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ABSTRACT

Aim: Understanding to what extent the climatic niche is conserved in invasive
plants is key to assessing invasion risk. This assumption has recently been

challenged by empirical evidence, since niche shifts have been documented in

some species, and niche conservatism in others. Here, we test whether climatic
niche of Eschscholzia californica differs between California (native range) and

central Chile (introduced range). Given that these regions exhibit a remarkable
similarity in both their geography and climatic configurat¡ons, we expected niche
conservatism in this plant species which ought to be expressed in similar
geographical projections either from the native or the invaded niche.

Location: California and central Chile.

Methods: We used PCA and Mahalanobis distances to compare the climatic
niche between Central Chile and California. We used species distribuiion
models (SDMs) and reciprocal comparisons to compare potential distributions
projected from the climatic niche in the native range vs the climatic niche
projected in the introduced range.

Results: The climatic niche of E. califomica in Chile is nested within the climatic
niche expressed in California. ln fact, the climatic niche in the invaded region
represents a subset of the whole range of climatic conditions detected for this
species in the native reg¡on. The SDMs projected in California from the native
and invaded range were quite similar, while the SDMs projected in Chile
although similar, the areal extent of the distribution projected from the native
niche (California) was notably higher than that projected from the invaded niche
(Chile).

Main conclus¡ons: The climatic niche of E. californica is conserved in the
invaded range. The populations of the invaded range are a subsample of the

native populations of E califomica. ln spite that potential distributions projected

from the native and invaded range n¡che are s¡milar as a whole, the extensive

area projected from the native range niche, strongly suggests that this species is

not in equilibrium in the invaded range, therefore we consider this exotic species

to be expanding its range in Chile, in an active invasion process, with the
potential to spread to more areas along southern South America.



RESUMEN

Objetivo: Comprender en qué medida los nichos climáticos de las especies

exóticas se conservan, es fundamental para evaluar su riesgo de invasión. El

conservatismo de nicho ha sido recientemente cuestionado por la evidencia
empírica, puesto que, en algunos estudios se han detectado cambios de nicho.

En el presente estudio, evaluamos si los nichos climáticos de Eschscholzia
califomica, difieren entre California (rango nativo) y el centro de Chile (rango
introducido). Dado que estas regiones presentan una notable similitud, tanto en
su geografía y configuraciones climáticas, esperamos conservatismo nicho en
esta especie vegetal, lo cual debería expresarse también en una proyección
geográfica similar.

Localización: California y centro de Chile

Métodos: Se utilizaron análisis de componentes principales (PCA) y distancias
de Mahalanobis para comparar el nicho climático entre el centro de Chile y
California. Utilizamos modelos de diskibución de especies (SDMs) y

comparaciones recÍprocas para evaluar las diferencias entre las distribuciones
potenciales proyectadas desde el nicho climático nativo versus las proyecciones
desde el nicho climático introducido.

Resultados: El nicho cl¡mát¡co de E, califomica es un subconjunto del nicho
climático que esta planta expresa en su rango nativo. Así, en el rango invadido,
E. californica no ocupa todos los requerimientos expresados en su rango nativo.
Los SDMs proyectados en California desde el rango nativo e introducido fueron
muy similares; los SDMs proyectados en Chile (desde el rango nativo e
introducido del nicho) también son similares, pero el área proyectada desde
California fue notablemente superior, lo que informa de una mayor cantidad de
espacio geográfico potencialmente invasible.

Conclusiones principales: El nicho climático de E. californica se conserva en
el rango invadido. Las poblaciones del rango introducido son una submuestra
de las poblaciones nativas de E. californica. A pesar de que la distribución del
potencial proyectada desde los nichos del rango nativo e invadido son similares
en su conjunto, la mayor extensión areal proyectada desde el nicho nativo en el
rango invadido, sugiere que esta especie no está en equllibr¡o y está en un

act¡vo proceso de invasión en Chile Central, con el potencial de dispersarse a
otras zonas del surde Sudamérica.
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INTRODUCTION

Human activities (e. g. as international trade, travel, and transport) are the main

drivers of biological invasions (Py§ek et al., 2010). This process has led to the

progressive mixing of biotas from different parts of the world (Hulme, 2009) and

has significantly impacted ecological processes (Sala et al., 2000; Thuiller et al.,

2007) and human society (Sharma et al., 2005; Burgiel& Muir, 2010). However,

alien species provide unprecedent opportunities to explore the factors that limit

the distribution of species (Kozak et al., 2008; Sax et al., 2007; Sexton et al.,

2009).

The geographic spread of invasive species is essentially the result of the

interaction among their niche requirements with dispersal abilities and biotic

interactions (Sexton et al., 2009, Alexander & Edwards, 2010). The ecological

niche is the set of abiotic and biotic conditions in which a species is able to

persist and reproduce (Hutchinson, 1957). ln fact, substantial evidences indicate

that environmental variables control species distribution (Gaston, 2003; Pearson

& Dawson, 2003; Thuiller et al., 2005).

The reciprocal correspondence between niche and species distribut¡on

constitutes a duality (Hutchinson, 1978, Colwell & Rangel, 2009), which offers

2



an ¡nterest¡ng framework for analyzing geographical distribution of invasive

species, and constitutes the foundation of species distribution models (SDMs,

sensu Elith & Leathwick, 2009). SDMs relate occurrence (and sometimes

absence) data w¡th environmental variables, and estimate potent¡al areas of

distribution, identifying suitable habitats amenable to colonization (Elith &

Leathwick, 2009; Soberón& Nakamura, 2009).

The set of abiotic variables (also called 'scenopoetic' variables) constitutes the

'Grinnellian' niche (Soberón ,2007) and is important for the understanding of the

geographic distribution of species on large spatial scales (Pearson & Dawson,

2003; Soberón, 2007; Peterson et al., 2011). By focusing on the Grinnellian

niche, the duality immediately becomes operational, because scenopoetic

variables can easily be made to correspond to cells in geographic grids

(Soberón& Nakamura, 2009). On a broad spatial scale, climatic requirements

are the principal determinant of species distributions (Gaston, 2003; Pearson &

Dawson, 2003; Thuiller et al., 2005). The climatic correspondence between

native and introduced ranges ¡s important for correctly assessing the potential

spread of invasive plants (Panetta & Mitchell, 1991; Curnutt, 2000; Pearson &

Dawson, 2003; Thuiller et al., 2005).

For an accurate prediction of the extent of invasions relying exclusively using the

climate data of the native range, two assumptions must be met: (i) the climatic

niche is conserved during ¡nvas¡on, meaning that species tend to retain

ecological traits over time (Wiens & Graham, 2005; Wiens, 2010), and (ii) the



invasive species rapidly reaches an equilibrium, this means that are present in

all suitable areas and absent in unsuitable areas (Guisan & Thuiller, 2005;

Miller, 2010). lf the climatic niche is conserved, then ¡t is possible to predict

potential invaded areas from native niche requirements Welk et al., 2002;

Peterson et al., 2003; Peterson, 2003; Welk, 2004; Martinez-Meyer & peterson,

2006).

Contemporary genetic studies demonstrate that adaptation to novel

environments in plants can occur within 20 generations or less (Hendry et al.,

2007; Rando & Verstrepen, 2007). ln this sense, there are several examples of

rapid evolutionary change in invasive plants (Leger & Rice, 2003; Maron et al.,

2004; Blair & Wolfe 2004; DeWalt et al., 2004: Brown & Eckert 2005; Leger &

Rice, 2007; Weinig et a|.,2007; Barrett et al., 2008; Dlugosch & parker; 200g).

Similarly, the occurrence of climatic niche shift in the introduced ranges have

been documented in plants (Broennimann el al., 2OO7; Beaumont et al., 2OOg;

Treier et al., 2009; Barbosa el a|.,2012). However recent findings revealed that

climatic niche shifts are rare in terrestrial plant (petitpie rre et al., 2012).

Therefore, it is not trivial assume conservatism or shift, in invasive plant spread.

Thus, to elucidate whether invasive species conserved their niche in the invaded

range, is becoming an interesting field of research in the biology of invasions.

Eschscholzia californica cham. (Papaveraceae) is a native herb from the west

coast ¡n North America, is particularly interesting to study climatic niche

dynamics in the invaded range because the plant size, fecundity, and resistance



to herbivores are significantly higher in the invaded range (central Chile),

compared to the native range (California) (Leger & Rice, 2003; Leger & Forister,

2005; Leger & Rice, 2007). Additionally, there are experimental evidences, that

suggest adaptive responses in the introduced range (Leger & Rice, 2003; Leger

& Rice, 2007). On the other hand, Californla and central Chile shares very

similar climates, topographies and vegetation types (Mooney, 1977; di Castri,

1991; Arroyo et al 2000. Sax, 2002), which might be consistent with an invasion

mediated by climatic niche conservatism.

ln this study, we assessed theclimatic niche and geographic distribution of the

invasive species E. californica in its native (California) and invaded (central

Chile) ranges. Specifically, we will evaluate if the invasion process was

promoted by climatic niche conservatism of E catifomica in the invaded range.

Given that central Chile and California exhibit a remarkable similarity of

geography and climatic configurations (Mooney, 1977), we expected that the

climatic niche of E. californica was conserved. lf so, we expected that the

geographic distribution projected in the invaded range from the native and

invaded niche should be similar.
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MATERIALS AND METHODS

Study system

The studied regions (California, 32" _ 40" N; and centrat Chile 30" _ 3g. S) have
Mediterranean-type crimates, characterized by cord, rainy winters and hot, dry
summers (Mooney et al., i970; di Castri, 1991;Arroyo et al., i99S). AIso the
topography of the two regions issimirar, with a rongitudinar varey between two
mountain ranges (Jimenez et al., 2007). The regions show a pararer ratitudinal-
climate gradient with higher precipitation and lower temperatures at higher
latitudes, which has shaped convergent vegetat¡on types (Mooney et al., .l 970.
Arroyo et al., l99S).

Eschschotzia catifornica is native to western North America. rt grows across a
wide range of environmental conditions in its native range, occupying open,
naturally disturbed and human disturbed environments (Cook,i962; Leger &
Rice, 2003). Also, E catifomica is a successful invasive species, spreading
along Mediterranean climate regions worldwide (Stebbins, 1965). lt was
intentiona'y introduced to centrar chire during the mid-1g00s and early rg00s
into botanicar gardens, and it spread across vast areas near rairroad tracks and

ó



pr¡vate gardens (Frias et al., 1975; Arroyo et al., 2000; Leger & Rice, 2003).The

introduction was also promoted by the trade of alfalfa seeds from California to

Chile during the mid-nineteenth century (Gillis, 1885; Hillman & Henry, 1928;

Leger & Rice, 2003). ln Chile, the first herbarium record (Quintero, central Chile,

coast) dates back to 1890 (SGO), and in the present days this species is

distributed between 30'and 38" S, and between 0 and 2200 m.a.s.l.

Species Occurrence Data

All recorded occurrences (georeferenced localities) in the native range of E

californica were compiled from the 'Consortium of California Herbaria' and

'Calflora' online databases (http://ucjeps.berkeley.edu/consortium/ and

http://www.calflora.org/ respectively). The data was carefully filtered, in order to

satisfied three conditions: (i) each occurrence point should contain accurate

georeferenced associated information (i.e. Datum), (ii) the georeferenced point

should be recorded after'1950 and (iii) and all points must have an associated

voucher or should be identified by a botanist. After pooling and filtering the data

from both databases, we obtained a total of 649 occurrence points from

California. ln the case of Chile, we obtained 50 occurrence points from the

Herbarium of the Universidad of Concepción (CONC) and '10 occurrence points

from MuseoNacional de Historia Natural (SGO). To increase the number of

observations, in Chile, we conducted field recording campaigns during 2009 and

2010 (spring-summer), obtaining 1 ,500 additional occurrence points.

7



Climate layers

Climate variables were obtained from WORLDCLIM (http://www.worldclim.org/)

with a spatial resolution of 30 arc-seconds (Hijmans et al., 2005), including a

total of 19 variables, which summarize temperature and precipitation dimensions

of the niche. Since collinearity of variables may lead to model overfitting

(Beaumont et al., 2005), we selected a sub-sample of variables obtained after a

correlation analysis using the SAM package (version 4, Rangel et al.,2010).

This analysis, besides measuring the correlation between variables, corrects

spatial autocorrelation of data (Rangel et al., 2010). For the selection of

variables we used as a criterion that when correlation between pairs of variables

was higher than 0.9 (Elith et al., 2006; Flory et el.,2012). Using this criterion, we

selected eight variables: mean annual temperature (Biol); maximum T'warmest

month (Bio5); mean T" warmest quarter (Bio10); mean T' coldest quarter

(Bio11); annual precipitation (Bio12); P seasonality (Bio15); P warmest quarter

(Bio18); P coldest quarter (Bio1 9) (see Appendix 1a ).

8



Niche Comparisons

A Principal Component Analysis (PCA) was performed to describe the climatic

niche of E. californica in the native and invaded range (Broennimann et al.,

2007). The PCA was conducted on the eight climatic variables, associated w¡th

the occurrence data of the species. To evaluate the differences between the

climatic niches in Ch¡le and California, we calculated the Mahalanobis distances

to discriminate between the niches (Hua & Wiens, 2009). The Mahalanobis

distance is the distance of a case to the centroid (a point representing the

"means" for all independent variables) in the multidimensional space

(Mahalanobis, 1936). We compared the mean value of the Mahalanobis

distance (to the native centroid) in invasive occurrences with a histogram of

Mahalanobis distances of the native occurrences to the native centroid

(California). A significant (one-tailed) test indicates whether similarity (overlap)

between native niche range and invaded niche range is more significant than a

random distribution. we evaluated the differences between the climatic niches of

Chile and California (as described above) from the empirical occurrence data:

1560 for Chile and 649 for California.

9



Species Distribution Models (SDMs)

SDMs were constructed using Maxent version 3.3.3e (Phillips et al., 2004;

2006). This soft\ /are predicts spec¡es distributions, correlating environmental

data with species occurrence. Maxent is a machine-learning method that

assesses the probability of distribution of a species by estimating the probabili§

distribution function of maximal entropy (Philips et al., 2006). The method

generally performs better than other software commonly used for SDMs and

uses randomly selected pseudo-absences within ana prioi-defined background

area (Elith et al., 2006; Ph¡ll¡ps et al., 2006; Ortega-Huerta & Peterson, 2008).

Maxent is also more robust to spatial errors in occurrence data and uses only

presence datasets to predict species distr¡butions (Phillips et al., 2006; Graham

et al., 2008). We divided the occurrence data into two parts for training and

testing the model (75% and 25ok, respectively). The performance of the model

was evaluated using the AUC (area under the curve ROC, Phillips et al., 2006).

AUC is a composite measure of model performance, and provides a global

comparison of model fit to that of a random prediction. AUC values range from 0

to 1, where 1 is a perfect fit. Useful models produce AUC values of 0.7-0.9, and

excellent models produce AUC values above 0.9 (Swets, 1988).

10



Reciprocal comparisons between distríbution models

ln order to test niche conservatism, we compared the distribution models using

the reciprocal modeling approach (Fitzpahick et al., 2007: Medley, 2010).

Specifically, we did this analysis in two steps: (i) in the invaded area (Chile), we

compared the distribution model projected from the native range data

(California) with the model projected from invaded range data; (ii) in the native

area (California), we compared the distribution model projected from the invaded

range data(Chile) with the distribution model obtained from the native range data

(Fitzpatrick et al., 2007; Medley, 2010). Thus we obtained four models, two for

the native range (constructed with the occurrences from California and the

projection from Chilean occurrences) and two models for invaded range

(constructed with the occurrences from Chilean and the project¡on from

Californian occurrences). lf the climatic niche is conserved, then the potential

distribution models projected in Chile and California should not differ from each

other (Medley, 2010). All models were replicated 200 times, and then the

averages (Flory et al,2012\ of each model were utilized for comparisons.

We evaluated the overlap between two pairs of SDMs (those projected in Chile

and those projected in California) using the similarity index ',/" (Corrected

Hellinger distance, Warren et al., 2008)which measures the degree of overlap

between the predicted distributions. This index ranges from 0 (no similari§) to 1

(total similari§) (Warren et al., 2008, Medley, 2010).

11



We also evaluated niche conservatism, correlating the occurrence probabil¡ties

obtained from SDMs. Specifically, we correlated (i) P(O) projected from the

nat¡ve n¡che range in the invaded range with P(O) projected from the invaded

niche range in the invaded range and (i¡) P(O) projected from the invaded niche

range in the invaded range with P(O) projected from the native niche range in

the invaded range. High correlation values indicate that the pairs of distribution

models are similar. We conducted this correlation test using the ENMtools

software (Warren et al., 2008).

12



RESULTS

Niche comparison

The climatic niche of E. californica may be described by the first three principal

components (PCs). The first PC captures 47.42% of total variability and is

correlated primarily with precipitation and temperature variables (Bio '1 , Bio 11,

Bio 12, Bio 15, Bio 18, Bio 19; see Appendix 1b); the second PC captures

30.06% of total variability and is associated with Bio 5 and Bio 10 (see Climate

layers); the third PCA captures 12.91% of total variability and is not strongly

associated with any variable. (Fig.1).

The climatic niche of Chile is included in the climatic niche of California; PC 1 is

very similar in amplitude in both niches. However, extensive areas of the native

climatic niche are not occupied by the invaded niche space (mainly PC 2, Fig.

1). Overall, the Mahalanobis analysis indicates significant similitude between

native and invaded niches (Mahalanobis distances obs = 4.107; P > 0.05; Fig.

2).
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Reciprocal comparisons

Maxent yielded a highly predictive model with an average test AUC value of

0.922 (! 0.002) for projected distributions from native niche range and an

average test AUC value of 0.976 (t 0.002) for projected distributions from

invaded niche range. We detected a signif¡cant and positive correlat¡on in the

invaded range between the P(O) of SDM predicted from the native niche range

(California) and the P(O) of SDM predicted from the invasive niche range (Chile)

(r = 0.818). ln the native range, we also detected a positive correlat¡on between

the P(O) of SDM predicted from the native niche range and P(O) of SDM

predicted from the invasive niche range (r = 0 930).

ln Chile, the two predicted distributions (from native and invaded niche range)

share 74.1%;o common area, while in California, this values is 94.2o/o (Fig. 3). The

index (/) of overlap (between SDMs predicted from native and invaded niche

ranges) in the invaded range was 0.8 (Chile) and in the native range was 0.93

(California).

14
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Fig.1. PCA climatic niche of E.califomica. a) Central Chile and occurrence data

from Chile; b) California state and occurrence data from California; c) Climatic
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Ellipses contain 95% of the respective distribution data.
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Fig 3. SDMs based upon maximum entropy niche models using environmental

data and point occurrences for E. cal¡fomica. Black represents high probability of

occurrence (50-100%) projected by the native niche range toward Chile and

California. Gray represents high probabili§ of occunence (50-100%) projected

by the invaded niche range toward Chile and California. (A) Native model

generated with occurrences in the native range. (B) lnvaded niche range (Chile)

projected onto California. (C) Native niche range (California) projected onto

Chile. (D) lnvaded model (Chile) generated with occurrences in the invaded

range (Chile). (E) Reciprocal comparisons between distribution models.
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DISCUSSION

Our results indicated that the climatic niches of E. californica in the native and

invaded ranges are statistically similar (Figs. 2); therefore the occupied cl¡matic

conditions in the invaded area are equivalent to the native range. The Chilean

climatic niche is a sub-set of the native original niche, suggesting that is

conserved in the invaded range as populations in Chile and California occurs in

homologous climat¡c areas, also Chilean populations represent a subsample of

the Californian populations.

Petitpierre ef al. (2012) has observed that climatic niche shifts are rare among

terrestrial plant invaders. Using terrestrial plant invaders, these authors found

that 85% of the analyzed spec¡es conserved their climatic niche after the

invasion process. Although previous studies have documented niche shifts in

invasive species (Broennimann et al., 2007; Fitzpatrick et al., 2007; Beaumont et

al.,2009; Gallagher et al,2010; Medley,2010), these changes might be

spurious because the studied species might have not reached the equilibrium in

the invaded areas as they do not occupy all the available environments

predicted by their native niches (Petitpierre et a|.,2012). These disequilibria may

reflect the ongoing spread of invasive species, dispersal limitation and / or
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negative biological interactions (Welk, 2004; Thuiller et al., 2005; Alexander &

Edwards, 2010). A similar scenario may be the case in the invasion process of

E. califomica in southwestern South America, where there is a large area of the

native niche space not occupied by the populations inhabiting the invaded range

(Fis.1).

Comparisons of SDMs (Fig. 3) showed that the geographic distributions

predicted by the niches of the native and invaded ranges are similar between

the two ranges (percentage of overlap greater than 70% for both regions, and

index I > 0.8 for both regions). Also, conelation analysis indicates that the

probabilities of occurrence of SDMs predicted from native and invaded niches,

are good predictors of occurrence probabilities of SDMs predicted to the invaded

(Chile) and native ranges (California) (r > 0.8 for both regions). Both set of

analyses support the idea that the climatic niche is conserved in the invasion

process of E. califomica.

SDMs predicted from the native and invasive climat¡c niches to the invaded

range (central Chile), firstly, showed a high overlap in the predicted geographic

distributions, suggesting (as we discussed early) climatic niche conservatism.

Secondarily, th¡s same comparison showed that there are extended areas

predicted by the native niche range not yet occupied by E. califomica in lhe

invaded area. This suggests strongly thal E. californlca is not in equilibrium in

the invaded area as SDMs predict larger distributions along southern Chile and

Argentinian Patagonia. ln fact, we have field observations that some individuals

t9



of E. califomica are well establ¡shed in San Carlos

Patagonia). However, more quantitative observation

geographic expansion.

de Bariloche (Argentinian

are needed to assess this

Also, comparisons of SDMs projected from the native and invasive climatic

niches to the invaded range (central Chile), showed high geographic overlap.

These geographic distributions are almost fully nested, which strengthens the

argument that populations of E. califomlca in central Chile are a subsample of

the California population. Besides, comparisons of SDMs in the native range can

inform about the possible zones where the first propagules came out and

colonized Chile. ln our case the geographical distribution projected to California

from the invaded niche, suggests that the colonization of plants to Chile come

from diverses localities. This hypothesis can be tested comparing genetic

diversity and similarity between populations of Chile and California and to our

knowledge has not been tested before.

Another study has found that this plant has finite growth rates > 1, either in the

center of the distribution or ¡n the invasion front in central Chile (Peña-Gomez &

Bustamante, 2012). Given these evidences we can conclude that E. californica

is in active expansion and has not reached the equilibrium along its new

environment after more than 120 years of invasion in central Chile (Peña-

Gomez & Bustamante, 2012).
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one important aspect that deserves more attention is the idea of non-equilibrium

of invasive species. The ecological and evolutionary processes underlying the

non-equilibrium in the distribution of species has been widely discussed, but its

biogeographic consequences have received little attention in the SDMs literature

(Svenning & Skov, 2004; Arago & Pearson,2005; Pearson et a1.,2006; Roura-

Pascual et al., 2009). There are few empirical studies in which equilibrium or

non-equilibrium support theoretical expectations (Welk, 2004; Roura-pascual et

al., 2009, Václavík & Meentemeyer 2011), as the full environmental niche of

invasive species cannot be eas¡ly captured with data from actual distribution of

species. Therefore, SDMs calibrated under non-equilibrium are less accurate to

predict the potential habitat prone to invasion. SDMs of species in early stages

of invasion are more likely to under predict potential distribution, than models for

species in later stages of invasion (Václavík & Meentemeyer,2011).

The study of plant invasion considering the analysis of either the climatic niche

and the SDMs is a promising way of analysis since it allows us to examine the

possibili§ of niche conservatism (or not) and the equilibrium condition (or not),

on two levels: in an abstract space (climatic niche space) and ¡n the geographic

space (physical space), with appropriate methodologies in each level.

In this sense, if we want to predict the geographic d¡stribution of an invasive

plant, from the climate niche native, we must consider whether the plant

conserves its climatic niche and if is in equilibrium. lf the niche is conserved and

the spread has reached the equilibrium, the potential distribution of invasive
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species can be est¡mated properly. Special care should be made when we try to

predict the geographic distribution of an invasive species that is not in

equilibrium, given that can lead to underestimating the true potential distribution

of the specie. On the other hand, if the niche is not conserved in invaded

ranges, SDMs predictions will not adjust to reality. Thus, niche conservatism and

equilibrium are very important factors to be taken into account in the predictions

of the SDMs, and in this way in the control and management of invasive

species. ln summary, the climatic niche as well as the potential geographic

distribution of species provides different but complementary information. We

therefore encourage considering both niche dimension and biogeographic

studies of invasive species.
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APPENDIX 1

http://www.worldclim.orelbioclim
Biocl¡matic var¡ables are derived from the monthly temperature and ra¡nfall values ¡n order to
generate more biologically meaningful variables. These are often used in ecological niche

modeling (e.8., BIOCLIM, GARP). The b¡oclimatic variables represent annual trends (e.g., mean

annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and

precipitation) and extreme or limit¡nB env¡ronmental factors (e.9., temperature of the coldest

and warmest month, and prec¡pitation of the wet and dry quarters). A quarter is a period of
three months (1/4 of the year).

a) Bioclimatic variables selected:

BlOl = Annual Mean Temperature

BlO5 = Max Temperature of Warmest Month

BlO10 = Mean Temperature of Warmest Quarter

BlO11 = Mean Temperature of Coldest Quarter

Blo12 = Annual Precipitation

BlO15 = Precipitation Seasonality (Coeff¡c¡ent of Var¡ation)

BlO18 = Precip¡tat¡on of Warmest quarter

BlO19 = Prec¡pitation of Coldest Quarter

H¡jmans RJ, Cameron SE, Parra JL, Jones PG, Jarv¡s A (2005) Very highn resolution interpolated

climate surfaces for global land areas. lnternationalJournal of Climatology 25: 1965-1978.
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