is obtained that

J ′ (γ∗) [γ − γ∗] = lim
ε→0+

J (γ∗ + ε (γ − γ∗))− J (γ∗)

ε
≥ 0,

proving this theorem.

4.5 Second order sufficient optimality condition.

The stability results of the optimization algorithms depend, for the most part, on the exis-
tence of the second derivative of J . Likewise, it is possible to establish second order sufficient
optimality conditions.

In first place, it is necesary to introduce new forms of emebedding inequalties.

Theorem 4.5.1. There exists a constant q∗ > 2, dependent only of Ω, such that for each
p ∈ [2, q∗] there exists a constant C > 0, dependent only of Ω, M , ν and p such that

‖v‖1,p,Ω ≤ C ‖G‖−1,p,Ω
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4.5. SECOND ORDER SUFFICIENT OPTIMALITY CONDITION.

where G ∈ W−1,p (Ω) (the dual of W 1,q
0 (Ω)) is defined by(

∀w ∈ W 1,q
0 (Ω)

)
〈G (v) ,w〉 = 〈f ,w〉H−1(Ω),H1(Ω) + (h,w)0,ΓN

with q ≥ 2 such that
1

p
+

1

q
= 1.

Proof. See Theorem 1 in [51].

Remark 4.5.1. The hypotheses uR ∈ L∞ (ω) and uD ∈ L∞ (ΓD) appear frequently. Asum-
ming uR ∈ L∞ (ω) and uD ∈ L∞ (ΓD), it is clear that G ∈W 1,∞ (Ω). Then, there exists a
constant Cp > 0, depending only of p and Ω, such that

‖G‖−1,p,Ω ≤ Cp max
{
ν, ‖a‖∞,Ω , ‖γ‖∞,Ω

}
‖G‖1,∞,Ω .

Futhermore, using Theorem 4.5.1,

‖v‖1,p,Ω ≤ CCp max
{
ν, ‖a‖∞,Ω ,M

}
‖G‖1,∞,Ω

So, ‖v‖1,p,Ω is uniformly bounded for each p ∈ [2, q∗]. Also, Theorem 1 in [51] allows us to
be more precise about the asymptotic behavior of q∗. Indeed, if the value of ‖γ‖∞,Ω increases,
q∗ decreases to 2.

Lemma 4.5.1. Let s > 0 and p ∈ [1, N ].

1. If N > sp, then the embedding from W s,p (Ω) to Lr (Ω) is continuous for r ∈[
p,

d

d− sp

]
.

2. If N = sp, then the embedding from W s,p (Ω) to Lr (Ω) is continuous for r ∈ [p,+∞).

Proof. See Section 6.6 in [36]

Remark 4.5.2. Using this embedding result with s ≥ N

q∗
and p = 2, Lemma 4.5.1 can be

written by

1. If q∗ > 2, then the embedding from Hd/q∗ (Ω) to Lr (Ω) is compact for r ∈
[

2,
1

1
p
− 1

q∗

]
.

2. If q∗ = 2, then the embedding from Hd/q∗ (Ω) to Lr (Ω) is compact for r ∈ [2,+∞).

Then, for 2 ≤ p ≤ 1
1
2
− 1

q∗
there exists C > 0 such that

(∀γ ∈ A) ‖γ‖0,p,Ω ≤ C ‖γ‖s,Ω .

In order to establish and prove second order optimality conditions, a first step is to show
that the map A is twice Fréchet-differentiable.
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4.5. SECOND ORDER SUFFICIENT OPTIMALITY CONDITION.

Theorem 4.5.2. The map γ 7−→ A′ (γ) [γ1] from L∞ (Ω) to H for each γ1 ∈ A is Fréchet-
differentiable. Let γ, γ1, γ2 ∈∈ A, the Fréchet derivative of A′ (γ) [γ1] on γ2 direction is given
by A′′ (γ) [γ1, γ2] = [v′′, p′′], where [v′′, p′′] is the unique weak solution of the problem

−ν4v′′ + (∇v′′)a +∇p′′ + γv′′ = − (γ2v
′
1 + γ1v

′
2) in Ω (4.7)

div v′′ = 0 in Ω

v′′ = 0 on ΓD

−ν ∂v
′′

∂n
+ p′′n = 0 on ΓN .

and A′ (γ) γj =
[
v′j, p

′
j

]
, for j ∈ {1, 2}.

Proof. Let γ, γ1 ∈ A, it will be proved that there is a linear application D2 : L∞ (Ω) → H
such that

A′ (γ + γ2) [γ1]− A′ (γ) [γ1] = D2 (γ, γ1) [γ2] + r (γ, γ1, γ2) ,

where

‖γ2‖∞,Ω → 0⇒ ‖r (γ, γ1, γ2)‖H
‖γ2‖∞,Ω

→ 0.

Let A′ (γ + γ2) [γ1] = [w′1, q
′
1], A′ (γ) [γ1] = [v′1, p

′
1] (see Theorem 4.4.1), A (γ) = [v, p] and

A (γ + γ2) = [w, q] (see Definition 4.3.3). Defining D (γ, γ1) [γ2] = [v′′, p′′] as function of γ2

and
r(γ, γ1, γ2) = [δv, δp] = [w′1 − v′1 − v′′, q′1 − p′1 − p′′] ,

it is possible to see that D (γ, γ1) is linear and r(γ, γ1, γ2) is solution of the problem

−ν4 (δv) + (∇δv)a +∇ (δp) + γ (δv) = γ2 (v′1 −w′1) + γ1 (v′2 + v −w) in Ω

div (δv) = 0 in Ω

(δv) = 0 on ΓD

−ν ∂ (δv)

∂n
+ (δp)n = 0 on ΓN .

Then, applying Friedrichs-Poincaré inequality, there exists c1 > 0, independent of γ, γ1, γ2

such that

ν |δv|1,Ω + ‖δp‖0,Ω ≤ c1

(
‖γ2‖∞,Ω |v′1 −w′1|1,Ω + ‖γ1‖∞,Ω |v′2 + v −w|1,Ω

)
.

Later, subtracting the equations of v′1 and w′1, testing with v′1−w′1 and p′1− q1, respectively,
and applying Friedrichs-Poincaré inequality, there exists c2 > 0 such that

ν |v′1 −w′1|21,Ω ≤ (γ2w
′
1,v

′
1 −w′1)0,Ω + (γ1 (w − v) ,v′1 −w′1)0,Ω

≤ ‖γ2‖∞,Ω ‖w′1‖0,Ω ‖v′1 −w′1‖0,Ω + ‖γ1‖∞,Ω ‖w − v‖0,Ω ‖v′1 −w′1‖0,Ω

≤ c2

(
‖γ2‖∞,Ω |w′1|1,Ω + ‖γ1‖∞,Ω |w − v|1,Ω

)
|v′1 −w′1|1,Ω .

Hence,

ν |v′1 −w′1|1,Ω ≤ c2

(
‖γ2‖∞,Ω |w′1|1,Ω + ‖γ1‖∞,Ω |w − v|1,Ω

)
.
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4.5. SECOND ORDER SUFFICIENT OPTIMALITY CONDITION.

Analogously, from the equations of w and v, there exists c2 > 0 such that

ν |w − v|21,Ω ≤ − (γ2 (v + G) ,w − v)0,Ω

≤ ‖γ2‖∞,Ω ‖v + G‖0,Ω ‖w − v‖0,Ω

≤ c2 ‖γ2‖∞,Ω |v + G|1,Ω |w − v|1,Ω ,

but there exists c3 > 0 such that |v|1,Ω ≤ c3 ‖G‖1,Ω (see Remark 4.3.1). Then,

ν |w − v|1,Ω ≤ c2c3 ‖γ2‖∞,Ω ‖G‖1,Ω .

Futhermore, there exists c4 > 0 such that

ν |w′1|1,Ω ≤ c4 ‖G‖1,Ω .

In conclusion, there exists C1 > 0 such that

ν |v′1 −w′1|1,Ω ≤ C1 ‖γ1‖∞,Ω ‖γ2‖∞,Ω ‖G‖1,Ω .

Repeating this analysis for the term v′2 + v −w, there exists c5 > 0 such that

ν |v′2 + v −w|0,Ω ≤ c5 ‖γ2‖∞,Ω |w − v|1,Ω
≤ c5 ‖γ2‖2

∞,Ω ‖G‖1,Ω .

Then, there exists C2 > 0 such that

‖r (γ, γ1, γ2)‖H = ν |δv|1,Ω + ‖δp‖0,Ω

≤ c1

(
‖γ2‖∞,Ω |v′1 −w′1|0,Ω + ‖γ1‖∞,Ω |v′2 + v −w|1,Ω

)
≤ c1

(
c2 ‖γ1‖∞,Ω ‖γ2‖2

∞,Ω ‖G‖1,Ω + c5c2 ‖γ1‖∞,Ω ‖γ2‖2
∞,Ω ‖G‖1,Ω

)
≤ C2 ‖γ1‖∞,Ω ‖γ2‖2

∞,Ω ‖G‖1,Ω .

In conclusion,

‖r (γ, γ1, γ2)‖H
‖γ2‖∞,Ω

≤ C2 ‖γ1‖∞,Ω ‖γ2‖∞,Ω ‖G‖0,Ω

‖γ2‖∞,Ω→0
−→ 0,

proving the theorem

Let γ, γ1, γ2 ∈ A. An expresion for the Fréchet second derivative of J (γ) on directions γ1

and γ2 is given by

J ′′ (γ) [γ1, γ2] = B′′ (A (γ)) [A′1 (γ1) , A′ (γ2)] +B′ ((A (γ))) [A′′1 (γ) [γ1, γ2]] + C ′′ (γ) [γ1, γ2]

= (v′1,v
′
2)0,Ω + (v + G− uD,v

′′)0,ω + α (γ1, γ2)s,Ω ,

where, reasoning as in the proof of Theorem 4.4.2,

(v + G− uD,v
′′)0,ω = − (γ1v

′
2 + γ2v

′
1,ϕ)0,Ω .

63



4.5. SECOND ORDER SUFFICIENT OPTIMALITY CONDITION.

In consequence,

J ′′ (γ) [γ1, γ2] = B′′ (A (γ)) [A′1 (γ1) , A′ (γ2)] +B′ ((A (γ))) [A′′1 (γ) [γ1, γ2]] + C ′′ (γ) [γ1, γ2]

= (v′1,v
′
2)0,Ω − (γ1v

′
2 + γ2v

′
1,ϕ)0,Ω + α (γ1, γ2)s,Ω .

In what follows, a second order optimality condition is proved. For this, a series of

technical results are required. Consider r such that
1

q∗
+

1

r
=

1

2
. For γ, γ1, γ2, h ∈ A,

consider A (γ) = [v, p], A (γ + h) = [vh, ph], with respective adjoint states [ϕ, ξ] and [ϕh, ξh],
A′ (γ) [γk] = [v′k, p

′
k] and

[
v′h,k, p

′
h,k

]
= A′ (γ + h) [γk] for k ∈ {1, 2}. Using this, it is possible

to obtain the following estimations.

Lemma 4.5.2. For each q ∈ [2, q∗], there exists C > 0, independent of v, γ, γ1, γ2 and h
such that ‖vh − v‖1,q,Ω ≤ C ‖h‖∞,Ω,

Proof. subtracting the equations of A (γ + h) and A (γ), it is obtained

−ν4 (vh − v) + [∇ (vh − v)]a +∇ (ph − p) + γ (vh − v) = −h (G + vh) .

Using Theorem 4.5.1 twice and triangular inequality, there exist c1, c2 > 0 such that

‖v‖1,q,Ω ≤ c1 ‖h (G + vh)‖−1,q,Ω

≤ c1 ‖h‖∞,Ω ‖(G + vh)‖1,q,Ω

≤ c2 ‖h‖∞,Ω ‖G‖1,∞,Ω .

Taking C = c2 ‖G‖1,∞,Ω, the estimation is proved.

Lemma 4.5.3. Let k ∈ {1, 2}. There exists C > 0 independent of v, γ, γ1, γ2 and h such
that

∣∣v′k,h∣∣1,Ω ≤ C ‖γk‖s,Ω.

Proof. First, testing the equation of v′h,k with v′h,k and appliying Friedichs-Poincaré and
Hölder inequalities, there exists a constant c1 > 0 such that

ν
∣∣v′h,k∣∣1,Ω ≤ c1 ‖γk (G + vk,h)‖0,Ω

≤ c1 ‖γk‖0,r,Ω ‖(G + vk,h)‖0,q∗,Ω

From Remark 4.5.1, ‖(G + vk,h)‖0,q∗,Ω is uniformly bounded by c2 > 0. Also, due to r =
1

1
2
− 1
q∗

, Remark 4.5.2 points out that there exists c3 > 0 such that ‖γk‖0,r,Ω ≤ c3 ‖γk‖s,Ω. In

conclusion,
ν
∣∣v′h,k∣∣1,Ω ≤ c2c3 ‖γk‖s,Ω ,

proving this estimation.

Lemma 4.5.4. There exists C > 0 such that∣∣∣(v′h,1 − v′1,v
′
2

)
0,Ω

∣∣∣ ≤ C ‖γ1‖s,Ω ‖γ2‖s,Ω ‖h‖∞,Ω∣∣∣(v′h,1,v′h,2 − v′2
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .
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Proof. Using Cauchy-Schwartz and Friedrichs-Poincaré inequalities, there exist c1, c2 > 0
such that ∣∣∣(v′h,1 − v′1,v

′
2

)
0,Ω

∣∣∣ ≤ c1 |v′2|1,Ω
∣∣v′h,1 − v′1

∣∣
1,Ω
≤ c2 ‖γ2‖s,Ω

∣∣v′h,1 − v′1
∣∣
1,Ω

Using previous lemmas, Friedrichs-Poincaré inequality and Remark 4.5.2, there exist
c3, c4, c5, c6 > 0 such that

ν
∣∣v′h,1 − v′1

∣∣
1,Ω
≤ c3

(
‖h‖∞,Ω

∣∣v′h,1∣∣1,Ω + ‖γ1 (vh − v)‖1,Ω

)
≤ c3

(
c4 ‖h‖∞,Ω ‖γ1‖s,Ω + c5 ‖γ1‖0,r,Ω ‖(vh − v)‖1,q∗,Ω

)
≤ c3 (c4 + c6) ‖h‖∞,Ω ‖γ1‖s,Ω ,

concluding that ∣∣∣(v′h,1,v′h,2 − v′2
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .

The proof of the second inequality is similar.

Lemma 4.5.5. Let k, j ∈ {1, 2}, with j 6= k. There exists C > 0 such that∣∣∣(γjv′h,k,ϕh −ϕ
)

0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω ‖γ1‖s,Ω ‖γ2‖s,Ω .

Proof. First, applying Hölder and Friedrichs-Poincaré inequalties, there exist c1, c2 > 0 such
that ∣∣∣(γjv′h,k,ϕh −ϕ

)
0,Ω

∣∣∣ ≤ c1 ‖γj‖0,r,Ω

∥∥v′h,k∥∥1,q∗,Ω
|ϕh −ϕ|1,Ω

≤ c2 ‖γj‖s,Ω ‖γk‖s,Ω |ϕh −ϕ|1,Ω ,

where [ϕh −ϕ, ξh − ξ] verifies

−ν4 (ϕh −ϕ)− [∇ (ϕh −ϕ)]a +∇ (ξh − ξ) + γ (ϕh −ϕ) = vh − v − hϕh

div (ϕh −ϕ) = 0.

By repeating the previous procedures, since |ϕh|1,Ω is uniformly bounded, there exist c2, c3 >
0 such that

ν |ϕh −ϕ|1,Ω ≤ c2

(
‖vh − v‖1,q,Ω + ‖h‖∞,Ω |ϕh|1,Ω

)
≤ c3 ‖h‖∞,Ω .

Thus, there exists C > 0 such that
∣∣∣(γjv′h,k,ϕh −ϕ

)
0,Ω

∣∣∣ ≤ C ‖h‖∞,Ω |γj|s,Ω |γk|s,Ω.

Theorem 4.5.3. Let γ, γ1, γ2, h ∈ L∞ (Ω). There exists L > 0 such that

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤ L ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω .
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Proof. Applying triangular inequality, we obtain

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤
∣∣∣(v′h,1,v′h,2 − v′2

)
0,Ω

∣∣∣+
∣∣∣(v′h,1 − v′1,v

′
2

)
0,Ω

∣∣∣
+
∣∣∣(γ1v

′
h,2,ϕh −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ1

(
v′h,2 − v′2

)
,ϕ
)

0,Ω

∣∣∣
+
∣∣∣(γ2v

′
h,1,ϕh −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ2

(
v′h,1 − v′1

)
,ϕ
)

0,Ω

∣∣∣ ,
where every term were bounded with estimations of the form C ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω (see
Lemmas 4.5.4 and 4.5.5). In conclusion, there exists L > 0 such that

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤ L ‖h‖∞,Ω |γ1|s,Ω |γ2|s,Ω .

Corollary 4.5.1. There exists L > 0 such that, for every θ ∈ [0, 1]

|(J ′′ (θγ∗ + (1− θ) γ)− J ′′ (γ∗)) [γ − γ∗, γ − γ∗]| ≤ L ‖γ − γ∗‖∞,Ω |γ − γ∗|
2
s,Ω .

Finally, a second order sufficent optimality condition is presented and proved.

Theorem 4.5.4. Let s ≥ N

q∗
and γ∗ ∈ A such that γ∗ verifies the first orden optimality

condition. If there exists δ > 0 such that

(∀γ ∈ A) J ′′ (γ∗) [γ − γ∗, γ − γ∗] ≥ δ ‖γ − γ∗‖2
s,Ω

Then, there exist σ, ε > 0, independent of γ and γ∗, such that

(∀γ ∈ A) ‖γ − γ∗‖∞,Ω ≤ ε⇒ J (γ) ≥ J (γ∗) + σ ‖γ − γ∗‖2
s,Ω .

In consequence, J has a local minimum at γ∗.

Proof. Applying a Taylor expansion, there exists θ ∈ (0, 1) such that

J (γ) = J (γ∗) + J ′ (γ∗) [γ − γ∗] +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗] .

Using Corollary 4.5.1, if ε ≤ δ

2L
, σ =

δ

4
and ‖γ − γ∗‖∞,Ω ≤ ε, then

J (γ) =J (γ∗) + J ′ (γ∗) [γ − γ∗] +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗]

≥J (γ∗) +
1

2
J ′′ (θγ∗ + (1− θ) γ) [γ − γ∗, γ − γ∗]

≥J (γ∗) +
1

2
(J ′′ (θγ∗ + (1− θ) γ)− J ′′ (γ∗)) [γ − γ∗, γ − γ∗]

+
1

2
J ′′ (γ∗) [γ − γ∗, γ − γ∗]

≥J (γ∗) +
δ

2
‖γ − γ∗‖2

s,Ω −
L

2
‖γ − γ∗‖∞,Ω ‖γ − γ∗‖

2
s,Ω

≥J (γ∗) +
δ

2
‖γ − γ∗‖2

s,Ω −
δ

4
‖γ − γ∗‖2

s,Ω = J (γ∗) + σ ‖γ − γ∗‖2
s,Ω ,

proving the theorem.
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Remark 4.5.3. The result obtained in Theorem 4.5.4 is conditioned to s ≥ N

q∗
. Considering

the most pessimistic case, when q∗ = 2, it is possible to establish that the simplest spaces
for γ∗, where Theorem 4.5.4 is valid, are H1 (Ω) and H2 (Ω) when N = 2 and N = 3,
respectively.

4.6 Numerical results

In this section, the previous analysis is complemented by numerical experiments for the new
parameter identification problem. Realistic synthetic cases are analyzed in 2D, which rep-
resent a longitudinal section of the structure of a cardiac valve in an arbitrary position.
However, the numerical results presented below were obtained using the Navier-Stokes equa-
tion. So, the numerical problem to be solved is given by

minimize J (γ,u) =
1

2
‖u− uR‖2

0,ω +
α

2
‖γ‖2

1,Ω (4.8)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (4.9)

divu = 0 in Ω

u = uD on ΓD

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤M a.e. in Ω

This special formulation of (4.9) is similar to (4.2) in terms of the resistance term. In
the following subsections, the configurations of the reference case is explained, as well as
the numerical solutions of the inverse problems associated with MRI images or Doppler
ultrasound. Due to our lack of real images, our experiments are fully synthetic.

4.6.1 Reference test

First, a reference geometry is defined. This geometry Ω represents the area around the aortic
valve. The inflow ΓI has a parabolic profile following Poiseuille’s Law given by

uD (x, y) = −Ux (d− x)n,

where x = (x, y) are the cartesian coordinates of the domain, n is the outer normal vector
and d is the diameter of the inflow, while do-nothing conditions are imposed on the outflow
ΓO given by

−ν ∂u
∂n

+ pn = 0.

In the walls of the structure, represented by ΓW , the fluid has no-slip conditions given by
u = 0.
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Figure 4.1: Domain for the numerical tests.

The valves are modeled on the resistance term γu using the function γ. This function
assumes a constant value M � 1 in the regions where the valve is and assumes the value 0
where the valve is not. In order to define γ, a parabolic figure is drawn on each side Ω with
an approximate thickness of 1 mm. When the valves are fully closed, they are symmetrical
with respect to the vertical axis of symmetry. When the valves are open, these parabolas
are rotated with respect to a reference system whose origin is at the point where the valve
coincides with the walls of the structure given by ΓW . Since blood flow is modeled, the
kinematic viscosity is considered equal to ν = 0.035 cm2 / s, the density is assumed as ρ =
1 g / cm3, and the dimensions d = 2 cm and U = 30 cm / s, resulting in a peak Reynolds
number on the inlet of

Re =
Ud

ν
= 1714.

The Navier-Stokes equations are discretized using the finite element method (FEM) with
Taylor-Hood elements (P2 for the velocity u and P1 for the pressure) on an unstructured
triangular mesh. The mesh used was generated by domain triangulation with h = 0.05 cm,
which corresponds to 9950 elements and 4976 nodes. The solver is implemented using the
finite element library FEniCS [5] with the default configuration. To solve the nonlinear
problems, a Newton’s method was used. The resistance γ is defined as a discontinuous
function with discrete values in each element, assuming the value of M = 108 if the element
intersects the valve or, otherwise, assumes the value 0. We define the set O, that represents
the valve inside of Ω, by

O =
{
x ∈ Ω | γ(x) = 108

}
.

Figure 4.2: Plots of unstructured mesh (left) and γ (right).
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Figure 4.3: Reference solutions u and p.

4.6.2 Numerical solution of the inverse problem

Using the solution of the reference test as reference solution uR, the following version of the
model problem is solved numerically using FEniCS and dolfin-adjoint

minimize J (γ,u) =
1

2
‖u− uR‖2

0,ω +
α

2
‖γ‖2

0,Ω +
β

2
|γ|21,Ω (4.10)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (4.11)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω.

For this example, we considered a measurement area ω = Ω and the values C = 103,
α = 10−4 and β = 10−8. The use of two different weights for the norm and seminorm
is consistent with the theoretical analysis of the previous sections, so this problem has a
solution. The dolfin-adjoint library [71] allows to implement automatic derivation of the
discrete adjoint equations for pde models and implement minimization algorithms from the
Python 3 libraries. In particular, the L-BFGS-B algorithm (see Section 4.3 in [39]) was used
with the following stopping criteria on the step k

|J (γk)− J (γk+1)|
max {|J (γk)| , |J (γk+1)| , 1} ≤ 10−6 or max

j∈{1,...,n}

{∣∣∣(∇Jk)j∣∣∣} ≤ 10−6

where (∇Jk)j is the j−th component of the projected gradient on the step k. To start the
algorithm, γ0 = 0 was used as the initial solution.

As a way to define a valve reconstruction algorithm sketch, we follow these steps.

1. We defined an axis that crosses the domain from the inflow to the outflow.

2. For a uniform discretization of the axis, we defined perpendicular lines.
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3. The solution γ∗ obtained by the algorithm is interpolated on each of the lines. Three
points are selected on each side of the axis. The first and second point are the limits of
an interval where ∇γ∗ · n has the maximim positive values with 1% of tolerance. The
third point is the local maximum closest to the interval.

4. An average is obtained between the three points.

5. A polyline is drawn on each side of the axis. Each polyline passes through all the
average points.

Numerical results are presented in Figure 4.4. The polyline is drawn in white, which
presents a great approximation to the interface between the different values of the reference
given by γ.

The optimal γ∗ has values close to 0 in the areas before and after the valves. On the other
hand, in the interior area where there are no valves, the optimal solution takes values close
to 0. Likewise, the magnitude and direction of u∗ is similar to uR, where u∗ corresponds to
the optimal state.

Figure 4.4: Real γ and reconstructed valve, optimal γ, optimal u, and reference solution uR
(from left to right). Reference test, 148 iterations.

It is necessary to corroborate that this algorithm is able to solve the inverse problem
measuring only a part of uR given by the reference velocity. In this case, choosing ω as the
area where the valves should be (see Figure 4.5 right), given by

ω = Ω ∩
{

(x, y) ∈ R2 | 1 ≤ y ≤ 3
}
,

the expected result should be similar to that found above.
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Figure 4.5: Real γ and reconstructed valve, optimal γ, optimal u, and reference solution uR
(from left to right). Reference test with subdomain, 240 iterations.

Figure 4.5 presents the numerical results, the polyline and the references. In the case of
the reference solution uR, a pink rectangle was drawn that allows delimiting the measurement
area ω. In particular, this problem required more iterations than the case with measurements
on Ω, obtaining very similar results.

4.6.3 Measurements of MRI type

Using the reference solutions, it is possible to generate synthetic measurements that represent
the behavior of MRI velocity type measurements. A 2D plane is chosen on which the velocity
is measured in one specified direction d ∈ R2, with |d| = 1. Then, the measurement is given
by

uR = uR · d.
The MRI type velocity measurement data is represented in a mesh of uniform quadrilaterals
of 2 mm×2 mm. They are obtained by projecting uR to the Q0 finite element space, given by
piecewise constant discontinuous functions on the quadrilateral mesh. In practical applica-
tions, the input speed is unknown and must be estimated. Then, a direction d for this MRI
can be chosen as that which is an inner normal to ΓI . To determine U , the projection of uR
in L2 (ΓI) with respect to Ux(2− x) is calculated by

U =

∫
ΓI
uR [x (2− x)] dS∫

ΓI
[x (2− x)]2 dS

.

Thus, U approaches in a least squares sense. Figure 4.6 shows the synthetic MRI generated
from the reference solution.
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Figure 4.6: Reference uR (left) and synthetic MRI type velocity measurement (uR, right).

The new problem to solve is given by

minimize J (γ,u) =
1

2
‖(u− uR) · d‖2

0,Ω +
α

2
‖γ‖2

0,Ω +
β

2
|γ|21,Ω (4.12)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (4.13)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω.

where the values C = 103, α = 10−4 and β = 10−8 were used. It is possible to prove
the existence of solution of this problem in the same way as in the proof of the theorem.
Figure 4.7 shows the numerical results and the references. The parameter γ has some jumps
that coincide with the vertical lines between the MRI voxels, while the polyline tends to have
segments parallel to those vertical lines, but it acceptably approximates the space between
the valves.

Figure 4.7: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from
left to right). MRI noiseless.

The white noise intensity in the velocity measurements from MRI is proportional to
the velocity encoding parameter (also called VENC [40]) of the scan. This parameter is
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configured with a value greater than the maximum expected velocity, in order to eliminate
signal aliasing. Then, the noise in all voxels is proportional to the maximum velocity in the
measurement area. In the clinical practice it can be expected that high-quality MRI contains
a velocity noise of 10% of the maximum velocity in each voxel [40]. Gaussian noises were
added to this MRI with a standard deviation of 5%, 10% and 20% of the maximum value of
uR.

Figure 4.8 shows the results of this experiment with a 5% of Guassian noise, but changing
the weights to α = 10−4 and β = 10−6 in terms to decrease the effects of noise. The results
are similar to the experiment without noise in terms to the tendency of the polyline to
approximate the valve shape and draw lines parallel to the voxels.

Figure 4.8: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from
left to right). MRI with 5% of noise.

This approximation seems weaker as noise increases, in the sense that the polyline has a
lower quality in its approximation and that the gamma function tends to overfit the data.
The following two figures show the result of the experiment with 10% and 20% of Gaussian
noise, respectively. The noise is exactly the same than the 5% Gaussian noise case, but
increasing the level noise.

Figure 4.9: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from
left to right). MRI with 10% of noise.
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Figure 4.10: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic MRI (from
left to right). MRI with 20% of noise.

Table 4.1 shows the mean square error (MSE) between the reconstructed valve given by
the polylines obtained using MRI in Figures 4.7, 4.8, 4.9 and 4.10, and the polyline obtained
in the reference test (see Figure 4.4). To quantify this error, we consider only the points of
the polyline in Figure 4.4 that are at a distance less than or equal to 0.5 mm from O. There
are minor differences between the valve reconstructions for the cases with a noise level of 5%
and 10%. However, the quality of the reconstruction decreases when the level noise increases
up to 20%.

Noise level MSE
0% 4.4680 · 10−3

5% 8.6308 · 10−3

10% 8.1992 · 10−3

20% 1.5016 · 10−2

Table 4.1: MSE of reconstructed valves using MRI with different noise levels.

Figure 4.11 shows the reconstructed polyline for three experiments with independent
noises at same level of noise. Each polyline color represents the final result of this experiment
with a Gaussian noise independent of the others, whose amplitude was adjusted for the noise
level of 5%, 10% and 20%. We can see that the rebuilt valves are more irregular as the noise
level increases, especially for 20% of level noise, which is consistent with Table 4.1.

Figure 4.11: Comparison of reconstructed valves with three different noises, with 5%, 10%
and 20% of noise (from left to right).
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4.6.4 Measurements of ultrasound imaging type

It is possible to generate synthetic measurements similar to ultrasound images. From a given
focal point, directional velocities are measured at each point in a domain with the form of a
circular sector with center in the focal point. The chosen directions d (x) are given by unit
vectors parallel to the vector that joins the measurement point with the focal point. Then,
the measurement is given by

uR = uR · d (x)

d

Figure 4.12: Ultrasound imaging domain, mesh and synthetic ultrasound imaging.

The measurement data is represented in a structured triangular mesh of 2116 nodes and
4050 triangles with h = 0.067 cm (see Figure 4.12). The measurements are obtained by
interpolation of uR to the P1 finite element space defined on the structured mesh. Again,
the input speed is unknown and must be estimated from a preliminary measurement. To
determine U , the projection of uR in L2 (ΓI) with respect to Ux(2−x) [n · d (x)] is calculated
by

U =

∫
ΓI
uR [x (2− x)] [n · d (x)] dS∫

ΓI
[x (2− x)]2 [n · d (x)]2 dS

The new problem to solve is given by

minimize J (γ,u) =
1

2
‖(u− uR) · d (x)‖2

0,ω +
α

2
‖γ‖2

0,Ω +
β

2
|γ|21,Ω (4.14)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (4.15)

divu = 0 in Ω

u = uD on ΓI

u = 0 on ΓW

−ν ∂u
∂n

+ pn = 0 on ΓN

u ∈H1 (Ω) , γ ∈ H1 (Ω)

0 ≤ γ ≤ C a.e. in Ω

where ω is the subdomain on Ω covered by the ultrasound imaging and the values C =
103, α = 10−4 and β = 10−8 were used. This problem has solution, and the proof of the
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existence of solution is similar to the proof of the Theorem 4.3.1. Figure 4.13 presents the
numerical results, the polyline and the references. The results obtained are very similar
to those obtained in the reference tests with measurements in the entire domain and in a
subdomain.

Figure 4.13: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound
imaging(from left to right).

There are multiple sources of noise in ultrasound images, such as reverberation, ghosting,
or fake echo, among others. Therefore, it is not possible to define a simplified structure of
noise in this type of images [21, 67]. In order to study the effect of the noise, we assume an
additive Gaussian noise that is proportional to the maximum of |uR| in the measurement area.
From [66], an experiment with a straight-vessel phantom had a 9.6% of standard deviation.
Then, is acceptable to simulate an ultrasound imaging with a velocity noise of 10% of the
maximum velocity in each node. Gaussian noises were added to this ultrasound imaging with
a standard deviation of 10% and 20% of the maximum of |uR|.

Figures 4.14 and 4.15 show the results of this experiment with a 10% and 20% of Guassian
noise, respectively, but changing the weights to α = 10−4 and β = 10−6 in terms to decrease
the effects of noise. The results are similar to the experiment without noise in terms to the
tendency of the polyline to approximate the valve shape.

Figure 4.14: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound
imaging(from left to right) with 10% of noise.
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Figure 4.15: Real γ and reconstructed valve, optimal γ, optimal u, and synthetic ultrasound
imaging(from left to right) with 20% of noise.

Table 4.2 shows the mean square error (MSE) between the reconstructed valve given by
the polylines obtained using MRI in Figures 4.13, 4.14 and 4.15, and the polyline obtained
in the reference test with measurement in a subdomain (see Figure 4.5). The MSE was
quantified by the same way as in Table 4.1. There are minor differences between the valve
reconstructions for the cases with a noise level of 10% and 20%.

Noise level MSE
0% 3.0985 · 10−3

10% 8.1993 · 10−3

20% 8.6772 · 10−3

Table 4.2: MSE of reconstructed valves using ultrasound imaging with different noise levels.

4.7 Conclusions

We have presented a new parameter identification problem for the Oseen equation, contribut-
ing to the detection of obstacles in fluid dynamic studies. For this problem, the existence
of solution and optimality conditions were determined. The study of optimality conditions
is necessary to validate the use of optimization algorithms. In particular, the second order
optimality condition allowed to specify the Hs space where the parameter γ belongs.

The numerical experiments developed in this work allow us to conjecture that it would be
possible to extend this analysis for the Navier-Stokes equation. Indeed, the numerical tests
without noise had satisfactory results in terms of rebuilding the simulated valve. Furthermore,
experiments with Gaussian noise show that disturbances in the reference image are reflected
in bounded changes in the parameter and in the reconstructed valve. The quality of the
solutions is worse as noise increases, as expected.

There are several ways to deepen this work. From an analytical perspective, it is necessary
to repeat the theoretical analysis for Problem (4.9), in the same way as we worked with
Problem (4.1), looking for obtaining similar results. Based on the favorable numerical results,
the next step is to perform experiments with 3D domains, including structures and real images
(both MRI and ultrasound imaging), whether obtained from phantoms or real patients. The
3D case is of medical interest, since it will contribute to simplify the detection of defects in
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the function of aortic valves, among other structures. Therefore, designing an algorithm to
recreate the aortic valve in 3D is also one of the future improvements.
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Chapter 5

A distributed resistance inverse
method for flow obstacle identification
from internal velocity measurements:
the Navier-Stokes problem

In this chapter we present a parameter identification problem for a scalar permeability pa-
rameter and the maximum velocity in an inflow, following a reference profile. We consider a
modified version of the Navier-Stokes equations from global or local velocity measurements,
where we add a permeability term given by the Brinkman’s law to the momentum equation
such that some subset of its boundary support represents obstacles. For the outflow, we con-
sider a directional do-nothing condition as a backflow stabilization. From a reference velocity
that could have some noise or be obtained in low resolution, we define a suitable quadratic
cost functional with some stabilization terms. Existence of minimizers and first and second
order optimality conditions are derived through the differentiability of the solutions of the
Navier-Stokes equations with respect to the permeability and maximum velocity in the in-
flow. Finally, we present some synthetic numerical test based of recovering a 2D and 3D
slope of a cardiac valve from total and local velocity measurements, inspired from 2D and
3D MRI type data.

5.1 Introduction

One of the most important challenges for Cardiology is to design safe ways to diagnose heart
valve diseases. On the one hand, the valves are thin structures, the main non-invasive radi-
ological examinations do not allow to obtain clear images of the valves when they are open.
On the other hand, invasive procedures are only performed in the case of valve replacement
surgery, requiring catheterization from the esophagus and compromising the integrity of the
patient.

Previously, we proposed in [3] a technique that allows to recover obstacles and do-
main deformations by means of a virtual domain and a permeability parameter that follows
Brinkham’s law [24, 13] for the Oseen equations . In [4], we showed that there is an asymptotic
relationship between the solutions of the Navier-Stokes equations with domains that consider
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obstacles and virtual domains where the obstacles are replaced by a permeability parameter.
The novelty of this new work is the theoretical development of the problem considering the
Navier-Stokes equations, presenting techniques that relax the regularity assumptions, the
inclusion of the directional do-nothing condition (see [22]) as a new boundary condition on
the outflow and the maximum speed on the inflow, assuming a profile that complies with
Poiseuille’s Law (see [74]), as a new constant parameter to be determined.

The paper is structured as follows. In Section 2, a parameter identification problem is
defined for the Navier-Stokes equations with a permeability term given by the Brinkman’s
law with the form γu, where u is the velocity field and γ ≥ 0 is a function that takes large
values in zones where is the obstacle should be located. In Section 3, we present some results
of existence of solution for our direct problem and our minimization problem, considering the
inclusion of the directional do-nothing condition (DDN). In Sections 4 and 5, we establish the
first and second order optimality conditions for our suitable cost functional improving the
proof techniques presented in [3]. Section 6 presents numerical tests that consist of recovering
the shape of a heart valve from global or partial measurements of the velocity of the blood
passing through the valves. For the 2D experiments, we emulate a cardiac valve and we
recover its shape via estimating the permeability parameter from perturbed measurements
as in [3]. The 3D examples are based on a tricuspid aortic valve. In both cases, 2D and 3D,
we use total or partial velocity from a numerical reference test and we use that velocity to
generate a synthetic 2D or 3D MRI. Finally, conclusions and future work are presented in
Section 7.

5.2 Model problem

Consider a non-empty bounded domain Ω ⊆ RN , N ∈ {2, 3}. The Lebesgue measure of Ω
is denoted by |Ω|, which extends to lesser dimension spaces. The norm and seminorms for
Sobolev spaces Wm,p (Ω) is denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm,

seminorms and inner product of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω
and (·, ·)m,Ω, respectively. Also, ‖·‖∞,Ω denotes the norm of L∞ (Ω). The spaces Hm (Ω) and

Wm,p (Ω) are defined by Hm (Ω) = [Hm (Ω)]N and Wm,p (Ω) = [Wm,p (Ω)]N . The notation
for norms, seminorms and inner products will be extended from Wm,p (Ω) or Hm (Ω).

Consider α0 > 0, α1 > 0, ν > 0, s ≥ 0, M1 > 0, M2 > 0, Ω with a Lipschitz boundary
∂Ω = ΓD ∪ ΓN such that int(ΓD)∩ int(ΓN) = ∅, an open subset ω ⊆ Ω, uR ∈H1/2 (ΓD) and
n the outer normal vector on ∂Ω. The model problem is defined by

minimize J (γ, β,u) =
1

2
‖u− uR‖2

0,ω +
α

2
‖γ‖2

s,Ω (5.1)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (5.2)

divu = 0 in Ω

u = βuD on ΓD

−ν ∂u
∂n

+ pn +
1

2
(u · n)− u = 0 on ΓN

u ∈H1 (Ω) , γ ∈ Hs (Ω) , β ∈ R,

0 ≤ β ≤M1, 0 ≤ γ ≤M2 a.e. in Ω.
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where (x)− = min {x, 0}. The modified version of Navier-Stokes given by Equation (5.2)
models the velocity u and pressure p of a fluid that passes through the control volume Ω.
The term γu, with γ ≥ 0, represents the distributed resistance that Ω imposes to the fluid.
A zero value of γ represents that the fluid follows the Navier-Stokes equations. As the γ
values increases in a certain area, the magnitude of u tends to decrease to 0. According
to Brinkman’s law [24, 13], 1/γ is an indicator of permeability. The media is completely
permeable when γ = 0, while γ tends to +∞ in zones where there are obstacles. Bounded
values of γ model porous media, where porosity decreases as γ increases. In comparison with

the traditional “do nothing” condition given by −ν ∂u
∂n

+ pn, the “directional do nothing”

condition imposed on ΓN adds a correction term for backflow (see [22])

5.3 Existence of solution

In what follows, we suppose that uD verifies the hypotheses of Theorem 1.2.3. Thus, (5.2)
has a unique solution. For this hypothesis to be valid, M1 is required to be small enough
in order to verify the sufficient conditions of existence and uniqueness of solution given by

2M1κ ‖uD‖1/2,Ω ≤ ν and
3κC1

2ν2

(
‖g‖1,Ω + ‖g‖2

1,Ω

)
< 1. First of all, we need to define some

new notations.

Definition 5.3.1. The subsets Γ+
N ⊆ ΓN and Γ−N ⊆ ΓN are defined by

Γ+
N = {x ∈ ΓN | u · n > 0} Γ−N = {x ∈ ΓN | u · n < 0}

Definition 5.3.2. Let s ≥ 0. The set of admissible parameter functions is defined by

A = {(γ, β) ∈ Hs (Ω)× R | 0 ≤ β ≤M1 and 0 ≤ γ ≤M2 a.e.} .

Definition 5.3.3. The map A : A → H1 (Ω) × L2
0 (Ω) is defined by A (γ, β) =

[A1 (γ, β) , A2 (γ, β)] = [u, p], where u ∈ H1 (Ω) and p ∈ L2
0 (Ω) are the unique variational

solutions of the Problem (5.2).

Remark 5.3.1. The uniformly boundedness of u and p are obtained since 0 ≤ β ≤ M1 and
‖γ‖∞,Ω ≤M2 for all (γ, β) ∈ A.

Now we can state the result of existence of solution.

Theorem 5.3.1. Problem (4.3) has at least one solution γ∗ ∈ A with optimal states
A (γ∗, β∗) = [u∗, p∗], i.e.

(∀γ ∈ A) J (γ, β, A1 (γ, β)) ≥ J (γ∗, β∗,u∗) .

Proof. First, J (γ, β, A1 (γ, β)) is bounded below by 0 and

(∀ (γ, β) ∈ A) J (γ, β, A1 (γ, β)) ≥ α

2
‖γ‖2

s,Ω .
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Thus, m = inf
γ∈A

J (γ) is well defined. Let {(γn, βn)}n∈N ⊆ A and {[un, pn]}n∈N ⊆ H1
ΓD

(Ω)×
L2

0 (Ω) such that A (γn, βn) = [un, pn], {J (γn, βn)} is decreasing and J (γn, βn) → m. It is
clear that

(∀n ∈ N) J (γn, βn) ≤ J (γ1, β1) .

Then, {γn}n∈N is uniformly bounded in Hs (Ω). Since A is weakly closed, there exists a
subsequence (denoted by {(γn, βn)}n∈N) such that γn ⇀ γ∗ in Hs (Ω) and βn → β∗, with
(γ∗, β∗) ∈ A. In particular, γn ⇀ γ∗ in L2 (Ω). Let vn = un − βng. The sequences {vn}n∈N
and {pn}n∈N are also uniformly bounded on H1

ΓD
(Ω) and L2

0 (Ω), respectively, because |βn| ≤
M1 and ‖γ‖∞,Ω ≤ M2. Applying the Sobolev Embedding Theorem (see Section 6.6 in [36]),

there exists a subsequence (also denoted by {vn}n∈N) such that vn ⇀ v∗ weakly in H1
ΓD

(Ω),

with v∗ ∈ H1
ΓD

(Ω), and vn → v∗ in Lp (Ω) for p ∈ [2, 6) when N ≥ 3, or for p ≥ 2 when
N = 2. In particular,

vn → v∗ in L4 (Ω) and L2 (Ω) .

Let w ∈ H1
ΓD

(Ω). Since d ∈ {2, 3}, then w ∈ L4 (Ω). By the same way, g ∈ L4 (Ω). Thus,

for every w ∈H1
ΓD

(Ω)

(γnvn,w)0,Ω → (γ∗v∗,w)0,Ω ((∇vn)a,w)0,Ω → ((∇v∗)a,w)0,Ω .

((∇g)vn,w)0,Ω → ((∇g)v∗,w)0,Ω ((∇vn) g,w)0,Ω → ((∇v∗)a,w)0,Ω .

Analogously, the embedding from H1/2 (Ω) to Lq (ΓN) and the trace operator from H1 (Ω) to
Lq (ΓN) are compacts for q ∈ (1, 4) (see Section 6.6 in [36]). Then, ((vn + g) · n)− (vn + g) ⇀

((v∗ + g) · n)− (v∗ + g) weakly in L2 (ΓN). For every w ∈H1
ΓD

(Ω), we obtain(
((vn + βng) · n)− (vn + βng) ,w

)
0,ΓN
→
(
((v∗ + β∗g) · n)− (v∗ + β∗g) ,w

)
0,ΓN

Repeating this argument, there exists a subsequence also denoted by {pn}n∈N such that

pn ⇀ p∗ in L2
0 (Ω) .

In conclusion, (v∗, p∗) ∈ H is the variational solution of Equation (5.2). Since un ⇀ v∗+β∗g,
we obtain A (γ∗, β∗) = [u∗, p∗]. Now, (γ∗, β∗) is optimal. Indeed,

m = lim
n→∞

J (γn)

≥ lim
n→∞

1

2
‖un − uR‖2

0,ω +
α

2
lim inf
n→∞

‖γn‖2
s,Ω

≥ 1

2
‖u∗ − uR‖2

0,ω +
α

2
‖γ∗‖2

s,Ω = J (γ∗) ≥ m.

Hence, J (γ, β, A1 (γ, β)) ≥ J (γ∗, β∗,u∗) for every (γ, β) ∈ A, proving this theorem.

5.4 First order necessary optimality condition

In order to implement a descent method to numerically solve this problem, it is necessary
to establish the differentiability of functional J . However, this directly depends on the
differentiability of map A. From this result, it is possible to establish necessary optimality
conditions. First, it is necessary to verify a technical result.
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Lemma 5.4.1. Let (γ, β) ; (h, ε) ∈ A, such that A (γ, β) = [u, p] and A (γ + h, β + ε) =
[u∗, p∗]. Then, there exists C > 0, independent of u, (γ, β) and (h, ε) such that |uh − u|1,Ω ≤
C ‖h‖∞,Ω.

Proof. Let (w, q) = (u∗ − u, p∗ − p) and v ∈ H1
ΓD

(Ω) such that w = v + εg. Subtracting
the equations of A (γ + h, β + ε) and A (γ, β), it is obtained

−ν4w + (∇w)u∗ + (∇u)w +∇q + γw = −hu∗ in Ω

divw = 0 in Ω

w = εg on ΓD

−ν ∂w
∂n

+ qn +
1

2
(u∗ · n)− u∗ −

1

2
(u · n)− u = 0 on ΓN

Replacing w by v + εg and testing the equations with v and q, respectively, we deduce

ν |v|21,Ω + (γv,v)0,Ω + ((∇v)u∗,v)0,Ω + ((∇u)v,v)0,Ω

+
1

2

∫
ΓN

[
(u · n)− u− (u∗ · n)− u∗

]
· v dS

=− (hu∗,v)0,Ω − εν (∇v,∇g)0,Ω

− ε (γg,v)0,Ω − ε ((∇g)u∗,v)0,Ω − ((∇u) g,v)0,Ω

where, applying Theorems 1.2.2 and 1.2.1, and Lemmas 1.2.2 and 1.2.3, we can obtain

((∇u)v,v)0,Ω ≥ −κ |u|1,Ω |v|
2
1,Ω

and

((∇v)u∗,v)0,Ω +
1

2

∫
ΓN

[
(u · n)− u− (u∗ · n)− u∗

]
· v dS

=
1

2

∫
ΓN

(u∗ · n) |v|2 dS +
1

2

∫
ΓN

[
(u · n)− u− (u∗ · n)− u∗

]
· v dS

=
1

2

∫
ΓN

(u∗ · n)+ |v|
2 dS − 1

2

∫
ΓN

(u∗ · n)− (u + εg) · v dS +
1

2

∫
ΓN

(u · n)− u · v dS

=
1

2

∫
ΓN

(u∗ · n)+ |v|
2 dS − 1

2

∫
ΓN

(
(u · n)− − (u∗ · n)−

)
u · v dS

− 1

2
ε

∫
ΓN

(u∗ · n)− g · v dS,

where
1

2

∫
ΓN

(u∗ · n)+ |v|
2 dS ≥ 0 and

∣∣(u · n)− − (u∗ · n)−
∣∣ ≤ ∣∣(u)− − (u∗ · n)−

∣∣. Thus,

((∇v)u∗,v)0,Ω +
1

2

∫
ΓN

[
(u · n)− u− (u∗ · n)− u∗

]
· v dS

≥− 1

2
κ |w|1,Ω |u|1,Ω |v|1,Ω −

1

2
εκ |u∗|1,Ω ‖g‖1,Ω |v|1,Ω

≥− 1

2
κ |v|21,Ω |u|1,Ω −

1

2
εκ
(
|u|1,Ω + |u∗|1,Ω

)
‖g‖1,Ω |v|1,Ω
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Then, there exists a constant C1 > 0 independent of u, u∗, (γ, β) and (h, ε) such that such
that

ν |v|21,Ω −
3

2
κ |u|1,Ω |v|

2
1,Ω

≤C1 |v|1,Ω (‖h‖∞,Ω |u∗|1,Ω + ε(‖h‖∞,Ω + ‖g‖1,Ω + |u|1,Ω + |u∗|1,Ω))

Since |u|1,Ω ard |u∗|1,Ω are uniformly bounded and Theorem 1.2.3, there exists a constant c1,

independent of u, u∗, (γ, β) and (h, ε) such that 0 < c1 ≤ ν − 3

2
κ |u|1,Ω and

c1 |v|21,Ω = ν |v|21,Ω −
3

2
κ |u|1,Ω |v|

2
1,Ω

≤ C1 |v|1,Ω
(
‖h‖∞,Ω |u∗|1,Ω + ε

(
‖h‖∞,Ω + ‖g‖1,Ω + |u|1,Ω + |u∗|1,Ω

))
but |u|1,Ω and |u∗|1,Ω are uniformly bounded by a constant c4 > 0 independent of (γ, β)
and (h, ε) (see Remark 5.3.1). Then, due to ‖h‖∞,Ω ≤ M2, there exists a constant C2 > 0,
independent of independent of u, u∗, (γ, β) and (h, ε) such that

|w|1,Ω ≤ C2

(
‖h‖∞,Ω + ε

)
and

|v|1,Ω ≤ |w|1,Ω + ε |g|1,Ω ≤
(
C2 + |g|1,Ω

)(
‖h‖∞,Ω + ε

)
Taking C = C2 + |g|1,Ω, the lemma is proved.

Theorem 5.4.1. The map A is Fréchet-differentiable for every γ ∈ A where A is well defined.
For each (γ, β) , (h, ε) ∈ A, if A (γ, β) = [u, p], then the Fréchet derivative A (γ, β) [(h, ε)] =
[u′, p′] can be described by the weak solution of the following problem

−ν4u′ + (∇u′)u + (∇u)u′ +∇p′ + γu′ = −hu in Ω (5.3)

divu′ = 0 in Ω

u′1 = εg on ΓD

−ν ∂u
′

∂n
+ p′n +

1

2
f (u,u′) = 0 on ΓN .

where

f (v,v′) =

{
0 on Γ+

N

(u′ · n)u + (u · n)u′ on Γ−N

Proof. Let (γ, β) , (h, ε) ∈ A, it will be proved that there is a linear application D : A → H
such that

A (γ + h, β + ε)− A (γ, β) = D (h, ε) + r ((γ, β) ; (h, ε)) ,

where (
‖h‖∞,Ω + ε

)
→ 0⇒ ‖r ((γ, β) ; (h, ε))‖H(

‖h‖∞,Ω + ε
) → 0.
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Let [u∗, p∗] = A (γ + h, β + ε). Taking D (γ1) = [u′, p′] and r ((γ, β) ; (h, ε)) = [δu, δp] =
[u∗ − u− u′, p∗ − p− p′], it is possible to see that D (γ1) is linear. Also, [δu, δp] is solution
of the problem

−ν4 (u) + (∇δu)u + (∇u) δv +∇ (δp) + γ (δu) = f in Ω

div (δu) = 0 in Ω

(δu) = 0 on ΓD

−ν ∂ (δu)

∂n
+ (δp)n +

1

2
f1 (δu,u) =

1

2
f2 (u,u1)on ΓN .

where

f = h (u− u∗)− (∇ (u∗ − u)) (u∗ − u)

f1 (δv,v) =

{
0 in Γ+

N

(δu · n)u + (u · n) δu in Γ−N

f2 (v,v1) =

{
(u · n)− u− (u∗ · n)− u∗ in Γ+

N

(u · n)− u− (u∗ · n)− u∗ + ((u∗ − u) · n)u + (u · n)− (u∗ − u) in Γ−N

Thus, testing the first equation with δu and the second equation with δp, we obtain

ν |δu|21,Ω + (γ (δu) , δu)0,Ω + ((∇u) δu, δu)0,Ω

+
1

2

(
(u · n) , |δu|2

)
0.ΓN
− 1

2
(f1 (δu,u) , δu)0.ΓN

= (h (u− u∗)− (∇ (u∗ − u)) (u∗ − u) , δu)− 1

2
(f2 (u,u∗) , δu)0.ΓN

where, applying Lemmas 1.2.2, 1.2.3, 1.2.1 and 1.2.2, we can deduce that

((∇u) δu, δu)0,Ω +
1

2

(
(u · n) , |δu|2

)
0.ΓN
− 1

2
(f1 (δu,u) , δu)0.ΓN

= ((∇u) δu, δu)0,Ω −
1

2
((δu · n)u, δu)0.ΓN

+
1

2

(
(u · n)+ , |δu|

2)
0.ΓN

≥ ((∇u) δu, δu)0,Ω −
1

2
((δu · n)u, δu)0.ΓN

≥− 3κ

2
|u|1,Ω |δu|

2
1,Ω

Since sufficient condition of uniqueness of solution (see Theorem 1.2.3) and uniformly bound-
edness of |u|1,Ω (see Remark 5.3.1) imply that there exists a constant c1 > 0 such that
3

2
κ |u|1,Ω ≤ c1 < ν. Then, there exists a constant c2 = ν − c1 > 0, independent of u, u∗,

(γ, β), (h, ε) and (γ1, ε1) such that

ν |δu|21,Ω + ((∇u) δu, δu)0,Ω +
1

2

(
(u · n) , |δu|2

)
0.ΓN
− 1

2
(f1 (δu,u) , δu)0.ΓN

≥
(
ν − 3κ

2
|u|1,Ω

)
|δu|21,Ω = c2 |δu|21,Ω

Applying Hölder inequality, Theorem 1.2.2, Sobolev Embedding Theorem, Lemmas 1.2.1,
1.2.2 and 1.2.3, there exist constants c3 > 0 and c4 > 0, independents of u, u∗, (γ, β), (h, ε)
and (γ1, ε1) such that

−1

2
(f2 (v,v1) , δv)0.ΓN

≤
∣∣((u∗ − u) · n, (u∗ − u) · δu)0.ΓN

∣∣
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≤ c3

((
|u∗ − u|1,Ω + ε

)2

|δu|1,Ω
)

and

(h (u− u∗)− (∇ (u∗ − u)) (u∗ − u) , δu)

≤c4 |δu|1,Ω
(
‖h‖∞,Ω

(
|u∗ − u|1,Ω + ε

)
+
(
|u∗ − u|1,Ω + ε

)2
)

Applying Lemma 5.4.1, there exist constant c5 > 0, independent of u, u∗, (γ, β), (h, ε) and
(γ1, ε1) such that

c2 |δu|21,Ω ≤ |δu|1,Ω
(

(c3 + c4)
(
|u∗ − u|1,Ω + ε

)2

+ c4 ‖h‖∞,Ω
(
|u∗ − u|1,Ω + ε

))
≤ c5 |δu|1,Ω

(
‖h‖∞,Ω + ε

)2

Thus, there exists a constant C1 > 0, independent of u, u∗, (γ, β), (h, ε) and (γ1, ε1) such
that

|δu|1,Ω ≤ C1

(
‖h‖∞,Ω + ε

)2

Repeating the same arguments, we obtain that there exists a constant C2 > 0, independent
of u, u∗, (γ, β), (h, ε) and (γ1, ε1) such that

‖δp‖0,Ω = β1 sup
|w|1,Ω=1, w∈H1

ΓD
(Ω)

∣∣∣(δp, divw)0,Ω

∣∣∣ ≤ C1

(
‖h‖∞,Ω + ε

)2

Then, there exists C > 0, independent of u, u∗, (γ, β), (h, ε) and (γ1, ε1) such that

‖r ((γ, β) ; (h, ε))‖H = ν |δu|1,Ω + ‖δp‖0,Ω ≤ C
(
‖h‖∞,Ω + ε

)2

Therefore,
‖r ((γ, β) ; (h, ε))‖H(
‖h‖∞,Ω + ε

) ≤ C
(
‖h‖∞,Ω + ε

) (‖h‖∞,Ω+ε)→0
−→ 0,

proving the theorem.

Defining B (u) =
1

2
‖u− uR‖2

0,ω and C (γ) =
α

2
‖γ‖2

s,Ω, an expression for Frechét deriva-

tives of B and C is given by

B′ (v) [w] = (u− uR,w)0,ω C ′ (γ) [h] = α (γ, h)s,Ω .

Applying chain rule, it is obtained that

J ′ (γ, β) [(h, ε)] = B′ (v) [A′1 (γ, β) [(h, ε)]] + C ′ (γ) [h]

= (u− uR,u
′)0,ω + α (γ, h)s,Ω .

In order to reduce this expression, the following definition is introduced similarly to [1].
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Definition 5.4.1. Let γ ∈ A and A (γ, β) = [u, p]. The adjoint states A∗ (γ, β) = [ϕ, ξ] are
defined as the unique weak solution of the problem

−ν4ϕ− (∇ϕ)u + (∇u)T ϕ +∇ξ + γϕ = χω (u− uR) in Ω (5.4)

divϕ = 0 in Ω

ϕ = 0 on ΓD

−ν ∂ϕ
∂n

+ ξn− (u · n) ϕ+
1

2
φ (v,ϕ) = 0 on ΓN .

where χω is the indicator function of ω and

φ (v,ϕ) =

{
0 on Γ+

N

(u ·ϕ)n + (u · n)ϕ on Γ−N

Using this defintion, it is possible to rewrite J ′ (γ, β) depending of the adjoint state. That
expression is simpler to analyze, since it depends on the adjoint state, allowing a simple form
of a first order optimality condition using a variational inequality.

Theorem 5.4.2. Let γ, γ1 ∈ A and s ≥ 0. Then,

J ′ (γ, β) [(h, ε)] = − (hu,ϕ)0,Ω + ε

∫
ΓD

uD ·
[
−ν ∂ϕ

∂n
+ ξn

]
dS + α (γ, h)s,Ω ,

where A (γ, β) = [u, p]. If (γ∗, ε∗) ∈ A is an optimal for Problem (4.3), then for all γ, β ∈ A

− ((γ − γ∗)u,ϕ)0,Ω + (ε− ε∗)
∫

ΓD

uD ·
[
−ν ∂ϕ

∂n
+ ξn

]
dS + α (γ∗, γ − γ∗)s,Ω ≥ 0

where A (γ∗) = [v∗, p∗] and A∗ (γ∗) = [ϕ, ξ] are the states and adjont states of γ∗, respectively.

Proof. First, using integration by parts with the adjoint states [ϕ, ξ] as tests functions, it is
obtained that

−ν
∫

Ω

4u′ ·ϕ dx = −ν
∫

Ω

4ϕ · u′ dx +

∫
∂Ω

ϕ ·
(
−ν ∂u

′

∂n

)
− u′ ·

(
−ν ∂ϕ

∂n

)
dS∫

Ω

[(∇u′)u] ·ϕ dx = −
∫

Ω

[(∇ϕ)u] · u′ dx +

∫
∂Ω

(u · n) (ϕ · u′) dS∫
Ω

∇p′ ·ϕ dx = −
∫

Ω

p′ divϕ dx +

∫
∂Ω

ϕ · (p′n) dS

−
∫

Ω

ξ divu′ dx =

∫
Ω

∇ξ · u′ dx−
∫
∂Ω

u′ · (ξn) dS.

and also ∫
Ω

[(∇u)u′] ·ϕ dx =

∫
Ω

[
(∇u)T ϕ

]
· u′ dx

Then,

− (hu,ϕ)0,Ω =− ν
∫

Ω

4u′ ·ϕ dx +

∫
Ω

[(∇u′)u] ·ϕ ·ϕ dx +

∫
Ω

[(∇u)u′] ·ϕ dx
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+

∫
Ω

∇p′ ·ϕ dx +

∫
Ω

γu′ ·ϕ dx−
∫

Ω

ξ divu′ dx

=− ν
∫

Ω

4ϕ · u′ dx−
∫

Ω

[(∇ϕ)u] · u′ dx +

∫
Ω

[
(∇u)T ϕ

]
· u′ dx

+

∫
Ω

∇ξ · u′ dx +

∫
Ω

γu′ ·ϕ dx−
∫

Ω

p′ divϕ dx

+

∫
ΓN

ϕ ·
(
−ν ∂u

′

∂n
+ p′n

)
−
∫
∂Ω

u′ ·
(
−ν ∂ϕ

∂n
+ ξn− (u · n)ϕ

)
dS

= (u− uR,u
′
1)0,ω −

∫
Γ−N

ϕ · ((u′ · n)u + (u · n)u′)

−
∫
∂Ω

u′ ·
(
−ν ∂ϕ

∂n
+ ξn− (u · n)ϕ

)
dS

where ∫
∂Ω

u′ ·
(
−ν ∂ϕ

∂n
+ ξn− (u · n)ϕ

)
dS

=ε

∫
ΓD

g ·
(
−ν ∂ϕ

∂n
+ ξn

)
dS −

∫
Γ−N

u′ · ((u ·ϕ)n + (u · n)ϕ) dS

=ε

∫
ΓD

g ·
(
−ν ∂ϕ

∂n
+ ξn

)
dS −

∫
Γ−N

ϕ · ((u′ · n)u + (u · n)u′)

Thus,

(u− uR,u
′
1)0,ω =− (hu,ϕ)0,Ω +

∫
Γ−N

ϕ · ((u′ · n)u + (u · n)u′)

−
∫
∂Ω

u′ ·
(
−ν ∂ϕ

∂n
+ ξn− (u · n)ϕ

)
dS

=− (hu,ϕ)0,Ω + ε

∫
ΓD

g ·
(
−ν ∂ϕ

∂n
+ ξn

)
dS

proving that

J ′ (γ, β) [(h, ε)] = − (hu,ϕ)0,Ω + ε

∫
ΓD

g ·
(
−ν ∂ϕ

∂n
+ ξn

)
dS + α (γ, h)s,Ω .

Later, if γ∗ ∈ A is optimal for the problem, then

(∀γ ∈ A) J (γ) ≥ J (γ∗) .

Finally, it is obtained that

J ′ (γ, β) [(γ − γ∗, ε− ε∗)] = lim
t→0+

J (γ∗ + t (γ − γ∗))− J (γ∗)

ε
≥ 0,

proving this theorem.
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5.5 Second order sufficient optimality condition

The stability results of the optimization algorithms depend, for the most part, on the exis-
tence of the second derivative of J . Likewise, it is possible to establish second order sufficient
optimality conditions. First, it is necessary to introduce some techincal results.

Lemma 5.5.1. Let (γ, β) ; (γ1, ε1) ∈ A such that [u′, p′] = A′ (γ, β) [(γ1, ε1)]. There exist

C1 > 0 and C2 > 0, independents of u, γ, β, h and ε such that |u′|1,Ω ≤ C1

(
‖γ1‖∞,Ω + ε1

)
and |u′|1,Ω ≤ C2

(
‖γ1‖s,Ω + ε1

)
.

Proof. Let v′ ∈H1
ΓD

(Ω) such that u′ = v′ + ε1g. Testing the equations of A′ (γ, β) with v′

and p′, respectively, we obtain

ν |v′|21,Ω + (γv′,v′)0,Ω + ((∇v′)u,v′)0,Ω + ((∇u)v′,v′)0,Ω

− 1

2

∫
Γ−N

(v′ · n)u · v′ + (u · n) |v′|2 dS

=− (γ1u,v
′)0,Ω − ε1

(
ν (∇v′,∇g)0,Ω + (γv′,v′)0,Ω + ((∇g)u,v′)0,Ω + ((∇u) g,v′)0,Ω

)
+

1

2
ε1

∫
Γ−N

(g · n)u · v′ + (u · n) (g · v′) dS

where

(γv′,v′)0,Ω + ((∇v′)u,v′)0,Ω −
1

2

∫
Γ−N

(u · n) |v′|2 dS

= (γv′,v′)0,Ω +
1

2

∫
ΓN

(u · n)+ |v′|
2
dS ≥ 0

and

((∇u)v′,v′)0,Ω −
1

2

∫
Γ−N

(v′ · n)u · v′dS ≥ −3

2
κ |u|1,Ω |v′|

2
1,Ω

Since sufficient condition of uniqueness of solution (see Theorem 1.2.3) and uniformly bound-
edness of |u|1,Ω (see Remark 5.3.1) imply that there exists a constant c1 > 0 such that
3

2
κ |u|1,Ω ≤ c1 < ν. Then, there exists a constant c2 = ν − c1 > 0, independent of u, γ, β, h

and ε such that

c2 |v′|21,Ω ≤− ε1

(
ν (∇v′,∇g)0,Ω + (γv′,v′)0,Ω + ((∇g)u,v′)0,Ω + ((∇u) g,v′)0,Ω

)
+

1

2
ε

∫
Γ−N

(g · n)u · v′ + (u · n) (g · v′) dS − (γ1u,v
′)0,Ω

By the same way as in Lemma 5.4.1, there exists c3 > 0, independent of u, γ, β, h and ε
such that

c2 |v′|21,Ω ≤ − (γ1u,v
′)0,Ω + ε1c3 |v′|1,Ω

Applying Hölder inequality for q, r ∈ [2,+∞] such that
1

q
+

2

r
= 1, we obtain

− (hu,v′)0,Ω ≤ ‖γ1‖0,q,Ω ‖u‖0,r,Ω ‖v′‖0,r,Ω
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First, choosing q = +∞ and r = 2, and applying Theorem 1.2.2, there exists a constant
c4 > 0, only depending of Ω and ΓD, such that

c2 |v′|21,Ω ≤ ε1c3 |v′|1,Ω + c4 ‖γ1‖∞,Ω
(
|u|1,Ω + β ‖uD‖0,ΓD

)
|v′|1,Ω

where |u|1,Ω +β ‖uD‖0,ΓD
is uniformly bounded (see Remark 5.3.1). Then, there exists c5 > 0

such that
|v′|1,Ω ≤ c5

(
‖γ1‖∞,Ω + ε1

)
Taking C1 = c5 + |g|1,Ω, we obtain

|u′|1,Ω ≤ |v′|1,Ω + ε1 |g|1,Ω ≤ C1

(
‖γ1‖∞,Ω + ε1

)
Second, choosing q = 2 and r = 4, applying Sobolev Embedding Theorem and Theorem
1.2.2, there exists c4 > 0 such that

c2 |v′|21,Ω ≤ ε1c3 |v′|1,Ω + c6 ‖γ1‖s,Ω
(
|u|1,Ω + β ‖uD‖0,ΓD

)
|v′|1,Ω

Repeating the previous argument, there exists C2 > 0 independent of γ, γ1 and h such that

|v′|1,Ω ≤ c5

(
‖γ1‖s,Ω + ε1

)
proving this lemma.

Lemma 5.5.2. There exists C > 0 such that

|ϕ|1,Ω ≤ C
(
|u|1,Ω + ‖uR‖0,ω

)
Furthermore, |ϕ|1,Ω is uniformly bounded.

Proof. Testing the two equations of (5.4) with ϕ and ξ, respectively, and integrating by parts
some terms, we obtain

ν |ϕ|21,Ω +
1

2

∫
ΓN

(u · n)+ |ϕ|
2 dS + (γϕ,ϕ)0,Ω + ((∇u)ϕ,ϕ)0,Ω

−1

2

∫
Γ−N

(u ·ϕ) (ϕ · n) dS = (u− uR,ϕ)0,ω

where
1

2

∫
ΓN

(u · n)+ |ϕ|
2 dS + (γϕ,ϕ)0,Ω ≥ 0

Proceeding in the same way as in the proof of Lemma 5.5.1, there exists c1 ∈ (0, ν) and
c2 = ν − c1 > 0 such that

c2 |ϕ|21,Ω ≤ (u− uR,ϕ)0,ω

Applying Hölder inequality and Theorem 1.2.2, there exists c3 > 0 such that

c2 |ϕ|21,Ω ≤ (u− uR,ϕ)0,ω ≤
(
‖u‖0,ω + ‖uR‖0,ω

)
‖ϕ‖0,ω
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≤
(
‖v‖0,Ω + ‖uR‖0,ω

)
‖ϕ‖0,Ω

≤ c3

(
|v|1,Ω + ‖uR‖0,ω

)
|ϕ|0,Ω

Then,

|ϕ|1,Ω ≤
c3

c2

(
|u|1,Ω + ‖uR‖0,ω

)
The uniformly boundedness of |ϕ|1,Ω is consecuence of the uniformly boundedness of |u|1,Ω.

Taking C =
c3

c2

> 0, the lemma is proved.

Lemma 5.5.3. Let (γ, β) ; (h, ε) ; (γ1, ε1) ∈ A such that

[u′1, p
′
1] = A′ (γ, β) [(γ1, ε1)] and [u′∗1, p

′
∗1] = A′ (γ + h, β + ε) [(γ1, ε1)]

There exist C > 0, independent of v, γ, γ1 and h, such that |u′∗1 − u′1|1,Ω ≤
C1

(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

)
.

Proof. Proceeding in the same way as in the previous lemma, denoting [u, p] = A (γ, β),
[u∗, p∗] = A (γ + h, β + ε), w = u∗ − u, w′ = u′∗1 − u′1 ∈ H1

ΓD
(Ω) and q = p′∗1 − p′1, we

verify

ν |w′|21,Ω + (γw′,w′)0,Ω + ((∇w′)u∗,w′)0,Ω + ((∇u∗)w′,w′)0,Ω

− 1

2

∫
ΓN

(u∗ · n)− |w′|
2
dS − 1

2

∫
ΓN

|w′ · n| |u∗ ·w′| dS

≤− (hu′∗1,w
′)0,Ω − (γ1w,w

′)0,Ω − ((∇w)u′1,w
′)0,Ω − ((∇u′1)w,w′)0,Ω

+
1

2

∫
ΓN

|w · n| |u′1 ·w′| dS +
1

2

∫
ΓN

|u′1 · n| |w ·w′| dS

where

((∇w′)u∗,w′)0,Ω −
1

2

∫
ΓN

(u∗ · n)− |w′|
2
dS =

1

2

∫
ΓN

(u∗ · n)+ |w|
2 dS ≥ 0

and

((∇u∗)w′,w′)0,Ω −
1

2

∫
ΓN

|w′ · n| |u∗ ·w′| dS ≥ −
3κ

2
|u∗|1,Ω |w′|

2
1,Ω

Since sufficent condition of uniqueness of solution (see Theorem 1.2.3) and uniformly bound-
edness of |u|1,Ω (see Remark 5.3.1) imply that there exists a constant c1 > 0 such that
3

2
κ |u|1,Ω ≤ c1 < ν. Then, there exists a constant c2 = ν − c1 > 0, independent of u, u∗,

(γ, β), (h, ε) and (γ1, ε1) such that

c2 |w′|21,Ω ≤− (hu′∗1,w
′)0,Ω − (γ1w,w

′)0,Ω − ((∇w)u′1,w
′)0,Ω − ((∇u′1)w,w′)0,Ω

+
1

2

∫
ΓN

|w · n| |u′1 ·w′| dS +
1

2

∫
ΓN

|u′1 · n| |w ·w′| dS
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Applying Hölder inequality, Theorem 1.2.2, Lemma 1.2.2 and Sobolev Embedding Theorem,
there exists c3 > 0 independent of u, u∗, (γ, β), (h, ε) and (γ1, ε1) such that

− (hu′∗1,w
′)0,Ω − (γ1w,w

′)0,Ω − ((∇w)u′1,w
′)0,Ω − ((∇u′1)w,w′)0,Ω

≤c3 |w′|1,Ω
(
‖h‖∞,Ω |u′∗1|1,Ω + ‖γ1‖s,Ω |w|1,Ω + |u′1|1,Ω |w|1,Ω

)
≤c3 |w′|1,Ω

(
‖h‖∞,Ω |u′∗1|1,Ω + ‖γ1‖s,Ω |w|1,Ω + |u′1|1,Ω |w|1,Ω

)
≤c3 ‖γ1‖s,Ω |v1 − v|1,Ω |w|1,Ω

Then, using Lemmas 5.4.1 and 5.5.1, there exists c4 > 0 such that

− (hu′∗1,w
′)0,Ω − (γ1w,w

′)0,Ω − ((∇w)u′1,w
′)0,Ω − ((∇u′1)w,w′)0,Ω

≤c4 |w′|1,Ω
(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

)
Now, applying Hölder inequality, Theorems 1.2.2 and 1.2.1, Lemma 1.2.3 and Sobolev Em-
bedding Theorem, there exists c5 > 0 such that

1

2

∫
ΓN

|w · n| |u′1 ·w′| dS +
1

2

∫
ΓN

|u′1 · n| |w ·w′| dS ≤ c5 |w′|1,Ω |w|1,Ω |u′1|1,Ω

Applying Lemmas 5.4.1 and 5.5.1 again, there exists c6 > 0 such that

1

2

∫
ΓN

|w · n| |u′1 ·w′| dS +
1

2

∫
ΓN

|u′1 · n| |w ·w′| dS

≤c6 |w′|1,Ω
(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

)
In conclusion,

c2 |w′|21,Ω ≤ (c4 + c6) |w′|1,Ω
(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

)
|w′|1,Ω ≤

(
c4 + c6

c2

)(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

)
proving the lemma.

Theorem 5.5.1. The map (γ, β) 7−→ A′ (γ, β) [(γ1, ε1)] from A to H is Fréchet-differentiable
for each (γ1, ε1) ∈ A . Let (γ, β) ; (γ1, ε1) ; (γ1, ε1) ∈ A, the Fréchet derivative of
A′ (γ, β) [(γ1, ε1)] on (γ2, ε2) direction is given by A′′ (γ, β) [(γ1, ε1) ; (γ2, ε2)] = [u′′, p′′], where
[u′′, p′′] is the unique weak solution of the problem

−ν4u′′ + (∇u′′)u + (∇u)u′′ +∇p′′ + γu′′ = f (u′1,u
′
2,u

′′) in Ω

divu′′ = 0 in Ω

u′′ = 0 on ΓD

−ν ∂u
′′

∂n
+ p′′n +

1

2
g (v,v′,v′′) = 0 on ΓN ,
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where f and g are defined by

f (u′1,u
′
2,u

′′) = − [(γ2u
′
1 + γ1u

′
2) + (∇u′1)u′2 + (∇u′2)u′1]

g (u,u′1,u
′
2,u

′′) =

{
0 on Γ+

N

(u′′ · n)u + (u′1 · n)u′2 + (u′2 · n)u′1 + (u · n)u′′ on Γ−N

and A′ (γ, β) [(γj, εj)] =
[
u′j, p

′
j

]
, for j ∈ {1, 2}.

Proof. Let γ, γ1 ∈ A, it will be proved that there is a linear application D2 : A → H such
that

A′ (γ + γ2, β + ε2) [(γ1, ε1)]− A′ (γ) [(γ1, ε1)]

=D ((γ, β) ; (γ2, ε2)) [(γ1, ε1)] + r ((γ, β) ; (γ1, ε1) ; (γ2, ε2)) ,

where (
‖γ2‖∞,Ω + ε2

)
→ 0⇒ ‖r ((γ, β) ; (γ1, ε1) ; (γ2, ε2))‖H(

‖γ2‖∞,Ω + ε2

) → 0.

Let A′ (γ + γ2, β + ε2) [γ1, ε1] = [u′∗1, p
′
∗1], (see Theorem 5.4.1), A (γ, β) = [u, p] and

A (γ + γ2, β + ε2) = [u∗, p∗] (see Definition 5.3.3). Defining

D ((γ, β) ; (γ1, ε1)) [(γ2, ε2)] = [u′′, p′′]

as function of (γ2, ε2) and

r ((γ, β) ; (γ1, ε1) ; (γ2, ε2)) = [δu, δp] = [u′∗1 − u′1 − u′′, p′∗1 − p′1 − p′′] ,

it is possible to see that D ((γ, β) ; (γ1, ε1)) is a linear application and
r ((γ, β) ; (γ1, ε1) ; (γ2, ε2)) is solution of the problem

−ν4 (δu) +∇ (δp) + γ (δu) + (∇δu)u + (∇u) δu = f 1 (u,u′1,u
′
∗1,u

′
2, ) in Ω

div (δu) = 0 in Ω

(δu) = 0 on ΓD

−ν ∂ (δu)

∂n
+ (δp)n +

1

2
g1 (u,u∗,u

′
1,u

′
2,u

′
∗1,u

′′) = 0 on ΓN ,

where

f 1 (u,u′1,u
′
∗1,u

′
2, ) =γ2 (u′1 − u′∗1) + (∇u′2) (u′1 − u′2) + (∇ (u′1 − u′2))u′2

+ γ1 (u′2 + u− u∗) + (∇u′∗1) (u′2 + u− u∗) + (∇ (u′2 + u

− u∗u
′
∗1

and g1 is an appropriate function. Testing the equations with δu and δp, respectively and
integrating by parts, we obtain

ν |δu|21,Ω + (γ1δu, δu)0,Ω + ((∇δu)u, δu)0,Ω + ((∇u) δu, δu)0,Ω

− 1

2

∫
ΓN

(u · n)− |δu|
2 dS − 1

2

∫
ΓN

|δu · n| |u · δu| dS
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≤ (γ2 (u′1 − u′∗1) + (∇u′2) (u′1 − u′2) + (∇ (u′1 − u′2))u′2, δv)0,Ω

+ (γ1 (u′2 + u− u∗) + (∇u′∗1) (u′2 + u− u∗) + (∇ (u′2 + u− u∗))u
′
∗1, δu)0,Ω

+
1

2

∫
ΓN

|(u′1 − u′2) · n| |u′2 · δu| dS +
1

2

∫
ΓN

|u′2 · n| |(u′1 − u′2) · δu| dS

+
1

2

∫
ΓN

|(u′2 + u− u∗) · n| |u′∗1 · δu| dS +
1

2

∫
ΓN

|u′∗1 · n| |(u′2 + u− u∗) · δu| dS

Reasoning as in Lemma 5.5.3, there exists a constant C1 > 0, independent of γ, γ1 and γ2

such that
|δu|21,Ω ≤ C1 (A1 + A2)

where A1 and A2 are given by

A1 = (γ1 (u′2 + u− u∗) + (∇u′∗1) (u′2 + u− u∗) + (∇ (u′2 + u− u∗))u
′
∗1, δu)0,Ω

+
1

2

∫
ΓN

|(u′2 + u− u∗) · n| |u′∗1 · δu| dS +
1

2

∫
ΓN

|u′∗1 · n| |(u′2 + u− u∗) · δu| dS

A2 = (γ2 (u′1 − u′∗1) + (∇u′2) (u′1 − u′2) + (∇ (u′1 − u′2))u′2, δv)0,Ω

+
1

2

∫
ΓN

|(u′1 − u′2) · n| |u′2 · δu| dS +
1

2

∫
ΓN

|u′2 · n| |(u′1 − u′2) · δu| dS

Applying Hölder inequality, Theorem 1.2.2, Sobolev Embedding Theorem, Lemmas 1.2.1,
1.2.2 and 1.2.3, there exist constants c1 > 0 and c2 > 0 (γ, β), (γ1, ε1) and (γ2, ε2) such that

A1 = (γ1 (u′2 + u− u∗) + (∇u′∗1) (u′2 + u− u∗) + (∇ (u′2 + u− u∗))u
′
∗1, δu)0,Ω

+
1

2

∫
ΓN

|(u′2 + u− u∗) · n| |u′∗1 · δu| dS +
1

2

∫
ΓN

|u′∗1 · n| |(u′2 + u− u∗) · δu| dS

≤ |δu|1,Ω
(
c1 ‖γ1‖∞,Ω |u′2 + u− u∗|1,Ω + c2 |u′2 + u− u∗|1,Ω |u′∗1|1,Ω

)
and, using Lemmas 5.5.1 and 5.5.3, there exists a constant c3 > 0 such that

A2 = (γ2 (u′1 − u′∗1) + (∇u′2) (u′1 − u′2) + (∇ (u′1 − u′2))u′2, δv)0,Ω

+
1

2

∫
ΓN

|(u′1 − u′2) · n| |u′2 · δu| dS +
1

2

∫
ΓN

|u′2 · n| |(u′1 − u′2) · δu| dS

≤ |δu|1,Ω
(
c1 ‖γ2‖∞,Ω |u′1 − u′∗1|1,Ω + c2 |u′1 − u′∗1|1,Ω |u′2|1,Ω

)
≤ c3 |δu|1,Ω

(
‖γ2‖∞,Ω + ε2

)2

Repeating the reasoning of the proof of the Theorem 5.4.1, it is possible to prove that there
exists c4 > 0, independent of γ, γ1 and γ2, such that

|(v′2 + v −w)|1,Ω ≤ c4

(
‖γ2‖∞,Ω + ε2

)
Thus, there exists C2 > 0, independent of γ, γ1 and γ2, such that

|δv|21,Ω ≤ C1 (A1 + A2) ≤ C2

(
‖γ2‖∞,Ω + ε2

)2

|δv|1,Ω
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Repeating the same arguments, it is possible to prove that there exists C3 < 0 such that

‖δp‖0,Ω ≤ C3

(
‖γ2‖∞,Ω + ε2

)2

In conclusion,

‖r ((γ, β) ; (γ1, ε1) ; (γ2, ε2))‖H = (C2 + C3)
(
‖γ2‖∞,Ω + ε2

)2

Therefore,

‖r ((γ, β) ; (γ1, ε1) ; (γ2, ε2))‖H(
‖γ2‖∞,Ω + ε2

)2 ≤ (C2 + C3)
(
‖γ2‖∞,Ω + ε2

) (‖γ2‖∞,Ω+ε2)→0
−→ 0,

proving the theorem.

Let (γ, β) ; (γ1, ε1) ; (γ2, ε2) ∈ A. An expresion for the Fréchet second derivative of J (γ)
on directions (γ1, ε1) and (γ2, ε2) is given by

J ′′ (γ, β) [(γ1, ε1) ; (γ2, ε2)] =B′′ (A (γ, β)) [A′1 (γ, β) [(γ1, ε1)], A′1 (γ, β) [(γ2, ε2)]]

+B′ ((A (γ, β))) [A′′1 (γ, β) [(γ1, ε1) ; (γ2, ε2)]]

+ C ′′ (γ) [γ1, γ2]

= (u′1,u
′
2)0,Ω + (u− uR,u

′′)0,ω + α (γ1, γ2)s,Ω ,

where, reasoning as in the proof of Theorem 5.4.2,

(u− uD,u
′′)0,ω =− (γ1u

′
2 + γ2u

′
1 + (∇u′1)u′2 + (∇u′2)u′1,ϕ)0,Ω

+
1

2

∫
Γ−N

((u′1 · n)u2 + (u′2 · n)u1) ·ϕ dS.

In consequence,

J ′′ (γ, β) [(γ1, ε1) ; (γ2, ε2)] = (u′1,u
′
2)0,Ω + (u− uR,u

′′)0,ω + α (γ1, γ2)s,Ω

= (u′1,u
′
2)0,Ω − (γ1u

′
2 + γ2u

′
1 + (∇u′1)u′2 + (∇u′2)u′1,ϕ)0,Ω

+ α (γ1, γ2)s,Ω +
1

2

∫
Γ−N

((u′1 · n)u2 + (u′2 · n)u1) ·ϕ dS.

In what follows, a second order optimality condition is proved. For this, a series of tech-
nical results are required. Let (γ, β) , (γ1, ε1) , (γ2, ε2) , (h, ε) ∈ A, consider A (γ, β) =
[u, p], A (γ + h, β + ε) = [u∗, p∗], with respective adjoint states [ϕ, ξ] and [ϕ∗, ξ∗],
A′ (γ, β) [(γk, εk)] = [u′k, p

′
k] and [u′∗k, p

′
∗k] = A′ (γ + h, β + ε) [(γk, εk)] for k ∈ {1, 2}. Us-

ing this, it is possible to obtain the following estimations.

Lemma 5.5.4. There exists C > 0 such that∣∣∣(u′∗1 − u′1,u
′
2)0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
∣∣∣(u′∗1,u′2∗ − u′2)0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
.
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Proof. Applying Cauchy-Schwartz inequality and Theorem 1.2.2, since u′∗1−u′1 ∈H1
ΓD

(Ω),
there exists c1 > 0 such that∣∣∣(u′∗1 − u′1,u

′
2)0,Ω

∣∣∣ ≤ ‖u′∗1 − u′1‖0,Ω ‖u′2‖0,Ω ≤ c1 |u′∗1 − u′1|1,Ω |u′2|1,Ω

Using Lemma 5.5.1 and Lemma 5.5.3, there exist c2 > 0 and c3 > 0 such that∣∣∣(u′∗1 − u′1,u
′
2)0,Ω

∣∣∣ ≤ c1 |u′∗1 − u′1|1,Ω |u′2|1,Ω
≤ c1

(
c2

(
‖h‖∞,Ω + ε

)(
‖γ1‖s,Ω + ε1

))(
c3

(
‖γ2‖s,Ω + ε2

))
≤ C

(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
where C = c1c2c3. The second estimate is analogous.

Lemma 5.5.5. There exist C > 0 such that |ϕ∗ −ϕ|1,Ω ≤ C ‖h‖∞,Ω.

Proof. Analogous to the proof of Lemma 5.5.3.

Lemma 5.5.6. Let k, j ∈ {1, 2}, with j 6= k. There exists C > 0 such that∣∣∣(γju′∗k,ϕ∗ −ϕ)0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
.

Proof. First, applying Hölder inequality, Sobolev Embedding Theorem and Theorem 1.2.2,
there exists c1 > 0 such that∣∣∣(γjv′h,k,ϕh −ϕ

)
0,Ω

∣∣∣ ≤ ‖γj‖0,Ω

∥∥v′h,k∥∥0,4,Ω
‖ϕh −ϕ‖0,4,Ω

≤ c1 ‖γj‖s,Ω
∣∣v′h,k∣∣1,Ω |ϕh −ϕ|1,Ω .

Applying Lemmas 5.5.1 and 5.5.5, there exists c2 > 0 and c3 > 0 such that∣∣∣(γjv′h,k,ϕh −ϕ
)

0,Ω

∣∣∣ ≤ c1 ‖γj‖s,Ω
∣∣v′h,k∣∣1,Ω |ϕh −ϕ|1,Ω

≤ c1 ‖γj‖s,Ω
(
c2 ‖γk‖s,Ω

)(
c3 ‖h‖∞,Ω

)
≤ C ‖γj‖s,Ω ‖γk‖s,Ω ‖h‖∞,Ω

where C = c1c2c3. Thus, the lemma is proved.

First, applying Hölder inequality, Sobolev Embedding Theorem and Theorem 1.2.2, there
exists c1 > 0 such that∣∣∣(γju′∗k,ϕ∗ −ϕ)0,Ω

∣∣∣ ≤ ‖γj‖0,Ω ‖u′∗k‖0,4,Ω ‖ϕ∗ −ϕ‖0,4,Ω

≤ c1 ‖γj‖s,Ω
(
|u′∗k|1,Ω + ε ‖uD‖1/2,ΓD

)
|ϕh −ϕ|1,Ω .

Applying Lemmas 5.5.1 and 5.5.5, there exists c2 > 0 and c3 > 0 such that∣∣∣(γju′∗k,ϕ∗ −ϕ)0,Ω

∣∣∣ ≤ c1 ‖γj‖s,Ω
(
|u′∗k|1,Ω + ε ‖uD‖1/2,ΓD

)
|ϕh −ϕ|1,Ω
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≤ c1 ‖γj‖s,Ω
(
c2

(
‖γk‖s,Ω + εk

))(
c3

(
‖h‖∞,Ω + ε

))
≤ C

(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
where C = c1c2c3. Thus, the lemma is proved.

Lemma 5.5.7. Let k, j ∈ {1, 2}, with j 6= k. There exists C > 0 such that

1.
∣∣∣((∇u′∗j)u′∗k,ϕh −ϕ

)
0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
2.
∣∣∣((∇u′∗j − u′j

)
u′∗k,ϕ

)
0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
3.
∣∣∣((∇u′∗j) (u′∗k − u′k) ,ϕ

)
0,Ω

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
4.
∣∣∣(u′∗j · n,u′∗k · (ϕ∗ −ϕ)

)
0,ΓN

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
5.
∣∣∣((u′∗j − u′j

)
· n,u′∗k ·ϕ

)
0,ΓN

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
6.
∣∣∣(u′∗j · n, (u′∗k − u′k)ϕ

)
0,ΓN

∣∣∣ ≤ C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
Proof. Using Theorems 1.2.2 and 1.2.2, we obtain∣∣∣((∇u′∗j)u′∗k,ϕh −ϕ

)
0,Ω

∣∣∣ ≤ κ
∣∣u′∗j∣∣1,Ω |v′∗k|1,Ω |ϕh −ϕ|1,Ω

Applying Lemmas 5.5.3 and 5.5.5, there exists c1 > 0 and c2 > 0 such that∣∣∣((∇u′∗j)u′∗k,ϕh −ϕ
)

0,Ω

∣∣∣ ≤ κc2
1c2

((
‖γj‖s,Ω + εj

))((
‖γk‖s,Ω + εk

))((
‖h‖∞,Ω + ε

))
≤ C

(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
where C = κc2

1c2 > 0, proving the first estimate. The proof of the following two estimates
are similar. Finally, the last three estimates can be obtained using Theorem 1.2.3 instead of
Theorem 1.2.2

Theorem 5.5.2. Let (γ, β) ; (h, ε) (γ1, ε1) ; (γ2, ε2) ∈ A. There exists L > 0 such that

|(J ′′ (γ + h, β + ε)− J ′′ (γ, β)) [(γ1, ε1) ; (γ2, ε2)]|
≤L

(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
.

Proof. Applying triangular inequality, we obtain

|(J ′′ (γ + h, β + ε)− J ′′ (γ, β)) [(γ1, ε1) ; (γ2, ε2)]|
≤
∣∣∣(u′∗,1,u′∗,2 − u′2

)
0,Ω

∣∣∣+
∣∣∣(u′∗,1 − u′1,u

′
2

)
0,Ω

∣∣∣
+
∣∣∣(γ1u

′
∗,2,ϕ∗ −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ1

(
u′∗,2 − u′2

)
,ϕ
)

0,Ω

∣∣∣
+
∣∣∣(γ2u

′
∗,1,ϕ∗ −ϕ

)
0,Ω

∣∣∣+
∣∣∣(γ2

(
u′∗,1 − u′1

)
,ϕ
)

0,Ω

∣∣∣
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+
∣∣∣((∇u′∗,1)u′∗,2,ϕ∗ −ϕ

)
0,Ω

∣∣∣+
∣∣∣(u′∗1 · n,u′∗2 · (ϕ∗ −ϕ))0,ΓN

∣∣∣
+
∣∣∣((∇u′∗,1 − u′1

)
u′∗,2,ϕ

)
0,Ω

∣∣∣+
∣∣∣((u′∗1 − u′1) · n,u′∗2 ·ϕ)0,ΓN

∣∣∣
+
∣∣∣((∇u′∗,1) (u′∗,2 − u′2

)
,ϕ
)

0,Ω

∣∣∣+
∣∣∣(u′∗1 · n, (u′∗2 − u′2)ϕ)0,ΓN

∣∣∣ ,
where every term were bounded with estimations of the form

C
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
(see Lemmas 5.5.4, 5.5.6 and 5.5.7). In

conclusion, there exists L > 0 such that

|(J ′′ (γ + h)− J ′′ (γ)) [γ1, γ2]| ≤ L
(
‖γ1‖s,Ω + ε1

)(
‖γ2‖s,Ω + ε2

)(
‖h‖∞,Ω + ε

)
.

Corollary 5.5.1. Let (γ, β) ; (γ∗, β∗) ∈ A. There exists L > 0 such that, for every θ ∈ [0, 1]

|(J ′′ (θγ∗ + (1− θ) γ, θβ∗ + (1− θ) β)− J ′′ (γ∗, β∗)) [(γ∗ − γ, β∗ − β) , (γ∗ − γ, β∗ − β)]|

≤L
(
‖γ∗ − γ‖∞,Ω + |β − β∗|

)(
‖γ∗ − γ‖s,Ω + |β − β∗|

)2

.

Finally, a second order sufficent optimality condition is presented and proved.

Theorem 5.5.3. Let (γ∗, β∗) ∈ A such that (γ∗, β∗) verifies the first orden optimality con-
dition. If there exists δ > 0 such that

(∀ (γ, β) ∈ A) J ′′ (γ∗, β∗) [(γ∗ − γ, β∗ − β) , (γ∗ − γ, β∗ − β)] ≥ δ
(
‖γ∗ − γ‖s,Ω + |β − β∗|

)2

Then, there exist σ, ε > 0, independent of γ and γ∗, such that, if ‖γ∗ − γ‖∞,Ω + |β − β∗| ≤ ε,
then

J (γ, β) ≥ J (γ∗, β∗) + σ
(
‖γ∗ − γ‖s,Ω + |β − β∗|

)2

.

In consequence, J has a local minimum at (γ∗, β∗).

Proof. See Theorem 3.4 in [39].

Remark 5.5.1. The result obtained in Theorem 5.5.3 depends of s, but is valid for every
s ≥ 0.

5.6 Numerical Results

In this section, we present some numerical test for our minimization problem simulating a
cardiac valve with 2D and 3D synthetic data in order to complement the theory presented in
the previous sections. According to [4], it is possible to approximate the effect of the valves
using an appropriate L2 function in a virtual domain. For the 2D experiments, we propose
a realistic domain with a piecewise smooth bicuspid valve which represent a longitudinal
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section of the structure of a cardiac valve in an symmetric arbitrary position. We obtained
our reference velocity from the numerical solutions of the Navier-Stokes equation with our
real domain, extending by zero in the virtual domain used. For the 3D experiments, we used
a cylinder as a virtual domain simulating a tricuspid cardiac valve with a realistic shape
to obtain the reference velocity. In both cases, 2D and 3D, we used complete or partial
information to numerically solve the following minimization problem.

minimize J (γ, β,u) =
1

2
‖u− uOBS‖2

0,ω +
α

2
‖γ‖2

s,Ω (5.5)

subject to −ν4u + (∇u)u +∇p+ γu = 0 in Ω (5.6)

divu = 0 in Ω

u = βuD on ΓD

−ν ∂u
∂n

+ pn +
1

2
(u · n)− u = 0 on ΓN

u ∈H1 (Ω) , γ ∈ Hs (Ω) , β ∈ R,

0 ≤ β ≤M1, 0 ≤ γ ≤M2 a.e. in Ω.

In the following subsections, the configurations of the reference case is explained, as well
as the numerical solutions of the inverse problems associated with synthetic MRI.

5.6.1 2D reference test

To define a reference geometry, we use a domain Ω0 that represents the area around the
aortic valve with the valves (see Figure 5.1). The inflow ΓI follows a Poiseuille’s Law with
parabolic profile given by

uD (x, y) = −Ux (d− x)n,

where x = (x, y) are the Cartesian coordinates of the domain, n is the outer normal vector
and d is the diameter of the inflow. Later, we define the virtual domain Ω given for the
realistic domain without the valves and the same boundary conditions.

−0.5 0 0.5 1.0 1.5 2.0 2.5

1

2

3

4

ΓI

ΓO

ΓW ΓW

−0.5 0 0.5 1.0 1.5 2.0 2.5

1

2

3

4

ΓI

ΓO

ΓW ΓW

Figure 5.1: Realistic domain (Ω0, left) and virtual domain (Ω, right).
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The valves were generated with a rotated parabola with a thickness of 0.1 mm and can
be recovered using the γ function. Indeed, according to [4], the valves are modeled on the
resistance term γu using the function γ. This function assumes a constant value M � 1 in
the regions where the valve is and assumes the value 0 where the valve is not.

The parameters for the human blood flow are given by the kinematic viscosity equal to
ν = 0.035 cm2 / s, the blood density given by ρ = 1 g / cm3, and the dimensions d = 2 cm and
U = 30 cm / s, resulting in a peak Reynolds number on the inlet of

Re =
Ud

ν
= 1714.

The Navier-Stokes equations are discretized using the finite element method (FEM) with
Taylor-Hood elements (P2 for the velocity u and P1 for the pressure) on an unstructured tri-
angular mesh. To obtain the reference solution, we used a mesh for the realistic domain Ω0

generated by domain triangulation with h = 0.02 cm, which corresponds to 37666 elements
and 19209 nodes. We generated a second mesh for the virtual domain used in the minimiza-
tion problem. That mesh were generated by domain triangulation of Ω with h = 0.05 cm,
which corresponds to 9716 elements and 4986 nodes.

The solvers were implemented using the finite element library FEniCS [5] with the default
configuration. To solve the nonlinear problems, the Newton method was used. We define the
set O, that represents the valve inside of Ω, that is, O = Ω \ Ω0. The reference velocity uR
is computed by the Lagrange intepolation on the virtual mesh of the velocity computed as
the numerical solution of the Navier-Stokes in the realistic mesh, extended by 0 in O.

Figure 5.2: Plots of unstructured mesh for Ω (left) and reference solution uR interpolated in
Ω (right).

5.6.2 Numerical solution of the inverse problem in 2D

Using uOBS = uR as reference solution, the minimization problem (5.5) is numerically solved
using FEniCS and dolfin-adjoint. For this first example, we considered a measurement area
ω = Ω, γ ∈ H1(Ω), and the values M1 = 50, M2 = 104, α0 = 10−5 and α1 = 10−8. The use of
two different weights for the norm and seminorm is consistent with the theoretical analysis
of the previous sections, so this problem has a solution. The dolfin-adjoint library [71] allows
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to implement automatic derivation of the discrete adjoint equations for PDE models and
implement minimization algorithms from the Python 3 libraries. In particular, the L-BFGS-
B algorithm (see Section 4.3 in [39]) was used with the following stopping criteria on the step
k

|J (γk)− J (γk+1)|
max {|J (γk)| , |J (γk+1)| , 1} ≤ 10−5

To start the algorithm, γ0 = 0 and β = 0 were used as the initial solution. The parameters
γ and β were rescaled to the interval [0, 1] for a correct implementation in dolfin-adjoint.
As a way to define a valve reconstruction algorithm sketch, we follow the same steps we
established in [3].

1. We defined an axis that crosses the domain from the inflow to the outflow.

2. For a uniform discretization of the axis, we defined perpendicular lines.

3. The solution γ∗ obtained by the algorithm is interpolated on each of the lines. Three
points are selected on each side of the axis. The first and second point are the limits of
an interval where ∇γ∗ ·n has the maximum positive values with 1% of tolerance. The
third point is the local maximum closest to the interval.

4. An average is obtained between the three points.

5. A polyline is drawn on each side of the axis. Each polyline passes through all the
average points.

Numerical results are presented in Figure 5.3. The polyline is drawn in white, which
presents a great approximation to the interface between the different values of the reference
given by γ. The optimal γ∗ has values close to 0 between the valves, above and below the
valves. Likewise, the magnitude and direction of u∗ is similar to uR, where u∗ corresponds to
the optimal state. The optimal β∗ = 31.854 is very near to the reference value β = 30, showing
empirically that the previously defined problem allows to obtain a good approximation of
the maximum velocity magnitude in the inflow.

Figure 5.3: Optimal γ∗, reference solution u∗ with reconstructed valve and optimal velocity
u∗ (from left to right). Reference test, 366 iterations, β∗ = 31, 854.
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The second example were designed to corroborate that this algorithm is able to solve the
inverse problem measuring only a part of uR given by the reference velocity. In this case,
choosing ω as the area where the valves should be (see Figure 4.5 center and right), given by

ω = Ω ∩
{

(x, y) ∈ R2 | 1 ≤ y ≤ 3
}
,

Figure 5.4: Optimal γ∗, reference solution u∗ with reconstructed valve and optimal velocity
u∗ (from left to right). Reference test with subdomain, 320 iterations, β = 32.2953.

The expected result is similar to that found in the fist example. Figure 4.5 presents the
numerical results, the polyline and the reference. In the case of the reference solution uR,
a black rectangle was drawn that allows delimiting the measurement area ω. In particular,
this problem required less iterations than the case with measurements on Ω, obtaining very
similar results for γ and β. Although γ∗ assumes small values below the valves, compared to
its maximum value, these values are enough to generate a numerically significant resistance
for the flux, which is compensated with a higher value for β.

5.6.3 Measurements of MRI type in 2D

In several medical applications, the 4D MRI allows to register the blood flow in a volume unit,
also called voxel, which can be reinterpreted as the average blood velocity in the voxel. Inside
each voxel, we can assume the blood velocity as a constant. Since our problem is stationary,
an approximation to a synthetic MRI is to project uR, extended by zero outside the virtual
domain Ω, to a Q0 FEM space (given by piecewise constant discontinuous functions on a
quadrilateral mesh) using a new quadrilateral mesh that contains the virtual domain mesh
obtaining our synthetic 2D MRI uMRI. That mesh were generated by uniform quadrilaterals
of 1 mm×1 mm. Unlike [3], where the authors used this synthetic MRI as an observation,
we project it again to the original P2 space in order to obtain the new observation uP that
we can easily compare with the numerical states.

Figure 5.5 shows the synthetic MRI generated from the reference solution and the new ref-
erence solution uP, where we can verify that the reference is affected by the loss of resolution
given by the MRI.
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Figure 5.5: Original velocity u (left), synthetic MRI type velocity measurement uMRI (center)
and uP (right).

Then, the new minimization problem is given by (5.5), but replacing uOBS with uP, where
the values M1 = 104, M2 = 50 α0 = 10−5 and α1 = 10−8 were used. It is possible to prove
the existence of solution of this problem in the same way as in the proof of the theorem.
Figure 5.6 shows the numerical results and the references. In comparison with Figure 5.3,
the reconstructed valve in Figure 5.5 is located further from the center than in Figure 5.3
(see Figure 5.7), because of synthetic MRI sampling, but the optimal values β∗ are similars.

Figure 5.6: Optimal γ∗, synthetic MRI uMRI with reconstructed valve and optimal velocity
u∗ (from left to right). Synthetic MRI, 373 iterations, β = 31.6530.

103



5.6. NUMERICAL RESULTS

Figure 5.7: Comparison between reconstructed valves by reference solution (magenta) and
synthetic 2D MRI (green).

The white noise intensity in the velocity measurements from MRI is proportional to
the velocity encoding parameter (also called VENC [40]) of the scan. This parameter is
configured with a value greater than the maximum expected velocity, in order to eliminate
signal aliasing. Then, the noise in all voxels is proportional to the maximum velocity in the
measurement area. In the clinical practice it can be expected that high-quality MRI contains
a velocity noise of 10% of the maximum velocity in each voxel [40] in each direction. Gaussian
noises were added to this MRI in every direction with a standard deviation of 5%, 10% and
20% of the maximum absolute value on each direction of uR.

Figure 5.8: Optimal γ∗, synthetic MRI uMRI with reconstructed valve and optimal velocity
u∗ (from left to right). Synthetic MRI with 5% of noise, 298 iterations, β = 31.4286.

Figure 5.8 shows the results of this experiment with a 5% of Guassian noise. The results
are similar to the experiment without noise in terms to the tendency of the polyline to
approximate the valve shape and draw lines parallel to the voxels.

This approximation seems weaker as noise increases, in the sense that the polyline has
a lower quality in its approximation and γ∗ tends to overfit the data. Figures 5.9 and 5.10
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show the result of the experiment with 10% and 20% of Gaussian noise, respectively. The
noise is exactly the same than the 5% Gaussian noise case, but increasing the level noise.

Table 5.1 shows the mean square error (MSE) between the reconstructed valve given by
the polylines obtained using MRI in Figures 5.5, 5.8, 5.9 and 5.10, and the polyline obtained
in the reference test (see Figure 5.3). To quantify this error, we consider only the points of
the polyline in Figure 5.3 that are at a distance less than or equal to 0.5 mm from O. There
are minor differences between the valve reconstructions for the cases with a noise level of 0%
and 5%. However, the quality of the reconstruction decreases when the level noise increases
up to 20%.

Figure 5.9: Optimal γ∗, synthetic MRI uMRI with reconstructed valve and optimal velocity
u∗ (from left to right). Synthetic MRI with 10% of noise, 245 iterations, β = 31.4040.

Figure 5.10: Optimal γ∗, synthetic MRI uMRI with reconstructed valve and optimal velocity
u∗ (from left to right). Synthetic MRI with 20% of noise, 247 iterations, β = 31.7620.
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Noise level MSE
0% 9.9098 · 10−3

5% 1.1720 · 10−2

10% 2.3320 · 10−2

20% 4.1661 · 10−2

Table 5.1: MSE of reconstructed valves using MRI with different noise levels.

5.6.4 3D reference test

Here, the domain Ω is given by

Ω =
{

(x, y, z) ∈ R3 | x2 + y2 ≤ R2 and x ∈ [0, L]
}

where R = 1.305 and L = 4, and a unstructured tetrahedral mesh with h = 0.05, with
59568 nodes and 329126 elements. The valves are modeled on the permeability term using
the γ function. This function assumes the constant value M � 1 in the regions where the
valve is and assumes the value 0 where the valve is not. We used a parametric model of
the tricuspid valve inspired from [52] to define the γ function, where the support of γ lies in
Ω ∩ {(x, y, z) ∈ R3 | x ∈ [1, 2]}. This function is modeled as a P1 function, where the nodal
values of the function are given by M = 1010 or 0, depending if the node lies or not in the
valve. We still using the sames kinematic viscosity ν = 0.035 cm2 / s, density ρ = 1 g / cm3

and U = 30 cm / s.

The inflow ΓI = {(x, y, 0) ∈ R3 | x2 + y2 ≤ R2} follows a Poiseuille’s Law with parabolic
profile given by

uD (x, y, z) = − U

R2

(
R2 − x2 − y2

)
n,

where x = (x, y) are the Cartesian coordinates of the domain, n is the outer normal vector
and d is the diameter of the inflow, while the directional do-nothing conditions are imposed on
the outflow ΓO = {(x, y, 4) ∈ R3 | x2 + y2 ≤ R2}. The walls of the structure are represented
by ΓW = {(x, y, z) ∈ R3 | x2 + y2 = R2 and x ∈ [0, L]}.

Unlike the 2D case, due to computing efficiency, the Navier-Stokes equations were dis-
cretized using the finite element method (FEM) with the MINI element (P1,bub = P1 ⊕ Vbub

for the velocity u and P1 for the pressure p, where Vbub is the space of the bubble functions,
see Section 3.6.1 in [62]). We still using FEniCS [5] with the default configuration with the
Newton method. The numerical experiments in 3D were computed on 48 Intel Xeon 2.5 GHz
cores. We define the set O, that represents the valve inside of Ω, by

O =
{
x ∈ Ω | γ(x) = 1010

}
.

Figures 5.11 and 5.12 show the reference valve and reference velocity field. The peak Reynolds
number on the inlet is

Re =
Ud

ν
= 2237.
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Figure 5.11: Plots of the valve region O. Slice for x = 0 (left), frontal view (center) and
outflow view (right).

Figure 5.12: Plots of the valve (left), the reference velocity field (center) and isovalues of
reference velocity for a x = 0 cut (right).
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5.6.5 Numerical solution of the inverse problem in 3D

Using uOBS = uR as reference solution, the minimization problem (5.5) is solved, but con-
sidering the new functional

J (γ,u) =
1

2
‖(u)P1 − (uR)P1‖2

0,ω +
α0

2
‖γ‖2

0,Ω +
α1

2
|γ|21,Ω ,

where (u)P1 denotes the projection of (u) on the P1 space. We decided to compare the
velocity projections on P1 instead of the velocity in P1,bub since P1 are better approximations
to the velocity than the one obtained in P1,bub (see Section 2 in [82]). This first example in
3D follows the same configuration of the first example in 2D, choosing the measurement area
ω = Ω and the values M1 = 50, M2 = 104, α0 = 10−5 and α1 = 10−8. We still using the
dolfin-adjoint library [71] with the L-BFGS-B algorithm (see Section 4.3 in [39]) and stopping
criteria on the step k given by

|J (γk)− J (γk+1)|
max {|J (γk)| , |J (γk+1)| , 1} ≤ 10−5

To start the algorithm, γ0 = 0 and β = 0 were used as the initial solution. The parameters γ
and β were also rescaled to the interval [0, 1] for a correct implementation in dolfin-adjoint.
Numerical results are presented in Figure 5.13. The optimal γ∗ has values close to 0 in zones
before the valves and in the interior zone where there are no valves. If we choose the zones
where γ∗ has values greater or equal to the threshold 0.4 max{γ∗(x | x ∈ Ω)}, we can see
that region is able to recover the space between the valves. The magnitude and direction of
u∗ is similar to uR, where u∗ corresponds to the optimal state. The optimal β∗ = 36, 3068
is near to the reference value β = 30, but the difference with respect the reference is greater
than the 2D case.

Figure 5.13: Slices of reference uR and optimal u∗, comparison between γR (magenta) and γ∗,
slices of optimal γ∗ and γR (from left to right). 3D Reference test, 460 iterations, β = 36.3068.
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5.6.6 Measurements of MRI type in 3D

In this experiment, we present the covering of the γ function form a projection of uR, extended
by zero outside the virtual domain Ω, on a Q0 FEM space using a new quadrilateral mesh that
contains the virtual domain mesh obtaining our synthetic 3D MRI uMRI. That mesh were
generated by uniform hexahedrons of 1 mm×1 mm×1 mm. Unlike [3], where the authors
used this synthetic MRI as a reference, we project again to the P1 space in order to obtain
the new velocity reference uOBS = uP that we can easily compare with the projection of
numerical states on P1 space.

Then, we solved Problem (5.5) considering this new functional

J (γ,u) =
1

2
‖(u)P1 − uP‖2

0,ω +
α0

2
‖γ‖2

0,Ω +
α1

2
|γ|21,Ω ,

where the values M1 = 104, M2 = 50 α0 = 10−5 and α1 = 10−8 were used. It is possible
to prove the existence of solution of this problem in the same way as in the proof of the
theorem. Figure 5.14 shows the numerical results and the references similarly to Figure 5.13.
We obtained similar results to the first 3D example, with a better prediction of the maxi-
mum velocity in the inflow β∗ and a similar reconstruction of the space between the valves.
However, the solver needed 106 more iterations in comparison with the original case.

Figure 5.14: Slices of reference uMRI and optimal u∗, comparison between γR (magenta)
and γ∗, slices of optimal γ∗ and γR (from left to right). Synthetic 3D MRI, 566 iterations,
β = 35.6507.

We also simulated a MRI with a velocity noise proportional to the maximum absolute
velocity for each direction, following the same accepted medical parameters for a 4D flow
MRI. Gaussian noises were added to this MRI in every direction with a standard deviation
of 10% and 20% of the maximum absolute value on each direction of uMRI.

109



5.6. NUMERICAL RESULTS

Figure 5.15: Slices of reference uMRI and optimal u∗, comparison between γR (magenta) and
γ∗, slices of optimal γ∗ and γR (from left to right). Synthetic MRI with 10% of noise, 566
iterations, β = 35.3435.

Figure 5.16: Slices of reference uMRI and optimal u∗, comparison between γR (magenta) and
γ∗, slices of optimal γ∗ and γR (from left to right). Synthetic MRI with 20% of noise, 566
iterations, β = 38.9662.

Figures 5.15 and 5.16 show the results of this experiment with a 10% and 20% of Guassian
noise, respectively. This approximation seems weaker as noise increases, following a similar
tendency given in the 2D case. The valve reconstruction obtained in Figure 5.15 is similar
to the one obtained in the previous 3D examples, but the γ∗ has some numerical noise and
is not so similar to γR. The results are worse when noise is increased up to 20%, where it is
not possible to reconstruct the space between the valves (see Figure 5.16) and the γ∗ is not
comparable with the reference γR.
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5.7 Conclusions

We have presented a new distributed parameter identification problem for the Navier-Stokes
equations, contributing to the detection of obstacles and domain deformations in fluid dy-
namic studies. For this problem, we establish the existence of solution and optimality con-
ditions, validating the use of some optimization algorithms for differentiable functionals. In
comparison with [3], we could establish the same theorems for our problem with weaker
smoothness hypotheses. One of the future improvements is to work towards the uniqueness
of solution of this parameter identification problem using the results from Chapter 4 and
another techniques.

The numerical experiments presented in this chapter show an improvement from the ones
performed in [3] with a better precision and stability for the 2D experiments. The numerical
tests without noise had satisfactory results in terms of rebuilding the simulated valve from
data generate from a realistic domain. The experiments with Gaussian noise were improved
adding a simple post-processing of the simulated MRI. The quality of the solutions is worse
as noise increases, as expected. The 3D experiments presented similar results in comparison
with the 2D experiments. However, the threshold criterion is not good enough to reconstruct
the space between valves for higher noise levels and the execution time of the solver is
high. Given the 3D case is interesting for the medical community, since it will contribute to
simplify the detection of defects in the function of aortic valves, the design of a simplified
algorithm that obtains numerical solutions for the parameter identification problem and a
valve reconstruction is part of our future work.
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Conclusions and future work

In this thesis, new advances are presented in inverse problems of Fluid Mechanics in steady
state, with direct applications in the recovery of domain deformations and obstacles. The
search for non-invasive methods to detect valvular diseases is one of the medical challenges
that where it is expected to apply 4D Flow MRI, which estimates the blood velocity circu-
lating in the human body, particularly in the heart. One of the purpose of this thesis is to
contribute to the detection of aortic valve conditions (such as insufficiency or stenosis) from
a mathematical perspective, helping to model this problem and giving a first approach to the
solution to this problem.

In Chapter 2, we presented the asymptotic equivalence between the problem of detecting
obstacles an domain deformations and recovering a permeability function that is equal to a
sufficiently large constant R > 0 in regions where there are obstacles or domain deformations
or equal to 0 otherwise for the Stokes and Navier-Stokes equations. Using variational for-
mulations and energy estimates, we obtained an asymptotic estimate between the velocities
obtained by the real domain and the virtual domain with the permeability parameter. One of
the advantages of working with virtual domains is that it is not necessary to modify meshes
or subdomains to verify the effect of new changes in obstacles and domain deformations,
since this contribution is reduced to analyzing the permeability parameter.

The results of the numerical test presented in Chapter 2 were better compared to the
theoretical results, validating the use of this kind of functions and avoiding shape optimization
methods when we work with penalization terms. That results also allow us to conjecture we
could improve our energy estimate and increase the penalty error order from R−3/4 to R−1 if
we impose stronger hypotheses for the smoothness of the boundary data.

In Chapter 3, we could establish a stability result for the inverse problem of recovering a
smooth scalar permeability parameter given by the Brinkman’s law applied on steady Navier-
Stokes equations with local observations of the fluid velocity and their vorticity on a fixed
domain. Our estimate does not requiere pressure observations, but requires a weaker version
of a non-degeneracy condition. Our strategy is based in techniques that allows to deduce
Carleman estimates for the linearized steady Navier-Stokes equations can be extended to
other equations.

We corroborate our estimate with a numerical test for recovering a smooth parameter,
showing a slow convergence of the optimization solver. For the numerical test that recovered a
discontinuous coefficient, we presented an adaptive refinement strategy with two a-posteroiri
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predictors working together with satisfactory results. We can deduce that our estimates could
be improved by relaxing the regularity hypotheses of our main theorem. We obtained some
numerical noise in both experimental tests that could be caused by the numerical estimation
of the curl. Then, one alternative is to consider mixed finite element formulations where the
unknowns of the Navier-Stokes equations are the velocity, vorticity and pressure of the fluid.

Finally, we presented two different parameter identification problems for the Oseen and
Navier-Stokes equations, respectively, when we recover the permeability parameter in order
to reconstruct a realistic estimate of the aortic valve in Chapters 4 and 5. The proposed
method in both chapters consists in adding the Brinkman’s law permeability term, where
the boundary of the scalar permeability parameter support represents the boundaries of the
valves, thanks to the results obtained in the Chapter 2. We verified the existence of minimiz-
ers and first and second order optimality conditions are derived through the differentiability
of the velocity and pressure of the fluid, following the Ossen and Navier-Stokes equations
with respect of the parameters. Then, we can use a quadratic differentiable functional, based
in the stability estimates given in Chapter 3, with some additional stabilization terms.

The numerical experiments presented in Chapters 4 and 5 validate the theory presented
in Chapters 2 through 5. The 2D numerical tests without noise were successful in terms of
recovering a permeability function and a valve shape that is similar to the reference shape.
By the same way, the 3D numerical test without noise recovers a permeability function with
a threshold such that the space between the valves can be detected. The experiments with
Gaussian noise were improved adding a simple post-processing of the simulated MRI. The
quality of the solutions is worse as noise increases, as expected, with similar performances in
2D and 3D experiments. However, the threshold criterion is not good enough to reconstruct
the space between valves for higher noise levels. In that case, we need to develop more
numerical test and the study of improved image recovering techniques in order to design a new
algorithm that allows to obtain a high quality valve detection from the optimal permeability
parameter. Another issue is the execution time of the 3D solver. One alternative to decrease
the execution time is to simplify the problem adding more information about the permeability
function, like a region of the domain where that function is equal to 0, or stabilized finite
element formulations using P1 elements for the velocity.
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[18] Cristóbal Bertoglio, Alfonso Caiazzo, Yuri Bazilevs, Malte Braack, Mahdi Esmaily,
Volker Gravemeier, Alison L. Marsden, Olivier Pironneau, Irene E. Vignon-Clementel,
and Wolfgang A. Wall. Benchmark problems for numerical treatment of backflow at open
boundaries. International Journal for Numerical Methods in Biomedical Engineering,
34(2):e2918, sep 2017.
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