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On large prime actions on Riemann surfaces
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Abstract. In this article, we study compact Riemann surfaces of genus g with an automor-
phism of prime order g C 1. The main result provides a classification of such surfaces. In
addition, we give a description of them as algebraic curves, determine and realise their
full automorphism groups and compute their fields of moduli. We also study some aspects
of their Jacobian varieties such as isogeny decompositions and complex multiplication.
Finally, we determine the period matrix of the Accola–Maclachlan curve of genus four.

1 Introduction and statement of the results

Let Mg denote the moduli space of compact Riemann surfaces (smooth irre-
ducible complex algebraic curves) of genus g > 2. It is classically known that Mg

is endowed with the structure of a complex analytic space of dimension 3g � 3,
and that, for g > 4, its singular locus agrees with the branch locus of the canonical
projection

Tg !Mg ;

where Tg stands for the Teichmüller space of genus g. In other words, if g > 4,
then

Sing.Mg/ D ¹ŒS� 2Mg W Aut.S/ ¤ 1º;

where Aut.S/ denotes the full automorphism group of S .
The classification of groups of automorphisms of compact Riemann surfaces is

a classical problem which has attracted broad interest ever since it was proved that
the full automorphism group of a compact Riemann surface S of genus g > 2 is
finite, and that

jAut.S/j 6 84.g � 1/:

It is well known that there are infinitely many values of g for which there is
no compact Riemann surfaces of genus g possessing 84.g � 1/ automorphisms.
Regarding this matter, Accola [1] and Maclachlan [46] proved that, for fixed g,
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the largest order n0.g/ of the full automorphism group of a compact Riemann
surface of genus g satisfies

n0.g/ > 8.g C 1/ (1.1)

and that, for infinitely many values of g, the inequality (1.1) turns into an equality.
We denote by X8 the so-called Accola–Maclachlan curve, namely the compact

Riemann surface of genus g with 8.g C 1/ automorphisms given by the algebraic
curve

y2 D x2.gC1/ � 1:

The Accola–Maclachlan curve is a remarkable example of a compact Riemann
surface determined by the order of its full automorphism group. More precisely,
Kulkarni in [43] succeeded in proving that, up to finitely many values of the genus,
if g 6� 3 mod 4, then X8 is the unique compact Riemann surface of genus g with
exactly 8.g C 1/ automorphisms.

The analogous problem of finding n0.g/ but for uniparametric families of com-
pact Riemann surfaces was studied in [22]. Concretely, the existence was proved
of a closed equisymmetric complex one-dimensional family, henceforth denoted
by NCg , of hyperelliptic compact Riemann surfaces of genus g with a group of
automorphisms isomorphic to

DgC1 � C2 acting with signature .0I 2; 2; 2; g C 1/

(we shall recall the precise definition of signature in § 2.1 and § 2.2). It was then
shown that 4.g C 1/ is the largest order of the full automorphism group of complex
one-dimensional families of compact Riemann surfaces of genus g appearing for
all g. These results were recently extended to the three and four-dimensional cases
in [40] while the two-dimensional case is derived from the results of [56].

It is a well-known fact that if a compact Riemann surface of genus g > 2 has
an automorphism of prime order q such that q > g, then either q D 2g C 1 or
q D g C 1. The former case corresponds to the so-called Lefschetz surfaces. This
paper deals with the latter case.

Let q > 5 be a prime number. Consider the singular sublocus

M q
q�1 � Sing.Mq�1/

consisting of all those compact Riemann surfaces of genus q � 1 endowed with
an automorphism of order q. This sublocus was studied by Urzúa in [68] from
a hyperbolic geometry point of view, and later by Costa and Izquierdo in [21] when
the existence of complex one-dimensional isolated strata of the singular locus of
the moduli space was proved.
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This paper is devoted to classifying and describing the surfaces lying in M q
q�1

and to study some aspects of the corresponding Jacobians in the singular locus of
the moduli space of principally polarised abelian varieties of dimension q � 1. In
other words, we shall consider all those compact Riemann surfaces of genus g > 4

(and their Jacobian varieties) with a group of automorphisms of order

�.g C 1/; where � > 1 is an integer;

under the assumption that q WD g C 1 is a prime number.

The classification

The first result of the paper provides a classification of these surfaces.

Theorem 1. Let q > 7 be a prime number. If S is a compact Riemann surface of
genus g D q � 1 endowed with a group of automorphisms of order �q for some
integer � > 1, then � 2 ¹1; 2; 3; 4; 8º.

Assume � D 8. Then S is isomorphic to the Accola–Maclachlan curve X8.
Assume � D 4.

(1) If q � 3 mod 4, then S belongs to the closed family NCg .

(2) If q � 1 mod 4, then S belongs to the closed family NCg or S is isomorphic
to the unique compact Riemann surface X4 with full automorphism group
isomorphic to

Cq Ì4 C4 acting with signature .0I 4; 4; q/:

Moreover, if Cg stands for the interior of NCg , then

NCg � Cg D ¹X8º:

Assume � D 3. Then S is isomorphic to the unique compact Riemann surface
X3 with full automorphism group isomorphic to

Cq � C3 acting with signature .0I 3; q; 3q/:

Assume � D 2. Then one of the following statements holds.

(1) S is isomorphic to one of the q�3
2

pairwise non-isomorphic compact Riemann
surfaces X2;k for k 2 ¹1; : : : ; q�3

2
º with full automorphism group isomorphic

to
Cq � C2 acting with signature .0I q; 2q; 2q/:
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(2) S belongs to the closed family NKg of compact Riemann surfaces with a group
of automorphisms isomorphic to

Dq acting with signature .0I 2; 2; q; q/:

Moreover, the closed family NKg consists of at most´
qC3
4

if q � 1 mod 4;
qC1
4

if q � 3 mod 4;

equisymmetric strata; one of them being Cg . Furthermore, if Kg stands for the
interior of NKg , then the full automorphism group of S 2 Kg � Cg is isomorphic
to Dq and

NKg �Kg D

´
¹X4; X8º if q � 1 mod 4;
¹X8º if q � 3 mod 4:

Remark 1. We point out some observations concerning Theorem 1.

(1) If S 2M q
q�1, then either Aut.S/ Š Cq or S lies in one of the cases described

in the theorem. These two possible situations were considered in [21] where
the focus was put on finding isolated equisymmetric strata of Sing.Mg/. We
shall discuss later the results of [21] in terms of our terminology (see Remark 2
in § 3).

(2) The case q D 5 is slightly different. As a matter of fact, if S has genus 4 and
is endowed with a group of automorphisms of order 5� for some � > 1, then
in addition to the case Aut.S/ Š C5 and the possibilities given in the theorem,
� can equal 12 and 24. In the last two cases, S is isomorphic to the classical
Bring curve; see [19, 20, 44].

(3) We conjecture that the upper bound given in the theorem for the number of
equisymmetric strata of the closed family NKg is sharp. By means of computer
routines developed in [7], one can see the sharpness of the bound for small
primes (q 6 23).

(4) We emphasise that the equisymmetric family NCg is contained in the fam-
ily NKg .

(5) An analogous classification as in the theorem but for the compact Riemann
surfaces lying in M q

qC1 was obtained in a series of articles due to Belolipetsky,
Izquierdo, Jones and the first author; see [8, 38, 39, 56].
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Algebraic description

Although the literature still shows few general results in this direction, there is
a great interest in providing descriptions of compact Riemann surfaces as algebraic
curves in an explicit manner. The following result gives such a description for the
surfaces appearing in Theorem 1, as well as a realisation of their full automorphism
groups.

Theorem 2. Let q > 5 be a prime number, and let g D q � 1. Set !l D exp
�
2�i
l

�
.

If S belongs to the closed family NCg , then S is isomorphic to the normalisation
of the singular affine algebraic curve

Xt W y
2
D .xq � 1/.xq � t / for some t 2 C � ¹0; 1º:

In addition, if S 2 Cg , then the full automorphism group of S ŠXt is generated
by

.x; y/ 7! .!qx;�y/ and .x; y/ 7!
�

q
p
t
1

x
;
p
t
y

xq

�
:

Assume q � 1 mod 4, and choose � 2 ¹2; : : : ; q � 2º such that �4 � 1 mod q.
Then X4 is isomorphic to the normalisation of the singular affine algebraic curve

yq D .x � 1/.x � i/�.x C 1/q�1.x C i/q��;

where i2 D �1. In the previous model, the full automorphism group of X4 is gen-
erated by

.x; y/ 7! .x; !qy/ and .x; y/ 7! .ix; '.x/y�/;

where

'.x/ D
�.x C i/e��

.x � i/e�1.x C 1/��1
and e D

�2 C 1

q
:

The surface X3 is isomorphic to the normalisation of the singular affine alge-
braic curve

y3 D xq � 1;

and in this model, its full automorphism group is generated by

.x; y/ 7! .!qx; !3y/:

For each k 2 ¹1; : : : ; q�3
2
º, there exists nk 2 ¹1; : : : ; q � 1º different from q � 2

such that X2;k is isomorphic to the normalisation of the singular affine algebraic
curve

yq D xnk .x2 � 1/
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and, in this model, its full automorphism group is generated by

.x; y/ 7! .x; !qy/ and .x; y/ 7! .�x; .�1/nky/:

If S belongs to the closed family NKg , then S is isomorphic to the normalisation
of the singular affine algebraic curve

Zt W y
q
D .x � 1/.x C 1/q�1.x � t /.x C t /q�1 for some t 2 C � ¹0;˙1º

and, if S ¤ X4 and S … NCg , then the full automorphism group of S Š Zt is gen-
erated by

.x; y/ 7! .x; !qy/ and .x; y/ 7! .�x; �t .x/y
�1/;

where �t .x/ D .x2 � 1/.x2 � t2/.

The theorem above overlaps results obtained in [68, § 11].

Hyperelliptic surfaces

Arakelian and Speziali in [3] studied groups of automorphisms of large prime or-
der of (non-necessarily smooth) projective absolutely irreducible algebraic curves
over algebraically closed fields of any characteristic. In terms of our terminology,
in [3, Theorem 4.7], they proved that if q > 7 is a prime number and S is a com-
pact Riemann surface of genus q � 1 with a group of automorphisms of order �q,
then

S is non-hyperelliptic implies � 2 ¹1; 2; 3; 4º:

The following result lengthens the implication above; it follows from Theo-
rem 1.

Proposition 1. Let q > 7 be a prime number. The compact Riemann surfaces lying
in M q

q�1 that are non-hyperelliptic are X2;k; X3; X4, the surfaces which belong
to Kg � Cg and those for which Aut.S/ Š Cq .

Jacobian variety

Let S be a compact Riemann surface of genus g > 2. We denote by JS the Jacob-
ian variety of S , that is, the quotient

JS DH 1.S;C/�=H1.S;Z/;

where H 1.S;C/� stands for the dual of the g-dimensional complex vector space
of holomorphic forms of S and H1.S;Z/ stands for the first integral homology
group of S .
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We emphasise the following two classical facts (see, for example, [10]):

(1) JS is an irreducible principally polarised abelian variety of dimension g, and

(2) up to isomorphism, the surface is determined by its Jacobian (Torelli’s theo-
rem).

If G is a group acting on S , then G also acts on JS and this action, in turn,
induces the so-called group algebra decomposition of JS . Concretely,

JS � A1 � � � � � Ar � B
n1

1 � � � � � B
nr
r ;

where the factors Aj are pairwise non-G-isogenous abelian subvarieties of JS
uniquely determined, and in correspondence with central idempotents generating
the simple algebras decomposing the rational group algebra ofG. EachAj decom-
poses further as Bnj

j , where the abelian subvarieties Bj are no longer unique and
are related to the decomposition of each simple algebra as a product of minimal
left ideals. The numbers r and nj depend only on the algebraic structure of G.
See [16, 45].

The following result provides the group algebra decomposition of the Jacobian
varieties of the surfaces of Theorem 1, with the exception of X3 and X2;k . In fact,
the group algebra decomposition of JX3 is trivial whilst that of JX2;k agrees with
the classical decomposition

JX2;k � J.X2;k=H/ � Prym.X2;k ! X2;k=H/;

where Prym stands for the Prym variety and H 6 Aut.X2;k/ is isomorphic to C2.

Theorem 3. Let q > 5 be a prime number, and let g D q � 1.
The Jacobian variety JX8 decomposes, up to isogeny, as the square power

JX8 � J Y
2
8 , where Y8 is quotient compact Riemann surface given by the action

of hzi on X8, where

Aut.X8/ Š hx; y; z W x2q D y2 D z2 D 1; Œx; y� D Œz; y� D 1; zxz D x�1yi:

The Jacobian variety JX4 ofX4 decomposes, up to isogeny, as the fourth power
JX4 � J Y

4
4 , where Y4 is quotient compact Riemann surface given by the action

of hBi on X4, where

Aut.X4/ Š hA;B W Aq D B4 D 1; BAB�1 D A�i

and � is a primitive fourth root of unity in Zq .



894 S. Reyes-Carocca and A. M. Rojas

The Jacobian variety JS of S 2 Kg decomposes, up to isogeny, as the square
power JS � JX2, whereX is the quotient compact Riemann surface given by the
action of hsi on S , where

Aut.S/ Š

´
Dq if S 2 Kg � Cg ;

Dq � C2 if S 2 Cg ;

and Dq D hr; s W rq D s2 D .sr/2 D 1i.

Field of moduli and fields of definition

Let Gal.C=Q/ denote the group of field automorphisms of C. The correspondence

Gal.C=Q/ �Mg !Mg given by .�; ŒS�/ 7! ŒS� �;

where S� is the Galois � -transformed of S (considered as algebraic curve), defines
an action.

The field of moduli of a compact Riemann surface S is the fixed field M.S/ of
the isotropy group of S under the aforementioned action, namely

M.S/ D fix¹� 2 Gal.C=Q/ W S� Š Sº:

The field of moduli of S agrees with the intersection of all its fields of definition
and, as proved by Koizumi in [41], S can be defined over a finite degree extension
of M.S/.

Necessary and sufficient conditions under which S can be defined over its field
of moduli were provided by Weil in [69] (see also [34] for a constructive proof
of Weil’s theorem); these conditions are trivially satisfied if S has no non-trivial
automorphisms. Besides, as proved by Wolfart in [71], if S is quasiplatonic, then
S can be defined over its field of moduli.

The general question of deciding whether or not the field of moduli is a field
of definition is a challenging problem; see, for example, [4, 27, 30, 33, 35, 42, 54].
In this direction, it is a known fact that if the genus of S=Aut.S/ is zero, then
either S can be defined over M.S/ or over a quadratic extension of it; see [23] and
also [31] for recent results.

We now study the aforementioned problem for the compact Riemann surfaces
of Theorem 1. First, note that, for the quasiplatonic ones, the problem is trivial.
Indeed,

(1) as proved in Theorem 2, the surfacesX3,X2;k andX8 are defined over Q, and
therefore their fields of moduli are Q.
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(2) As mentioned above, the fact that X4 is quasiplatonic implies that it can be
defined over its field of moduli. Moreover, the uniqueness of X4 implies that
its field of moduli is Q. In fact, we shall see later (Remark 3 in § 4) that X4 is
isomorphic to

yq D x.x C 1/�.x � 1/q��:

The remaining cases (that is, the surfaces lying in the family Kg since it con-
tains Cg ) are given in the following proposition.

Proposition 2. Let q > 5 be prime, and let g D q � 1. If S belongs to the family
Kg and

S Š Zt D ¹.x; y/ W y
q
D .x � 1/.x C 1/q�1.x � t /.x C t /q�1º

for t 2 C � ¹0;˙1º, then the field of moduli of S is Q.t/.

It it worth mentioning that a compact Riemann surface and its Jacobian variety
can be defined over the same fields and that their fields of moduli agree; see [63]
and also [47].

The following result is a direct consequence of the above.

Corollary 1. The compact Riemann surfaces of Theorem 1 and their Jacobian
varieties can be defined over their fields of moduli.

The sublocus of Ag with G -action

It is well known that the moduli space Ag of principally polarised abelian varieties
of dimension g is isomorphic to the quotient

� WHg ! Ag ŠHg=Sp.2g;Z/

of the Siegel upper half-space Hg by the action of the symplectic group Sp.2g;Z/.
If the isomorphism class of JS is represented by ZS 2Hg , then there is an iso-
morphism of groups

Aut.JS/ Š †S WD ¹R 2 Sp.2g;Z/ W R �ZS D ZSº;

where†S is well-defined up to conjugation in Sp.2g;Z/. The subset of Hg given
by

SS WD ¹Z 2Hg W R �Z D Z for all R 2 †Sº

consists of those matrices representing principally polarised abelian varieties of
dimension g admitting an action which is equivalent to that of Aut.JS/. This
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subset is, indeed, an analytic submanifold of Hg closely related with some special
subvarieties and Shimura families of Ag .

Observe that if NUg is an equisymmetric family of compact Riemann surfaces of
genus g and if S is any surface lying in the interior Ug of NUg , then

¹JX W X 2 Ugº � �.SS /:

In general, those loci of Ag do not agree. Nonetheless, the uncommon cases
in which these dimensions do agree have been useful in finding Jacobians with
complex multiplication.

Although a satisfactory description of the matrices in SS seems to be a difficult
problem, as we shall see in § 2.7, there is a simple representation-theoretic way to
compute the dimension of the (component which contains JS of) SS . We shall
denote the aforementioned dimension by NS .

Theorem 4. Let q > 5 be prime, let g D q � 1, and let S 2 Kg . Then

NX8
D NX3

D NX2;k
D 0; NX4

D
q � 1

4
and NS D

q � 1

2
:

According to results due to Streit in [67] (and later generalised in [26] for higher
dimension), if NS is zero, then the full automorphism group of S determines the
period matrix for JS and JS admits complex multiplication. We refer to [49, 50]
for recent applications of this result for quasiplatonic curves that are hyperelliptic
and superelliptic.

As a direct consequence of the previous theorem, we recover the following
known result.

Corollary 2. The Jacobian varieties of X3, X2;k and X8 admit complex multipli-
cation.

In spite of the fact that the problem of determining the period matrix of a given
Jacobian variety is, in general, intractable, interesting results have been obtained
for some famous Riemann surfaces. For instance, the period matrices of Mac-
beath’s curve of genus seven and of Bring’s curve were determined in [9] and [60]
respectively. A method to find the period matrices of the Accola–Maclachlan and
Kulkarni surfaces was given in [13]. In addition, in [13, Example 3.7], the authors
went even further and employed their method to provide the period matrix of the
Accola–Maclachlan curve of genus two in an explicit way.

At the end of the paper, we determine explicitly the period matrix of the Accola–
Maclachlan curve of genus four.
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This article is organised as follows. In § 2, we succinctly review the basic pre-
liminaries: Fuchsian groups and group action on Riemann surfaces and abelian
varieties. The proof of Theorem 1 is given in § 3, and the proofs of Theorem 2
and Proposition 2 are given in § 4. In § 5, we prove some basic algebraic lemmata
needed to prove, in § 6, Theorems 3 and 4. Finally, we include an addendum in
which the period matrix of the Accola–Maclachlan curve of genus four is com-
puted.

2 Preliminaries

2.1 Fuchsian groups

A Fuchsian group is a discrete group of automorphisms of the upper half-plane H.
If � is a Fuchsian group and the orbit space H=� given by the action of � on H
is compact, then the algebraic structure of � is determined by its signature

�.�/ D .
 I k1; : : : ; ks/; (2.1)

where 
 is the genus of H=� and k1; : : : ; ks are the branch indices in the universal
canonical projection H! H=�. In this case, � has a canonical presentation in
terms of canonical generators ˛1; : : : ; ˛
 , ˇ1; : : : ; ˇ
 , x1; : : : ; xs and relations

x
k1

1 D � � � D x
ks
s D


Y
iD1

Œ˛i ; ˇi �

sY
iD1

xi D 1; (2.2)

where the brackets stand for the commutator. The Teichmüller space of � is
a complex analytic manifold homeomorphic to the complex ball of dimension
3
 � 3C s.

Let �0 be a group of automorphisms of H such that � 6 �0 of finite index.
Then �0 is also Fuchsian, and they are related by the so-called Riemann–Hurwitz
formula

2
 � 2C

sX
iD1

�
1 �

1

ki

�
D Œ�0 W �� �

�
2
 0 � 2C

rX
iD1

�
1 �

1

k0i

��
;

where �.�0/ D .
 0I k01; : : : ; k
0
r/.

2.2 Group action on Riemann surfaces

Let S be a compact Riemann surface of genus g > 2. A finite group G acts on S
if there is a group monomorphism �WG ! Aut.S/. The orbit space S=G given by
the action of G Š �.G/ on S inherits naturally a Riemann surface structure such
that the canonical projection S ! S=G is holomorphic.
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By the classical uniformisation theorem, there is a unique, up to conjugation,
Fuchsian group � of signature .gI �/ such that S Š H=� . Moreover, G acts on
S if and only if there is a Fuchsian group � containing � together with a group
epimorphism

� W�! G such that ker.�/ D �: (2.3)

It is said thatG acts on S with signature �.�/ and that the action is represented
by the surface-kernel epimorphism (2.3); henceforth, we write ske for short. Abus-
ing notation, we shall also identify � with the tuple of the images of the canonical
generators of �.

2.3 Extending actions

Assume that G0 is a finite group such that G 6 G0. The action of G on S repre-
sented by the ske (2.3) is said to extend to an action of G0 on S if

(1) there is a Fuchsian group �0 containing �,

(2) the Teichmüller spaces of � and �0 have the same dimension, and

(3) there exists an ske

‚W�0 ! G0 in such a way that ‚j� D � and ker.�/ D ker.‚/:

An action is called maximal if it cannot be extended in the previous sense. Singer-
man in [66] determined the complete list of pairs of signatures of Fuchsian groups
� and �0 for which it may be possible to have an extension as before. See also
[62, 65].

2.4 Equivalence of actions

Two actions �i WG!Aut.S/ are topologically equivalent if there exist ! 2Aut.G/
and an orientation preserving self-homeomorphism f of S such that

�2.g/ D f�1.!.g//f
�1 for all g 2 G: (2.4)

Each f satisfying (2.4) yields an automorphism f � of�, where H=� Š S=G.
If B is the subgroup of Aut.�/ consisting of them, then Aut.G/ �B acts on the
set of skes defining actions of G on S with signature �.�/ by

..!; f �/; �/ 7! ! ı � ı .f �/�1:

Two skes �1; �2W�! G define topologically equivalent actions if and only if
they belong to the same .Aut.G/ �B/-orbit; see, for example, [12]. If the genus
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of S=G is zero, then B is generated by the so-called braid transformations ˆi ,
for 1 6 i < l , defined by

xi 7! xiC1; xiC1 7! x�1iC1xixiC1 and xj 7! xj when j ¤ i; i C 1:

2.5 Equisymmetric stratification of Mg

Following [11], the singular locus of Mg admits an equisymmetric stratification
where each equisymmetric stratum, if nonempty, corresponds to one topological
class of maximal actions (see also [29]). More precisely,

Sing.Mg/ D
[
G;�

NMG;�
g ;

where the equisymmetric stratum MG;�
g consists of surfaces of genus g with full

automorphism group isomorphic to G such that the action is topologically equiva-
lent to � . In addition, the closure NMG;�

g of MG;�
g is a closed irreducible algebraic

subvariety of Mg and consists of surfaces of genus g with a group of automor-
phisms isomorphic to G such that the action is topologically equivalent to � .

The subset NFg.G; �/ D NFg of Mg of all those compact Riemann S surfaces of
genus g with a group of automorphisms isomorphic to a given groupG acting with
a given signature � will be called a closed family. Observe that if the signature of
the action of G on S is (2.1), then

dim. NFg/ D 3
 � 3C s:

Assume that the action of G is maximal. Then

(1) the interior Fg of NFg consists of those surfaces S such that G D Aut.S/,

(2) Fg is formed by finitely many equisymmetric strata that are in correspondence
with the pairwise non-equivalent topological actions of G, and

(3) the set NFg � Fg is formed by those surfaces S such thatG < Aut.S/ properly.

2.6 Abelian varieties

A complex abelian variety is a complex torus which is also a complex projective
algebraic variety. Each abelian variety X D V=ƒ admits a polarisation, that is,
a non-degenerate real alternating form ‚ on V such that, for all v;w 2 V ,

‚.iv; iw/ D ‚.v;w/ and ‚.ƒ �ƒ/ � Z:

If each elementary divisor of‚jƒ�ƒ is equal to 1, then‚ is called principal and
X is called a principally polarised abelian variety; from now on, we write ppav
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for short. In this case, there exists a basis for ƒ such that the matrix for ‚ƒ�ƒ
with respect to it is given by

J D

�
0 Ig

�Ig 0

�
; where g D dim.X/I (2.5)

such a basis is called symplectic. In addition, there exists a basis for V with respect
to which the period matrix for X is

… D .IgZ/; where Z 2Hg D ¹Z 2 M.g;C/ W Z D Zt ; Im.Z/ > 0º;

with Zt denoting the transpose matrix of Z. The space Hg is called the Siegel
upper half-space.

By an isomorphism of ppavs, we mean an isomorphism of the underlying com-
plex tori preserving the involved polarisations. In other words, if .IgZi / is the
period matrix of Xi , then an isomorphism X1 ! X2 is given by invertible matri-
ces

M 2 GL.g;C/ and R 2 GL.2g;Z/ such that M.IgZ1/ D .IgZ2/R: (2.6)

Since R preserves the polarisation (2.5), it belongs to the symplectic group

Sp.2g;Z/ D ¹R 2 M.2g;Z/ W RtJR D J º:

It follows from (2.6) that the correspondence Sp.2g;Z/ �Hg !Hg given by�
R D

�
A B

C D

�
; Z

�
7! R �Z WD .ACZC/�1.B CZD/

defines an action that identifies period matrices representing isomorphic ppavs.
Hence

Hg ! Ag WDHg=Sp.2g;Z/

is the moduli space of isomorphism classes of ppavs of dimension g. See [51].

2.7 Abelian varieties with G -action

Let S be a compact Riemann surface of genus g > 2. Consider the Jacobian vari-
ety JS and its full (polarisation-preserving) automorphism group Aut.JS/. Every
automorphism of S induces a unique automorphism of JS . In fact,

ŒAut.JS/ W Aut.S/� 2 ¹1; 2º

according to whether or not S is hyperelliptic; moreover, in the latter case,

Aut.JS/=Aut.S/ D ¹˙1º:
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As mentioned in the introduction, once a symplectic basis of ƒ D H1.S;Z/ is
fixed, there is an isomorphism

Aut.JS/ Š †S WD ¹R 2 Sp.2g;Z/ W R �ZS D ZSº;

where .IgZS / is the period matrix of JS . A change of basis induces a different but
equivalent choice ofZS and a conjugate subgroup†S . One obtains a well-defined
analytic submanifold

SS WD ¹Z 2Hg W R �Z D Z for all R 2 †Sº

of Hg whose points represent ppavs admitting an action equivalent to that of
Aut.JS/ in the symplectic group. Equivalently, as�12†S , the previous submani-
fold represents ppavs admitting an action equivalent to that of Aut.S/. Clearly,
ZS 2 SS .

According to [67] (see also [26, Lemma 3.8]), the dimension NS of (the com-
ponent which contains JS of) SS agrees with

dim.Sym2H 1;0.S;C//Aut.S/;

where Sym2H 1;0.S;C/ stands for the symmetric square of H 1;0.S;C/. It fol-
lows that

NS D h�
sym
�a
j 1iG ; where G D Aut.S/

and �sym
�a

denotes the character of the symmetric square of the analytic representa-
tion �a of G and the brackets denote the usual inner product of characters of G.

It is worth mentioning that SS is related to some special subvarieties of Ag .
Indeed, as Aut.JS/ can be considered as a subgroup of

LS WD EndQ.JS/ D End.JS/˝Z Q;

one sees that SS contains a complex submanifold of Hg of matrices representing
ppavs containing LS in their endomorphism algebras. This submanifold is called
a Shimura domain for S , and the corresponding ppavs form a so-called Shimura
family for S ; this a special subvariety of Ag (see [48, § 3] for a precise definition).
We refer to [70, § 3] for more details.

2.8 The group algebra decomposition

The action of a group G on a compact Riemann surface S induces a Q-algebra
homomorphism from the rational group algebra of G to LS ,

„WQŒG�! LS :
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Let W1; : : : ; Wr be the rational irreducible representations of G, and for each
Wl , let Vl be a complex irreducible representation of G associated to it. Following
[45], the equality

1 D e1 C � � � C er in QŒG�; (2.7)

where el is a uniquely determined central idempotent associated to Wl , yields an
isogeny

JS � A1 � � � � � Ar ; where Al WD „.˛lel/.JS/

which is G-equivariant, with ˛l > 1 chosen to satisfy ˛lel 2 ZŒG�. Additionally,
there are idempotents fl1; : : : ; flnl

such that

el D fl1 C � � � C flnl
; (2.8)

where nl D dl=sl is the quotient of the degree dl and the Schur index sl of Vl .
These idempotents provide nl pairwise isogenous subvarieties of JS . If we denote
by Bl one of them for each l , then (2.7) and (2.8) provide the isogeny

JS � B
n1

1 � � � � � B
nr
r (2.9)

known as the group algebra decomposition of JS with respect to G. See [16].
Let H be a subgroup of G. We denote by dH

l
the dimension of the vector

subspace of Vl of those elements which are fixed under H . Following [16, Propo-
sition 5.2], the group algebra decomposition (2.9) induces the following isogeny
of the Jacobian J.S=H/ of the quotient S=H :

J.S=H/ � Bn
H
1
1 � � � � � Bn

H
r
r ; where nHl D d

H
l =sl : (2.10)

The previous isogeny has proved to be fruitful in finding Jacobians JS isogenous
to a product of Jacobians of quotients of S . See, for example, [58] and also [59].

Assume that .
 I k1; : : : ; ks/ is the signature of the action of G on S and that
this action is represented by the ske � W�! G, with � as in (2.2). Observe that if
V1 D W1 denotes the trivial representation of G, then B1 � J.S=G/, and there-
fore dimB1 D 
 . If l > 2, then according to [62, Theorem 5.12], we have that

dimBl D ml

�
dl.
 � 1/C

1

2

sX
jD1

.dl � d
h�.xj /i

l
/

�
; (2.11)

where ml is the degree of Q � Ll with Ll denoting a minimal field of definition
for Vl .

For decompositions of Jacobians and families of Jacobians with respect to spe-
cial groups, we refer to the articles [5, 14, 15, 24, 25, 32, 52, 53, 55, 57, 61].
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3 Proof of Theorem 1

The proof of Theorem 1 is presented as a consequence of a series of propositions
proved in this section. Hereafter, we assume q > 7 to be prime and S to be a Rie-
mann surface of genus g WD q � 1 with a group of automorphisms G of order �q,
where � > 1 is an integer.

Proposition 3.1. If � D 3, then G is cyclic and acts with signature .0I 3; q; 3q/.
Moreover, S is unique up to isomorphism, and G is its full automorphism group.

Proof. Let .
 I k1; : : : ; kl/ be the signature of the action ofG on S . The Riemann–
Hurwitz formula implies that

2.q � 2/ > 3q
�
2
 � 2C

2

3
l
�
: (3.1)

Observe that if 
 > 1, then l D 0, and therefore q D 2, contradicting the as-
sumption q > 7. We then assume 
 D 0, and therefore (3.1) shows that l D 3. It
follows that the signature of the action of G is

.0I k1; k2; k3/; where
1

k1
C

1

k2
C

1

k3
D
1

3
C

4

3q
and kj 2 ¹3; q; 3qº:

After a routine computation, one sees that the unique solution of the previous
equation is, up to permutation, k1 D 3, k2 D q and k3 D 3q. The last equality
implies that

G Š Cq � C3 D h˛; ˇ W ˛
q
D ˇ3 D 1; Œ˛; ˇ� D 1i:

Consider the Fuchsian group � of signature .0I 3; q; 3q/ canonically presented

� D hw1; w2; w3 W w
3
1 D w

q
2 D w

3q
3 D w1w2w3 D 1i;

and let � W�! G be an ske representing an action of G on S . It is not difficult to
see that, up to an automorphism of G, the ske � is given by

�.w1/ D ˇ; �.w2/ D ˛ and �.w3/ D ˛
�1ˇ2I

this proves the uniqueness of S . By the results of [66], if G is strictly contained
in the full automorphism group Aut.S/ of S , then Aut.S/ has order 12q, acts
on S with signature .0I 2; 3; 3q/ and G is a non-normal subgroup of it. By the
classical Sylow theorem, if a group of order 12q with q > 11 has a non-normal
subgroup isomorphic to G, then it is isomorphic to Cq � A4, where A4 stands for
the alternating group of order 12. However, the product of an element of order two
and an element of order three of Cq � A4 cannot have order 3q. The cases q 6 11

are not realised either; see [18]. The proof is complete.
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Proposition 3.2. � is different from 5, 6 and 7.

Proof. If � is equal to 5, 6 or 7, then G is a large group of automorphisms (that is,
jGj > 4.g � 1/), and therefore (see, for example, [43, § 2.3]), the signature of the
action is either

(1) .0I k1; k2; k3/ for some 2 6 k1 6 k2 6 k3,

(2) .0I 2; 2; 2; k/ for some k > 3, or

(3) .0I 2; 2; 3; k/ for some 3 6 k 6 5.

If � is equal to 5 or 7, thenG has no involutions; then the signature of the action
G is

.0I k1; k2; k3/ for some kj 2 ¹5; q; 5qº or kj 2 ¹7; q; 7qº

respectively. The Riemann–Hurwitz formula implies that

1

k1
C

1

k2
C

1

k3
D
3

5
C

4

5q
and

1

k1
C

1

k2
C

1

k3
D
5

7
C

4

7q

respectively, and this, in turn, implies that q is negative, a contradiction.
We now assume that G has order 6q. If the signature of the action of G is

.0I 2; 2; 2; k/, then by the Riemann–Hurwitz formula, q C 4 divides 6q, and there-
fore q D 2, contradicting the assumption q > 7. The signatures .0I 2; 2; 3; 4/ and
.0I 2; 2; 3; 5/ cannot be realised either since a group of order 6q does not have
elements of order 4 nor 5. Besides, a direct computation shows that the signature
.0I 2; 2; 3; 3/ contradicts the Riemann–Hurwitz formula.

It follows that the signature of the action is

.0I k1; k2; k3/; where kj 2 ¹2; 3; 6; q; 2q; 3q; 6qº

satisfy, by the Riemann–Hurwitz formula, the equality

1

k1
C

1

k2
C

1

k3
D
2

3
C

2

3q
:

Set v D #¹kj W kj D 3º. It is clear that v ¤ 2; 3. Assume v D 1 and say k1 D 3.
If k2; k3 > 6, then q 6 0. Then we can assume k2 D 2, and therefore

1

k3
D �

1

6
C

2

3q
; showing that q 6 3:

Thus v D 0. Now, let u D #¹kj W kj D 2º, and observe that u ¤ 2; 3. If u D 1,
then

1

k2
C

1

k3
D

2

3q
�
1

6
; and therefore q 6 3:
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All the above ensures that each kj > 6. It follows that

1

k1
C

1

k2
C

1

k3
D
2

3
C

2

3q
6
1

2
;

and therefore q < 0, contradicting the assumption q > 7.

Proposition 3.3. If � > 8, then � D 8 and S Š X8.

Proof. If the order ofG is at least 8.g C 1/, then following [2, p. 77], the signature
of the action of G is either

(1) .0I 2; 2; 2; 3/,

(2) .0I 2; 3; k/, where k > 7,

(3) .0I 2; 4; k/, where k > 5,

(4) .0I 2; 5; k/, where 5 6 k 6 19,

(5) .0I 2; 6; k/, where 6 6 k 6 11,

(6) .0I 2; 7; k/, where 7 6 k 6 9,

(7) .0I 3; 3; k/, where 4 6 k 6 11, or

(8) .0I 3; 4; k/, where 4 6 k 6 5.

We observe that cases (1), (5) and (8) are not realised. Indeed, this fact follows
from the contradiction between the fourth and fifth columns in the following table.

Case Signature jGj Condition Riemann–Hurwitz formula

(1) .0I 2; 2; 2; 3/ 6�0q �0 > 2 �0 D 1 � 2
q

(5) .0I 2; 6; k/ 6�0q �0 > 2 �0 D k
k�3

.1 � 2
q
/

(8.1) .0I 3; 4; 4/ 12�0q �0 > 1 �0 D .1 � 2
q
/

(8.2) .0I 3; 4; 5/ 60�0q �0 > 1 �0 D 2
13
.1 � 2

q
/

We also note that cases (4), (6) and (7) are not realised.

Case Signature jGj Condition Riemann–Hurwitz formula

(4) .0I 2; 5; k/ 10�0q �0 > 1 �0 D 2k
3k�10

.1 � 2
q
/

(6) .0I 2; 7; k/ 2�0q �0 > 4 �0 D 14k
5k�14

.1 � 2
q
/

(7) .0I 3; 3; k/ 3�0q �0 > 3 �0 D 2k
k�3

.1 � 2
q
/
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Note that,
(a) in case (4), we have �0 D 1, and therefore q D 4k=.10 � k/ and 5 6 k 6 9.

However, for each k as before, we obtain that q is not prime;

(b) in case (6), we have �0 D 4, and therefore q is equal to 14, 28 and 126 for
k D 7, 8 and 9 respectively;

(c) in case (7), the facts that � > 3 and q > 7 imply that k 6 8. If k D 4, then q
is not prime, if k D 5, then �0 D 3 or 4 and q D 5 or 10, and if k D 6; 7; 8,
then �0 D 3 and q is not prime.

We claim that case (2) is not realised either. Indeed, note that otherwise the
order of G is equal to 6�0q for some �0 > 2 and the Riemann–Hurwitz formula
reads

k D
6q�0

q.�0 � 2/C 4
; and therefore k0 WD

6�0

q.�0 � 2/C 4
2 ZC:

(1) If k0 D 1, then �0 D 2C 8=.q � 6/, showing that q D 7 and �0 D 10. Con-
sequently, the order of G is 420 and acts on S of genus six with signature
.0I 2; 3; 7/. However, such a Riemann surface does not exist because the max-
imal number of automorphisms that a Riemann surface of genus six can admit
is 150 (see, for instance, [18]).

(2) If k0 > 2, then �0 6 2C 2=.q � 3/, and therefore �0 D 2. It follows that G
has order 12q and acts on S with signature .0I 2; 3; 3q/. Observe that the sig-
nature of the action shows, in particular, that S has a cyclic subgroup H < G

of automorphisms of order 3q. However, as proved in Proposition 3.1, if S has
a group of automorphisms of order 3q, then S does not have more automor-
phisms, a contradiction.

This proves the claim.
All the above ensures that the signature of the action is .0I 2; 4; k/ for some

k > 5. Observe that the order of G is 4�0q for some �0 > 2 and the Riemann–
Hurwitz formula says

�0 D
2k

k � 4

�
1 �

2

q

�
<

2k

k � 4
:

It follows that one of the following statements holds.

(1) k D 5 and �0 2 ¹3; : : : ; 9º, and therefore q D 20=.10 � �0/.

(2) k D 6 and �0 2 ¹3; 4; 5º, and therefore q D 12=.6 � �0/.

(3) k > 5 and �0 D 2, and therefore q D k=2.
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The first two cases must be disregarded because q is not prime; thenG has order
8q and acts with signature .0I 2; 4; 2q/. By [43, § 5], we obtain that S Š X8, as
desired.

We recall that, following [22], the closed family NCg consists of all those com-
pact Riemann surfaces of genus g endowed with a group of automorphisms G
isomorphic to

Dq � C2 Š D2q

acting with signature .0I 2; 2; 2; q/. Moreover, if S belongs to the interior of NCg ,
then G agrees with the full automorphism group of S . It was also observed in [22]
that X8 2 NCg � Cg .

Proposition 3.4. NCg � Cg D ¹X8º.

Proof. Observe that if X belongs to NCg � Cg , then its automorphism group has
order 4tq for some t > 2. It follows from Proposition 3.3 that t D 2 and that
X Š X8.

For later and repeated use, we recall here that

Aut.X8/Šhx;y;z W x2q D y2D z2D 1; Œx;y�D Œz;y�D 1; zxzD x�1yi; (3.2)

and its action on X8 is represented by the ske

‚W�8 ! Aut.X8/ given by .z1; z2; z3/! .z; zx; x�1/; (3.3)

where �8 is a Fuchsian group of signature .0I 2; 4; 2q/ presented as

�8 D hz1; z2; z3 W z
2
1 D z

4
2 D z

2q
3 D z1z2z3 D 1i: (3.4)

Proposition 3.5. If X is a compact Riemann surface of genus g with a group of
automorphisms isomorphic to Cq � C 22 acting with signature .0I 2; 2q; 2q/, then
X Š X8.

Proof. Let �2 be a Fuchsian group of signature .0I 2; 2q; 2q/ presented as

�2 D hy1; y2; y3 W y
2
1 D y

2q
2 D y

2q
3 D y1y2y3 D 1i; (3.5)

and consider the group G Š Cq � C 22 presented as

hA;B;C W Aq D B2 D C 2 D .BC/2 D ŒA; B� D ŒA; C � D 1i:
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Let � W�2 ! G be an ske representing the action ofG onX . Up to an automor-
phism of G, we can assume �.y1/ D B . Moreover, after considering the automor-
phism of G given by

A 7! A; B 7! B; C 7! BC;

we can assume that �.y2/ is equal to either AiB or AiC for some i 2 Z�q . Note
that the former case is impossible since �.y1y2/ would not have order 2q. Thus,
after sending A to an appropriate power of it, we obtain that � is equivalent to

�2 ! Cq � C
2
2 given by .y1; y2; y3/ 7! .B;AC; .ABC/�1/: (3.6)

Observe that, with the notation of (3.4), the elements

Oy1 WD z
�2
2 ; Oy2 WD z

�1
3 and Oy3 D z

�1
2 z�13 z2

generate a subgroup of �8 isomorphic to �2, and the restriction of (3.3) to it

�2 ! Cq � C
2
2 is given by . Oy1; Oy2; Oy3/ 7! .y; x; x�1y/: (3.7)

By letting x D AC and y D B , we see that (3.6) and (3.7) agree; consequently,
X Š X8.

Proposition 3.6. If Y is a compact Riemann surface of genus g with a group of
automorphisms isomorphic to Cq Ì2 C4 acting with signature .0I 4; 4; q/, then
Y Š X8.

Proof. Let �3 be a Fuchsian group of signature .0I 4; 4; q/ presented as

�3 D hy1; y2; y3 W y
4
1 D y

4
2 D y

q
3 D y1y2y3 D 1i; (3.8)

and consider the group G Š Cq Ì2 C4 presented as

hA;B W Aq D B4 D 1; BAB�1 D A�1i:

Let � W�3 ! G be an ske representing the action ofG on Y . Then, after sending
B to B�1 if necessary, � is given by

.y1; y2; y3/ 7! .AiB;AjB�1; Ak/ for some i; j 2 Zq and k 2 Z�q :

Up to conjugation, we can assume i D 0, and after sending A to an appropriate
power of it, we can assume k D 1. It follows that j D 1, and therefore � is equiv-
alent to

�3 ! Cq Ì2 C4 given by .y1; y2; y3/ 7! .B;AB�1; A/: (3.9)
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Now, as in the previous proposition, with the notation of (3.4), we see that

Qy1 WD z2; Qy2 WD z3z2z
�1
3 and Qy3 D z

2
3

generate a subgroup of �8 isomorphic to �3, and the restriction of (3.3) to it

�3 ! Cq Ì2 C4 is given by . Qy1; Qy2; Qy3/ 7! .zx; x�3z; x�2/: (3.10)

Write
A D x�2 and B D zx

to see that (3.9) and (3.10) agree; consequently Y Š X8.

Proposition 3.7. Assume q � 1 mod 4. There exists a unique, up to isomorphism,
compact Riemann surfaceX4 of genus g with full automorphism group isomorphic
to Cq Ì4 C4 acting on it with signature .0I 4; 4; q/.

Proof. Consider the Fuchsian group �3 as in (3.8), and the group

G Š Cq Ì4 C4 D hA;B W Aq D B4 D 1; BAB�1 D A�i; (3.11)

where � is a primitive fourth root of unity in Zq . If � W�3 ! Cq Ì4 C4 is an ske
representing the action of G on a compact Riemann surface Z of genus g, then by
proceeding similarly to the previous proposition, one sees that � is equivalent to

�1.y1; y2; y3/ D .A
�1B;B�1; A/ or �2.y1; y2; y3/ D .A

�1B�1; B;A/:

It follows that, up to isomorphism, there are at most two surfaces Z as before,
namely

Zj WD H=Kj ; where Kj D ker.�j / for j D 1; 2:

Observe that if the full automorphism group of Zj is different from G, then by
Proposition 3.3, necessarily Zj Š X8 and, in particular, Aut.X8/ contains a sub-
group isomorphic to Cq Ì4 C4. However, this is not possible. Indeed, with the no-
tation of (3.2), if � 2 Aut.X8/ has order 4, then �2 is equal to the central element y.
It follows that Aut.Zj / Š G for j D 1; 2.

We record here that Z1 and Z2 are isomorphic if and only if K1 and K2 are
conjugate in Aut.H/. As the normaliser of each Kj is �3, it can be seen that K1
and K2 are conjugate if and only if they are conjugate in the normaliser N.�3/
of �3. Now, the action by conjugation of N.�3/ on ¹K1; K2º has orbits of length
ŒN.�3/ W �3� which is, by [66, Theorem 1], equal to 2. Hence K1 and K2 are
conjugate, and thus X4 WD Z1 Š Z2, as desired.

Proposition 3.8. If � D 4 and S … NCg , then q � 1 mod 4 and S Š X4.
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Proof. As in the proof of Proposition 3.2, the signature of the action of G on S is
either

(1) .0I k1; k2; k3/ for some 2 6 k1 6 k2 6 k3,

(2) .0I 2; 2; 2; k/ for some k > 3, or

(3) .0I 2; 2; 3; k/ for some 3 6 k 6 5.

The third case must be disregarded since there is no group of order 4q with an
element of order three. If the signature is as in the second case, then the Riemann–
Hurwitz formula implies that k D q. We now assume the signature to be as in the
first case. The Riemann–Hurwitz formula says

1

k1
C

1

k2
C

1

k3
D
1

2
C
1

q
: (3.12)

Note that, among k1; k2; k3, not two or three of them can be equal to 2. It follows
that, up to permutation, there are two cases to consider.

(1) Assume k1 D 2 and k2; k3 > 4. Then (3.12) turns into 1
k2
C

1
k3
D

1
q

. Note
that if k2 D 4, then k3 6 0. It follows that

k2; k3 > q; and therefore k2 D k3 D 2q:

(2) Assume k1; k2; k3 > 4. If the number of periods kj that are equal to 4 is 2,
then (3.12) implies that the signature is .0I 4; 4; q/; otherwise q 6 4.

Thereby, the signature of the action of G on S is either

.0I 2; 2; 2; q/; .0I 2; 2q; 2q/ or .0I 4; 4; q/:

We recall that if q � 3 mod 4, then G is isomorphic to either C4q , Cq � C 22 ,
D2q or Cq Ì2 C4, and if q � 1 mod 4, then in addition, G can be isomorphic to
Cq Ì4 C4.

(1) IfG acts with signature .0I 2; 2; 2; q/, thenG is generated by three involutions,
and therefore G Š D2q , showing that S 2 NCg .

(2) If G acts with signature .0I 2; 2q; 2q/, then G is generated by two elements
of order 2q whose product is an involution; thus G Š Cq � C 22 . By Proposi-
tion 3.5, we see that S Š X8, and therefore S 2 NCg .

(3) If G acts with signature .0I 4; 4; q/, then G is generated by two elements of
order 4, and therefore G is isomorphic to Cq Ì2 C4 or Cq Ì4 C4. By Proposi-
tion 3.6, the former case implies S Š X8, whilst by Proposition 3.7, the latter
case implies S Š X4.

This finishes the proof.
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Proposition 3.9. If � D 2 andG is cyclic acting with signature .0I 2; 2; q; q/, then
S 2 NCg .

Proof. Let �4 be a Fuchsian group of signature .0I 2; 2; q; q/ presented as

�4 D hx1; x2; x3; x4 W x
2
1 D x

2
2 D x

q
3 D x

q
4 D x1x2x3x4 D 1i; (3.13)

and consider the cyclic group of order 2q generated by a of order q and b of order
two. As G has only one involution, it is clear that, after sending a to a suitable
power of it, each ske representing an action of G on S is equivalent to

�0W�4 ! Cq � C2 such that �0.x1; x2; x3; x4/ D .b; b; a; a
�1/: (3.14)

Then such surfaces S form an equisymmetric complex one-dimensional family.
Let

�1 D hy1; y2; y3; y4 W y
2
1 D y

2
2 D y

2
3 D y

q
4 D y1y2y3y4 D 1i (3.15)

be a Fuchsian group of signature .0I 2; 2; 2; q/, and consider the group

D2q D hR; T W R2q D T 2 D .TR/2 D 1i: (3.16)

We recall that, following [22], the action of D2q on S 0 2 NCg is represented by
the ske

� W�1 ! D2q given by .y1; y2; y3; y4/ 7! .Rq; T; TR;Rq�1/ (3.17)

Now, the elements of �1,

Ox1 WD y1; Ox2 WD y2y1y2; Ox3 WD y4 and Ox4 WD y1y2y4y2y1;

generate a Fuchsian group isomorphic to �4. The restriction of (3.17) to it,

�4 ! hRi Š G; is given by . Ox1; Ox2; Ox3; Ox4/ 7! .Rq; Rq; Rq�1; R1�q/:

(3.18)
Set a WD Rq�1 and b WD Rq to see that (3.18) agrees with (3.14), and the result
follows.

Proposition 3.10. Let � D 2, and let G be a cyclic group acting with signature
.0I q; 2q; 2q/. Then either S Š X8 or the full automorphism group of S agrees
withG. In the latter case, there are exactly q�3

2
pairwise non-isomorphic compact

Riemann surfaces.
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Proof. Let �5 be a Fuchsian group of signature .0I q; 2q; 2q/ presented as

�5 D hx1; x2; x3 W x
q
1 D x

2q
2 D x

2q
3 D x1x2x3 D 1i;

and consider the cyclic group of order 2q generated by a of order q and b of order
two.

If � W�5 ! G is an ske representing the action of G on S , then after sending a
to an appropriate power of it, we see that � is equivalent to

�j D .a; a
j b; a�j�1b/ for some j ¤ �1; 0:

Let Sj be the compact Riemann surface defined by �j , and write j � D q�1
2

. We
claim that Sj� Š X8. To prove that, we note that, by Proposition 3.5, it suffices to
verify that �j� extends to the action of Cq � C 22 with signature .0I 2; 2q; 2q/. With
the notation of the proof of Proposition 3.5, the elements

Ox1 WD y
2
3 ; Ox2 WD y1y2y1 and Ox3 WD y2

generate a subgroup of (3.5) isomorphic to �5, and the restriction of (3.6) to it,

�5 ! hA;C i Š G; is given by . Ox1; Ox2; Ox3/ 7! .A�2; AC;AC/: (3.19)

By setting a WD A�2, b WD C , we see that (3.19) is equivalent to �j� , as desired.
Let j ¤ j �. If Aut.Sj / ¤ G, then by [66] and Proposition 3.3, the action �j

must extend to the action (3.6) of Cq � C 22 with signature .0I 2; 2q; 2q/. Observe
that an element y of (3.5) has order 2q if and only if it is conjugate to yk2 or to
yk3 for some k 2 ¹1; : : : ; 2q � 1º odd and different from q. As the target group
is abelian, the image of y under (3.6) is either AC or .ABC/�1. Now, if �0 is
a subgroup of (3.5) isomorphic to �5, then the restriction of (3.6) to the canonical
generators of �0 must be

.A�2; AC;AC/; .B;AC; .ABC/�1/ or .A2; .ABC/�1; .ABC/�1/:

The second case is impossible since it does not have the required signature; the
other two cases are equivalent to �j� . We conclude that Aut.Sj / D G if j ¤ j �,
and in particular, Sj is not isomorphic to Sj� .

Write Kj D ker.�j / for each j 2 Zq � ¹�1; 0; j �º. As argued in the proof of
Proposition 3.7, we have that Sj1

and Sj2
are isomorphic if and only if Kj1

and
Kj2

are conjugate in the normaliser N.�5/ of �5. The action by conjugation of
N.�5/ on

¹Kj W j 2 Zq � ¹�1; 0; j
�
ºº
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has orbits of length ŒN.�5/ W �5� which is, by [66, Theorem 1], equal to 2. Hence

¹Sj W j 2 Zq � ¹�1; 0; j
�
ºº

splits into q�3
2

isomorphism classes. Finally, observe that the elements x2 and x3
of �5 are conjugate in N.�5/; thus Sj and S�j�1 are isomorphic, and therefore
the isomorphism classes are represented by Sj , where 1 6 j 6 q�3

2
.

Proposition 3.11. There exists a closed family NKg of compact Riemann surfaces
with a group of automorphisms isomorphic to the dihedral group of order 2q act-
ing with signature .0I 2; 2; q; q/. The number of equisymmetric strata of NKg is at
most ´

qC3
4

if q � 1 mod 4;
qC1
4

if q � 3 mod 4;

and, independently of q, one of them is equal to Cg .

Proof. Let �4 be a Fuchsian group of signature .0I 2; 2; q; q/ presented as in
(3.13), and consider the dihedral group of order 2q,

G Š Dq D hr; s W rq D s2 D .sr/2 D 1i:

The existence of the family NKg follows after considering the ske

ˆW�4 ! G given by .x1; x2; x3; x4/ 7! .s; s; r�1; r/:

Let us now assume that � W�4 ! G is an ske representing the action of G on
S 2 NKg . If �.x1/ D �.x2/, then after a conjugation and after sending r to an
appropriate power of it, we see that � is equivalent to ˆ. On the other hand, if
�.x1/ ¤ �.x2/, then after considering a suitable automorphism of G, we see that
� is equivalent to the ske

�i WD .s; sr; r
i ; r�i�1/ for some i 2 Zq � ¹�1; 0º:

The braid transformation ˆ3 (see § 2.4) shows that �i Š ��i�1. The rule

i 7! �i � 1

has order two, restricts to a bijection of Zq � ¹�1; 0º and has exactly one fixed
point, namely i� D q�1

2
. Observe that if 'u is the automorphism of G given by

r 7! ru, then
ˆ D ˆ22 ı '.i�/�1.�i�/:
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All the above ensures that � is equivalent to either

ˆ or �i for some i 2
°
1; : : : ;

q � 3

2

±
:

Now, for each i 2 ¹1; : : : ; q�3
2
º, the transformation 'i�1 ıˆ22 provides an equiv-

alence
�i Š ��i.2iC1/�1 :

The rule i 7! �i.2i C 1/�1 has order two and (up to the identification i ��i � 1)
restricts to a bijection of ¹1; : : : ; q�3

2
º; it has a fixed point if and only if

� i � 1 D �i.2i C 1/�1 ” 2i2 C 2i C 1 D 0; (3.20)

and the quadratic equation above has solution in Zq if and only if q � 1 mod 4. It
follows that the number of pairwise non-equivalent skes � is at most

1C
1

2

�q � 3
2

�
D
q C 1

4
and 2C

1

2

�q � 3
2
� 1

�
D
q C 3

4

if q � 3 mod 4 and q � 1 mod 4 respectively. Finally, with the notation of (3.15),
define

Ox1 WD y1y2y1; Ox2 WD y2; Ox3 WD y2y1y4y1y2 and Ox4 WD y4;

and note that they generate a Fuchsian group isomorphic to �4. The restriction of
(3.17) to it is given by

. Ox1; Ox2; Ox3; Ox4/ 7! .T; T;R1�q; Rq�1/: (3.21)

If we write s WD T , r WD Rq�1, we see that (3.21) agrees withˆ. Hence the action
of ˆ extends to (3.17), and therefore the stratum defined by ˆ agrees with Cg .

Proposition 3.12. If Kg stands for the interior of the closed family NKg , then the
full automorphism group of S 2 Kg is isomorphic to either Dq or D2q . In addi-
tion,

NKg �Kg D

´
¹X8; X4º if q � 1 mod 4;
¹X8º if q � 3 mod 4:

Proof. We keep the notation of the proof of Proposition 3.11. The first statement is
clear since the full automorphism group of S is isomorphic to D2q or Dq according
to whether or not �i is equivalent to ˆ.

Let K i
g denote the equisymmetric stratum defined by �i .
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(1) If �i is equivalent to ˆ, then Proposition 3.11 and Proposition 3.4 imply that
NK i
g �K i

g D ¹X8º.

(2) If �i is non-equivalent to ˆ, then by Proposition 3.8, we see that,

(a) if q � 3 mod 4, then NK i
g �K i

g is empty, and

(b) if q � 1 mod 4, then NK i
g �K i

g is either empty or ¹X4º.

Assume q � 1 mod 4. We recall that the full automorphism group of X4 is
isomorphic to (3.11), and the corresponding action is given by the ske

�3 ! Aut.X4/ such that .y1; y2; y3/ 7! .A�1B;B�1; A/; (3.22)

where �3 is as in (3.8). The elements

Ox1 WD y1y
2
2y
�1
1 ; Ox2 WD y

2
1 ; Ox3 WD y

�1
1 y3y1 and Ox4 WD y3

generate a Fuchsian group isomorphic to�4. The restriction of (3.22) to it is equiv-
alent to

. Ox1; Ox2; Ox3; Ox4/! .B2; B2A;Ae; A�e�1/; where e WD ��.� � 1/�1: (3.23)

By letting r WD A and s WD B2, we see that (3.23) agrees with �e. As e solves
equation (3.20), we conclude that NK i

g �K i
g is equal to ¹X4º if i solves (3.20)

and is empty otherwise.

Proposition 3.13. If � D 2, then S belongs to NKg or S is isomorphic to one of the
q�3
2

pairwise non-isomorphic surfaces of Proposition 3.10.

Proof. Assume that the signature of the action of G on S is .
 I k1; : : : ; kl/. Ob-
serve that 
 D 0. Indeed, otherwise the Riemann–Hurwitz formula implies that

l 6 2
�
1 �

2

q

�
; showing that l D 0 or l D 1:

In both cases, we see that 
 D 1, and therefore q D 2 and 4 respectively, a contra-
diction.

As each kj > 2, we see that

l 6 6 �
4

q
; and therefore l 2 ¹3; 4; 5º:

Let v D #¹kj W kj D 2º.
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(1) If l D 5, then
5X

jD1

1

kj
D 2C

2

q
6
v

2
C
5 � v

q
;

showing that v D 5. But, in this case, q D 4, contradicting the fact that q is
prime.

(2) If l D 4, then
4X

jD1

1

kj
D 1C

2

q
6
v

2
C
4 � v

q
;

showing that v 2 ¹2; 3; 4º. Note that if v D 4, then q D 2, and if v D 3, then
k4 < 0. It follows that v D 2, and therefore k3 D k4 D q.

(3) If l D 3, then clearly v ¤ 3. If v D 2, then k3 < 0, and if v D 1, then q < 4.
Thus

1

k1
C

1

k2
C

1

k3
D
2

q
; where kj 2 ¹q; 2qº: (3.24)

It is easy to verify that the unique solution of (3.24) is k1 D q; k2 D k3 D 2q.

Thereby, the signature of the action of G on S is either

.0I 2; 2; q; q/ or .0I q; 2q; 2q/:

We record here the simple fact that a group of order 2q is either cyclic or dihe-
dral.

(1) If the signature is .0I q; 2q; 2q/, then G is cyclic, and therefore, by Proposi-
tion 3.10, we obtain that S Š X8 2 NKg or S is isomorphic to one of the q�3

2

pairwise non-isomorphic surfaces with full automorphism group isomorphic
to Cq � C2.

(2) If the signature is .0I 2; 2; q; q/, then the following holds.

(a) If G is cyclic, then by Proposition 3.9, we have that S 2 NCg � NKg .
(b) If G is dihedral, then by Proposition 3.11, we have that S 2 NKg .

This proves the proposition.

Remark 2. Let S 2M q
q�1, and denote by t the automorphism of S of order q. Ac-

cording to [21], the action of G D hti on S is equivalent to the action represented
by one of the following skes:

�1 D .t; t; t; t
�3/; �2 D .t; t; t

�1; t�1/;

�3;i D .t; t
�1; t i ; t�i /; �4;i D .t; t; t

i ; tq�2�i /; �5;ij D .t; t
i ; tj ; tq�1�i�j /;

where 2 6 i 6 q�1
2

, j … ¹1; q � 1; i; q � iº and q � 1 � i � j … ¹1; i; j º.



On large prime actions on Riemann surfaces 917

In terms of our terminology, the results of [21] allow us to claim that the stra-
tum determined by �1 contains X3, the stratum determined by �2 agrees with the
family Cg , the strata determined by �3i agree with the equisymmetric strata of the
family NKg that are different from Cg , and the strata determined by �4i contain
the surfaces X2;k . We also mention that the isolated strata of dimension one of
Sing.Mq�1/ are those determined by the skes �5ij .

4 Proof of Theorem 2 and Proposition 2

Let q > 5 be a prime number, and set g D q � 1. We write !l D exp
�
2�i
l

�
.

The family NCg

We recall that if S 2 NCg , then the action of

G D D2q D hR; T W R2q D T 2 D .TR/2 D 1i

on S has signature .0I 2; 2; 2; q/ and is represented by the ske

� D .Rq; T; TR;Rq�1/:

Let H D hRqi Š C2. We consider the associated two-fold regular covering map

� WS ! † WD S=H

and observe that † has genus zero and � ramifies over 2q values. If we denote
them by

u1; : : : ; uq and v1 : : : ; vq; (4.1)

then it is classically known that S is isomorphic to the normalisation of

y2 D

qY
iD1

.x � ui /.x � vi /

Note that † Š P1 admits an action of K D G=H Š Dq in such a way that
†=K Š S=G. It follows that the values in (4.1) form two orbits of length q under
the action of the cyclic subgroup of order q of K. Without loss of generality, we
can assume that

ui D !
i
q and vi D �!

i
q; where 1 6 i 6 q

and � is a nonzero complex number such that t WD �q ¤ 1. Hence S is isomorphic
to the normalisation of the singular affine algebraic curve

Xt WD ¹.x; y/ 2 C2
W y2 D .xq � 1/.xq � t /º
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for some t ¤ 0; 1. It is a direct computation to verify that the transformations

r.x; y/ D .!qx;�y/ and t.x; y/ D
�

q
p
t
1

x
;
p
t
y

xq

�
restrict to automorphisms of Xt and that hr; ti Š D2q .

Note that rq.x;y/D .x;�y/ is the hyperelliptic involution and thatX8ŠX�1.

The surface X4

Following the proof of Proposition 3.7, the action of

G D Cq Ì4 C4 D hA;B W Aq D B4 D 1; BAB�1 D A�i

onX4 has signature .0I4;4; q/ and is represented by the ske � D .A�1B;B�1;A/.
Let Q D hai, and observe that the associated q-fold regular covering map

� WX4 ! † WD X4=Q Š P1

ramifies over four values marked with q. As † admits the action of

K D G=Q Š C4 with signature .0I 4; 4/

and †=K Š S=G, the branch values of � form one orbit under the action of K.
Without loss of generality, we can assume these branch values to be 1, i , �1 and
�i (where i2 D �1) and that their corresponding rotation numbers (modulo q)
are 1, �, �2 and �3 respectively. Then, following [28] (see also [29, 72]), X4 is
isomorphic to the normalisation of

yq D .x � 1/.x � i/�.x C 1/q�1.x C i/q��: (4.2)

Since � has order 4 in Zq , there exists e 2 Z such that �2 C 1 D eq. Set

a.x; y/ D .x; !qy/ and b.x; y/ D
�
ix;

�.x C i/e��

.x � i/e�1.x C 1/��1
y�
�
;

and note that they restrict to automorphisms of (4.2). If ' is as in the statement of
the theorem, then routine computations show that

'.�ix/'.�x/�'.ix/�
2

'.x/�
3

D y1��
4

:

This implies that b has order four. Now, it is direct to see that ha;bi Š Cq Ì4 C4.

Remark 3. The Möbius transformation �WP1 Š †! P1 given by

�.z/ D i
z � 1

z C 1
satisfies �.1; i;�1;�i/ D .0;�1;1; 1/

and lifts to obtain an isomorphism between X4 and the Riemann surface given by

yq D x.x C 1/�.x � 1/q��

This provides the explicit model for X4 defined over its field of moduli Q.
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The surface X3

Similarly to before, the normalisation of y3 D xq � 1 defines a Riemann surface
of genus g and .x;y/ 7! .!qx;!3y/ restricts to an automorphism of it of order 3q.

The surfaces X2;k

Following the proof of Proposition 3.10, the action of

G D Cq � C2 D ha; b W a
q
D b2 D Œa; b� D 1i

on X2;k has signature .0I q; 2q; 2q/ and is determined by the ske

�k D .a; a
kb; a�k�1b/; where 1 6 k 6

q � 3

2
:

If Q D hai, then the associated regular covering map

�k WX2;k ! †k WD X2;k=Q Š P1

ramifies over four values marked with q. As †k admits the action of

K D G=Q Š C2 with signature .0I 2; 2/

and †=K Š S=G, two branch values of �k form an orbit, and the remaining ones
are fixed under the action of K. Thus we can assume that the branch values of
�k are 1, �1,1 and 0, where the first two form an orbit. It follows that X2;k is
isomorphic to

yq D nnk .x � 1/.x C 1/ (4.3)

for some 1 6 nk 6 q � 1 such that nk ¤ q � 2. It is easy to see that

a.x; y/ D .x; !qy/ and bk.x; y/ D .�x; .�1/
nky/

are automorphisms of (4.3) and that ha;bki Š Cq � C2.

The family NKg

Following the proof of Proposition 3.11, the action of

G D Dq D hr; s W rq D s2 D .sr/2 D 1i (4.4)

on S 2 NKg has signature .0I 2; 2; q; q/ and is determined by the ske

�i D .s; sr; r
i ; r�i�1/ for some 1 6 i 6

q � 1

2
:
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If Q D hri, then the associated regular covering map

� WS ! † WD S=Q Š P1

ramifies over four values marked with q. As † admits the action of

K D G=Q Š C2 with signature .0I 2; 2/

and †=K Š S=G, the branch values of � form two orbits under the action of K.
We can assume these values to be 1;�1 and t;�t for some t ¤ 0;˙1. In addition,
the rotation numbers are 1, q � 1, 1 and q � 1 respectively. Thus S is isomorphic
to

Zt WD ¹.x; y/ 2 C2
W yq D .x � 1/.x C 1/q�1.x � t /.x C t /q�1º

It is straightforward to verify that the transformations

r.x; y/ D .x; !qy/ and s.x; y/ 7! .�x; .x2 � 1/.x2 � t2/y�1/

restrict to automorphisms of Zt and hr; si Š Dq .

Proof of Proposition 2

Assume that S 2 Kq , and let G be as in (4.4). The covering

†! †=K Š S=G can be chosen as z 7! z2;

and therefore, if S Š Zt , then the branch values of S ! S=G are1 and 0marked
with 2, and 1 and t2 marked with q.

Let � 2 Gal.C=Q/, and assume St and .St /� D S�.t/ to be isomorphic. The
facts that

(1) G Š Aut.S/ provided that S 2 Kg � Cg , and

(2) G is the unique group of automorphisms of S isomorphic to Dq provided that
S 2 Cg

imply that there is a Möbius transformation 'WP1 ! P1 such that

'.¹1; 0º/ D ¹1; 0º and '.¹1; t2º/ D ¹1; �.t/2º:

We have two possible cases.

(1) If '.0/ D 0 and '.1/ D1, then either '.z/ D z or '.z/ D �.t/2z.

(2) If '.0/ D1 and '.1/ D 0, then either '.z/ D 1
z

or '.z/ D �.t/2

z
.
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Observe that the latter case in (1) and the former case in (2) imply t�.t/ D ˙1,
a contradiction. It follows that �.t/2 D t2 showing that �.t/ D t . Conversely, if
�.t/ D t , then it is clear that S D .St /� . Hence the field of moduli of S Š Zt is

fix¹� 2 Gal.C=Q/ W �.t/ D tº D Q.t/;

as desired.

5 Some algebraic lemmata

In this section, we collect some facts related to the representations of the groups
appearing in Theorem 1; these results will be needed to prove Theorems 3 and 4.
Set !l D exp.2�i

l
/.

Rational and complex irreducible representations

Lemma 1. Let q > 5 be a prime number. The group

G8 D hx; y; z W x
2q
D y2 D z2 D 1; Œx; y� D Œz; y� D 1; zxz D x�1yi

has four complex irreducible representations of degree one given by

�1C0 W

8̂<̂
:
x 7! 1;

y 7! 1;

z 7! 1;

�2C0 W

8̂<̂
:
x 7! 1;

y 7! 1;

z 7! �1;

�1Cq W

8̂<̂
:
x 7! �1;

y 7! 1;

z 7! 1;

�2Cq W

8̂<̂
:
x 7! �1;

y 7! 1;

z 7! �1;

and 2q � 1 complex irreducible representations of degree two given by the follow-
ing table.

Representation x y z

�Cj , 1 6 j 6 q � 1 diag.!j2q;�!
q�j
2q / I2 J2

�1�j , 0 6 j 6 q�1
2

diag.!j2q; !
q�j
2q / �I2 J2

�2�j , 1 6 j 6 q�1
2

diag.�!j2q;�!
q�j
2q / �I2 J2

Here I2 stands for the 2 � 2 identity matrix and J2 D
�
0 1
1 0

�
.

Proof. The proof is an application of the method of Wigner and Mackey to build
the complex irreducible representations of certain semidirect products. See, for
example, [64, § 8.2].
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Lemma 2. Let q > 5 be a prime number such that q � 1 mod 4. Let � be a primi-
tive fourth root of unity in Zq , and choose a maximal subset P � Z�q of represen-
tatives of the relation k � k� � �k � �k� over Z�q . The group

G4 D hA;B W A
q
D B4 D 1; BAB�1 D A�i

has four complex irreducible representations of degree one given by

�1W

´
A 7! 1

B 7! 1
; �i W

´
A 7! 1;

B 7! i;
��1W

´
A 7! 1;

B 7! �1;
��i W

´
A 7! 1;

B 7! �i;

and q�1
4

complex irreducible representations of degree four given by

�j WA 7! diag.!jq ; !
�j
q ; !

�j
q ; !��jq /; B 7!

0BBBB@
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCA
for j 2 P . In addition, the rational irreducible representations of G4 are

�1; ��1; �i ˚ ��i and % D
M
j2P

�j

Proof. The construction of the representations follows from [64, § 8.2], and we
only need to prove the last statement. As G4 has four conjugacy classes of cyclic
subgroups, it has four pairwise non-equivalent rational irreducible representations:
three of them are �1, ��1 and �i ˚ ��i . It follows that �j are Galois conjugate and
added up together produce the remaining rational irreducible representation.

Symmetric square character formula

LetH be a finite group, and let �WH ! GL.V / be a complex representation ofH .
Consider the associated representation ofH on the symmetric square vector space
of V ,

Sym2.�/WH ! GL.Sym2.V //:

According to [64, Proposition 2.3], the character �sym
� of Sym2.�/ is given by

�
sym
� .h/ D

1

2
Œ��.h/

2
C ��.h

2/� for h 2 H; (5.1)

where �� denotes the character of �.
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Lemma 3. Let � be a character of H , and let N� denote its complex-conjugate.
Then X

h2H

�sym
D
1

2

hX
h2H

.�C N�/sym.h/ � jH jh� j �iH

i
:

Proof. According to [64, Exercise 2.1], for any pair of characters �1 and �2, we
have

.�1 C �2/
sym
D �

sym
1 C �

sym
2 C �1�2:

If we write �1 D � and �2 D N�, then the previous equality impliesX
h2H

�sym.h/ D
X
h2H

Œ.�C N�/sym.h/ � . N�/sym.h/ � �.h/ N�.h/�:

Since X
h2H

. N�/sym.h/ D
X
h2H

�sym.h�1/ D
X
h2H

�sym.h/;

the conclusion follows after noting that
P
h2H �.h/ N�.h/ D jH jh� j �iH .

The analytic representation

Let S be a compact Riemann surface of genus g, and let H be a group of auto-
morphisms of S . The action of H induces a complex representation

�aWH ! GL.H 1;0.S;C// Š GL.g;C/;

called the analytic representation of H . Let Irr.H/ denote the set of complex irre-
ducible representations of H , up to equivalence. If we write

�a Š
M

�2Irr.H/

���; where �� 2 N [ ¹0º;

then �� can be computed using the classically known Chevalley–Weil formula;
see [17].

Lemma 4. Assume that the action of H on S has signature � D .0I k1; : : : ; ks/
and is represented by the ske � W�! H , where� is a Fuchsian group of signature
� canonically presented as in (2.2). Then �� D 0 if � is the trivial representation;
otherwise

�� D �d� C

sX
lD1

klX
jD1

N
�

l;j

�
1 �

j

kl

�
; (5.2)

where d� is the degree of � and N �

l;j
is the number of eigenvalues of �.�.xl// that

are equal to !j
kl

.
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Computation of the dimension NS;G

Let S be a compact Riemann surface of genus g. As mentioned in § 2.7, following
[67] and [26, Lemma 3.8] together with formula (5.1), the dimension of (the com-
ponent which contains JS of) the submanifold SS of Hg of matrices representing
ppavs admitting an action equivalent to that of Aut.S/ is

NS;G D h�
sym
�a
j 1iG D

1

jGj

X
g2G

�
sym
�a
.g/

D
1

2jGj

X
g2G

Œ��a
.g/2 C ��a

.g2/�; (5.3)

where �a is the analytic representation of G D Aut.S/.
As a direct consequence of Lemma 3, the previous equality can be rewritten as

follows.

Lemma 5. Assume that ��a
denotes the character of the analytic representation

of G D Aut.S/. Then

NS;G D
1

2jGj

hX
g2G

.��a
C N��a

/sym.g/ � jGjh��a
j ��a

iG

i
:

Remark 4. Note the following.

(1) The computation ofNS;G depends both on the groupG and on its action on the
Riemann surface S . It then makes sense to computeNS;H for a subgroupH of
G D Aut.S/. When considering G D Aut.S/, we write NS instead of NS;G .

(2) Observe that ifH1 6 H2 are two groups of automorphisms of S , then we have
NS;H2

6 NS;H1
. In particular, ifNS;H D 0 for some group of automorphisms

H of S , then NS D 0.

(3) According to (5.1), the summand .��a
C N��a

/sym.g/ in Lemma 5 is equal to

.��a
C N��a

/sym.g/ D
1

2
Œ.��a

C N��a
/2.g/C .��a

C N��a
/.g2/� (5.4)

and is, indeed, the sum of two rational numbers.

6 Proof of Theorems 3 and 4

The surface X8

With the notation of Lemma 1, the representations

�1�j and �2�j for j D 1; : : : ;
q � 1

2
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ofG8 are pairwise Galois conjugate, showing that their direct sum yields a rational
irreducible representation of degree 2.q � 1/. We denote this last representation
by %, namely

% Š

 q�1
2M

jD1

�1�j

!
˚

 q�1
2M

jD1

�2�j

!
:

As explained in § 2.8, the group algebra decomposition of JX8 with respect to
G8 Š Aut.X8/ has the form JX8 � B

n � P , where B is the abelian subvariety of
JX8 associated to % and P is the product of the factors associated to the remaining
rational irreducible representations of G8. Following [36, Proposition (10.8)], the
Schur index of �1�1 is one, and thus n D 2.

We recall that the action ofG8 onX8 is represented by the ske � D .z; zx;x�1/.
The dimension of the fixed subspaces of �1�1 under the action of the subgroups hzi,
hzxi and hx�1i is 1, 0 and 0 respectively; this is clear by noting that �1�1 .z/ D J2
and that

�1�1 .zx/ D

 
0 !

q�1
2q

!2q 0

!
and �1�1 .x�1/ D diag.!�12q ; !

1�q
2q /

do not have 1 as an eigenvalue. In addition, it is easy to see that the character
field of �1�1 has degree q � 1 over the rationals. We then apply equation (2.11) to
conclude that

dimB D .q � 1/
h
�2C

1

2

�
.2 � 1/C .2 � 0/C .2 � 0/

�i
D
q � 1

2
:

Since the dimension of JX8 is q � 1, it follows that P D 0, and therefore

JX8 � B
2: (6.1)

Finally, we consider the subgroup hzi of G8 and write Y8 D X8=hzi. The in-
duced isogeny (2.10) applied to (6.1) implies that

J Y8 D J.X8=hzi/ � B; and therefore JX8 � J Y
2
8 ;

as claimed in Theorem 3.
We now proceed to prove that NX8

D 0. LetH D hxi Š C2q , and consider the
maps

�k WH ! C given by x 7! !k2q for k D 0; : : : ; 2q � 1:

We claim that the analytic representation �a ofH decomposes as the direct sum

�a Š

2q�1M
jDqC1

�j :
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To prove that, observe that ¹�0; : : : ; �2q�1º is a full set of pairwise non-equiv-
alent complex irreducible representations of H . Besides, as noted in the proof of
Proposition 3.10, the induced action ofH onX8 has signature .0I q; 2q; 2q/ and is
represented by the ske .x2; x�1; x�1/ (see also the algorithm in [7] based on [66]).
If we write

�a Š

2q�1M
kD0

�k�k for some �k 2 N [ ¹0º;

then according to Lemma 4, we have �0 D 0 and

�k D �1C 2

2q�1X
jD1

N k
1;j

�
1 �

j

2q

�
C

q�1X
jD1

N k
2;j

�
1 �

j

q

�
for each k 2 ¹1; : : : ; 2q � 1º, where N k

1;j D 1 if and only if j D 2q � k and

N k
2;j D

´
1 if and only if j D k for k 6 q;

1 if and only if j D k � q for k > q C 1:

In this way, we obtain if k 6 q, then �k D 0, and if k > q C 1, then �k D 1. The
claim follows.

We then can construct the following table.

h Order .��a
C N��a

/2.h/ .��a
C N��a

/.h2/

1 1 .2.q � 1//2 2.q � 1/

xq 2 0 2.q � 1/

x2k , 1 6 k 6 q � 1 q .�2/2 �2

x2k�1, 1 6 k 6 q, k ¤ qC1
2

2q 0 �2

Then we obtain, by (5.4), that
P
h2H .��a

C N��a
/sym.h/ is equal to

1

2

�
4.q � 1/2 C 2.q � 1/C 2.q � 1/C 2.q � 1/ � 2.q � 1/

�
D 2.q2 � q/:

Now, the fact that jH jh��a
j ��a

iH D 2q.q � 1/ together with Lemma 3 imply
that X

h2H

�
sym
�a
.h/ D

1

2
Œ2.q2 � q/ � 2q.q � 1/� D 0;

and therefore we obtain NX8;H D 0. Hence NX8
D 0, as claimed in Theorem 4.



On large prime actions on Riemann surfaces 927

The surface X4

With the notation of Lemma 2, the group algebra decomposition of JX4 with
respect to G4 Š Aut.X4/ is JX4 � D1 �Di �D�1 �D4, where the factor Dk
is associated to the representation �k and D is associated to %. Observe that the
character field of each �j has degree q�1

4
over the rationals.

We recall that the action of G4 on X4 is represented by the ske

‚ D .A�1B;B�1; A/:

The dimension of the fixed subspace of �j under the action of hA�1Bi, hB�1i
and hAi is 1, 1 and 0 respectively. Consequently, equation (2.11) implies

dimD D
q � 1

4

h
�4C

1

2

�
.4 � 1/C .4 � 1/C .4 � 0/

�i
D
q � 1

4
:

The previous equality shows, in addition, that

D1 D Di D D�1 D 0; and therefore JX4 � D
4:

Finally, we consider the subgroup hBi of G4 and write Y4 D X4=hBi. The in-
duced isogeny (2.10) applied to the previous isogeny implies that

J Y4 D J.X4=hBi/ � D; and therefore JX4 � J Y
4
4 ;

as claimed in Theorem 3.
We now proceed to prove that NX4

D
q�1
4

. A routine application of Lemma 4
shows that the analytic representation �a of G4 is

�a Š
M
j2P

�j ; and therefore jG4jh��a
j ��a

iG4
D q.q � 1/;

where P is as in Lemma 2. It is not difficult to see that

.��a
C N��a

/.g/ D

8̂<̂
:
2.q � 1/ if g D 1;
0 if jgj D 2; 4;
�2 if jgj D q;

and therefore (5.4) allows us to write that .��a
C N��a

/sym.1/ D .q � 1/.2q � 1/

and that

X
g2G4; jgjD�

.��a
C N��a

/sym.g/ D

8̂<̂
:
q.q � 1/ if � D 2;
0 if � D 4;
q � 1 if � D q:
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Thus
P
g2G4

.��a
C N��a

/sym.g/ D 3q.q � 1/. Now, it follows from Lemma 3
that X

g2G4

�
sym
�a
.g/ D

1

2

�
3q.q � 1/ � q.q � 1/

�
D q.q � 1/;

and consequently, Lemma 5 says that NX4
D

q�1
4

, as desired.

The surface X3

The complex irreducible representations of G3 D hx W x3q D 1i are

�k WG3 ! C; x 7! !k3q for k 2 ¹0; : : : ; 3q � 1º:

We denote by �r the complexification of the rational representation correspond-
ing to the action of G3 on X3. We claim that

�r Š
M
�2G

��1 ; where G D Gal.Q.!3q/=Q/

In fact, according to [62, Theorem 5.10], the multiplicity of �1 in the decom-
position of �r as a sum of irreducible representations is one. In addition, since
�r is indeed defined over the rationals, we can deduce that all the orbit of �1 un-
der G appears in the decomposition of �r . The claim follows after noting that the
aforementioned orbit has length 2.q � 1/, and this number agrees with the degree
of �r .

Since �r Š �a ˚ N�a, the previous claim says that �a decomposes into q � 1
pairwise non-equivalent complex irreducible representations of degree one of G3,
and thereby

h��a
j ��a

iG3
D q � 1: (6.2)

In order to determine the character ��r
of �r , it is convenient to decompose �r

in the following different but equivalent way. Let

ƒ.q/ D ¹t 2 ¹1; : : : ; 3q � 1º W gcd.t; 3q/ D 1º;

and consider the subset ƒ0.q/ of ƒ.q/ of cardinality q � 1 obtained by removing
the additive inverses modulo 3q (that is, k 2 ƒ0.q/, then �k mod 3q … ƒ0). It is
not difficult to see that

�r Š
M

k2ƒ0.q/

.�k ˚ N�k/; and therefore ��r
D

X
k2ƒ0.q/

.�k C N�k/:

(1) Clearly, ��r
.1/ D 2.q � 1/, the degree of �r .
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(2) For the elements of order 3 (that is, xq and x2q), we have that

.�k C N�k/.x
q/ D !

kq
3q C !

�kq
3q

D �1 for each k 2 ƒ0 H) ��r
.xq/ D �.q � 1/:

Analogously, one sees that ��r
.x2q/ D �.q � 1/.

(3) For the elements of order q (that is, x3j with j 2 ¹1; : : : ; q � 1º), we have that

.�k C N�k/.x
3j / D !

3kj
3q C !

�3kj
3q D !kjq C !

�kj
q

for every k 2 ƒ0. Then

��r
.x3j / D

X
k2ƒ0.q/

.�k C N�k/.x
3j / D

X
k2ƒ0.q/

.!kjq C !
�kj
q /;

showing that

��r
.x3j / D �2 for all j 2 ¹1; : : : ; q � 1º:

(4) For the elements of order 3q (that is, xt with t 2 ƒ.q/), we have that

��r
.xt / D

X
k2ƒ0.q/

.�k C N�k/.x
t / D

X
k2ƒ0.q/

.!kt3q C !
�kt
3q /;

and this corresponds to the sum of all primitive 3q-th roots of unity. It is
a known fact that this sum corresponds to the Möbius function �.3q/, which
is 1; thus

��r
.xt / D 1 for every t 2 ƒ.q/:

We summarise all the above in the third column of the following table; the
fourth column follows from all the above and (5.4).

Order g

��r
.g/ D

.��a
C N��a

/.g/ 2.��a
C N��a

/sym.g/

1 1 2.q � 1/ 2.q � 1/C .2.q � 1//2

3 xq; x2q �.q � 1/ �.q � 1/C .q � 1/2

q x3j , j D 1; : : : ; q � 1 �2 �2C 4 D 2

3q xt , t 2 ƒ.q/ 1 1C 1 D 2

It follows that X
g2G3

.��a
C N��a

/sym.g/ D 3q.q � 1/;

and the desired resultNX3
D 0 follows from Lemma 3 together with equality (6.2).
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The surfaces X2;k

Let 1 6 k 6 q�3
2

. Consider the complex irreducible representations of

Aut.X2;k/ Š G2 D ha; b W a
q
D b2 D Œa; b� D 1i

given by �1W x 7! !2q and �2W x 7! !q , where x WD ab. If G1 and G2 are the
Galois groups of the extensions of Q by Q.!2q/ and Q.!q/ respectively, thenM

�2G1

��1 and
M
�2G2

��2

are rational irreducible representations of G2 of degree q � 1.
Let �r denote the complexification of the rational representation corresponding

to the action of G2 on X2;k . By arguing as in the case of X3, one obtains that

�r Š
�M
�2G1

��1

�
˚

�M
�2G2

��2

�
;

and if �a is the analytic representation of the involved action, then

h��a
j ��a

iG2
D q � 1; (6.3)

where ��a
is the character of �a. Moreover, the character ��r

of �r is given by

��r
.g/ D

8̂̂̂̂
<̂
ˆ̂̂:
2.q � 1/ if g D 1;
0 if jgj D 2;
�2 if jgj D q;
0 if jgj D 2q;

and therefore we can construct the following table.

Order g

��r
.g/ D

.��a
C N��a

/.g/ 2.��a
C N��a

/sym.g/

1 1 2.q � 1/ 2.q � 1/C .2.q � 1//2

2 b 0 2.q � 1/C 02

q aj , j D 1; : : : ; q � 1 �2 �2C .�2/2 D 2

2q aj b, gcd.j; 2q/ D 1 0 �2C 02

The desired conclusion NX2;k
D 0 follows from the previous table, equation

(6.3) and Lemma 5.
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The family Cg

The complex representation  WD2q ! GL.2;C/ (with the dihedral group pre-
sented as in (3.16)) given by

 .R/ D diag.!2q; !�12q / and  .T / D

�
0 1

1 0

�
has Schur index 1 and field of characters of degree q�1

2
over the rationals. It fol-

lows that the group algebra decomposition of JS for each S 2 Cg with respect to
D2q has the form

JS � B2 � P; (6.4)

where B is the abelian subvariety of JS associated to  . The dimension of the
fixed subspaces of  under the action of hRqi, hT i, hTRi and hRq�1i equal 0,
1, 1 and 0 respectively. Thereby, equation (2.11) together with the fact that the
action is represented by the ske � D .Rq; T; TR;Rq�1/ imply that

dimB D
q � 1

2

�
�2C

1

2

�
.2 � 0/C .2 � 1/C .2 � 1/C .2 � 0/

��
D
q � 1

2
;

and therefore P D 0. Now, we consider the subgroup hT i Š C2 of D2q and write
X D S=hT i. The induced isogeny (2.10) applied to (6.4) implies that

JX D J.S=hT i/ � B; and therefore JS � JX2:

A routine application of (5.2) permits us to see that the analytic representation
�a of the action of D2q on S is equivalent to the Galois orbit of  , namely

�a Š
M
�

 � ;

where � runs over the Galois group associated to character field of  .
The following table (taken from [37, Proposition 6.1]) collects the character of

�a and of its symmetric square for representatives of the conjugacy classes of the
group.

g ��a
�

sym
�a

1 q � 1 .q � 1/2 C .q � 1/

R2j�1, j D 1; : : : ; q, j ¤ qC1
2

1 1C .�1/

R2j , j D 1; : : : ; q � 1 �1 1C .�1/

Rq �.q � 1/ .q � 1/2 C .q � 1/

T 0 0C .q � 1/

TR 0 0C .q � 1/
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Thus, by equation (5.3), we obtain that

NS D
1

8q

�
.q � 1/2 C .q � 1/C .q � 1/2 C .q � 1/C 2q.q � 1/

�
D
q � 1

2
:

The family Kg

It is well known that Dq has two complex irreducible representations of degree
one, and q�1

2
of degree two given by

 j W r 7! diag.!jq ; !
�j
q / and s 7!

�
0 1

1 0

�
; where j 2

°
1; : : : ;

q � 1

2

±
I

all of them are Galois conjugate. Clearly, their direct sum

W Š

q�1
2M

jD1

 j

is a rational irreducible representation of Dq of degree q � 1. It follows that the
group algebra decomposition of JS for each S 2 Kg � Cg with respect to Dq has
the form

JS � B2 � P; (6.5)

where B is the abelian subvariety of JS associated to W . Observe that

(1) the dimension of the fixed subspace of  1 under hr i i is equal to 0 for each
1 6 i 6 q � 1;

(2) the dimension of the fixed subspace of  1 under hsr i i is equal to 1 for each
0 6 i 6 q � 1.

It follows that, independently of the equisymmetric stratum to which S belongs
(see the ske �i given in the proof of Proposition 3.11), equation (2.11) implies

dimB D
q � 1

2

h
�2C

1

2

�
.2 � 1/C .2 � 1/C .2 � 0/C .2 � 0/

�i
D
q � 1

2
;

and therefore P D 0. Now, if X D S=hsi, then (2.10) applied to (6.5) implies that
JS � JX2.

By Lemma 4, one sees that the analytic representation �a of the action of Dq
on S is equivalent to W . The character of �a and of �sym

a is summarised in the
following table.
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g ��a
�

sym
�a

1 q � 1 .q � 1/2 C .q � 1/

srj , j D 0; : : : ; q � 1 0 q � 1

rj , j D 1; : : : ; q � 1 �1 �1C .�1/2

Finally, by equation (5.3), we obtain that

NS D
1

4q

�
.q � 1/2 C .q � 1/C q.q � 1/

�
D
q � 1

2
:

A Addendum

We recall here the fact that the full automorphism group of the Accola–Maclachlan
curve X8 determines its Jacobian variety JX8 (that is, NX8

D 0), and therefore it
allows us to determine its period matrix. In this addendum, we determine explicitly
the period matrix .I4 Z/, whereZ 2H4, of JX8 provided that the genus ofX8 is
four (that is, for q D 5). To accomplish this task, we apply the results on adapted
hyperbolic polygons and algorithms programed in [6] to realise the action of the
full automorphism group of X8 in the symplectic group. Explicitly, the rational
representation �r WAut.X8/! Sp.8;Z/ is given by

�r.x
�1/ D

0BBBBBBBBBBBB@

0 1 1 1 �1 0 0 0

1 0 0 0 0 �1 0 0

0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 �1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

1CCCCCCCCCCCCA
;

�r.zx/ D

0BBBBBBBBBBBB@

0 0 1 0 0 0 0 0

1 0 0 0 0 �1 0 0

�1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 �1 1 0

0 1 1 0 0 0 0 0

0 1 1 0 �1 0 0 0

0 0 0 �1 0 0 0 0

1CCCCCCCCCCCCA
:
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Now, if we write

Z D

0BBBB@
a b c d

b e f g

c f h j

d g j k

1CCCCA ;
then with the notation of § 2.7, the fact that

R �Z D Z for each R 2 h�r.x�1/; �r.zx/i

implies that the coefficients of Z satisfy the relations

(1) a D �100=11k3 � 140=11k,

(2) b D �5k2 � 31=4,

(3) c D d D 5k2 C 29=4,

(4) e D 20=11k3 C 39=11k,

(5) f D �10=11k3 � 39=22k,

(6) g D �50=11k3 � 151=22k,

(7) h D k,

(8) j D 60=11k3 C 84=11k,

where the parameter k satisfies the following equation:

k4 C 5=2k2 C 121=80 D 0: (A.1)

The solutions of (A.1) are

k1 D �
1

2
i

r
2

5

p
5C 5; k2 D

1

2
i

r
2

5

p
5C 5;

k3 D �
1

2
i

r
�
2

5

p
5C 5; k4 D

1

2
i

r
�
2

5

p
5C 5:

The values k1 and k4 must be disregarded; indeed,

a.k1/ WD �100=11k
3
1 � 140=11k1 and a.k4/ WD �100=11k

3
4 � 140=11k4

do not have imaginary part positive, and therefore the corresponding matrices do
not belong to H4. Now, the fact that Z 2H4 also implies that

ı WD det Im
�
a b

b e

�
must be positive:
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With the help of numerical approximations of [73] one sees that ı is positive only
for k D k2.

We replace the value of k D k2 in equalities .1/; : : : ; .8/ to finally obtain that
the period matrix of JX8 is .I4 Z/, where Z is given below:0BBBBB@
25
22
iz

3
2 �

70
11
i
p
z 1

2

p
5 � 3

2
�
1
2

p
5C 1 �

1
2

p
5C 1

1
2

p
5 � 3

2
�
5
22
iz

3
2 C

39
22
i
p
z 5

44
iz

3
2 �

39
44
i
p
z 25

44
iz

3
2 �

151
44
i
p
z

�
1
2

p
5C 1 5

44
iz

3
2 �

39
44
i
p
z 1

2
i
p
z �

15
22
iz

3
2 C

42
11
i
p
z

�
1
2

p
5C 1 25

44
iz

3
2 �

151
44
i
p
z �15

22
iz

3
2 C

42
11
i
p
z 1

2
i
p
z

1CCCCCA
with z D 2

5

p
5C 5.

Remark 5. The results of [6] extend those of [13]; thus, if we repeat this procedure
for the Accola–Maclachlan curve of genus two, then we recover the period matrix
given in [13].
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