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UNA JERARQUÍA ENTRE MODELOS DE COMUNICACIÓN
DISTRIBUIDA COMBINANDO RONDAS BROADCAST, CONGEST Y

LOCAL

En esta tesis, enmarcada en computación distribuida, se estudian diferentes modelos de
comunicación distribuida construidos a partir de la combinación de rondas de modelos pre-
existentes tales como broadcast, congest y local. Especfícamente, buscamos construir un
lattice, ordenado por inclusión, de los distintos lenguajes de grafos que se pueden decidir a
través de combinaciones de los modelos anteriores.

Primero, se estudia si existen inclusiones entre los lenguajes que se pueden decidir en una
ronda broadcast, una ronda local y una ronda congest. Segundo, se comparan los lenguajes
que pueden ser decididos en todas las combinaciones de tamaño dos de los modelos anteriores.
Tercero se estudian las combinaciones de tamaño tres de rondas broadcast y local. Cuarto,
se estudian algunos modelos con un número constante de rondas broadcast y local.

Finalmente, se prueba una cota inferior de un problema de comunicación que se usa para
hacer reducciones en las demostraciones anteriores.
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A HIERARCHY BETWEEN DISTRIBUTED COMMUNICATION MODELS
COMBINING BROADCAST, CONGEST AND LOCAL ROUNDS

In this thesis, framed in distributed computing, we study different distributed communi-
cation models constructed by combining rounds of already existing models such as broadcast,
congest and local. Specifically, we seek to build a lattice, ordered by inclusion, of the distinct
languages of graphs that can be decided by combinations of the previous models.

First, we study if there are inclusions between the languages that can be decided in one
broadcast round, one local round and one congest round. Second, we compare the languages
that can be decided in every 2-size combination of the previous models. Third, we study the
3-size combinations of broadcast and local rounds. Fourth, we study some models with a
constant number of broadcast and local rounds.

Finally, we give a lower bound of a communication problem that we used for reductions
in the previous proofs.
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Introduction

Since the invention of modern computers (1945) until the 1980’s, only centralized compu-
ting was considered, but the development of powerful microprocessors and high speed local
area networks (LAN) with the potential of connecting thousands of computers with a transfer
speed of millions of bits per second, led the path to distributed systems, such as World Wide
Web.

Distributed computing models the situation where a big number of processors operate
simultaneously sending messages to each other.

This thesis analyzes the relative power of distributed computing models for networks,
all resulting from the combination of standard synchronous models such as LOCAL and
CONGEST [1], as well as Broadcast Congested Clique (BCC) [2]. Each of these three models
has its strengths and limitations.

In particular, CONGEST assumes the ability for each node to send a specific message to
each of its neighbors at every round (even in a clique). However, the communication links have
limited bandwidth. Specifically, at most O(log n) bits can be sent through any link during a
round, in n-node networks. LOCAL assumes a link with unlimited bandwidth between any
two neighboring nodes, but the information acquired by any node u after t ≥ 0 rounds of
communication is limited to the data available at nodes at distance at most t from u in the
network. Finally, BCC supports all-to-all communications between the nodes, and thus does
not suffer from the locality constraint of LOCAL and CONGEST. However, at each round,
each node is bounded to send a same O(log n)-bit message to all the other nodes.

In this thesis, we investigate the power of models resulting from combining these three
models, in order to take advantage of their positive aspects without suffering from their
negative ones.

There are many existing communication networks that use a combination of multiple mo-
dels to maximize cost-efficiency. For example, an organization can set up a hybrid Wide
Area Network (WAN) by combining their own communication infrastructure with connec-
tions via Internet [3]. Also, the emerging of 5G allows smartphones to directly communicate
through their wireless interface to other smartphones or smart devices, in contrast to the
communication by cellular infrastructure.

For the sake of formally combining models, we focus on the standard framework of distri-
buted decision problems on labeled graphs (see [4]). Such problems are defined by a collection
L of pairs (G, `), where G = (V,E) is a graph, and ` : V → {0, 1}∗ is a function assigning a
label `(u) ∈ {0, 1}∗ to every u ∈ V . Such a set L is called a distributed language. For instance,
deciding whether a certain set U of nodes in a graph G forms a vertex cover can be modeled
by the language

vertex-cover =
{

(G, `) : ∀{u, v} ∈ E(G), `(u) = 1 ∨ `(v) = 1
}
,
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by labeling 1 all the vertices in U , and 0 all the other vertices. Similarly, deciding triangle-
freeness can be modeled by the language triangle-freeness = {(G, `) : C3 6� G}, where
H � G denotes that H is a subgraph of G, and deciding whether a graph is planar can
be captured by the language planarity = {(G, `) : G is planar}. A distributed algorithm A
decides L if every node running A eventually accepts or rejects, and the following condition
is satisfied: for every labeled graph (G, `),

(G, `) ∈ L ⇐⇒ all nodes accept.

That is, every node should accept in a yes-instance (i.e., an instance (G, `) ∈ L), and, in a
no-instance (i.e., an instance (G, `) /∈ L), at least one node must reject.

For every t ≥ 0, let us denote by Lt the set of distributed languages L for which there is a
t-round algorithm in the LOCAL model deciding L. The sets Ct and Bt are defined similarly,
for the CONGEST and BCC models, respectively. Also, we define L∗ = ∪t≥0Lt, C∗ = ∪t≥0Ct,
and B∗ = ∪t≥0Bt. So, in particular, L∗ is the class of distributed languages that can be
decided in a constant number of rounds in the LOCAL model.

The three models under consideration, i.e., LOCAL, CONGEST, and BCC exhibit very
different behaviors with respect to decision problems. For instance, it is known [5, 6] that

triangle-freeness ∈ Lr (B∗ ∪C∗),

whenever one assumes, as we do in this thesis, that, for all models under consideration,
every node is initially aware of the identifiers1 of its neighbors. On the other hand, it is also
known [7] that

planarity ∈ Br L∗.

This means that while no LOCAL algorithms can decide planarity in a constant number of
rounds, there is a 1-round BCC algorithm deciding planarity, and while no BCC algorithms can
decide triangle-freeness in a constant number of rounds, there is a 1-round LOCAL algorithm
deciding triangle-freeness. So, if one allows LOCAL algorithms to do just a single round of all-
to-all communication, as in BCC, then both triangle-freeness and planarity can be solved in a
constant number of rounds, hence increasing the computational power of LOCAL dramatically.

This observation led us to investigate scenarios such as the case in which the CONGEST
model is enhanced by allowing nodes to perform few rounds in either LOCAL, or BCC. What
would be the computing power of such a hybrid model? For answering this question, for a
collection of non-negative integers α1, . . . , αk, β1, . . . , βk, and γ1, . . . , γk, we define the set

k∏
i=1

LαiBβiCγi

or more explicitly,
Lα1Bβ1Cγ1Lα2Bβ2Cγ2 · · ·LαkBβkCγk

as the class of decision languages L which can be decided by an algorithm performing α1 ≥ 0
rounds of LOCAL, followed by β1 ≥ 0 rounds of BCC, followed by γ1 ≥ 0 rounds of CONGEST,

1 In each of the models, every node u of a n-node network G = (V, E) is supposed to be provided with an
identifier id(u), where id : V → [1, N ] is one-to-one, and N(n) = poly(n), i.e., all identifiers can be stored
on O(log n) bits in n-node networks. We also assume that all nodes are initially aware of the size n of the
network, merely because this is the case in model BCC.

2



followed by α2 ≥ 0 rounds of LOCAL, etc., up to γk ≥ 0 rounds of CONGEST. For instance,
we have

{planarity, triangle-freeness} ⊆ LB ∩BL.

However, how do compare LB and BL? And what about CB vs. BC, and LC vs. CL? These
are the kinds of questions that we are studying in this thesis. In the long-term perspective,
this line of research is motivated by the following question. Let L be a fixed distributed
language, and let us assume that a round of LOCAL costs a (say, for acquiring high-throughput
channels), that a round of BCC costs b (say, for benefiting of facilities supporting all-to-all
communications), and that a round of CONGEST costs c. The goal is to minimize the total
cost of an algorithm deciding L in a constant number of rounds, that is, to solve the following
minimization problem:

min∏k

i=1 LαiBβiCγi 3 L

(
a

k∑
i=1

αi + b
k∑
i=1

βi + c
k∑
i=1

γi

)
. (0.1)

Note that, for a = b = c = 1, Eq. (0.1) corresponds to minimizing the number of rounds for
deciding L when using a combination of the communication facilities provided by LOCAL,
CONGEST, and BCC. For instance, deciding whether a graph is Ck-free can be achieved in
bk2c rounds in LOCAL, that is, Ck-freeness ∈ Lbk/2c. Eq. (0.1) is asking whether deciding
Ck-freeness could be achieved at a lower cost by combining LOCAL, CONGEST, and BCC.
For tackling Eq. (0.1), we need a better understanding of the fundamental effects resulting
from combining these models.

Results
We provide a series of separation results between 2-round hybrid models. In particular,

we show that BC and CB are incomparable. That is, there are languages in BCrCB, and
languages in CB r BC. In fact, we show stronger separation results, by establishing that
BCrC∗B 6= ∅, and CBrBL∗ 6= ∅. That is, in particular, there are languages that can be
decided by a 2-round algorithm performing a single BCC round followed by one CONGEST
round, which cannot be decided by any algorithm performing k CONGEST rounds followed
by a single BCC round, for any k ≥ 1.

On the positive side, it is shown that, for any non-negative integers α1, . . . , αk, β1, . . . , βk,

k∏
i=1

LαiBβi ⊆ L
∑k

i=1 αiB
∑k

i=1 βi . (0.2)

That is, if a language L can be decided by a t-round algorithm alternating LOCAL and BCC
rounds, then L can be decided by a t-round algorithm performing all its LOCAL rounds first,
and then all its BCC rounds. So, in particular BL ⊆ LB. We show that this separation
is strict. A consequence of Eq. (0.2) is that the largest class of languages among all the
ones considered in this thesis is L∗B∗, that is, languages that can be decided by algorithms
performing k LOCAL rounds followed by k′ BCC rounds, for some k ≥ 0 and k′ ≥ 0. Thus,
Eq. (0.1) should be studied for languages L ∈ L∗B∗.

Interestingly, the separation results hold even for randomized protocols, which can err
with probability at most ε ≤ 1/5. That is, in particular, there is a language L ∈ CB (i.e.,
that can be decided by a deterministic 2-round algorithm) which cannot be decided with
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error probability at most 1/5 by any randomized algorithm performing one BCC round first,
followed by k LOCAL rounds, for any k ≥ 1. All our results about 2-rounds hybrid models
are summarized on Figure 0.1.

L

C B

CC BC CB

LC CL BL

LL LB

BB

Figure 0.1: The lattice of 2-round hybrid models. An edge between a set of
languages S1 and a set S2, where S1 is at a level lower than S2, indicates that
S1 ⊆ S2. In fact, all inclusions are strict. Transitive edges are not displayed.
Two sets that are not connected by a monotone path are incomparable. For
instance, CB and BL are incomparable, while BC ⊆ LB.

Then, we show separation problems for multiple rounds of one type of model. In particular,
it is showed that, for every k ∈ N, there is a language separating k + 1 BCC rounds from k
BCC rounds. The same result is proved with LOCAL rounds. Then, we show some separation
languages for 3-round combinations of BCC and LOCAL rounds.

Finally, it is defined a two-party communication problem (XOR-index) in order to prove
lower bounds by doing reductions to this problem, where Alice receives x ∈ {0, 1}n, i ∈ [n]
and Bob receives y ∈ {0, 1}n, j ∈ [n]. Then, the task is that, after one round of simultaneous
communication, Alice outputs a boolean outA and Bob outputs a boolean outB such that
outA∧ outB = xj ⊕ yi. It is showed that for ε < 1/5, CC(XOR-index, ε) = Ω(n).
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Chapter 1

Preliminaries

In this chapter we give basic definitions, notations and lemmas that will be used th-
roughout the thesis. We start with basic concepts. Then, we introduce the distributed models
that will be the main focus in this thesis.

1.1. Basic Definitions
A simple undirected graph, from here on simply refered as a graph, is a pair of sets G =

(V,E) where V is a finite set, called vertex set, and E ⊆
(
V
2

)
is called edge set. Whenever we

consider an edge e ∈ E, we shall refer it simply as e = uv, where u, v ∈ V are the vertices
joined by the edge. In that case, we say u and v are adjacent vertices. If several graphs are
being considered, we will use the notation V (G) and E(G) for the vertex set and edge set of
graph G.

For U ⊆ V we denote N(U) the set of adjacent vertices of U , this is N(U) = {v ∈ V \U |
there exists e ∈ E, e = uv}. We call N(u) the set of neighbors of u. We denote d(u) := |N(u)|,
the degree of u.

With the previous basic notions, we can define some particular type of graphs:

Definition 1.1 (Path) A path is a non empty graph P = (V,E) with:

V = {v0, v1, . . . , vk}
E = {v0v1, v1v2, . . . , vk−1vk}

Definition 1.2 (Cycle) A cycle is a path as previously defined with the addition of the edge
vkv0.

Definition 1.3 (Induced Subgraph) Let G = (V,E) be a graph and U ⊆ V . The graph
induced by U is the subgraph G[U ] = (U,E(U)), where E(U) = {e ∈

(
U
2

)
| e ∈ E}

Definition 1.4 (Connected graph) Let G = (V,E) be a graph. We say that G is connected if
for any pair of vertices u, v ∈ G there exists a set of vertices P , such that the induced graph
of P is a path with extremes in u and v.

Definition 1.5 (Tree) A tree is a connected graph without any cycles.
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1.2. Communication Models
Throughout this thesis we work with three different distributed models. We now define

these models and their respective deterministic and probabilistic protocols.
Let G be a connected n vertex graph. Let ` : V (G) −→ {0, 1}∗ be an input function that

assign labels to each node. Let id : V −→ {1, . . . , poly(n)} be a one-to-one function that
gives an identification number to each node in the graph. Notice that id(v) can be encoded
using O(log n) bits for every v ∈ V (G).

In a message-passing communication model, information is sent and received by vertices
of G. In every round, each vertex can send a O(b) size message to a determined set S of other
vertices (neighbors, for example), with S and b depending on the model.

Every node in the graph is honest, this means that the information sent by a vertex is
reliable and the connections are safe (the models are error free). Also, there is no limit in the
computational power that each node has.

In each round of the algorithm, every node v ∈ V can decide whether to stop or continue.
An algorithm stops when all nodes decide to stop. The (round) complexity is the number of
synchronous rounds required for the algorithm to stop.

The following models will be the ones used in this thesis.

1.2.1. LOCAL Model
Definition 1.6 Let G = (V,E) be a connected arbitrary graph. The LOCAL model is a
synchronous message-passing communication model, where in each round, every vertex from
V can send an unlimited size message to each of its neighbors given by E.

In every LOCAL round, the node v ∈ V sends all the information it knows about G to its
neighbors. So, k local rounds will be equivalent to knowing the k−radius neighborhood that
we will denote Nk(v) for each v ∈ V .

The LOCAL model has been introduced in [8] at the beginning of the 1990s, when the
celebrated Ω(log∗ n) lower bound on the number of rounds for computing a 3-coloring or a
maximal independent set (MIS) in the n-node cycle was proved.

1.2.2. CONGEST Model
Definition 1.7 Let G = (V,E) be a connected arbitrary graph. The CONGEST model is a
synchronous message-passing model where, in each round, every vertex v ∈ V sends specific
messages to its neighbors given by E, with the condition that the message size is O(log n),
with n = |V |.

The CONGEST model is a weaker variant of the LOCAL model in which the size of the
messages exchanged at each round between neighbors is bounded to O(log n) bits, or B bits
in the parametrized version of the model. This bound on the message size creates bottlenecks
limiting the power of algorithms under this model. A fruitful line of research has established
several non-trivial lower bounds on the round-complexity of CONGEST algorithms, by reduc-
tion from communication complexity problems (see for instance [9–13]). Nevertheless, several
problems can still be solved in a constant number of rounds in CONGEST. This is for instance
the case of computing a (2 + ε)-approximation of minimum vertex cover which can be done
in O(log ∆/ log log ∆) rounds [14] in graphs with maximum degree ∆. Also, testing (a weaker
variant of decision, a la property-testing) the presence of specific subgraphs like small cliques
or short cycles can be done in a constant number of rounds in CONGEST (see, e.g., [15–19]).
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1.2.3. BCC Model

Definition 1.8 Let G = (V,E) be a connected arbitrary graph. The BCC model (broadcast
congested clique), is another synchronous message-passing model where, in each round, every
vertex v ∈ V sends a unique message to all other nodes in the graph, with the condition that
the message size is O(log n), with n = |V |.

The congested clique model [2, 20] has first been introduced in its unicast version (UCC),
where every node is allowed to send potentially different O(log n)-bit messages to each of the
other n−1 nodes at every round. In the UCC model, many natural problems can be solved in
a constant number of rounds [21–23]. The broadcast variant of the congested clique, namely
the BCC model, is weaker that the unicast variant, and lower bounds on the round-complexity
of problems in the BCC model have been established, again by reduction to communication
complexity problems. This is the case of problems such as detecting the presence of par-
ticular subgraphs [2], detecting planted cliques [24], or approximating the diameter of the
network [25]. There are also positive results in what can be done using, for example, one
BCC round [26]. An application of this model are typically global communications such as
smartphones sending messages to another smartphones using cellular data.

1.2.4. Alternating models

In the present thesis we will study the hierarchy of all possible permutations of LOCAL
BCC and CONGEST rounds. We denote the languages that can be accepted in a combination
of these models as follows: L, B and C are the set of languages that can be decided in one
LOCAL, one BCC and one CONGEST round respectively. Then, the notation of combinations
is simple, for example, LB2C is the set of languages that can be decided in one LOCAL round,
followed by two BCC rounds, and finally followed by one CONGEST round.

1.3. Communication Complexity
We now define a tool that will be used throughout this thesis to prove some results by

making reductions using communication problems.
Let f : X × Y −→ Z where in general we assume X = Y = {0, 1}n and Z = {0, 1}.

There are two players, Alice and Bob (in some occasions we add a third player Charlie),
such that Alice receives an input x ∈ X and Bob receives y ∈ Y . In this thesis we focus on
2-way 1-round protocols, which means that each player sends only one message to the other
player and they both see the messages at the same time. After seeing the respective message,
each player outputs some z ∈ Z. Typically, one expect that both players output the same
z = f(x, y). But, as we are going to explain later, in this thesis we are going to consider
another, less classical notion of correctness.

Definition 1.9 The communication complexity of a communication problem P is the mini-
mum size of bits exchanged between the two players in the worst case and it will be denoted
as CC(P ). Furthermore, we denote CC1(P, ε) to the communication complexity of the best
2-way 1-round randomized protocol solving P with error probability at most ε.

7



1.4. Disjointness
Several results in this thesis are proved by reduction to the communication complexity

problem set disjointness (DISJ). Given two sets x, y ⊆ [n] (usually represented as indicator
vectors x, y ∈ {0, 1}n), the task is to decide whether x ∩ y = ∅ (or equivalently whether
xi ∧ yi = 0 for all i ∈ [n]). Formally, Alice receives x as input, and Bob receives y. The task
is to compute

DISJ(x, y) =

1 if x ∩ y = ∅
0 otherwise.

The communication complexity of DISJ is high, as shown below.

Lemma 1.1 (Theorem 6.19 in [27]) For every ε > 0, CC(DISJ,1
2 − ε) = Ω(ε2n).

Definition 1.10 Let x, y, z ∈ {0, 1}n .The 3-party number-on-forehead problem (3-NOF-
DISJ) is a communication problem where the players Alice, Bob and Charlie receive the
following inputs:

• Alice receives y, z.

• Bob receives x, z.

• Charlie receives x, y.

All players must decide if there exists i ∈ [n] such that xi = yi = zi.

Lemma 1.2 (Result in [2]) CC(3-NOF-DISJ) = Ω(n)

8



Chapter 2

One Round

In this chapter we focus on what can be done in one round of each model.

Theorem 2.1 There is a language that belongs to L, but does not belong to B∗.

Proof. Lets consider the language triangle-freeness = {G | G does not contain C3 as a
subgraph}.

It is easy to show that triangle-freeness can be accepted in one LOCAL round, since every
node v ∈ V knows if it belongs to a C3 or not after one round, so v accepts if and only if v
does not belong to a C3.

In order to show that triangle-freeness belongs to B∗, we make a reduction from 3-party
number-on-forehead to triangle-freeness.

Let us assume, for the purpose of contradiction, that triangle-freeness can be decided in
k BCC rounds, with k a positive integer.

Let (x, y, z) ∈ {0, 1}3m be an instance of the 3-party number-on-forehead problem, where
Alice receives (y, z), Bob receives (x, z) and Charlie receives (x, y). Without loss of generality,
let m = n2/e

√
logn. We know, by Lemma 0.20, that the communication complexity of 3-party

number-on-forehead problem is Ω(m).
Alice, Bob and Charlie consider the graph G = (V,E) with the following properties

1. G is a tripartite graph with V = V1 t V2 t V3, where |V1| = |V2| = n and |V3| = n/3

2. G contains n2/e
√

logn triangles, and each edge of G belongs to exactly one triangle.

The existence of this graph is showed in [28].
Alice, Bob and Charlie enumerate each triangle in G from 1 to m in the same way. Denote

Eij the set of edges e = uv, with u ∈ Vi and v ∈ Vj with i, j ∈ {1, 2, 3}. Then, for each
triangle i, there is an edge in E12, E13 and E23, since G is tripartite.

Alice, Bob and Charlie simulate the virtual graph G̃ � G as it follows: x ∈ {0, 1}m as the
edges in E23, this is, xi = 1 if and only if the edge in E23 that belongs to the i−th triangle
is in G. In the same way, they simulate y as the edges in E13 and z as the edges in E12. By
construction, we have that G̃ ∈ triangle-freeness if and only if (x, y, z) is a yes-instance of
3-party number-on-forehead problem.

Since Alice knows all the edges in G̃ that have an extremity in V1, she can simulate the
messages that vertices in V1 will send in the first BCC round of the protocol Π deciding
triangle-freeness (let M1 be the union of messages broadcasted in the first round by vertices
in V1). Moreover, Bob can simulate in the same way the messages that vertices in V2 will
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Figure 2.1: Tripartite graph with V = V1 tV2 tV3 and E = E12 tE23 tE13

send in the first BCC round, and Charlie can do the same with vertices in V3 (M2 and M3 are
defined similarly). Then, they can exchange M1, M2, M3. Since every message from the first
round is sent, Alice, Bob and Charlie can simulate the messages from the next round sent
by V1, V2, V3 respectively. Inductively, they exchange these messages until the k-th round in
which Alice accepts if every vertex in V1 accepts, Bob accepts if every vertex in V2 accepts
and Charlie accepts if every vertex in V3 accepts.

Since the size of every message that Alice, Bob and Charlie send is O(n log n) and they
are solving the 3-party number-on-forehead problem as well, the number of rounds R that
are needed in the protocol must satisfy R · n log n = Ω(n2/e

√
logn) which is not a constant

number of rounds, hence a contradiction.

Theorem 2.2 There is a language that belongs to B, but does not belong to L∗.

Proof. Lets consider the language (At Most One Selected). This is, all the graphs in which
every vertex is labeled with a zero, except for at most one vertex labeled with a one.

Notice that AMOS can be accepted in B, since in the BCC round, every v ∈ V sends `(v).
Then, all vertices know |`−1({1})| and accepts if there is only one vertex labeled with a one.
Otherwise, they reject.

Moreover, AMOS cannot be accepted in L∗. For the purpose of contradiction, let us assume
that AMOS can be decided in k LOCAL rounds, with k a positive integer. Let (G, `) where
G is a 4k-path v1, v2, . . . , v4k and `(v1) = `(v4k) = 1 and `(v) = 0 for all v ∈ V (G) \ {v1, v4k}.
Let (G̃, ˜̀) be defined exactly as (G, `) with the exception that `(v4k) = 0. Hence, we have
that (G, `) does not belong to AMOS, whereas (G̃, ˜̀) does.

Note that the messages sent by v2 to v1 in the k rounds of the protocol are exactly the same
since they does not depend on the value of `(v4k). Then, we have that v1 cannot distinguish
a yes-instance from a no-instance, contradicting the determinism of the protocol.

Corolary 2.1 There is a language that belongs to B but does not belong to C∗.

Theorem 2.3 There is a language that belongs to C, but does not belong to B∗. This result
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holds even for randomized decision algorithms which may err with probability 1
2−ε, for every

ε > 0.

Proof. Let us consider the distributed language

disjointness-on-clique = {(Kn, `) | (` : V (Kn) 7→ {0, 1}n) ∧ (∀i ∈ [n], ∃v, `(v)i = 0)},

where Kn is the n-node clique, and `(v)i is the i-th entry of the vector `(v).
We first show that disjointness-on-clique ∈ C. Note first, that, in one round of CONGEST,

the nodes can check whether they are in a clique. Indeed, recall that every node knows n, and
therefore a node with degree less than n − 1 rejects. Every node orders all nodes, including
itself, according to their ID’s, providing every node with a rank. Note that all nodes ranks
the nodes the same. During the CONGEST round, each node v sends `(v)i to the node with
rank i (which could be itself). After the round of communication, the node v with rank i
has the set {`(w)i : w ∈ V (Kn)}. This node accepts if there exists w ∈ V (Kn) such that
`(w)i = 0, and it rejects otherwise.

Let k ∈ N. We show that disjointness-on-clique /∈ Bk. For establishing a contradiction,
let us assume that there exists a k-round BCC algorithm A deciding disjointness-on-clique
with error probability 1

2 − ε. We show how to use A for solving DISJ. Let x, y ∈ {0, 1}n be
an instance of DISJ. Alice and Bob consider the n-node clique Kn, with identifiers from 1
to n. Let e = {1, 2} be the edge connecting the nodes with ID 1 and the node with ID 2.
The two players consider the labeling ` such that `(1) = x, `(2) = y, and `(v) = (1, 1, . . . , 1)
for every node v with ID(v) ≥ 3. Note that Alice does not know `(2), and Bob does not
know `(1). By construction, we have that A accepts (Kn, `) if and only if DISJ(x, y) = 1.
The two players simulate the k BCC rounds of A as follows. At each round r, Alice sends
to Bob the message m1,r broadcasted by the node with ID 1, and Bob sends to Alice the
message m2,r broadcasted by the node with ID 2. With this information, Alice and Bob can
simulate A, tell each other whether one of the nodes they simulate rejects, and then compute
DISJ(x, y). This protocol for DISJ has communication complexity O(k log n), a contradiction
with Lemma 1.1.

We do not show that there is a language in L \ C∗, but we separate one LOCAL round
from two CONGEST rounds with the same language that separates the LOCAL round with
BB,BC and CB.

Theorem 2.4 There is a language that belongs to L but does not belong to BB ∪ BC ∪
CB ∪ CC. This result holds even for randomized decision algorithms which may err with
probability 1

2 − ε, for every ε > 0.

Proof. Let us consider the following distributed language

disjointness-on-edge ={(PC2n, `) | (n > 2) ∧ (`(u1) ∈ {0, 1}n) ∧ (`(v1) ∈ {0, 1}n)
∧ (DISJ(`(u1), `(v1)) = 1) ∧ (∀w /∈ {u1, v1}, `(w) = ⊥)},

where PC2n is the path or cycle (un, . . . , u1, v1, . . . vn) with 2n nodes. A simple LOCAL algo-
rithm guarantees that disjointness-on-edge ∈ L, that is, every node of degree > 2 rejects,
and u1 and v1 exchange their values and accept if and only if DISJ(`(u1), `(v1)) = 1.

Let S = BB ∪ BC ∪ CB ∪ CC. We now show that disjointness-on-edge /∈ S. For
establishing a contradiction, let us assume that there exists a 2-round algorithm A mixing
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CONGEST and BCC for deciding disjointness-on-clique with error probability 1
2 − ε. We

show how to use this algorithm to compute DISJ. Let (x, y) be an instance of DISJ. Alice
and Bob construct the instance (P, `) of disjointness-on-edge where `(u1) = x and `(v1) = y.
By construction DISJ(x, y) = 1 if and only if (P, `) ∈ disjointness-on-edge. Of course, Alice
does not know `(v1), and Bob does not know `(u1). All messages communicated in the first
round of A by all nodes different from u1 and v1 do not depend on (x, y), and can thus be
simulated by the players without any communication. Alice and Bob generate and exchange
the messages that u1 and v1 communicate in the first round of A. If the first round is
a CONGEST round, note that each of the two nodes may generate two messages, one for
each of their two neighbors. For the second rounds, Alice and Bob have all the information
sufficient to compute what messages will be generate by the nodes, excepted for nodes u1
and v1, respectively. So Alice and Bob exchange these messages. Alice accepts if all nodes
u1, . . . , un accept, and Bob accept if all node v1, . . . , vn accept. Then they exchange their
decision. This protocol computes DISJ with error probability 1

2 − ε. This is a contradiction
with Lemma 1.1 as only O(log n) bits were exchanged by the two players.
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Chapter 3

Two Rounds

In this chapter we focus on the hierarchy between all combinations of size two that can
be done with the three models considered.

Theorem 3.1 There is a language that belongs to BL, but does not belong to B∗ ∪ L∗

Proof. Lets consider the language triangle-on-max-degree-freeness as it follows:

TOMDF = {G | ∀v ∈ V such that v ∈ C3 � G, deg(v) < ∆(G)}

This is, TOMDF is the set of graphs G such that, for every triangle T in G, all nodes in
T have a degree smaller than the maximum degree of G.

Note that TOMDF is in BL, since in the BCC round every vertex sends its degree, so
every vertex learns the value of ∆(G). Then, in the LOCAL round, each vertex knows if they
belong to a triangle, so it rejects if its degree is the same as ∆(G). Otherwise, it accepts.

Moreover, TOMDF cannot be decided in L∗. Let k > 0 be an integer. Lets consider a
n/2 size path {v1, v2, . . . vn} in a tree graph T with n >> k. Notice that v2 will not receive
the information of deg(vn−1), so it cannot know if deg(v) = ∆(G) in k LOCAL rounds. Then,
it cannot distinguish an instance where it has smaller degree than ∆(G), from an instance
where there is a node with larger degree. Hence, there is a positive probability that a vertex
rejects a yes-instance. It remains to show that TOMDF cannot be decided in B∗.

Let us assume, for the purpose of contradiction, that there exists k ≥ 0, such that TOMDF
can be decided by an algorithm A performing k BCC rounds, i.e., TOMDF ∈ Bk. We can
use A to decide triangle-freeness in k + 1 BCC rounds.

Let G be an arbitrary graph. In the first BCC round, every node v ∈ V broadcasts its
identifier id(v) and its degree deg(v), and hence learns the maximum degree ∆ of G. Then
every node simulates A on the virtual graph G′ on n′ = n(∆ + 1)−∑v d(v) nodes obtained
fromG by adding a set Sv of ∆−d(v) pending vertices to each vertex v ofG. Every node v ∈ V
simulates A in G′ by simulating its execution on v and on all the nodes in Sv. Specifically,
after the first BCC round, v knows the set of ID’s used in G, and thus the rank of its ID in
this set. Therefore, it can compute the set I composed of the smallest n′−n positive integers
that are not used as ID’s in G. Furthermore, it can assign ID’s to its ∆−d(v) pending virtual
neighbors in G′, using its rank and the degrees of all the nodes with lower rank in G, so that

1. the ID of each virtual node is unique in G′, and

2. every node of G knows the ID’s assigned to the pending virtual neighbors of every other
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node in G.

Figure 3.1: Example of virtual graph G′ simulated by the 5-node graph G

It follows that each node v does not need to simulate the messages broadcasted in A by
the nodes in Sv. In fact, every node v can simulate the behavior of all the virtual nodes in
S = ∪u∈V (G′)Su at each round of A. As a consequence, the simulation of A in G′ does not
yield any overhead on the number of bits to be broadcasted by each (real) node v running A.

After the k BCC rounds of A in G′ have been simulated, every node v accepts (on G) if
itself and all the nodes in Sv accept in A on G′. Now, by construction, G′ ∈ TOMDF if and
only if G is triangle-free. Since A decides TOMDF, we get that triangle-freeness is decided
in Bk+1, a contradiction.

Theorem 3.2 There is a language that belongs to LL but does not belong to BB∪LB∪CC.
This result holds even for randomized decision algorithms which may err with probability 1

2−ε,
for every ε > 0.

Proof. Let us define the distributed language disjointness-on-path of pairs (P, `) where
P = un, . . . , u1, v1, . . . vn is a path of length 2n (n > 2), and ` : V (P )→ {0, 1}∗ satisfies that
`(w) = ⊥ if w 6= {u2, v2} and DISJ(`(u2), `(v2)) = 1. In words, disjointness-on-path is the
language of paths that have a yes-instance of disjointness in two nodes at distance 2. Trivially
disjointness-on-path ∈ L2: in a protocol every node except v1 and u1 accept. Nodes v1 and
u1 learn the values of `(v2) and `(u2) and accept if and only if DISJ(`(u2), `(v2)) = 1.

Let S = (BB∪LB∪CC). We now show that disjointness-on-path /∈ S. By contradiction,
let us assume that there exists an 1/2 − ε-error algorithm A in S solving disjointness-on-
path. We show how to define a two-player, 1/2− ε-error protocol Π for DISJ. Let (x, y) be an
instance of DISJ and consider the instance (P, `∗) of disjointness-on-path where `∗(u2) = x
and `∗(v2) = y. Clearly, (P, `∗) ∈ disjointness-on-path if and only if (x, y) ∈ DISJ .

First, let us suppose that A is a protocol consisting in two BCC rounds. In this case Π
consists in two rounds of communication. Initially, using x Alice simulates the first round of
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A in every node of P except v2 obtaining messages {m(w) : w ∈ V (P ) \ {v2}}. Similarly,
using y Bob simulates the first round of A on every node of P except u2, obtaining messages
{m(w) : w ∈ V (P ) \ {u2}}. Then, in the first round of Π, Alice and Bob interchange m(u2)
and m(v2), in order to obtain the pack of messages M = {m(w) : w ∈ V (P )} that every
node receives in the first BCC round of A. The second round is very similar: using x and M
Alice simulates A on every node except v2, obtaining the pack of messages communicated
in the second round of A except for the message of v2. At the same time using y and M
Bob simulates A on every node except u2, obtaining the pack of messages communicated
in the second round of A except for the message of u2. Then, in the second round of Π
Alice and Bob interchange the second messages of u2 and v2. Finally, Alice simulates the
output of every node except v2 and accept if every node accepts. Bob simulates the output
of every node except u2 and accept if every node accepts. We deduce that Π is an ε-error
protocol for disjointness. Nevertheless, the number of bits communicated in the execution
of Π corresponds to the two messages broadcasted by u2 and v2, which is O(log n). This
contradicts Lemma 1.1. We deduce that disjointness-on-path does not belong to BB.

Now, let us suppose that A is a protocol consisting in a LOCAL round followed by a BCC
round. In this case Π consists in just one round of communication. Initially, using x Alice
simulates first round of A obtaining that nodes u1, u2 and u3 learn the value of x, and all
other nodes have no information of x. Then, Alice simulates A to generate the messages that
u1, u2 and u3 communicate in the BCC round and sends these messages to Bob. Similarly, Bob
simulate the rounds of A and communicates the messages that v1, v2 and v3 communicate
in the BCC round and then sends such messages to Alice. After the communication round
of Π, Alice and Bob generate the information communicated by every vertex of the graph
except u1, u2, u3, v1, v2, v3. Since these nodes have no information of x or y, this simulation
can be done without sending any further messages between Alice and Bob. Finally, Alice
simulates the output of every node except v1, v2, v3 and accept if all accept. Bob simulates
the output of every node except u1, u2, u3 and accept if all accept. We deduce that Π is
an ε-error protocol for disjointness. Nevertheless, the number of bits communicated in the
execution of Π corresponds to the messages broadcasted by u1, u2, u3, v1v2 and v3, which is
O(log n). This contradicts Lemma 1.1. We deduce that disjointness-on-path does not belong
to LB.

Finally, let us suppose that A is a protocol consisting in two CONGEST rounds. In this
case Π consists in just one round of communication. Observe that all messages communicated
in the first round of A by nodes different than u2, v2 do not depend on (x, y) and can be
simulated by the players without any communication. Then, protocol Π consists in Alice and
Bob generating and interchanging the messages that u1 and v1 communicate in the second
round of A. Then Alice accept if every node u1, . . . , un accepts, and Bob accept if every
node v1, . . . , vn accept. By the correctness of A, with probability 1− ε, every node accepts if
and only if (P, `∗) is a yes-instance of disjointness-on-path. We deduce that Π is an ε-error
protocol for disjointness. Nevertheless, the number of bits communicated in the execution
of Π corresponds to the messages interchanged by v1 and u1, which are of size O(log n) in
total. This contradicts Lemma 1.1. We deduce that disjointness-on-path does not belong to
CC.

Theorem 3.3 There is a language that belongs to CL but does not belong to LC. This result
holds even for randomized decision algorithms which may err with probability 1

2−ε, for every
ε > 0.
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Proof. Let us consider the graph Sn = (V = (V1, V2), E) in which there exists u∗v∗ ∈ E
such that : u∗ ∈ V1, S1

n = Sn(V1) \ {v∗} is a star graph with n leaves rooted in u∗, v∗ ∈ V2
and S2

n = Sn(V2) \ {u∗} is a star with n leaves rooted in v∗. Let us consider the following
distributed language:

DISJ-edge-star = {Sn = (V,E), ` : V 7→ {0, 1} × [n],
`(u) = (b, i) for some u ∈ V1 ⇐⇒ xi = b,

`(v) = (b′, i′) for some v ∈ V2 ⇐⇒ yi′ = b′,

¬
∨
i∈[n]

xi ∧ yi = 1, x, y ∈ {0, 1}n}

First, observe that DISJ− edge− star ∈ CL. In fact, a protocol π in the hybrid
CONGEST + LOCAL model for DISJ− edge− star can be described as: in the first round
of communication all the nodes in the leaves of each star send its input. More precisely, each
v ∈ V1 and u ∈ V2 send xi and yi respectively for some i ∈ [n]. Observe that after the first
round of communication u∗, v∗ are able to recover x and y from the messages sent by their
neighbors. If the inputs of the leaves are not correct in the sense that each index i given in
the input is different, they reject. Then, in the second round of communication, the node u∗
sends a message containing x to v∗ and v∗ sends a message containing y to v∗. Finally the
nodes in the leaves accept and u∗, v∗ compute DISJ(x, y) = ¬ ∨

i∈[n]
xi ∧ yi and accept if and

only if DISJ(x, y) = 1
Now, we are going to show that DISJ− edge− star 6∈ LC. By contradiction, let us

assume that there exists a 1
2 − ε protocol π in the hybrid LOCAL+ CONGEST model for

DISJ− edge− star. We consider an instance (x, y) of the set disjointness problem DISJ.
Let n = |x| = |y|. We are going to describe a 1

2 − ε protocol π′ for DISJ.. Let us consider
the instance of DISJ− edge− star (Sn, `) in which ` assigns xi to each leaf in S1

n and yi to
each leaf in S2

n. Observe that (x, y) is a yes instance of DISJ if and only if (Sn, `) is a yes
instance for DISJ− edge− star. Let us define SAn = S1

n and SBn = S2
n i.e. we consider the

graph induced by each of the star graphs in Sn. We say that Alice and Bob have SAn and SBn
respectively. Since the roots u∗ and v∗ of S1

n and S2
n respectively have an empty input, Alice

and Bob can simulate the LOCAL round of π. Then, Alice and Bob simulate the messages
sent by the nodes during the CONGEST round of π. Observe that, since v∗ is not in SAn and
u∗ is not in SBn , Alice cannot simulate he message mv∗,u∗ sent by v∗ to u∗ and Bob cannot
simulate he message mu∗,v∗ sent by u∗ to v∗. However, since Alice and Bob can simulate
the local round, Alice can simulate mu∗,v∗ and Bob can simulate mv∗,u∗ . Thus, Alice sends
a message mA containing mu∗,v∗ to Bob and Bob sends a message mB containing mv∗,u∗ to
Alice. Finally, both players can simulate π and thus, they compute DISJ(x, y). However, the
cost of the protocol π′ is O(log n) because the size of mA and mB is O(log n) which is a
contradiction.

Theorem 3.4 There is a language that belongs to LC but does not belong to CL. This result
holds even for randomized decision algorithms which may err with probability 1

2−ε, for every
ε > 0.

Proof. Consider the language special-disjointness defined by the pairs (G, `) such that: (1)
G is defined from a path P = v1, v2, v3, v4, a clique Kn, and two more vertices u1, u2. Node
v4 is adjacent to an arbitrary node of the clique, and v1 has two pending vertices u1 and u2.
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(2) ` : V (G)→ ({0, 1}∗, [4]) is a function such that:
• `(w) = (⊥,⊥) for every w ∈ V (Kn),

• `(v1) = (⊥, 1), `(v2) = (⊥, 2), `(v3) = (⊥, 3),

• `(v4) = (b, 4), with b ∈ {0, 1}

• `(u1) = (x,⊥) and `(u2) = (y,⊥) with x, y ∈ {0, 1}n, and

• ∀i ∈ [n], xiyi = 0 if and only if b = 1. In words, x, y are a yes-instance of DISJ if and
only if the input of b is 1.

We first show that special-disjointness is in LC. The protocol has two verification algo-
rithms, that are evaluated in parallel. We say that a node accepts if it accepts in both
algorithms. The first algorithm, that we call topology verification consists in each node v
sending its degree and the second coordinate of `(v). Then,
• If v has degree n − 1, then v accepts if and only if `(v) = (⊥,⊥) and it has n − 2
neighbors of degree n− 1 and one neighbor of degree n.

• If v has degree n, then v accepts if and only if `(v) = (⊥,⊥) it has n − 1 neighbors of
degree n− 1 and one neighbor w of degree 2 such that `(w)2 = 4.

• If v has degree 2 and `(v)2 = 4, then v accepts if and only if one of the neighbors of v
has degree n and the other neighbor has degree 2 and has 3 in its second component.

• If v has degree 2 and `(v)2 = {2, 3}, then v accepts if and only one neighbor has `(v)2−1
and the other `(v)2 + 1 in their second components.

• If v has degree 3, then v accepts if and only if d(v)2 = 1, one neighbor has 2 in its second
components, and the other two has ⊥ in their second component.

• If v has degree 1, then v accepts if and only if d(v)2 = ⊥, and its neighbor has 1 in its
second component.

Observe that all nodes accept in the topology verification algorithm if and only if G satisfies
the properties of the language. Clearly the topology verification algorithm belongs to CL ∩
LC, since it is only needed one LOCAL round to verify the previous properties. Then, it does
not use bits in the CONGEST round.

In the following part let us assume that every node accepts in the topology verification
algorithm. The second verification algorithm, called input verification is used to verify the
conditions on `, specially the last condition. In the input verification algorithm, every node
with a degree different than 1, 2 or 3 immediately accepts. For the other nodes v, the algorithm
is the following:
• If v has degree 1 (i.e. v = u1 or v = u2), then in the first round v communicates `(v)1
to its neighbor, then accepts.

• If v has degree 3 (i.e. v = v1), then in the first round v does not communicate anything.
In the second round v receives x and y from two of neighbors. If x and y are not of the
same length n, then v rejects. Otherwise, it verifies whether xiyi = 0 for every i ∈ [n]. If
the answer is affirmative, it communicates a bit 1 to the other neighbor, and otherwise
it communicates a bit 0.
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• If v is such that `(v)2 = 4 (i.e. v = v4), then v communicates b = `(v)1 to its neighbors
in the first round and then accept.

• If v is such that `(v)2 = 3 (i.e. v = v3), then v sends nothing in the first round, and
receives b from one neighbor. In the second round, he communicates b to the other
neighbor and accept.

• If v is such that `(v)2 = 2 (i.e. v = v2), then v sends nothing in the first two rounds,
but receives two bits in the second round from two different neighbors. Then v accept
if the two bits are equal.

In simple words, the input verification algorithm consists in communicating x and y to v1,
then v1 checks whether x and y are disjoint and communicates the answer to v2. At the same
time, the bit b is communicated to v2 in two communication rounds. The first round can be
done in L as we do not have bandwidth restrictions. The second can be done in C as at most
one bit is communicated per edge. We deduce special-disjointness ∈ LC.

We now show that special-disjointness /∈ CL. Let A be an 1/2− ε-error CL algorithm for
special-disjointness. We show that A can be transformed into a two-player protocol Π for
disjointness. Observe first that given a yes-instance of special-disjointness, we have that if
we change b for 1− b on the input of node v4, we obtain a no-instance. However, the nodes in
a distance greater than 2 from v4 can not see this difference. Therefore, as ε < 1/2, we have
that all vertices in a distance greater than 2 (in particular u1, u2 and v1) from v4 necessarily
accept in A independently on the values of x and y. Following a similar reasoning, we obtain
that all nodes at distance greater than 2 from u1 and u2 (in particular v3, v4 and all the
nodes in the clique) must accept independently of the value of b. Therefore, the only node
that rejects in the illegal inputs is v2.

Now let (x, y) be an instance of DISJ. In protocol Π, Alice and Bob assume that they
play the role of u1 and u2 in an instance of special-disjointness where the identifiers are
chosen arbitrarily, and where `(u1)1 = x and `(u2)1 = y and `(v4)2 = 1. Alice simulates
the CONGEST round of A for node u1, generating a message mA. Similarly, Bob simulates
the CONGEST round of A for node u2, generating the message mB. Then Alice and Bob
interchange mA and mB. Using that information, Alice and Bob can simulate A the message
that node v1 sends to v2 in the first and second round. Notice that the message that v1 sends
to v2 in the first round does not depend on x and y, while the message sent by v1 in the
second round only depends on mA and mB. On the other hand, Alice and Bob can simulate
the two rounds of v3 and v4, as their messages do not depend on x and y. Then, Alice and Bob
obtain the two messages received by v2 from his neighbors v1 and v3. Using that information,
the nodes can simulate the output of v2 in A and accept if and only if v2 accepts. From
the correctness of A and the discussion of previous paragraph, we deduce that Π an ε-error
protocol for DISJ. Nevertheless, in Π only O(log n) bits were communicated in total, which
is a contradiction with Lemma 1.1. We deduce that special-disjointness 6∈ CL .

For the hybrid model combining BCC and LOCAL rounds, we first prove that BL ⊆ LB
showing a stronger result and then we show a separating problem to prove LB 6= BL.

Theorem 3.5 Let k ≥ 1 be an integer, and let α1, . . . , αk and β1, . . . , βk be non-negative
integers. We have ∏k

i=1 LαiBβi ⊆ L
∑k

i=1 αiB
∑k

i=1 βi.

Proof. Let L ∈ ∏k
i=1 LαiBβi , and let A be a distributed algorithm deciding L in the corres-

ponding hybrid model combining LOCAL and BCC. Let us consider the maximum integer
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t <
∑k
i=1(αi + βi) such that A performs BCC at round t, and LOCAL at round t + 1. (If no

such t exist, then A is already in the desired form.) We transform A into A′ performing the
same as A, excepted that rounds t and t+ 1 are switched.

Specifically, let us consider a run of A for an instance (G, `). Let Bu be the message
broadcasted by u at round t of A, and, for every neighbor v of u, let Lu,v be the message sent
by u to v at round t+1 of A. To define A′, let Su be the state of every node u at the beginning
of round t of A, and let NG(u) be the set of neighbors of u in G. In A′, every node u sends
its state Su to all its neighbors at round t, using LOCAL. At round t+ 1 of A′, every node u
broadcasts Bu to all nodes, using BCC (this is doable, as u was able to produce Bu based
on Su at round t). Finally, before completing round t + 1, every node u uses the collection
{Sv : v ∈ NG(u)} and the collection {Bw : w ∈ V (G)} to compute the messages Lv,u for
all v ∈ NG(u), by simulating what would have done every such neighbor v at round t of A.
Indeed, Lv,u depend solely on Sv and {Bw : w ∈ V (G)}. It follows that, at the end of round
t+1 of A′, every node u can compute its state after t+1 rounds of A. By repeating the same
switch operation until no LOCAL rounds occur after a BCC round, we eventually obtain an
algorithm deciding L and establishing that L ∈ L

∑k

i=1 αiB
∑k

i=1 βi .

Theorem 3.6 There is a language that belongs to LB, but does not belong to BL∗

Proof. Let k ∈ N. We will construct a language that can be decided in LB but cannot be
decided in BLk.

Lets consider the following language:

0, 2-colored-triangles = {(G, `) | ` : V −→ {r, b, k},
G has no C3 as a subgraph ∨
(G[`−1({r})] has at least one C3 as a subgraph ∧
G[`−1({b})] has at least one C3 as a subgraph)}

This is, the set of graphs that does not contain any triangles, or contains at least one
triangle of each color (red and blue), where a red (resp. blue) triangle is a triangle whose
vertices are all asigned with the color red (resp. blue).

It is clear that 0,2-colored-triangles can be decided in LB, since in the local round a
vertex v ∈ V knows if it belongs to a monochromatic C3 or not. If it belongs to two or more
triangles, it rejects immediately. If it belongs to only one triangle, in the BCC round sends
the color of the triangle and the ID’s of the other vertices in the triangle. If it does not belong
to a triangle, then it sends nothing in the BCC round. Finally, every node knows how many
triangles of each color are in G, so they accept if the property of the language is satisfied,
and it rejects if it is not.

On the other hand, lets suppose for the purpose of contradiction, that there is a protocol
Π that can decide 0,2-colored-triangles in BL. Let F be the family of the pairs (G, `) =
((V,E), `) with V = Vr t Vk t Vb and E = Er t Ek t Eb such that there exists vkr, vkb ∈ Vk
that satisfy the following properties:

• Gk = (Vk, Ek) is a 10k-node-path such that vkr and vkb are the extremities.

• e = uv ∈ Er =⇒ u, v ∈ Vr ∪ {vkr}

• e = uv ∈ Eb =⇒ u, v ∈ Vb ∪ {vkb}
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• e = uv ∈ Ek =⇒ u, v ∈ Vk
• v ∈ Vi =⇒ `(v) = i, ∀i ∈ {r, b, k}

Figure 3.2: Graph G in F with sets Vr and Eb in red, Vb and Eb in blue and
the path (Vk, Ek) in black

Let (G, `) ∈ F . Notice that in order to decide if (G, `) ∈ 0,2-colored-triangles, without
loss of generality, a vertex v ∈ Vr has to know if there is a C3 in Gb or not in the BCC round,
since in the LOCAL round, no information of Gb is sent to vertices in Gr. Then, as we already
know, triangle-freeness cannot be solved in B, so there must exist two configurations Gbyes

and Gbno , (the first one with a C3, and the second one without), that send the same exact
messages in the BCC round.

Since in the k LOCAL rounds no new information is sent from Gr to Gb nor from Gb to
Gr since the size of the path, v has to decide if it accepts or rejects based on the information
sent by vertices in Gb in the BCC round.

So, if we consider G1 with Gr = Gryes and Gb = Gbyes , and G2 with Gr = Gryes and
Gb = Gbno , we notice that G1 is a yes-instance of 0,2-colored-triangles, whereas G2 is a no-
instance. Then, since v receives the same messages of Gb in both instances, v cannot decide in
a deterministic way if the graph belongs or not to the language. Hence, 0,2-colored-triangles
cannot be decided in BLk.

We now prove that CB \BC 6= ∅ showing a stronger result.

Theorem 3.7 There is a language that belongs to CB, but does not belong to BL∗. This
result holds even for a randomized algorithm with error ε < 1/5.

Proof. Let us consider the distributed language denoted one-marked-edge defined as

one-marked-edge =
{

(G, `) :
(
` : V (G)→ {0, 1}

)
∧
(∣∣∣{{u, v} ∈ E(G) : `(u) = `(v) = 1

}∣∣∣ = 1
)}
.

In words, the language corresponds to the graphsG with a potential mark on each node, satisf-
ying that exactly one edge ofG has its two endpoints marked. We have one-marked-edge ∈ CB.
Indeed, a simple algorithm consists, for each node, to learn which of its neighbors are marked,
in one CONGEST round, and to broadcast its number of marked incident edges, in one BCC
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round. The nodes reject if the total sum of marked edges is different from 2 (i.e., exactly two
nodes are incident to a unique marked edge). They accept otherwise.

We now prove that one-marked-edge /∈ BL∗. We show that this result holds even for a
randomized algorithm which may err with probability ε < 1/5. For the purpose of contra-
diction, let us assume that, for some k ≥ 0, there exists an ε-error (ε < 1/5) algorithm A
solving one-marked-edge using one BCC round followed by k consecutive LOCAL rounds.
We show how to use A for designing an ε-error 1-round protocol Π solving XOR-index by
communicating only O(

√
m) bits on m-bit instances, contradicting the fact that XOR-index

has communication complexity Ω(m).
Let (x, i) ∈ {0, 1}m×[m] and (y, j) ∈ {0, 1}m×[m] be an instance of XOR-index. Without

loss of generality, we assume that m =
(
n
2

)
for some n ∈ N. Let us consider a graph G on

2n + 4k nodes, composed of two disjoint copies of a clique of size n, plus a path P of 4k
nodes. Let us denote by GA and GB the two cliques. The IDs assigned to the nodes of GA

are picked in [n], while the IDs assigned to the nodes of GB are picked in [2n] \ [n]. One
extremity of P is connected to all nodes in GA, and the other extremity of P is connected
all nodes in GB. Let us denote by PA the 2k nodes of P closest to GA, and by PB the 2k
nodes of P closest to GB. These nodes are assigned IDs 2n + 1, . . . , 2n + 4k, consecutively,
starting from the extremity of P connected to GA.

We enumerate the m =
(
n
2

)
edges in GA and GB from 1 to m. Then, in Π, the players

interpret their input vectors x and y as indicators of the edges of GA and GB respectively.
We denote by Gxy the subgraph of G such that, for every r ∈ [m], the r-th edge e of GA

(resp., GB) is in Gxy if and only if xr = 1 (resp., yr = 1). Also, all edges incident to nodes
of P are in Gxy. Let {uiA, viA} be the endpoints of the i-th edge of GA, and let {ujB, v

j
B}

represent the endpoints of the j-th edge of GB. (These edges may or may not be in Gxy

depending on the values of xj and yi.) We define `ij : V (G)→ {0, 1} as the marking function
such that `ij(w) = 1 if and only if w ∈ {uiA, viA, u

j
B, v

j
B}. By construction, we have that

(Gxy, `ij) ∈ one-marked-edge if and only if ((x, i), (y, j)) is a yes-instance of XOR-index,
i.e., xj 6= yi. We say that Alice owns all nodes in V (GA) ∪ V (PA), and Bob owns all nodes
in V (GB) ∪ V (PB). Observe that the edges of Gxy incident to nodes owned by Alice depend
only on x, while the edges of Gxy incident to nodes owned by Bob only depend on y.

Figure 3.3: Graph simulated by Alice and Bob where Alice owns the red
nodes and Bob owns the blue nodes. E(Gxy) are represented as the bold
edges. Notice that in this example yi = 0 and xj = 1.

We are now ready to describe Π. First, Alice and Bob simulate the BCC round of algorithm
A on all the nodes of Gxy owned by them, respectively, considering that no vertices are
marked. This simulation results in each player constructing a set of n+ 2k messages, one for
each node of the clique owned by the player, plus one message for each of the 2k nodes in
the sub-path owned by the player. We denote by MA

0 and MB
0 the set of messages produced
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by Alice and Bob, respectively. Next, the players repeat the same procedure, but considering
now that all vertices are marked, from which it results sets of messages denoted by MA

1 and
MB

1 , respectively. Finally, Alice sends the pair (MA
0 ,M

A
1 ) to Bob, as well as her input index i.

Similarly, Bob sends the pair (MB
0 ,M

B
1 ) to Alice, as well as his input index j. Observe that

the size of these messages is O((n+ k) log n) bits.
After the communication, Alice and Bob decide their outputs as follows. First, each player

extracts from MA
1 the messages produced by ujA and vjA, and extract from MB

1 the messages
produced by uiB and viB. Then, they extract from MA

0 and MB
0 the messages of every other

node. Let us callM the resulting set of messages. Observe thatM corresponds exactly to the
set of messages communicated during the BCC round of A on input (Gxy, `ij). Then, Alice
and Bob simulate the k LOCAL rounds of A on all the vertices they own. This is possible
as the nodes of P are not marked, for every instance of XOR-index. Each player accepts if
all the nodes owned by this player accept. Since (Gxy, `ij) ∈ one-marked-edge if and only
if ((x, i), (y, j)) is a yes-instance of XOR-index, we get that Π is an ε-error protocol solving
XOR-index on inputs of size m by communicating only O((n + k) log n) = O(

√
m) bits,

which is a contradiction with Theorem 5.1.

Theorem 3.8 There is a language that belongs to BC, but it does not belong to CB. This
result holds even for randomized algorithms, which may err with probability ε, for every ε <
1/5.

Proof. For every n ≥ 2, let us consider the path P2n+1, i.e., the path with 2n + 1 nodes,
denoted consecutively a1, . . . , an, c, bn, . . . , b1. Let x ∈ {0, 1}n, y ∈ {0, 1}n, i ∈ [n], and j ∈ [n].
We define the labeling `x,y,i,j of the nodes of Pn as follows:

`x,y,i,j(a1) = i, `x,y,i,j(an) = x, `x,y,i,j(bn) = y, `x,y,i,j(b1) = j,

and, for every v /∈ {a1, an, b1, bn}, `x,y,i,j(v) = ⊥. We define the distributed language

XOR-index-path = {(P2n+1, `x,y,i,j) : (n ≥ 2) ∧ (x, y ∈ {0, 1}n) ∧ (i, j ∈ [n]) ∧ (xj 6= yi)}.

First, we show that XOR-index-path ∈ BC. During the BCC round, every node broadcasts
its ID, and the IDs of its neighbors (a node with more than two neighbors simply rejects).
Also, degree-1 nodes broadcasts their labels. Note that the 2n + 1 nodes can then check
whether they are vertices of the path P2n+1, and, if this is not the case, they reject. Let i
and j be the labels broadcasted by the two extremities of the path. Based on the information
broadcasted by all the nodes, each of the two nodes an and bn adjacent to the middle node c
of the path knows which of the two labels i or j correspond to the index broadcasted by its
farthest extremity in the path, b1 and a1, respectively. Thus, during the CONGEST round, an
and bn can send the bits xj and yi to the center c of the path, which checks whether xj 6= yi,
and accepts or rejects accordingly.

Now, we show that XOR-index-path /∈ CB. Let us assume for the purpose of contra-
diction that there exists a 2-round algorithm A deciding XOR-index-path by performing
one CONGEST round followed by one BCC rounds. To solve an instance ((x, i), (y, j)) of
XOR-Index, Alice and Bob simulate A on the path P2n+1 with consecutive IDs 1, . . . , 2n+1.
Specifically, Alice simulates the n + 1 nodes a1, . . . , an, c, while Bob simulates the n + 1 no-
des b1, . . . , bn, c, with the nodes labeled with `x,y,i,j. For simulating the CONGEST round,
Alice sends to Bob the message man sent from an to c during that round, and Bob sends
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to Alice the message mbn sent from bn to c during that round. The BCC round is actually
simulated simultaneously. More precisely, Alice and Bob can both construct the messages
broadcasted by all nodes a3, . . . , an−2 and b3, . . . , bn−2, merely because they know their IDs
and their labels (equal to ⊥), and they can therefore infer the messages these nodes receive
during the CONGEST round. So, these messages do not need to be communicated between
the players. Moreover, Alice knows a priori what messages m′a1 ,m

′
a2 ,m

′
an−1 , and m

′
an are to

be broadcasted by a1, a2, an−1 and an during the BCC round, and can send them to Bob.
Symmetrically, Bob knows a priori what messages m′b1 ,m

′
b2 ,m

′
bn−1 , and m

′
bn are to be broad-

casted by b1, b2, bn−1 and bn during the BCC round, and can send them to Alice. As for node c,
thanks to the messages man and mbn sent by Alice to Bob, and by Bob to Alice, respectively,
both players can construct the message to be sent by c during the BCC round. So, in total, for
simulating A, Alice (resp., Bob) just needs to send the messages man ,m

′
a1 ,m

′
a2 ,m

′
an−1 ,m

′
an to

Bob (resp., the messages mbn ,m
′
b1 ,m

′
b2 ,m

′
bn−1 ,m

′
bn to Alice), which consumes O(log n) bits of

communication in total. Each player accepts if all the nodes he or she simulates accept, and
rejects otherwise. Alice and Bob are thus able to solve XOR-index by exchanging O(log n)
bits only, which contradicts Theorem 5.1.
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Chapter 4

Other Results

4.1. Three Rounds
We now proceed to show languages that separate the already known inclusions between

BCC and LOCAL rounds of Theorem 3.5.

4.1.1. Two LOCAL rounds and one BCC round

Theorem 4.1 There is a language that belongs to LBL, but does not belong to BLL.

Proof. Since 0,2-colored-triangles can be decided in LB, it is clear that it can also be
decided in LBL using the protocol of LB and doing nothing in the last LOCAL round.

On the other hand, from Theorem 3.6 we showed that 0,2-colored-triangles cannot be
decided in BLL.

Theorem 4.2 There is a language that belongs to LLB, but does not belong to LBL.

Proof. Consider the following language

0,2-colored-hexagons = {(G, `) | ` : V −→ {r, b, k},
G has no C6 as a subgraph ∨
(G[`−1({r})] has at least one C6 as a subgraph ∧
G[`−1({b})] has at least one C6 as a subgraph)}

We notice that 0,2-colored-hexagons can be decided in LLB, since in the first two LOCAL
rounds, every vertex knows if it belongs to a C6 and the color of the vertices belonging to it.
Then, in the BCC round, if a vertex belongs to more than one monochromatic C6, it rejects
immediately, since there will be more than one C6 of one color. If a vertex belongs to one
monochromatic C6 sends its color. Therefore, after the BCC round, every vertex will know if
there is at least one hexagon of color r and b, or no hexagons at all.

On the other hand, lets suppose by contradiction that 0,2-colored-hexagons is decidable
in LBL. We will use the family F of Theorem 3.6.

According to [29], the BCYCLEk[r] problem which consist of detecting a k−cycle in the
broadcast congested clique model, with the initial condition that every node v ∈ V knows
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Nr(v) takes Ω(n1/bk/2c) bits per node in one round if r ≤ k/3, which in this case holds since
r = 2 (after the first LOCAL round) and k = 6. Then, there must exist two configurations
G1, G2 ∈ F such that Gb(G1) = Gbyes and Gb(G2) = Gbno , (the first one with a C6, and the
second one without), whose vertices send the same messages in the BCC round.

Then, as in the final LOCAL round no information is sent from Gr to Gb nor from Gb to
Gr, vertices in Gr have to decide if they accept or reject based on the information sent by
vertices in Gb in the BCC round.

So, if we consider G1, G2 with Gr(G1) = Gr(G2) = Gryes , Gb(G1) = Gbyes and Gb(G2) =
Gbno , we notice the same messages will be sent in the BCC round for the two graphs, and G1 ∈
0,2-colored-hexagons, whereas G2 6∈ 0,2-colored-hexagons. Then, 0,2-colored-hexagons
cannot be decided in LBL.

4.1.2. Two BCC rounds and one LOCAL round

Theorem 4.3 There is a language that belongs to BLB, but does not belong to BBL.

Proof. Consider the language 0,2-colored-triangles. Since 0,2-colored-triangles can be de-
cided in LB, it can clearly be decided in BLB by doing nothing in the first BCC round, and
then copying the protocol to decide in LB.

On the other hand, from Theorem 3.6 we showed that 0,2-colored-triangles cannot be
decided in BBL.

4.1.3. Three rounds with different number of BCC / LOCAL rounds

Theorem 4.4 There is a language that belongs to LLB, but does not belong to BBL.

Proof. Consider the language 0,2-triangle-freeness. Since 0,2-colored-triangles can be de-
cided in LB, it can clearly be decided in LLB by doing nothing in the first LOCAL round,
and then copying the protocol to decide in LB.

On the other hand, from Theorem 3.6 we showed that 0,2-colored-triangles cannot be
decided in BBL.

Theorem 4.5 There is a problem that belongs to BBL, but does not belong to LLB.
For this theorem, we do not show a language that separates these two models. Instead,

we show a separating problem where nodes in a graph G are given inputs and after they
communicate with the respective models, they must output a specific string defined in the
problem. So, we naturally extend the set BBL and LLB and say that a problem can belong
to these sets.

Proof. Consider the problem P in which the task is that all nodes must output N(v0), where
v0 is the node with highest ID between the nodes with the highest degree.

Notice that P ∈ BBL, since in the first BCC round every v ∈ V sends (ID(v), deg(v)).
Then, after the first round, v0 will be known by every node so in the second BCC round,
nodes belonging to N(v0) send their ID and the rest do nothing.

On the other hand, suppose P ∈ LLB. Notice that it is equivalent to assume that P ∈ B
with the condition that every node v knows N3(v). Let P ′ be P with the condition that every
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node knows their 3-radius neighborhood.
Let ∆ be the protocol that solves P ′ in one BCC round. Now, our goal is to use ∆ as a

sub-routine to reconstruct the whole graph G.
Let G′ be the virtual graph G with 2n extra isolated nodes.
Let v ∈ V , v emulates being neighbor with the 2n extra nodes in G′. We denote G′v to the

graph G with the extra edges that v simulates. Then, v sends mv(G′)∪mv(G′v), where mv(G)
denotes the message sent by v in the protocol ∆ with the graph G. Hence, an arbitrary node
u ∈ V has the following information about v:

mv(G′) ∪mv(G′v) ∪
⋃

i∈{n+1,...,3n}
mi(G′v)

where i ∈ {n+ 1, . . . , 3n} are the ID’s of the extra nodes. The two first messages are sent
by v in the BCC round, meanwhile the messages sent by the virtual nodes can be simulated
by u since it knows their ID’s and neighbors.

So, u can learn the neighbors of v decoding the following messages:
⋃

r∈V \{v}
mr(G′) ∪mv(G′v) ∪

⋃
i∈{n+1,...,3n}

mi(G′v)

since v is the node with highest degree in G′v.
As this works for all u, v ∈ V , every node can learn the neighborhood of all nodes in the

graph, with which they can reconstruct the graph G. Since it is needed at least Ω(n2) bits
to reconstruct a graph and in one BCC round it is used in total O(n log n) bits, we get our
contradiction.

4.2. Multiple Rounds Of One Model
In this chapter we prove two results. First, a separation language between Lk and Lk+1,

and then, a strong result that will let us conclude that there exist a separation language
between Bk and Bk+1.

Theorem 4.6 Let k be a positive integer. There is a language that belongs to Lk+1, but does
not belong to Lk

Proof. Lets define the language k-cycle-freeness = {(G, `) | Ck not a subgraph of G} for
k ∈ N.

Notice that in l local rounds, a node v can decide if it belongs or not to a C2l+1 at most.
So, 2k + 3-cycle-freeness can be decided in k + 1 LOCAL rounds, but cannot be decided in
k LOCAL rounds.

Now, we prove that there is a language that can be decided in k BCC rounds, but it cannot
be decided in any finite combination of LOCAL, CONGEST, and BCC rounds that contains
k − 1 BCC rounds.

Theorem 4.7 Let k > 1. For every set S = ∏p
i=1 LαiBβiCγi such that ∑p

i=1 βi = k − 1, it
holds that BkrS 6= ∅. This result holds even for randomized decision algorithms which may
err with probability 1

2 − ε, for every ε > 0.
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In order to prove this result, we consider the communication complexity known as pointer
chasing. Let SA ∪ SB = [n] be a partition of [n] such that |SA| = |SB|, and a function
f : S → S such that f(SA) ⊆ SB and f(SB) ⊆ SA. Call fA = f |SA and fB = f |SB . In
problem k-pointer chasing Alice receives as input SA together with fA and Bob receives
as inputs SB and fB. The task is to compute the parity of the number of 1’s in the binary
representation of fk(0) (k compositions of f).

Let us denote Ck(f) the communication complexity of function f restricted to k-round
protocols. In [30] is shown the following result.

Proposition 4.1 For every k ≥ 1,

• Ck(k−pointer chasing) = O(log n), and

• Ck−1(k−pointer chasing) = O(n− k log n). This result holds even for randomized deci-
sion algorithms which may err with probability 1

2 − ε, for every ε > 0.

Proof. Let ` ≥ 1. We define a language that belongs toBk but does not belong to L∗Bk−1. Let
us consider the language k-pointer-chasing-on-long-path (k-PCLP) as the set of paths of
length n, where the two endpoints of the path have yes-instance k-pointer-chasing. Formally,

k-PCLP =
{

(G, `) :
(
` : V (G)→ {0, 1}∗ ∪ {⊥}

)
∧
(
G is a path with endpoints u, v

)
∧
(
`(w) = ⊥ ∧ (`(u), `(v)) ∈ k − pointer− chasing

)}
.

We have that k-PCLP belongs to Bk. Indeed, a simple algorithm consists in all vertices
communicating its degree in the first round, and, at the same time, the two endpoints of the
path communicating the successive evaluations of f . Once fk(0) is computed, every node
accepts if

• all except two nodes have degree 2, and the two remaining nodes have degree 1 (hence
the graph is a path)

• the number of 1 bits in the binary representation of fk(0) is 1.

We now show that k-PCLP /∈ L∗Bk−1. By contradiction, let us suppose that for some t ≥ 0
there exists an 1/2− ε-error LtBk−1 algorithm A for k-PCLP. Given an instance (fA, fB) of
k-pointer chasing, we define an instance (Pn, `∗) of k-PCLP as follows. First, consider on
an 2n-node (n > t) path together endpoints u and v. Second, assign `(w) = ⊥ to every node
except the endpoints. Third, assign `(u) = fA and `(v) = fB. We call P u

d and P v
d the set of

nodes at distance at most d from u and v, respectively. Observe that (Pn, `∗) ∈ k-PCLP if
and only if (fA, fB) ∈ k-pointer-chasing.

Now consider the following ε-error two-player k − 1-round algorithm Π for `-pointer
chasing. Alice and Bob virtually construct the input (Pn, `∗). We say that Alice owns the
nodes in P u

t and Bob owns the nodes P v
t . All nodes that are not owned by Alice or Bob are

called remaining nodes. The nodes simulate the t LOCAL rounds of A on the nodes they own
and on the remaining nodes. Notice that the players can simulate these rounds without any
communication, since the information of the endpoints are at distance 2n > 2t. Then, the
players perform k − 1 rounds of communication. On the i-th round, Alice and Bob simulate
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the i-th BCC round of A on all the nodes they own, generating a packages of messages M i
A

and M i
B, respectively. Then, they communicate M i

A and M i
B to each other. Finally, each

player simulate the i-th BCC round of A on the remaining nodes generating a package of
messages M i

R. Observe that these latter messages can be generated as they depend only on
the messages sent on the previous rounds, and not on the inputs of fA and fB. Finally, Alice
and Bob have each the packages of messages M1, . . . ,Mk−1 corresponding to the k − 1 BCC
rounds of A. Using that information the players can simulate the output of all nodes they
own, as well as the output of the remaining nodes. The players then accept in Π if and
only if all the nodes they own and the remaining nodes accept in A. By the correctness of
A, we obtain that with probability 1/2 − ε, all the nodes in A accept if and only if Alice
and Bob accept in Π. We deduce that Π is an k − 1-round, ε-error protocol for k-pointer-
chasing. However, in protocol Alice and Bob communicate O(`t log n) = O(log n) bits, which
contradicts Proposition 4.1. We deduce that k-PCLP /∈ L∗Bk−1.

Finally, notice that from Theorem 3.5 and the fact that C ⊆ L, we have that all problems
solvable in S = ∏k

i=1 LαiBβiCγi can be solved in by an algorithm in L∗B.

28



Chapter 5

XOR-INDEX

Definition 5.1 (XOR-INDEX) Consider the communication problem where Alice receives
as input x ∈ {0, 1}n and i ∈ [n], whereas Bob receives y ∈ {0, 1}n and j ∈ [n]. The task is that
Alice outputs a boolean outA and Bob outputs a boolean outB such that outA ∧ outB = xi⊕yj.

We focus on 2−way 1−round protocols, that is, each player sends only one message to
the other player, both players send their messages simultaneously (it cannot depend on the
other player’s message), and each player must decide his or her output upon reception of the
message sent by the other player.

For every 2−player communication problem P , and for every ε > 0, let us denote by
CC1(P, ε) the communication complexity of the best 2−way 1−round randomized protocol
solving P with error probability at most ε.

Theorem 5.1 For every non-negative ε < 1/5, CC1(XOR-index, ε) = Ω(n) bits.

Proof. Let 0 ≤ ε < 1/5, and let Π randomized protocol solving XOR-index with error
probability at most ε, where Alice communicates kA bits to Bob, and Bob communicates kB
bits to Alice. Without loss of generality, we can assume that, in Π, Alice (resp., Bob) sends
explicitly the value of i (resp., j) to Bob (resp., Alice). Indeed, this merely increases the
communication complexity of Π by an additive factor O(log n), which has no consequence,
as we shall show that kA + kB = Ω(n).

Let us consider the probabilistic distribution over the inputs of Alice and Bob, where x
and y are drawn uniformly at random from {0, 1}n, and i and j are drawn uniformly at
random from [n]. Let us denote X and I the random variables equal to the inputs of Alice,
and Y and J the random variables equal to the inputs of Bob. Let MA (resp., MB) be the
random variable equal to the message sent by Alice (resp., Bob) in Π on input (X, I) (resp.,
(Y, J)). Note that MA and MB have values in ΩA = {0, 1}kA and ΩB = {0, 1}kB , respectively,
of respective size 2kA and 2kB .

Let us fix i, j ∈ [n], mA ∈ ΩA, and mB ∈ ΩB. Let EAmA,j be the event corresponding to
Bob receiving J = j as input, and Alice sending MA = mA to Bob in the communication
round. Similarly, let EBmB ,i be the event corresponding to Alice receiving I = i as input, and
Bob sending MB = mB to Alice in the communication round. For a, b ∈ {0, 1}, we set:

p(a,mA, j) = Pr
[
XJ = a | EAmA,j

]
, and q(b,mB, i) = Pr

[
YI = b | EBmB ,i

]
,

and
p(a, j) = Pr[XJ = a | J = j], and q(b, i) = Pr[YI = b | I = i].
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Observe that p(a, j) = q(b, i) = 1/2. Let a∗ and b∗ be the most probable values of Xj given
(mA, j), and of Yi given (mB, i), respectively. Formally,

a∗ = argmaxa∈{0,1}p(a,mA, j), and b∗ = argmaxb∈{0,1}q(b,mB, i).

Observe that p(a∗,mA, j) ≥ 1/2 and q(b∗,mA, j) ≥ 1/2. We first establish the following
technical lemma.

Lemma 5.1 Let F the the event that Π fails. We have

Pr
[
F | EAmA,j, E

B
mB ,i

]
≥ Pr

[
a∗ 6= XJ | EAmA,j, E

B
mB ,i

]
· Pr

[
b∗ 6= YI | EAmA,j, E

B
mB ,i

]
.

Proof. Without loss of generality, we assume that, in Π, after having communicated the
pair (mA, i), Alice computes b∗, and decides her output as follows. If b∗ 6= xj, then Alice
accepts with some fixed probability pA, and if b∗ = xj then Alice accepts with some fixed
probability qA. The probabilities pA and qA determines the actions of Alice. Similarly, we can
assume that, after having communicated (mB, j), Bob computes a∗, and decides as follows.
If a∗ 6= yi then he accepts with some fixed probability pB, and if a∗ = yi then he accepts with
some fixed probability qB. Note that, in the case where the players do not take in account
the value of a∗ and b∗, then one can simply choose pA = qA and pB = qB. Let us denote

RA = Pr
[
a∗ = XJ | EAmA,j, E

B
mB ,i

]
, and RB = Pr

[
b∗ = YI | EAmA,j, E

B
mB ,i

]
.

Observe that

Pr
[
F | EAmA,j, E

B
mB ,i

]
= 1/2 Pr

[
F | EAmA,j, E

B
mB ,i

, XJ 6= YI
]

+ 1/2 Pr
[
F | EAmA,j, E

B
mB ,i

, XJ = YI
]
.

Now, conditioned on XJ 6= YI , the event F corresponds to the event when Alice accepts
and Bob accepts. Observe that, conditioned on EAmA,j, E

B
mB ,i

, these two latter events are inde-
pendent. Moreover, conditioned on XJ 6= YI , the event a∗ 6= YI is equal to the event a∗ = XJ .
Similarly, conditioned on XJ 6= YI , the event b∗ 6= XJ is equal to the event b∗ = XI . It follows
that  Pr

[
Alice accepts | EAmA,j, E

B
mB ,i

, XJ 6= YI
]

= RB pA + (1−RB) qA;
Pr
[
Bob accepts | EAmA,j, E

B
mB ,i

, XJ 6= YI
]

= RA pB + (1−RA) qB.

This implies that

Pr[F|EAmA,j, E
B
mB ,i

, XJ 6= YI ]
= Pr

[
Alice accepts and Bob accepts | EAmA,j, E

B
mB ,i

, XJ 6= YI
]

= Pr
[
Alice accepts | EAmA,j, E

B
mB ,i

, XJ 6= YI
]
· Pr

[
Bob accepts | EAmA,j, E

B
mB ,i

, XJ 6= YI
]

=
(
RB pA + (1−RB) qA

)
·
(
RA pB + (1−RA) qB

)
.

let us now consider the case when conditioning on XJ = YI . In this case, the event F
corresponds to the complement of the event when Alice accepts and Bob accepts. Observe
that, conditioned on XJ = YI , the event a∗ 6= YI is equal to the event a∗ 6= XJ , and the event
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b∗ 6= XJ is equal to the event b∗ 6= YI . It follows that Pr
[
Alice accepts | EAmA,j, E

B
mB ,i

, XJ = YI
]

= (1−RB) pA +RB qA;
Pr
[
Bob accepts | EAmA,j, E

B
mB ,i

, XJ = YI
]

= (1−RA) pB +RA qB/

This implies that

Pr[F | EAmA,j, E
B
mB ,i

, XJ = YI)]
= 1− Pr

[
Alice accepts and Bob accepts | EAmA,j, E

B
mB ,i

, XJ = YI
]

= 1− Pr
[
Alice accepts | EAmA,j, E

B
mB ,i

, XJ = YI
]
· Pr

[
Bob accepts | EAmA,j, E

B
mB ,i

, XJ = YI
]

= 1−
(
(1−RB) pA +RB qA

)
·
(
(1−RA) pB +RA qB

)
.

Therefore, by combining the two cases, we get that

Pr[F | EAmA,j, E
B
mB ,i

]

= 1
2
(
RA (pA + qA) (pB − qB) +RB (pA − qA) (pB + qB) + 1− pA pB + qA qB

)
.

Conditioned to the events EAmA,j, E
B
mB ,i

, the best protocol Π corresponds to the one that
picks the values of pA, qA, pB, qB that maximize the previous quantity, restricted to the fact
that pA, qA, pB, qB, RA and RB must be values in [0, 1], and that RA and RB must be at least
1/2. The maximum can be found using the Karush-Kuhn-Tucker (KKT) conditions [31]. In
fact, as the restrictions are affine linear functions, the optimal value is one solution of the
following system of equations:

(RA +RB − 1)pB − (RA −RB)qB − 2µ1 + 2µ5 = 0
(RA +RB − 1)pA + (RA −RB)qA − 2µ2 + 2µ6 = 0
(RA −RB)pB − (RA +RB − 1)qB − 2µ3 + 2µ7 = 0
−(RA −RB)pA − (RA +RB − 1)qA − 2µ4 + 2µ8 = 0

µ1(pA − 1) = 0
µ2(pB − 1) = 0
µ3(qA − 1) = 0
µ4(qB − 1) = 0
−µ5pA = 0
−µ6pB = 0
−µ7qA = 0
−µ8qB = 0

The set of all solutions to this system is given in Table 5.1, together with the corresponding
evaluation of Pr

[
F | EAmA,j, E

B
mB ,i

]
. It follows from Table 5.1 that the value of Pr

[
F | EAmA,j, E

B
mB ,i

]
is upper bounded by RA + RB − RARB. Indeed, assuming, without loss of generality, that
RA ≥ RB, we have:
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1
2(1− (RA +RB)) ≤ 1−RA ≤ 1− RA +RB

2 ≤ 1−RB ≤
1
2

≤ min{RB,
1
2(1 +RA −RB)} ≤ max{RB,

1
2(1 +RA −RB)}

≤ RA +RB

2 ≤ RA ≤ 1− (1−RA)(1−RB).

Finally, observe that

(1−RA)(1−RB) = Pr
[
a∗ 6= XJ | EAmA,j, E

B
mB ,i

]
· Pr

[
b∗ 6= YI | EAmA,j, E

B
mB ,i

]
,

from which we get that

Pr
[
F | EAmA,j, E

B
mB ,i

]
≥ Pr

[
a∗ 6= XJ |EAmA,j

]
· Pr

[
b∗ 6= YIEBmB ,i

]
,

as claimed.

We now show that, whenever the messages sent by Alice and Bob are too small, the
distributions of a∗ and of b∗ is not far from the uniform. We make use of some basic definitions
and tools on information complexity, and we refer to [27] for more details. Let (Ω, µ) be a
discrete probability space. Given a random variable X we denote by pX : Ω 7→ R the discrete
density function of X, i.e., pX(ω) = Pr[X = ω]. We denote by H : Ω 7→ R+ the entropy
function, defined as H(X) = ∑

ω∈Ω pX(ω) 1
log pX(ω) . Recall that, given two random variables

X, Y on Ω, the entropy of X conditioned to Y is

H(X | Y ) = EpY (y)(H(X | Y = y)).

Moreover, let µ and ν be two probability measures on Ω. The total variation distance bet-
ween µ and ν is defined as |u − v|TV = supE⊆Ω |µ(E) − ν(E)|. It is known that |u − v|TV =
1
2
∑
ω∈Ω |µ(ω) − ν(ω)|. In addition, the Kullback-Liebler divergence between µ and ν is de-

fined as D(µ||ν) = ∑
ω∈Ω µ(ω) log µ(ω)

ν(ω) . Given two random variables X and Y , their mutual
information is defined as I(X;Y ) = D(pX,Y ||pXpY ). It is known that

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) = I(Y ;X).

Finally, the mutual information of X, Y conditioned on a random variable Z is defined as the
function I(X;Y | Z) = EpZ(z)[I(X;Y | Z = z)]. Having all these notions at hand, we shall
use some lemmas stated in the preliminaries section.

We observe that:{
I(XJ ;MA | J) = 1

n

∑
j∈[n] I(Xj;MA) ≤ I(X;MA)

n
≤ H(MA)

n
≤ kA

n

I(YI ;MB | I) = 1
n

∑
i∈[n] I(Yi;MB) ≤ I(Y ;MB)

n
≤ H(MB)

n
≤ kB

n
.

By Pinsker’s inequality, it follows that: E(mA,j) (‖p(·,mA, j)− p(·, j)‖) ≤
√

kA
n

E(mB ,i) (‖q(·,mB, i)− q(·, i)‖) ≤
√

kB
n
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These latter bounds imply that E(mA,j) (p(a∗,mA, j)) ≤ 1
2 +

√
kA
n

E(mB ,i) (q(b∗,mB, i)) ≤ 1
2 +

√
kB
n

Now, from Lemma 5.1, we have that

Pr
[
F | EAmA,j, E

B
mB ,i

]
≥ p(1− a∗,mA, j) · q(1− b∗,mB, i)

=
(
1− p(a∗,mA, j)

)
·
(
1− q(b∗,mB, i)

)
.

As a consequence, we have

Pr[F ] = EmA,mB ,i,j(Pr
[
F | EAmA,j, E

B
mB ,i

]
)

=
∑

mA,mB ,i,j

Pr
[
F | EAmA,j, E

B
mB ,i

]
· Pr

[
EAmA,j, E

B
mB ,i

]
≥

∑
mA,mB ,i,j

(
1− p(a∗(mA,j),mA, j)

) (
1− q(b∗(mB ,i),mB, i)

)
Pr
[
EAmA,j, E

B
mB ,i

]
=

∑
mA,mB ,i,j

(
1− p(a∗(mA,j),mA, j)

) (
1− q(b∗(mB ,i),mB, i)

)
Pr
[
EAmA,j

]
· Pr

[
EBmB ,i

]
=
∑
mA,j

(
1− p(a∗(mA,j),mA, j)

)
Pr
[
EAmA,j

]
·
∑
mB ,i

(
1− q(b∗(mB ,i),mB, i)

)
Pr
[
EBmB ,i

]
=
(
1− E(mA,j)

(
p(a∗(ma,j),mA, j)

))
·
(
1− E(mB ,i)

(
q(b∗(mB ,i),mB, i)

))
≥

1
2 −

√
kA
n

 ·
1

2 −
√
kB
n

 .
Since Pr[F ] ≤ ε, we must have (1

2 −
√

kA
n

) · (1
2 −

√
kB
n

) ≤ ε ≤ 1/5, implying that kA = Ω(n) or
kB = Ω(n).
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Table 5.1: Solutions of the equations given by the KKT conditions in the
proof of Lemma 5.1, and the corresponding value of Pr

[
F | EAmA,j , E

B
mB ,i

]
.

pA pB qA qB Pr
[
F | EAmA,j, E

B
mB ,i

]
1 1 1 1 1/2

0 0 0 0 1/2

0 1 0 RA−RB
RA+RB−1

1/2

0 RA+RB−1
RA−RB

0 1 1/2

0 1 1 1 1−RB

1 0 RB−RA
RA+RB−1 0 1/2

RA+RB−1
RB−RA

0 1 0 1/2

1 0 1 1 1−RA

0 0 1 1 1− 1/2RA − 1/2RB

0 1 0 RA+RB−1
RA−RB

1/2

0 RA−RB
RA+RB−1 0 1 1/2

1 1 0 1 RB

0 1 0 1 1/2

1 0 0 1 1/2− 1/2RA + 1/2RB

0 0 0 1 1/2

1 0 RA+RB−1
RB−RA

0 1/2
RB−RA
RA+RB−1 0 1 0 1/2

1 1 1 0 RA

0 1 1 0 1/2 + 1/2RA − 1/2RB

1 0 1 0 1/2

0 0 1 0 1/2

1 1 0 0 1/2RA + 1/2RB

0 1 0 0 1/2

1 0 0 0 1/2

34



Chapter 6

Conclusions

In this thesis, first, we compared the three one round models, concluding that there is no
inclusion between the languages that can be decided in one local round and one broadcast
round, extending this result to a constant number of rounds.

Second, we compared every two round combination between the three models and we
conclude that there is an inclusion between some of them and no inclusion between the rest.
Moreover, we showed some languages that separate these combinations, showing that the
inclusions proved before were strict.

Third, we successfully showed that every language resulting of the combination between
broadcast and local rounds are comparable in terms of inclusion. Furthermore, we showed
some languages that separate some of the three round combinations of broadcast and local
rounds. Also, we showed a language that separate k rounds of broadcast rounds and k + 1
broadcast rounds.

A possible continuation of this work is to complete all the comparisons between three
round models combining the three models. Another one is to show a general language that can
separate every combination of broadcast and local rounds, making the respective inclusions
strict.
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