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RESUMEN 
 

 

UN MODELO DE OPTIMIZACIÓN MATEMÁTICA PARA EL PROBLEMA DE ASIGNACIÓN DE 

SHOPPERS EN UNA APLICACIÓN DE LOGÍSTICA DISTRIBUIDA 

Esta tesis presenta una propuesta basada en modelos de optimización matemática para resolver  

el problema de asignación tripartita de contratistas en la operación de una empresa de logística 

distribuida. 

Cornershop, una solución de mercado de dos lados basada en el uso de aplicaciones móviles 

requiere asignar de manera recurrente a contratistas para satisfacer las necesidades de los pedidos 

solicitados por clientes de la aplicación. La empresa utiliza una heurística greedy basada en un 

conjunto de reglas para determinar las asignaciones. 

El modelo propuesto se ejecuta en un ambiente de desarrollo en conjunto con una versión local 

del modelo utilizado por la empresa. Estos dos modelos, junto con dos variantes del modelo 

propuesto, se corren utilizando escenarios simulados que se basan en los registros obtenidos por 

la empresa durante la operación. 

El modelo propuesto decide que contratista es asignado a cada pedido y en que tienda debe 

realizarse la compra de ese pedido. El modelo toma en cuenta todas las restricciones que dependen 

del valor de las variables de decisión, tal como el límite del aforo de contratistas que se pueden 

asignar a una tienda. 

El modelo minimiza los tiempos de viaje de las asignaciones sumado a un costo de un sesgo que 

refleja la preferencia para la empresa de esa asignación. Las restricciones que no dependen del 

valor de variables de decisión son aplicadas en preprocesamiento. 

El modelo propuesto logra entre una baja de 1% a una mejora de 22% en el costo de asignación en 

los escenarios utilizados. Adicional a la mejora en eficiencia, el modelo propuesto generalmente 

logra una mejora de la cobertura de asignación, donde el tiempo promedio en que tarda asignar 

un pedido disminuye. 

Adicional a la evaluación del modelo propuesto, se muestra el resultado del problema relajando 

restricciones geoespaciales artificiales utilizadas por la empresa para la operación en problemas 

más pequeños. El modelo con la restricción geoespacial relajada logra una mejora contra la versión 

con la subdivisión. 

Finalmente, se presenta una discusión sobre las diferencias del modelo propuesto, incluyendo 

algunas de las potenciales limitaciones de su uso. También se presentan propuestas para trabajo 

futuro que expanden sobre una futura implementación del modelo propuesto.   
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ABSTRACT 
 

 

A GLOBAL OPTIMIZATION MODEL FOR THE SHOPPER MATCHING PROBLEM IN A 

DISTRIBUTED LOGISTICS APPLICATION 

In this thesis a mathematical optimization model is proposed to solve a tri-partite assignment 

problem for a distributed logistics company. 

Cornershop, a two-sided market app-based platform, must allocate contractors to perform the 

jobs needed to fulfil orders placed by customers. The company uses a rule based greedy algorithm 

to assign the contractors. 

The proposed mathematical optimization formulation is run in a local environment against a local 

version of the heuristic used by the company, for simulated scenarios based on from the company’s 

operation.  

The proposed formulation decides the assignment of contractors to a store for a given order, it 

considers constraints defined by the company that depend on the values for decision variables, 

such as controlling for store contractor capacity. 

The proposed model minimizes travel times plus a skew cost that reflects the preference for that 

allocation. Constraints that don’t depend on the value of decision variables are filtered in pre-

processing. 

Along with the proposed model, two variants of the mathematical optimization model are 

benchmarked alongside the company heuristic. 

The proposed models achieve from a loss of 1% to a gain of slightly more than 22% of the allocation 

cost compared to the company heuristic in the tested scenarios. The proposed model also achieves 

better allocation coverage, where less jobs are left un-allocated for less times compared to the 

heuristic. 

Comparing the approaches for solving the contractor assignment problem, a larger scope problem 

is benchmarked for the proposed model. The larger scope ignores geospatial subdivisions used by 

the company. The model without the geospatial partitions achieves an efficiency improvement 

over the already enhanced result of the proposed model. 

Finally, a discussion on differences between the assignment models is presented, discussing some 

of the limitations of the mathematical optimization approach, alongside with proposals of avenues 

for future work that build upon a suggested implementation of a version of the proposed 

mathematical optimization-based models. 
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1 INTRODUCTION 
Platform based services have recently been a growing phenomenon in logistics. Some of the most 

well-known of these services address the last mile component of the delivery chain, which has 

traditionally been the least cost-effective component of delivering goods to end customers. 

Amongst the platform-based providers of last mile deliveries there are those that use a pool of gig 

economy contractors to fulfil their obligations to customers. 

Companies that rely on gig economy resources to delivery their offering usually act as a platform 

of a two or more-sided market which essentially coordinate available resources instead of 

providing the services directly. The approach of a platform solution often achieves less cost and 

provides more flexibility that what a traditional operation would allow. 

Perhaps the most well know platform business models, are those of urban transportation with 

Uber and Didi being the most recognizable ride hailing platforms. The fulfillment of goods 

deliveries by providing last mile services has also seen very rapid growth and proved its value by 

allowing unprecedented levels of scalability during the start of the SARS-COV2 pandemic. 

Using a crowd sourced delivery platform, these services have allowed both corporate and “mom 

and pop shops” unprecedented access to delivering goods to customers with a fast and reliable 

delivery method, without having to build and scale an in-house solution. 

Of the companies providing a distributed last mile service in the Americas, there are those that act 

as a capability expansion for traditional delivery services, such as Amazon’s Flex, where partners 

only participate in a portion of the delivery workflow, and those that act as a platform for a 

complete fulfilment cycle, where a partner will approach a store, pick items, trouble shoot issues 

and deliver. 

In the platform delivery category, Instacart, Door dash and Uber Eats are the main participants in 

the North American market with prepared meals and grocery delivery respectively. Cornershop, a 

Chilean based company has also positioned itself as a relevant competitor in the goods and 

groceries delivery business, particularly in Latin America. 

At the core of the competitive advantage of these companies in contrast to traditional logistic 

model counterparts, is the efficient use of the aforementioned distributed resources. This thesis 

suggests a mathematical optimization model for the optimal allocation of contractors for 

Cornershop. 

1.1 ORDER AND CONTRACTOR MATCHING  
Cornershop provides a two-sided market platform for people to order goods (primarily groceries) 

through digital channels. The company then connects with a contractor workforce to offer the jobs 

necessary to fulfil these requests for goods placed through the platform. 

In a similar fashion to how meal delivery services operate, the company offers customers a pricing 

structure that is not directly tied to that of the compensation for associates (referred to as shoppers 
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for this thesis). This presents an opportunity in that any efficiency gains achieved through the 

allocation of jobs is a direct benefit for the company. 

The algorithm used for matching the activities related to each side of the platform is a key enabler 

for the company to operate efficiently. Logistic costs as well as customer and shopper experience 

attributes are also heavily affected by the quality of the match offered to the contractor workforce. 

Cornershop uses a greedy algorithm that individually attempts to find the “best” shopper match 

for each order batch. This thesis proposes an approach based on mathematical optimization that 

deals with many of the potential inefficiencies that happen when using a greedy heuristic such as 

Cornershop’s.  

The switch to the proposed approach can potentially have benefits on both operational as well as 

IT aspects. This thesis focuses on the expected operational impact of switching, though 

implementation considerations are also briefly discussed. 

1.2 CASE STUDY 
Given the sensitive nature of a shopper selection application for a company that provides a last 

mile delivery platform, the impact of a mathematical optimization approach discussed in this 

thesis is conducted within a controlled offline environment. Further validation of results for online 

or production runs are not considered within the scope. 

1.2.1 OBJECTIVE 
The main goal is to determine, within reasonable assumptions, the expected change on operational 

performance metrics for the operation of Cornershop. These metrics can be best described 

amongst the following categories: 

• Efficiency (cost of operating) 

• Throughput (how many orders can be fulfilled for a given shopper count) 

• Selection fairness (how is shopper effort rewarded) 

Although not the main objective of the case study, algorithm performance considerations should 

also be taken into account. Any proposed solution should mention how it is expected to compare 

with current solutions from a computation performance perspective. 

1.2.2 SCOPE 

1.2.2.1 Business practices 

The objective of the thesis is to account for problem solution methods, and not to propose new 

business definitions towards how the company decides to prioritize or allow shoppers to fulfill 

orders. Any change or recommendation for how the company defines allocation preference or 

feasibility is only considered as complementary content. 

Regardless of there being a more efficient representation of the problem for the company, this 

thesis will model the problem in as close a way as is possible to how the company has defined the 

problem. If any enhancements on the representation of the problem are introduced after the fact 

by Cornershop, these modifications are out of the scope of this thesis.  
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1.2.2.2 Problem Data 

The approach for shopper allocation relies on information provided to the allocation solution 

which may have inaccuracies or changes over time. The information used for allocation is taken at 

face value and any changes regarding these inputs are not considered within the scope of the case 

study. 

Information used for matching is provided by both external sources such as travel time APIs and 

tools built by internal teams, such as order content availability or past contractor performance. 

The accuracy of the information provided is not a part of the scope of this thesis. 

1.2.2.3 Implementation and roll out 

The case study aims to predict the expected outcome if the proposed model were to be used, any 

consideration or changes regarding the implementation of the formulations discussed are not 

within the scope of the thesis. However, there may be references, comments or recommendations 

regarding future use that involve implementation considerations, but only serve as 

complementary content. 

1.2.2.4 New business avenues 

Cornershop is characterized for a fast-paced growth alongside innovation on methods. Changes 

on the delivery methods alternatives or new markets are not considered a part of this thesis. Any 

content regarding delivery alternatives is considered complementary content. 

1.3 STRUCTURE 
This thesis is structured in 5 sections: A review of relevant literature and a brief discussion as to 

why the type of problem proposed was selected, a description of the problem the company faces 

and its current formulation with the proposed approach, a description of the methodology and 

tools used for evaluating the performance of the proposed approach, results of the proposed 

approach and its analysis, followed by a conclusion as well as a brief discussion on future 

directions. 

The first section has a brief description of the company as well as a description of the context for 

the problem the proposed model solves. This section also situates the proposed formulation with 

its relevant literature, covering the assignment problem and its similarities with implementations 

for hail a ride and meal delivery platforms. This section also discusses an alternative type of 

problem in that of the deferred acceptance family of problems. 

The second section contains a detailed description of the heuristic used by the company to solve 

the shopper allocation problem, as well as the base for the proposed mathematical optimization 

model. Within the description of the proposed formulation there is also a description as to why 

the problem was modeled with the proposed model. 

The third section describes how the proposed formulation is measured against the company 

heuristic: this section has a more detailed description of how what the simulations use for input, 

how they are structured, and the output obtained from the runs. 

The fourth section contains the results obtained from the runs described in the previous section, 

as well as the analysis of said results. This section contains results for the company heuristics as 
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well as the proposed model along with three variants of the proposed model. This section also 

contains the results of solving the problem for a larger scope of city-wide models. 

Finally, the fifth section of this thesis contains the summary of key findings as well as suggestions 

for future work that build upon this thesis. 

2 LITERATURE AND BACKGROUND 

2.1.1 CORNERSHOP BACKGROUND 
Cornershop started in 2015 by two Chileans and a Swedish that previously worked together in two 

other startups. It acts as a marketplace for brick-and-mortar stores to have a digital sales channel 

that is also extremely fast from the moment the purchase is made until it has been delivered.  

For earners, the company acts as a source of income with the constant offering of the tasks to fulfill 

the orders placed through the marketplace, providing an accessible income source for that value 

the flexibility of working on their schedule. 

Cornershop currently operates in 8 countries, over 100 cities, and had a majority stake acquired 

by Uber in 2019 with the deal finalized in January of 2021. 

The recent acquisition makes Cornershop a part of the different ventures acquired by the US based 

company, which also has Uber groceries that offers a similar platform as Cornershop but where 

there is little market overlap. 

The company started its operation with a dual launch in both Ciudad de Mexico and Santiago, 

and initially focused on expanding its offering in the markets of these two countries, with a focus 

on delivering your weekly groceries with an emphasis on promise fulfillment1 and reputation for 

a more reliable customer support. 

The company currently offers its delivery service in 8 countries and rapidly increased the cities 

and countries where the service is available during the COVID-19 pandemic. Aside from growing 

in terms of availability, the participation of non-grocery type stores has also increased. Whereas 

traditionally the service was almost exclusively associated with the delivery of groceries, currently 

a sizable portion of its sales comes from smaller specialized stores. 

2.1.2 DELIVERY SERVICE DESCRIPTION 
As with most other gig economy-based platforms, the core of the service provided is based on 

coordinating a pool of independent contractors, that through the company, receive training on the 

ins and outs of the operation and then log in via a mobile phone app when it seems most 

convenient to them.  

 
1 The service is offered within 1- or 2-hour delivery windows, whereas more traditional retail services in 
these countries have offered either “within the day” or “am or pm” deliver windows. 
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The contractors (for the purpose of Cornershop’s business called shoppers) are free to choose 

when, where and for how long they are available for jobs to be assigned to them. The only “input” 

the company has with regards to shopper availability is with dynamic incentives for the earnings 

per job a shopper receives. 

Shoppers are offered jobs, which for the context of this thesis will only consist of bundles of orders 

and their corresponding milestones, which can be accepted or rejected. Given the contractor 

nature of the business model in which the platform operates, the offer of future jobs cannot be 

conditioned on the results of accepting or rejecting current ones.  

Taking into account a shopper’s past order acceptance would condition the shopper’s livelihood 

as well as potentially facing legal challenges in some of the markets the company operates in or 

may wish to operate in.  

2.1.3 RIDE HAILING SIMILARITIES AND THE SOCIAL BENEFIT OF A DELIVERY 

SERVICE 
The retail personal shopper (RPS), which the shopper matching model forms a part of is rather 

new. Companies that provide this service started approximately 3 to 4 years after app-based ride 

hailing services such as Uber and Didi, which are also a recent business proposition (all started 

following the subprime recession in 2008). 

The RPS problem is best described as a variant of the online crowdsourced personal shopper 

problem described in (Arslan A. M., Agatz, Kroon, & Zuidwijk, 2019), which is also similar to the 

non-crowdsourced problem described in (Arslan, Agatz, & Klapp, 2019).  

The problem is characterized by a set of N shoppers that are free to determine their availability 

and acceptance of offered jobs, a set of M tasks that arrive continuously during the operating 

window (this can be safely considered a single day for the scope of this thesis). For each 

consecutive problem, the characteristics of available shoppers and jobs are known, however there 

is no guarantee that they will remain. 

The matching aspect is defined as minimizing the costs of assigning shoppers to the corresponding 

tasks such that the allocations comply with business operating constraints (such picking location 

availability windows, vehicle capacity, etc.) and fulfills as many of the tasks as possible. 

For the scope of this thesis the matching tasks are tasks batches rather than tasks themselves (a 

single task may contain the activities to fulfil multiple orders), which makes the shopper aspect of 

the RPS problem identical to the ad-hoc nature of the personal shopper problem considered in 

(Arslan A. M., Agatz, Kroon, & Zuidwijk, 2019). 

The RPS problem has a lot in common with app-based ride hailing services that previously 

mentioned companies provide. Like app-based ride hailing services, the company’s operation 

relies on a dynamic arrival of resources (orders and shoppers). Other companies that operate in 

the same market, have a business model which primarily assigns shoppers to fulfil a schedule 

resulting from the planification of programed orders, with a smaller online component. 
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The app-based ride hailing services has precedent in literature as a particular case of the dynamic 

ride sharing (DRS) model as described by (Agatz, Erera, Savelsbergh, & Wang, 2012), particularly 

the single rider variant where a matching agency coordinates a two-sided market. 

In these app-based two-sided market platforms, the agency or company’s sole role is of 

coordinating customer requesting trips with providers fulfilling these requests 2  without the 

physical interaction of the coordinating agency. 

It is relevant to note that many of the same enabling factors that allow these DRS problems to 

prosper, allow the RPS businesses to function efficiently. It can be stated that in large part the 

efficient operation of companies that participate with RPS type services build upon the work done 

by DRS type services.  

As described by (Furuhata, et al., 2013)  and (Agatz, Erera, Savelsbergh, & Wang, 2012) these 

factors are mainly: 

- The ease of efficient and fast coordination enabled by the widespread use of internet 

connected mobile phones with GPS type functionality3. 

- Automated matching platforms. 

- User based rating class systems to address trust issues that arise from strangers fulfilling 

services. 

- Dynamic in that they provide solutions with very short notice 

- Independent with the coordinating agency rarely4 physically interacting with either 

providers or customers 

From the factors mentioned, the trust users must place in the provider to offer a reliable and safe 

service is different for the DRS problem than for the RPS type problems. For companies that 

provide a DRS platform user trust is expressed as customer willingness to get into a stranger’s car. 

For companies that provide a service with a RPS model trust is expressed as customers willingness 

to have a stranger pick and choose groceries as well as time sensitive goods (e.g.: a birthday cake 

with same day delivery).  

How well the service fulfills customers’ expectations is, as described by (Furuhata, et al., 2013)  

and (Agatz, Erera, Savelsbergh, & Wang, 2012) a key enabler of these type of services, with 

Cornershop’s CEO publicly stating that “if people trust us to buy avocados for them, they will trust 

us to buy groceries for them”. 

From a matching aspect the companies also may choose to formulate their automated matching 

algorithms in a similar fashion, with (Agatz, Erera, Savelsbergh, & Wang, 2012) describing the 

 
2 Some variants of the more traditional car-pooling implementation are also a part of the offering of these 
services; however, the described service remains the main offering for these companies. 
3 GPS is a US based system, in some markets positioning systems operate using European, Russian, 
Chinese based systems or a combination of them. 
4 Some in-person interaction usually takes place during onboarding activities with providers, also some 
companies provide in-person offices for more elaborate problem solving with providers. 
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variants for DRS as either a Minimize system wide vehicle distance travelled, Minimize system 

wide vehicle travel time or Maximize the number of participants.  

For Cornershop’s case both the company formulation and those proposed in this thesis are 

formulated as minimizing travel times, although under scenarios where there is a poor order to 

shopper ratio, the lower amount of arbitrary constraints may yield a higher coverage at an 

efficiency metrics cost, behaving as maximizing the number of participants. 

Another key aspect lies in the independent characterization of the service, where providers are not 

employed by the coordinating agency and there for are free to join or leave the pool of “matchable 

resources” as they please. 

The independence factor makes the matching problems have both continuously arriving and 

leaving providers and customers, which could be exploited for further efficiency gains by 

considering the stochastic aspects of how future scenarios may be more efficient than the current 

available matches. 

Many of the same challenges faced by the RPS problem are also faced by the DRS businesses, aside 

from the previously mentioned trust aspect of the service, they both have a chicken and egg 

situation. The matching agency must provide enough customer volume to shopper associates for 

them to have an interest to participate in the service and have associates (shoppers) to provide a 

reliable service to customers.  

Both businesses rely on achieving critical mass in order to attempt to have an efficient solution for 

both providers and customers, this concept from a pricing point of view is briefly mentioned in 

(Woodard & Microsoft Research, 2018). 

One aspect where the RPS and DRS businesses differ is in that of pricing, particularly for providers 

as both usually show an up-front estimate to customers and commit to charging that amount 

unless a change is made in the time between placing the request to it being fulfilled.  

RPS formulations sell the convenience of accessing stores that customers could visit personally, 

there for are inclined to offer the same prices as these stores do in person (revenue is usually 

generated by a fee in agreement with the store).  

For RPS operations, pricing aspects are often more closely associated with online meal delivery 

service platforms, which also builds upon many of the same DRS aspects as previously mentioned. 

DRS and RPS problems alike usually rely on an agreement between a merchant and the 

coordinating agency for their revenue and have either a catalog or event-based compensation 

model for providers.  

For simplicity, the same problem description can be reasonably extended to the online meal 

delivery service, where the main differences with the RSP problem reside in the importance of the 

picking portion of the job fulfilled by the provider. 
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From a modeling point of view, the RPS problem can be viewed as a special case of the generalized 

pickup and delivery problem (GPDP), with the GPDP understood as the matching problem to 

fulfill a set of requests that require a delivery, usually with time windows, that must be picked up 

at a defined location which may be different from the location of the agent that fulfils the request 

(Savelsbergh & Sol, 1995). 

The version of the GPDP that the RPS problem solves is that described in (Parragh, Doerner, & 

Hartl, 2007), which is essentially an open-ended Travelling Salesman Problem (TSP), unlike the 

problem of the GPDP the formulation of the RPS should also consider picking aspects within the 

costs of the objective function. For the purposes of this thesis the picking aspects are captured by 

the handicap component of the objective function as described in 3.2.4 . 

Commonly, the RSP problem also shares time window constraints and costs with the GPDP 

variants, these consider a hard time window for store availability, when customers are promised 

a delivery window a soft time window for the delivery. 

The novel aspect of the RPS problem that is not considered in the GPDP problem, is the addition 

of the picking activity. Assuming a heterogeneous set of shoppers, the performance of the 

operation will be affected with how good a match are shopper characteristics for orders 

characteristics, where more experienced shoppers are expected to perform better (less mistakes 

and faster picking) for large or more complex orders. 

The impact the picking activity has on the formulation versus a single heterogeneous Pickup and 

Delivery Problem (PDP) is seen in costs related to picking in addition to travel time costs. 

Merchant requirements could also introduce additional constraints to the formulation, such as 

requiring credentials to access a merchant location.  

From the operation of cornershop, examples of additional constraints form a base formulation 

include merchant credentials required for shoppers to enter some stores, store shopper occupancy 

limits, alcohol shopping eligibility, etc. For a more self-explanatory definition, this variant of the 

GPDP can be referred to as the pickup activity and delivery problem (PADP). 

Agents for the dispatch PADP at cornershop are shoppers, however, unlike previously described 

for the RPS problem, the jobs that require picking, pickup and delivery are order batches and not 

orders themselves. For this thesis, order batches are referred to as an assignable, which is a 

request for the activities to fulfill one or more orders.  

The company operates with shopper matching and order batching problems defined as separate 

problems, the objects to match for shopper matching are the batches generated by the batching 

component, which may contain a single order or multiple if a batch was found. 

For this thesis the batching of orders into these assignables is considered a separate problem, the 

matching job becomes how to find the most efficient allocation of shoppers to these assignable 

jobs regardless of how efficient these order batches may be. 
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2.1.4 ENVIRONMENTAL IMPACT ON EFFICIENT SHARED VEHICLE DELIVERY 

SERVICES 
The environmental impact from logistics in delivering goods has garnered increasingly more 

attention in recent years, the majority of retail operation emissions is from CO2 and equivalent 

emissions. 

Albeit focused on more traditional warehouse distribution logistic models, the use of distributed 

logistics and the use of shared transportation vehicles does achieve a reduction in vehicle miles 

travelled (VMT) in comparison to personal vehicles fulfilling these same trips (Wygonik & 

Goodchild, 2012). 

Because the emissions for a comparable car are directly related to the travelled distance of such 

cars, a reduction in travelled distances also results in the corresponding reduction in emissions, 

thereby improving the environmental footprint of retail deliveries.  

The key principles that make shared use vehicles a less pollutant solution still hold true for the 

case of using smaller personal vehicles with its corresponding smaller products capacity 

constraint, particularly when one considers that given the compensation structure for shoppers is 

not vehicle dependent5, makes it less likely that shoppers utilize vehicles on the less efficient side 

of the spectrum. 

It is there for a fair extrapolation that reductions in travelled times achieved by a more efficient 

matching of shoppers to assignables, should also result in a reduction in the greenhouse gas 

emissions from the company’s operation. This means that efficient allocation of shoppers not only 

has a business motivation, but also a social well-being one. (Yu, Tang, Li, Sun, & Wang, 2016) 

2.2 PROBLEM DESCRIPTION 
As a delivery platform, Cornershop has managed to stand out by prioritizing customer satisfaction, 

which is reflected in offering the delivery of an order with a promised narrower time windows, 

order trouble shooting and a more dependable customer support. This at a higher level than what 

companies that traditionally operate with a sizable brick-and-mortar stores, many of which are 

Cornershops’ partners. 

As a platform-based service, the company relies on a pool of shoppers, that sign into the platform 

and are offered the job of picking and delivering an order that a customer placed with their account 

(usually through a cellphone app, though a web portal is also available).  

The company must allocate these jobs in such a way that costs are reduced, while maintaining 

metrics that directly impact customer perception. Metrics that measure customer’s service quality 

perception are delivering the order within the promised time window and managing to find and 

deliver the requested products with a suitable replacement when not in stock, amongst others. 

 
5 Shopper compensation plans for Cornershop are vehicle type dependent (cars, motorcycles, bicycles 
walkers…), but are uniform within a given type (a shopper with a gas guzzling H1 Hummer is compensated 
with the same plan as if he were to drive a Prius hybrid) 
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While the company must seek to allocate jobs in a way that would minimize its costs while keeping 

within a certain “quality threshold”, it must also take into account the value it provides to both 

customers and shoppers alike when allocating a match. Value for shoppers is pursued by trying to 

avoid the accumulation of orders in a comparatively small set of “super shoppers”, as this would 

hamper the company’s ability to grow and welcome new shoppers to the platform.  

Currently the company uses a greedy matching approach that filters candidate matches that 

comply with business policies, then are sorted within indicators of efficiency (such as estimated 

total elapsed time), shopper allocation fairness and penalties for allocations that have a higher 

chance of resulting in a poor customer experience.  

The heuristic, described in more detail in 3.1, runs in parallel for each zone with a discrete time 

interval (30 seconds). The problem is solved for a scope of all assignables with the delivery 

location contained in a partition of the geo-polygon where the service is available. 

For this thesis the geo-polygons are referred to as operating zones. The availability of the service 

in a city could be represented by a single zone or split into chunks. Each of these chunks or zones 

is treated as an independent problem with no overlap. 

To solve potential conflicts in the shopper allocations for different zones in the same city, a tie-

breaking heuristic is used to determine the allocation of resources. The heuristic enforces the 

constraint that a single resource cannot be allocated to multiple jobs simultaneously, this aspect 

refers more to the engineering aspects of the implementation and will not be considered in this 

thesis. 

For the context of this thesis, it will be assumed that only a single shopper fulfills an order (within 

the operation shoppers could be allocated to just a fraction of the order workflow process due to a 

contingency), however the matching is done not with orders and shoppers and stores, but rather 

with packs of orders that may contain a single order or a set of pre batched orders, where some 

business constraints only apply to a pack that is not a single order. For the purposes of this thesis, 

the object of order batches is called assignable. 

The method used to batch these orders is responsibility of a separate model and won’t be 

considered within the scope of this thesis, although it could be feasible to run a model that 

addresses both matching and batching tasks, the focus of this work is to evaluate the method for 

solving the matching problem and not to change the problem itself. 

2.3 INDUSTRY REFERENCES 

2.3.1 GENERALIZED ASSIGNMENT PROBLEM 
Assignment and matching problems are well studied within the operations research community, 

they deal with the question of how to assign or allocate a set of m agents/workers to n jobs. The 

generalized assignment problem (GAP) is defined using both knapsack (items and weights) and 

scheduling terminology (agents and jobs). For this thesis the scheduling terminology is used. 

(Öncan, 2007) 
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The GAP has seen applications in several businesses from logistics (Baker & Sheasby, 1999; 

Srinivasan & Thompson, 1973), manufacturing (Higgins, 1999; LeBlanc, Shtub, & Anandalingam, 

1999), energy management (Yu & Prasanna, 2003), project management (Drexl, 1991), 

telecommunications (Bressoud, Rastogi, & Smith, 2003), etc.  

Even though the problem is solved in a recurrent fashion, within the scope of this thesis no aspects 

of an online or stochastic problem are present in the approach used by the company. All stochastic 

components are taken at face value as deterministic inputs and no interaction between matches of 

previous runs of the problem are used. 

The GAP is one a combinatorial problem and is known to be NP-hard (Sahni & Gonzalez, 1976), 

luckily being such a well-studied problem, there have been many proposed algorithms for solving 

GAP’s, including exact approaches, heuristics and metaheuristics.  

Commonly used approaches within the industry are based on the Hungarian algorithm or some 

form of solving the Lagrange relaxation of the problem with some form of feasibility heuristic. This 

last approach benefits from fast implementations of linear solvers if the feasibility heuristic is not 

compute heavy. (Öncan, 2007) 
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Generic bi-partite weighted matching formulation with set cardinality approach 

min
𝑥

∑ 𝑥𝑖,𝑗 × 𝑐𝑖,𝑗

𝑖∈𝐼,𝑗 ∈𝐽

 

 

𝑠. 𝑡. ∑ 𝑥𝑖,𝑗

𝑖,𝑗

≥ min(|𝐼|, |𝐽|) 

 𝐱{𝐢,𝐣} =  {
𝟏  𝒊𝒇 𝒊 𝒊𝒔 𝒎𝒂𝒕𝒄𝒉𝒆𝒅 𝒘𝒊𝒕𝒉 𝒋

𝟎  ~
 

 

2.3.2 DEFERRED ACCEPTANCE 
Up to this point the actions that happen after a matching has been found have not been discussed. 

A fundamental part of the business model of gig-economy services lies with the fact the workforce 

that provides whatever service the company offers (groceries and retail delivery in case of 

Cornershop) is done by a flexible and external workforce.  

With a subcontractor workforce there are strict legal limits for how the company can interact with 

earners. Due to the nature of the operation, there will always be freedom for contractors to reject 

an allocated matching. Rejected allocations poses a great challenge since these orders must be re-

allocated at a later opportunity, this means waiting for an acceptance whilst the chance of the order 

arriving late increases. 

A potential formulation that could result in a higher chance of “problem jobs”6 being accepted by 

the available contractor workforce would be treating the matching problem of each instance as a 

deferred acceptance problem. The deferred acceptance approach is not too distant from more well-

known applications of this formulation in auctions and student school assignment used in real 

world applications in Boston. (Abdulkadiroglu, Pathak, Roth, & Sonmez, 2006) 

The deferred acceptance problem is that which generates matches such that the solution contains 

no unstable matches, where a match between two assignables A, B and two shoppers ,  is said 

to be an unstable match if ,  who are assigned to A, B respectively even though  prefers B and 

 prefers A. (Gale & Shapley, 1962). 

A deferred acceptance formulation should yield an improvement in the acceptance rate of 

assignables from shoppers, however this may not translate to a practical implementation as it 

would require the company being able to accurately model each individual shopper’s opportunity 

cost and preferences.  

 
6 Problem Jobs from a contractor point of view are those where a perception of low earnings or that may 
hamper their ability to obtain more jobs upon completion of the current one. 

(1) 

(2) 
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The current approach used by the company already yields high acceptance rates as incentives for 

both parties (company and shoppers) are already well aligned with the current formulation. This 

alignment makes it less likely that potential gains from a marginally higher acceptance rate would 

be worth it over a purely cost minimization approach. 

The matching scenario for a gig-economy workforce also introduces a high degree of information 

asymmetry between agents and coordinator, which limits the effectiveness of a sophisticated 

response strategy by the shoppers, which makes one of what can be considered the motivating 

principals to proposing a deferred acceptance formulation less relevant for the overall objective of 

the matching problem proposed for Cornershop’s shopper allocations. 
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3 PROBLEM 
For allocation purposes, the daily operation is partitioned into 30 second intervals that are solved 

as isolated problems. A recurring process checks which order batches must be assigned within the 

next chunk and which shoppers and stores locations are available for those order batches. Each of 

the allocation chunks is defined as an instance of the matching problem. 

Each of the described allocation problems runs independently for an operating zone, which is a 

geo-fenced partition of a city where the service is provided (the partition could encompass the 

whole city for smaller cities). For the purpose of thesis only the scope of a single of these operating 

zones is considered for each scenario, interaction between zones and aggregate results across 

zones are not modeled. 

The problem of shopper-assignable-store assignment is a tri-partite allocation problem, where one 

assigns a set of available shoppers to offered order batches (orders are treated as order batches 

called assignables, these may contain a single order or multiple orders) to a set of branches, which 

are the physical stores at which a particular assignable can be picked. 

For each instance the available data is: 

- The set of assignables with characteristics (size, delivery location, items, etc.) 

- The set of shoppers with metadata (transportation, location, past performance, etc.) 

- The set of branches with metadata (open hours, location, current and max capacities, etc.) 

- Pre calculated costs (travel times, business skew, travel distances, etc.) 

- Fixed instance parameters (transportation limits, fixed costs) 

3.1 COMPANY PIPELINE MODEL FORMULATION 
The company model, which for this thesis is the pipeline model, will search iteratively for the 

available resources within each instance. The assingables within an instance are sorted in a list, 

which defines the order in which the matches will be searched. Once an allocation has been found 

for an assignable, both it and its matched shopper are then removed from options for future 

matches, hence the greedy nature of the company model. 

For each assignable, the pipeline model then selects the most efficient shopper with two steps: 

- Preparation phase 

- Selection phase 

The preparation phase will filter allocation candidates that don’t comply with business 

feasibility criterions and then add data required for the selection phase to the remaining match 

candidates. The business feasibility constraints can be described as performing the following 

checks: 

- Shopper transportation type compatibility (e.g.: fitting inside a shopper backpack) 

- Assignable content that may require special care (e.g.: frozen items) 

- Legal order requirements (e.g.: Alcohol orders with underaged shoppers) 

- Shopper limits (e.g.: max order weight accepted by shopper) 
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- Assignable with “special” considerations (e.g.: new customers with experienced 

shoppers) 

From the remaining match candidates with its corresponding data, the selection phase will 

sort the business feasible list in the following fashion: 

- Sort for min allocation cost  

- Of the min cost + tolerance candidates, sort for longest shopper idle time 

The main criteria for shopper selection, is an allocation that has the minimum possible allocation 

cost, which is primarily the travel times to and from the partner store where the assignable is to 

be fulfilled. The allocation cost also considers a skew cost that reflects business preferences. 

The min cost plus tolerance workflow works as a tie breaker heuristic for shopper and store 

combinations that have the same allocation cost (Total Time), the nuance for this heuristic is that 

any combination that is at most “tolerance away” from the most efficient allocation candidate is 

also considered as a tied candidate. 

The tie breaking metric used is the amount of time shoppers have spent idle since the last 

completed task. 

From the sorted list, the first shopper-branch combination is then selected as the match for the 

assignable. This selection process is repeated for all assignables or until all the instance shoppers 

have been assigned. 

The allocation cost is named Total time, for an assignable a, shopper s and branch b it is defined 

as: 

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑎,𝑠,𝑏 = 𝑆ℎ𝑜𝑝𝑝𝑒𝑟_𝑡𝑜_𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑖𝑚𝑒𝑠,𝑏 + 𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑜_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦_𝑡𝑖𝑚𝑒𝑎,𝑠,𝑏 + ℎ𝑎𝑛𝑑𝑖𝑐𝑎𝑝𝑠𝑎,𝑠,𝑏 

where the travel times are estimations obtained from an external provider and the handicaps are 

a skew for a given match candidate according to business preferences, examples of these are: 

- New shoppers being preferred small orders and are assigned a negative handicap when 

orders contain less than a set number of SKUs 

- Experienced shoppers being preferred for first time buyers, for first time buyers a negative 

handicap is added for shoppers that have a positive customer score 

- Bike shoppers being preferred for small orders, when an assignable has less than a set 

number of SKUs a negative handicap is added 

The selection tolerance, used for the tie breaking component, is a fixed value in the same units as 

for the total time cost, it allows for all match candidates that are at most tolerance away from the 

ideal candidate to also be considered. 
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3.1.1.1.1 Pipeline model – pseudo code 
3.1.1.1.1.1 Inputs: 

- List of instance assignable 

- List of shopper-branch (store location) tuples 

Goal: 

- Optimal ids for shopper-branch allocation with assignables 

Algorithm 1: Pipeline model – pseudo code 

Require: List of Assignables 𝑨𝟏 … 𝑨𝒏 
Require: List of shopper-branch allocation candidates 𝑺𝑩𝟏 … 𝑺𝑩𝒏 
Return: Optimal ids for (Shopper, Assignable, Branch tuples) 

 f𝐨𝐫 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 𝐢𝐧 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒_𝑙𝑖𝑠𝑡: 
 

for allocation_candidate 𝐢𝐧 𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑏𝑟𝑎𝑛𝑐ℎ_𝑙𝑖𝑠𝑡: 
Check transportation requirements 
Check for assignable contents that require special care 
Check legal feasibility requirements 
Check shopper limits 
Check assignable limits 
Set handicaps for allocation-candidate 

End for 
sort allocation-candidate list by total time cost 
 
for allocation-candidate in sorted-allocation-candidates: 

If 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑠𝑡 − min(𝑠𝑜𝑟𝑡𝑒𝑑_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑠𝑡) ≥

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
Remove allocation_candidate 

End for 
Sort allocation_candidate by shopper_idle_time: 
 

min(𝑠𝑜𝑟𝑡𝑒𝑑_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑏𝑦 𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒) 

End for 
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3.2 MATHEMATICAL OPTIMIZATION  
For ease of readability the problem formulation is presented in the following segment. The 

explanation of why the problem is modeled with the proposed formulation is explained after the 

model. 

3.2.1 SETS 
The sets for each instance are defined as follows: 

- Shoppers (𝑠 ∈ 𝑆) 

- Assignables (𝑎 ∈ 𝐴) 

- Store locations (𝑏 ∈ 𝐵) 

3.2.1.1 Model resources 
The available information for the model preparation phase is functionally identical to that of 

the pipeline model. The selection phase differs in that the inputs are: 

- A list of business feasible Shopper, Assignable, Store location allocation candidates  

- The costs associated with each feasible allocation candidate (travel times and handicaps) 

3.2.1.1.1 Decision variables 
Matched found 

𝐱𝐬,𝐚,𝐛  =   {
𝟏  𝒊𝒇 𝒔𝒉𝒐𝒑𝒑𝒆𝒓 𝒔 𝒊𝒔 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒕𝒐 𝒂𝒔𝒔𝒊𝒈𝒏𝒂𝒃𝒍𝒆 𝐚 𝐚𝐭 𝐬𝐭𝐨𝐫𝐞 𝐛

𝟎 ~
 

Non allocation 

𝒚𝒂 = {
𝟏 𝒊𝒇 𝒂𝒔𝒔𝒊𝒈𝒏𝒂𝒃𝒍𝒆 𝒂 𝒊𝒔 𝒏𝒐𝒕 𝒎𝒂𝒕𝒄𝒉𝒆𝒅

𝟎 ~
 

𝑿{𝒔,𝒂,𝒃}, 𝒀{𝒂} ∈  𝐁𝐢𝐧𝐚𝐫𝐲 
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3.2.1.1.2 Constraints 
 

store capacity constraint 

∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝑺,𝒂∈𝑨

+ 𝐜𝐮𝐫𝐫𝐞𝐧𝐭_𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐛 ≤ 𝒔𝒕𝒐𝒓𝒆_𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒃 ∀𝒃 ∈ 𝑩 

 

Non allocation activation 

𝟏 − ∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝒔,𝒃∈𝑩

≤ 𝒚𝒂  ∀𝒂 ∈ 𝑨 

 

Assign at most one assignable per shopper 

∑ 𝒙𝒔,𝒂,𝒃

𝒂∈𝑨,𝒃∈𝑩

≤ 𝟏 ∀𝒔 ∈ 𝑺 

 

Assign at most one shopper per assignable 

∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝑺,𝒃∈𝑩

≤ 𝟏  ∀𝒂 ∈ 𝑨 

 

3.2.1.1.3 Objective function 

min
𝑠,𝑎,𝑏

∑ 𝑥𝑠,𝑎,𝑏 × 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑠,𝑎,𝑏

𝑠∈𝑆,𝑎∈𝐴,𝑏∈𝐵

+ ∑ 𝑦𝑎 × 𝑛𝑜𝑛_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑎

𝑎∈𝐴

 

  

(3) 

(4) 

(5) 

(6) 

(7) 
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3.2.2 DECISION VARIABLES 
The pipeline model allocates shoppers in an approach that is akin to a bi-partite matching 

formulation with a set size constraint, this approach is similar to a mathematical optimization 

model shown with (1) and (2). 

This approach evidently can be replicated in a mathematical optimization approach, as evidenced 

by the approach of using (2). Forcing allocations based on cardinality does not adequately capture 

the business decision that a match candidate may be feasible, but not desirable. 

The proposed formulation introduces a penalty for not allocating an assignable, this allows the 

company to explicitly set a threshold for how inefficient an allocation is allowed to be a preferable 

one or if it will defer the allocation for the next instance. It is worth noting that with sufficiently 

large penalty costs, this approach is equivalent to the set cardinality approach illustrated with (1) 

and (2). 

A benefit of having a penalty for “incentivizing” allocations, instead of a requirement based on the 

size of a set, is that this approach allows the user to set a threshold for what is considered a 

desirable match based on a specific set of indices and its associated cost, as opposed to having the 

decision be made up-front.  

A difficulty introduced by this approach is that it makes the solved objective function cost of the 

proposed models not directly comparable with the solutions for the pipeline model. The efficiency 

of allocations is evaluated only considering the allocation cost component, however this is does 

not properly take into account the tradeoff with the allocation coverage, which is heavily impacted 

by the value of the non-allocation cost.  

The results between allocation coverage and efficiency metrics are discussed in further detail in 

chapters 5 and 6 of this thesis. 

For simplicity, for this thesis the cost introduced for not allocating an assignable is exclusively 

dependent on assingables, however this concept can easily be extended to the shoppers and 

branch sets for implementations out of scope for this thesis. 

3.2.3 CONSTRAINTS 
The proposed mathematical optimization models are comprised of two types of constraints: 

- Constraints that are active or not regardless of the value of decision variables, such as 

blocking under aged shoppers being allocated an assignable with alcohol content. These 

constraints will be referred to as implicit constraints 

- Constraints which depend on the value of decision variables, such as controlling for store 

occupancy, which must consider how many shoppers are being sent to a store. These 

constraints will be referred to as allocation constraints 

Since implicit constraints aren’t affected by the values of decision variables, these are applied in 

pre-processing by filtering candidate matches for a given instance, as they are independent of the 
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variables themselves. The implementation used is a sparse representation of indices for the 

decision variables created in the model to only the ones that meet these constraints. 

As for allocation constraints, are dependent on the allocations for a given instance, these 

constraints are modeled within the formulation of the problem for an instance. These constraints 

are both for the correct functionality of the model as well as business derived constraints. 

3.2.3.1 Implicit constraints 

Since these constraints are independent on what values decision variables take, the most efficient 

way to add them to the formulation is in pre-processing, as adding them in the declaration of the 

model with python APIs results in poor performance.  

Generating the feasible allocation candidate tuples is at least an order of magnitude faster than 

modeling these constraints by declaring them with a mathematical representation in solver 

compiler. 

For medium to large instances of the proposed base model, the compilation time is reduced from 

over 5 minutes when declared in the model to less than 5 seconds of compile time, whilst the 

impact on additional pre-processing time is measured in seconds and can be easily parallelized, 

which can’t be achieved using python solver interfaces. 

Applying the set of implicit constraints to an instance is as mentioned an embarrassingly 

parallel workload7. For the purpose of this thesis these constraints are parallelized on a shopper 

basis, meaning that building feasible match candidates is a separate job for each shopper.  

To reduce parallelization overheads, the set of shoppers is split into equally sized batches of 

shoppers as many cores the machine has (32 threads for this thesis). The application of the parallel 

approach manages to reduce by almost half the compilation time for larger instances used in this 

thesis, however it does result in longer compute times for small instances. 

In aggregate, the pre-processing workload yields a list of match candidates that can’t be discarded 

without knowing the state of decision variables of the instance at optimality. 

The type of business constraints applied as implicit constraints can be described as one of the 

following checks: 

- Shopper transportation type feasibility 

- Assignable contents that require special transportation care 

- Legal requirements that Cornershop must comply for shopper well being 

- Shopper declared limits (shoppers can set limits for what they are willing to carry) 

- Assignable type that requires particular shopper features 

  

 
7 Embarrassingly parallel is a workload that can be easily divided into components that can be executed 
concurrently. (The Art of Multiprocessor Programming, Revised Reprint; Maurice Herlihy, Nir Shavit) 
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3.2.3.2 Allocation constraints 

The main business constraint that depends on how one allocates shoppers amongst assignables 

is that of the store capacity limit, where every store location can have a maximum allowed 

occupancy associated with online orders, this constraint has become particularly relevant with the 

sanitary measures implemented by different governments due to COVID-19 guidelines.  

Due to the way in which the pipeline model is implemented, checking for total estimated merchant 

occupancy is impractical, as it would require redefining pre-calculated values in each of the 

shopper searches for all assignables. Due to this limitation, the branch occupancy constraint is 

implemented as a handicap (business skew) that is inversely proportional to the remaining 

capacity of a given merchant branch. 

To avoid proposing an approach that would be a heuristic of a heuristic or complicating 

unnecessarily the problem formulation, the constraint will be implemented directly as an upper 

capacity limit for each store location, since the mathematical optimization approach does not have 

the same limitations as the pipeline model does, this more closely resembles the actual problem 

the business needs to solve. This constraint is modeled as (3). 

3.2.4 OBJECTIVE 
As mentioned in the description of the pipeline model, the metric to minimize is the allocation 

cost, which for this thesis is referred to as: Total time. For the optimal value of total time, an 

additional step takes place to take shopper idle times into account. The proposed formulation is 

explicitly considering the efficiency aspect of minimizing the allocation cost, the “fairness” 

criterion is addressed with the fairness model explained in 4.3. 

As mentioned in 3.2.2, the proposed formulation adds the concept of explicitly not allocating an 

assignable, which must also be taken into account for the objective function of the formulation. 

The objective function of the proposed formulation is explained as the minimization of sum of all 

allocation costs and the costs of not allocating an order (7). 

Total time cost is defined as: 

𝑇𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑠,𝑎,𝑏 = 𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑡𝑜_𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒𝑠,𝑏

+ 𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑜_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒𝑠,𝑎,𝑏 + ℎ𝑎𝑛𝑑𝑖𝑐𝑎𝑝𝑠𝑠,𝑎,𝑏 

Travel times of the Total time cost are self-explanatory, for the “branch to customer” component 

the sum of all legs in the trip are considered, so for assignables with multiple orders it is the sum 

of the first leg between the branch and first customer and all following legs between customer 

delivery locations. 

The handicaps component is the sum of all business skews for that particular shopper-assignable-

branch match candidate. The scope of what these businesses preferences are is covered in chapter 

3.1.  

It is important to highlight that a skew or handicap may be both positive or negative, which could 

result in the Total time cost for a match candidate being negative if travel times are small and there 

is a large handicap cost associated with the match candidate.  

(8) 



  
 

22 
 

For instance, if a first-time buyer has a delivery address near the store, and a shopper is found 

waiting at the door, the travel time components would be close to zero for shopper to branch, and 

small for branch to customer, let it be 8 minutes branch to customer expected time. If the company 

has defined the new customer handicap as a 15-minute benefit for eligible shoppers, the total 

time value for that allocation is going to be -7 minutes. 
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4 PROPOSAL EVALUATION 
The operational performance of the mathematical optimization approach is implemented in a local 

machine with scenarios that are derived from the company’s historical data. The scenarios used in 

this thesis are not a carbon copy of observed scenarios but are based on operational information. 

The details of the differences between these “historical runs” and the ones used for evaluating the 

optimization model are discussed in this chapter. 

4.1 SCENARIO SOURCES 
Due to contract limitations, not all the data used for company version of the model is stored, also 

some fields used during the runs of the company model (a.k.a. the “pipeline model”) are discarded 

after use, whilst others are stored in dynamic datastores8, meaning that any updates to a that 

information overwrites the existing values.  

Given the difficulties that arise when trying to exactly replicate the scenarios observed in during 

the operation of the pipeline model, the aim is to generate new scenarios that are plausible but 

may contain some differences to the information used for matching initially. The testing scenarios 

or “sequences” are built using the following sources: 

- Logs of sequences faced by the pipeline model 

- Dynamic data stores with the most recent values  

- Test version of data that provided by external suppliers 

Log data  

Data contained within these logs is a recording of data used for the production version of the 

matcher, as previously mentioned it does not contain all the data used during a run of the matching 

algorithm. 

Dynamic data stores 

Some fields used within the match optimization process (in the pipeline model), are stored in a 

way that overwrites past values when a change is introduced. For this thesis this implies that for 

these fields will be that of when the data was queried, which may differ from the value of the 

corresponding field when the log data was created. 

Even though the value for these “overwritten” fields may differ from the original values, the format 

remains the same as that when the instance used as basis was created. 

A small portion of the information housed in these dynamic data stores does record each update 

separately, for these fields the value used was that which was active when the instance logs were 

created. 

  

 
8 A data store is a form of persistent storage, where the structure is not specified. This may include a 
relational database, structured and un-structured log storage, blob storage amongst others. 



  
 

24 
 

External supplier information 

Data from external providers is often legally limited as for time span which it can be stored within 

company data stores, these limits make using the exact same source that the saved logs used 

unpractical or illegal, however one can legally use a static version of the data consumed exclusively 

for analysis. 

For matching purposes, the only relevant information provided by an external supplier is the 

elapsed travel time between points within a city, this information is generated by Cornershop 

using geospatial base files that change daily and due to contract compliance can’t remain in 

company data stores for more than 48 hours. The base files mentioned are provided by an external 

supplier which limits the use of these. 

For the purposes of this thesis a static version of that geospatial data package is used, which is 

functionally the same as the one used for production, however it may yield different values as the 

ones for the date of the logs. The static version of these geospatial files can be stored by the 

company. 

4.2 MODEL RUN SETUP 
The production version used by the company runs throughout the day with a constant frequency 

(for this thesis 30 seconds). For each run or “instance” a snapshot is taken of the available 

resources used for matching (connected shoppers, assignables and store locations), the way the 

resources are updated is out of the scope of the allocations model, its only job is defining the 

matches given a set of available resources. 

For the local version of these runs, a sequence of these instances is pre-loaded to the machine 

derived from logs before any optimization, additional information is then loaded to these files and 

travel time information is re-generated using the geospatial files. These values are precalculated 

for all possible scenarios faced during the run of the sequence of instances imitating the way 

information would be available for a production version.  

Once a run information is loaded a runner then runs, inherits, and records the solutions for the 

specified matching models for every instance within the loaded sequence. Once all the runs are 

complete, the output is the matching recording with its corresponding metadata. 

All models have the same starting instance. Instance updates derived from log data is also the 

same for all models, however unlike the first instance, instances between models will have 

differences due to the impact of earlier instance matches. For a given instance 𝑖𝑛, where 𝑛 ≠ 0 the 

data loaded will be the log data for instance 𝑖𝑛 plus, the results impact from all instances before 

instance n. 
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The “inheritance” between each instance works by adding or subtracting information to a 

following instance depending on the matching decisions of the previous one. The inheritance 

decisions considered are: 

- Matched assignables are flagged as such and are eliminated from any future instance if 

present. 

- Assignables which are not allocated within a given instance are added to the following one  

- Shoppers allocated to an assignable are flagged as such and are no longer available for 

subsequent instances 

- Shoppers not allocated in an instance are considered as available shoppers for following 

instances. The same shopper information is used for future instances unless a future 

instance contains an update for the information of that shopper. If an update is found, the 

updated information is used. 

- If a store location (a.k.a. store branch) is available for an instance, then it is made available 

for all the following instances, with the caveat that its capacity is updated dependent on 

the cumulative amount of assignables allocated to that branch for the previous instance.  

- If log data for an instance contains new updated information for a branch, then the 

updated information is used except for the value of branch current occupancy, where the 

max between the updated and the state variable of occupancy for that branch 

The only bit of information generated during the runs of each instance is a counter for the amount 

of tries it takes to find a match for an assignable within the run. This functionality is implemented 

within the inheritance between instances e.g.: if an assignable is matched on the first try, it will 

have an allocation count of 1, if no match was found twice and then allocated the allocation tries 

will be 3.  

4.3  MODEL VERSIONS 
For this thesis a mathematical optimization model is benchmarked against a local implementation 

of the model used in production by the company (pipeline model). Three mathematical 

optimization versions are also benchmarked alongside the proposed model, these are the same 

model as proposed in chapter 3 using different model parameters. 

The pipeline model is implemented using a containerized version of the production replica and is 

completely python 3.8 . All the mathematical optimization models are implemented using python 

3.8 for preprocessing and handling all the data, as well as a commercial solver (Gurobi 9.1) with 

its proprietary python compiler. 

From now on, each model will be referred to as: 

- Optimal allocation model: The original mathematical optimization proposed 

- Threshold model: A heuristic version of the optimal allocation model with a lower value 

for the cost of not allocating an order, the “threshold” value is set as the 90th percentile of 

the allocation costs for a given week. 

- Fairness model: A heuristic of the optimal allocation model that adds a negative cost to 

shoppers depending on the amount of time each shopper was assigned his or her last task 

up to a value of 30 mins 
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- Fairness and threshold mode: A heuristic version of the optimal allocation model 

with both previously mentioned heuristics working simultaneously. 

- Pipeline model: This is a local and containerized version of the model used by 

Cornershop. 

4.3.1 OPTIMAL ALLOCATION MODEL 
This model is the base proposed mathematical optimization proposal. This model is defined by 

equations (3) to (7) of chapter 3.2. In order to replicate the behavior of the pipeline model, the cost 

for non_allocation associated with variable 𝑦𝑎 in equation (7) is set to an extremely large value 

(300 minutes for the results shown). 

4.3.2 THRESHOLD MODEL 
This model is identical to the optimal allocation model except for the non-allocation cost in the 

objective function (7), which is set to a lower value. For this model the non-allocation cost is set as 

the 90th percentile of the historic total time cost for orders for a given week in the company for the 

studied zones.  

In a deployment of this version of the model, this historical data derived threshold (or benchmark) 

should be recalculated to tune the performance of the operation as it shifts due to seasonality and 

some events that trigger large differences in the operation (such as Mother's Day). 

The goal of trying out a lower non allocation cost is avoiding the allocation of matches with an 

unusually large total time (matching cost). The deferral of allocating these orders implicitly 

contains the hope that a lower cost match candidate would be available for that assignable in future 

instances. 

The downside of using this technique for achieving lower match costs is in longer elapsed times 

for finding suitable shoppers for orders, which could result in orders arriving late more often or 

arriving late by a greater time difference than that achieved by the optimal allocation model. 

4.3.3 FAIRNESS MODEL 
This model is identical to the optimal allocation model except for the values of the handicaps 

component for each assignable. For this model a skew is introduced for match candidates, the 

skew is a benefit for shoppers that have had longer idle time9.  

The size of the introduced skew is the max between 30 minutes and the idle minutes of the shopper 

for that match candidate. 

The goal for this variant lies in assessing the performance of potential solution to add the tolerance 

aspect discussed in 3.1 to the mathematical model, this is a relevant feature as it allows the 

company to provide a more interesting platform for markets where order volume is lower. 

The implementation of the pipeline model does not show a large tradeoff between having the 

mentioned fairness heuristic and a pipeline model implementation that solely focuses on reducing 

 
9 Shopper idle time is considered as the time since last completed task that day or time since login if no 
tasks were completed that day up to that point. 
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matching cost. In order to consider this variant successful, the matching cost difference between 

this model and that of the threshold model or the optimal allocation model should be small. 

4.3.4  FAIRNESS AND THRESHOLD MODEL 
This model implements both the features discussed for the threshold model and the fairness 

model simultaneously. The goal for this version is to assess the fair heuristic proposed for the 

fairness model with a performance enchantment discussed for the threshold model. 

4.3.5 PIPELINE MODEL 
This is the local implementation of the company heuristic discussed in chapter 3.1. The 

implementation of this model is derived directly from the company code base, with adaptations to 

accept data format for instances in this thesis, as these are built slight differently of how data is 

handled in the company code base. 

To avoid replicating portions of the complexity that requires the deployment of the company code 

base, some aspects were emulated. The emulated portions of the mode maintain functionality 

though these short cuts negatively affect code running time performance.  

The use of these emulated deployment components only affects code runtime performance, the 

decisions are operationally identical to that the company obtains for the same instances. 

For each version runs independently of each other, and face the same starting scenarios and 

updates, however the data for a given instance may be different based on the matches found on 

previous ones for that particular model. 
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5 RESULTS 

5.1 RUN SCOPE 

5.1.1 RESOURCES SCOPE 
As previously stated, the problem of shopper allocation at Cornershop is run in parallel for each 

zone, specifically the problem is divided into the resources (assignables, shoppers and stores) 

located within operation zone, which is a polygon that encircles a portion of a city where the 

shopping service is provided.  

Each of these zones (referred to as operating zones) can represent the operation of an entire city 

or be a subdivision of the entire area where the service is provided. For cities that are divided into 

more than one zone, the polygons of each zone do not overlap, the whole operating area for a city 

can be viewed as the unary union10 of all the operating zones for that city (a representation of these 

partitions can be seen in 5.5).  

Since the scope of each problem is that which is encompassed within an operating zone, and the 

intersection of these is null, all these problems are independent of each other. The implementation 

of these operating zones could be viewed as solving the problem for the whole city with the added 

constraint that all resources assigned intersect with the polygon of a given zone, however they are 

modeled as independent problems as is the implementation of the company. 

5.1.2 RESULTS EVALUATION ENVIRONMENT 
The results shown in this thesis were obtained using a personal computer with: 

- 16 physical Zen 2 AMD cores (using a Ryzen 5950x, 32 logical cores) 

- 64 GBs of RAM 

- The OS used is a virtualized Ubuntu 20.04  

- The code is developed in Python 3.8 using Gurobi python for compiler 

- Uses Gurobi 9.1 for solver  

- The pipeline model used is deployed locally in a docker container 

The implementation used for this thesis focuses on functionality rather than performance, some 

performance is sacrificed to allow for an easier implementation, this makes running time an aspect 

that can’t be reliably compared with a “deployable” version of the model.  

The runtime for the mathematical optimization models proposed are well below the required 30 

second interval set by the company, which would allow the implementation of any of the proposed 

models from a performance standpoint, however it requires a more elaborate implementation 

than that used in this thesis.  

 
10 GIS unary union is the polygon that is defined by the outline that covers all the joined polygons. For the 
case of the matching problem, it can be viewed as redefining a subset of problems into a larger one defined 
by all the distinct resources available within all the zones that define a city’s service area. 
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The performance aspects of the proposed model in a production ready11 version was tested in 

company resources in parallel to this thesis, although it is not part of the scope of this thesis, it 

proves that the compute performance of the proposed model is feasible for the company’s 

operation requirements. 

5.1.3 LENGTH SCOPE 
As previously mentioned, the matching process is split into discrete intervals that are triggered 

every 30 seconds. For each interval a recurring process will check what resources (assignables, 

shoppers, stores) are available and then build an instance with these shoppers. 

For the scope of this thesis, a single matching problem is referred to as an instance, a sequence 

of consecutive instances is referred to as a run. The length of a run is 30 minutes of real time 

operation (60 consecutive instances).  

For the purposes of this thesis, the interactions between instances will not be considered unless 

explicitly stated otherwise, shopper acceptance is also modeled as a certainty for simplicity. 

Shopper response to the offered assignables is also not modeled, meaning that shoppers are not 

considered to change their behavior depending on what matches are offered. Shoppers are also 

considered as a onetime use resource, meaning that once a shopper is allocated, the shopper is no 

longer considered as available for future instances. 

The length of runs is chosen so that both it is reasonable to assume that shoppers can be treated 

as a one-time use resource and have a large number of consecutive instances for making it easier 

to detect any dynamic effects on the run results. 

Unless explicitly stated, the results shown are for the aggregate allocations of the mentioned 

period (1 instance for single instance runs and 60 consecutive instances for run results). For the 

aggregate results the metrics shown are that of the instance when the assignable was matched, 

regardless of it being the first or nth instance in which the assignable was available for a match. 

5.1.4 SIZE OF INSTANCES 
The performance difference between the mathematical optimization models and that of the 

pipeline model is expected to be larger for instances with a larger volume, as the inefficiencies of 

the pipeline model would have less opportunities to affect the results for instances with a smaller 

assignable or shopper count. 

For larger instances it is expected that the greedy component of the pipeline model is expected to 

“ignore” more options than the case for small instances, when it is a possibility that the evaluated 

match candidates are the same for all models. 

 
11 A production environment is the version of code that is used by the company in its operation and requires 
the highest level of redundancy, performance and system stability of the code environments used. 
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In order to show the more relevant results for the operation, in which there would be a greater 

justification for switching algorithm, the results for this thesis focus on larger instances solved by 

the company. 

Since the results for small instances are expected to be similar for the proposed models and the 

pipeline model, any potential gain for these scenarios is best addressed by the company using 

techniques to increase instance size (such as reducing the frequency in which the problem is run). 

The proposals to address improvements for small instances are not part of the scope of this thesis. 

During the operation, large instances occur almost exclusively during rush hours, in which the 

volume of assignables may temporarily surpass by a considerable amount the number of available 

shoppers. When the ratio of assignables to shoppers is greater than 1.0 then there are assignables 

that will inevitably be left un-assigned until an instance where there are enough shoppers 

available. 

For the results shown in this thesis the point of reference is considered as the number of 

assignables that require a match in either an instance or run instead of the theoretical limit for 

the potential match count (e.g., if an instance has 10 assignables and 4 shoppers and 3 matches 

are found, the reported allocations is 30%, even though 75% of the apparent maximum of matches 

was achieved).  

The reason for reporting results using assignable count as a baseline is to have results be 

comparable across models. The theoretical allocation count depends on the exact sequence in 

which both assignables and shoppers were available. Even though the starting point and base data 

may be the same across models, the allocations or lack thereof made by a model could make the 

maximum assignable count that could be allocated different to another of the evaluated models. 

The results shown are the aggregate for the scope as previously mentioned, the matches for a 

particular assignable may happen in different instances for different models, meaning that an 

assignable may be matched on the nth instance with one model and on the 𝑛 +  𝑖 for another 

model.  

Since the results are shown regardless of which was the instance of when the assignable was 

matched, any dynamic programming effects (if the instance contained efficient or mostly 

inefficient match candidates) are captured by the efficiency difference between models, this allows 

the results to show if a model tends to generate convenient scenarios or not. 

5.1.5 RESULTS FORMAT 
The metrics for each result are shown with each metric’s average value in the corresponding table 

for each run. The mean of each metric only takes into account the values for assignables with an 

assigned shopper unless explicitly stated otherwise (for the all allocation tries of chapters 5.4 and 

5.5 metric). 

The results plot shows the cumulative allocation distribution for the plotted metric. For any given 

model, the plot shows in the y axis what percentage of the total available assignables that were 

satisfied for a given metric value on the horizontal axis. 
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The larger the allocation coverage for a given value of the metric, then the model is considered to 

find allocation at a lower allocation cost than one with a lower coverage. Lower allocation coverage 

implies that the model achieved a lower total coverage or that the allocations found were found at 

a larger cost than the model with the larger allocation coverage. 

For this thesis, the metric of total time cost, which is the company’s definition of allocation cost, 

is show within the body of the document. The result for allocation tries, as well as the breakdown 

of total time cost per components is shown in section 8.3 of the document annex. 
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5.2 MEASUREMENT METRICS 
The model used by Cornershop does not utilize an objective function in the same way as it is 

applied in a mathematical optimization problem, this presents a challenge for evaluating the 

quality of the solutions provided for each model. 

For the mathematical optimization model, utilizing the cost of the objective function (since it is a 

min cost O.F. formulation) is also deceiving. For a poor ratio of assignables/shoppers a sizable 

portion of the objective function total cost could be explained by the opportunity cost component 

for non-allocated assignables, which is a new concept introduced for the mathematical 

formulation proposals.  

The cost of the objective function can be made arbitrarily large for instances with assignables left 

un-assigned, since the opportunity cost could also be defined as an arbitrarily large value. 

The metric used for selecting the most efficient allocation cost, which for this thesis is referred to 

as total time. The total time cost is not directly translatable to operational costs for the company, 

as it includes the business skews in the form of handicaps as seen in equation (7) in chapter 3.2.4. 

The definition of total time cost can be seen in equation (8) in chapter 3.2.4 and is counted in 

minutes for units. 

It is not the purpose of this thesis to determine whether the expected outcome of the handicap 

component of the total time cost correctly captures business preferences, as this is the way the 

problem is modeled for the pipeline model.  

5.3 SINGLE INSTANCE RUN 
The instance results don’t deal with any communication across instances, therefor the problem 

solved by all models is the same, in that the same match candidates are used as input. The only 

differences in allocation options are for the pipeline model, which may discard feasible match 

candidates when applying filters that are geared towards improving code running time, as the 

company implementation does. 

The greedy characteristics of the pipeline model could also yield a scenario where the feasible 

shopper-branch allocation candidates for an assignable were assigned to another, leaving the 

assignable without a feasible match for that instance.  

5.3.1 RESULTS 
Zone 1 instance results 

Zone 1 is one with a large business volume: the mathematical optimization formulations for this 

zone have approximately 500 constraints and 8000 binary variables. 

As seen on table 1, the solution of the pipeline model provides considerably more efficient matches 

on average than the proposed optimization model. The pipeline model achieves this efficiency 

primarily by allocating shoppers that are closer to the assigned store and have a smaller handicap 
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cost, which would indicate that these matches also represent ones that are more in line with 

business preferences. 

The greater average efficiency of total time cost for the pipeline model comes at the expense of the 

estimated travel time from each store to the customer delivery location, indicating a preference 

for stores that are, on average, further away from the delivery location. 

Table 1 | Zone 1 – Instance average performance component summary 

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold 

model 

Pipeline 

model 

s2b time  5.618 5.618 5.618 5.618 8.125 

b2c time 12.620 12.620 12.620 12.620 14.539 

handicaps 12.542 12.542 12.542 12.542 5.736 

Total time 30.780 30.780 30.780 30.780 28.401 

Allocation coverage 48% 48% 48% 48% 13% 

 

What is seemingly a more effective use of resources, due to a lower mean total time cost, does not 

consider the allocation coverage that each model achieves for the instance. The pipeline model 

manages to match a lower percentage of the instance assignables for almost any value of the total 

time cost as seen on Figure 1. 

In essence, even though both approaches are solving the exact same instance, the behavior of the 

mathematical optimization models could be best described as a Maximize the number of 

participants, since it yields a match for a much greater percentage of the instance assignables 

with worse average total time cost.  

The pipeline model behavior is best described as a Minimize system wide travel time when un-

matched assignables are not considered within the total cost, since it achieves a lower average cost 

considerably lower match coverage. 

The tradeoff between coverage and average total time cost performance is expressed as patience 

in the pipeline model to defer the allocation of an assignable for a later instance. This could lead 

to a more efficient aggregate result if the deferral allows for more convenient future instances, 

although there is no guarantee of this being the case. This “patience phenomenon” could also 

result in drawbacks of orders arriving late or with higher costs if future instances have mostly 

“expensive” options to match the assignable. 

The cumulative allocation cost (total time cost) for the assingables of the shown instance, shows 

the percentage of assignables where a match was found for a given value of total time cost. The 

curve is composed of the sorted cost for each assignable in the instance where a match was found. 
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It is worth pointing out that as previously mentioned, the distribution is shown for all assignables 

in the instance, whilst there could be less shoppers than what is required to match all assignables 

in the instance.  

For the case of Zone 1 during a noon instance, approximately half of the instance assignables had 

a shopper that could have completed the job, therefore the distribution curves stop below the 100% 

mark. 

Figure 1 | Zone 1 – Noon instance cumulative distribution of total time cost 

 

Note: results for both heuristics with “fair” criterion have overlapping performance curves 

For the performance of Zone 1 during noon, all mathematical optimization derived models 

perform similarly, however there is a significant difference between these and the pipeline model, 

which allocates shoppers with an increasing marginal cost, meaning that each additional shopper 

it is “willing” to allocate is considerably more “expensive” than the previous, while the proposed 

formulations have a more gradual increase in cost for each additional matched shopper. 

The results shown for zone 2 have a median of approximately 610 variables and 480 constraints 

and a max of approximately 2200 variables and 640 constraints. 
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Zone 2 

 

Table 2 | Zone 2 – Instance average performance component summary 

 
Optimal 

allocation 

model 

Threshold 

model 
Fairness model 

Fairness and 

threshold model 

Pipeline 

model 

s2b time 9.432 9.432 9.432 9.432 8.908 

b2c time 9.160 9.160 9.160 9.160 9.237 

handicaps 4.847 4.847 4.847 4.847 18.482 

Total time 23.439 23.439 23.439 23.439 36.626 

Allocation 

coverage 
13% 13% 13% 13% 5% 

 

From the performance seen in Figure 2, the mathematical optimization derived models perform 

significantly better that the current greedy approached used by the company, however unlike the 

performance curve in Figure 1, the marginal cost for allocations follows a segmented growth 

pattern, where incremental allocations may have very different marginal costs.  

  

Figure 2 | Zone 2 - Noon instance cumulative distribution of total time cost 
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For the case of this instance, the optimization models find additional matches at a very small 

incremental cost between the values of 20 and 30 total time minutes. The model used by 

Cornershop requires accepting very high allocations costs to improve the coverage of found 

matches past the value of 40 total time units. 

The reason for this stepped behavior for performance curved is explained by the non-normal 

distribution of shoppers within a zone, which in operational terms is expressed as small clusters 

of shoppers that usually are positioned around high job volume locations. 

The extent to which these clusters affect matching performance in a “shopper starved” instance as 

shown in Figure 2, depends on the predominance of orders that are fulfilled at stores with more 

clustered shoppers for which the model manages to find a match for. 

Zone 3 

This “resource” imbalance for a particular instance is common in zones that have a larger sales 

volume and have concentrated demand peaks. The uneven distribution of assignables amongst 

select instances can be attributed to the way in which the company offers promised delivery times. 

Customers that buy using programmed12 orders are offered the same promise windows, which 

results in clusters of similar orders requiring a match within a short time span. The company has 

measures to alleviate this phenomenon, but the effect will naturally be present, even though it’s 

attenuated. 

The instance of zone 3 has approximately 500 constraints and 1000 binary decision variables. 

Unlike the results for zones 1 and 2 which are scenarios with an unfavorable assignable to shopper 

ratio, the result for zone 3 has a favorable ratio (there are enough shoppers to match most or all 

assignables), which translates into a shift of model behavior of “which orders are most efficient to 

have allocated” to “how can be the orders most efficiently allocated”. 

From a model allocation capability standpoint, this is a more interesting result, since it leverages 

the combinatorial nature of the assignment problem to a greater extent than the first to two runs.  

Intuitively, for a single instance a higher number of matches found should normally be interpreted 

as a better result, however from a “global efficiency” standpoint that is not necessarily the case, 

since neither of the current and proposed formulations make use of the online nature of the 

recurring assignments across instances.  

It’s not too hard to realize that a less match coverage could end up “being a feature, not a bug”, 

since this could result in “smother” scenarios faced on a sequence of instances, where many 

 
12 The company service offers to place an order as a scheduled order or on-demand, which for practical 
purposes is equivalent to a “within the next X minutes” promise. For matching, the only difference between 
each type is in the value of handicaps for the assignable. 



  
 

37 
 

allocations during instance n, may result in only having inefficient combinations be a more 

common occurrence since more of the earlier orders were allocated in a single instance. 

Zone 3 

Figure 3 | Zone 3 - Noon instance cumulative distribution of total time cost 

 

Table 3 | Zone 3 – Noon - Instance average performance component summary 

 

Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold model 

Pipeline 

model 

s2b time 4.663 4.636 10.338 10.336 2.925 

b2c time 14.670 14.670 14.670 14.670 15.800 

handicaps 6.531 6.531 6.799 6.799 6.835 

Total time 25.837 25.837 31.808 31.808 25.561 

Allocation 

coverage 
100% 100% 100% 100% 58% 
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5.4 RUN RESULTS 

5.4.1 SEQUENCE DATA 
As described in chapter 4.2, a sequence of instances is generated using historical scenarios derived 

from the company’s operation. Like previously mentioned, resources allocated during an instance 

are removed from all following instances regardless of them appearing in future logs or not, 

likewise resources left idle or un-allocated on instance are then added to following ones.  

This process of instance inheritance goes on until the resource in question is allocated to another 

or the end of the run. 

For allocation tries, which again represents the number of times an assignable was present in 

an instance (or the number of times a match was attempted), there are two metrics: 

- Assigned Allocation tries: the match tries count for assignables where a match was 

found within the sequence 

- All allocation tries: the match tries considering all assignables regardless of if a match 

was found within the sequence or not (this considers un-matched assignables) 

It is important to remember that as with the single instance results, a sequence may not contain 

enough shoppers to allocate all assignables (shoppers can only be allocated a single assignable), 

however the results are presented with regards to the assignable count, which may be larger than 

the maximum feasible allocation count. 

5.4.2 RESULTS 
The results presented show 3 types of scenarios: 

- A non-strained mature market  

- A strained mature market  

- A new market that can be considered not to be shopper strained 

5.4.2.1   Non-strained mature market 
A mature market has a larger order volume than a typical new market. Mature markets have had 

an active operation for longer, this affects the location of shoppers thought the city as well as 

having more of them on average.  

For mature markets more experienced shoppers will have a tendency to position themselves close 

to large order stores, as well as having a larger proportion of experienced shoppers in comparison 

with newer markets. 

The results shown for a non-strained operation exemplify a scenario where for most instances 

there are enough available shoppers to fulfil most if not all the assignables within the instance. 

The instances shown for a non-strained mature market have median of approximately 100 

constraints and 260 variables and reach a maximum of approximately 500 constraints with 1000 

variables. 
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5.4.2.2 Strained mature market 

Like the characteristics of a non-strained mature market, a strained shared the shopper 

positioning and seniority characteristics mentioned in 5.4.2.1. 

Where the scenarios differ is in the ratio between assignables and shoppers as well as the size of 

instances. The results show typically have less shoppers than needed for most instances, which 

results in larger allocation tries count13. 

Un-matched assingables are usually matched at later instances past the daily rush, which due to 

the length of the shown runs is not reflected on the results. For this zone the elapsed time between 

an assignable being available for a match to when it’s matched is particularly relevant since this 

negatively affects if an order will arrive late or not. From the results shown the allocation tries 

directly correlates to longer match wait times. 

The instances for this zone have a median of approximately 500 constraints and 2500 variables 

and a maximum of approximately 650 constraints and 13000 variables. 

5.4.2.3 New market 

Contrary to the behavior of mature markets, where the operation has a subset of partners with 

large stores that concentrate the demand fulfilling large orders, new markets operate with a larger 

participation of smaller stores. For matching purposes, it implies that there is less of a clear pattern 

of experienced shoppers around a small subset of store branches. 

Unlike mature markets, the “recently” opened ones have less volume of both shoppers and 

assignables, which leads to smaller instance sizes. For the results shown, the median instance has 

approximately 100 constraints and 10 variables with a maximum of approximately 200 

constraints and 450 variables. 

These three scenarios are shown in a rush hour and normal operation setting (which are 

represented by a morning and afternoon run respectively). These configurations are 

representative of the main “use cases” that are relevant for the operation. 

Mature non saturated market 

Zone 3 is a large and “mature” zone, with a large volume of both assignables and shoppers. It is 

considered a zone that normally is not “shopper strained”. For the context of this thesis the main 

difference between mature markets and new operations is in the volume of orders that are 

allocated within any given date, where the mature market handles a considerably larger volume of 

both assignables and shoppers.  

Although not formally studied within the scope of the thesis, mature markets also have more 

experienced shoppers, which for matching purposes is manifests in shoppers accumulating 

around stores that are perceived to yield a better compensation (this is explained by stores with 

larger orders and a higher chance of a multi order assignable from some stores). From a results 

 
13 Allocation tries refers to the number of instances an assignable goes through before being matched. 
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point of view this phenomenon is seen as a more stepped performance curve for shopper to branch 

travel times. 

Zone 3 

Figure 4 | Zone 3 - Morning - Run cumulative distribution of total time cost 
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Table 4  | Zone 3 - Morning – Run average performance component summary 

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold model 

Pipeline 

model 

s2b time 4.506 4.325 9.764 9.764 5.075 

b2c time 13.700 13.325 13.692 13.692 13.570 

handicaps 6.860 6.788 7.197 7.197 9.094 

Total time 25.065 24.439 30.653 30.653 27.739 

Assigned 

Allocation 

tries 

1.000 1.000 1.000 1.000 1.439 

All 

allocation 

tries 

1.000 1.130 1.000 1.000 1.797 

Allocation 

coverage 
100% 98% 100% 100% 91% 

The overall performance of the mathematical models that don’t add a fair heuristic show a steeper 

performance curve, particularly the threshold model manages to allocate all assignables in the 

sequence. The more efficient allocations for the “pure optimization” models also manage to 

achieve greater coverage. 

As discussed within the single run results, this sequence results clearly shows that any “resource 

smoothing” benefits derived from allocations with less coverage are not enough to compensate for 

the per instance gains of the mathematical formulations. 
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Figure 5 | Zone 3 – Noon – Run cumulative distribution of total time cost 
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Table 5 | Zone 3 – Noon – Run average performance component summary 

 Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold 

model 

Pipeline 

model 

s2b time 
4.003 3.700 9.383 9.383 3.790 

b2c time 
15.075 14.455 15.237 15.237 14.172 

handicaps 
5.723 5.741 5.672 5.672 7.393 

Total time 
24.800 23.896 30.291 30.291 25.356 

Assigned 

Allocation tries 

1.105 1.544 1.105 1.105 1.509 

All allocation 

tries 

1.105 1.544 1.105 1.105 1.737 

Allocation 

coverage 

100% 100% 100% 100% 96% 

 

For morning results of zone 3, the total time gains are primarily explained by a reduction in 

shopper to branch times and handicaps. The average branch to customer time is practically 

unchanged, this means that the gains are explained by a more efficient allocation of shoppers both 

in placement and characteristics, rather than fulfilling the orders at a closer store or with different 

transportation method than those assigned by the pipeline model. 

The results for the afternoon run shows less improvement than the rush hour morning run, 

however the threshold model does manage to extract additional efficiency from the allocations, 

although in doing so it is also the only mathematical optimization approach with lingering orders 

that take longer to assign, particularly in the group of orders where a match is not found within 

the run.  

The advantages for the afternoon run are mainly explained by a lower average handicap cost, 

representing allocations that on average are better aligned with business preferences in 

comparison to the pipeline model.  

The average shopper to branch cost is higher than the company heuristic for all proposed 

formulations except the threshold model, the loss in shopper to branch time is especially relevant 

for the fair selection heuristics, suggesting that the proposed heuristic does not adequately 

encapsulate the “fairness” criterion to matches that are “close” to the efficiency optimized 

allocations as is the case for the company heuristic. 
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New market 

Zone 4 is an example of the newer markets14, this example is a larger case amongst new markets, 

however the volume of both assignable and shoppers for these instances still lag behind that of 

more mature markets.  

Unlike mature markets, shoppers for newer markets are expected to not be as accustomed to 

working with the platform. The unfamiliarity results in the distribution of the shopper locations 

being less clustered around larger stores.  

Many of the newer markets where the company operates also have relevant competitors with 

whom shoppers may have experience, how this past shopper experience affects matches is not 

formally studied. 

 

Figure 6 | Zone 4 - Morning - Run cumulative distribution of total time cost 

 

 

 
14 Most of the cities where cornershop operates where added during the last 2 of the 7 years of operation, 
meaning that these zones are from cities where the operation started during the pandemic. 
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Table 6 | Zone 4 - Morning - Run average performance component summary 

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

Threshold 

model 

Pipeline 

model 

s2b time 
6.239 4.767 17.003 17.003 11.673 

b2c time 
14.944 14.018 15.013 15.013 14.166 

handicaps 
4.659 4.678 5.106 5.106 4.549 

Total time 
25.842 23.463 37.121 37.121 30.388 

Assigned 

Allocation 

tries 

1.000 1.000 1.000 1.000 1.225 

All allocation 

tries 

1.000 3.041 1.000 1.000 3.694 

Allocation 

coverage 

100% 97% 100% 100% 83% 

 

The performance curve for zone 4, as with the performance for Zone 3, has a steeper curve and 

better coverage for the mathematical optimization-based approaches versus the pipeline model.  

Unlike a similar performance similarity between the fairness selection and pipeline models seen 

for zone 3, this zone achieves greater coverage with the optimization approach for all models.  

It is worth noting that the average total time cost for threshold model on the morning run, is up to 

22% lower than that achieved by the pipeline model. The optimal allocation model is on average 

more than 14% more efficient in terms of total time cost than the pipeline model, while having 

both better coverage and less allocation tries for both allocated and non-allocated assignables. 



  
 

46 
 

Figure 7 | Zone 4 – Noon – Run cumulative distribution of total time cost 
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Table 7 | Zone 4 – Noon – Run average performance component summary 

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold model 

Pipeline 

model 

s2b time 12.227 10.814 16.174 16.174 14.258 

b2c time 13.042 13.042 13.173 13.173 12.615 

handicaps 5.107 4.900 5.355 5.355 4.749 

Total time 30.376 28.756 34.702 34.702 31.623 

Assigned 

Allocation 

tries 

1.000 1.204 1.000 1.000 1.240 

All 

allocation 

tries 

1.000 1.204 1.000 1.000 1.537 

Allocation 

coverage 
100% 100% 100% 100% 92% 

 

Shopper strained mature market 

Zone 1 is amongst the largest subdivisions the company has in its operation, it is a mature market 

and from a matching point of view shares, many of the characteristics as Zone 3. Unlike Zone 3, 

the balance of assignables and shoppers is skewed heavily towards more assignables for the peak 

demand slices of the daily operation.  
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Figure 8 | Zone 1 – Morning – Run cumulative distribution of total time cost 
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Table 8 | Zone 1 – Morning – Run average performance component summary 

  

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

threshold 

model 

Pipeline 

model 

s2b time 7.508 6.547 8.236 8.236 4.458 

b2c time 13.135 12.360 13.038 13.038 28.161 

handicaps 10.191 10.077 10.170 10.170 -2.889 

Total time 30.833 28.984 31.444 31.444 29.731 

Assigned Allocation 

tries 
1.261 1.417 1.284 1.284 3.484 

All allocation tries 2.074 2.346 2.096 2.096 4.457 

Allocation coverage 93% 89% 94% 94% 85% 
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The performance for the morning is the only zone shown where the performance curve for the 

pipeline model outperforms all the mathematical optimization approaches under at least a portion 

of the allocation costs.  

For the morning run shown, the performance of optimization models achieves better coverage 

than the pipeline model only above approximately 30 minutes of total time cost, which roughly 

coincides with the average performance of the models shown. This performance means that for 

allocations above the mean the optimization models manage to find more matches whilst the 

pipeline model has its matches skewed towards values below the mean. 

The performance of all but the 50 threshold model is on average, worse than the company 

heuristic. This difference is primarily by a much better average performance on the handicap 

component of the total time costs, meaning that these allocations are better aligned with business 

preferences, whilst the optimization models show lower cost for branch to customer delivery 

times.  

The swap of better handicap cost for longer trips can be explained by a “feature” of the pipeline 

model not added to the global optimization approach, where there is an additional large handicap 

added for the merchant that is associated with the shopper app of the customer who placed the 

order. 

The more efficient allocations of the pipeline model are not a free lunch, the cost benefit comes at 

the expense of considerably more allocation tries, which directly translates to longer order 

matching times even for the worst-case scenario of the optimization models. An allocation is 

attempted on average twice as often for the pipeline model as for the proposed mathematical 

optimization versions. 

The longer allocation times for orders are related to a higher chance of the orders within the 

assignable arriving after the promised delivery window. Although the delivery windows are not 

directly considered in the objective function of any of the models (adding these as a cost should be 

high in the priorities for future work), the fulfillment of the delivery window is the main “order 

quality” metric for the operation alongside order fill rate15. 

 
15 Fill rate: the percentage of items within an order where the order items were found, or a suitable 
replacement item was accepted by the customer. 
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Figure 9 | Zone 1 – Noon – Run cumulative distribution of total time cost 
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 Table 9 | Zone 1 – Noon – Run average performance component summary   

 
Optimal 

allocation 

model 

Threshold 

model 

Fairness 

model 

Fairness and 

Threshold 

model 

Pipeline 

model 

s2b time 8.021 7.847 8.625 8.625 5.216 

b2c time 14.198 14.198 14.178 14.178 25.316 

handicaps 10.555 10.418 10.452 10.452 1.603 

Total time 32.774 32.462 33.256 33.256 32.135 

Assigned 

Allocation tries 
1.338 1.390 1.343 1.343 2.179 

All allocation 

tries 
2.251 2.296 2.255 2.255 3.453 

Allocation 

coverage 
87% 85% 87% 87% 87% 
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The afternoon run for Zone 1 represents a run that although large, is considerably smaller than the 

morning scenario for the same zone. The results for the pipeline model for this run are the only 

results shown where the pipeline model achieves both more efficient allocations average 

allocations and greater coverage than that of all the proposed models. 

In a similar fashion as the results shown for the morning run, the greater efficiency of the pipeline 

model comes at the expense of longer “matching times”, seen in more assigned allocation tries. 

The assigned allocation tries difference between models is smaller than for the morning run, 

where the worst case is on average 1.6 times the count of that of any other result for this run.  

The aggregate result for assigned allocation tries is approximately 1.5 times the average result of 

the aggregate tries for the optimization models, which is also a smaller difference than the morning 

run result at 2.6 times. 

The greater efficiency for the pipeline model can attributed to a much smaller result for the 

handicaps component of the allocation cost, at over 6 times the component cost for the 

mathematical optimization models.  

The transportation costs for the mathematical optimization models are, as with the morning 

sequence, smaller than the value attained by the pipeline model, where the heuristic approach 

component cost is approximately 70% larger than that of the mathematical optimization values. 

It is worth nothing that the performance curve of the afternoon run shows a better result for the 

last percentage of allocations, where the pipeline model requires finding matches at over twice the 

total time cost than that of the mathematical optimization proposals. This behavior is very much 

in line with expected what is expected for a greedy approach Vs. that of ones which at least on a 

per instance level find the global optimum matches. 
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5.5 CITY MODEL 
As described in chapter 5.1.1, the company does not solve the shopper allocation problem with the 

same scope as the customers might perceive service availability. The actual scope of each instance 

is defined by a polygon that may cover the entire availability zone for Cornershop’ s service or a 

partition of the availability zone.  

For illustration purposes, since they don’t show real zones, figure 10 illustrates the availability of 

the company’s service for Santiago Chile, whilst figure 11 illustrates allocation zones. 

Figure 10 | Whole city example zone scope for Santiago, Chile 

 

Figure 11 | City zones example scope for Santiago, Chile 
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Although running the shopper allocation problem with a different scope as is used by the company 

is not a strictly speaking an algorithm improvement, enabling the application of business filters 

discussed in 3.1 in parallel would allow the implementation of this larger scope within company 

compute time benchmarks, whilst the pipeline model can’t reliably perform with the larger scope. 

The subdivision of an operating zone into smaller chunks can be seen as equivalent to solving the 

entire operating zone (the entire city), with the added constraint that all resources must intersect 

with a smaller polygon, where the smaller polygons are the current operating zones in cities where 

the operating zone does not cover the entire city.  

On a purely mathematical point of view, it can be trivially proven that each instance will have a 

lesser or equal cost on the whole city formulation in comparison to the sum of the cost for each 

individual partition, as the optimal solution of the subdivided problem is also a feasible solution 

of the city problem, but the contrary is not necessarily true16. 

This thesis focuses on the implications of switching algorithm for the company’s application and 

not necessarily the solution of each instance. As seen for the results of a strained mature market 

in 5.4 an algorithm that achieves a per instance improvement will not necessarily yield less costly 

results for a run of consecutive instances, although this is expected to be the outcome. 

Operating zone resources are defined without overlap, meaning that the instances of each 

operating zone are completely independent. For the results of running a city model the whole 

city model is defined as the problem without the zone subdivision, so the operating area for this 

problem covers the entire city.  

The regular model is defined as the sum of outcomes for all the zones in the same city as for the 

city mode. The remaining configuration and presentation of results is kept the same as for the runs 

results (chapter 5.4). 

Due to the city model being a comparison without an algorithm change, only the results for the 

base mathematical optimization algorithms will be shown. 

 
16 Instances where the feasible matches are the same set for the divided and whole problem are equal can 
be built, however there is no guarantees of this being the case for an operational scenario 
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Figure 12 | Zone 4 – Run cumulative distribution of total time cost 

 

Table 10  | City run average performance component summary 

 
Optimal 

allocation 

model 

Whole city 

optimal 

allocation 

model 

Threshold model 
Whole city 

threshold model 

s2b time 6.512 4.765 5.557 4.174 

b2c time 14.242 14.315 13.781 13.795 

handicaps 4.658 5.245 4.556 4.988 

Total time 25.412 24.325 23.895 22.956 

Assigned 

Allocation tries 
1.216 1.000 1.360 1.372 

All allocation 

tries 
1.216 1.000 1.750 1.862 
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5.6 RESULTS ANALYSIS 

5.6.1 INSTANCE RUNS 
From the results seen in 5.3, assessing the performance of a model for the shopper allocation 

problem is not as straightforward as selecting the one which achieves the lowest average allocation 

cost, as other aspects such as allocation coverage and allocation time must also be taken into 

account. 

The pipeline model for zone 1, finds allocations that on average, have lower total time cost than 

the proposed formulations, however the match coverage for the instance is considerably smaller 

than for any of the proposed models. 

It is not evident if the result achieved with smaller total time cost and less coverage has a net 

positive or negative effect on outcome for a sequence of instances. The deferral of allocating less 

efficient allocation candidates could allow for less costly allocation candidates to become available 

in a future instance, as well as setting the future instance with comparatively less convenient 

allocation candidates. 

For instances where there are enough shoppers to fulfill either the majority or all the instance 

assingables, the mathematical optimization models outperform the pipeline model as seen with 

the results for zone 2 of chapter 5.3. 

The performance of chapter 5.3 suggests the mathematical optimization proposals perform better 

when the instance allows for the majority of assignables to be fulfilled. The result from single 

instance can be explained by the model “sacrificing” the total time cost of assignables to avoid 

having to the non-allocation cost for assignables.  

The described behavior suggests that future work geared towards a more informed management 

of the non-allocation decision could yield important average matching cost benefits.  

From the results of single instance runs it can be concluded that the performance of mathematical 

optimization models is mostly positive in comparison to the pipeline model, however the 

operational efficiency in the matching cost (total time cost) for an average assignable depends on 

both the assignable/shopper ratio and if the smaller match coverage of the current instance has 

an overall positive or negative impact on a sequence of instances total time cost. 

5.6.2 SEQUENCE RUNS 
The runs show a benefit on both the operational metrics as well the average number of times an 

order needs to pass through the matching problem for a shopper to be allocated to its assignable.  

The number of times an order is a candidate for allocation is particularly relevant for determining 

if the order will arrive within the promised delivery window. 
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Orders arriving late are affected by many factors other than allocations, such as shopper know-

how of stores, difficulty of delivery, traffic changes due to external factors, the correct calculation 

of elapsed times, etc.  

Although not explicitly considered when matching for this thesis, as the pipeline model does not 

do so, complying with the delivery windows is seen as the main factor related to customer 

experience, therefor a very important factor for order dispatch. 

Looking at the results for Zone 4 and Zone 3, the actual impact of switching the matching engine 

varies from zone to zone, from approximately 0.9% worse efficiency to just over 22% less total 

time cost, with the best performing model of the proposals, which for operational metrics is the 

threshold model on both cases.  

Table 11 | Run results total time cost summary performance 

Result 
Pipeline model 

(minutes) 

Threshold  
model 

(minutes) 
Difference 

Optimal allocation  
model 

(minutes) 
Difference 

Zone 3  
–  
Morning 

27.7 24.4 -11.9% 25.1 -9.5% 

Zone 3  
–  
Noon 

25.3 23.8 -5.9% 24.8 -2.0% 

Zone 4  
–  
Morning 

30.3 23.4 -22.8% 25.8 -14.9% 

Zone 4 
 –  
Noon 

31.6 28.7 -9.2% 30.3 -4.1% 

Zone 1  
–  
Morning 

29.7 28.9 -2.7% 30.8 3.7% 

Zone 1 
 –  
Noon 

32.1 32.4 0.9% 32.7 1.9% 

 

For context, if the time savings shown for the best-case scenarios of each zone were directly 

transferable to operational cost17, then switching the matching model from the currently used 

heuristic to the threshold model would result in per-order profits improvement ranging from 12% 

to approximately slightly over 40% depending on the city considered and its characteristics. 

It is worth highlighting that the result for Zone 1 on all the mathematical optimization proposals 

does not show an improvement in operational metrics over the company heuristic, however as 

 
17 shopper commission plans are distance based, rather than time based which is the optimized metric for 
all the matching models. 
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with the characteristics of the single run instances, the scenario for this run is “shopper 

constraint”, which could be hiding future inefficiencies of the company approach during future 

runs that due to technical limitations of the evaluation implementation can’t be properly evaluated 

on longer time frames. 

Amongst the proposed mathematical optimization models, the threshold model is the one that 

achieves the least costly total time and has a coverage that although worse than the optimal 

allocation model, is generally better than the pipeline model. This emphasizes the previously 

mentioned conjecture that future projects focusing on the non-allocation decision could yield even 

better performance. 

The main drawback of the proposed models is in the fact that when under shopper constrained 

scenarios, they sacrifice mean allocation costs for greater match coverage with the tested 

parameters.  

The mathematical optimization models achieve greater match coverage, however from the results 

shown only for “shopper abundant” scenarios it outperforms the pipeline model regardless of 

metric. 

The higher count of allocation tries for the pipeline model is generally considered an undesirable 

factor, whoever the precise effect of missing an allocation depends on several factors, many of 

which are out of the scope of matching which makes its impact difficult to quantify for a proper 

evaluation of the tradeoff with match cost efficiency. 

5.6.3 CITY MODEL 
As expected, the removal of the subdivision constraint from the city-wide runs, also translates into 

greater allocation metric gains.  

Although whole-city models result in larger instances and therefore longer compute times, the 

bulk of processing time is spent on the pre-processing phase, which is highly parallelizable. 

From a variant of the proposed mathematical optimization models implemented by the company, 

the solve time spent in solver workloads is a small proportion of total compute time, which with 

an adequate parallelization implementation should yield solve times within the current 30s 

benchmark even for considerably larger instance sizes, such as a whole-city instance. 

In case the workload exceeds the permitted response times for the shopper matching problem 

engine, a temporary problem subdivision for load balancing could be added to improve the max 

solve time, only while the city model instance becomes too large and reverting to the city-wide 

proposal once the load is stabilized.  

The possibility of solving larger instances by removing artificial instance partitions would 

compound on the benefits of switching to a mathematical optimization approach.  
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This is just one example of how a mathematical optimization model provides benefits not only AS-

IS, but also permits the implementation of techniques that previously were either hard to achieve 

or simply unfeasible with the pipeline model. 
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6 CONCLUSION 
The implementation of a mathematical optimization model for the shopper allocation problem in 

a distributed gig-economy logistics application, shows to generally be more efficient than the 

current approach used by the company. There are some scenarios where this is not the case, but 

this can be explained by the technical limitations of the implementation used to produce the 

results shown in this thesis.  

Although promising, the sample of results shown does not allow one to statistically prove the 

benefits of switching to a variant of the proposed models. A full evaluation of the proposed model 

would require analysis of statistically significant sample size for both the proposed model and the 

pipeline model. 

The conclusions presented in this thesis are there for to be taken as conjecture. However out of 

the scope of this thesis a production version of a variant of the optimal allocation model was tested 

by the company and although the size of the improvement does not match the one presented in 

this thesis, both this controlled trial and the implemented model achieve an improvement over the 

company model. 

6.1 FURTHER DISCUSSIONS 

6.1.1 NON-ALLOCATION COSTS IMPROVEMENTS 
The cost associated with the variable 𝑌𝑎  is a new concept introduced with the proposed 

formulation. This cost clearly has an impact of the greediness of each instance allocations as shown 

with the proposed threshold model. When the non-allocation cost is set to a smaller value the 

performance of the model yields more efficient results with less drawbacks compared to the 

pipeline model. 

For this thesis the value was set as a fixed cost across instances and a fixed value depending on 

assignable type (for batch assignables a larger value is used). These two simplifications are a 

reasonable approximation of the behavior of the company heuristic, however further 

improvements could be achieved by allowing more customization of the associated non-allocation 

cost. 

Heterogeneous non-allocation costs 

The company approach includes implicit preferences in the search for optimal shoppers by 

adjusting the order in which assignable are evaluated, as is, this “feature” is not incorporated to 

any of the mathematical optimization proposals, however heterogenous non-allocation costs can 

help set these priorities, particularly for shopper constraint scenarios.  

It can be argued that the sorting mechanisms used in the company approach also play a larger role 

for shopper constraint scenarios, as shopper abundant ones will have efficiency metrics play a 

larger role since, they are part of what can be described as the heuristic objective function. 
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Dynamic non-allocation costs 

The optimal allocation model for the sequence runs consider static non-allocation costs, where 

the deferral of a match for a particular assignable is indifferent to the amount of time that 

assignable has spent trying to find a shopper match.  

In an implementation of one of the proposed models, the preference for previously non-allocated 

assignables can be set with a higher non-allocation cost. The preference for previously un-

allocated assignables should not affect efficiency metrics for instances with a healthy shopper to 

assignable ratio, as in these cases its very likely that all assignables will end up with an allocated 

shopper. 

For shopper constrained instances, preferring the allocation of a slightly less efficient match to 

avoid late order arrivals is a prefer method from an experience quality point of view, if the costs 

associated with this tradeoff is a business decision, not a technical one. 

A more “organic”18 use of dynamic non-allocation costs would be an explicit cost for on-time 

orders within the formulation objective function (7). As previously mentioned, the fulfillment of 

orders within the promised delivery window is currently the responsibility of tools that assume a 

somewhat deterministic behavior of shopper allocation models. 

The reliance on idealistic outcomes from the shopper allocation algorithms for controlling on-time 

order arrival leaves a sizable opportunity for improvement of the customer's experience. Adding 

these controls within the matching tools enables using more information for this purpose which 

in theory should reduce late or early orders. 

The addition of an on-time associated cost may have a large impact on the logistics cost 

components of the model. The evaluation of adding this feature is both not a part of the current 

model (there for, out of the scope of this thesis) and heavily depends on the output of internal 

predictor tools, making the development of this feature dependent on the work of other teams, 

this lends itself better to a company project than a thesis. 

6.1.2 DELAYED ORDER ALLOCATION 
From a matching point of view, it is clearly preferable to find an allocation requiring as few tires  

as possible, since this should allow for less chance of an order arriving late. The impact of the 

amount of time required to find a match for an order is not straightforward, since as mentioned 

the costs are not easy to determine due to differences of the perceived value of arriving on-time 

for each customer.  

The operational impact of not managing to allocate an order has both a direct economic impact 

(shipping costs refunds are issued under some scenarios) and implicit economic costs, as arriving 

after the promised delivery window degrades the perception of the service delivered by the 

company, which leads to a higher chance of losing the customer who placed that order.  

 
18 Organic use: the proposed implementation aligns with the driving factors for on-time orders rather than 
a proxy  
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The expected cost for losing a customer due to poor experience with orders can be obtained using 

the customer lifetime value for that given market multiplied by the probability of losing a customer 

due to a re-scheduled order, however this last component is not easily obtained, since customers 

have unique needs for a given order.  

Missing the order with your child’s birthday cake will not have the same impact as a box of 

chocolates, unless your partner is in an unbelievably bad mood, then the chocolates might be an 

urgent matter. 

The direct cost of missing the promised delivery window is easy to calculate, as refunds are issued 

when orders arrive late (and only for late orders, early orders do not trigger a refund), however 

the refund issued is only triggered for orders that arrive after a given threshold that can be adjusted 

for each market where the order takes place.  

Aside from being market dependent, the fixed cost is a binary decision on whether the “permitted 

lateness” was reached or not and makes no distinction between orders that arrived a minute later 

that the threshold from those that arrived hours later. 

The amount issued in late arrival refunds is equivalent to the cost of a paid delivery on the 

platform, which from a costs point of view could be considered as the logistics cost of an average 

order, this cost is primarily dependent on the characteristics of zone where the customer orders 

most often. 

A limitation of using 30 minutes runs for the impact analysis is entire day consequences can’t be 

adequately modeled. The largest penalties for the untimely allocation of a match arise when 

merchants close the respective branches, this is not captured by a run that does not cover ed of 

day circumstances.  

The consequences of having a larger amount of un-allocated assignables is hard to fully quantify 

without simulating complete day runs, which is not shown due to code performance issues.  

The impact of the switch to a mathematical optimization model is there for, greater than the result 

shown in this thesis, although judging from the assigned allocation tries results, it is expected for 

the difference to be in favor of the mathematical optimization proposals versus the pipeline model. 

Undelivered orders 

A particular case of late orders is those that end up being not delivered within the same day that 

the order was scheduled for. From an operational point of view these are rescheduled for the next 

available unless the customer requests a cancelation or another delivery time that is not the 

earliest available. 

As mentioned in 6.1 the control for delivering orders within the promised time window is not 

directly considered within the scope of shopper allocation problem, however it is considered for 

the creation of instances.  
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Instances are created with assignables that contain orders for which the estimated elapsed time 

and the current time is within the orders promised time window.  The process of controlling for 

an on-time delivery assumes that the assignable is allocated within a negligible amount of time for 

the total order cycle time.  

From the simulation results shown in this thesis, some assignables can take considerably longer 

to match than the typical order, particularly ones that are harder to match. It can be easily 

identified that although for an average case the allocation time might be small, under some 

circumstances this time metric may be considerable for an assignable. 

6.1.3 FAIR SHOPPER SELECTION 
From the results shown for both single instance and sequence runs, it can be easily identified that 

the proposed implementation for a shopper fairness criterion has a large trade-off between 

operational cost (total time cost) and rewarding shopper connected time. 

From the results shown, the proposed fairness heuristic perform worse (and considerably so) than 

the pipeline model, which negates any advantage of switching to a mathematical optimization 

formulation. 

As described in 3.1, the implementation of this feature for the pipeline model is done only for 

match candidates that are within a set a threshold of the most efficient match for each assignable. 

This notion of only considering a neighborhood of efficient match candidates differs from 

approach shown, of having the shopper wait time be an additional cost for the matches of that 

shopper.  

A fairness selection heuristic that more closely resembles the neighborhood approach used in the 

pipeline model, can be reasonably achieved with a mathematical model formulation. Most 

commercial solvers (e.g. CPLEX and Gurobi) allow the use of a solution set for larger problem GAP 

configurations, where instead of returning a single solution, a set is returned where all solutions 

within the set are within a problem GAP set by the users. 

The “solution set” functionality implemented for these solvers, returns a set of states for decision 

variables. Every solution within the set of solutions has an objective function cost that is below the 

optimality gap set for the instance.  

A second decision of which solution between the solution set is then defined as the solution that 

maximizes the shopper idle time, there by rewarding shoppers that have been available and idle 

the longest. 

The downside of a GAP approach is that it would require a more robust layer of post-processing 

on the solution of the first stage, this would introduce additional complexity in that there could be 

competing interests on the definition of the best solution for the second stage.  

Some teams might ask for the solution with the most amount of shopper fairness, while it can also 

be valid to choose that the maximizes the number of matches or the one that maximizes on-time 

deliveries. 
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Another approach for introducing tie breakers amongst shoppers would be to use the idleness 

metrics for a rank cost associated with the feasible matches for that shopper. Since candidate 

matches are pre-calculated a rank could be generated by sorting the feasible matches for a given 

assignable and then assigning a cost to the rank for each match candidate e.g.: the largest idle time 

gets rank 1 and no added cost, rank 2 gets a small added cost, rank 3 and so on get progressively 

larger costs. 

This approach introduces both the computational complexity of having to sort a potentially large 

list and similarly to the fairness model results, requires a cost associated with each rank such that 

the impact to the efficiency metrics is minimized, where there is no guarantee for the results to 

have a lower penalty for introducing a fairness component as with the approach shown. 

A simpler approach would be modifying the approach shown, to remap the shopper wait time to 

an s-curve instead of a linear cost function, which should help to reduce the efficiency impact of 

unreasonably large handicaps as well as removing some of the impact for shoppers with low 

handicap values. 

Using a non-linear cost function for wait times may improve the impact of a handicap for shoppers 

in “the middle of the pack”. This approach, as with others previously mentioned, introduces the 

need for possibly constant tuning of the threshold values for the taper of each side of the remapped 

s-curve. 

The approach could also yield more efficient results and while maintaining its fairness criterion 

by tunning the portion of the fairness metrics considered for optimization, the extent to which the 

efficiency vs fairness tradeoff is made is a business decision. 

Another interesting proposal that has the benefit or a more intuitive explanation, is to associate a 

fair selection to an explicit cost associated with a new variable of “no allocation for shoppers” 

which would be analogous to the non-allocation variable for assignables. 

Regardless of which of the discussed avenues for addressing the accumulation of matches in a 

reduced group of “super shoppers” replicates the business requirements more faithfully, the 

degree to which the sacrifice of operational efficiency is made requires decision making by the 

operational teams and tunning the impact of the approach to meet the desired level of tradeoff. 

6.1.4 CITY MODEL 
The results shown by eliminating the geofencing partitioning for cities that are composed of 

multiple zones, show an improvement on a regular operation instance, however the partition of a 

larger city also plays a role when the operation experiences issues that are localized to a part of the 

city.  

Operational issue isolation 

If there is an operational issue in a portion of a city, such as a road being blocked, it’s preferable 

to isolate the affected area allowing the remainder of the operation to continue to provide matches 

if available.  



  
 

66 
 

A solution for issue isolation could be a manual approach for temporarily generating geo-fenced 

excluded sections of the city, however this requires a monitoring team and the team following 

established procedures, ideally avoiding the unintended use of such functionality.  

The approach of requiring team input for problem identification is not scalable for many operating 

cities, however due to the very nature of these situations being “freak events” it can be safely 

assumed that the workload of identifying these events and taking action should not present a 

major problem for the operation, however days with stressed operation could present a problem. 

Shopper imbalance 

Another potential issue introduced with eliminating the currently used approach of subdividing 

cities lies in the potential drift of shoppers across what are currently treated as different 

subdivisions.  

By removing a way of avoiding shopper drift, the potential for imbalance between shopper and 

demand locations is greater than with the current approach. For cases when there is greater 

demand imbalance the cost of matching these scenarios could negate the benefits of solving the 

problem without the subdivisions. 

How shopper behavior may change with the removal of city partitions for matching is hard to 

estimate from an offline approach and should be tested by the company. Shoppers may react and 

coordinate (app-based contractors commonly communicate through messaging platforms and 

social networks such as Facebook and WhatsApp groups) to what they perceive as a change in 

demand which might not match the operation.  

Shopper preferences are also not considered for this thesis, which could also lead to unexpected 

results when implemented. Shoppers might prefer working in a subset of neighborhoods due to 

traffic, proximity to their household, safety, etc. How these preferences may impact the mentioned 

drift is not within the scope of this thesis but should be considered for the implementation of 

solving whole city models. 

Given the contractor nature of shoppers, there are little legal avenues for addressing this issue, 

and although it is also a potential problem with the current geofenced cities it is exacerbated by 

eliminating these constraints. 

Amongst the feasible tools that could address this issue are pricing solutions for shopper re-

distribution as well as naturally having demand that requires a more even distribution of the 

locations for shoppers. 

Pricing and information distribution tools, such as a demand forecast, could by providing value 

for the shopper that does not drift to another neighborhood, reduce the benefit that each 

individual shopper has for drift and the large-scale consequences of groups of shoppers behaving 

in this way. 
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Regardless of the solution and its impact, the redistribution of shoppers with this proposal should 

be monitored and addressed if it becomes a problem for the operation. 

6.1.5 RUNTIME AND ENGINEERING ASPECTS 
Although not discussed in depth, the runtimes for a mathematical optimization implementation 

for the shopper allocation problem must run within the same or better max runtimes as the current 

the heuristic used by the company.  

For practical purposes the workloads can be separated into:  

- pre-processing  

- shopper selecting 

Pre-processing 

The pre-processing component is done in python 3.8 for this thesis, which is also the programing 

language used by the company. The main difference between the heuristic and all proposed models 

is that the mathematical optimization approach does not require the performance improvement 

steps used in the pipeline model as for the proposed models.   

Artificially reducing the match candidate count could result in resource competition, which is an 

unnecessary problem if code performance is within the required running time benchmark (some 

steps of the company heuristic are only aimed at improving runtime performance).  

The compute times for the preprocessing workload should be very similar between the heuristic 

and the proposed models, with the mathematical optimization models having slightly longer 

runtimes for large instances, since more match candidates are evaluated than for the pipeline 

model. 

An important benefit for the mathematical optimization approach is that it eliminates the 

dependencies across business checks for different assignables, since the allocation is performed 

in bulk with the formulation presented in chapter 4.2 

By having the process of applying business filters independently amongst assignables, this 

workload can be scheduled in parallel for an instance, instead of the current requirement to 

process these filters in series. 

With the use of large multicore compute nodes that are readily available on most cloud providers, 

parallelizing the pre-processing workload should allow for solving much larger problems that the 

current approach is able to do within the same benchmark times set for this workload. 

Shopper selection 

The shopper selection process requires more steps for any of the mathematical optimization 

proposals, as a model need to be built, compiled, solved, and read, whilst the company heuristic 

uses python built in loops and object to select the best shopper.  
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This means that for smaller instances, the mathematical optimization proposals will take longer 

than the company approach. For large instances the solve times should be shorter than the 

heuristic. From the runs of this thesis the formulation was solved in less than the benchmark time 

for an instance that is roughly 3 times larger than the peak instance size of the regular operation.19 

It is worth noting that a modified version of one of the proposed formulations was tested within 

the operation using open-source solvers and python compilers. For this production version of the 

mathematical optimization models both the runtime and memory use were well within the 

acceptable benchmark times for the same instances using the company heuristic. 

In summary the deployment aspects for the proposed models should be slightly worse than the 

current model if no parallelization is used, but still be within the benchmark runtimes for this 

application. For larger instances a parallelized version of the pre-processing workload can be 

implemented which would allow for solving much larger problems than what is currently possible 

in the same timeframe.  

  

 
19 The model was solved using a 4.4Ghz, 16 core AMD processor with 64 GBs of ram, the entirety of the 
shopper selection workload is single core while the pre-processing used a basic parallel implementation. 
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6.2 PROPOSALS FOR FUTURE WORK 
The following proposals are out of scope of this thesis; however, they are enabled by the use of a 

mathematical optimization approach for the shopper allocation problem or become easier to 

implement than with the current company heuristic. 

6.2.1 EXPLICIT ON-TIME ARRIVAL COSTS 
The most self-explanatory of the proposals, the importance of fulfilling the promised delivery 

window is mentioned several times in this thesis, however as previously mentioned it is not 

currently a part of the objective function of the company heuristic. 

A benefit of the proposed formulation for the mathematical optimization models is in the explicit 

decision for not allocating an order. As mentioned in the discussion of Dynamic non allocation 

costs, the preference for deferring an allocation when it would arrive early and likewise the 

prioritization when it will arrive late can be made explicitly with the cost for non-allocation in (7).  

The introduction of on-time related costs and non-allocation tapering should result in an 

improvement on on-time arrival. The impact on efficiency metrics, as with the fair shopper 

selection heuristic, should be tunned according to the business decision to how much of the 

efficiency aspect can be traded in for a customer experience aspect. 

6.2.2 STOCHASTIC OPTIMIZATION FOR FUTURE SHOPPER AVAILABILITY 
Although not explicitly discussed, the threshold model proposal tries to avoid allocating edge cases 

for an instance, in that matches that are above a the 90th percentile of the historic matching cost.  

The notion behind avoiding these extreme value matches implicitly contains the expectation that 

a lower cost allocation would be available in a future instance. With the approach used there are 

no order or city characteristics considered to support this assumption. 

The drawback of using a “blind” heuristic for skewing allocations to a lower mean match cost is 

that orders that are inherently expensive, would have a much worse experience using the service. 

For these large orders, the chance of being qualified over the threshold is higher, which for some 

markets would mean artificially deferring the allocation of these orders unnecessarily.  

Another issue for using this approach is that smaller cost matches are also not considered as 

inefficient even though they could be allocated to an expensive match for the characteristics of that 

order and scenario. 

The contribution of adding a stochastic formulation to account for the availability of future 

shoppers would allow the deferral of a match under the uncertainty of future shopper availability. 

By adding a non-deterministic approach, it would allow the current instance to account for the 

chance of not finding a better match during subsequent runs of the matching formulation. 

6.2.3 REDUCED RUN FREQUENCY 
Although not directly attributed to the results shown, the work realized for obtaining the results 

shown in this thesis uncovered a greater proportion of instances with either trivial or no feasible 

combinations.  
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The reduction of the frequency with which the problem is run would allow for larger instances in 

each run. Like the proposal behind the city-wide model, this should result in either an equal or 

better solution to the one currently obtained with little to no impact on the shopper experience or 

the customer experience. 

The downside of these larger instances is in longer running times, although as mentioned in the 

runtime and engineering aspects (6.1.5) of the discussions segment. The mathematical 

optimization solutions have enough remaining runtime slack that an increase that is within doble 

digit percentage points should not be an issue, also less frequent runs could also be interpreted as 

doubling the performance benchmark threshold. 

6.2.4 ONLINE OPTIMIZATION HEURISTICS 
The re-allocation of previously matched shoppers could allow the operation to re-assign a shopper 

when past allocations were comparatively inefficient to that which is possible with the arrival of 

new information (connected shoppers, new assignables). 

For a shopper that is very experienced and a fast picker, may have been assigned a small order 

because no other feasible options were available, in this same scenario it would be preferable to 

both the operation and the previously assigned shopper for a larger more complex order to be re-

assigned to the experiences shopper and its current order re-assigned to another less experience 

shopper if the option were available. 

There are both legal and shopper experience limitations as to what scenarios are feasible for 

assignable re-allocation, however the opportunity by definition, is one where there is no cost 

associated with the re-allocation (unless explicitly implemented to reward a given shopper). 

In most other applications of distributed logistics, the opportunity for these re-allocations occurs 

sparsely due 0 cost options for contractors being less likely. For a ride hailing application riders 

would have to request the service within close proximity and within a short timeframe for there to 

be enough cases where applying this proposal would be worth the implementation effort. 

The situation is slightly better for meal delivery services, as the demand is concentrated around 

busy restaurants, however for the groceries and retail delivery service offered by the company 

larger stores accumulate a large proportion of orders. Given the size of a location of merchants, a 

small set of locations satisfy a larger proportion of the demand, there for the chance of these win-

win scenarios are more common.  

The legal and technical limits could still detract from the appeal of implementing a simple notion 

of online matching, though the little to no operational cost of the proposal should make it worth 

considering.  

6.2.5 FUTURE SCENARIO SETUP COSTS ON CURRENT MATCHES COST 
Finally, a proposal that could be considered, is assessing how the current instance’s matches would 

set the availability and position of shoppers for instances later during the day. 
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A limitation of a dynamic programing approach is that the number of combinations that need to 

be evaluated is drastically larger than the current size of problems solved in company instances, 

particularly for the matches at the beginning of the planification.  

Instances that are orders of magnitude larger than the current problem size could not only affect 

the solve times but also introduce hardware instance expenses and even limitations on extreme 

cases. 

A potential solution for the problem size issues would be to condense the effect on future instances 

into a cost within the skew costs of the objective function, in practice this would look like some 

sort of correlation between shopper metrics and the characteristics of planed orders close by the 

final destination of the current assignable. 

Another possible drawback of this approach is that it does not consider idle shopper behavior. If 

shoppers perceive that they will have higher earnings by being closer to the origin of the current 

trip they might disregard any relocation cost and relocate closer to the original destination before 

another order is accepted. 

For shopper behavior considerations a possible competing solution that is delegates the shopper 

location responsibility to other services within the organization is the use of pricing mechanisms 

for shopper location balancing during the day.   
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ANNEX 

ANNEX A - PROPOSED OPTIMAL ALLOCATION MODEL 1 

ANNEX A.1 - SETS 
Shoppers 

𝑠 ∈ 𝑆  

Assignables 

𝒂 ∈ 𝑨 

Stores  

𝒃 ∈ 𝑩 

ANNEX A.2 - DECISION VARIABLES 
Matched found 

xs,a,b  =   {
1  𝑖𝑓 𝑠ℎ𝑜𝑝𝑝𝑒𝑟 𝑠 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 a at store b

0 ~
 

Non allocation 

𝒚𝒂 = {
𝟏 𝒊𝒇 𝒂𝒔𝒔𝒊𝒈𝒏𝒂𝒃𝒍𝒆 𝒂 𝒊𝒔 𝒏𝒐𝒕 𝒎𝒂𝒕𝒄𝒉𝒆𝒅

𝟎 ~
 

ANNEX A.3 - OBJECTIVE FUNCTION 

min
𝑠,𝑎,𝑏

∑ 𝑥𝑠,𝑎,𝑏

𝑠∈𝑆,𝑎∈𝐴,𝑏∈𝐵

× (𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑡𝑜_𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑖𝑚𝑒𝑠,𝑏 + ℎ𝑎𝑛𝑑𝑖𝑐𝑎𝑝𝑠𝑠,𝑎,𝑏 + 𝑏𝑟𝑎𝑛𝑐ℎ_𝑡𝑜_𝑐𝑢𝑠𝑡𝑜𝑚𝑒_𝑡𝑖𝑚𝑒𝑠,𝑎,𝑏)

+ ∑ 𝑦𝑎 × 𝑛𝑜𝑛_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑎

𝑎∈𝐴

 

ANNEX A.4 - CONSTRAINTS 
Non allocation activation 

𝟏 − ∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝒔,𝒃∈𝑩

≤ 𝒚𝒂  ∀𝒂 ∈ 𝑨 

Assign at most one assignable per shopper 

∑ 𝒙𝒔,𝒂,𝒃

𝒂∈𝑨,𝒃∈𝑩

≤ 𝟏 ∀𝒔 ∈ 𝑺 

Store capacity constraint 
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∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝑺,𝒂∈𝑨

+ 𝐜𝐮𝐫𝐫𝐞𝐧𝐭_𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲𝐛 ≤ 𝒔𝒕𝒐𝒓𝒆_𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒃 ∀𝒃 ∈ 𝑩 

Assign at most one shopper per assignable 

∑ 𝒙𝒔,𝒂,𝒃

𝒔∈𝑺,𝒃∈𝑩

≤ 𝟏  ∀𝒂 ∈ 𝑨 

ANNEX B - EVALUATION RUNS SETUP 
Figure 13 | Run setup depiction 
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ANNEX C - RESULTS 

ANNEX C.1 - SINGLE RUNS 
Zone 1

 

 

Figure 15  | Zone 1 – Store to last delivery location travel time 

 

Figure 14 | Zone 1 - Shopper to store travel time performance curve 
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Figure 16 | Zone 1 – business preference skew performance curve 
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Zone 2 

Figure 17 | Zone 2 - Shopper to store travel time performance curve 

 

Figure 18 | Zone 2 – Store to last delivery location travel time 
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Figure 19 | Zone 2 – business preference skew performance curve 

 

Zone 3 

Figure 20 | Zone 3 - Shopper to store travel time performance curve 
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Figure 21 | Zone 3 – Store to last delivery location travel time 

 

Figure 22 | Zone 3 – business preference skew performance curve 
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ANNEX C.2 -SEQUENCE RUNS 
Zone 3 – Morning run 

 

Figure 23 | Zone 3 - Morning - Shopper to store travel time performance curve 
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Figure 24 | Zone 3 - Morning – Store to last delivery location travel time 

 

 

 

Figure 25 | Zone 3 - Morning – business preference skew performance curve 
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Figure 26 | Zone 3 - Morning – Attempts to find a match tries performance curve 
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Zone 3 – Noon run 

Figure 27 | Zone 3 - Noon- Shopper to store travel time performance curve 

 

Figure 28 | Zone 3 - Noon – Store to last delivery location travel time 
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Figure 29 | Zone 3 - Noon – business preference skew performance curve 

 

Figure 30 | Zone 3 - Noon – Attempts to find a match tries performance curve 
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Zone 4 – Morning run 

Figure 31 | Zone 4 - Morning - Shopper to store travel time performance curve 

 

Figure 32 | Zone 4 - Morning – Store to last delivery location travel time 
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Figure 33 | Zone 4 - Morning – business preference skew performance curve 

 

Figure 34 | Zone 4 - Morning – Attempts to find a match tries performance curve 
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Zone 4 – Noon run 

Figure 35 | Zone 4 - Noon - Shopper to store travel time performance curve 

 

Figure 36 | Zone 4 - Noon – Store to last delivery location travel time 
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Figure 37 | Zone 4 - Noon – business preference skew performance curve 

 

Figure 38 | Zone 4 - Noon – Attempts to find a match tries performance curve 
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Zone 1 – Morning run 

Figure 39 | Zone 1 - Morning - Shopper to store travel time performance curve 

 

Figure 40 | Zone 1 - Morning – Store to last delivery location travel time 
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Figure 41 | Zone 1 - Morning – business preference skew performance curve 

 

Figure 42 | Zone 1 - Morning – Attempts to find a match tries performance curve 
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Zone 1 – Noon run 

Figure 43 | Zone 1 - Noon- Shopper to store travel time performance curve 

 

Figure 44 | Zone 1 - Noon– Store to last delivery location travel time 
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Figure 45 | Zone 1 - Morning – business preference skew performance curve 

 

Figure 46 | Zone 1 - Morning – Attempts to find a match tries performance curve 

 

 



  
 

94 
 

ANNEX C.3 - CITY MODEL RUNS 
Figure 47 | City - Shopper to store travel time performance curve 

 

Figure 48 | City– Store to last delivery location travel time 
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Figure 49 | City – business preference skew performance curve 

 

Figure 50 | City – Attempts to find a match tries performance curve 
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