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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN ECONOMÍA APLICADA
POR: MARTÍN ANDRÉS VALDEVENITO BELMAR
FECHA: 2022
PROF. GUÍA: JUAN ESCOBAR CASTRO

DISEÑO DE LOTERÍAS EN EL SISTEMA DE ADMISIÓN ESCOLAR:
UTILIZANDO CARACTERÍSTICAS OBSERVABLES PARA MEJORAR LA

EFICIENCIA

El problema de asignación escolar ha sido teorizado como un problema de emparejamiento
de dos lados con una particularidad: a priori, los colegios están indiferentes entre grandes
grupos de estudiantes. Esto significa que el mecanismo debe especificar cómo desempatar entre
estudiantes. Al considerar emparejamientos estables (como aquel que resulta del Algoritmo de
Aceptación Diferida), la forma en que se realizan dichos desempates tiene un efecto importante
en la eficiencia del resultado.

Comúnmente, como una forma de garantizar equidad ex-ante para los estudiantes, los
desempates son definidos de manera aleatoria. Sin embargo, el tipo de lotería utilizada puede
generar pérdidas importantes en eficiencia ya que las estabilidad impone restricciones sobre
los emparejamientos. Conceptualmente, los mecanismos estables son altamente competitivos
y esta competencia excesiva, aunque asegura estabilidad, genera ineficiencias. Dicho esto,
pensamos que el diseño de loterías puede ser utilizado para limitar el exceso de competencia al
correlacionar preferencias entre ambos lados del mercado: intuitivamente, los colegios otorgan
una alta prioridad a estudiantes que a su vez clasifican altamente a ese colegio.

Para correlacionar preferencias en un mecanismo a prueba de estrategias, el diseñador de
política se ve de algún modo forzado a predecir preferencias. Definimos las políticas basadas
en datos como aquellas políticas que asignan prioridad de acuerdo a la afinidad esperada de un
estudiante según una característica observable. Mostramos que cuando esta característica es
un buen predictor de las preferencias, las políticas basadas en datos son más eficientes que los
diseños aleatorios comunes (MTB y STB). Por el contrario, cuando son un mal predictor de las
preferencias, estas políticas pueden llegar a ser más ineficientes dado su carácter determinista.

Complementamos los hallazgos teóricos con simulaciones basadas en datos del Sistema de
Admisión Escolar 2021 en Chile. Utilizando las distancias a los colegios como característica
observable, mostramos que la política basada en datos reduce sustancialmente los estudiantes
pertenecientes a pares de mejora y aumenta la eficiencia en términos de que asigna a más
estudiantes a sus primeras 3 preferencias. Además, las simulaciones sugieren que, en contraste
con STB, este diseño evita una menor asignación en rankings más bajos y no parece afectar la
cantidad de estudiantes sin asignar. Atribuimos este efecto al hecho de implementar políticas
que explotan la heterogeneidad de las preferencias en vez de imponer un diseño ’dictatorial’.
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LOTTERY DESIGN IN SCHOOL CHOICE: USING OBSERVABLE STUDENT
CHARACTERISTICS TO IMPROVE EFFICIENCY

The school choice problem is theoretically conceived as a many-to-one two-sided matching
market with one particularity: a priori, schools are indifferent over large groups of students.
This means that the mechanism must specify how ties are broken within indifference groups.
When considering stable mechanisms (such as the one induced by the Deferred Acceptance al-
gorithm) tie-breaking has a significant effect on the efficiency of the allocation (Abdulkadiroglu,
Pathak, Roth, & Sonmez, 2006; Erdil & Ergin, 2008).

Commonly, ties are broken randomly for each school as a way to ensure ex-ante equality for
students. However, the type of lottery used can generate efficiency loss on the allocation since
it imposes artificial stability constraints that must be met. Conceptually, stable mechanisms
are highly competitive (Che & Tercieux, 2018) and excess competition, although it grants
stability, is generally inefficient. Therefore, we state that lottery design might be a useful tool
to limit excess competition by correlating preferences cross-market. Intuitively, schools grant
high priority to students that likewise rank that school highly.

A first mechanism that comes to mind is correlating preferences perfectly by waiting for
students to submit their preferences before generating lotteries. However, this mechanism
would certainly not be strategy-proof. Thus, the policymaker is somehow forced to predict
preferences. This is where we state that an observable student characteristic can come in
handy as an informational proxy to guide lottery design.

We define data-driven lotteries as a policy that grants priorities according to the likely
affinity a student has through the observed informational proxy. We show that when the
characteristic is a powerful predictor of preferences, a data-driven policy is more efficient than
traditional multiple tie-breaking and single tie-breaking policies. Conversely, when the proxy
is a weak predictor, it can perform worse than MTB and STB due to its deterministic nature.

We complement theoretical findings with simulations based on Chilean SAE 2021 data.
Using distance to schools as our proxy, we show that a data-driven design reduces students
belonging to Pareto-improving pairs substantially and enhances efficiency in terms of increasing
students in their top 3 preferences. Moreover, the simulations suggest that, in contrast to
STB, this design avoids less allocation in lower ranking and unnasignment. We ascribe this
result as a benefit of exploiting preference heterogeneity rather than imposing a ’dictatorial’
lottery design.
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Chapter 1

Introduction

Since the early 2000s, many countries around the world have gravitated towards the use
of centralized procedures to assign students to schools motivated by the growing influence
and effectiveness of market design theory and its applications. Economists have modeled the
school choice problem as a many-to-one, two-sided matching market with one particularity:
schools’ preferences over students (alternatively, students’ priorities) are not given, but are
determined by the policy-maker. This means that a priori, schools are indifferent over large
groups of students and therefore the mechanism must specify the way in which ties are broken.
Tie-breaking has an important effect on the efficiency of the allocation (Abdulkadiroğlu,
Pathak, & Roth, 2009).

Recently, the more common tie-breaking procedures use lotteries (random priorities) to
ensure ex-ante equality for students. However, Erdil and Ergin (2008) shows that the use of
lotteries in stable mechanisms generates a significant efficiency loss. Theoretically, schools’
preferences induce artificial stability constraints that, when applied to stable mechanisms that
allow for limitless competition to ensure stability (Che & Tercieux, 2018), result in welfare
losses.

In this article, we state that lottery design can be a useful tool to limit excessive competition
by correlating supply and demand preferences. Intuitively, granting higher priority to a
student that effectively has a high preference for that particular school reduces competition
as fewer application rounds are needed to achieve stability. However, we seek to maintain
strategy-proofness through the use of stable mechanisms rather than implementing the Serial
Dictator or the Boston mechanism, which means the policy-maker must predict students’
preferences before they submit them. Therefore, we propose the use of observable student
characteristics to guide lottery design (what we call data-driven policies) as a way to improve
efficiency when implementing stable mechanisms. Observable characteristics might help
predict student’s preferences, which allows the policy-maker to correlate preferences without
conceding strategy-proofness.
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We use a continuum model with a stable matching as in Azevedo and Leshno (2016) to
evaluate data-driven lottery policies and compare the outcome efficiency with traditional
multiple tie-breaking (MTB) and single tie-breaking (STB) procedures. We show that data-
driven policies achieve higher efficiency standards compared to MTB when the observable
characteristic is sufficiently informative of students’ preferences but performs worse when
predictions are poor. More precisely, these policies are bold as they are deterministic and
naturally grant some students a lower priority when granting other students a higher one.
As a consequence, there is no room for randomness to correct misplaced priorities through
multiple applications. However, when observable characteristics provide precise information,
the result is highly efficient.

Additionally, we uphold our theoretical findings with Chilean admissions data by using
students’ distance to schools as a predictor of preferences, motivated by Aramayo (2018)
results. The simulations show a significant decrease in the number of Pareto-improving pairs
and an improvement in the accumulated rank distribution: we obtain stochastic dominance
for the first three ranks and barely fewer allocations in lower rankings. Unlike STB procedures,
data-driven policies exploit preference heterogeneity, which seems to avoid fewer allocations
in lower rankings and unassignment.

In conclusion, observable student characteristics enable a more tailor-made lottery design
as it allows the policy-maker to predict students’ preferences and therefore generate preference
correlation, which reduces the inefficiency inherent to stable mechanisms whilst maintaining
strategy-proofness. Correlating preferences enhances efficiency by making use of available
preference heterogeneity rather than imposing a more ’dictatorial’ procedure. Empirical work
shows this seems to avoid unassignment.
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Chapter 2

Literature Review

The school choice problem lies within a broader area of economic theory known as matching
markets, which is embedded within the market design literature. Matching theory studies
markets in which prices are not used as a mechanism to assign objects, as it is a common
agreement that either it is unethical to do so, or because it is ineffective. Some of the more
popular examples within the literature include the assignment of doctors to hospitals (Roth
& Peranson, 1999), organ transplant allocation (Roth, Sönmez, & Ünver, 2004) and school
choice.

The first important contribution to matching markets theory was made by Gale and
Shapley (1962) who study the famous marriage problem and design the Deferred Acceptance
(DA) algorithm to solve it. Although this algorithm is widely used today in multiple market
scenarios and specifically in school choice problems, practical applications acquire greater
relevance in the 90s. Since then, great efforts have been made toward the design of allocation
algorithms (i.e. a solution to the matching problem) in a variety of different contexts.

Generally, there are three main desirable properties when designing an allocation mechanism:
efficiency (in the sense of Pareto), stability (justified envy), and strategy-proofness (incentive-
compatible mechanisms). Depending on the problem formulation, these properties tend to
clash and therefore present a trade-off for the policy-maker to solve. For instance, Che and
Tercieux (2018) describe the trade-off between efficiency and stability in large two-sided
markets.

Particularly in school choice, Abdulkadiroğlu and Sönmez (2003) propose this framework
to tackle the student allocation problem in Boston schools, specifying this kind of problem as
a many-to-one, two-sided matching market. During this period, most of the literature evolved
around the ongoing debate to decide which mechanism to implement: the Boston-Mechanism
(BM) or the Deferred Acceptance algorithm. The former ensures an efficient allocation, but is
not stable or strategy-proof, while the latter ensures stability and strategy-proofness but is
not efficient. These authors present this trade-off both theoretically and empirically using

3



Boston City school data.

Economists have been able to state some general properties about these desiderata and
the trade-offs mentioned. For instance, Roth shows that the DA is stable, strategy-proof, and
is not Pareto-dominated by any other stable mechanism (Roth, 1982). Pathak and Sönmez
(2008) describe the effect of manipulable (not strategy-proof) mechanisms in terms of ex-post
efficiency. On the other hand, the Top Trading Cycles (TTC) algorithm is efficient and
strategy-proof but not stable (Shapley & Scarf, 1974), although it minimizes instability.

However, the school choice problem is not completely captured by the two-sided matching
markets framework as it holds one particularity: student’s priorities (or schools’ preferences
over students) are not given but must be designed by the policy-maker. A priori, schools
are indifferent over large groups of students and therefore the mechanism must specify a
tie-breaking rule to produce the necessary input for the algorithms mentioned above.

In most of the student allocation procedures, tie-breaking is solved by using lotteries, that
is, randomly assigning each student a score which then defines their priorities for each school.
Lotteries are used for tie-breaking as a way to attain ex-ante student equality (Abdulkadiroglu
et al., 2006). This argument played an important role in the transition towards strategy-proof
and stable mechanisms such as the DA using random allocation. However, Erdil and Ergin
(2008) and Abdulkadiroğlu et al. (2009) show both theoretically and empirically that random,
strategy-proof, stable mechanisms are necessarily inefficient and therefore are subject to a
significant welfare loss.

With this in mind, lottery design became a relevant topic in school choice. For instance,
Abdulkadiroğlu et al. (2009) compare single tie-breaking (each student uses the same lottery
ticket for all schools) versus multiple tie-breaking (students obtain a different lottery ticket
for each school) and show it has a large effect on ex-post efficiency. Single tie-breaking leaves
more students in their first choice but also leaves more students unassigned. In fact, the
difference between the raw definitions of stability and efficiency lies in school preferences, as
lotteries induce artificial stability constraints that reduce welfare (Erdil & Ergin, 2008).

Other mechanisms have been designed in order to achieve higher efficiency without compro-
mising stability or strategy-proofness (or at least compromising it minimally). Abdulkadiroğlu,
Che, and Yasuda (2015) state that the DA algorithm limits students’ ability to communicate
their preference intensities, which brings ex-ante inefficiency when ties are broken randomly.
They design the ’Choice-Augmented’ Deferred Acceptance (CADA) algorithm in which stu-
dents are able to submit their usual preference rank and additionally the name of a ’target’
school. Although targeting clearly induces strategic behavior, the algorithm is still stable and
strategy-proof with respect to students’ rankings and improves efficiency.

With the same objective in mind, the literature has studied lottery design itself, evaluating
its effect on allocation efficiency. For example, Çelebi and Flynn (2021) study coarsenings in
priority design in both deterministic and stochastic scenarios and show that, when students’
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preferences are known, only 3 lotteries suffice to obtain any allocation. Echenique et al. (2020)
study the effect of previous interactions between the supply and the demand that restructure
preferences and enhance overall efficiency in the actual matching process.

This work studies the possibility of using lottery design as a way of limiting excess
competition in a stable mechanism and therefore enhancing efficiency. More precisely, we
propose using observable student characteristics that grant valuable information of students’
preferences and can therefore generate correlation without compromising strategy-proofness.
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Chapter 3

Theoretical Analysis

The main objective of our work is to study the effects of applying different lotteries in the
school choice problem. For us to achieve this, we take two approaches for our analysis: a
theoretical model and empirical work. This chapter describes the former approach and the
theoretical results achieved.

3.1. Notation and Definitions

We consider a continuous matching model as in Azevedo and Leshno (2016). In this setting,
there is a finite set C = {1, 2, 3, . . . , n} schools to be matched to a continuum mass of students
with total mass 1. A student i ∈ I is defined by the pair i = (≻i, ei) where ≻i is a strict
ordering over schools c ∈ C and ei ∈ [0, 1]C describes school’s ordinal preferences for student
i. We refer to ei

c as student i’s score in school c. Schools prefer students with higher scores,
that is, school c prefers student i over student i′ if ei

c > ei′
c . For simplicity, we will assume

that all students and schools are acceptable. Let R be the set of all strict preference ordering
over C, we denote I = R × [0, 1]C the set of all student types.

A continuum economy is given by E = [η, S], where η is a probability measure over I and
S = (S1, S2, . . . , Sn) is a vector of strictly positive capacities for each school. We will assume
that every school’s indifference curve has measure 0, that is, ∀c ∈ C and ∀x ∈ R we have
η({i : ei

c = x}) = 0. This is equivalent to imposing that schools have strict preferences over
students in the discrete model.

In this context, a matching µ is an allocation of students to schools. Formally, a matching
is a function µ : C ∪ I → 2I ∪ (C ∪ I) such that:

1. ∀i ∈ I, µ(i) ∈ C ∪ {i}. Each student is matched either to a school or to itself, which
represents being unmatched.

2. ∀c ∈ C, µ(c) ⊆ I is measurable and η(µ(c)) ≤ Sc. Schools are matched to a set of
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students with a mass that doesn’t exceed the school’s capacity.

3. c = µ(i) iff i ∈ µ(c). A matching is consistent in the sense that a student is matched to
a school if and only if the school is matched to that student.

4. For any c ∈ C, the set {i ∈ I : µ(i) ⪯i c} is open. This is a regularity condition to avoid
adding sets of students with measure 0 to a school because it would generate multiple
matchings that only differ in sets of measure 0.

A student-school pair (i, c) blocks a matching µ in the economy i if the student prefers
school over his match (c ≻i µ(i)) and either (i) school c has spare capacity (η(µ(c))) < Sc or
(ii) school c is matched to another student who has a lower score than i (∃i′ ∈ µ(c) such that
ei

c > ei′
c ).

Definition 3.1 (Stable Matching) A matching µ for a continuum economy E is stable if
it is not blocked by any student-school pair.

A stable matching always exists (Azevedo & Leshno, 2016), similar to the discrete case
as shown by Gale and Shapley (1962). The notion of stability is commonly interpreted as
’justifiable envy’, as student i and school c prefer each other over their match. Additionally, a
stable matching does not create incentives for outside agreements as each student (or school)
strictly prefers their match over any other school (or student) that prefers him.

The existence of a stable matching in a discrete economy is proven by the use of the
Deferred Acceptance (DA) algorithm (Gale & Shapley, 1962). This algorithm is naturally
applied in a discrete scenario that is defined similarly. In this case, there is a finite set of
students i ∈ I = {1, 2, 3. . . . , I} with a strict ordering over schools ≻i. Schools are defined
similarly with a strict ordering ≻c over I. Therefore, a matching problem M is defined by
M = (C, I, ≻c, ≻i, S). The algorithm is as follows.

As stated before, we will be specifically interested in studying the efficiency of the output
allocation. Generally, the literature uses Pareto-efficiency to study matching outcomes. A
matching µ Pareto-dominates another matching µ′ in a discrete economy if for all students
i ∈ I, µ(i) ⪰i µ′(i) and µ(i) ≻i µ′(i) for at least one student.

Similarly, in a continuous setting, a matching µ Pareto-dominates another matching µ′ if
∀i ∈ I : µ(i) ⪰i µ′(i) and there exists a mass of students with positive measure Î ⊆ I : η(Î) > 0
such that ∀i ∈ Î : µ(i) ≻i µ′(i).

Definition 3.2 (Efficient Matching) A matching is efficient if it is not Pareto-dominated
by any other matching.

As it is common in the literature, we are interested in measuring efficiency (or rather,
inefficiency) rather than simply stating it. With this in mind, we shall consider two main
approaches widely used in the literature to measure inefficiency.
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Algorithm 1 Deferred Acceptance Algorithm (students propose)
Require: A discrete economy M = (C, I, ≻c, ≻i, S).

Step 1: Each student applies to his first choice. Each school tentatively assigns its seats
to its proposers one at a time following their priority order until capacity is reached. Any
remaining applying students are rejected.

In general, at...

Step k: Each student who was rejected in the previous step applies to his next choice, if
one remains. Each school considers the set consisting of its previously tentatively assigned
students and the new applicants and assigns its seats to these students following their
priority order until capacity is reached. Any student remaining after all the seats are
assigned is rejected.

The algorithm terminates when no student is rejected at step k. All tentative assignments
are then materialized.

1. Firstly, the number of Pareto improving pairs, which is simply defined as a student pair
(i1, i2) such that µ(i2) ≻i1 µ(i1) and µ(i1) ≻i2 µ(i2), this is, each student prefers the
other student’s match (Ashlagi & Nikzad, 2020).

2. Secondly, the cumulative rank distribution. Formally, a cumulative rank distribution is
F (k) = ∑k

q=1 R(q), where R(q) is the mass of students assigned to its q-th favorite school.
Under this measure, a matching µ is more efficient than another matching µ′ if there
is stochastic dominance between the cumulative rank distributions, i.e. Fµ(k) ≥ Fµ′(k)
∀k ∈ {1, 2, 3, . . . , n}.

3.2. The Model

We study the value of a limited amount of information over students’ preferences to
guide lottery design. More specifically, our idea consists in using an observable student
characteristic (for example, distance from schools) as a predictor of what the student’s ranking
will look like. Theoretically, a standard lottery procedure assumes the policy maker has no
information over student preferences, which leads to efficiency loss. We seek to exploit any
degree of information that will allow smarter lottery design in the sense of improving efficiency.
Intuitively, correlating students’ and schools’ preferences will control excessive competition
and therefore reduce efficiency loss by limiting the necessary application rounds to achieve
stability. We think of higher correlation as granting high priority to a student that likewise
grants that school a high ranking.

The school allocation procedure timeline is as follows.
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Figure 3.1: Model Timeline

One would argue that we can obtain an efficient outcome simply by designing school
preferences once students submit their own by correlating them perfectly. If we would
generate each school’s preference list by ranking each student according to the position they
ranked that school (i.e. first select all students that select that school as their top preference,
then students that rank that school second, etc.) this would indeed be efficient. However, this
mechanism would not be strategy-proof, as students will be conscious of the effect of each
school’s ranking position. This is why the policy-maker needs to predict students’ rankings
before they are submitted.

3.2.1. General Setting

Our model considers a continuous market with a set of two schools C = {C0, C1} and a
continuous mass of students uniformly distributed in [0, 1] with total mass 1. Schools have
capacities S0, S1 which we will assume are restrictive, i.e. S0 + S1 < 1. The preference each
student has over schools is captured by the following utility function.

ui
c = −di

c + ϵi
c (3.1)

where di
c is the distance between student i and school c, and ϵc

i is unobservable and therefore
random from the policy-maker’s point of view. This utility function structure expresses that
the policy-maker has some information over student preferences through the proxy di

c, but
information is not perfect as ϵi

c is unobservable.

In our setting, school C0 is located at 0 and school C1 is located at 1. Under these
specifications, student utility functions are as follows.

ui
C0 = −i + ϵi

C0 ui
C1 = −(1 − i) + ϵi

C1

We shall state that ϵi
C1 −ϵi

C0

i.i.d∼ F , a continuous distribution with mean µF = 0. By setting
µF = 0 we are assuming that there is no idiosyncratic preference for one school. Consequently,
the probability that student i prefers school C0 over school C1, and vice-versa, is given by
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P(ui
C0 > ui

C1) = P(−i + ϵi
C0 > −(1 − i) + ϵi

C1) = P(1 − 2i > ϵi
C1 − ϵi

C0) = F (1 − 2i)
P(ui

C0 < ui
C1) = 1 − F (1 − 2i)

Visually, the model is as follows.

C0

0

C1

1

i

F (1 − 2i)

1

Figure 3.2: Model Visual

In this context, we seek to evaluate different lottery policies in terms of the outcome
efficiency.

Definition 3.3 (Lottery Policy) A lottery policy is a family of functions {Gi
c}i∈I

c∈C such
that each function

Gi
c : [0, 1] −→ [0, 1]

p 7−→ Gi
c(p) = P(i is rejected at c with equilibrium cutoff p)

(3.2)

assigns each student i ∈ [0, 1] a probability distribution through which the student obtains his
score ei

c at school c. More simply, ei
c ∼ Gi

c.

The timing of the model is the following:

1. The policy-maker observes all of the student’s characteristics di
c and knows school’s

capacities S0, S1. The policy-maker does not observe students’ preferences over schools
but has a belief of each student’s ranking according to the distribution F (1 − 2i).

2. The policy-maker designs a lottery policy {Gi
c}i∈I

c∈C .

3. Student’s preferences over schools (≻i) are revealed.
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4. Using student’s preferences ≻i and lottery policy {Gi
c}i∈I

c∈C , a stable matching µ is
obtained.

In order to understand alterations in the model and compute comparative statistics, we
shall use the supply and demand framework proposed by Azevedo and Leshno (2016) when
studying large markets. They state an equivalence between a matching µ and a cutoff score
that solves a set of market-clearing equations.

A cutoff is a minimal score Pc ∈ [0, 1] required for admission at school c. A student i can
afford school c (or school c would accept i) if Pc ≤ ei

c. A student’s demand given a vector
of cutoffs Di(P ) is his favorite school among all those he can afford. In this way, we define
aggregate demand for school c as the mass of students who demand it.

Dc(p) = η({i : Di(P ) = c})

Definition 3.4 (Market Clearing Cutoff) A vector of cutoffs P is a market clearing
cutoff if it satisfies the following market clearing equations.

Dc(P ) ≤ Sc ∀c ∈ C

and
Dc(P ) = Sc ∀c ∈ C : Pc > 0 (3.3)

Hence, there is a natural one-to-one correspondence between stable matchings and market
clearing cutoffs. This correspondence is described by the following operators.

• Given a market clearing cutoff P , define the associated matching µ = MP with the
demand function µ(i) = Di(P ).

• Conversely, given a stable matching µ, define the associated cutoff P = Pµ by the score
of students matched to each school Pc = inf

i∈µ(c)
ei

c.

The authors show that if µ is a market clearing, then Pµ is a market clearing cutoff. If P

is a market clearing cutoff, then MP is a stable matching (P and M are inverses of each
other). Moreover, they state that under a set of regularity conditions, a sequence of discrete
economies converges to a continuum economy as the market size grows, which then again
supports the use of a continuum setting to model a real-case scenario of school choice.

Using this framework, we seek to compare policies in terms of efficiency and ultimately
characterize optimal policies for this scenario. We shall measure efficiency using the accu-
mulated rank distribution approximation. In a market with two schools (|C| = 2), this is
equivalent to comparing the mass of students assigned to their top preference. This also
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ensures stochastic dominance of the cumulative rank distributions as the mass of unassigned
students remains constant.

3.2.2. Optimal Policy

In this setting, we search for an optimal lottery policy. For simplicity, let us assume there
exists a vector of market clearing cutoffs (p0, p1) such that the stable matching exists. Then,
let us define X i = Gi

C0(p0) and Y i = Gi
C1(p1) the rejection probability for student i at schools

C0, C1 respectively. The optimal policy problem is defined as follows.

max
Xi,Y i

∫ 1

0
F (1 − 2i)(1 − X i)di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y i)di

s.t.
∫ 1

0
F (1 − 2i)(1 − X i)di +

∫ 1

0
(1 − F (1 − 2i))Y i(1 − X i)di = S0∫ 1

0
F (1 − 2i)X i(1 − Y i)di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y i)di = S1

(3.4)

The objective function measures the mass of students assigned to their first preference
in each school. The restrictions impose that the allocation must meet the market clearing
conditions (supply equals demand). Strictly speaking, the total mass of students assigned to
each school must be less than or equal to the school’s capacity, but we assume that capacities
are restrictive (S0 + S1 < 1) and so the restrictions are always active in the optimum. Because
of this, we can rewrite the following unrestricted problem.

max
Xi,Y i

S0 + S1 −
∫ 1

0
(1 − F (1 − 2i))Y i(1 − X i)di −

∫ 1

0
F (1 − 2i)X i(1 − Y i)di

We try to minimize students assigned to their second choice (thereby maximizing those
assigned to their first choice). With this formulation, we can characterize the optimal policy.

Proposition 3.1 (Optimal Policy) The optimal lottery policy is X i = Y i ∈ {0, 1} ∀i ∈ [0, 1].
In particular, the optimum is such that

X i = Y i =

0 ∀i ∈ Ī

1 ∀i /∈ Ī

where the set Ī ⊆ I of students must be feasible, that is∫
Ī

F (1 − 2i)di = S0 and
∫

Ī
(1 − F (1 − 2i))di = S1

Intuitively, the main source of inefficiency is rejection through competition: students
rejected by their first choice apply to their next choice and might get accepted. By setting

12



X i = Y i ∈ {0, 1} we eradicate this kind of behavior.

Naturally, this lottery policy mimics the Serial Dictator (SD) mechanism: pick a mass
of students and allow them to choose their school freely. This mechanism is clearly Pareto-
efficient as no selected students are ever rejected. Particularly, the optimal value is obtained,
which means a mass of S0 + S1 students is assigned to their top preference. Although the
result might strike as straightforward, the information over student preferences modeled by F

allows us to select the set Ī such that, in expectation, actually no student chooses its second
preference in the SD-type procedure. This means that the outcome is not only Pareto-efficient,
but it maximizes the mass of students assigned to their top preference.

However, the set Ī need not always exist. In fact, for large noises (take δ(ϵi
C1 − ϵi

C0) with
large δ > 0), if S0 ̸= S1, then the set Ī does not exist. For instance, when δ → ∞, then
F (1 − 2i) = 1/2 ∀i and the market clearing conditions 1

2
∫

Ī di = S0 and 1
2

∫
Ī di = S1 become

infeasible.

For example, consider a discrete scenario with two schools C0, C1 with capacities S0 = 1
and S1 = 2 and a total of six students where three prefer C0 over C1 (group 1) and the other
three prefer C1 over C0 (group 2). We would like to select Ī such that |Ī| = S0 + S1 = 3. If
we select Ī as one student from group 1 and two from group 2, the SD-type procedure assigns
all three students to their top preference. However, if we select Ī as two students from group
1 and one from group 2, necessarily one student from group 1 will be matched to its second
choice.

We have shown there exists an optimal lottery policy under certain specifications, but
these lotteries not always are feasible. Additionally, this result escapes a natural tie-breaking
framework as schools’ preferences are dichotomous and therefore impose an allocation rather
than actually breaking ties.

3.2.3. Data-driven Policy

We intend to study lotteries driven by observable student characteristics in a stable
mechanism setting. As mentioned before, observable characteristics can be informative of
students’ preferences before they submit them. This can be exploited to generate preference
correlation in a strategy-proof manner.

Definition 3.5 (Data-driven Policy) A lottery policy {Gi
c}i∈I

c∈C is data-driven if Gc
i are

degenerate distributions such that

G(x|i, c) =

1 x ≥ 1 − di
c

0 x < 1 − di
c

i.e. the score assigned to student i at school c is deterministic ei
c = 1 − di

c.
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Hence, the market clearing conditions are the following.

∫ p0

0
[F (1 − 2i) + (1 − F (1 − 2i)) · 1i<1−p1 ]di = S0∫ 1

1−p1
[(1 − F (1 − 2i)) + F (1 − 2i) · 1i>p0 ]di = S1

Or equivalently,

min{p0, 1 − p1} + (11−p0<p1)
∫ p1

1−p0
F (1 − 2i)di = S0

(1 − max{p0, 1 − p1}) + (11−p1<p0)
∫ p0

1−p1
(1 − F (1 − 2i))di = S1

We search for cutoffs p0, p1 that satisfy both conditions. However, as we have assumed
that S0 + S1 < 1, this implies that p0 < 1 − p1, and therefore this system of equations is far
simpler. The market clearing equations reflect what we mean by bold lotteries. As scores are
deterministic, the policy-maker makes some sort of gamble through the proxy as it grants
some students high scores (and naturally others a low score) without full knowledge of their
preferences. This naturally induces risk as a consequence of the lack of information.

Definition 3.6 (Data-driven Equilibrium) With a data-driven lottery design, the equilib-
rium is given by p0 = 1 − S0, p1 = 1 − S1, which assigns a total mass of

RDB(1) =
∫ S0

0
F (1 − 2i)di +

∫ 1

1−S1
(1 − F (1 − 2i))di

students to their top preference.

C0

0

C1

1

F (1 − 2i)

Xi
C0

S0

Xi
C1

S1

1

Figure 3.3: Data-driven Equilibrium

The efficiency of the outcome when implementing data-driven policies is determined by F.

14



When information is perfect (i.e. δ(ϵi
C1 − ϵi

C0) with δ = 0) then F (1 − 2i) = 1 ∀i < 1/2 and
F (1 − 2i) = 0 ∀i > 1/2, so the policy-maker is able to predict student’s preferences perfectly.
In this case, the data-driven policy is efficient as it assigns all students to their first preference
(RDB(1) = S0 + S1). In this case, there is no risk in deterministic scores as the policy-maker
has full knowledge of students’ preferences through the proxy.

On the other hand, when the policy-maker has no information (i.e. δ(ϵi
C1 −ϵi

C0) with δ → ∞)
then F (1 − 2i) = 1/2 ∀i ∈ [0, 1] and the policy performs poorly, assigning RDB(1) = S0+S1

2
students to their first preference.

3.2.4. Standard Lotteries

With the proposed framework in mind, we would also like to evaluate the more commonly
used tie-breaking procedures. We shall study two of the more commonly implemented policies:
multiple tie-breaking (MTB) and single tie-breaking (STB). As mentioned above, these policies
are random as a way to ensure ex-ante student equality.

Definition 3.7 (Multiple Tie-breaking) A multiple tie-breaking lottery is defined by fixing
Gi

c = Gc, a common distribution ∀i ∈ [0, 1]. This is, for each school c, all students have the
same probability of being rejected/accepted.

Through this definition, we can evaluate the efficiency of a MTB procedure with student
information. Similar to the optimal policy, for a given cutoff vector (p0, p1), we define
X = GC0(p0) and Y = GC1(p1) constant values that reflect the probability of any student
being rejected at school C0 and C1 respectively. A priori, these probabilities depend on
the relative demand for each school, i.e. school’s capacities as well as the expected mass of
students that prefer each school. Then, the market clearing conditions are the following.

∫ 1

0
F (1 − 2i)(1 − X)di +

∫ 1

0
(1 − F (1 − 2i))Y (1 − X)di = S0∫ 1

0
F (1 − 2i)X(1 − Y )di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y )di = S1

We can solve this 2 × 2 system of equations and find X, Y .
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Definition 3.8 (MTB Equilibrium) In a MTB setting, the equilibrium is given by

X = (F̄ − (1 − S)(1 − F̄ ) − S0)
2F̄

+

√
((1 − S)(1 − F̄ ) + F̄ − S0)2 + 4F̄ (1 − S)(1 − F̄ )

2F̄

Y = ((1 − F̄ ) − S1 − (1 − F̄ )(1 − S)))
2(1 − F̄ )

+

√
(−(1 − F̄ ) + S1 + (1 − F̄ )(1 − S))2 + 4F̄ (1 − S)(1 − F̄ )

2(1 − F̄ )

with F̄ =
∫ 1

0 F (1 − 2i)di and S = S0 + S1. This design assigns a total mass of students in
their top preference given by

RMT B(1) = F̄ (1 − X) + (1 − F̄ )(1 − Y )

The analytical result of the MTB setting reveals there exists an irretrievable efficiency loss
when F̄ < S0 and 1 − F̄ < S1, expressed in the equilibrium terms. When the expected mass
of students that prefers one school is larger than that school’s capacity, there will inevitably
exist a mass of students who cannot be assigned to their top preference no matter the lottery
policy. Therefore, we can only aim to improve efficiency within a mass of S0 + S1 students.

Henceforth, we shall assume that schools’ capacities are restrictive not only market-wise
(S0 + S1 < 1) but also school-wise (F̄ > S0 and 1 − F̄ > S1). This means we restrict our
analysis to the mass of students that can effectively improve efficiency.

C0

0

C1

1

F (1 − 2i)

X

Y

1

Figure 3.4: Multiple Tie-breaking Equilibrium

Similarly, we can characterize the STB lottery policy in this setting.

Definition 3.9 (Single Tie-breaking) A single tie-breaking lottery is defined by fixing
Gi

c = G a common lottery ∀i ∈ [0, 1] and ∀c ∈ C. This is, all students obtain the same score
for all schools drawn from a common distribution G.
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Once again, for a given cutoff vector (p0, p1), we define X = G(p0), Y = G(p1) constant
values. A priori, although the distribution G is the same for both schools and all students,
the probability of rejection at each school is not necessarily the same, as it depends on the
capacities and student demands. Without loss of generality, let us assume that S0

F̄
≤ S1

1−F̄
so

that p0 ≥ p1. Then, the market-clearing equations are the following

∫ 1

0
F (1 − 2i)(1 − X)di = S0∫ 1

0
F (1 − 2i)(X − Y )di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y )di = S1

We can solve this 2 × 2 system to find X, Y .

Definition 3.10 (STB Equilibrium) In an STB setting, the equilibrium is given by

X = 1 − S0

F̄
, Y = 1 − S0 − S1

This policy assigns a total mass of students to their top preference given by

RST B(1) = S0 + (1 − F̄ )
(

S0 + S1 − S0

F̄

)

We interpret single tie-breaking as a more ’dictatorial’ random policy design. It aims to
keep randomization with a similar ex-ante equality goal, but it naturally selects a high-scoring
group of students ex-post which is the same for all schools. Consequently, this procedure
assigns more schools to their top choice than MTB. Specifically, a highly-demanded school
(in this case C0) is matched only to students which rank that school as their top choice. As
we have assumed that capacities are restrictive school-wise and S0 < S1, this policy induces a
kind of cherry-picking for school C0. However, relatively low-demanded schools (in this case
C1) face applications from both students that have that school as their top choice as well as
rejected students from C0.

3.2.5. Comparing Policies

We would like to provide sufficient conditions to ensure a data-driven policy performs
better (or worse) than the MTB policy. Let us assume that S0 ̸= S1. As mentioned before,
the key to the policy comparison lies in the magnitude of the error terms, which measures the
amount of information the proxy provides over students’ preferences.

Proposition 3.2 (Data-driven Policy vs MTB) Let us redefine the error term as
δ(ϵi

C1 − ϵi
C0) ∼ F with δ > 0 and note Rδ

DD(1), Rδ
MT B(1) the mass of students assigned to their

top preference with error size δ when using data-driven and MTB lottery policies respectively.
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If S0 ≤ F̄ and S1 ≤ 1 − F̄ , then, there exists δ, δ̄ such that:

1. ∀δ < δ: Rδ
DD(1) > Rδ

MT B(1)

2. ∀δ > δ̄: Rδ
DD(1) < Rδ

MT B(1)

This result shows that an increase in information precision (a decrease in noise) will improve
the efficiency of the allocation using a data-driven design. However, if the noise size is too
large, the data-driven policy harms efficiency and performs worse than MTB. Then again,
this is because data-driven policies are bold in the sense that they are deterministic. When
information is scarce, competition in random lottery scenarios can fix the lack of correlation
between preferences by multiple application rounds.

For example, take S0 = 0.2, S1 = 0.4 and F ∼ N(0, σ2). Figure 3.5 shows the effect of
the variance of F (σ2) over the number of students assigned to their top preference for each
policy through simulations.
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Figure 3.5: Policy Comparison Simulations

As mentioned above, the optimal policy performs efficiently for small errors, assigning
S0 + S1 students to their top preference, but then decreases as the set Ī ceases to exist. The
data-driven policy is also efficient for small error magnitudes (a high information setting) but
then decreases naturally when less information is available and the gamble is less precise. As
stated beforehand, when the error term is too large, the data-driven procedure performs worse
than the MTB and STB policies. Naturally, the STB policy always assigns more students to
their top preference than the MTB policy.
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3.3. Discussion

As Erdil and Ergin (2008) state, random stable mechanisms (such as the DA with randomly
generated preferences) are wasteful because randomly generated stability constraints produce
efficiency loss. We can think of stable mechanisms as Che and Tercieux (2018) propose: let k

be the limit amount of applications each student can perform, then k can be thought of as a
measure of competition in matching markets. Then, the Boston Mechanism (k = 0) represents
minimum competition, and the Deferred Acceptance Mechanism (k → ∞) represents maximum
competition. In this sense, excessive competition guarantees stability but damages efficiency.
Therefore, one would desire limiting competition but ideally maintaining stability and strategy-
proofness. This is where lottery design might be helpful.

One way of enhancing efficiency is the STB lottery design. This policy certainly limits
competition but does so in a dictatorial manner by randomly selecting a group of privileged
students. This naturally improves top-rankings but has a cost in lower ranking positions and
unassigned students.

Our proposition lies in exploiting heterogeneity of students’ preferences to enhance efficiency
avoiding these costs. Preference heterogeneity would allow the policy-maker to reduce
competition without selecting privileged students but by simply granting high priority to
students that rank that school highly, i.e. correlating student and school preferences.

Designing schools’ preferences based on students’ preferences to obtain a high correlation
seems natural. The problem is this mechanism would not be strategy-proof, so the timing
of the model forces the policy-maker to predict student preferences. This is where student
characteristics become handy. We have shown a good proxy of student preferences enables
smarter lottery design to obtain high correlation and improve efficiency. If the proxy is
verifiable, then the DA is strategy-proof. Similar to the results shown by Echenique et al.
(2020), correlating supply and demand preferences leads to increased efficiency in stable
mechanisms by limiting excess competition, in their case through a previous interview process.
However, in school choice, the particularity of tie-breaking grants an extra degree of freedom
in the design of the mechanism that allows for enhanced efficiency without compromising the
veracity of student’s preferences.

However, we have shown that using information to guide lottery design might be risky.
The data-driven policies effectively improve efficiency only when (1) the proxy is a powerful
predictor which leads to high correlation, and (2) the market shows sufficient heterogeneity in
students’ preferences. If this is not the case, these policies perform worse than MTB. This is
because data-driven policies are bold as they not only grant some students higher priority but
because they grant the rest a lower one in a deterministic manner. This is beneficial when
student preference prediction is precise, but it becomes harmful when it is not. With poor
predictions, competition is in fact efficient as it corrects poor predictions through multiple
applications.
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Chapter 4

Application - School Choice in Chile

As mentioned before, we shall contrast our theoretical findings with simulated results using
school choice data recovered from the chilean SAE 2021 process. This chapter provides a
brief summary of the chilean system as well as a general overview of the data and the results
obtained through our simulations.

4.1. School Choice in Chile - Sistema de Admisión
Escolar

Since 2016, the Chilean Government, as well as many other countries or cities around
the world (Boston, New York, Amsterdam, Seúl, Ghana, England and others) adopted
a centralized procedure to assign students to schools. In May 2015, as part of a major
educational reform, a student inclusion bill was passed. In this bill, one of the main aspects
included the prohibition of student selection in schools. This led to the foundation of the
Sistema de Asignación Escolar (SAE), an institution dependent of the Educational Ministry
(MINSAL) which is entrusted to assign students to schools. This reform meant great change
as the chilean educational system migrated from a traditional decentralized structure towards
a centralized school assignment.

Every year, the SAE team has to solve the following task: generate a matching of student
to schools considering student preferences and school capacities while meeting a series of
restraints specific to the chilean context. Law 20.835 carefully dictates the rules that define
the admission process (Biblioteca del Congreso Nacional de Chile, 2015).

In general, the process is based on two main steps: the main application and assignment
round, and the complementary round. The former phase presents itself as the more relevant
and complex step. In the main round, all elegible school programs are offered to all students,
which generates a large allocation problem. Through the SAE webpage, students (truthfully
parents or guardians) submit a ranking over desired schools. This serves as the main input to

20



generate the allocation procedure, which is done using the Deferred Acceptance Algorithm.
The algorithm generates a student-school matching that assigns each student at most one slot
in one school.

The second round procedes similarly with families that either did not participate in the
previous round or remained unassigned due to the limiting capacities of their submitted
schools. In this round, no student can remain unassigned. A student which remains once
again unassigned is simply assigned to the nearest school (geographically) with spare capacity.

Preliminary
stage

January -
August

Main
application

round

August -
September

Main
assignment

period

September -
August

Main round
results

October

Complementary
round

November

Complementary
round
results

December

Figure 4.1: General Assignment Proccess Steps

The core of the SAE admission problems lies in the SAE webpage1. Through this online
platform students are able to review and compare all available school characteristics, they
are able to submit and edit their preferences and finally accept or reject once the results are
published.

The deployment of the SAE project has been gradual. In 2016 it only included pre-kinder,
kinder, primero básico, séptimo básico and primero medio age groups and only considered
students from the Magallanes Region. In 2017, the project included all age group levels from
5 regions. From 2020 onwards, the system includes all age groups and all regions of chilean
public schools.

4.2. Data Overview

All of the data used is publicly available in the MINEDUC data webpage2. The Ministry
uploads this dataset every year as part of a governmental transparency policy. The data
available is enough to replicate every step of the allocation process, including the main round
and complementary round. However, we shall focus only on the main round as it represents
the more complex matching problem we intend to tackle.

1 For further information visit: https://www.sistemadeadmisionescolar.cl/
2 For more information, visit: http://datos.mineduc.cl/dashboards/20514/descarga-bases-de-datos-sistema-

de-admision-escolar/
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Figure 4.2: Student Map

The data set is divided into 5 files: supply (schools), demand (students), applications,
outcome and additional information.

4.2.1. Supply Data

Supply data is described in the file A1. Each of the entries in this file represents a pair
(establishment, course) which in theory represents a single ’school’ to which a student applies
to. The establishment is identified with a unique RBD, while the course is identified by the
COD_CURSO variable.

For each (establishment, course) pair, the file contains the following variables:

1. Educational day format. This is either
morning, afternoon or complete.

2. Genre of admissible students. Either
masculine, feminine or both.

3. Geographical location of school in lat-

long format.

4. A binary variable indicting if the school
charges some sort of tuition.

5. Total available seats and vacant seats.

4.2.2. Demand Data

Demand data is described in the file B1. Each of the entries in this file represents a student
which is uniquely identified by the mrun code, consistently used in MINEDUC data to ensure
anonymity. Each mrun contains the following variables.
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1. Educational level. Integer variable rang-
ing from −1 (pre-kinder) to 12 (4th
medio).

2. Genre, which is either masculine, femi-
nine or other.

3. A binary variable indicating if the stu-
dent is priority-type or not.

4. A binary variable stating if the student
is part of the top 20% ranking of his/her
school.

5. Georeference of the student’s declared
location in lat-long format and a qual-
ity index representing the quality of the
georeferencing.

With respect to georeferencial data, it is important to notice that these are subject to
error. When submitting their information through the SAE webpage, students are asked to
enter their address manually. This information is then processed by MINEDUC using the
Google Geocoding API 3 which returns both lat and long variables as well as a quality index
associated to the precision of the output for each address.

The quality index ranges from 1 to 5 according to the following scheme. Quality index 1
means that the application was able to obtain a single result with either ’rooftop’ or ’range
interpolated’ quality, which reflects a very precise result. Quality index 2 also reflects a single
result but in this case with ’geometric center’ or ’approximate’ quality, which means that the
algorithm identified relevant information in the address and used geometric centers of streets,
districts or whatever information was available to obtain the lat-long values. Quality index 3
means that the API obtained multiple results. Quality index 4 means the address corresponds
to the municipality address. Quality index 5 means that the student shared his location.

Table 4.1: Georeferential Quality Index Distribution

Quality Index Count Percentage
1 43,355 37.5%
2 23,157 20%
3 0 0%
4 17,190 15%
5 31,860 27.5%

Additionally, for anonymity purposes, the lat-long values of the publicly available SAE
data is slightly distortioned using a random procedure. A direction between 0 and 360 degrees
is chosen randomly as well as a random distance between 50 and 300 meters. The point is
then shifted in that direction. For instance, data is slightly noisy.

Although georeferential data is clearly not perfect, it provides much information of student’s
preferences and it is the most complete available student characteristic other than their
preferences, which is what we seek to exploit. Consequently, as we will argue in the theoretical

3 Visit https://developers.google.com/maps/documentation/geocoding/overview for additional information.
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model, we allow for noisy information when it comes to including student’s characteristics.

4.2.3. Applications

The application information is described in the C1 file. Each of the entries corresponds to a
student’s application to one school program and its associated preference ranking. Therefore,
each entry can be uniquely defined by the (mrun, RBD, COD_CURSO, preference) tuple,
which means student mrun applies to school (RBD,COD_CURSO) as its preference number
preference.

Theoretically, students rank all schools as it is common to assume that all schools are
acceptable for all students. However, this is not true in practice, as the supply of programs is
vast and therefore it is very costly (generally time-wise) for parents or guardians to gather
information of all programs. The data shows students apply to around 3 schools on average.
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Figure 4.3: Distribution of Student’s Number of Applications

Furthermore, with respect to distance data, we can observe that, on average, students
apply to schools which are around 3.8km away. The distribution suggests, as Aramayo and
Goic (2018) state, that students tend to prefer schools that are close by. This is a key feature
in our simulations, as we will use distance as our observable characteristic to construct school’s
preferences.
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Figure 4.4: Distribution of Student’s Distance to Applied Schools

4.2.4. Outcome

The official results obtained in that year’s allocation procedure are contained in the D1 file.
Each entry correspond to a (mrun, RBD_CURSO, COD_CURSO) tuple, this is, the one-
to-one matching obtained for each student-school pair. If the RBD_CRUSO,COD_CURSO
variables are empty, that student was left unassigned in the first round. This file also contains
information regarding the posterior student’s response to the assigned school as to where
the student accepted or rejected the assignment. Although this might also be interesting
to exploit, we shall only consider the algorithm’s output as the official allocation for this
project’s purpose.

4.3. Simulated Results

Our simulations only consider the pre-kinder age group (cod_nivel = −1). This is because
it represents the larger age group market without saturating computation time and it simplifies
calculations of vacancies which depend on continuing students and other criteria.

As mentioned before, we shall use the distance between the student and the school as our
information source/proxy over student preferences in a data-driven policy design, as defined in
our theoretical approach. This is mainly motivated by the results shown by Aramayo (2018),
who shows empirically that the distance to schools has a significant effect over student’s
ranking decisions. Moreover, as mentioned in the general overview, the distance from schools
is the only completely available student characteristic.

In the 2021 admissions process, the market size is as follows.
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Table 4.2: Market Size

Market side Count
Supply (schools) 5,221 (total capacity 167,980)
Demand (students) 115,562

4.3.1. Pareto-improving Pairs

Firstly, we evaluate the allocation from a Pareto-improving pairs point of view. As we
mentioned before, this metric is widely used in the literature, probably due to it’s simple
intuition: we can swap two student’s schools and Pareto-improve the allocation.

When generating data-driven lotteries, we observe a significant reduction in the amount of
students that belong to Pareto-improving pairs.

Table 4.3: Simulation of Pareto-improving pairs

Lottery Policy 2021
MTB lottery 12,641 (10.94%)
Data-driven lottery 4,315 (3.73%)

This is a first empirical result that supports the theoretical idea of improving efficiency by
using student information. Intuitively, using data-driven policies reduces the probability of a
school granting higher priority to a student that does not rank that school highly versus a
student that does. This kind of randomly-induced result that allows for Pareto-improving
pairs to emerge is less likely if information is considered.

4.3.2. Cumulative Rank Distribution

Secondly, we evaluate the allocation from a cumulative rank distribution point of view.
This metric grants a more holistic perspective as it specifies student’s rankings and the amount
of students that remain unassigned. Figure 4.5 shows the simulated results for the three
analyzed policies: STB, MTB and data-driven (based on student’s distance to schools).
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Figure 4.5: Cumulative Rank Distributions

As discussed by Abdulkadiroğlu et al. (2009), the single tie-breaking (STB) lottery policy
assigns more student to their top preference than the MTB policy, although it leaves more
students unassigned. Moreover, there is no stochastic dominance between the rank distribu-
tions as the STB policy assigns less students from their third preference onwards. Students
that obtain high lottery tickets have a good chance of being assigned to their top schools, but
the students that get lower lottery tickets find themselves rejected repeatedly with higher
probability. This generates a sort of ’snowball effect’ that results in a greater number of
students unassigned.

On the other hand, the data-driven lottery policy assigns more students to their top
three preferences than MTB but not as much as STB. In contrast to STB, although we
cannot ensure stochastic dominance, the data-driven lottery performs quite similarly to the
MTB in lower rankings and the amount of unassigned students remains practically constant.
Data-driven lotteries, similar to STB, assigns more students to their top preferences but
seems to avoid the ’snowball effect’ that generates a reduction in lower rank assignments
and unassigned students. This design improves efficiency by exploiting student heterogeneity
rather than forcing a more dictatorial kind of procedure.

Table 4.4: Policy Comparison - Unassigned Students

Lottery Policy Unassigned Students Percentage
MTB 8,609 7.45%
STB 9,626 8.33%
Data-driven 8,786 7.60%

However, using the distance from schools as a proxy comes at a cost. When using distance to
schools to define priorities we observe a significant increase in segregation. This is probably due
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to the fact that Santiago (and other chilean cities) show important geographical segregation.
Therefore, the data-driven design limits priority student’s chances for admission in better
schools which are usually located outside of their districts. As shown by the Duncan Index
(Duncan & Duncan, 1955) (a commonly used metric to evaluate segregation) the simulations
show that segregation nearly doubles.

Lottery Policy Duncan Index
MTB 0.298
STB 0.534
Data-driven 0.566

However, this cost is specific to this observable characteristic. Optimistically, there might
be other available student characteristics that are simultaneously effective predictors of
preferences and not segregators, avoiding these kind of costs.
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Chapter 5

Conclusion

Recently, many centralized school allocation markets worldwide have gravitated towards
the use of the DA algorithm with randomly generated tie-breaking procedures as a way of
granting equality ex-ante. Erdil and Ergin (2008) show this mechanism damages efficiency as
lotteries impose artificial stability constraints. Stable mechanism are highly competitive for
students (Che & Tercieux, 2018) which is the main cause of efficiency loss.

We propose designing lotteries by correlating student’s and school’s preferences to reduce
excessive competition and therefore improve efficiency. To maintain strategy-proofness through
the DA, we can use observable student characteristics to predict student preferences and, if
the proxy is informative, effectively correlate preferences.

Theoretically, we have shown that data-driven policies perform better than MTB policies
in terms of efficiency when observable characteristics are good predictors, but perform worse
when they are not. Additionally, enhancing efficiency by correlating preferences seems less
costly than doing so by using STB procedures. This is because data-driven policies exploit
preference heterogeneity rather than imposing a more ’dictatorial’ lottery design.

The theoretical results are consistent with empirical simulations using chilean SAE 2021
admissions data. Using distance to schools as our observable characteristic, the number of
students in Pareto-improving pairs is greatly reduced. Furthermore, data-driven policies
cumulative rank distributions stochastically dominate MTB in the top three preferences and,
unlike STB, assigns almost the same mass of students in lower rankings, leaving the same
amount of students unassigned.
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Annex

Optimal Policy Proof

As mentioned above, the optimal policy problem for a setting with 2 schools is the following.

max
Xi,Y i

∫ 1

0
F (1 − 2i)(1 − X i)di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y i)di

s.t.
∫ 1

0
F (1 − 2i)(1 − X i)di +

∫ 1

0
(1 − F (1 − 2i))Y i(1 − X i)di = S1∫ 1

0
F (1 − 2i)X i(1 − Y i)di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y i)di = S2

(.1)

As we assume capacities are restrictive, we can rewrite the problem in an unrestricted
manner.

max
Xi,Y i

S1 + S2 −
∫ 1

0
(1 − F (1 − 2i))Y i(1 − X i)di −

∫ 1

0
F (1 − 2i)X i(1 − Y i)di

We would like to show that the optimal policy is given by X i = Y i ∈ {0, 1} ∀i ∈ [0, 1] and
in particular

X i = Y i =

0 ∀i ∈ Ī

1 ∀i /∈ Ī

where the set Ī ⊆ I of students must be feasible, that is∫
Ī

F (1 − 2i)di = S1 and
∫

Ī
(1 − F (1 − 2i))di = S2

For this, we can argue in 2 different ways.

• Let R∗(1) be the optimal value in the unrestricted problem, the objective function has a
straightforward bound R∗(1) ≤ S1+S2 because we know that

∫ 1
0 (1−F (1−2i))(1−Y i)di ≥

0 and
∫ 1

0 F (1 − 2i)X i(1 − Y i)di ≥ 0 for any policy X i, Y i. Then, using X i = Y i such
that Ī is feasible, the upper bound is obtained and therefore it is optimal.
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• Using Euler-Lagrange, we can solve the optimization problem for a fixed i ∈ [0, 1]. Each
problem is as follows.

max
X,Y

S1 + S2 − (1 − F (1 − 2i))Y i(1 − X i) − F (1 − 2i)X i(1 − Y i)

We shall note Ri(1) as the optimum for this problem.

Then, the derivatives for X, Y are:

∂Ri(1)
∂X

= (1 − F (1 − 2i))Y − F (1 − 2i)(1 − Y ) = Y − F (1 − 2i)

∂Ri(1)
∂Y

= −(1 − F (1 − 2i))(1 − X) + F (1 − 2i)X = −1 + X + F (1 − 2i)

As the derivatives are constant with respect to the variable in question, we will find
corner solutions. We can check that the proposed optimum meets these conditions.

For X:

– If Y = 0, then ∂Ri(1)
∂X

= −F (1 − 2i) < 0 and therefore X = 0 is optimal.
– If Y = 1, then ∂Ri(1)

∂X
= 1 − F (1 − 2i) > 0 and therefore X = 1 is optimal.

For Y :

– If X = 0, then ∂Ri(1)
∂X

= −1 + F (1 − 2i) < 0 and therefore Y = 0 is optimal.
– If X = 1, then ∂Ri(1)

∂X
= F (1 − 2i) > 0 and therefore Y = 1 is optimal.

Additionally, we can discard any interior solution. In contradiction, let X, Y be such
that

∂Ri(1)
∂X

= Y − F (1 − 2i) = 0 =⇒ Y = F (1 − 2i)

∂Ri(1)
∂Y

= −1 + X + F (1 − 2i) = 0 =⇒ X = 1 − F (1 − 2i)

Then, at this point, the objective function is

Ri(1) = S1 + S2 + F (1 − 2i)2 − F (1 − 2i) < S1 + S2

which is not optimal.

MTB Equilibrium

The market clearing conditions for a MTB equilibrium are:
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∫ 1

0
F (1 − 2i)(1 − X)di +

∫ 1

0
(1 − F (1 − 2i))Y (1 − X)di = S1∫ 1

0
F (1 − 2i)X(1 − Y )di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y )di = S2

Let F̄ =
∫ 1

0 F (1 − 2i)di, the conditions define the following 2 × 2 system.

F̄ (1 − X) + (1 − F̄ )Y (1 − X) = S1

F̄X(1 − Y ) + (1 − F̄ )(1 − Y ) = S2

Subtracting both equations we get
XY = 1 − S

where S = S1 + S2. If we replace this condition in the market clearing condition for school C0

we get the following quadratic equation.

F̄ (1 − X) + 1 − S

X
(1 − X)(1 − F̄ ) = S0

=⇒ −X2F̄ + X[+F̄ − (1 − S)(1 − F̄ ) − S0)] + (1 − S)(1 − F̄ ) = 0

Which has solution

X∗ = (F̄ − (1 − S)(1 − F̄ ) − S0)
2F̄

+

√
((1 − S)(1 − F̄ ) + F̄ − S0)2 + 4F̄ (1 − S)(1 − F̄ )

2F̄

Similarly, replacing our condition in the market clearing condition for school C1 we get

F̄ (1 − Y )1 − S

Y
+ Y (1 − Y )(1 − F̄ ) = S1

=⇒ −Y 2(1 − F̄ ) + Y [−F̄ (1 − S) + (1 − F̄ ) − S1] + F̄ (1 − S) = 0

Which has solution

Y ∗ = ((1 − F̄ ) − S1 − (1 − F̄ )(1 − S)))
2(1 − F̄ )

+

√
(−(1 − F̄ ) + S1 + (1 − F̄ )(1 − S))2 + 4F̄ (1 − S)(1 − F̄ )

2(1 − F̄ )

STB Equilibrium

The market clearing conditions for a STB equilibrium are the following.
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∫ 1

0
F (1 − 2i)(1 − X)di = S0∫ 1

0
F (1 − 2i)(X − Y )di +

∫ 1

0
(1 − F (1 − 2i))(1 − Y )di = S1

The difference in the market clearing equation from school C0 comes from the fact that, as
S0
F̄

≤ S1
1−F̄

then p0 ≥ p1. Therefore, as the score for each student i is identical, the conditional
probability of being accepted at school C0 when previously rejected at school C1 is 0. Then,
the solution is the following.

X = 1 − S0

F̄

Y = 1 − S0 − S1

Then, the total mass of students assigned to their top preference is:

RST B(1) = S0 + (1 − F̄ )(S0 + S1 − S0

F̄
)

Data-driven Policy vs MTB Proof

Let ϵi
C1 − ϵi

C0 ∼ F and δ ∈ R+ be such that the data-driven policy assigns a mass of
students to their top preference given by

R
δ
DB(1) =

∫ S1

0
F

(1 − 2i

δ

)
di +

∫ S1

0

(
1 − F

(1 − 2i

δ

))
di

and particularly R
δ
DB(1) > R

δ
MT B(1). Consider δ < δ, this is δ = α · δ with α < 1.

Because F is an increasing function, it is true that ∀i < 1
2 , F

(
1−2i
α·δ

)
> F

(
1−2i

δ

)
and ∀i > 1

2 ,
F

(
1−2i
α·δ

)
< F

(
1−2i

δ

)
. Then, as S1, S2 < 1/2 we have that

• ∀i < 1
2 : 1 − 2i > 0 and then F

(
1−2i
α·δ

)
> F

(
1−2i

δ

)
=⇒

∫ S1
0 F

(
1−2i

δ

)
di <

∫ S1
0 F

(
1−2i
α·δ

)
di

• ∀i > 1
2 : 1 − 2i < 0 and then F

(
1−2i
α·δ

)
< F

(
1−2i

δ

)
=⇒

∫ S1
0

(
1 − F

(
1−2i

δ

))
di <∫ S1

0

(
1 − F

(
1−2i
α·δ

))
di

and therefore Rδ
DB(1) > R

δ
DB(1) > RMT B(1), which proves the result. Similarly, if there

exists δ̄ = α · δ̄ with α > 1, then the converse is true. ∀i < 1
2 F

(
1−2i
α·δ̄

)
< F

(
1−2i

δ̄

)
and ∀i > 1

2

F
(

1−2i
α·δ̄

)
> F

(
1−2i

δ̄

)
. Therefore Rδ

DB(1) < Rδ̄
DB(1) < RMT B(1).

35


	Summary
	Summary
	Agradecimientos
	Table of Content
	Tables Index
	Figures Index

	1 Introduction
	2 Literature Review
	3 Theoretical Analysis
	3.1 Notation and Definitions
	3.2 The Model
	3.2.1 General Setting
	3.2.2 Optimal Policy
	3.2.3 Data-driven Policy
	3.2.4 Standard Lotteries
	3.2.5 Comparing Policies

	3.3 Discussion

	4 Application - School Choice in Chile
	4.1 School Choice in Chile - Sistema de Admisión Escolar
	4.2 Data Overview
	4.2.1 Supply Data
	4.2.2 Demand Data
	4.2.3 Applications
	4.2.4 Outcome

	4.3 Simulated Results
	4.3.1 Pareto-improving Pairs
	4.3.2 Cumulative Rank Distribution


	5 Conclusion
	Bibliography
	Annex



