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Abstract

We address the problem of representing dynamic graphs using k2-trees. The k2-tree data
structure is one of the succinct data structures proposed for representing static graphs, and
binary relations in general. It relies on compact representations of bit vectors. Hence, by
relying on compact representations of dynamic bit vectors, we can also represent dynamic
graphs. In this paper we follow instead the ideas by Munro et al., and we present an alter-
native implementation for representing dynamic graphs using k2-trees. Our experimental
results show that this new implementation is competitive in practice.

Introduction

Graphs are ubiquitous among many complex systems, where we find large and dy-
namic complex networks. It is therefore important to be able to not only store
such graphs in compressed form, but also to update and query them efficiently
while compressed. Most succinct data structures for representing graphs are however
static [1, 2]. And only recently, by relying on compact representations of dynamic
bit vectors, succinct representations for dynamic graphs were presented [3]. These
representations suffer however from a well known bottleneck in compressed dynamic
indexing [4, 5]. In this paper we adopt the ideas proposed by Munro et al. [4] to repre-
sent dynamic graphs through collections of static and compact graph representations.

Our approach relies on k2-trees to represent static graphs and our implementation
supports both edge insertions and deletions with almost the same (but amortized)
cost as static k2-trees. We provide an implementation and an extensive experimental
evaluation.

From static k2-trees to dynamic graphs

Let G = (V,E) be a graph where V is the set of vertices, with size n, and E ⊆ V ×V is
the set of edges, with size m. The main idea is to represent G dynamically, supporting
edge insertions and deletions, as well as common operations over graphs, through a
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collection of static edge sets C = {E0, . . . , Er}. Each static edge set Ei is then
represented using a static k2-tree, except E0 which is represented through a dynamic
and uncompressed adjacency list.

As discussed by Munro et al. [4], we must control both the number of edges mi in
each set Ei and the number r of such sets to achieve the optimal amortized cost for
each operation. The first set (E0) contains at most m/ log2m elements. In general
we require that mi is at most m/ log2−iε m, for some constant ε > 0. We must also
have that mr = m/ log2−rε m ≤ m, which implies that r ≤ 2/ε, when m is at least 3.
When ε is a fixed constant so is r. For example when ε = 1/4 we get that r is at most
2/(1/4) = 8. Hence the maximum number of edges per static set follows a geometric
progression. Whenever we reach the maximum for a given set Ei, we find a set Ej,
with i < j ≤ r such that

∑j
`=0m` ≤ m/ log2−jεm and (re)build Ej with all edges in

it and in the previous sets, and reset all previous sets. We detail this process below.

Space

Let us analyse the required space to represent the data structure. The set E0 is
represented in an uncompressed adjacency list coupled with a hash table to allow
answering queries on edge existence in constant time. If we use also a hash table
to store the adjacency lists, then we need O(m0 logm0 + m0 log n) bits, where m0 ≤
m/ log2m is the number of edges in E0. Each set Ei, for 1 ≤ i ≤ r, is represented
in a static k2-tree and it requires k2mi (logk2(n

2/mi) +O(1)) bits [2], where mi ≤
m/ log2−iε m. Hence, overall, the space required is

O(m0 logm0 + m0 log n) +
r∑

i=1

k2mi

(
logk2(n

2/mi) +O(1)
)

(1)

bits. The first term in Equation 1 can be written as O
(
(m/ log2m)(logm + log n)

)
=

O (m/ log n). To bound the second term we essentially need to sum a geometric
sequence, we will assume mi = m/ log2−iε as this is the case that requires more space.
First let us sum the mi values,

r∑
i=1

mi = m1

r∑
i=1

(logε m)i−1 = m1
(logrεm)− 1

(logε m)− 1
. (2)

Notice that as m grows the logarithms dominate the values in the fraction which there-
fore approximates (logrε m)/ logε m. This expression can be further upper bounded
by (log2m)/ logε m, because of the relation between r and ε. Hence the overall bound
is the relation

∑r
i=1mi ≤ m1(log2m)/ logε m = m

Now for the complete formula we obtain an upper bound by noticing that mi ≥ m0

for all i. The deduction is the following:

r∑
i=1

k2mi

(
logk2(n

2/mi) +O(1)
)
≤

r∑
i=1

k2mi

(
logk2(n

2/m0) +O(1)
)

= k2

(
logk2(n

2/m0)

(
r∑

i=1

mi

)
+O(r)

)
≤ k2

(
m logk2(n

2/m0) +O(1/ε)
)



≤ k2
(
m
(
(2 log log n) + logk2(n

2/m)
)

+O(1/ε)
)
.

A tighter bound can be obtained by noticing that the largest terms in the sum are
the last ones. Hence essentially mr takes the role of m0 in the previous expression,
yielding an ε log log n term instead of a 2 log log n term, which is expected to be
reasonably small.

Therefore, the overall space in bits is bounded by k2m (logk(n2/m) + 2 log log n)+
O(k2/ε) + o(m).

Insertion, deletion and queries

We rely on efficient set operations over k2-trees [6]. Given C and C ′ represented as
two k2-trees, we are able to compute k2-trees representing C∪C ′, C∩C ′ and C \C ′ in
linear time on the size |C| and |C ′| of the representations. Moreover these operations
are done without uncompressing C and C ′, with only some negligible extra space
being used.

Insertion works as follows. Given a new edge (u, v),

1. If |E0| < m0, then just add (u, v) to E0 and we are done.

2. Otherwise, build a k2-tree for E0, find 0 < j ≤ r such that
∑j

i=0mi ≤ mj, and
rebuild Ej with all edges in E0, . . . , Ej by successive unions of k2-trees.

If |E0| < m0, then insertion takes constant time since we are relying on an adjacency
list coupled with a hash table to maintain adjacencies, as described before. Otherwise,
we need to build a k2-tree for E0 and find some Ej to accommodate all previous
collections Ei, for 0 ≤ i ≤ j. Note that the construction of the k2-tree for E0

takes O(m0 logk n) time [2], and the pairwise union of at most j k2-trees representing
collections E0 . . . Ej−1 takes O(mj logk n) time, using only the required space to store
a k2-tree representing Ej. The amortized analysis of the insertion cost follows the
argument presented by Munro et al. [4] for the general case. Either Ej is new and m
has at least doubled, in which case the amortized cost is O(logk n) per edge insertion,
or Ej is not new and we are adding to it all edges in collections E0, . . . , Ej−1. In
this last case the building cost can be imputed to the new edges added to Ej, which
are at least mj−1 = mj/log

εm. Therefore, the amortized cost of inserting an edge
in Ej is O(logk n logε m) and, since each link can be moved once to each Ej, with
0 < j ≤ r = b2/εc, the amortized cost of inserting an edge is O(logk n logε m(1/ε)).
And this is then the overall amortized cost of inserting an edge.

Deletion works as follows. Given an edge (u, v) ∈ E,

1. If (u, v) ∈ E0, then just remove it and we are done.

2. Otherwise, find 0 < j ≤ r such that (u, v) ∈ Ej and, if there is such j, set the
corresponding bit to zero in Ej k

2-tree.

3. Update the number m′ of deleted edges.

4. If m′ > m/ log logm, rebuild C.



Deleting and edge in E0 takes constant time. Checking and deleting an edge in our
collections takes O((logk n)/ε), since checking if an edge exists in a given k2-tree takes
O(logk n) [2], and we might have to look in each collection Ei, with 0 < i ≤ r = d2/εe.
Once an edge is found, marking it for deletion takes constant time. The full rebuild
after m/ log logm edges are deleted costs O(m logk n), i.e., it has an amortized cost of
O(logk n log logm) per deleted edge. Overall deleting an edge has then an amortized
cost of O((logk n)/ε + logk n log logm).

Querying works just as in k2-trees with the difference that we need to query all
sets in the collection. Therefore, the querying cost increases by a factor of O(1/ε).

Comparison with other constructions

Given a graph G, for a fixed ε, the presented data structure uses essentially the same
space as a static k2-tree, and it supports insertions and deletions in O(logk n logε m)
and O(logk n log logm) time, respectively. The implementation of dynamic k2-trees
using dynamic bit vectors [3] requires a small space overhead, and it supports inser-
tions and deletions in O(logk n log n) time. Hence, since m is O(n2), it has a slowdown
by a factor of o(log n/ log log n) with respect to the proposed data structure.

Edge queries over the proposed data structure take the same time as in static
k2-trees. Although dynamic k2-trees using dynamic bit vectors [3] work similarly to
static k2-trees – in practice they replace static bit vectors for dynamic ones – they
suffer a slowdown by a factor of Ω(log n/ log log n) [5, Chapter 12].

We compare also with a new representation, k2-tries, proposed recently [7]. This
data structure uses O(m log(n2/m) + m log k) bits, and it supports edge queries and
updates in O(logk n) amortized time. The implementation provided by k2-tries au-
thors supports only edge additions and queries, with slightly worse time complexities.

Experimental analysis

We compare the dynamic k2-tree implementation proposed in this paper, henceforth
named sdk2tree, with the dynamic implementation dk2tree based on dynamic bit
vectors [3], a static implementation k2tree [2], and also with two versions of k2-
tries, k2trie{1,2}, that differ only on the parametrization (trading compression for
speed) [7]. All other implementations were provided by their authors, and all code is
available at https://github.com/aplf/sdk2tree.

All tested implementations are written in C and compiled with gcc 6.3.0 2017-

05-16 using the -O3 optimization flag. Experiments were performed on an SMP
machine with 256GB of RAM and four Intel(R) Xeon(R) CPU E7-4830 @ 2.13GHz,
each one with 512KB in L1 cache, 2MB in L2 cache, 24MB in L3 cache and eight
cores, 64 threads in total. All implementations are single-threaded.

We implemented a common interface to test each implementation. All dynamic
data structures dk2tree, sdk2tree and k2trie{1,2} are initialized empty. The
static k2tree is initialized by reading the whole graph from secondary storage. Once
initialized, the interface starts a main loop which reads instructions from stdin rep-
resenting all supported edge operations, with additions and deletions not available in
k2tree, and k2trie{1,2} supporting only edge additions and queries.



Table 1: The first four datasets were synthetically generated using a duplication
model. The last five datasets are real-world Web graphs made available by the
Laboratory for Web Algorithmics (LAW) [8, 9] (dataset uk-2007-05 is actually
uk-2007-05-100000 in the LAW website).

Dataset
|V |
(M)

|E|
(M)

k2tree

(MB)

dk2tree

(MB)

sdk2tree

(MB)

k2trie1

(MB)

k2trie2

(MB)

dm50K 0.05 1.11 2.80 3.13 2.82 5.72 39.61
dm100K 0.10 2.59 7.01 7.82 7.04 14.63 79.65
dm500K 0.50 11.98 39.80 44.05 39.95 82.71 268.34
dm1M 1.00 27.42 96.35 111.82 96.39 192.12 434.54

uk-2007-05 0.10 3.05 1.08 1.23 1.15 2.05 4.04
in-2004 1.38 16.92 6.04 6.85 6.32 7.86 14.05
uk-2014-host 4.77 50.83 57.41 63.94 58.05 79.22 132.61
indochina-2004 7.42 194.11 56.90 64.46 59.87 66.72 113.53
eu-2015-host 11.26 386.92 258.87 288.66 263.27 323.68 537.04

Datasets and methodology

We used both real and synthetic datasets. In Table 1 we identify the datasets and
their properties. For each dataset, we present its vertex and edge counts written as
|V | and |E|, respectively, and the total disk space used by each implementation.

Real-world graphs were obtained from the Laboratory of Web Algorithmics1 [8, 9].
Synthetic datasets were generated from the partial duplication model [10]. Although
the abstraction of real networks captured by the partial duplication model, and other
generalizations, is rather simple, the global statistical properties of, for instance, bio-
logical networks and their topologies can be well represented by this kind of model [11].
We generated random graphs with selection probability p = 0.5, which is within the
range of interesting selection probabilities [10]. The number of edges for those graphs
is approximately 25 times the number of vertices.

We consider four major operations: edge additions, removals, querying/checking
and vertex neighborhood listing. Elapsed time was measured using the clock() func-
tion2. Although the k2tree implementation does not support additions, we included
it in the comparison. For that we build a k2tree for each dataset and we divided
the time it took by the number of edges, obtaining then the average time for edge
addition. This allowed us to evaluate the overhead introduced by dynamic data struc-
tures. The removal operation is compared only between sdk2tree and dk2tree. This
operation was evaluated by adding all edges and removing a sample of 50% of them.
All three *k2tree implementations were directly compared for the listing operation.
After adding all edges, we evaluated this operation by asking for the neighborhoods
of a sample of 50% of the vertices. We measure for each implementation the aver-
age time per individual operation, the maximum resident set size (memory peak was
obtained with GNU time3), and the disk space taken by data structures serialization.

1http://law.di.unimi.it/datasets.php
2http://man7.org/linux/man-pages/man3/clock.3.html
3https://www.gnu.org/software/time/
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Figure 1: Average time taken for adding an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.
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Figure 2: Average time taken for deleting an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.

Cost analysis

Let us analyse the cost of each operation over the different datasets and for the dif-
ferent implementations. Figure 1 shows the average running time for adding an edge.
As mentioned before, we included k2tree in this comparison to observe what is the
slowdown introduced by dynamic data structures. As expected, dynamic implemen-
tations take in general more time per add operation than k2tree. We can observe
that k2trie{1,2} and sdk2tree are sometimes slightly faster than k2tree. The case
of sdk2tree may be explained by the sparsity of the internal k2-trees. As expected
also from the theoretical analysis, the add operation on sdk2tree is faster than on
dk2tree, in particular for real Web graphs. Figure 2 shows the average running time
for removing an edge. Across all datasets, sdk2tree was consistently faster than
dk2tree. We note that costs seem to correlate well with the predicted bounds.

Figures 3 and 4 show the average running time for listing vertex neighborhoods and
querying/checking edges. Across all datasets, sdk2tree was faster than dk2tree and
on-par with k2tree and k2trie{1,2}. In the case of listing, we are plotting against
O(
√
m), the bound on the cost of listing vertex neighborhoods with k2tree [2].

This bound is valid also for sdk2tree and dk2tree as discussed previously in the
theoretical analysis.

Let us now analyse how much memory is used by each implementation. In this
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Figure 4: Average time taken for querying links in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.

analysis we will consider resident memory while we are performing operations. For the
space that each data structure takes once serialized on secondary memory, we refer
the reader to Table 1. Figure 5 shows the max resident memory while adding edges
in dynamic implementations. We can observe that sdk2tree requires more memory
than dk2tree, although the growth rate is similar. This can look unexpected given
the theoretical bounds derived previously, but we must recall that we are periodically
merging together static collections in the sdk2tree implementation. We will analyse
this in more detail below.

Figure 6 shows the max resident memory while removing edges. Since we are
adding all links before removing about 50% of them, the memory requirements for
sdk2tree are exactly the same as in Figure 5. This also means that the removing
operation does not increase the space requirements in this implementation. On the
other hand, the memory requirements are now higher for dk2tree, being more close
to those of sdk2tree.

Figure 7 shows the max resident memory while adding edges and listing vertex
neighborhoods. Since we are adding all links as before, the memory requirements
for sdk2tree and dk2tree are identical to those observed in Figures 5 and 6. We
included now also the k2tree in our analysis. Given that this last implementation
requires much more space for constructing the data structure, we had to use log scale
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Figure 6: Max resident memory while deleting edges in real Web graphs and in
synthetic graphs (generated from a duplication model), respectively.

in Figure 7. We should note however that once constructed, k2tree requires much
less space as shown in Table 1. For instance, for the dataset dm100K, k2tree had
a peak resident memory footprint of around 503.11 MB during construction, while
its k2-tree structure stored on disk is around 7.01 MB. It is nevertheless interesting
to note that, although we are using the exact same implementation of k2-trees for
representing the static collections within our sdk2tree implementation, since we are
merging those collections without decompressing them as mentioned before, we do
not observe such high memory footprint while adding edges in sdk2tree.

Memory allocation analysis

Our implementation of the dynamic k2-tree is based on the technique presented in [4],
whose authors claim additional space is necessary to perform a union of two col-
lections (which would be decompressed before the union operation taking place).
The implementation we present is able to perform the union operation without de-
compressing the collections, effectively avoiding this pitfall. We show for dataset
uk-2007-05, in Figure 8, a detailed analysis of heap memory usage. The analysis was
performed using valgrind, with parameters --tool=massif --max-snapshots=200

--detailed-freq=5, and the visualizations using the massif-visualizer4.

4https://github.com/KDE/massif-visualizer
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It can be observed that during execution where edges are continuously added,
there are memory peaks associated with the union operation, increasing temporarily
the heap usage by at most a factor of 2. This explains also the difference in maximum
resident memory between sdk2tree and dk2tree observed before in Figures 5 and 6.

Final remarks

We presented the sdk2tree implementation for representing dynamic graphs, based
on the k2-tree graph representation and relying on a collection of static k2-trees.
This makes sdk2tree a semi-dynamic data structure. Nevertheless, it supports edge
additions and removals with competitive performance, showing faster execution times
than the dk2tree implementation, a dynamic version of k2-trees based on dynamic
bit vectors, and on par with k2-tries with respect to additions and queries.

Implementations like those analysed in this paper, when implemented carefully,
are of crucial importance for the efficient analysis and storage of evolving graphs, while
drastically reducing the requirements of secondary storage compared to traditional
dynamic graph representations. Hence, as future work, we envision further refine-
ments to these data structures to achieve greater efficiency, namely in what concerns



listing vertex neighborhoods, in order to produce usable libraries for the analyses of
large evolving graphs. We are aiming also to research how these representations may
be used within distributed graph processing systems in order to reduce the memory
pressure observed often in these systems.
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