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‘Thich Nhat Hanh, un filésofo y monje budista vietnamita, escribe sobre cémo disfrutar de una

buena taza de té.

Debemos estar completamente atentos al presente para disfrutar de una taza de té.
Solo siendo conscientes del presente, nuestras manos sentirdn el calor de la taza.

Solo en el presente aspiraremos el aroma del té, saborearemos su dulzura y llegaremos a

apreciar su exquisitez.

Si estamos obsesionados por el pasado, o preocupados por el futuro, dejaremos escapar la
oportunidad de disfrutar una buena taza de té.

Cuando miremos el interior de la taza, su contenido va habrd desaparecido.

Con la vida ocurre lo mismo.

Sino vivimos plenamente el presente, en un abrir y cerrar de ojos la vida se nos habrd escapado.
Habremos perdido sus sensaciones, su aroma, su exquisitez y su belleza...

Y sentiremos que ha transcurrido a toda velocidad.

El pasado ya es pasado. Aprendamos de él y dejémoslo atrds.

El futuro, ni tan siquiera ha llegado. Hagamos planes para el futuro pero no perdamos el tiempo
preocupandonos por él. Preocuparse no sirve de nada.

Cuando dejemos de pensar en lo que ya ha ocurrido,
cuando dejemos de preocuparnos por lo que todavia no ha pasado,

estaremos en el presente.

Sclo entonces empezaremos a experimentar la alegria de vivir.’

Ham sa Vam




Autobiography

Naci un 17 de mayo de 1988 en Buenos Aires, Argentina. Mis padres, Luis y Alejandra,
me bautizaron con el nombre de Agustina Natalia Undabarrena Canusso, y soy la mayor de dos
hermanos. Vivi en Buenos Aires durante mi infancia hasta el afio 1996, donde realicé la
ensefianza basica en el colegio Norbridge School. Luego por motivo del trabajo de mi padre, nos
mudamos a Santiago, Chile, donde vivi mi adolescencia. Terminé la ensefianza basica y media en
el colegio Bradford School. Durante mis afios en el colegio me apasioné por las ciencias naturales
y en especial por la Biologia. Es por esto que el afio 2006 ingresé a la Pontificia Universidad
Catélica para estudiar Licenciatura en Biologia. Al graduarme en el afio 2010 realicé diversos
trabajos en laboratorios de investigacion en el area de microbiologia clinica y ambiental, hasta
que ingresé al Doctorado en Ciencias con mencién en Microbiologia de la Universidad de Chile
el afio 2012. Realicé mi trabajo de Tesis Doctoral en el Laboratorio de Microbiologia Moleculary
Biotecnologia Ambiental, en la Universidad Técnica Federico Santa Maria, en Valparaiso, a cargo
de los tutores el Dr. Michael Seeger Pfeiffer y la Dra. Beatriz Cdmara Herrera. Tras 4 afos de
arduo trabajo al fin he alcanzado mis objetivos académicos para presentarme a la obtencion del
grado de Doctora.

RRA &G Warr

) >

Vi




P Y e . e

Acknowledgements

| am deeply grateful to the following for making this dissertation possible:

Prof. Dr. Michael Seeger and Dra. Beatriz Camara, for being excellent research supervisors and
providing me the freedom of perform every crazy idea that came to my mind. For their patience,
encouragement and support that even extends beyond the confines of work. For showing me
that science should be every day enjoyed, and for teaching me how to keep going on even when
the darkness appeared. For letting me know that in every corner, something amazing is awaiting
to be discovered.

Thanks to all my labmates of LMIMBA, speacially to the Actino Team, that held me every day. For
their constant understanding and support, and for being a great team inside and outside the lab.
For your cares and concerns, and for being there for me in every opportunity that | needed.
Specially for helping me getting settled when | first arrived to Valparaiso, having no one here.
would not have done it without you all,

To our bicinformatic support, Dr. Juan Ugalde and Dr. Eduardo Castro-Nallar, that helped me to
unveil the fascinating world of omics and were by my side understanding and thinking how this
story was all connected.

To my commission professars: Dra. Margarita Carti, Dra. Gloria Levican, Dr. Francisco Chivez
and Dr. Carlos Santiviago, that were all along this road with advices and ideas to improve and
make this Ph.D thesis better, in every presentation.

To our international colaborators: Dr. Fabrizio Beltrametti and Dr. Edward Moore, for teaching
me and helping me to get my experiments on track.

To the GIGA Lab, from University of Liége, especially to Dr. Joseph Martial, for making my
internship in Belgium possible. To Dra. Cecile Vanderweerdt and Dr. Edwin de Pauw labs, for
teaching me enormously. For adopting me as they had known me since ever.

Most importantly, to my family and friends, who gives me constant and unconditional love. Only
fove is real. To you I dedicate this work.

Vil




Funding

This work was supported by the “Comisién Nacional de Investigacién Cientifica y Tecnoldgica”
(FONDECYT #11121571 and #1110992) and Swedish Research Council N° 2013-6713 with
additional funding from the Universidad Técnica Federico Santa Maria (USM131342, 131562).
Finally, we acknowledge Conicyt “Ph.D. fellowship”, Conicyt “Gastos Operacionales #21120621”,
Conicyt “Beca de pasantfa en el extranjero” along with PIEA (UTFSM).




Abbreviations

A: Adenylation domain

ACP: Acyl Carrier Protein

Ala: Alanine

ANI: Average Nucleotide Identity

ASW: Artificial Sea Water

AT: Acyl Transferase domain

BASU: Bacillus subtilis

BGCs: Biosynthetic Gene Clusters

C: Condensation domain

COGs: Cluster of Orthologous Genes

Cy: Cyclization domain

DH: Dehydratase domain

DMSO: Dimethyl sulphoxide

DNA: Desoxyribonucleic acid

E: Epimerization domain

ENFA: Enterococcus faecalis

ER: Enoyl Reductase domain

ESCO: Escherichia coli

ESI-FT ICR: Electrospray lonization — Fourier Transform — lon Cyclotron Resonance
F: N-formylation domain

HPLC: High Pressure Liquid Chromatography
KLPN: Klebsiella pneumoniae

KR: Ketoreductase domain

KS: Ketosynthase domain

LIMO: Listeria monocytogenes

LVEM: Low Voltage Electron Microscopy
MA: Marine Agar

MALDI-TOF: Matrix assisted Laser Desorption/lonization — Time of Flight
MIBiG: Minimum Information about a Biosynthetic Gene Cluster
MILU: Micrococcus luteus

IVILSA: Multi-Locus Sequence Analysis

MNP: Marine Natural Product

MRSA: Methicillin-Resistant Staphylococcus aureus
MS: Mass Spectrometry

MT: N-methylation domain

NMR: Nuclear Magnetic Resonance

NP: Natural Product

NRP: Non-ribosomal Peptide

NRPS: Non-ribosomal Peptide Synthetase
Orn: Ornithine

Ox: Oxidoreductase domain

PCP: Peptidyl Carrier Protein

IX




PCR: Polymerase Chain Reaction
PHAs: Polyhydroxyalkanoates
PKS: Polyketide Sythase

PSAU: Pseudomonas aeruginosa
R: Reductase domain

RNA: Ribonucleic acid

SAEN: Salmonella enterica
STAU: Staphylococcus aureus
STEP: Staphylococcus epidermidis
TE: Thioesterase domain

Thr: Threonine

TLC: Thin Layer Chromatography
Trp: Tryptophan

Tyr-NO;: Nitro-tyrosine

Val: Valine



Table of Contents

AULODIOBIAPNY .c.n ettt esictcirm et ren s et s e se s sresas s e s arsssaassssas s sserenseasensasesmenansns srestsnenmesnn Vi
ACKNOWIBHBEIMIENTS cuviciueiemrcmemer e seesseerenssarmaesseesestasesesesserassesassasertrsras sassessenssasaessssenssssensne Vil
FUNGING c1tttistiteiitesinsceercensracreneasessssasssnsssessessesassssansesstentassrsstontsstsrntvmsasmesssansensontssssass semrsnsrnnssave Vil
ADDIEVIBLIONS «..ooerrirremiircnisreseriisssnsssissinsntresssieomsssassesmassassensenssnsassessesssnssssssasssssmenssssnsasssesssssnn IX
TADBIE OF CONEENES ..ottt s stens bt sestesbsrs s e enrassasss st st s tanassasneseasenessnnns Xl
FIBUTE INA@X ccoeoeerreeererrereereenminarramresensssmssassmmastassassresassnesasoserarsrssaressssssotsasase bemsemmeome eneenarssesarsans XV
TADIE INUEX corvrrireeriresrissssssnsiarsersessesereesmansassasnssrasesressassassssssssssnsassassssssserssaeseessansassassssssssssemsensasns xvi
N A 4 L Lo OO OOV ST PO ORI 1
I 0L 11 5T o SOOI 4
2 INEFOUUCTION i cremssremis i rssessssisnas s sessestanesanansssnsssbastssnaresns nsessnssassnesasnesnsnssasnnebasstenbons 7
2.1 The problem - Multi-drug Resistant Bacteria......ccccveveeereerenrens ettt nesaesaaan 7
2.2 Bioprospecting phylum Actinobacteria for natural product discovery.....eeiene. 8
221 Generalities of the phyfum ACtiNODACTEIIO ......eveeeeeereeeerreeeeeeeisieressesrstisinaoeannaaens 11
2.2.2 Phylum Actincbacterig in MAring ECOSYSTEIMS ...cuvvcvreermcrsereeserirsreesesersessarsassossesseneas 13
2.2.3 Phylum Actinobacteria N ChilE....... . vereiereserecesercssns e esssrsssosestemmassassessessens 15
2.2.4 Biosynthetic routes for metabolite production in phylum Actinobacteria............... 16
2.2.5 Genome mining for BGCS in phylum ACtiNODACLENIq ... ..veeeeeveeeeeecrrissirerteraereenene 22
2.26 Metabolites from phylum ACtINOBACEIIA e evecierreiseiseeer e iesresssesssssissessnesssessessen 23
3 HYPOIRESIS ..ttt raes it s s s sas s sramss sases st ansasas s sssnsasnessrastsbssbasseneesemnnessanss 27
B X 111U 27
4.1 PrNCIDAL AlMeecieeiiicrieimicisn s sensasstnneasasssssssstsasse st smsasrsenssssassessasesssossassssssassensen 27
4.2 SPECHIC AIMIS.ccucireiicsisiiisseniseasennssssnrmisessesnenres sasssasseesessesssssssssassssesmess sensesansessesssememnnn 27

4.2.1 Isolation and characterization of actinomycetes from marine sediments of Comau
fjord and evaluation of their antimicrobial aCHIVILY. .....ccocceecvnvieniiereee et sereeeseeresens 27

4.2.2 Determination of the presence of genes encoding for PKS and NRPS and identification
of PKS and NRPS biosynthetic clusters in actinomycetes that produce antimicrobial
M ADOEES. ittt st st avas et e e s s e s e sre s e s s nans sass e se s e sevene s ennen 27




4.2.3 Characterization of antimicrobial metabolites produced by actinomycetes that have
PKS and NRPS biosynthetic gene clusters and bioinformatic prediction of their structure.27

B RESUIES wovveieeeeerrcriseesssssesessrnsressessensassassessnessarssnssvsasssrerassaneassannes essmmanssasessessssntssssssssessssmmnnrns 28

5.1 Aim 1: Isolation and characterization of actinomycetes from marine sediments of Camau
fjord and evaluation of their antimicrobial CHVILY ot 28

Chapter I: Exploring the diversity and antimicrobial potential of marine Actinobacteria from
the Comau fjord in northern Patagonia, Chile. Undabarrena A., Beltrametti F., Claverias F.,
Gonzalez M., Mocore E.R.B., Seeger M. & Camara B. (2016) Frontiers in Microbiology 7:1135.
DO 10.3389/TMiICh. 2006.01035. e eeraeerresrsneessrnmmssssransassassssssssssssrsssssssssstssssessasasssnnss 28

5.2 Aim 2: Determination of the presence genes encoding for PKS and NRPS and identification
of their biosynthetic gene clusters in actinomycetes that produce antimicrobial metabolites

Chapter Il: Genome sequence of Streptomyces sp. H-KF8, a marine actinobacteria isolated
from a Northern Chilean Patagonian fjord. Undabarrena A., Ugalde J.A., Castro-Nallar E.,
Seeger M. & Camara B. (2017) Genome Announcements 5:.201645-16. DOI:
10.1128/8eN0MEA.DLBAS-16. ..corvrerrerasncrrnamrasemrassarssesresssssessrassssssssssesssrasssssasssssnsassnsssssnces 28

Chapter lll: Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8
unveils insights into multi-stress related genes and metabolic pathways involved in
antimicrobial synthesis. Undabarrena A., Ugalde J.A., Seeger M. & Cdmara B. (2017) PeerJ
5:02912. DOIL: 10.7717/PEAIJ.2OLI.........eceeeeeeeceeteeeerrsesnesessessesaasesssessssassessssnesnarnossosssnsonsas 28

5.3 Aim 3: Characterization of antimicrobial metabolites produced by actinomycetes that
harbour PKS and NRPS biosynthetic clusters and bioinformatic prediction of their structure28

Chapter IV: Chemical detection of antimicrobial compounds in Streptomyces sp. H-KF8:
unveiling their connection between its NRPS blosynthetic gene clusters.....ooveeceeeeeveeeenee 28

Chapter [I: Exploring the diversity and antimicrobial potential of marine Actinobacteria from the

Comau fjord in Northern Patagonia, Chile .. ccerieresnesenevcesssesssresssesasssseassasss 29
5.1.1 Addendum CRAPIET ... ettt eserecraesevsners e s ee s ren e s s s s e esstanssrenerasrsssae s sbnnsannen 35
Chapter lI: Genome sequence of Streptomyces sp. H-KF8, a marine actinobacteria isolated from
a Northern Chilean Patagonian fJOrd ... oo ercreerecrresierccrr e seeenvanssereseoresssssssrasmsssaes 49
5.2.1 Addendum Chapler .. i sessssessssmssssssssssssnssssanssssesse seses 52

Chapter Ill: Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils
insights into multi-stress related genes and metabolic pathways involved in antimicrobial

SYNERBSIS ...t ieeiiriseti ettt ssr bt s s bs s be s e s s st s e e e it e s e mn e e pe s Reeeeh b e nbabens 55
5.2.2 Addendum ChapLer ... et mre e es s sers v esesatrsssssnssnssrsssnessssassnsesneane 91
X




their connection between its NRPS biosynthetic gene clusters.............;f. ..................................... 93
53 Chapterl\t’I ..................................... 94
53.1 lntroductlon ..................................... 94
5.3.2 Materials and I\/'IethodsI ..................................... 96
5.3.1.1 Bioinformatic prediction of the chemical structure of rr::letabolltes synthesized by
NRPS biosynthetic gene clusters 'I ..................................... 96
5.3.1.2 Extractions of antimicrobial compounds from actmomycetes in liquid cultures using
organic solventsI ..................................... 96
5.3.1.3 Biological activities assays of crude extracts......................%i. ..................................... 97
5.3.1.4 Exploring the chemical nature of Streptomyces sp. H-KF8! extract .......................... 98
5.3.1.5 Chemical characterization of the antimicrobial compounds through HPLC-bioguided
1“ract|onat|0nil ................................... 100
5.3.1.6 Analysis of metabolite expression by analytical mass-spectrometry ................... 101
5.3.2 Results i' ................................... 103

5.3.2.2 Extractions of antimicrobial compounds from actmomycetes in liquid cultures using
OTBANIC SOIVEMES.c.crrreerrerrnnresssranesarserssrarasrassssacmessarsssrorsiasserssnsrsenssantsrarmesrearsnsaossssassersassesrense 107

........................................................................................................ Feomsssrcnssnsensrestasreerasnannas 109
5.3.2.4 Exploring the chemical nature of Streptomyces sp. H-KF8 !i:rude extract......cce.. 111
5.3.2.5 Chemical characterization of the antimicrobial compounclis through HPLC-bioguided
=Tt [T =Y U] | OO UU SRR ; | ................................... 114
5.3.2.6 Analysis of overall metabolite expression by analytical ma%:ss-techniques ............ 117
|
531 Addendum Chapter V... oo esreecnereecer s reseesenans reeamsmnreseersrassareraserienanns 129
B DiISCUSSION crrerverssrerenrianessmssenrar s sanisnessssssssrsansssnasnesssntssasanensbassateanenss : : ................................... 132
7 CONCIUSTONS. ..t rns et s st s sempans I ................................... 152
8  ReSearch NEEAS ..t il ................................... 153
G REIIENCES ..o e remeerent v s ranesnemes s sarnane e e e neseassranean aeas II ................................... 154

” Xi




Figure Index

Figure 1: Organization of a typical secondary metabelite hiosynthesis gene cluster............... 17
Figure 2: Basic steps during synthesis of polyketides. ..., 19
Figure 3: Basic steps during non-ribosomal synthesis of peptides......ccoccveeevvereecrcrceeeercenne 21
Figure 4: Overall bioprospection strategy to access the potential of marine actinomycetes to
produce antimicrobials cCOMPOUNAS ........ccvrveen s s s renas 26
Figure 5: Sampling sites in the Comau fJOr ... icecnesrernsenttr e e ermereeressmeraessmeeas 35
Figure 6: Strategy for culture-dependent identification of actinomycetes.......ccoevcevvvveervcerennn, 36
Figure 7: Actinomycetes obtained from environmental sampling .........ccccocevvricverrerceecreernnn, 37
Figure 8: Morphological characterization of actinomycetes isolated in this study. ................. 39
Figure 9: Microscopic characterization of Streptomyces sp. H-KF8.........civcvervecveecieeneenn, 40
Figure 10: Physiological characterization of Streptomyces isolates in ISP media.............c....... 41
Figure 11: Biochemical characterization of PHAs production............ccereercececveercecccnenenns 43
Figure 12: Biachemical CharacteriZation ... oo eeccm s ccrsrnrrrssesseerrsrersressressress e ssssssssnsans 44
Figure 13: Phylogenetic relationships of non-myceliar actinomycetes..........cooevveererrcrveennen 46
Figure 14: Antimicrobial activity assay for Streptomyces sp. H-KF8.............ooevrveniimcervesenenes 47
Figure 15: Antimicrobial activity using Time Course Assay.........ccucccerrerreseerseversessesrsmressassssees 48
Figure 16: Whole genome sequencing of Streptomyces sp. H-KFB............crivccnencinrrvennenns 53
Figure 17: Categories of coding genes among Streptomyces sp. H-KF8 genome sequence,
grouped in RAST subsystem categories ...........cocvvrvcnnninniisininscsisssinsssssess st ssaren et ensassananeas 54
Figure 18: Coding sequences of Streptomyces sp. H-KF8 associated to biological traits.......... 9i
Figure 19: General scheme for CIUSEEr #5 ......c.coeiriirrrirciire s rrsceecessae s smnrssnessnseeseneesssanessansans 105
Figure 20: General scheme for ClUSTER HB ... oot cnesres b e s sessareemers e sns 106
Figure 21: Solvent extractions of antimicrobial compounds for Streptomyces sp. H-KF8 against
S. aureus NBRC LO0GLOT ..........coverveerreraeietssemtsmasaasestassssaesesesssssassessasessssnessassansesssessrnsssssnersene 108
Figure 22: Antibacterial activity of Streptomyces sp. H-KF8 crude extract .........ccceeeeenmveeenee.. 109
Figure 23: Antiproliferative activity of Streptomyces sp. H-KF8 crude extract....................... 110
Figure 24: Streptomyces sp. H-KF8 crude extract thermal susceptibility assay. ..................... 112

Figure 25: Streptomyces sp. H-KF8 crude extract susceptibility to hydrolytic enzymes......... 113
Figure 26: Absorbance and fluorescence spectra of crude extracts from Streptomyces sp. H-KF8

.................................................................................................................................................... 113
Figure 27: Thin layer chromatography of crude extract of Streptomyces sp. H-KF§ .............. 114
Figure 28: HPLC chromatograms of Streptomyces sp. H-KF8 crude extract .........ccoevvveveveennen. 115
Figure 29: Antimicrobial activities from separated fractions obtained from Streptomyces sp. H-
KF8 cultures rown in ISP2 MEdilim ..o veetssse s versnssesesersssasresressessssesasassensas 116
Figure 30: ESI-FT ICR MS mass spectrum for fraction 168 obtained from Streptomyces sp. H-KF8
Brown in ISP2 MEIUM. .c.uiimnienicree e rnciecs st et esenms e s assnsesas s smnssnessasssmsasasossbsssns 118
Figure 31: Comparison of ESI-FT ICR MS mass spectra of fraction 19.........coveeevveeeceoveeseaennne 118

Xlv




Figure 32: Imaging-MS slides showing analyzed surrounding areas for Streptomyces sp. H-KF8.

.................................................................................................................................................... 119
Figure 33: Imaging-MS for the selected 0N 14501 M z ........oocviververreevreeeres s raresressesssssssens 123
Figure 34: MALDI-TOF MS/MS of parental ion 1450.1 M /z.........ccceveeeeireeenicsncnanssissesssssssees 125
Figure 35: Imaging-MS for the selected ION 9BLIMJZ................omvrirecrreenrrerereesressraersssansas 126
Figure 36: MALDI-TOF MS/MS of parental ion 981.1 mfz.........vvecrvrceecsrsmsssssisessesessanensas 128

XV




Table Index

Table 1. Actinobacteria isolated in this SEUAY. ..o e rereereere s snesmmesresmeerenns 38
Table 2. Physiological characterization of actinobacteria: growth at different temperatures 42
Table 3. Physiological characterization of actinobacteria: tolerance to salinity (% NaCl)........ 42
Table 4. Physiological characterization of actiobacteria: Artificial sea water (ASW) requirement
...................................................................................................................................................... 43
Table 5. Detection by PCR of PKS and NRPS biosynthetic genes in actinobacteria .................. 52

Table 6. General features of whole genome from selected non-mycelial strains using Illumina
SEQUETICINE vivtirtrsrratrrsacrasscerssnesrstersstarssetrssressssasses srmtsaastssastasssssassaessrantssanmesensessssessmsassassmasnssionns 52
Table 7. Number of biosynthethic genes {BGCs) detected in non-mycelial strains sequenced 52
Table 8. Biosynthetic gene clusters {BGCs) present in the Streptomyces sp. H-KF8 genome...92
Table 9, Antibacterial activity of selected fractions against nine bacterial pathogens........... 116
Table 10. Imaging-MS of the molecules predicted by genome mining of Streptomyces sp. H-
KF8, after 15 iNCUBAtIoN Qays. ... ..o cecrerercereescenesree st stessiesee s s e re s ra s e snsonesrasssesnresaorens 120
Table 11. ESI-FT ICR MS selected masses that presented an expression by Imaging-MS after 15
Jays OF INCUDATION. ...t ercs e s es s s e s esre s s e sensse s s mresmeseseasansans soban 122
Table 12. MALDI-TOF MS/MS ions, and their relation with the amino acid prediction of cluster

XVl




1 Abstract

Bioactive compounds are increasingly required for diverse biotechnological applications,
Among them, the development of new drugs is one of the major relevances due to the steady
rise in the number of antibiotic-resistant bacterial pathogens. The phylum Actinobacteria,
represent the most prominent group of microorganisms for the production of bioactive
compounds, notably antibiotics, antifungal and antitumor agents. Many bicactive natural
products with applied potential have been isolated from actinomycetes derived from sea
sediments. Therefore, an excellent alternative to discover the potential of novel natural products
is provided by the marine environment. Marine ecosystems are particularly suited for
bioprospecting, a process that aims to identify and isolate natural compounds with the aid of its
genetic material. In this line, the marine coasts of Chile remain poorly explored and contain a
high diversity of microorganisms, many of which must still to be described. The bioprospection
of new actinomycetes isolates from poorly explored marine environments can lead to the
discovery of novel bioactive compounds with biotechnological potential. In this context, the
exploration of the cultivable diversity of actinomycetes in marine sediments from a remote fjord
of Chile, the Comau fjord located in Northern Chilean Patagonia, was proposed. Twenty five
actinomycetes comprising 10 genera were isolated and characterized, for their tolerance to
abiotic stress, marine adaptations, susceptibility to commercial antibiotics, biochemical assays
and phylogenetic relationships. Five actinomycetes are proposed to be novel species. Moreaver,
antimicrobial activity among the actinomycetes was assessed, showing a promising potential to

produce bioactive compounds.




A great number of bioactive molecules belong to the group of polyketides, nonribosomal
peptides or a combination of both. These metabolites are a vast group of structurally diverse
natural campounds produced by a variety of microorganisms. The polyketide synthases (PKS)
and nonribosomal peptide synthetases (NRPS) biosynthetic systems are organized in genetic
clusters, and thus, their bioinformatic detection through whole genome sequencing is possible.
Therefore in this study, five actinomycetes presenting antimicrobial properties and genes
encoding for PKS/NRPS were selected for their subsequent whole genome sequencing in order
to study these metabolic routes involved in the synthesis of bioactive compounds. In particular,
one strain, Streptomyces sp. H-KF8, presented 26 biosynthetic gene clusters {BGCs), where two
of them corresponded to NRPS routes. These metabolic pathways were genetically
characterized, and prediction of the chemical structure of their products was proposed. Notably,
a large number of these clusters have no similarities with other known clusters, suggesting that
Streptomyces sp. H-KF8 possess novel metabolic routes involved in the synthesis of novel

compounds.

Finally, a conventional approach for the extraction of the compound(s) using organic
solvents and subsequent bio-guided fractionation of the crude extract of Streptomyces sp. H-KF8
was performed, to gain insights into the biological activity and chemical nature of the
antimicrobial molecules that are being produced by this bacterium. Mass spectrometry
techniques such as ESI FT ICR MS, MALDI-TOF MS and Imaging MS, were used to detect molecules
that are being expressed under antagonistic interactions, and to provide the monomer
composition of the selected masses. These candidates molecules were subsequently compared
to the bioinformatic data of the sequenced genome of Streptomyces sp. H-KF8, to unveil the link

between the genomic-metabolic relationship. Specifically, a connection between the NRPS




cluster #6 and the metabolites produced by Streptomyces sp. H-KF8 was accomplished. Proposed
mechanism of action of this antimicrobial metabolite along with tailouring reactions that may

modify the peptidic core are also described.

Altogether, these results suggest that Chilean Patagonian fjords are suitable environments
for bioprospecting for novel species of actinomycetes with promising antimicrobial activity.
Genome sequencing was a fundamental tool to stablish the genetic potential to produce
bioactive compounds. Streptomyces sp. H-KF8 demonstrated to harbour novel biosynthetic gene
clusters for the synthesis of secondary metabolites, where one of them, the cluster #5, showed
a sustained correlation among the predicted bioinformatic and the experimental data,

suggesting the production of a novel antimicrobial compound of a glycopeptide nature,




1 Resumen

Los compuestos bioactivos son ampliamente requeridos para diversas aplicaciones
biotecnolégicas. Entre ellas, el desarrollo de nuevas drogas es de mayor relevancia debido al
dramatico aumento de bacterias patégenas resistentes a antibiéticos. El phyfum Actinobacterias
representan el grupo de microorganismos mas prominente en relacion a la produccion de
compuestos bioactivos, como antibiéticos, antifingicos y antitumorales, entre otros. Numerosos
productos naturales bioactivos con potencial aplicable han sido aislados de actinomycetes
derivadas de sedimentos marinos. Por esta razén, una excelente alternativa para descubrir
nuevos productos naturales puede proveer del ambiente marino. Los ecosistemas marinos son
particularmente apropiados para la bioprospeccién, un proceso que tiene como objetivo
identificar y aislar compuestos naturales a partir de su material genético. En esta linea, las costas
de Chile atin permanecen inexploradas y contienen una alta diversidad de microorganismos,
muchos de los cuales todavia no han sido descritos. La bioprospeccién de nuevos aislados de
actinomycetes obtenidos de ambientes marinos inexplorados, podria llevar al descubrimiento
de compuestos bioactivos novedosos con gran potencial biotecnoldgico. En este contexto, Ia
exploracion de la diversidad cultivable de actinomycetes desde sedimentos marinos del remoto
fiordo de Comau, ubicado en la Patagonia Norte de Chile, fue propuesto. Veinticinco
actinomycetes que comprenden 10 géneros fueron aislados y caracterizados por su tolerancia a
estrés abidtico, adaptaciones marinas, susceptibilidad a antibidticos comerciales, ensayos
hioqufmicos y relaciones filogenéticas. De éstos, cinco aislados son propuestos como nuevas
especies. Adicionalmente, la actividad antimicrobiana entre todos los aislados fue evaluada,

mostrando un prometedor potencial para producir compuestos bioactivos.




Un gran niimero de moléculas bioactivas pertenecen al grupo de los policétidos, péptidos
no-ribosomales o a la combinacidn de ambos. Estas moléculas son un vasto grupo de compuestos
naturales con diversas estructuras producidos por una gran variedad de microorganismos. Las
policétido sintasas (PKS) y las sintetasas de péptidos no-ribosomales (NRPS) son sistemas
biosintéticos que estdn organizados en agrupamientos genéticos, por lo tanto, su deteccion
bioinformatica a través de [a secuenciacién de genomas completos es posible. En este estudio,
cinco actinomycetes que presentaron propiedades antimicrobianas y genes que codificaban para
PKS/NRPS, fueron seleccionadas para la subsecuente secuenciacién de sus genomas completos
con el fin de estudiar sus rutas metabdlicas involucradas en la sintesis de compuestos bioactivos.
En particular, la cepa Streptomyces sp. H-KF8 presentd 26 agrupamientos biosintéticos (BGCs),
donde dos de ellos correspondieron a rutas de NRPS. Estas vias metabdlicas fueron
caracterizadas genéticamente, y la prediccidn de Ia estructura quimica de sus productos fue
propuesta. Notablemente, un gran nimero de estos BGCs no tuvieron similitud con otros BGCs
conocidos, lo cual sugiere que Streptomyces sp. H-KF8 posee nuevas rutas metabdlicas

fnvolucradas en la sintesis de nuevos compuestos.

Finalmente, una aproximacién convencional para la extraccion del (o los) compuesto(s)
usando solventes organicos y un subsecuente fraccionamiento del extracto crudo de
Streptomyces sp. H-KF8, fue llevado a cabo para ganar conocimiento acerca de Ia actividad
bioldgica y la naturaleza quimica de las moléculas antimicrobianas producidas por esta cepa.
Técnicas de espectrometria de masas tales como ESI FT ICR MS, MALDI-TOF MS e Imaging MS,
fueron usadas para detectar moléculas presentes bajo interacciones antagédnicas, y para
proporcionar informacién sobre la composicién de los monémeros de masas seleccionadas. Las

moléculas candidatas fueron comparadas contra los datos bioinformaticos del genoma




secuenciado de Streptomyces sp. H-KF8 para revelar la relacidn gendémica-metabolémica.
Especificamente, una conexion entre el agrupamiento NRPS #6 y los metabolitos producidos por
Streptomyces sp. H-KF8 fue lograda. Ademds, un mecanismo de accidon propuesto para el
metabolito antimicrobiano, en conjunto con las reacciones de modificacion post-ensamblaje las

cuales modifican el esqueleto peptidico, también son descritas.

En conjunto, estos resultados sugieren que los fiordos de la Patagonia Chilena son
ambientes apropiados para la bioprospeccion de nuevas especies de actinomycetes con
actividad antimicrobiana prometedora. La secuenciacion del genoma fue una herramienta
fundamental para establecer el potencial genético para la produccion de compuestos bioactivos.
Streptomyces sp. H-KF8 demostré poseer nuevos BGCs para la sintesis de metabolitos
secundarios donde uno de ellos, el agrupamiento NRPS #6, mastré tener una sostenida
correlacion entre la prediccion bioinformdtica y los datos experimentales, sugiriendo la

produccién de un nuevo compuesto antimicrobiano de naturaleza glicopeptidica.
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2 Introduction

2.1 The problem - Multi-drug Resistant Bacteria

The discovery of penicillin by Alexander Fleming in 1928, it purification by Florey and
Chain in 1939, and subsequent industrial production in 1942, marketed the beginning of the
‘Golden Age of Antibiotics’ -covering from the 1940s to the 1970s- in which commercialization
of several life-saving drugs was achieved (Knight et al., 2003). Antimicrobials are active by
targeting essential components of bacteria metabolism, such as inhibition of cell wall synthesis
{e.g., B-lactams}, DNA gyrase (e.g., quinolones}, DNA-directed RNA polymerase (e.g., rifampicin),
protein synthesis (e.g., aminoglycosides) and competing with enzymes {e.g., sulphonamides)
(Coates et al., 2002). The emergence and dissemination of multi-drug resistant bacteria coupled
to the lack of new antibiotics with new modes of action are today’s one of the main challenges
to treat infectious diseases, since all classes of antibiotics have seen the emergence of bacterial
resistance, thus limiting their use {Genilloud, 2014). One of the major concerns is the emergence
of multi-drug resistances in the so-called ESKAPE pathogens, referring to Entercoccus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa and Enterobacter spp., which represent one of the main causes of death worldwide
{Livermore, 2009). The phenomena of resistance could be due to an innate property of the
bacterium (e.g., biofilm production), consequence of mutation (e.g., efflux pump) or acquired by
horizontal gene transfer (Hogan & Kolter, 2002). The molecular mechanisms of bacterial
resistance involves drug inactivation, modification of the site of action, modification of the
permeability of the cell wall, overproduction of the target enzyme and the bypass of the inhibited

steps {(Opal, Mayer & Madeiros, 2000). Factors that determine whether resistance develops are



complex and interdependent, and includes the action mechanism, if the drug has a time- or
concentration-dependent mode of action, the potency against the population of bacteria and
the magnitude and duration of the available concentration (Coates et al., 2002). The improper
use of antibiotics in medical treatment, as well as their indiscriminate use in agriculture, livestock
and aquaculture, has lead today to a discouraging scenario where more than 70% of bacteria are
resistant to commercial antibiotics most commonly used {Brown et af., 2006). The introduction
of new compounds into therapy have decreased significantly over the past years, and no new
class of broad-spectrum compounds has been discovered since 1960. Therefore, we are facing a
critical global decline in antimicrobial research, with an urgent need to find novel therapeutic

compounds.

2.2 Bioprospecting phylum Actinobacteria for natural product discovery

Natural Products (NPs) play a significant role in drug discovery. In fact, 78 % of antibiotics
commercially marketed from 1982 to 2002 have originated from NPs (Peldez, 2006). Takin into
consideration only year 2014, 25 % of the approved new chemical entities are from natural or
natural-derived products (Newman & Cragg, 2016). On the contrary, chemical combinatorial
approaches that develop molecules of synthetic origin have been unable to compete with NPs
(Payne et al., 2007). Antimicrobial-producing organisms belong to the three several domains of
life, including microorganisms, fungi, invertebrates and plants, although secondary metabolite
production rates and chemical structures differ considerably among them. Microorganisms
provide >60,000-80,000 metabolites, where 47 % are biologically active, mainly showing

antibiotic, antitumor, antifungal, antiparasitical and antiviral effects (Bérdy, 2012). The phylum

Actinobacteria is well-known for contributing with 45 % of all microbial metabolites. More than




5,000 compounds have been reported and contributed to the development of 90 % commercial
antibiotics {Jose & Jha, 2016). The class Actinobacteria, accounts for 7,000 compounds reported
in the Dictionary of Natural Products {Jensen et al., 2005a}. Most antibiotics derive from the
Streptomyces genus (75 %), which have drawn attention since the discovery of the antibiotic
streptomycin in the early 1940s. Streptomycin was the first compound of a plethora of bioactive
secondary metabolites derived from members of the genus Streptomyces, which would become
established as the most prolific bacterial antibiotic producers delivering the majority of antibiotic
drugs still in use today (Bérdy, 2005). However, productivity of classical screening methods
decreased during the 1970s, due to the frequent re-discovery of known compounds as efforts
were placed in obtaining soil isolates from similar sampling sites {Fenical, 1993). In this context,
diverse unexplored natural habitats were later considered for the isolation of novel members of

actinomycetes, where the marine ecosystem gained focus for bioprospecting.

QOceans cover up to 70% of the Earth’s surface and harbour a largely untouched
biodiversity {Donia & Hamann, 2003; Haefner, 2003). Marine environments are highly diverse in
terms of abiotic selective pressures, which are the driving force for ecological adaptations that is
reflected in the genetic and metabolic physiological traits of micreorganisms. Thus, marine
actinomycetes are particularly suited to explore in order to find novel Marine Natural Products
(MNP) (Lam, 2006; Bull & Stach, 2007). Marine environment provide an established ecological
niche for actinomycetes (Das, Lyla & Khan, 2006; Ward & Bora, 2006). Isolation of actinomycetes
have been characterized from diverse marine sources, such as mangrove forests (Hong et al.,
2009; Baskaran, Vijayakumar & Mohan, 2011; Lee et al., 2014); marine sponges (Kim, Garson &
Fuerst, 2005; Montalvo et al., 2005; Zhang et al., 2006; Jiang et al., 2007; Sun et al., 2015); corals

{Hodges, Slattery & Olson, 2012; Kuang et al., 2015; Mahmoud & Kalendar, 2016; Pham et al,,



2016); sea cucumbers (Kurahashi et af., 2010}); pufferfishes (Wu et al., 2005) and seaweed (Lee
et al., 2008). Notably, actinomycetes are predominant in marine sediments {Mincer et al., 2002;
Magarvey et al., 2004; lensen et al., 2005b; Ledn et al., 2007; Gontang, Fenical & Jensen, 2007;
Bredholdt et al., 2007; Maldonado et al., 2008; Duncan et al., 2014; Yuan et al., 2014), whereas

also in deep-sea sediments {Colquhoun et al., 1998; Pathom-Aree et al., 20086).

Marine bioprospecting from both macro- and micro-organisms has led to at least 30,000
MNPs, and the number of new compounds from marine-derived sources accounted to 164 in
2014 (Blunt et al., 2009). Marine actinomycetes have been described as an emerging source for
novel bioactive molecules (Fiedler et al., 2005; Lam, 2007; Bull & Stach, 2007; Joint, Miihling &
Querellou, 2010; Zotchev, 2012; Subramani & Aalbersherg, 2012; Valliappan, Sun & Li, 2014).
Antibiotics produced by actinomycetes have been evalving for ~1 billon years where its fitness
has been tested by the ability to penetrate other microbes and inhibit target enzymes,
macromolecules or molecular structures {Baltz, 2008). The novelty in MNPs derives from unique
chemical structures and metabolic pathways that are found due to the specific evolution of
microorganisms in marine environments (Knight et al.,, 2003). Actinomycetes produce almost
exclusively some classes of structurally complex compounds, such as macrocyclic lactones,
lactams, cyclopeptides, depsipetides and polycyclic quinone-based molecules (Bérdy, 2012).
Therefore, the importance of cultivating these microorganisms is crucial for a viable opportunity

to biodiscovery (Joint, Miihling & Querellou, 2010).

Actinomycetes NP research for the discovery of novel antibiotics involves an integral
approach of genetics, genomics and metabolomics areas, including: i) the isolation and

dereplication of isolates; ii} prediction and identification of novel compounds; iii) enhancing
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production titers of potential compounds; iv) uncovering genome information and associated
biosynthetic potential; v) collection and processing of genome data; vi) mining, editing and
heterologous expression of cryptic gene clusters and vi) comprehensive metabolic profiling (Jose
& Jha, 2016). Altogether, these studies reflect the importance of pursuing marine actinomycetes

as a prolific source for novel MNP discovery.

2.2.1 Generalities of the phylum Actinobacteria

The phylum Actinobacteria comprises Gram-positive organisms with a high G+C content
and constitutes one of the largest phyla within Bacterio (Gao & Gupta, 2012). Taxonomy of the
pylum Actinobacteria has been controversial. Originally, they were historically considered as an
intermediary between fungi and bacteria, due to their mycelial morphology, and radial colony
growth, resembling fungi (Krassilnikov, 1941; Barka et al., 2016). Based on 16S rRNA gene
phylogeny, there are now 6 proposed classes, comprising 5 basal ones with one or two orders
each (Acidimicrobiia, Coriobacteriia, Nitriliruptoria, Rubrobacteria and Thermoleophilia) and the
main class Actinobacteria, that comprises 15 orders (Ludwig et al., 2012). Recently the phylogeny
has been revised in light of complete genome sequences, proposing that the orders Frankiales
and Micrococcales should be split into coherent entities (Sen et al., 2014). Nevertheless, the
classification is still under constant changing. Briefly, it includes more than 3,000 species, where
the different genera among this phylum exhibit an enormous diversity in terms of morphology,
physiology and metabolic capabilities {Barka et al., 2016}. Surprisingly, the class Actinobacteria
contains both the most deadly bacterial pathogen (i.e., Mycobacterium genus) and the
microorganisms that are the most important for antibiotic production (i.e., Streptomyces genus)

(Doroghazi & Metcalf, 2013). The morphologies of their species varies from cocoid (e.g.,
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Micrococcus) or rod-coccoid (e.g., Arthrobacter) to fragmenting hyphal forms (e.g., Nocardia) or
highly-differentiated branched mycelia (e.g., Streptomyces) {(Ventura et al., 2007). Although not
ubiquitous, spore formation is common along actinomycetes, and spore ranges from motile
zoospores to specialized propagules. They also produce numerous extracellular metabolic
enzymes and a wide variety of secondary metabolites {Gac & Gupta, 2005). In nature,
actinomycetes are widely distributed in both terrestrial and aquatic ecosystems, where they play
an important ecological role in the nutrient recycling of refractory biomaterial by decomposition

and humus formation (Ventura et al., 2007; Barka et al., 2016).

Specifically, the Streptomyces genus has been the focus of study in the continuous anti-
microbial search for producing two-thirds of all known antibiotics (Bérdy, 2005). In general,
Streptomyces are characterized for slow growth and development. Streptomyces possess a
complex developmentat life cycle (Flardh & Buttner, 2009). In solid substrate, it is well-studied
that they grow as a substrate mycelium made of multiple hyphae that grow by tip extension and
branch through the soil in search for nutrients (Chater et al., 2010). They acquire nutrients by
secreting enzymes that break down insoluble organic polymers, such as chitin and cellulose. On
the contrary, little is known about Streptomyces morphogenetic in liquid media. Recently, a new
developmental model was proposed, which involves programmed cell death phenomena of the
mycelium to form four morphological classes (pellets, clumps, branched hyphae and non-
branched hyphae) of differentiated mycelium without hydrophobic layers (Yagite et al., 2013).
As Streptomyces are non-motile bacteria ubiquitous in different natural environments, they must
compete with other fast-growing microorganisms in order to have access for nutrients. To
confront this, Streptomyces are armed with a wide range of secondary metabolites that help

them to survive under adverse conditions (Ruiz et al., 2010; Sénchez et al., 2010).
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2.2.2 Phylum Actinobacteria in marine ecosystems

The first marine actinomycete isolated was Rhodococcus marinonas-t;éns reported in
1984 (Helmke & Weyland, 1984). Members belonging to approximately 50 genera have been
isolated from various marine sources (Goodfellow & Fiedler, 2010). These include isolates from
novel genera such as Demequina (Yi, Schumann & Chun, 2007), Marinactinospora (Tian et al.,
2009a), Marisediminicola (Li et al., 2010), Miniimonas (Ue et al., 2011), Paracerskovia (Khan et
al., 2010), Phycicococcus (Lee, 2006), Phycicola (Lee et al., 2008), Salinibacterium (Han et al.,
2003), the obligate marine Salinispora genus (Maldonado et al., 2005), Sciscionella (Tian et al.,
2009b) and Serinicoccus (Yi et al., 2004), as well as new species within known genera such as
Arsenicococcus (Hamada et al., 2009), Dermacoccus (Pathom-aree et al., 2006b), Kocuria (Seo et
al., 2009), Nocardiopsis (Chen et al., 2016), Saccharomonospora (Liu et al., 2010), Streptomyces
(Pimentel-elardo & Scheuermayer, 2009), Williamsia (Pathom-aree et al, 2006a) and
Verrucosispora (Liao et al., 2009; Dai et al, 2010). The huge cultivable diversity of
microorganisms discovered and the subsequent studies related to these are clear evidence that

actinomycetes are active components of marine microbial communities (Genilloud, 2014).

The marine environment contains several ecosystems, from the sea surface, down to the
habitats on and under the sea floor. Actinomycetes are widely distributed along these niches,
forming stable communities within various marine ecosystems such as the surface microlayer,
the water column, associated to marine free-swimming vertebrates or sessile invertebrates, in
marine snow, depth sediments and below sea subfloor (Ward & Bora, 2006). Despite that
relatively little is known concerning their ecological role in marine environments, actinomycetes

from several marine sources have been reported to decompose agar, alginates and laminarin,
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cellulose, chitin, oil and other hydrocarbons. Also, they have been implicated in the decay of
wood submerged in seawater (Goodfellow & Williams, 1983). The living conditions to which
marine actinomycetes had to adapt during evolution ranges from extremely high pressure,
anaerobic conditions, fluctuating temperatures and salinity, and high acidic pH conditions (Lam,
2006). Microorganisms sense, adapt and respond quickly to their environment and compete for
defense and survival (Zhang et al., 2005). As marine environmental surroundings are markedly
different from terrestrial ones, it has been proposed that marine actinomycetes have different
characteristics from those of terrestrial counterparts and therefore might produce different
types of bioactive compounds. A major number of actinomycetes have been associated with soft
bodied or sedentary lifestyle marine organisms such as marine sponges and corals, due to their
need for chemical weapons for defense and survival. These compounds help them to dissuade
predators, to keep competitors at bay or to paralyze their prey (Haefner, 2003). In general,
secondary metabolites have survival functions such as: i} competitive weapons used against
other organisms; ii} metal transporting agents; iii) agents of symbiosis; iv) differentiation
effectors or v) communicating signal molecules (Demain & Fang, 2000). Thereof, these molecules
play important ecological roles in their natural environments, as signal molecules, facilitating
intra- or inter-species interactions within microbial communities, related to virulence,
colonization, motility, stress response and biofilm formation (Romero et al., 2011). Research has
taken advantage from these unique molecules and their bicactive potential, to discover novel
anti-infective compounds with antibacterial, antifungal and/or antitumoral properties, and apply

them in current clinical challenges (Gulder & Moore, 2010).
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2.2.3 Phylum Actinobacteria in Chile

Chile has a variety of natural environments that have not been explored and, to date,
scarce studies involving actinomycetes have been carried out. Isolation of Streptomyces from soil
collected from Easter Island {Vézina, Kudelski & Sehgal, 1975} and from sand collected from the
Atacama Desert, Northern Chile {(Santhanam et al., 2012a,b, 2013) were reported. However, the
Chilean vast coast has remained largely unexplored, and to date, there are only two studies
reporting the isolation of marine actinomycetes: one carried out with sediments from Chiloe
Island (Hong et al., 2010} and a recent report from our laboratory, carried out in Valparaiso

Central Bay (Claverias et al., 2015).

in this thesis, the bioprospection of marine actinomycetes isolated from the National
Marine Protected Area of Huinay at the Comau fjord was proposed. Northern Patagonia Chilean
fjords are unique in terms of biogeography and remains remote and largely unstudied as rich
sources for untapped novel microorganisms. Fjords have unique biogeographic characteristics
such as a relatively narrow inlet, with significantly eroded sea floor and communicatton with the
open sea (Bredholdt et al., 2007). The Comau fjord is a pristine area unique by its geological
nature. It is comparatively smaller than other fjords in Chile, and also one of the deepest (Ugalde
et al., 2013}. Comau fjord is characterized by steep slopes, with surrounding mountains that have
a height up to 2,000 m with a dense extratropical rainforest covering from the sea to the top
(Lagger et af., 2009}. An annual precipitation of 5,600 mm provides a fresh water input crucial in
providing minerals, which also decrease the salinity of the surface water (Silva, 2006; Lagger et

al., 2009). The surface water temperatures ranges hetween 5 and >20 °C, whereas the main
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water body has temperatures ranging between 8-12°C (Lagger et al., 2009; Soharzo, 2009}, that

sustains a thermohaline circulation {Bustamante, 2009).

This is the first report on bioprospection of actinomycetes by a cultivable-dependent
survey in this unigue ecosystem. Only a metagenomic study had been carried out in the Comau
fjord, where a microbial mat was analyzed, in which 1% of community reads was represented by
the phylum Actinobacteria (Ugalde et al., 2013). This metagenomic study reveals the presence
of the phylum in this ecosystem. Since the Chilean Patagonia sustains an autochthonous
biodiversity, it is hypothesized that it may harbour novel actinomycetes producing novel anti-

infective compounds, due to novel metabolic routes not present in their terrestrial counterparts.

2.2.4 Biosynthetic routes for metabolite production in phylum Actinobacteria

Metabolic routes by which bacteria display secondary metabolites synthesis are diverse.
However, due to their role in ecological adaptation for survival, evolution has grouped these
genes in the so-called Biosynthetic Gene Clusters (BGCs). A typical secondary metabolite BGC
involves genes for the scaffold synthesis, scaffold modification, resistance and efflux, along with
positive and negative regulators (Figure 1). These genes are organized as clusters in the genomes,
allowing coordinated expression of the proteins required for the synthesis of a specific secondary

metabolite {Zotchev, 2014).
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Figure 1: Crganization of a typical secondary metabolite biosynthesis gene cluster (Zotchev,
2014).

Secondary metabolites biosynthetic machinery utilizes precursors from primary
metabolism to build a molecular skeleton with the help of scaffold-synthesizing enzymes.
Expression of genes for such enzymes is usually regulated by a positive regulator that responds
to particular environmental signals. Scaffold modification enzymes add chemical groups to the
skeleton, such as sugars, hydroxyl-, formyl-, methyl- and amino-groups, among others {Zotchev,
2014). To avoid self-toxicity, several resistance mechanisms are implemented: one depends on
the active efflux of the metabolite by a specific transporter which can be repressed by a negative
regulator; another employs a gene encoding a resistance protein, which can be an enzyme
modifying the molecular target of the secondary metabolite or an enzyme modifying the

secondary metabolite itself, rendering it inactive {Hopwood, 2007).

it has been demonstrated that BGCs are widespread in diverse bacterial species from
geographically distinct locations {Morlon et al., 2015). Nevertheless, the distribution along the
phyla is not homogeneous. Actinomycetes are known to harbour a high number (17 or more) of

BGCs (Bentley et al., 2002; Udwary ef al., 2007), in comparison to other bacteria such as Baciflus,
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Pseudomonas and Ralstonig genera, that have four or less of these gene clusters {Kunst et al.,

1997, Stover et ai., 2000; Salanoubat et ai., 2002).

A large number of antimicrobial compounds are produced by a group of BGCs called non-
ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), or a combination of both
{NRPS/PKS) (Fischbach & Walsh, 2006). These enzymes synthesise a surprisingly diverse
secondary metabolite structures, and are organized in assembly lines that work in an iterative
and coordinated fashion to form linear oligomers by the use of sequential chemical condensation
reactions (Cane, Walsh & Khosla, 1998; Walsh, 2004; Fischbach & Walsh, 2006). Each module in
a cluster is responsible for chain extension through recognition, activation and incorporation of
specific substrates. Monomer units are used as building blocks, and usually are acyl-CoA
thioesters for PKS systems and amino acids (proteinogenic and non-proteinogenic) for NRPS
systems, which are enabled by a phosphopantetheine group that acts as a ‘swing-arm’ co-factor

{Salomon, Magarvey & Sherman, 2004).

In PKS systems, sequential condensation of carboxylic acids resembles the synthesis of
fatty acids in bacteria. There are three major classes of PKS systems, characterized by their mode
of synthesis and structural type of product. Type | PKSs, are multienzyme complexes that are
organized into individual, linear modules, each of which is responsible for a single, specific chain
elongation process and post-condensation modification of the resulting B-carbonyl. Type Il PKSs
are complexes of monofunctional proteins that build polyketide chains by their iterative use of a
single set of distinct enzymes to construct polyketide chains, which are then cyclized to produce
small molecules containing aromatic ring systems. Type Il PKSs contain one protein, one domain

and one active site to carry out the three central reactions of chain initiation, elongation and
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cyclization (Salomon, Magarvey & Sherman, 2004). The actions of the essential core domains
consists of an initiation module that starts with an acyl transferase domain (AT) for the selection
of an activated acyl-CoA monomer. Then, the AT domain transfers the acyl-CoA to the swinging
arm, the acyl carrier protein (ACP), which in turn transfers the chain to the upstream
ketosynthase domain (KS} which catalyses the decarboxylation of the carboxylic acid and the
subsequent Claisen condensation. Optional domains acting upon the newly formed B-carbonyl
are the ketoreductase (KR) domain, which reduces the carbonyt to a hydroxyl group; the
dehydratase (DH) domain, which dehydrates the alcohol to form a double bond; and an enoyl
reductase (ER} domain that is responsible for the reduction of the double bond to a fully
saturated methylene. The complete elongated and functionalized chain is often transferred to a
final thicesterase domain (TE) that catalyses the hydrolytic release of a linear compound and can
be coupled with cyclization to generate macrolactone structures (Figure 2) (Salomon, Magarvey

& Sherman, 2004; Fischbach & Walsh, 2006; Bonadio, Monciardini & Sosic, 2007).

initiation fermination
— elongation

Figure 2: Basic steps during synthesis of polyketides {Donadio, Monciardini & Sosio, 2007).
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NRPS systems are large, multifunctional enzyme complexes that build chains from
individually selected building blocks. NRPS enzymes are also organized into modules, each of
which is responsible for one cycle of elongation by incorporation of a single amino acid into the
growing peptide chain. Each elongation module contains three essential domains. First, the
adenylation domain (A) selects a specific amino acid and activates it as an amino acyl adenylate.
Then, the activated amino acid is transferred to the swinging arm of the peptidyl carrier protein
(PCP) domain. Finally, the condensation (C) domain catalyses the peptide bond formation
between amino acids in adjacent modules. The chain Is successively elongated and released by
the action of an integrated TE domain or by a separate TE generating either a linear or a cyclic
peptide (Figure 3). Additional structural diversity is accomplished by auxiliary domains such as
epimerization (E), N-methylation {MT), cyclization {Cy), oxidoreductase {Ox), N-formylation (F)
and reductase (R} domains. Compounds synthesized by NRPSs can be distinguished by the
presence of non-proteinogenic, branched and D-amino acids and are often cyclic in structure
(Salomon, Magarvey & Sherman, 2004; Fischbach & Walsh, 2006; Donadio, Monciardini & Sosio,

2007).
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Figure 3: Basic steps during non-ribosomal synthesis of peptides {Donadio, Monciardini & Soslo,

2007).

Due to the structural organization of these modular enzymatic systems, the chemical
structure of these molecules can be determined by the order of genes within the operon (Li et
al., 2009). This is known as the colinearity rule goberned by the Stachelhaus code, which is the
basts for the in silico prediction of the substrates that bind to each enzymatic module
(Stachelhaus, Mootz & Marahiel, 1999). Therefore, the final product of each BGC may be
predicted, and it Is possible to have insig?;ts into their biological activities, when compared to

online databases. Predictions can be made only with PKS type | and NRPS systems, due to the

linearity of their assemblies {Donadio, Monciardini & Sosio, 2007).
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2.2.5 Genome mining for BGCs in phylum Actinobacteria

Recently, there has been a burst in applying whole-genome sequencing methodologies
into the search for novel NP. This has played a fundamental role opening new strategies for
unrevealing the mechanisms of secondary metabolite hiosynthesis, especially in actinomycetes,
mainly due to the complexity and time-consuming traditional approaches that still cannot cover
their BGCs as a whole. In several Streptomyces strains, genomics has helped to gain insights into
their complex physiclogical and metabolic versatility. Streptomyces have linear chromosomes
(Hopwood, 1999}); and their genome sizes are among the largest genomes found within the
microbial world (Weber et al., 2003). The number of predicted coding sequences is positively
correlated with genome size (Ohnishi et af., 2008), and approximately nearly 5% of their genomes
are devoted to the synthesis of secondary metabolites (lkeda et al., 2003). The ability to produce
a wide variety of bioactive malecules is based on the fact that they contain the largest numbers
of BGCs, and particularly a high number of PKS and NRPS systems (Challis, 2008). Due to these
interesting properties, nearly 700 species and 30,000 strains of Streptomyces have been
identified (Euzéby, 2011}). Recently, the complete genomes of 19 species have been sequenced,
and more than 125 draft genomes are available in GenBank database (Harrison & Studholme,
2014). Genome mining has become a powerful tool to unveil the biotechnological potential of
Streptomyces species, where BGCs can be identified through the AntiSMASH platform (Weber et
al., 2015} and even the chemical structure of the core molecules can be predicted. Information
about BGCs, pathways and its metabolites are gathered together in the Minimum Information
about a Biosynthetic Gene Cluster (MIBiG) database which is suitable for comparison purposes

{Medema et al., 2015). Genome mining has positioned as a fundamental bioinformatic-approach
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in the NP field towards drug discovery (Challis, 2008; Jensen et al., 2013; Doroghazi & Metcalf,

2013; Antoraz et al., 2015; Tang et al., 2015; Katz & Baltz, 2016).

2.2.6 Metabolites from phylum Actinobacteria

Recent research focusing on marine actinomycetes have yielded numerous novel
biologically active compounds, and more importantly, a surprisingly much more improved rate
of discovery of new compounds in contrast to their terrestrial counterparts {Bernan, Greenstein
& Maiese, 1997). Perhaps the most well-known example among actinomycetes is the marine
Salinispora pacifica that has been shown to produce at least four novel polyketides: salinipyrones
A and B, and the pacificanones A and B (Oh et al., 2008). Salinispora was the first marine-obligate
genus discovered (Maldonado et al., 2005), due to its specific requirement of ionic sodium for
growth (Mincer et al., 2002). So far, three species have been described, S. tropica, S. arenicola
and S. pacifica. It has been demonstrated that these species harbour species-specific genomic
islands enriched in genes associated with secondary metabolite biosynthesis. Although they are
closely related, different metabolic products among them are produced, thus linking secondary
metabolism to ecological diversification (Penn et al., 2009). The metabolite salinosporamide A
obtained from S. tropica (Udwary et al., 2007} is an active cytotoxic inhibitor of the 205
proteasome causing cell apoptosis (Feling et al., 2003). Biosynthesis of salinosporamide A
involves a PKS type I-catalyzed condensation of an acetate starter unit with an unusual extender,
a chloroethylmalonyl-CoA. The ClI atom is crucial for the proteasome-inhibiting activity
(Eustéquio et al., 2009). Currently, salinosporamide A is under phase | of clinical trial as a potent
antitumoral drug (Fenical et al., 2009). Genome mining of S. tropica has led to the identification

of at least 19 BGCs for secondary metabolites (Udwary et al., 2007; Penn et al., 2009).

23




Several reports have highlighted the importance of culturing marine actinomycetes as
prolific sources of NPs, with the subsequent discovery of novel bioactive compounds (Zotchev,
2012). Examples of metabolites produced by marine actinomycetes involve the dermacozines, a
new structural class of phenazine derivatives obtained from Dermacoccus abyssi sp. nov. isolated
from a Mariana Trench sediment at a depth of 10,898 m {Pathom-aree et al., 2006b; Abdel-
Mageed et al, 2010) and the antibiotic kocurin active against methicillin-resistant
Staphylococcus aureus (MRSA), which is a thiazolyl peptide obtained from sponge-derived
Kocuria and Micrococcus isolates (Palomo et af., 2013). Also, different marine Streptomyces
species have been demonstrated to produce a diverse myriad of novel compounds. Examples
include the polycyclic tetramic acid macrolactam ikatugamycin, which showed antifungal and
antibacterial activity and was isolated from an off-shore sediment nearby Utonde, in Equatorial
Guinea (Lacret et al., 2015); the novel champacyclin, an NRPS-octapeptide isolated from marine
sediments of the Baltic Sea (Pesic et al., 2013); the new antibiotic anthracimycin, isolated from
Santa Barbara marine sediments in California, which have showed a significant activity towards
Bacillus anthracis {Jang et al., 2013); and the novel alkaloid xinghaiamine A, with broad spectrum
antibacterial and cytotoxic activities which is a sulfoxide-containing compound never seen before
in microorganisms (Jiao et al., 2013). Interestingly, there are additional unique functional groups
solely found in marine natural products (Piel et al., 2000; Engelhardt et al., 2010; Li et al., 2011;
Jiao et al., 2013). Additionally, incorporation of halogenated groups is more abundant in MNP,
which is in part due to the fact that marine environments are especially rich in chlorine and

bromine elements {Zhang et al., 2005),

To date, diverse antibiotics currently still used in clinic have been identified to be

synthesized by PKS and NRPS metabolic routes from soil actinomycetes. The erythromycin, is a
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PK produced by Streptomyces griseus (Staunton & Wilkinson, 1997) and the tetracyclin is a PK
produced by Streptomyces rimosus {Chopra & Roberts, 2001). Vancomycin is a NRP produced by
Nocardia orientalis (Reynolds, 1989). Diverse studies in marine-derived actinomycetes
demonstrate that they represent rich sources for novel bioactive compounds with many
therapeutic applications, where NRPS and PKS routes are fundamental to contribute to chemical
diversity and biological specificity (Goodfellow & Fiedler, 2010; Subramani & Aalbersberg, 2012;

Antoraz et al., 2015; Katz & Baltz, 2016)

A combinatorial strategy to exploit the ability of marine actinomycetes to produce
bioactive metabolites was pursued. This Ph.D. study involves isolation of marine actinomycetes
from an underexplored environment and the screening of their antimicrobial activities, with the
aim to perform genome sequencing to selected isolates in order to find the metabolic routes;
and the subsequent analytical detection and identification of one compound produced by a

particular Streptomyces strain (Figure 4).
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3  Hypothesis

¢ Actinomycetes with antimicrobial activity isolated from marine sediments from Comau
Fjord harbour novel biosynthetic gene clusters of non-ribosomal peptides (NRP) which

synthetize bivactive secondary metabolites.

4  Aims

4.1  Principal Aim

Identification and characterization of biosynthetic gene clusters involved in the synthesis of non-
ribosomal peptides (NRP) secondary metabolites in actinomycetes with antimicrobial activity

isolated from marine sediments of Comau Fjord.

4.2  Specific Aims

4.2.1 Isolation and characterization of actinomycetes from marine sediments of Comau
fiord and evaluation of their antimicrobial activity.

4.2.2 Determination of the presence of genes encoding for PKS and NRPS and
identification of PKS and NRPS biosynthetic clusters in actinomycetes that produce
antimicrobial metabolites.

4.2.3 Characterization of antimicrobial metabolites produced by actinomycetes that have
PKS and NRPS biosynthetic gene clusters and bioinformatic prediction of their structure.
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5 Results

5.1 Aim 1: Isolation and characterization of actinomycetes from marine sediments of
Comau fjord and evaluation of their antimicrobial activity

Results involving this aim are part of a publication that will be presented as Chapter L.

Chapter I: Exploring the diversity and antimicrobial potential of marine Actinobacteria
from the Comau fjord in northern Patagonia, Chile. Undabarrena A., Beltrametti F.,
Claverfas F., Gonzélez M., Moore E.R.B., Seeger M. & Camara B. (2016} Frontiers in
Microbiology 7:1135. DOI: 10.3389/fmicb.2016.01135.

5.2 Aim 2: Determination of the presence genes encoding for PKS and NRPS and
identification of their biosynthetic gene clusters in actinomycetes that produce
antimicrobial metabolites

Results involving this aim are part of two publications that will be presented as Chapter Il and
Chapter I, respectively.

Chapter ll: Genome sequence of Streptomyces sp. H-KF8, a marine actinobacteria isolated
from a Northern Chilean Patagonian fjord. Undabarrena A., Ugalde J.A., Castro-Nallar E.,
Seeger M. & Camara B. (2017) Genome Announcements 5:e01645-16. DO
10.1128/genomeA.01645-16.

Chapter Ill: Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8
unveils insights into multi-stress related genes and metabolic pathways involved in
antimicrobial synthesis. Undabarrena A., Ugalde I.A., Seeger M. & Cémara B. (2017} Peer/
5:22912. DO} 10.7717/peerj.2912.

5.3 Aim 3: Characterization of antimicrobial metabolites produced by actinomycetes that
harbour PKS and NRPS biosynthetic clusters and bioinformatic prediction of their
structure

Results involving this aim will be presented in this thesis as Chapter IV.

Chapter IV: Chemical detection of antimicrobial compounds in Streptomyces sp. H-KF8:
unveiling their connection between its NRPS biosynthetic gene clusters.
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Chapter I: Exploring the diversity and antimicrobial potential of
marine Actinobacteria from the Comau fjord in Northern Patagonia,

Chile
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Collection University of Gothenburg (CCUG), Sahigrenska Academy, University of Gothenburg, Gothenburg, Sweden,

* Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Bioprospecting natural products in marine bacteria from fjord environments are attractive
due to their unique geographical features. Although, Actinobacteria are well known
for producing a myriad of bioactive compounds, investigations regarding fiord-derived
marine Actinobacteria are scarce. In this study, the diversity and biotechnological
potential of Actinobacteria isolated from marine sediments within the Comau
fiord, in Northern Chilean Patagonia, were assessed by culture-based approaches.
The 165 rRNA gene sequences revealed that members phylogenetically related
to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae,
Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were
present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera)
was retrieved by using only five different isolation media. Four isolates belonging to
Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA
gene identity <98.7 % suggesting that they are novel species. Physiological features such
as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and
antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium,
Rhodococcus, and Streptomyces isolates showed strong inhibition against both
Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and
Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities
in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported,
suggesting that non-mycelial strains are a suitable source of bioactive compounds. In
addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%),
PKS 1 (18%), and PKS Il (73%). Our results indicate that the Comau fjord is a promising
source of novel Actinobacteria with biotechnological potential for producing biologically
active compounds.

Keywords: cultivable actinobacteria, antimicrobial activity, Comau fjord, marine sediments, Northern Patagonia

Frontiers in Microbiology | www.frontiersin.org 1

July 2016 | Volume 7 | Article 1135




Undabarrena et al.

Marine Actinobacteria from a Chilean Patagonian Fjord

INTRODUCTION

The increased prevalence of multi-drug resistance pathogens
along with the rapid development of cross resistances with
new antibiotics is the driving force in the identification and
production of novel therapeutic agents (Livermore, 2009}
All classes of antibiotics have seen emergence of resistance
compromising their use; hence there is an urgent need for
new bioactive compounds (Genillond, 2014}, The traditional
approach consisting of isolation and cultivation of new
microorganisms of underexplored habitats is still rewarding
{Axenov-Gribanov et al, 2016}, and has brought to the
identification, production and commercialization of most of the
antibiotics (Newman and Cragg, 2012). Despite the chemically
synthetic efforts, natural environments are still the main source
for the discovery of novel antibiotics (Fenical and Jensen, 2006;
Bull and Stach, 2007). Although, the diversity of life in terrestrial
environments is well reported, the highest biodiversity is in the
worlds oceans (Donia and Hamann, 2003). Oceans are strongly
complex habitats in terms of pressure, salinity and temperature
variations (Fenical, 1993}, therefore marine microorganisms have
to develop physiological traits inclnding chemically complex
biosynthesized metabolites to ensure their survival in this highly
dynamic habitat. Research has taken advantage from these
unique molecules to discover novel bioactive compounds with
antibacterial, antifungal and/or antitumor properties, and apply
them in current clinical challenges (Gulder and Moore, 2010},

In this scenario, bacteria from the phylum Actinobacteriaare a
prominent source of biologically active natural compounds, since
they are well known for their capacity to biosynthesize versatile
secondary metabolites (Katz and Baltz, 2016). Actinobacteria are
one of the major phyla of the domain Bacteria (Goodfellow and
Fiedler, 2010). It encompasses high GC-content Gram-positive
bacteria that includes 17 orders {Gao and Gupta, 2005; Sen et al.,
2014). Surprisingly, the class Actinobacteria contains both the
most deadly bacterial pathogen (i.e., Mycobacterium genus) and
the microorganisms that are the most important for antibiotic
production (ie., Streptoryces genus) (Doroghazi and Meicalf,
2013). Streptomyces are responsible for two-thirds of all known
antibiotics. In addition, several other important biologically-
active compounds have been found, including antitumoral,
antifungal, herbicidal, and antiparasitic compounds (Bérdy,
2005). Due to the extensive sampling of soil Streptomyces, the rate
of discovery of novel metabolites is decreasing (Fenical, 1993),
which is the reason why bioprospecting efforts are curzrently
being developed in marine underexplored ecosystems.

Marine environments are an established ecological niche for
actinobacteria (Das et al., 2006; Ward and Bora, 2006). Cultivable
actinobacterfa from marine habitats have been characterized
from mangrove forests (Hong et al., 2009; Baskaran et al,, 2011;
Lee et al,, 2014a,b; Ser et al.,, 2015, 2016}, marine sponges (Kim
et al, 2005; Montalvo et al, 2005; Zhang et al, 2006; Jiang
et al., 2007; Sun et al., 2015), corals (Hodges et al., 2012; Kuang
et al,, 2015; Mahmoud and Kalendar, 2016; Pham et al., 2016),
sea cucumbers (Kurahashi et al,, 2010), pufferfishes (Wu et al,,
2005), and seaweed (Lee et al, 2008). Notably, actinobacteria
are predominant in marine sediments (Mincer et al, 2002;

Magarvey et al., 2004; Jensen et al., 2005; Bredholdt et al,, 2007;
Gontang et al., 2007; Ledn et al., 2007; Maldonado et al,, 2008;
Duncan et al, 2014; Yuan et al,, 2014) and also in deep sea
sediments {Colquhoun et al., 1998; Pathom-Aree et al,, 2006).
Marine actinobacteria have been described as an emerging source
for novel bioactive molecules (Lam, 2006; Joint et al,, 2010;
Subramani and Aalbersberg, 2012; Zotchev, 2012}. The majority
of these secondary metabolites are produced by polyketide
synthases (PKS) and non-ribosomal peptide synthetases (NRPS)
metabolic pathways (Salomon et al., 2004). Notably, it is reported
that actinobacteria have a higher number of these biosynthetic
genes (Donadio et al., 2007),

The extensive coast of Chile is 2 promising biome to explore
marine actinobacterial communities, and in this context, the
bioprospecting of sediments of a marine protected area, the
Comau fjord, in the Chilean Northern Patagonia was proposed.
The Comau fjord is a pristine area unique by its geological nature,
It is comparatively smaller than other fjords in Chile, and also
one of the deepest (Ugalde et al,, 2013); characterized by steep
slopes, with surrounding mountains that have a height of up
to 2000m with a dense extratropical rainforest covering from
the sea to the top (Lagger et al,, 2009). The aim of this study
was to isolate marine actinobacteria from this unique ecosystem.
The cultivable diversity of actinobacterial strains along with
their environmental adaptation traits was investigated, and their
ability to produce antibacterial activity against model strains was
assessed.

MATERIALS AND METHODS

Environmental Samples

Sampling was performed in the Marine Protected Area of Huinay
in January 2013, located in the Commune of Hualaihué, in the
Los Lagos Region, Chile. Samples were collected from marine
sediments within the Comau Fjord in the Northern Patagonia.
Four different coastal locations were sampled in front of Lilihuapi
Island (42°20, 634'S; 72°27, 429'W), Tambor Waterfall (42°24,
161'S; 72°25, 235'W), Punta Llonco {42°22, 32'§; 72°25, 4'W),
and in front of Lloncochaigua River mouth (42°22, 37'S;
72°27, 25'W) (Figure 1). Underwater samples were collected by
Huinay Scientific Field Station scuba divers, dispensing samples
directly from marine sediments into sterile 50 mL tubes. Marine
sediments were taken from subtidal zones at different depths,
ranging from 0.25 to 26.2 m. Salinity was measured at each
sampling site, and ranged from 5 pg L™! in the coast in front
of Lloncochaigua River mouth, where there is a meaningfui
input of fresh water, to 31 pg L™! in the coast of Lilihuapi
Island, located further away from continental land. Samples were
maintained on ice until transported to the laboratory, where they
were stored at 4°C,

Isolation of Actinobacteria

Samples were both plated directly or serially diluted (10—*
and 107%) before plating on selective media for the isolation
of actinobacteria. Five selective media were used as previously
reported (Claverias et al, 2015): M1 Agar (Mincer et al.,
2002), ISP2 and NaST2iCx Agar (Magarvey et al, 2004),
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FIGURE 1 | Geography of sampling sites for actinobacteria isolation from the Comau fjord in Northern Patagonia, Chile. Map of sampling locations within
the Comau fiord (Los Lagos Region). Numbers indicate the sites where marine sediments were collected at the coast close to: Liihuapi Island (1), Punta Llanco (2),
Uoncochaigua River mouth (3), and Tambor Waterfall (4). Black dot indicates location of the Huinay Scientific Field Station.

R2A Agar (Difco), and Marine Agar (MA) 2216 (Difco). All
media were amended with nalidixic acid (25 pg mL™!), as an
inhibitor of primarily fast-growing Gram-negative bacteria, and
cycloheximide (100 pug mL~") for fungi inhibition [28]. All media
with the exception of Marine Agar, were prepared with artificial
sea water (ASW) (Kester et al., 1967). The agar media cultures
were incubated at 30°C until visible colonies were observed, up
to 1-2 months. For isolation purposes, colonies were individually
streaked out onto Tryptic Soy Agar medium (TSA) prepared
with ASW (TSA-ASW) and eventually transferred on new plates
until pure cultures were obtained. Isolated bacteria were stored
at —20 and —80°C, in 20% glycerol, TSB medium and ASW for
maintenance.

Detection and ldentification of

Actinobacteria

A PCR-assay was conducted as a screening method for detecting
actinobacterial strains among the isolates with primers targeting
the V3-V5 regions of the 165§ rRNA gene of actinobacteria
(§-C-Act-0235-a-5-20 and S-C-Act-0878-A-19) (Stach et al.,
2003). DNA extractions were performed, using a lysis method by
culture boiling suspensions of bacterial cells (Moore et al., 2004).
Each PCR reaction contained 1 pL of genomic DNA, 12.5 pL of
GoTaq Green Master Mix (Promega) and 0.6 uM of each primer
in a final reaction volume of 25 L. The reaction started with
an initial denaturation, at 95°C for 5 min, followed by 35 cycles
of DNA denaturation, at 95°C for 1 min, primer-annealing, at
70°C for 1 min and extension cycle, at 72°C for 1.5 min, with
a final extension at 72°C for 10 min (Claverias et al., 2015).
PCR-amplicons were visualized in 2% agarose gel electrophoresis

and subsequently revealed with SYBR Green staining (E-gel,
Invitrogen).

Positive isolates were selected for 16S rRNA gene
amplification, using universal primers 27F and 1492R (Lane,
1991). The reaction mix (50 pL) contained 1 pL of genomic
DNA, 25 pL of GoTaq Green Master Mix (Promega) and
0.2 pM of each primer. The reaction started with an initial
DNA denaturation at 95°C for 5min, followed by 30 cycles
of denaturation at 95°C for 1min, primer-annealing at
55°C for 1min and primer-extension at 72°C for 1.5min,
with a final extension at 72°C for 10min. PCR products
were sent to Macrogen Inc. (Seoul, Korea) for purification and
sequencing using the conserved universal primer 800R. Retrieved
sequences were manually edited and BLAST nucleotide analyses
were performed with the National Center for Biotechnology
Information server (NCBI) and actinobacteria were initially
identified up to the genus level.

Antimicrobial Activity Tests

Bioprospecting for antimicrobial activity was initially performed
using the cross-streak method as described (Haber and Ilan,
2014), with slight modifications (Claverias et al., 2015). Fresh
cultures of the isolated actinobacterial strains were inoculated
as a line in the middle of an agar medium plate and incubated
at 30°C until notable growth was observed (7 days for mycelial
strains and 5 days for non-mycelial strains). Strains were grown
on TSA-ASW and ISP2-ASW media. Five reference bacteria
were the target of inhibition tests: Staphylococcus aureus NBRC
100910" (STAU); Listeria monocytogenes 07PF0776 (LIMO);
Salmonella enterica subsp enterica LT2T (SAEN); Escherichia
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coli FAP1 (ESCO) and Pseudomonas aeruginosa DSM500717
(PSAU). Cultures were incubated at 37°C overnight and
inhibition zones were ranked qualitatively as: —, no inhibition;
+/—, attenuated growth of test strain in the area closest to the
actinobacterial line; -+, <50% growth inhibition (less than half
of the bacterial line was inhibited); ++, 50% growth inhibition
(half of the bacterial line was inhibited); + + +, >50% growth
inhibition (more than half of the bacterial line was inhibited).
All experiments were performed in duplicate, using an internal
control with one of the reference strains.

Further antimicrobial tests were performed with selected
isolates Streptomyces sp. H-KF8, Arthrobacter sp. H-JH3,
Brevibacterium sp. H-BE7, Kocuria sp. H-KB5 and Rhodococcus
sp. H-CASf. Strains were grown in a 50 ml liquid culture in
[SP2-ASW medium for 10 days for non-mycelial strains and
I5 days for the mycelial strain, with continuous shaking at
30°C. Crude extracts were obtained after solvent extraction using
hexane, methanol and ethyl acetate in a 1:1 ratio (v/v) for two
times. Evaporation of solvent was performed with speed vacuum,
and extract was dissolved in 10% dimethyl sulphoxide (DMSO)
until a final concentration of 5mg mL™!. Antimicrobial assays
were evaluated using 10 pL of each extract, over LB agar plates
spread with the bacterial test strains STAU, PSAU, SAEN, and
ESCO. Plates were incubated overnight at 37°C and inhibitions
zones were checked. ISP2 medium and 10% DMSO were used as
negative controls,

Detection of PKS and NRPS Biosynthetic

Genes

Amplification of biosynthetic genes was carried out by PCR,
using degenerate primers targeting the ketosynthase domain
in PKS type I with primers KS$-F (5'CCSCAGSAGCGCSTS
YTSCTSGA3') and KS-R (5'GTSCCSGTSCCGTGSGYSTCSAS)
(Gontang et al, 2010); and PKS type I with primers KSu
(5"TSGRCTACRTCAACGGSCACGG3') and KS8 (5"TACSAG
TCSWTCGCCTGGTTCY') (Ayuso etal,, 2005). The adenylation
domain in NRPS systems was detected with primers A3F
(5’ GCSTACSYSATSTACACSTCSGG3') and A7R {5'SASGTCV
CCSGTSCGGTAS3') (Ayuse-Sacido and Genilloud, 2005). PCR
programs were performed as previously described (Ayuso et al,,
2005; Ayuso-Sacido and Genilloud, 2005; Gontang et al,, 2010},
Products were visualized in 1% agarose gels electrophoresis, and
stained with GelRed (Biotium). Streptomyces violeaceoruber DSM
40783 was used as a control for all PCR reactions. Detection was
determined as 4, if the amplicon was located at the expected size
{700 bp for PKS type I; 800-900 bp for PKS type II and 700-800
bp for NRPS); and —, if amplicon was absent or it was present at
any other size.

Phylogenetic Analysis

Representative strains for each genus identified from partial
165 rRNA gene sequence analyses were selected for the nearly-
complete sequencing of this gene, as previously described
{Claverias et al,, 2015). PCR products were quantified and sent
to Macrogen Inc. (Seoul, Korea) for purification and sequencing,
using primers 27F, 518E B800R, and 1492R. Manuat sequence
edition, alignment, and contig assembling were performed using
Vector NTI vi0 software package {Invitrogen). Sequence contigs

were analyzed performing BLAST with NCBI to determine
the closest type strain match using the 165 ribosomal RNA
sequence of Bacteria and Archaea database. The Neighbor-
Joining algorithm (Saitou and Nei, 1987) using MEGA software
version 6.0 {Tamura et al, 2013} with bootstrap values
based on 1000 replications (Felsenstein, 1985) was used to
construct a phylogenetic tree based on the V1-V9 region of
the 165 rRNA gene sequences. The 168 rRNA gene sequences
were deposited in GenBank under the following accession
numbers: Arthrobacter sp, H-JH3 (K1799841); Brachybacterium
sp. H-CG1 (KT799842); Brevibacterium sp. H-BE7 (KT799843);
Corynebacterium sp. H-EH3 (KT799844); Curtobacterium sp.
H-ED12 (KT799845); Kocuria sp. H-KB5 (K1799846); Dietzia
sp. H-KA4 (KT799847); Micrococcus sp. H-CDSb (KT799848);
Rhodococcus sp. H-CASTE (KT799849); Streptomyces sp. H-KF8
(KT799850) and Streptomyces sp. H-CB3 (K1799851).

Phenotypic Characterization of

Actinobacterial Strains

For the morphological and physiological characterization of the
representative strains, colony pigmentation, spore formation,
growth temperatures, ASW requirement and NaCl tolerance
were evaluated. Optimal colony pigmentation was observed on
TSA-ASW after a 3-month incubation at 4°C. To establish
the effects of temperature on growth, 10 L of actinobacterial
cultures were streaked onto TSA-ASW plates, and incubated
at 4, 20, 30, 37, and 45°C. For NaCl tolerance, LB agar with
0, 1, 3.5, 5.0, 7.0, 10, and 20% (w/v) NaCl was prepared. As
described previously, 10 pL of the actinobacterial cultures were
streaked onto LB agar plates and incubated at 30°C. To detect
the requirement of seawater on growth, ISP2 was prepared as
follows: medium with Milli-Q H;0; medium with ASW; and
medium with Milli-Q HzO supplemented with 3.5% (w/v) NaCl
{equivalent to ASW NaCl concentration). Incubation times were
from 10 days {for non-mycelial strains) to 14 days (for mycelial
stains) at 30°C. The reference time for growth was that on which
growth was observed on control plates. Results were interpreted
as: -}, if the strain tested was able to grow on medium-ASW but
did not grow on medium/Milli-Q H30 and on medium/Milli-Q
H,O0 supplemented with 3.5% NaCl; and —, if the strain tested
was able to grow on all three media,

Resistance to Model Antibiotics

Representative strains of cach genus were grown to exponential
phase (turbidity at 600 nm of 0.3} and plated on Mueller-Hinton
agar plates for antibiotic susceptibility testing, Antibiotic discs for
Gram-positive bacteria (Valtek} were placed above and inhibition
grown zones as diameters were measured and compared with
values obtained from the Clinical and Laboratory Standards
Institute (CLSI} from year 2016 to determine susceptibility (S),
or resistance (R} of each antibiotic tested.

RESULTS

Isolation and ldentification of

Actinobacteria
Eleven marine sediment samples were collected from four
different sites in Comau fjord, Northern Patagonia, Chile
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(Figure 1). Altogether 25 marine actinobacteria were isolated.  actinobacterial strains inhibited both LIMO and STAU; whereas
Their distribution according to the sampling site was: 40%  ISP2-ASW-grown strains, 56% showed inhibition for LIMO and
from Lilihuapi island coast, 28% from Punta Llonco, and  36% for STAU (Figure 3B).

16% from Loncohaigua river mouth and Tambor waterfall, Notably, 67% of the antimicrobial activities observed with
each. The majority (80%) of the isolates were from sediments  the cross-streak method were retrieved with various solvent
situated approximately 10m deep. Only occasional isolates  extractions from actinobacterial liquid cultures (Table 2). Ethyl
were obtained from deeper sediments or from the shallow acetate was more effective in extracting active compounds, as
locations. The Actinobacteria isolated belong to three suborders:  crude extracts from Rhodococcus sp. H-CAS8f, Kocuria sp. H-KB5
Streptomycineae,  Micrococcineae, and  Corynebcaterineae;  and Brevibacterium sp. H-BE7 presented antimicrobial activity.
comprising eight different families. Relative abundances of the ~ On the other hand, antimicrobial activity from Arthrobacter
strains according to the genera isolated (Figure 2A) indicated  sp. H-JH3 was effectively extracted from the cell pellet using
that most abundant genera were Kocuria and Brachybacterium.  methanol. Crude extracts from Rhodococcus sp. H-CASf showed
The selective media had a major influence on the number an antimicrobial effect against all bacteria tested, confirming
of isolates obtained (Figure2B). MI1-ASW medium was results obtained from the cross-streak method.

the most effective regarding the number and diversity of i i i
isolates recovered. Interestingly, strains of Brachybacterium, ~Detection of PKS and NRPS Biosynthetic

Brevibacterium, Micrococcus, and Rhodococcus genera were  Genes

isolated exclusively with this medium (Figure 2B). The presence of biosynthetic PKS (type I and II) and NRPS
oo i o genes were detected by PCR in representative actinobacterial
Antimicrobial Activity Assays isolates (Table 3). Interestingly, most isolates bear at least one

Our first approach was to screen all actinobacterial strains biosynthetic gene of PKS or NRPS. Among them, NRPS was
for antimicrobial activity, using the cross-streak method,  the predominant gene observed (91%), followed by PKS type II
against five reference strains: STAU, LIMO, PSAU, SAEN, and  (73%). Only 18% of actinobacterial isolates showed the presence
ESCO (Figure 3A). Actinobacterial strains showed antimicrobial  of PKS type I gene.

activity, presenting a broad spectrum of inhibition although with

different inhibition patterns (Table 1). Inhibition of reference Phylogenetic Analysis

strains largely depended on the media where actinobacterial ~ For phylogenctic analysis, the 168 rRNA gene was sequenced
strains were cultivated, proving TSA-ASW to be generally better ~ for selected actinobacterial isolates, representatives of each
for antimicrobial activity than ISP2-ASW medium. Arthrobacter, ~ genus retrieved in sediment samples from Comau fjord. A
Brachybacterium, Curtobacterium, and Rhodococcus isolates  dendogram of the estimated phylogenetic relationships is
showed potent antimicrobial bioactivity to more than one target  presented in Figure 4 and the sequence similarities of selected
(Table 1). Regarding the Gram-negative bacteria tested, TSA-  actinobacterial strains to type strains of related species are
ASW-grown actinobacterial strains were able to inhibit ESCO  given in Table3. Four of the actinobacterial isolates are
(84%) and PSAU (24%); whereas ISP2-ASW-grown isolates  below the 98.7% sequence identity threshold and therefore
inhibited up to 76 and 48%, respectively. Concerning the may be potential candidates of new taxons. These isolates
Gram-positive reference strains, 64% of the TSA-ASW-grown  belong to Arthrobacter and Kocuria genera (Micrococcaceae

@ Arthrobacter

B 8rochybacterium
B Brevibacterium
B Corynebacterium
& Curtobacterium

B Dietzia

Number of Isolates

B Kocurio
@ Micrococcus
W Rhodococcus

W Streptomyces

N B

ISP2-ASW R2A-ASW

M1-ASW NaST21Cx-ASW

Isolation Media

FIGURE 2 | Biodiversity of actinobacteria from the Comau fjord in Northern Patagonia. (A) Distribution of the relative abundance of the actincbacterial genera
isolated. (B) Number of actinobacteria of various genera isolated using different culture media.
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B Arthrobacter

@ Brachybacterium
@ Brevibacterium

@ Corynebactenium
& Curtobacterium
BDietzia

m Kocuria

Number of Isolates

8 Micrococcus
8 Rhodococcus
o Streptomyces

Bacteria Tested

FIGURE 3 | Antimicrobial activity of actinobacterial strains from the Comau fjord in Northern Patagonia. (A) Cross-streak method of Rhodococcus sp.
H-CABI showing different patterns of inhibition zones with several model bacteria. (B) Antimicrobial activity of actinobacterial strains using the cross-streak method.,
STAU, Staphylococcus aureus; LIMO, Listeria monocytogenes; PSAU, Pseudomonas aeruginosa; SAEN, Salmonelia enterica; ESCO, Escherichia coli, |, 1ISP2-ASW
media; T, TSA-ASW media.

TABLE 1 | Antimicrobial activity of actinobacterial strains against model pathogens using the cross-streak method.

Strain Genus STAU LIMO PSAU SAEN ESCO

IsP2 TSA ISP2 TSA IsP2 TSA ISP2 TSA I1SP2 TSA
H-CA8b Arthrobacter +/— = + 4+ +4++ +++ FHF +/— +/— 4 ++
H-JH1 Arthrobacter - - ++ = + - +/— +/— + -
H-JH3 Arthrobacter - = ++ - + C2 +/— +/= - +/—
H-CA4 Brachybacterium = = FHF + = ++ - = +/— oo e
H-CD1 Brachybacterium - +/— - +++ - = = i . +/— -
H-CE9 Brachybacterium - +/— + ++ - - + Es ++ +
H-CF1 Brachybacterium ++ +- + ++ - - - +/— - +/—
H-CG1 Brachybacterium - +/= - +++ +/— - - - +/— iy -
H-BE7 Brevibacterium + +/— — - + i ++ + 3 =
H-EH3 Corynebacterium - +/— +/— +++ - - - - = =
H-KF5 Corynebacterium - - - - +/— - == +/- - +/—-
H-BE10 Curtobacterium +++ +++ +/= +++ - — ++ +++ +— +4+
H-CD9a Curtabacterium + + +/— + = = Fif— - +/= gf=
H-ED12 Curtobacterium ++ ++ + ++ = - += - +H= =
H-KA4 Dietzia - — = - - - - Hl= = -
H-KA9 Kocuria - - - - +/— = = /- = 4=
H-KA10 Kocuria - +/= - = - = = e T iy 3
H-KB1 Kocuria - - - - - — - #h= Yl /-
H-KB5 Kacuria - - ~ = +i— = = 4/— = —
H-KB6 Kacuria - +/— +/— +++ +/= +/= - +/— +/— +
H-JH7 Kocuria - - = - - - = o - o
H-CD%b Microccocus - +f= - +++ + +/= +/— - +/— +/—
H-CA8f Rhodocaccus ++ ++ ok Hkrk = +++ +4++ +++ + 4+ +++
H-CB3 Streptomyces +4+ +4 4 +/= +/= +/— - - e + SHE
H-KF8 Streptomyces ++ 4 + +/— +/— +/— - - = e e

—. no inhibition; +/—, attenuated growth; +. <50% growth inhibition; +-+. 50% growth inhibition; ++ +, >50% growth inhibition. Both media were prepared with ASW.
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TABLE 2 | Antimicrobial activities of crude extracts using various solvents
for selected actinobacterial isolates grown In ISP2-ASW medium.

Strain Solvent Bacterial Test Strain

STAU PSAU SAEN ESCO

Hexane - - - -
Ethyl acetate - - - -
Msthanal -+ — - +

H-CABf Hexane - - — -
Ethyl acetate + + + +

Methanol - — - _

H-KB5 Hexane — _ — —
Ethyl acetate - + + E3

Methanol - - - -

H-JH3 Haxane - - - -
Ethyl acetate - - - -

Methancl - - + -+

H-BE7 Hexane - - - -
Ethyl acetate - - + -

Methanol - - - -

family), Brevibacterium genus (Brevibacteriaceae family), and
Corynebacterium genus {Corynebacteriaceae family) (Table 3).
Interestingly, the psychrotolerant isolate Kocuria sp. H-KB5 has
a 96.97% sequence identity with the type strain X polaris CMS
76 or!, a strain isolated from an Antarctic cyanobacterial mat
sample {Reddy et al., 2003). Moreover, strain H-KB5 forms a
separate branch within the Kocuria group in the phylogenetic
tree (Figure4), This isolate will be further characterized in a
polyphasic approach to determine its taxonomic position,

Phenotypic Characterization of Isolated

Actinobacterial Strains
The Comau fjord is characterized by defined zoning patterns of
strong vertical and horizontal salinity gradients. The first I15m
underwater are influenced by waters of low salinity (~1.0%).
Below this depth, a halocline is found that produces a constant
water salinity of 3.2% (Castillo et al., 2012). In order to analyze
how the salinity affects the growth of the actinobacterial isolates,
NaCl tolerance was determined for each strain (Table 3}. 82% of
the representative isolates were able to grow in the presence of
1.0, 3.5, 5.0, and 7.0% {w/v} NaCl (Figuare 5}. 45% of the strains,
belonging to Arthrobacter, Brachybacterium, Brevibacterium,
Curtobacteriumt, and Kocuria genera, were able to grow in
presence of 10% (w/fv) Nd4Cl (Table 3). None of the isolated
actinobacteria was able to grow with 20% w/v NaCL

To study adaptation to marine environments, actinobacterial
strains were tested for ASW requirement. Most strains (73%),
belonging to Arthrobacter, Brachybacterium, Corynebacterium,
Dietzia, Kocurla, Rhodococcus, and Streptomyces genera were
positively influenced by sea water as they required ASW
for growth, suggesting marine adaptation. Interestingly, strain

Brevibacterium sp. H-BE7, showed improved growth with both
ASW and 3.5% NaCl, rather than with Milli-Q H;O and 0% NaCl,
suggesting a specific salt requirement confirmed by its growth in
10% (w/v) NaCl (Figures 58-D),

As the Comau fjord deep-waters reach temperatures below
10°C, actinobacterial strains were tested for growth at different
temperatures. Notably, 73% of strains belonging to Arthrobacter,
Brachybacterium, Brevibacterium, Kocuria, Dietzia, and
Rhodococcus, and to a lesser extent, Streptomyces, were able to
grow at 4°C (Figure 6). Moreover, pigmentation of the colonies
was more intense after growth at 4°C, in comparison to 30°C
{Figures 6B-D). Colony pigmentation of all representative
actinobacteria was visualized macroscopically and detailed in
Table 3.

Resistance to Model Antibiotics

Antibiogram experiments demonstrated that all isolated
actinobacterial strains are resistant to at least one of the
antibiotics tested. Furthermore, these isolates showed resistance
to several antibiotics of different classes. Interestingly, strains
H-JH3, H-BE7, H-KA4, H-CD9, H-CG1, H-ED12, and H-CASf
showed resistances to >6 antibiotics, wherein resistance to
tetracycline, ciprofloxacin and oxacyllin were observed for all
the actinobacterial strains, Strain H-KA4 and H- ED12 showed
resistance to all antibiotics tested, whereas strain H-BE7 was
susceptible only for sulfonamides (Table 4}.

DISCUSSION

Marine actinomycetes isolated from the National Marine
Protected Arca of Huinay at the Comau fjord in Northern
Patagonia were studied, along with their physiological
and taxonomic properties, and their potential to produce
antimicrobial compounds. Patagonian fjords are largely
unexplored, and may provide a rich source of microorganisms
producing novel anti-infective compounds. This is the first
bioprospection report of cultivable actinobacteria in this
unique ecosystem, where 25 actinobacteria were isolated and
characterized. Two studies report the isolation of marine
actinobacteria from sediments of Chile’s vast coast; one from
Chiloé Island (Hong et al., 2010} and a recent study performed
in Valparafso Central Bay (Claverfas et al, 2015). Only a
metagenomic study has been carried out with a microbial mat
located in the Comau fjord, revealing that 1% of community
reads was represented by the phylum Actinobacteria (Ugalde
et al., 2013).

In this study, a lower abundance of actinobacteria associated
to marine sediments was observed compared to Valparafso
Bay where actinobacterial strains belonging to 18 genera were
isolated, using the same cultivating conditions (Claverias et al,,
2015). Although, members of the Rhodococcus and Dietzia genera
were successfully isolated from the Comau fjord, they were
less represented (8%) than in Valparaiso Bay (33%). The lower
actinobacterial abundance in Comau fjord could be due to the
lower content of organic matter in this microhabitat that can
range between 0.5 and 3.4% of organic carbon content for
Northern Chilean Patagonian fjords (Sepilveda et al.,, 2011).
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FIGURE 4 | Phylogenetic tree of representative actinobacterial strains isolated from the Comau fjord in Northern Patagonia, Chile. Neighbour-joining
tree of 168 rRNA gene showing the three suborders within the phylum Actinobacteria. Node numbers represent the percentage of bootstrap replicates (1000

Marine Actinobacteria from a Chilean Patagonian Fjord

resampling) which supported the proposed branching order shown at consistent nodes (values below 50% wers not shown). Gene sequence positions 55-1410 were
considered, according to the Escherichia coli K12 (AP012306) 16S rRNA gene seguence numbering. Arow points to the outgroup E. coli K12. GenBank accession
numbers of 165 rRNA sequences are given in parentheses. Scale bar corresponds to 0.01 substitutions per nucleotide positions.
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FIGURE 5 | NaCl effect on actinobacterial growth. Upper panel: (A) Distribution of actinobacterial isolates and their ability to grow in LB medium with various
percentages of NaCl. Bottomn panel: As an example, the halophilic Brevibacterium sp. H-BE7 grown in LB medium containing: (B) 3.5%; (C) 5%; and (D) 10% NaCl
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Gram-positive bacteria are more commonly observed in organic
rich habitats (Fenical, 1993). Water samples from Valparaiso
Bay are influenced by contamination with polycyclic aromatic
hydrocarbons as well as with heavy metals (Campos et al,
1987; Palma-Fleming et al., 2008; Fuentes et al,, 2015}. It can
also be influenced by hydrographic features such as seasonal
upwelling which can supply nutrients to shallow waters (Capone
and Hutchins, 2013). In contrast, the Comau fjord has a high
precipitation rate that provides a fresh water input (Silva,
2006) which can affect microorganisms in marine sediments.
The four sites from Comau fjord have minimal anthropogenic
intervention, thereof changes in microbial communities are given
almost exclusively by natural processes.

Despite the fact that a relatively low number of actinobacterial
strains were retrieved from Comau fjord, a rather high cultivable
biodiversity (10 genera) was observed using 5 isolation media.
In comparison, the actinobacteria isolated using 11 selective
media from the Trondheim fjord (Norway) belonged to 12
genera (Bredholdt et al, 2007). Also, in a culture-dependent
study using sediments collected near Chiloé Island, Chile,

five genera were retrieved using 7 media, being dominant
the Micromonospora genus (Hong et al., 2010). Although, no
Micromonospora members have been isolated in this work, this
could be due to the different isolation media used. In this
report, 24% of isolates were obtained from NaST21Cx medium,
which is derived from $§T21Cx medium by elimination of yeast
extract and replacement of artificial sea water (Magarvey et al.,
2004). It has been reported that media composed of relatively
simple nutrients yielded more cultured actinobacteria in diverse
environments (Zhang et al., 2006; Gontang et al., 2007; Qin
et al., 2012). This is consistent with the negligible amount of
nutrients that are actually available for marine actinobacteria
within hostile ocean ecosystems (Das et al., 2006). This is the
case for our study since more isolates were obtained with media
containing low nutrients or complex carbon sources rather
than common media constituents such as peptone and simple
sugars, which are proposed to be unrealistic marine nutrients
(Kurtboke et al, 2015). In this study, the major abundance
of actinobacteria was found in deeper samples, which is in
accordance with that observed in the Trondheim fjord (Hakvag
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FIGURE 6 | Temperature effect on actinobacterial growth. Upper panel: (A) Distribution of actincbacterial isclates and their ability to grow in different
temperatures. Bottom panel: As an example, actinobacterial strains grown in TSA-ASW medium at either 30°C (left) or 4°C (right), showing differences in
pigmentations. (B) Dietzia sp. H-KA4; (C) Kocuria sp. H-KB5; (D) Brachybacterium sp. H-CG1.

TABLE 4 | Antibiotic resistance of selected actinobacterial strains.

Antibiotic Class Huinay Isolates

H-JH3 H-CG1 H-BE7 H-EH3 H-ED12 H-KB5 H-KA4 H-CD9 H-CA8f H-KF8 H-CB3

Penicillin (10 UOF) p-Lactam R R R NG R R R R R R S
Chioramphenical (30 p.g) Other S S R R S R R R R R
Tetracycline (30 ng) Poliketide R R R R R R R R R R
Oxacyliin (1 pug) p-Lactam R R R R R R R R R R
Erythromycin (15 jug) Macrolide R S R R S R S S R S
Clindamycin (2 pg) Lincosamides R S R R S R ] R S S
Sulfa-Trimethroprim (25 pg)  Sulfonamide R S S R S R S R S S
Giprofloxacin (5 .g) Fluoro-quinolone R R R R R R R R R R
Cefazolin (30 pg) Cephalosporin (1st) R R R R R R R R 8 S
Gentamicin (10 ug) Aminoglycoside S R R R S R R R S S

NG, No grawth; R, Resistant; S, Susceptible,

et al, 2008). Moreover, an elevated number (73%) of isolates  been reported (Mincer et al., 2002; Maldonado et al, 2005).
showed an ASW requirement for growth. Evidence of isolation  The fact that growth of some isolates is positively influenced by
of seawater-dependent actinobacteria from marine sedimentshas ~ sea water can be an indicator that suggests they might be well
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adapted to the marine environments (Bredholdt et al., 2007; Penn
and Jensen, 2012; Yuan et al., 2014). Nevertheless, since isolates
obtained from Comau fjord can also grow without NaCl, they
represent novel moderate halotolerant features in actinobacteria
from this pristine sampling zone. This is consistent with the
fact that these isolates have to overcome the dynamics of strong
salinity gradients observed within the Comau fjord.

Reports of marine actinomycetes as a source of novel
secondary bioactive metabolites have been extensively recognized
(Haefner, 2003; Knight et al,, 2003; Fiedler et al,, 2005; Fenical
and Jensen, 2006; Zhang et al., 2006; Gulder and Moore, 2010;
Kurtbéke et al,, 2015). Two screenings for antimicrobial activities
were pursued in this report, and notably, inhibition of the
growth of at least one of the model bacteria was observed.
It is noteworthy to highlight that antimicrobial activities from
non-mycelial strain (e.g., Rhodococcus sp. H-CAS8f) outcompete
the activities of mycelial-type strains. To our knowledge, this is
the first report of strong antibacterial activities associated to a
Rhodococcus isolated from marine sediments. The Rhodococcus
strain isolated in this study has a strong activity (>50%
growth inhibition) against E. coli, S. enterica, P. aeruginosa,
and L. monocytogenes; whereas a Rhodococcus strain isolated
from Valparafso Bay sediments (Claverias et al., 2015) had only
a modest activity against E. coli. Antimicrobial activity from
marine-derived isolates, but not necessarily from sediments,
includes a Rhodecoccus isolated from South China Sea corals
that presented activity against B. subtilis, B. thuringiensis, and
E. coli (Zhang et al,, 2013), whereas Rhodococeus strains isolated
from corals of the Arabian Guif showed activity against S, aureus
(Mahmoud and Kalendar, 2016). In this study, antimicrobial
activity of Arthrobacter sp, H-JH3 against 8. enterica and E, coli
is highlighted by its novelty. In this line, there are reports about
antarctic Arthrobacter strains isolated from sponges that were
able to inhibit the growth of Burkholderia cepacia complex by
the production of volatile organic compounds (Fondi et al., 2012;
Orlandini et al,, 2014). Also, antimicrobial activity against Vibrio
anguillarum and S. aurens was detected from samples collected
from the Arctic Ocean (Wietz et al., 2012). Interestingly, this is
the first report indicating growth inhibition of Gram-negative
strains by a Brevibacterium isolate. Only a bacteriocin able to
inhibit L. monocytogenes, but inactive against Gram-negative was
reported for this genus (Motta and Brandelli, 2002). In contrast,
antimicrobial activity against S. enterica was observed in crude
extracts, suggesting a different mode of action.

It has been reported that most natural products with
interesting biological activities are synthesized by PKS (type I or
type II}), NRPS, and even PKS-NRPS hybrid pathways (Fischbach
and Walsh, 2006}, Some pharmacologically commercial examples
include the polyketide antibiotic erythromycin (Staunton and
Wilkinson, 1497) and the non-ribosomal peptide antibiotic of
the cephalosporin family {Aharonowitz and Cohen, 1992). In
this report, 2 PCR-based screening was pursued for the detection
of these biosynthetic genes in actinobacterial isolates, in order
to explore the potential to produce secondary metabolites with
biotechnological applications. Notably, 91% of the isolaies tested
showed the presence of at least one of the three biosynthetic
genes, which confirms that these metabolic pathways are

widely distributed among this phylum (Donadio et al.,, 2007},
As molecular methods for analyzing these genes are useful
for screening of isolates for prediction of potential bioactive
molecule production (Hodges et al., 2012), future efforts will
be focused in sequencing these biosynthetic genes, to gain
knowledge of the novelty of the bioproducts in which they are
involved in.

The marine habitat sampled in the Northern Patagonia
of Chile was a promising scenario to search for novel
actinobacterial strains. In this study, four putative new species
are proposed: Arthrobacter sp. H-JH3, Brevibacterium sp. H-
BE7, Corynebacterium sp. H-EH3 and Kocuria sp. H-KB5, based
on numerical thresholds related to 165 rRNA gene sequences
{Rossell6-Méra and Amann, 2015). In addition, representatives
of Micrococcineae, Corynebacterineae, and Streptomycineae
suborders were isolated. Interestingly, actinobacterial isolates
showed sequence similarity with strains reported from colder
habitats. 73% of the isolates belonging to Arthrobacter,
Brachybacterium, Brevibacterium, Kocuria, Dietzia, Rhodococcus,
and Streptomyces genera were able to grow at 4°C, suggesting
a psychrotolerant adaptation which is in accordance with the
water body temperature range of the Comau fjord (Lagger
etal, 2009; Sobarzo, 2009), sustaining a thermohaline circulation
(Bustamante, 2009). A difference in colony pigmentation was
observed at low temperatures. Pigments can be enhanced under
specific conditions such as climate stress, since they are part
of the non-enzymatic antioxidant mechanisms in cell defense
to prevent oxidative damage {Correa-Llantén et al, 2012).
Another role of pigments in respanse to cold is to decrease
the membrane fluidity to counterbalance the effects of fatty
acids in Antarctic bacteria (Chattopadhyay, 2006). Pigments
can also contribute to antibacterial activity, positioning them as
interesting biotechnological candidates for food, cosmetic and
textile industries (Rashid et al., 2014; Leiva et al., 2015).

Comparison with 165 ribosomal RNA sequences Bacteria and
Archaea NCBI database, reveals only two closest type strains
of marine origin: Brevibacterium oceani BBH7T isolated from
deep sea sediment of the Indian Ocean (Bhadra et al., 2008)
and Curtobacterium oceanosedimentum ATCC 313177 isolated
from Irish sea marine sediments (Kim et al., 2009). In contrast,
when sequences are compared with NCBI nucleotide collection
database, actinobacterial isolates showed more similarity with
polar marine isolates. This is the case for the psychrotolerant
Arthrobacter sp. H-JH3, which showed a 98.82% identity with
A. scleromae Asd M4-11 (Vardhan Reddy et al, 2009), a
bacterium isolated from a melt water stream of an Arctic
glacier. The psychrotolerant Brachybacterium sp. H-CGl showed
a high similarity (99.16%) with B. articum lact 5.2 (Acc
Number: AF434185, unpublished), a bacterium isolated from
a sea-ice sample from the permanently cold fjord of Wijde
fjord, Spitzbergen, in the Arctic Ocean. Another interesting
relation is given for strain H-CD3b from the genus Micraceccus,
which has a 99.15% of sequence identity with the type strain
M. luteus NCTC 26657 (Rokem et al, 2011) that is a soil
metal resistant bacterium, and a slightly more sequence identity
(99.43%) with Micrococcus sp. strain MOLA4 (Acc. Number:
CP001628, unpublished) a bacterium isclated from sea water of
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North Western Mediterranean Sea. Also, strain H-CAS8f, showed
a higher sequence similarity (98.91%) to Rhodococcus sp. TMT4-
41 isolated from a glacier in China (Acc. Number: JX949806,
unpublished) than to its closest type strain R. jialingiae djl-6-2T
(Wang et al, 2010).

Antibjogram experiments demonstrated that, in general,
actinobacterial  strains showed resistance. Interestingly,
Curtobacterium sp. H-ED12, Dietzia sp. H-KA4 and
Brevibacterium sp. H-BE7 showed resistance to almost all
antibiotics tested, possibly due to the presence of multiple
biosynthetic clusters, invelving different classes of antibiotic
compounds. Strains H-BE7 and H-ED12 inhibited both Gram-
positive and Gram-negative model bacteria, suggesting different
modes of action of the antibacterial molecules produced by
this strain. Thus, it seems plausible that biosynthetic pathways
involving metabolites of similar nature could be present in these
isolates. A typical cluster of secondary metabolism includes
genes for multi-domains enzymes that carry out the synthesis
of different bioactive metabolites and when this metabolite
has an antimicrobial activity, it is coupled to its corresponding
resistance gene (Zotchev, 2014),

To our knowledge, this is the first report of the isolation
and ecophysiological characterization of actinobacteria from
sediments of a Patagonian fjord. This single survey uncovered
a broad cultivable diversity which provides the basis for
the bioprospection of bioactive compounds. The isolation
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5.1.1 Addendum Chapter |
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Figure 5: Sampling sites in the Comau fjord. Marine sediment samples were obtained from four
different locations in the Comau fjord in Northern Chilean Patagonia (Inset: Chilean map; Los
Lagos, X Region, depicted in black). Marine sediments were collected from Lilihuapi Island (42°
20,634’S; 72° 27,429'W) Lloncochaigua River (42° 22,37°S; 72° 27,25'W), Punta Llonco (42°
22,32'S; 72° 25,45'W) and Tambor Waterfall (42° 24,161’S; 72° 25,235'W).
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Underexplored marine : Comau fjord, X Regic’m de
environment Los Lagos, Chile

* M1 (Mincer et al., 2002)
* ISP2 (Margavey et al., 2004)
* R2A (Difco)
)

Isolation of marine
bacteria
* Marine agar 2216 (Difco)
NaST21Cx (Margavey et al., 2004

(1092 isolates)

Screening for PCR with specific prime.rs for 165
rRNA for the selection of

actinomycetes ;
actinomycetes

{} (238 isolates)

Identification of DNA extraction and 165 rRNA
actinomycetes sequencing
(25 isolates)

Figure 6: Strategy for culture-dependent identification of actinomycetes. Isolation of bacteria
was performed with several different media using marine sediment samples obtained from
Comau fjord. After 3 months-period incubation, a total of 1092 isolates were retrieved. Selection
of actinomycetes was performed through PCR, and subsequent 16S rRNA gene sequencing led
to the identification, at the genus level, of 25 marine actinomycetes strains. For culturable
actinomycetes diversity obtained, please see Figure 2 of Chapter|.
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Figure 7: Actinomycetes obtained from environmental sampling. Number of actinomycetes
strains according to: A) sampling site; B) marine sediment depth; C) selective media used for
isolation of marine bacteria.
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Table 1. Actinomycetes isolated in this study. The location of origin, depth of the marine
sediment and media used for isolation is shown for each actinomycete strain.

GENUS IDENTIFICATION

SAMPLING SITE DEPT H {m) MEDIA

STRAIN

8B -| Arthrobacter sp..

Arthrachter sp.

JH3 " | Arthrobactersp. ™, *

prachybactenum s p

A Bf'achybactenum sp
) Brachybactenum sp

,,,,,

Brachybactenum sp

7 © | Brevibacteriuin sp.

Corynebacterium sp.
-Corynebdcterium sp.:

Lilthuapi Island ;,
Lilihuapi Island
Lilihuapi Island
Lilihuapi Island
Tambor Waterfall
Lflfhuam Island
Lilihuapi_ !sland
Tambor Waterfall
Punta’ Llonco o
Lloncnchalgua Rly_er 7
Lilihuapilslad ~ .5 11,3

g o
P i) h-:_ - &&‘Ml 3‘; =

25,17 -

Curtobacterium sp. Punta Llonco .
"H-CD9A | Curtobatterium.sp.-, Punta-llonco . %145 55
H- EDlZ Curtobactenum Sp- . Punta Llonco
H KA Dietzig spSe v Tambor Waterfall 1 H::
H-KAS | Kocuria sp Lilihuapi Island 19.3 NaST21Cx
. H-KBS**:"| Kocuria'sp. *WT * Lioncochaigua River ”  ¢£0(25, . “NaST21Cx.’
H-KB6 Kocuria sp. o Lloncochaigua River 0 25 NaST21Cx_
H:KALO ™| Kocuria'sp.. v Punta Llafico, == 7281, fNélgrzgc;c;
H-KB1 Kocuna sp._ Lloncochalgua Rlver" ” 9 25
H-JHZ: .| Kocuria. .SP, M: . Lilihuapi Island ;4
H-( CDQB M:crococcus sp. B Punta Llonco o 145
. H-CA8F " |‘Rhodococcus sp.” " Lilihuapi Island & 7422.9*
H-KF8 Streptomyces sp. Punta Llonco
EHiCR3 7 |"Streptomyces'sp:. = Tambor Waterfal
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Figure 9: Microscopic characterization of Streptomyces sp. H-KF8. Black arrows show droplet
exudates; White arrows show spore and hyphae, respectively; yellow arrows show spore chain
assembly. A) Stereoscopic image of Colony growth in ISP2-ASW agar after 15 days of incubation
B) Stereoscopic image of colony grown on Marine agar after 20 days of incubation. C) Optic
microscopic image at 1000X of aerial mycelium from ISP2 medium. D) Optic microscopic image
at 1000X of vegetative mycelium from ISP3 medium. E) Low Voltage Electron Microscopy (LVEM)
of mycelium from ISP3 medium. Scale bar, 10 um. F) LVEM of spore chain assembly from ISP3
medium. Scale bar, 10 um. To see other related pictures, see Figure 2, Chapter lIl.
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ISP1 ISP2 ISP3

ISP4 ISPS ISP6

Figure 10: Physiological characterization of Streptomyces isolates in ISP media. Left panel,
Streptomyces sp. H-CB3; right panel, Streptomyces sp. H-KF8. ISP media are prepared as a
standard for Streptomyces isolates, as standard based on the International Streptomyces Project.
Composition of media is as follows: ISP1, tryptone + yeast extract; ISP2, yeast extract + malt
extract + dextrose; ISP3, oatmeal; ISP4, starch + inorganic salts; ISP5, L-asparragine + glycerol +
K2HPOs; ISP6, peptone iron agar + yeast extract.
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Table 2. Physiological characterization of actinomycetes: growth at different temperatures.
Actinomycetes were grown on TSA-ASW medium and growth was monitored up to 15 days
{until 3 months for 4°C).

GENERA 4°C 20 °C 30 °C 37 °C 45 °C
Arthrobacter sp. + e
Brachybac{gnum sp. +
.Brevibactérium sp. +

Corynebact¢ ;ym sp. -
: Curtobactenum 'Sp. -

Kocuna sp

. +
_ : = +
£ M:crococcus sp -
'H-eA8E" Rh Rhiodococcus'sp. +
K-HF8 Streptomyces sp. +
+

' H-CB3 _ - |, Streptomyces'sp. -

Table 3. Physiological characterization of actinomycetes: tolerance to salinity (% Nacl).
Actinomycetes were grown on LB-MQ medium and growth was monitored up to 15 days.

STRAIN GENERA 0% 1% 35% 5% 7% 10% 20%
nH-JH3" | Arthrobactersp. ;™) /. + :
H-CG1 Brachybacterium sp. +
i-BE “Brevibacterigim'sp: +
H-EH3 Corynebactenum sp. -
HEDI2 I +
_HKB5 |4 +
FHKAS: D +
H CDQB M:crococcus sp o +
H-CASF" Rhodococcus Sp.t- TR 4
lgiHFB ______ Streptomyces sp _F
['H-CB3 7 I'Streptomycessp. <" +
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Table 4. Physiological characterization of actiobacteria: Artificial sea water (ASW)

requirement. Actinomycetes were grown on modified ISP2 medium and growth was monitored

up to 15 days.
STRAIN ~ GENERA ISP2-MQ_ ISP2-ASW  ISP2-3.5 % NaCl
H-JH3  Arthrobacter sp. - + -
H-CG1 | Brachybacterium sp. - + -
H-BE7 | Brevibacterium sp. +/- + +
H-EH3  Corynebacterium sp. - - =
H-ED12 | Curtobacterium sp. - + +
H-KB5 | Kocuria sp. - + =
H-KA4 Dietzia sp. B + =

(]
1

H-CDSB  Micrococcus sp. -
H-CA8F ’ Rhodococcus sp. -
K-HF8 | Streptomyces sp. -

H-CB3 | Streptomyces sp. -

+ + +
1

Figure 11: Biochemical characterization of PHAs production. Fluorescence of selected isolates
in the polyhydroxyalkanoates (PHAs) assay. M9 medium was prepared with nile red and glucose
as carbon source. A red fluorescence from the colonies is appreciated when the bacterium has
the ability to produce polyhydroxyalkanoates (Spiekermann et al., 1999). First line, Escherichia
coli DH5a as a negative control (no red fluorescence). Second line, left: Kocuria sp. H-KBS; right:
Arthrobacter sp. H-JH3. Third line, left: Rhodococcus sp. H-CA8F; right: Streptomyces sp. H-KF8.
Fourth line, Brevibacterium sp. H-BE7. Fifth line, Burkholderia xenovorans LB400 as a positive

control (red fluorescence). A) 24 h of incubation. B) 72 h of incubation.
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Figure 12: Biochemical characterization. Lipase activity assay of selected isolates using the Spirit
Blue agar and tributyrin as substrate. A white halo surrounding the colony is visible when the
assay is positive due to the utilization of the substrate and therefore, presence of active lipases
can be suggested. On the contrary, agar maintains it blue colour if assay is negative. A) After 24
h of growth; First line: Rhodococcus sp. H-CASF (left) and Arthrobacter sp. H-JH3 (right). Second
line: Brevibacterium sp. H-BE7 (left) and Kocuria sp. H-KB5 (right). B) After 72 h of growth; First
line: Rhodococcus sp. H-CA8F (left) and Arthrobacter sp. H-JH3 (right). Second line:
Brevibacterium sp. H-BE7 (left) and Kocuria sp. H-KB5 (right). C) Streptomyces sp. H-KF8 after 24
h of growth. D) Streptomyces sp. H-KF8 after 72 h of growth. D) Pseudomonas fluorescens CHAQ
as positive control E) Actinomycetes from our culture collection obtained from Valparaiso as
negative control.




= Brevibacterium epidermidis P

- IL Brevibacterium permense

Iirevibacten'um iodinum DSM 206267
93
' = Brevibacterium linens DSM 204257

92 i
Brevibacterium oceani BBH7T

03| ———Isolate H-BE7

Brevibacterium ammoniilyticur

82 Brevibacterium celere KMM 36377
—i1 p

®L Brevibacterium sanguinis CF637

Brevibacterium marinum HFW-26T7

L Kocuria marina KMM 39057

0.01

Rhodococcus baikonurensis A1-227

# Rhodococcus gingshengii djl-6
a1 gs| RNOdoOCOCCUS jialingiae strain djl-6-2T

Isolate H-CASF

Rhodococcus erythropolis
Rhodococcus globerulus DSM

[ Rhodococcus marinonascens D!
‘I: Rhodococcus opacus B4T

% Rhodococcus jostii RHA1T

® Rhodococcus koreensis DNP505T

Nocardia brevicatena W99657




— Kocuria polaris CMS 76or
68| b Kocuria rosea DSM 20447
Kocuria himachalensis K07-05
%i - Kocuria dechangensis NEAU-ST5-33

———— Kocuria aegyptia YIM 70003
58
|
s [ Kocuria sediminis FCS-11

Kocuria turfanensis HO-9042

87 o
—————————————————— Isolate H-KB§ _

———— Kocuria flava HO-9041

- ! - ==

# ~ Kocuria atrinae P30

= — Kocuria ham!ﬁﬂfaﬂ_

Arthrobacter oxydans DSM 20119

0.01

D & Arthrobacter oxydans DSM 20119
—_®——— Arthrobacter polychromog one

@ - Arthrobacter scleromae YH-2001
Arthrobacter phenanthre
——— Arthrobacter siccitolerans 4
|~ Isolate H-JH3
T .| Arthrobacter sulfonivorans ALL
| s~ Arthrobacter humicola KV-653 :
i g Arthrobacter oryzae KV-651
| a— Arthvobacter giobimis DSM 20108
L Arthvobacter pascens DSM 20545
Kocuria polaris CMS 76or

5
%] ===

001

Figure 13: Phylogenetic relationships of non-myceliar actinomycetes. Neighbour-joining tree of
165 rRNA gene. Node numbers represent the percentage of bootstrap replicates (1000
resampling) which supported the proposed branching order shown at consistent nodes (values
below 50% are not shown). Arrow points to the main outgroup E. coli K12 (AP012306) for
comparison all four trees. A second outgroup was used for each genus, which is not coloured.
Scale bar corresponds to 0.01 substitutions per nucleotide positions. Colours depict the source
of isolation: blue, marine; light blue, fresh water; turquoise, polar; brown, soil; orange, clinical;
green, rhizosphere; gray, air; yellow, food. A) Brevibacterium sp. strain H-BE7; B) Rhodococcus
sp. strain H-CA8F; C) Kocuria sp. strain H-KB5; D) Arthrobacter sp. strain H-JH3.
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Figure 15: Antimicrobial activity using Time Course Assay. Time course was performed with the
aim to elucidate the starting day of antimicrobial synthesis by the producing strain. Bioactive
secondary metabolites are often produced after primary growth phase, which is subsequently
dependent of the growth rate of each strain. A) For non-mycelial strains, macrocolonies were
incubated for different days (from 2 to 6 days) at the middle of the plate, and the last day the
bacterial reference strains were streak in a perpendicular way. As an example, activity of
Arthrobacter sp. H-JH3 against P. aeruginosa DSM 500717 in ISP2 medium is shown, where
activity can be seen from day 2, onwards. B) For mycelial strains, macrocolonies were incubated
several days (from 6 to 20 days) making three lines in the plate, and the last day the bacterial
reference strain was placed above using the double-layer method. As an example, activity of
Streptomyces sp. H-KF8 against S. aureus NBRC 100910" in TSA-ASW medium is shown, where
activity can be seen from day 9, onwards. For time course with one colony per plate, see Figure
4, Chapter lIl.
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ABSTRACT Streptomyces sp. H-KF8 is a fjord-derived marine actinobacteria capable
of producing antimicrobial activity. Streptomyces sp. H-KF8 was isolated from sedi-
ments of the Comau fjord located in the northern Chilean Patagonia. Here, we re-
port the 7.7-Mb genome assembly, which represents the first genome of a Chilean
marine actinobacteria.

Members of the genus Streptomyces are widely recognized for producing a plethora
of bioactive secondary metabolites with antimicrobial, antifungal, and antitu-
moral properties (1). As marine environments are markedly different from terrestrial
ones, it has been proposed that marine Streptomyces spp. may produce different types
of bioactive compounds in comparison to their terrestrial counterparts (2).

The extensive coast of Chile is especially attractive for exploring marine actinobac-
terial communities. The remote Comau fjord, located in the northern Chilean Patagonia
is a marine-protected area suitable for bioprospection due to its unique geologic
nature. There are scarce reports within this area that involve the characterization of
microbial communities from water samples (3), underwater microbial mats (4), and
terrestrial hot spring mats (5, 6). Previously, we aimed to isolate actinobacteria from
marine sediments obtained from various coastal locations at different depths and
evaluate their antimicrobial potential (7). Among these, the marine actinobacteria
Streptomyces sp. H-KF8, isolated from 15-m-deep marine sediments obtained from
Punta Llonco, Comau fjord, was selected for whole-genome sequencing. A prominent
activity against Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli was
previously determined (7), and therefore, Streptomyces sp. H-KF8 is an interesting
candidate to explore for drug discovery.

DNA extraction was performed with the Wizard Genomic DNA extraction kit (Pro-
mega). Next-generation sequencing data were provided by Macrogen and generated
by lllumina HiSeq2000 (paired-end library of 2 X 100 bp) and PacBio (library construc-
tion of 5-kb average size and one SMRT cell with a P5-C3 chemistry) technologies. The
whole genome was de novo assembled using Canu version 1.1 (8) and consisted of 11
scaffolds represented in one linear chromosome with a total of 7,684,888 bp, a GC
content of 72.1%, and coverage of 500% (N, 4,115122 bp; mean read length,
698,626 bp). The genome was annotated using the NCBI Prokaryotic Genome Anno-
tation Pipeline (PGAP) version 3.1 (https://www.ncbi.nlm.nih.gov/genome/annotation
_prok), leading to a total of 6,574 genes assigned as follows: 6,486 coding sequences,
67 tRNAs, 18 rRNAs, and three ncRNAs.
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An antiSMASH version 3.0 search (9) led to the identification of 26 biosynthetic gene
clusters (BGCs) for secondary metabolites, including two polyketide synthases (PKSs),
two nonribosomal peptides synthetases (NRPSs), and four hybrid PKS-NRPSs, which
may be involved in the antimicrobial activity previously observed (7). Only 23% of the
clusters have 100% similarity with other known BGCs. Further genomic analysis of these
secondary metabolism routes may provide insights into the production of interesting
candidates for natural product discovery.

To our knowledge, this is the first report of whole-genome sequencing of a marine
Streptomyces strain in Chile, which may assist future comparative genomics studies.
Next-generation sequencing techniques play a fundamental role in elucidating the
biotechnological potential of environmental isolates, revealing their cryptic genetic
features.

Accession number(s). The Streptomyces sp. H-KF8 genome sequence was deposited
in GenBank under the accession number LWAB0O0000000.
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5.2.1 Addendum Chapter ||

Table 5. Detection by PCR of PKS and NRPS biosynthetic genes in actinomycetes.

STRAIN GENERA PKS1 PKS Il PKS III NRPS
HYH3 - ') Arthrobacter:sp., L A s S
H-CG1 Brachybacterig_(n sp. +

H-BE7.« |.Brevibacterium sp. +

H-EH3 | Corynebactenum sp. Tt

H-CD9B M:cragqggus sp. - - - -
H-CA8F | Rhodocaccus sp. - IR R
K-HF8 Streptomyces sp- - + o+ 4
‘H:eB3’ |:Streptomyces sp:°. N ML T AT

*+, amplicon detected in the estlmated size; -, amplicon detected in another size or absence of
amplicon

Table 6. General features of whole genome from selected non-myecelial strains using Iflumina

sequencing.
. LENGTH  ASSEMBLY
STRAIN GENERA N°OFREADS avg) LENGTH (bp ) CONTIGS  N50
~H:KBS 4| Kocurigisp.=»* £ &~ 925702 232 .--3885308 ;| 7.521- ' 14406
H-JH3 Arthrobactersp 1071832 279 2924959 58 109786
s .H:BE7" {*Brevibdcteriim'sp, 5, 902960 244 5. 4125106 7. .33, ¥ 265313 %
H-CASF | Rhodococcus sp. 725730 248 6468486 34 518650

*avg, average

Table 7. Number of biosynthethic genes {BGCs) detected in non-mycelial strains sequenced. A
special focus in the number of NRPS metabolic routes is shown for each strain.

TOTAL BGCs NRPS
ST PR W) e
“H-KBS:; .| Kociiria sp. K T R M
H-JH3 | Arthrobacter sp. .
H-BE7 | Brevibacterium sp. L Tl A .
H-CA8F | Rhodococcus sp. 21 9(43%)
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Figure 16: Whole genome sequencing of Streptomyces sp. H-KF8. Circular representation of the
linear chromosome consisting of 11 contigs, covering the 7.7 Mbp genome. From outside inward:
DNA strands reverse and forward; contigs, GC content, GC skew. Complete genome properties
and general features are described in Chapter Il. For BGCs location around the genome, see
Figure 6, Chapter IlI.
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Figure 17: Categories of coding genes among Streptomyces sp. H-KF8 genome sequence,
grouped in RAST subsystem categories. Coding DNA sequences (CDS) were also grouped by
Cluster of Orthologous Groups (COGs) categories, which are shown in Table 2 from Chapter III.
In addition, comparison of COGs with two other Streptomyces strains, one from terrestrial- and
the other from marine-derived sources is presented in Figure 4, Chapter Ill. Upper panel: Most
abundant subsystem categories are represented by the amino acid metabolism and
carbohydrates metabolism, which detail is present in the bottom panel. A) Amino acid
metabolism. B) Carbohydrate metabolism.
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Chapter lil: Genomic data mining of the marine actinobacteria
Streptomyces sp. H-KF8 unveils insights into multi-stress
related genes and metabolic pathways involved in

antimicrobial synthesis
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ABSTRACT

Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of
a Chilean Patagonian fjord. Morphological characterization together with antibacterial
activity was assessed in various culture media, revealing a carbon-source dependent ac-
tivity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome
mining of this antibacterial-producing bacterium revealed the presence of 26 biosyn-
thetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have
low similarities with known BGCs. In addition, a genomic search in Streptomyces sp.
H-KF8 unveiled the presence of a wide variety of genetic determinants related to
heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance
(97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8
bacterium has the capability to tolerate a diverse set of heavy metals such as copper,
cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature
first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses
a major resistance towards oxidative stress, in comparison to the soil reference strain
Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance
to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic
stressors. The combination of these biological traits confirms the metabolic versatility
of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability
to confront the dynamics of the fiord-unique marine environment.

Subjects Genomics, Microbiology

Keywords Marine actinomycete, Genome mining, Streptomyces, Biosynthethic gene clusters,
Antimicrobial activity, Heavy metal tolerance, Abiotic stressors, Chilean Patagonian fjord

INTRODUCTION

There has been a burst of genomic data in recent years due to the advances in various
technologies such as next-generation sequencing. Whole genome sequencing is providing
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information-rich data that can hugely contribute and orientate the discovery of natural
products in microorganisms. Indeed genome mining has been positioned as a fundamental
bioinformatics-approach in the natural product field (McAlpine et al, 2005; Van Lanen
& Shen, 2006; Challis, 2008; Doroghazi & Metcalf, 2013; Jensen et al., 2014; Antoraz et al.,
2015; Tang et al., 2015a; Tang et al., 2015b; Katz & Baltz, 2016). Natural products have
clearly demonstrated to play a significant role in drug discovery, in fact 78% of antibiotics
marketed during 1982-2002 originated from natural products (Peliez, 2006). Considering
the year 2014, 25% of the approved new chemical entities were from natural or natural-
derived products (Newman ¢ Crage, 2016). In natural environments, these metabolites
also play important roles as signal molecules, facilitating intra- or inter-species interactions
within microbial communities related to virulence, colonization, motility, stress response
and biofilm formation (Romero et al., 2012).

Streptomyces are mycelium-forming bacteria with a complex developmental life cycle that
includes sporulation and programmed cell death processes (Flirdh ¢ Buttner, 2009; Yagiie
et al., 2013). Their unsurpassed richness and diversity concerning secondary metabolism
pathways has made them valuable providers for bioactive molecules, being responsible
for two-thirds of all known antibiotics (Bérdy, 2012). Genome mining has become a
powerful tool to unveil the biotechnological potential of Streptomyces species, where
biosynthetic gene clusters (BGCs) can be identified (1Weber et al, 2015) and even predict
the chemical core structure of the molecules. Unlike other bacteria, Streptomyces have
linear chromosomes (Chen et al., 2002) and their genome sizes are within the largest in the
bacterial world (Weber et al., 2003), ranging from 6.2 Mb for Streptomyces cattleya NRRL
8057 (Barbe et al., 2011) to 12.7 Mb for Streptomyces rapamycinicus NRRL 5491 (Baranasic
et al., 2013), considering complete sequenced genomes to date (Kim er al, 2015). Up to
5% of their genomes are devoted to the synthesis of secondary metabolites (/keda ef
al., 2003). The ability to produce a wide variety of bioactive molecules is based on the
fact that they contain the largest numbers of BGCs such as polyketide synthases (PKS)
and non-ribosomal peptide synthetases (NRPS), or even PKS-NRPS hybrids (Cliallis,
2008). The genes required for secondary metabolites biosynthesis are typically clustered
together (Zazopoulos et al., 2003) and are tightly regulated both by specific regulation of
each product (Bibb ¢~ Hesketh, 2009) or by pleiotropic mechanisms of regulation that can
control several pathways at the same time (Martin ¢ Liras, 2012). Due to these interesting
properties, nearly 600 species and 30,000 strains of Streptomyces have been identified
(Euzéby, 2011). To date, 653 Streptomyces genome assemblies are available in GenBank
database (Studholine, 2016) and this number is likely to keep increasing.

Although soil microorganisms from the Streptomyces genus have generated vast interest
due to their exceptional role as antibiotic producers (B¢rdy, 2012), their marine counterpart
has been less explored. The marine ecosystem is highly diverse, with extreme abiotic
selective pressures and immense biological diversity (Lasm, 2006). In addition, many
marine organisms have a sessile life style, needing chemical weapons for defense and
survival (//aefner, 2003). Thus, research in natural products has been focusing on the
isolation of microorganisms from corals (Hodges, Slattery ¢ Olson, 2012; Kuang et al,
2015; Mahmoud & Kalendar, 2016; Pham et al., 2016), sponges (Kim, Garson ¢ Fuerst,

Undabarrena et al. (2017), PeerJ, DOI 10.7717/peer|.2912 2/35




- —— el i i e

s

Peer

2005; Montalvo et al., 2005; Zhang et al., 2006; Jiang et al., 2007; Vicente et al., 2013; Sun
et al., 2015), as well as marine sediments (Mincer ¢> Jensen, 2002; Magarvey et al., 2004;
Jensen et al., 2005; Ledn et al., 2007; Gontang, Fenical & Jensen, 2007; Duncan et al., 2014,
Yuan et al,, 2014). In spite of all the isolation studies associated to marine actinobacteria,

relatively little is known about the molecular mechanisms behind bacterial adaptation to
marine environments. It is supposed that marine actinobacteria have adapted through the
development of specific biological traits (7ian et al,, 2016), which has led to hypothesize
that novel species from unexplored habitats may contain unique bioactive compounds
(Axenov-Gribanov et al, 2016). In addition, marine habitats are under a dramatic pollution
increase, where heavy metals have demonstrated to be one of the most negative causing
impacts in living beings. While many metals (iron, zinc, manganese, copper, cobalt, nickel,
vanadium, molybdenum) are essential micronutrients for enzymes and cofactors, they
still are toxic when available in high concentrations, causing adversary effects mainly
by oxidative stress damage to fundamental macromolecules (Sc/nidt eral,, 2005). In
this context, marine microorganisms have developed mechanisms through molecular
adaptations in order to thrive in these adverse conditions. Moreover, secondary metabolites
biosynthesis are strongly influenced by the presence and concentration of certain heavy
metals in Streptomyces genus (Locatelli, Goo ¢ Ulanova, 2016), and also oxidative stress can
regulate antibiotic production (Kim et al., 2012; Beites et al., 2014) providing evidence of a
molecular crosstalk response between these stressors.

In the South Pacific region, Chile has an extensive marine coast that remains mostly
unexplored. Bioprospecting of actinobacteria for the discovery of novel marine-derived
natural products, specifically antibiotics, has been carried out in Valparaiso Central Bay
(Claverias et al, 2015) and in the Comau fjord in Northern Patagonia (Undabarrena et
al., 2016a). Both sites proved to be a rich source for novel species of actinobacteria with
antimicrobial properties. In this context, the genome of a selected antimicrobial-producer
marine Streptomyces strain from Comau fjord was sequenced (Undabarrena et al., in press).
In this study, we aimed to conduct a combined genomic, metabolic and physiological
analysis of the marine Streptomyces sp. H-KF8 bacterium, through the further exploration
of its antimicrobial activity and the genome mining of the BGCs encoded in its genome.
In addition, the genetic and functional response to abiotic stressors such as oxidative
stress, heavy metals and antibiotics, which may play an important role in the evolution of
secondary metabolism genes, was evaluated in Streptomyces sp. H-KF8.

METHODS AND MATERIALS

Bacterium selection

Underwater samples were previously collected from marine sediments from the Marine
Protected Area of the Comau fjord, in the Northern Chilean Patagonia (Undabarrena et
al., 2016a). Fjords are especially attractive due to its unique biogeographic characteristics,
being a deep narrow inlet with significantly eroded bottom and communication with open
sea (Bredhold et al., 2007). Comau fjord is one of the deepest; it has a high precipitation
rate crucial for fresh water input; where water surface temperatures ranges between 5
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and >20 °C, sustaining a thermohaline circulation (Bustamante, 20095 Sobarzo, 2009). As
microorganisms of these ecosystems may display remarkable genetic features of tolerance
to the dynamics of these abiotic stressors, marine actinobacteria were isolated with several
culture media and identified through 16S rRNA gene sequence ([ndabarrena et al,
2016a). Antimicrobial potential was screened using two strategies, including assessing the
antimicrobial activity of crude extracts derived from liquid cultures (Undabarrena et al,
2016a). Streptomyces sp. H-KF8 was selected due to its antimicrobial activities against S.
aureus, L. monocytogenes and E. coli for whole genome sequencing, representing the first
genome of Chilean marine actinobacteria (Undabarrena et al., in press).

Phenotypic characterization

Streptomyces sp. H-KF8 was characterized morphologically in several media agar plates:
ISP1-ISP9 (Shirling & Gottlieb, 1966), Marine Agar (MA) 2216 (Difco) and Triptic Soy
Agar (TSA) (Difco NO 236950). All media, with exception of MA, were prepared with
artificial sea water (ASW) (Kester et al, 1967) as the strain has a specific ASW requirement
for growth (Undabarrena et al., 2016a; Undabarrena et al., in press). Plates were incubated
at 30 °C and visible colonies appeared after 5-7 days. Microscopic images were obtained
with a Leica Zoom2000 stereoscope (Arquimed), Gram-staining was performed with an
optical microscope L2000A (Arquimed) with 1,000 x magnification, and unstained low
voltage electron microscopy (LVEM) was used for high contrast images (Delong LVEM5
microscope, Universidad Andrés Bello, Chile) after 21 days of Streptomyces sp. H-KF8
growth in ISP3-ASW media (Vilos et al,, 2013).

Antimicrobial activity

Antimicrobial activity was evaluated previously in ISP2 and TSA-ASW agar plates, and
activity was corroborated by liquid culture derived crude extracts (Undabarrena et al,
2016a). In this study, a further evaluation of antimicrobial activity was assessed in 15
different media agar plates, to explore the relation between Streptomyces sp. H.KF8
morphology and antimicrobial activity. Various media were employed: ISP1-ISP9; MA;
King B; Medium V (Marcone et al, 2010); LB-ASW; Actino Agar (Difco) and NaST21Cx

(Magarvey et al., 2004), using cross-streak method as previously described (Haber & [lan,
2014). The assay was slightly modified for marine actinobacteria by our group (Cluverios
et al, 2015; Undabarrena et al, 2016a). Antimicrobial activity was measured against five

reference bacteria: Staphylococcus aureus NBRC 1009107; Listeria monocytogenes 07PF0776;
Salmonella enterica subsp enterica LT2"; Escherichia coli FAP1 and Pseudomonas aeruginosa
DSM500717. Briefly, inhibition zones were seen as part of the bacterial line where the
reference bacteria did not grow, and ranked qualitatively as: —, no inhibition; &, attenuated
growth of target bacterium; 4, <50% growth inhibition of target bacterium (1-5 mm of
the line); ++, 50% growth inhibition of target bacterium (6—10 mm of the line); +++,
>50% growth inhibition of target bacterium (>11 mm of the line). All experiments were
performed in duplicate, using as internal control one of the reference bacteria.
Additionally, the double-layer method (Westerdahl et al, 1991) was employed, in order
to perform a time-course assay to ascertain the days of incubation where most activity was
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being produced. Streptomyces sp. H-KF8 macrocolonies were incubated on ISP2-ASW,
ISP3-ASW, TSA-ASW and MA agar plates. Macrocolonies were grown individually from
five to 20 days on the same agar plate, and subsequently, 7 mL of modified-LB (7 g/L of
agar instead of 15 g/L) with an aliquot of 100 wL of an overnight pre-grown S. aureus
bacterial culture with an OD = 0.3 was added above the macrocolonies of Streptomyces
sp. H-KF8. Inhibition zones were observed after incubation of plates for 24 h at 37°C. If
inhibition zones overlapped, the experiment was repeated on separate agar plates, where
only one macrocolony in the center of the plate was incubated.

Genome Mining and Bioinformatic analysis

Streptomyces sp. H-KF8 whole genome sequencing was performed by Illumina and PacBio
(Undabarrena et al., in press). Genome reads were de novo assembled using Canu (version
1.1) (Berlin et al., 2015) into 11 contigs, representing one linear chromosome of 7,684,888
bp genome. Full genome sequencing details can be found elsewhere (Undabarrena et
al., in press). Gene calling an annotation was performed using the Prokaryotic Genome
Annotation Pipeline (PGAP) at NCBI (version 3.1) (Tatusova et al, 2016). Genes were
assigned to EggNOG categories (Huerta-Cepas et al,, 2016) via an HMM search with
HMMER3 (htip://hmmer.org). Genetic determinants involved in biological traits analyzed
in this report were manually established and the amino acidic signatures were validated
based on domain hits through Basic Local Alignment Search Tool (BLAST) from NCBI.
Also, BGCs were identified through AntiSMASH (version 3.0) online platform. Snapgene
software (version 2.3.2) was used to visualize ORFs related to functional biological traits
from each linear contig. Artemis software (version 16.0.0) was used to construct the
graphic representation of the circular chromosome, and to assign by colors manually all
the different categories of BGCs on it.

Functional response to Heavy Metal(loid)s

For metal-resistance experiments, agar plates containing filtered salts of several metal(loid)
solutions were prepared. Metals were diluted to obtain the following final concentration in
media plates: CuSOy (0.25 mM, 0.5 mM and 0.75 mM); CoCl; (2 mM, 4 mM and 6 mM);
ZnSO4 (50 mM and 100 mM); CdCl; (0.75 mM and 1.5 mM); HgCl, (20 uM, 40 pM
and 60 uM); K;TeOs (10 uM, 20 uM and 40 pM); K,CrOy4 (10 uM, 17 pM and 20 uM);
Na,HAsOy4 (50 mM and 100 mM); NaAsQ; (2.5 mM and 5 mM) and NiSOy (5 mM, 10
mM and 15 mM). Streptomyces sp. H-KF8 was evaluated after 5, 10 and 20 days of growth
in TSA-ASW plates. Additionally, a special Minimal Medium (MM) used to evaluate
metal resistance in Streptomyces spp. was prepared (Sc/inids et al, 2009), modified with
the addition of ASW. Experiment was performed with two biological replicates. Reference
values for metal concentrations were decided based on metal-tolerance Streptomyces
obtained from literature (Schmidt et al., 2005; Schmidt et al., 2009; Wang et al., 2006; Polti,
Amoroso ¢ Abate, 2007). Agar plates without addition of any metals were prepared as
negative controls.

b i RS R
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Functional response to oxidative stress

For oxidative stress experiments, tolerance to hydrogen peroxide (H,O,) at various
concentrations (0.2 M, 0.5 M, 1 M, 2 M, and 4 M) was evaluated by directly adding 10 uL
of the H,0; solution to a sterile paper disk positioned on a TSA-ASW agar plate where
Streptomyces sp. H-KF8 was streaked out to grow as a thin lawn (Dela Cruz et al., 2010).
The model strain Streptomyces violaceoruber A3(2) (DSM 40783) was used to test the
tolerance response. Inhibitions areas (cm?) were observed after 5 days of growth at 30 °C.
Experiment was performed with three biological replicates, and standard deviation was
calculated. A statistical analysis by Student’s t-Test was carried out considering a p-value
<0.01.

Functional response Antibiotics

Susceptibility to model antibiotics of Streptomyces sp. H-KF8 was explored previously
(Undabarrena et al, 2016a). However, in this report a further characterization was pursued.
Streptomyces sp. H-KF8 was grown on Mueller-Hinton agar plates prepared with ASW
(MH-ASW) and commercial standard disks of model antibiotics were placed above. The
following antibiotics were tested: Amoxicillin 25 M, Bacitracin 0.09 IU, Novobiocin 5 u g
and Erythromycin 15 pg (LabClin); Optochin 5 pg (BritaniaLab); Clindamycin 2 pg,
Oxacillin 1 pg, Ciprofloxacin 5 pg, Ceftriaxone 30 pg, Chloramphenicol 30 pg, Penicillin
10 UOF, Cefotaxime 30 pug, Gentamicin 10 pg and Ampicillin 10 pg (Valtek). After 5 days
of incubation at 30 °C, radios of the inhibition halos were measured, and inhibition areas
(cm?) were calculated. Data was compared with standarized cut off values from Clinical
and Laboratory Standards Institute (CLSI) from year 2016, to determine susceptibility or
resistance against each antibiotic tested. Experiments were performed using three biological
replicates, and standard deviation was calculated for each antibiotic.

RESULTS

Phenotypic characterization

Morphological analysis of Streptomyces sp. H-KF8 was carried out by strain growth in
several media, containing different carbon sources (I'iz. |; inset colony morphology).
Growth of Streptomyces sp. H-KF8 was observed in the standard ISP1-ISP9 agar plates,
although differences in growth rates and pigmentation were noticed (I'igs. 1 A=11). On ISP1
(yeast extract, pancreatic digest of casein), ISP2 (yeast extract, malt extract, dextrose) and
ISP6 (peptone, yeast extract and iron) media, white mycelia was observed, with appearance
of grayish-spores after 14 days of growth. In contrast, when Streptomyces sp. H-KF8 was
grown on ISP3 (outmeal), ISP4 (soluble starch and inorganic salts), ISP5 (glycerol and
asparagine) and ISP9 (glucose) media, creamy mycelia was observed, with appearance
of white spores at the periphery of the colonies. In contrast, poor growth was observed
in ISP7 (tyrosine) medium. A different morphology was perceived when Streptomyces
sp. H-KF8 was grown on MA medium (l'ig. 1G). Colony size was comparatively smaller
(5.06 & 1.1 mm in ISP2 vs 3.12 & 0.78mm in MA; p < 0.01), and a dark-grey turning into
black pigmentation was noticed within 5 days of growth. On TSA-ASW plates, a white
mycelium was observed with no change in pigmentation over time, but with presence of
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Figure | Morphology of Streptomyces sp. H-KF8. Macrocolony showing anverse and reverse growth in
several media. Inset shows a zoom of colony morphology. (A) ISP1-ASW; (B) ISP2-ASW; (C) ISP3-ASW;
(D) ISP4-ASW; (E) ISP5-ASW; (F) ISP6-ASW; (G) Marine Agar (MA); (H) TSA-ASW.

exudate drops in the colony surface (I'ig. 111). Additionally, morphology was visualized
microscopically, and typical Streptomyces structures of development such as hyphae and
spores were observed (I'ig. 2). Exudate drops were appreciated in ISP2 medium during
late growth phase (I'ig. 2A), spores were identified with optical microscopy (I'ig. 25) and
hyphae with Gram staining (Fig. 2B). Moreover, the complex network of intertwined
hyphae and early spore chain assemblies was observed by LVEM microscopy, which is a
distinctive feature of Streptomyces genus (Fig. 21)).
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Figure 2 Microscopy of Streptomyces sp. H-KF8. (A) Stereoscope zoom of a macrocolony grown in
ISP2-ASW agar plate. Arrows shows exudates. (B) Optic Microscopy image at 1,000 x. Arrows indicate hy-
phae and spores, respectively. (C) Streptomyces sp. H-KF8 gram staining, showing hyphae. (D) Scanning
Electron Microscopy (LVEM) image of Streptomyces sp. H-KF8 grown on ISP3-ASW agar plates for 21
days. Bar represent 100 pum.

Antimicrobial activity

Antimicrobial activity of Streptomyces sp. H-KF8 was further characterized using agar
media with different carbon sources (Table 1). In general, antimicrobial activity was
more evident against Gram-positive reference bacteria (S. aureus and L. monocytogenes),
although inhibition against E. coli was also observed in most media, which is consistent
with results obtained from Streptonyces sp. H-KF8 crude extracts (Undabarrena et al,
2016a). P. aeruginosa was the reference bacterium less inhibited. Among the 15 different
media used, inhibition of at least one reference bacterium was noted in 87% of the media.
Best media for antimicrobial activity were ISP1, ISP2, ISP6, and V media, where inhibition
of four of the five reference bacteria was observed. Notably, in ISP2 medium a unique
attenuation of P. aeruginosa growth was observed. Alternatively, a time-course assay using
the double-layer method was performed to visualize the starting day of the antimicrobial
activity, in four media that presented inhibition. Even though at day 5 a relatively scarce
colony growth of Streptomyces sp. H-KF8 was observed in ISP2 medium, at day 6 it was
possible to visualize a modest inhibition against S. aureus (I'iz. 3A). Yet, inhibition zone
increased as incubation time for Streptomyces sp. H-KF8 extended, as shown in Fig. 35,
showing a maximum halo size at day 15 (Fig. 3(), suggesting a tight relation between
growth and antimicrobial activity which is also correlated to the carbon source of the
media tested.

Bioinformatic analysis and Genome mining for BGCs

Whole genome sequencing and genome features were previously described (Undabarrena
|, in press). Briefly, Streptomyces sp. H-KF8 genome was assembled into 11 contigs,

with a total genome length of 7,684,888 bp, and a G + C content of 72.1%. A total
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Table | Antibacterial activity of Streptomyces sp. H-KF8 in several culture media.

Medium Bacterial strains’

STAU LIMO PSAU SAEN ESCO
1SP1 e G - et -
1SP2 e = /= = e
1SP3 i + = = +
ISP4 i = - - -
ISP5 e = - - -
ISP6 et St = o i
ISP7 - - - +/- e
ISP9 2 e = = —
TSA-ASW $44 +/— - - +
MA b +++ - - ++
King B - S o7 o - - -
Medium V Sk ++ = S i o o
LB-ASW +++ -+ - +/— -
Actino Agar - = = i <l
NaST21Cx - - - - -

Notes.

—, no inhibition; +/—, attenuated growth; +, <50% growth inhibition (1-5 mm ); ++, 50% growth inhibition (6~10 mm);
++ -+, >50% growth inhibition (>11 mm).
ISTAU, §. aurens; LIMO, L. monocytogenes; PSAU, P. aeruginosa; SAEN, S. enterica; ESCO, E. coli.

Figure 3 Antibacterial activity of Streptomyces sp. H-KF8. Photographs depict inhibition zone against
Staphylococcus aureus. Bar represents 1 mm. Time course was performed using the double-layer method,
at various incubation days: (A) 6 days; (B) 9 days; (C) 15 days.

of 6,574 genes are represented among 6,486 CDS, 67 tRNAs and 6 165 rRNAs. Genes
with coding sequences were grouped into COGs categories, although 808 genes remain
ungrouped. Description and gene percentage of each category is depicted in Table 2. For
Streptomyces sp. H-KF8, the most abundant categories were transcription (522 genes),
carbohydrate transport and metabolism (362 genes), and amino acid transport and
metabolism (362 genes). The Streptomyces sp. H-KF8 categorized genes were compared
to the model Streptomyces violaceoruber A3(2) isolated from soil (Bentley et al,, 2002)
and the marine Streptomyces sp. TP-A0598 (Komaki et al, 2015), in order to observe if
these features could be considered as source-derived traits (Fiz. 1). As there are scarce
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I'able 2 COGs distribution of genes with coding sequences in Streptomyces sp. H-KF8.

COG functional categories Abbreviation =~ Noofgenes  Percentage (%)
Energy production and conversion C 275 4.18
Cell division and chromosome partitioning D 41 0.62
Amino acid transport and metabolism E 322 4.90
Nucleotide transport and metabolism F 89 1.35
Carbohydrate transport and metabolism G 362 5.51
Coenzyme transport and metabolism H 136 2.07
Lipid metabolism I 142 2.16
Translation J 168 2.56
Transcription K 522 7.94
DNA replication and repair L 217 3.30
Cell envelope biogenesis, outer membrane M 169 2.57
Cell motility N 0 0.00
Post-translational modification, protein turnover, O 135 2.05
chaperones

Inorganic ion transport and metabolism P 223 3.39
Secondary metabolism Q 148 225
General function prediction only R 238 3.62
Function unknown S 2,111 32.11
Signal transduction T 283 4.30
Defense mechanisms v 185 2.81
Not in COGs - 808 12.29

reports available on marine Streptomyces genomes that include COGs detailed annotation,
Streptomyces sp. TP-A0598 is one of the few that have these characteristics, and therefore
selected for comparison. While all three strains showed the same tendency in the categories
previously named in terms of abundancy, differences were observed in terms of percentage
in transcription and carbohydrate metabolism categories, where S. violaceoruber A3(2)
strain was slightly higher. On the other hand, both marine strains (Strepfomyces sp. H-KF8
and Streptomyces sp. TP-A0598) showed higher number of genes related to categories of
post-translational modification, protein turnover and chaperone functions, as well as in
secondary metabolism and translation categories.

Secondary metabolism category comprises 2.3% of the Streptomyces sp. H-KF8 genome,
being slightly higher when compared to both strains, the soil-derived S. violaceoruber A3(2),
and the marine-derived Streptomyces sp. TP-A0598, accounting for 1.9% and 2.0% of their
genomes, respectively. A bioinformatics analysis was performed using the antiSMASH
tool to detect biosynthetic gene clusters (BGCs) present in Streptomyces sp. H-KF8 that
may explain the antimicrobial activity observed, and a total of 26 BGCs were detected
(Undabarrena et al., in press). In this report, we show that the spatial distribution of the
26 BGCs are evenly allocated throughout the contigs of Streptomyces sp. H-KF8 genome
(Fig. 5), which were grouped into 11 different types (NRPS, PKS, hybrids, terpenes,
RiPP, ectoine, melanine, siderophores, lantipeptides and butyrolatones). Furthermore,

a comparison of the BGCs present in Streptomyces sp. H-KF8 with other known BGCs
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Figure 4 Comparative genomics of COGs categories. Percentage of each COG category is shown for
the different Streptomyces species, where blue is Streptonyces sp. H-KFS8; light blue is the marine-derived
Streptomyces sp. TP-A0598; and red is the soil-derived Streptomyces violaceoruber A3(2).

deposited into the MIBIG database, was performed (1 able 3). In this line, Streptomyces sp.
H-KF8 bears two NRPSs BGCs with very low similarity to BGCs involved in the synthesis of
the lipoglycopeptide antibiotic mannopeptimycin, produced by S. hygroscopicus (Magarvey
et al, 2006); and the streptolydigin antibiotic, which interferes with the RNA elongation
by inhibition of the bacterial RNA polymerase (Olano et al., 2009), with 7% and 13% of
gene similarity, respectively (Table 3). The two PKSs predicted in Streptomyces sp. H-KF8
genome corresponds to the type II spore pigment BGC showing 83% of gene similarity,
and also another BGC where only 6% of gene similarity to the antibacterial kirromycin
BGC from S. collinus Tii 365 was found (Weber er al.. 2008) (Table 3). A total of eight
hybrid clusters, where four of them are PKS-NRPS hybrids were also predicted, which
presented low gene similarities with other known BGCs, except for one NRPS-PKS type
I cluster (Table 3). In addition, other BGCs found in Streptomyces sp. KF8 included five
terpenes BGCs, two lantipeptides and two ribosomally synthesized and post-translationally
modified peptides (RiPPs) such as the lassopeptide and bacteriocin BGCs. In general, only
six BGCs from Streptomyces sp. H-KF8 genome displayed 100% gene similarity to their most
related known cluster. Examples of these consists on the BGC for the previously mentioned
antibiotics moenomycin (Ostash, Saghatelian ¢ Walker, 2007) and albaflavenone (Zhao et
al., 2008) (Table 3). Additionally, BGCs for the aromatic carotene isorenieratene, involved
in anoxigenic photosynthesis in S. griseus (Kriigel et al., 1999), the conserved osmolite
ectoine, that may provide protection from osmotic stress (Prabhu et al, 20045 Graf et al,
2008) and the melanin pigment clusters (Guo et al., 2014; Sivaperumal, Kamala & Rajaram,
2015) were observed with 100% similarity. Most of the BGCs (65%) presented low similarity
to BGCs of known compounds, evidencing the potential of Streptomyces sp. H-KF8 strain
to produce novel bioactive molecules.
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Figure 5 Representation of chromosome features and BGCs of Streptomyces sp. H-KF8. Colors de-
pict the different classification types of secondary metabolism gene clusters along the sequenced genome.
NRPS, Non-ribosomal peptide synthetase; PKS, polyketide synthase; RiPP, ribosomally synthesized and
post-translationally modified peptides. From outside inward: DNA strands reverse and forward; contigs;
GC content; GC skew.

Due to the dynamics of environmental parameters from the unique isolation site of
Streptomyces sp. H-KF8, genome mining of pathways involved in response to abiotic
stressors such as heavy metals, oxidative stress and antibiotics were also analyzed in this
study, in order to unveil genetic determinants that may explain tolerance to these stressful
environmental conditions.

Functional response to heavy metals and metalloids

Genetic determinants involved in heavy metal-resistance in Streptomyces sp. H-KF8
were analyzed by genome mining, and at least 49 predicted genes may be playing a role
in such tolerance (I'ig. 6A). Amongst these, the most abundant genes were related to
tellurite, followed by arsenate, copper and mercury, and, to a lesser extent, chromate,
nickel and cobalt tolerance (Fig. 6A). Tellurite resistance genetic determinants involved
seven terD genes, four terB genes, two yceC genes, one terC gene and one tehB gene that
encodes a tellurite methyltransferase. In addition, 11 genetic determinants for arsenic
tolerance were found, involving three arsC genes encoding arsenate reductases, two
genes arsA encoding arsenical pump-driving ATPases, five genes arsR encoding arsenical
transcriptional regulators, and the arsenical resistance protein encoding gene acr3. Genetic
determinants encoding for copper resistance genes, included copA and mco genes encoding
multicopper oxidases, copD encoding a copper resistance protein, two genes ycn/ encoding
for copper transport proteins, and two genes for the copper-sensing transcriptional

l
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l'able 3 Biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. H-KF8.

AntiSMASH type descriptor Scaffold Length (bp) Predicted product (%") MIBiG-ID
NRPS tig 02 81,285 Streptolydigin (13%) BGCO001046
NRPS tig_02 79,174 Mannopeptimycin (7%) BGC0000388
PKST1 tig_138 33,925 Kirromycin (6%) BGCO0G1070
PKS T2 tig_139 42,512 Spore Pigment (83%) BGC0000271
NRPS-PKS T1 tig 138 50,808 SGR PTMS (100%) BGCO001043
NRPS-PKS T1 tig 139 52,764 Neomycin (5%) BGCD000710
NRPS-PKS T1 tig_02 56,103 Himastatin (12%) BGC0001117
NRPS-PKS T3 tig 02 54,318 Furaquinocin A (21%) BGC0001078
Terpene-Siderophore tig 02 50,603 Isorenieratene (100%) BGC0000664
Nucleoside-Phosphoglycolipid tig 00 35,469 Moenomycin (100%) BGCO000805
Oligosaccharide-PKS T1 tig 16 42,574 Stambomycin (52%) BGCO000151
Lantipeptide-PKS T1 tig 138 61,004 Unknown -

Terpene tig_02 26,858 Hopene (76%) BGCO000663
Terpene tig_00 20,992 Unknown -

Terpene tig_02 21,253 Unknown -

Terpene tig 02 22,162 Unknown -

Terpene tig_138 21,220 Albaflavenone (100%) BGCO000660
Lantipeptide tig 02 21,819 Unknown -
Lantipeptide tig_139 24,585 Unknown -
Bacteriocin tig 02 11,412 Unknown -
Lassopeptide tig 10 22,692 Unknown -
Siderophore tig 139 11,808 Desferrioxiamine B (83%) BGC0000940
Butyrolactone tig_14 11,073 Griseoviridin/Viridogrisein (11%) BGC0000459
Ectoine tig_139 10,398 Ectoine (100%) BGC0000853
Melanin tig_139 10,509 Melanin (100%) BGC0000910
Other tig_00 43,290 Stenothricin (13%) BGC0O000431

Notes.

"Percentage of genes from known BGCs that show similarity to genes predicted for BGCs from Streptomyces sp. H-KF8.

regulator, csoR. Mercury resistance genes consisted in the mercury reductase encoding
gene merA, and the mercury transcriptional regulator merR. In addition, the czcD and
rcnA genes coding for efflux pumps for cadmium, zinc, cobalt and nickel, respectively,
together with the chrR gene encoding a chromate reductase, and general heavy metal
tolerance such as the hmtI gene and seven genes encoding for merR-family transcriptional
regulators, were also found. Considering all the genetic determinants listed above, we
attempted to determine if Streptomyces sp. H-KF8 was able to grow on various metal-
containing media. Streptomyces sp. H-KF8 was able to tolerate copper-, cobalt-, mercury-,
tellurite-, chromate- and nickel-containing media, as shown in I'ig. 63 for the maximum
concentrations tested. Despite the arsenic tolerance-related genes present in Streptomyces
sp. H-KF8 genome, comprising 27% of the total number of metal-related genes, no evident
growth of Streptomyces sp. H-KF8 was perceived in this metalloid-containing medium,
even in the two different toxic forms of arsenic tested: arsenate and arsenite. Also, no
growth was observed in media containing cadmium or zinc.
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Figure 6 Metal-tolerance response in Streptomyces sp. H-KF8. (A) Genetic determinants involved in
metal-resistance observed by genome mining. (B) Functional response of metal-resistance in TSA-ASW
agar plates. Images show maximum concentration of metal(loids) where growth of Streptomyces sp. H-
KF8 was observed. Concentrations below these values also presented growth. Control, agar plate without
any metal.

Functional response to oxidative stress

A significant amount of genes (69 genes) that may participate in the detoxification of
reactive oxygen species (ROS) were found within the Streptomyces sp. H-KF8 genome
(I'ig. 7A). Genes for mycothiol biosynthesis (20 genes), thioredoxin and thioredoxin
reductases system (11 genes), alkyl hydroperoxide reductases (nine genes), glutaredoxin
and glutathione peroxidase system (four genes), catalases (three genes), and superoxide
dismutases (three genes), among others, were identified (I'¢. 7). Interestingly, genes
involved in osmotic stress detoxification of chlorinated and brominated compounds
such as three bpo genes encoding for bromoperoxidases, one cpo gene encoding for

a chloroperoxidase and one gene encoding for a chlorite dismutase were also present

in Streptomyces sp. H-KF8 genome (Fig. 7A). Concerning transcriptional regulators
controlling the redox balance, transcriptional factors from perR, rex, lysR and soxR families,
were also present. Due to an important genetic content of oxidative stress related genes,
response of Streptormyces sp. H-KF8 to the toxic H,0O, was tested, and compared to the
model streptomycete S. violaceoruber A3(2). At various H,O, concentrations, Streptomyces
sp. H-KF8 displayed smaller susceptibility areas against the toxic, in comparison with

S. violaceoruber A3(2) (I'igs. 7B and 7C, respectively). A significant difference of the
suceptibility areas among the two strains was observed at concentrations of 1 M, 2 M and
4 M of H,0,, indicating a major resistance response of Streptomyces sp. H-KF8 towards
H,0, tOXiCiYY (li:_’. 7D).

Functional response to antibiotics

Antibiotic-producing Streptomyces strains usually encode resistance genes within their
BGCs to protect themselves against the noxious action of the synthetized compound
(Zotchev, 2014). In this line, resistance of Streptomyces sp. H-KF8 to commercial antibiotics
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Figure 7 Oxidative stress response of Streptomyces sp. H-KF8. (A) Genetic determinants involved in
oxidative stress-resistance observed by genome mining. Functional response of (B) Streptomyces sp. H-
KF8 and (C) Streptomyces violaceoruber A3(2) respectively, showing comparative inhibition zones with hy-
drogen peroxide where the concentration of hydrogen peroxide used in each disk is shown. (D) Quantita-
tive assay of inhibition area of both Streptomyces strains facing several concentrations of hydrogen perox-
ide. Asterisks indicate significant differences between strains (¢-Test considering a p-value <0.01).
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Figure & Antibiotic-resistance response in Streptomyces sp. H-KF8. (A) Genetic determinants involved
in antibiotic-resistance observed by genome mining. (B) Functional response of antibiotic-resistance in

MH-ASW agar plates. Black columns indicate susceptibility to the antibiotic tested and grey columns indi-
cate resistance to the antibiotic tested.

with different biological targets was explored. Genome mining revealed more than

90 genes that could be involved in antibiotic resistance. The most abundant genes
encode for bleomycin resistance proteins (24 genes). Specific resistance genes related to
modification and inactivation of antibiotics such as aminoglycoside phosphotransferases
(eight genes), B-lactamases (three genes), metallo-f-lactamases (three genes), and one
gene for erythromycin esterase and penicillin amidase, respectively, were identified
(Fig. 8A). In addition, genes for efflux of toxic compounds including multidrug resistance
proteins (20 genes), daunorubicin/doxorubicin ABC transporter permeases (15 genes),
multidrug ABC transporters (seven genes) and one gene encoding for a multidrug MFS
transporter, were detected (I'ig. 8A). Among the transcriptional regulators, the TetR-family
transcriptional regulators were the most abundant, with 10 genes. Also, the marR-family

H Undabarrena et al. (2017), PeerJ, DOI 10.7717/peerj.2912 ZE 16/35

e ———————————————————————————————————————————



Peer

transcriptional regulator and three marR genes encoding for multiple antibiotic resistance
proteins were identified (Fig. 8A). In the functional assay against 16 different antibiotics
tested, Streptomyces sp. H-KF8 exhibited an 88 % of resistance-response, being susceptible
to only two antibiotics: novobiocin, which targets the DNA gyrase, and gentamicin,
which inhibits protein synthesis by irreversibly binding to the 30S subunit of the bacterial
ribosome (Fig. 8B).

DISCUSSION

In this report, phenotypic analysis of Streptomyces sp. H-KF8 in several agar media
was assessed, revealing in general one week of incubation time to obtain colonies and
two weeks for sporulation; although growth rates, sporulation rates and pigmentation
differs throughout the different media used. Antimicrobial production in Streptomyces
sp. H-KF8 was enhanced in late growth phase (>10 days) and favoured in media where
sporulation was observed. Streptomyces genus is characterized for slow growth and a
complex developmental life cycle (Flirdh & Buttner, 2009). Physiological differentiation is
tightly linked to secondary metabolism and hence, sporulation capacities of Streptomyces
might enhance the discovery of new compounds (Chater, 2013; Kalan et al., 2013; Zhu et
al, 2015). In addition, antibiotics synthesis is regulated by environmental nutrients, such
as carbon sources. Media carbon source has an important effect on antibiotic production,
being demonstrated that when bacteria are grown with a preferred carbon source, secondary
metabolism seems repressed (Sdinchez et al, 2010). This may explain the differences in
inhibition patterns observed for the Streptomyces sp. H-KF8 antagonistic assays displayed
in the various media tested, showing a maximum inhibition halo against S. aureus after 15
days of incubation. Due to the interesting antibacterial activity of Streptomyces sp. H-KF8,
its whole-genome was sequenced and previously reported (Undabarrena et al, in press).
Thus, in this study an extended genome analysis for Streptomyces sp. H-KF8 was performed,
in order to gain insights into the mechanisms by which it displays antibiotic biosynthesis
and resistance to multiple stressors.

Genome mining has been used in various fields to describe the exploitation of genomic
information for the discovery of new processes, targets and products (Clallis, 2008).
Through genome sequencing and bioinformatic analysis using antiSMASH platform
(Medema et al., 2011; Blin et al., 2013; Weber et al., 2015), it is possible to address the
secondary metabolic potential of a strain by identification of its biosynthesis gene clusters
(BGCs) (Iftime et al., 2016). A total of 26 BGCs were previously detected in Streptomyces sp.
H-KF8 genome (Undabarrena et al, in press). In this report, an extended genetic analysis
including the distribution of these BGCs along Streptomyces sp. H-KF8 genome was
determined and comparison with known BGCs from the Minimum Information about a
Biosynthetic Gene cluster (MIBiG) database, which compiles a total of 1,170 experimentally
characterized known gene clusters (Medema et al., 2015) was aimed. Streptomyces sp. H-KF8
BGCs include two PKSs, two NRPSs and four hybrid PKS-NRPS, four other hybrids, five
terpenes, two lantipeptides, one bacteriocin, lassopeptide, siderophore, butyrolactone,
ectoine, melanin, and one with unknown classification. Notably, Streptomyces sp. H-KF8
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presented only six BGCs with 100% similarity to a known cluster; suggesting that most
secondary metabolites produced by Streptomyces sp. H-KF8 are yet to be elucidated,
and can contribute to the discovery of novel natural products. In this context, genome
mining has proven to be a fundamental tool for genome-based natural product discovery

(Jensen etal, 2014), and has guided the discovery of novel natural products from several
marine actinobacteria (Gulder & Moore, 2010; Tang et al., 2015b). Among these are the
aromatic polyketide angucyclinone antibiotic (Z/iang et al., 2012) and polyene macrolides

with antifungal activity (Tang et al., 2015a). Moreover, marine Streptomyces metabolites are
produced by different metabolic pathways in comparison to their terrestrial counterparts
(Lietal, 2011; Lee et al., 2014; Barakat & Beltagy, 2015). These metabolites emerge as

a result of the unique and dynamic conditions of the ocean, such as high hydrostatic
pressure, low temperature, variation in salinity, and depletion of micronutrients proper of
the marine environment (Das, Lyla ¢ Khan, 2006; Lam, 2006; De Carvalho & Fernandes,
2010). Despite that marine adaptations are scarcely studied, recent comparative genomics of
marine-derived Streptomyces unveiled an enrichment in TrK and BCCT transporters, along
with the observation that their genomes are generally smaller in size and have a slightly
higher GC content in comparison to Streptomyces from other environmental sources
(Tian et al, 2016). Streptomyces sp. H-KF8 genome is consistent with these findings, holding
distinctive biological and genomic signatures acknowledged for marine Streptomyces strains.
Therefore, its metabolite biosynthesis may be under marine abiotic selective pressures,
hence modulating secondary metabolism production.

Comparative genomics encompassing completely sequenced Streptomyces obtained from
several isolation sources revealed that the most abundant COG categories were transcription
(K), followed by carbohydrate metabolism (G) and amino acid metabolism (E) (Kin et al,
2015). This is in agreement with the most abundant categories found in the Streptomyces
sp. H-KF8 genome, which also could explain the versatility of Streptomyces sp. H-KF8
to grow in several media with different carbon sources. Furthermore, in marine-derived
Streptomyces, a higher proportion of genes belonging to the COG categories of translation
(J) and post-translational modification, protein turnover and chaperones (O) was observed
(Tian et al,, 2016). Accordingly, the (J) and (O) COGs categories were also overrepresented
in both marine strains analyzed, Streptomyces sp. H-KF8 and Streptomyces sp. TP-A0598
(Komaki et al,, 2015), in comparison to the terrestrial Streptomyces violaceoruber A3(2)
(Bentley et al, 2002). This may indicate an important role of protein metabolism in marine
environments, probably due to the active responses against abiotic stressors and the
dynamics that microorganisms have to overcome to survive in these extreme ecosystems. In
addition, our analysis showed an increase in the categories of cell cycle control, cell division,
chromosome portioning (D), secondary metabolism (Q) and defense mechanisms (V), for
both marine strains in comparison to Streptomyces violaceoruber A3(2). Percentage of the
COG category for defense mechanisms (V) in Streptomyces sp. H-KF8 was interestingly
higher (2,81%) than in Streptomyces sp. TP-A0598 (1,8%), and comparatively similar
with what was observed for deep-sea bacteria (3,0%) (i1 ef al, 2011). As the defense
mechanism category includes genes for resistance to heavy metals, osmotic and oxidative
stress as well as antibiotics, the functionality of these biological traits was evaluated for

;

Undabarrena et al. (2017), PeerJ, DOl 10.7717/peerj.2912 - 18/35




PeerJ

Streptomyces sp. H-KF8, and notably, an important resistance to these multiple stressors
was evidenced.

Environmental pollution by heavy metals can arise due to anthropogenic and/or geogenic
sources. Although metal-resistant strains isolated from contaminated areas have been
described (Amoroso et al., 2001; Schmidt et al., 2005; Schmidi et al., 2009; Polti, Amoroso
& Abate, 2007; Albarracin et al., 2008; Haferburg et al., 2008; Sinteriz, Kothe & Abate, 2009;
Lin et al, 2011; El Baz et al., 2015), there is limited information about the physiology of
Streptomyces in presence of environmental metal pollutants. Due to the naturally high
concentrations of certain heavy metals in Chilean northern Patagonia (Guevara et al,
2004; Revenga et al., 2012; Hermanns & Biester, 2013) product of the highly active seismic
and volcanic activity (Pantoja, Luis Iriarte ¢ Daneri, 2011), the ability of Streptomyces sp.
H-KF8 to grow in several metal(loid)s supplemented media was evaluated. Surprisingly,
resistance to copper, cobalt, mercury, tellurite, chromate and nickel was revealed.

Interestingly, the most abundant genes in Streptomyces sp. H-KF8 were related to
tellurite resistance, involving the tellurite methyltransferase (encoded by tehB) and several
tellurite resistance genes (terB, terC, terD, yceC). Although the ter operon has been
described previously (Tavlor, 1999), specification of its mechanism of action remains
obscure (Chasteen et al., 2009). Mainly, it has been shown that tellurite detoxification is
via enzymatic reduction by several flavoprotein-mediated non-specific metabolic enzymes
(Arenas-Salinas er al., 2016), or by non-enzymatic mechanisms mediated by intracellular
thiols like glutathione (Turner et al, 2001). Either way, tellurite reduction generates
oxygen reactive species (ROS), especially superoxide anion (O ), which is deleterious
to fundamental cell macromolecules producing protein oxidation, lipid peroxidation
and DNA damage (Pérez et al., 2007; Tremaroli, Fedi ¢ Zannoni, 2007). Surprisingly,
Streptomyces sp. H-KF8 did not show black pigmentation after tellurite exposure, which
is a distinctive phenotype that indicates tellurite reduction to elemental tellurium
(Taylor, 1999), suggesting that other mechanisms of resistance could be involved in
Streptomyces sp. H-KF8. To our knowledge, this is the first tellurite-resistant Streptomyces
strain described so far.

Additionally, resistance to mercury at a concentration of 60 M was observed for
Streptomyces sp. H-KF8. In general, bacteria capable of resisting mercury above 20
M, should possess specific detoxification systems, as mercury is one of the most toxic
elements on earth and produces several health concerns for macroorganisms (/)as, Dash
& Chakraborty, 2016). In bacteria, two different resistance operons are known, the basic
narrow-spectrum mer operon merRTPA for inorganic mercury, and the broad-spectrum
operon that additionally contains merB, which provides protection against organo-
mercurial compounds (Barkay, Miller & Summers, 2003). In addition, it was recently
demonstrated that mercury resistance mechanisms could also be involved in tellurite
cross-resistance (Rodriguez-Rojas et al,, 2015). Studies in Streptomyces includes S. lividans
132, that carries two divergently transcribed operons named merAB and merRTP in
the chromosome (Sedlmeier ¢~ Altenbuchner, 1992; Briinker et al., 1996; Rother, Mattes ¢
Altenbuchner, 1999), and two Streptomyces spp. strains isolated from estuarine sediments
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where these genes were also observed in giant linear plasmids (Ravel, Schrempf & Hill,
1998; Ravel et al., 2000). Interestingly, the genetic operons mentioned above were not
detected in Streptomyces sp. H-KF8, despite the fact that a mercury-resistance phenotype
was evidenced. Instead, the presence of two mercury-related genes, the transcriptional
regulator merR and the mercuric reductase merA, may be playing a role in such resistance.
MerA is a flavoprotein NADPH-dependent enzyme responsible for the reduction of
mercury(II) to the elemental and less toxic volatile mercury(0) (Barkay, Miller & Summers,
2003). Similarly, evidence of functional operons conformed either by merA or merRA have
been previously reported in archaea (Boy«d ¢ Barkay, 2012).

However, no evident growth was observed in the presence of arsenate or arsenite,
although Streptomyces sp. H-KF8 bears at least 11 genetic determinants that could involved
in its detoxification. In general, the arsenic resistance operon consists of arsRABCD genes,
where arsC encodes for an arsenate reductase that converts arsenate to arsenite, which is
then exported through the ArsAB ATPase-efflux pump. In Streptomyces sp. H-KF8, arsA,
arsC and arsR genes are present, but lack the arsB gene, which encodes an arsenite antiporter,
crucial for anchoring ArsA to the inner membrane with concomitant detoxification
of arsenite. Absence of the arsB gene may explain the sensitivity of Streptomyces sp.
H-KF8 towards these toxics. Arsenic resistance genes are generally widespread amongst
both Gram-positive and Gram-negative bacteria, reflecting its broad distribution in the
environment (S:/ver & Phung, 2005). In fact, these genes were also conserved in several
marine streptomycetes from the South China Sea (77an et al., 2016).

Streptomyces sp. H-KF8 displayed a notorious copper-resistant phenotype, concordant
with the detection of three copA genes encoding for multicopper oxidases that may be
responsible for the oxidation of Cu(I) to its less toxic form Cu(II) (/Tobwman & Crossman,
2014). Copper is an essential metal for living beings, but is extremely toxic at higher
concentrations (Gaetke ¢ Chow, 2003). Moreover, Chile is the major copper-producing
country in the world, due its geological nature (Wacaster, 2015). Hence, the widespread
of copper resistant genetic determinants that has been demonstrated in Chilean marine
sediments (Besaury et al., 2013) is expected.

Resistance to nickel and cobalt in Streptomyces sp. H-KF8 might be given by the
rcnA gene that participates in the efflux system of these metals. Highly nickel- and
cobalt-resistant Streptomyces were found in an acid mine drainage, where growth in
media containing up to 10 mM nickel(IT) or 3 mM cobalt(II) was observed (Sc/imidt
et al, 2005). In this report, Streptomyces sp. H-KF8 was able to grow even at higher
concentrations: 15 mM nickel(II) and 6 mM cobalt(II), respectively. Furthermore,
chromate toxicity (20 mM) might be overcome in Streptomyces sp. H-KF8 due to the
presence of the chrR gene encoding a chromate reductase involved in the enzymatic
reduction of chromate to the less harmful chromite cation (Das, Dasl ¢ Chakraborty,
2016). Previously reported Streptomyces chromate-resistant strains isolated from sugar cane
plant were able to grow in 17 mM, where also chromate-removing activity was demonstrated
(Polti, Amoroso & Abate, 2007).

Metal exposure and adverse abiotic environmental factors produces a general condition
of oxidative stress in microorganisms. As oxidative stress is hazardous for fundamental
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macromolecules, bacteria have evolved several mechanisms to protect themselves from
these environmental stresses. In Streptomyces sp. H-KF8, an exceptional response to several
concentrations of H,O, was observed, compared to the model Streptomyces violaceoruber
A3(2) which was more susceptible towards the toxic. Consequently, a wide number

of genetic determinants related to ROS response were present in the Streptomyces sp.
H-KF8 genome. Remarkably, a high number of thioredoxins (trx) and alkyl hydroperoxide
reductases (ahp) genes (nine of each) were found in Streptomyces sp. H-KF8, in comparison
with Streptomyces violaceoruber A3(2) where five and one genes were described, respectively.
The ahp and trx are fundamental H,O;-inducible genes that encodes for enzymes known
to participate in the bacterial response to oxidative stress, which are regulated by oxyR in
E. coli (Storz & Imlay, 1999; Seaver ¢ Imlay, 2001; Chiang & Schellhorn, 2012). The oxyR
regulon is not present in Streptomyces sp. H-KF8, but instead two copies of the perR
regulator fulfill its role in Gram-positive bacteria (Ricci et al., 2002; Dubbs & Mongkolsuk,
2012). Also, the ohrR transcriptional regulator that senses organic peroxide (ROOH) and
sodium hypochlorite (NaOCI) (Dubbs & Mongkolsuk, 2012) was found in Streptomyces
sp. H-KF8. In addition, several genes regulated by the soxR transcriptional regulatory
system such as glutaredoxin and glutathione peroxidase, superoxide dismutases (sod),
catalases (kat) and thioredoxin reductases were recognized in Streptomyces sp. H-KF8
genome, which overall may be accounting for it resistance through H, O, exposure. Even
more, the chromate reductase (chrR) previously mentioned, could also provide additional
protection against HyO, (Das, Dash & Chakraborty, 2016). Interestingly, unusual genes
encoding for bromoperoxidases, chloroperoxidases and chlorite dismutases, involved

in osmotic stress detoxification of brominated and chlorinated toxic compounds which
are abundant in the marine environments (Sander et al., 2003; Bouwman et al., 2012),
were also present in Streptomyces sp. H-KF8 genome. On the other hand, Streptomyces
violaceoruber A3(2) possess only one chloroperoxidase, suggesting that this might represent
another marine adaptation trait for Streptomyces sp. H-KF8. Osmotic and oxidative stress
response seems to be regulated via a network of sigma factors in Streptomyces violaceoruber
A3(2), that controls the activation of several oxidative defense proteins, chaperones and
systems that provide osmolytes and mycothiol (Lee ¢f al, 2005). Consistently, a high
amount of genes for mycothiol biosynthesis was identified in Streptomyces sp. H-KF8.
Mycothiol is the major low-molecular-weight thiol present in actinobacteria, and serves as
a buffer to advert disulfide stress, in complement of the enzymatic system presented above
(Buchmeier ¢ Fahey, 2006; Den Hengst ¢ Buttner, 2008).

Recently, evidence of heavy metal driving co-selection of antibiotic resistance in both
natural environments (Seiler & Berendonk, 2012) and contaminated ones (i, Li & Zhang,
2015; Henriques et al, 2016) have been reported. In this line, isolation of Streptomyces
with both metal and antibiotic co-resistances have been described (Van Nostrand et al.,
2007). In addition, co-evolution of resistance within closely related antibiotic-producing
bacteria has been demonstrated for Streptomyces (Laskaris et al, 2010). Hence, the antibiotic
response against pharmaceutical compounds was investigated in Streptomyces sp. H-KF8,
and resistance was observed to all antibiotics tested, with exception of gentamicin and
novobiocin. Resistance to almost all antibiotics tested, could be due to the presence of
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multiple BGCs with different mode of action. A typical BGC cluster that produces a
bioactive compound is generally coupled to its corresponding resistance gene (Zoichev,
2014). The phenomena of widespread distribution antibiotic resistance genes in natural
environments is consequence of improper use of antibiotics in medical treatment,

as well as by an indiscriminate use in agriculture, livestock and aquaculture (Erown

¢t al, 2006). Phenomena such as the grasshopper effect may also contribute to the
rapid transport of toxics around the globe through atmospheric and oceanic currents
(Sadler ¢ Connell, 2012).

Overall, our study shows the response of a marine Streptomyces sp. H-KF8 against several
abiotic stressors such as heavy metals, oxidative stress and antibiotics, along with the genome
mining of the biosynthetic gene clusters that could be involved in the antimicrobial activity
observed. Altogether, these biological features may enable Streptomyces sp. H-KF8 to thrive
in the complex fjord marine environment.
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Figure 18: Coding sequences of Streptomyces sp. H-KF8 associated to biological traits.
Percentage of genes grouped by functional categories, related to environmental adaptation
responses. A) Stress response. B) Osmotic response. C) Oxidative stress response. D) Virulence
and defense. E) Resistance to antibiotics and toxic compounds. These genetic determinants were
evaluated by their functionality (Chapter IlI), as follows: metal tolerance response, Figure 6;
oxidative stress response, Figure 7; antibiotic resistance response, Figure 8.
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Table 8. Biosynthetic gene clusters (BGCs) present in the Streptomyces sp. H-KF8 genome.
The detection was conducted by submitting the whole genome assembly to the antiSMASH

platform.
CLUSTER antiSMIASH TYPE LENGTH
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*for comparison of BGCs with MIBIG database and prediction of each cluster product, see

Table 3, Chapter HI.
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Chapter IV: Chemical detection of antimicrobial compounds in
Streptomyces sp. H-KF8: unveiling their connection between its

NRPS biosynthetic gene clusters
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5.3 Chapter IV

5.3.1 Introduction

Metabolomics is defined as the comprehensive study of small molecules within a
biological system and provides a direct measure of detectable secondary metabolite production
within an organism of interest (Covington, MclLean & Bachmann, 2016). Particularly, when the
secondary metabolites are associated to a hioactivity, such as the antimicrobial one, the
conventional approach consists in following the bacterial inhibition potential of the crude culture
extract {Sharma, Kalita & Thakur, 2016; Balouiri, Sadiki & Ibnsouda, 2016). Another useful
approach is based on genome mining, which addresses the genetic biosynthetic potential to
produce compound(s) of interest in a specific strain (Gomez-Escribano, Alt & Bibb, 2016).
However, none of these approaches allows drawing conclusions about the link between
antibiotic potential and activity, nor does it clearly prove the involvement of a specific compound
{Debois et al., 2013). In this line, the Imaging mass spectrometry (Imaging MS) has recently been
crucial for complementing the traditional mass techniques by enabling the preservation of
molecular localization, yielding insights into the underlying biology. By providing a spatial
snapshot for each observed mass signal, it is possible to directly visualize the metabolic exchange
within and among microbial species on solid media {Yang et al., 2012). These developments have
introduce;d a new concept of real-time mass spectrometry and data visualization tools, since
Imaging MS is able to provide two-dimensional (2D) and even three-dimensional (3D)

visualization of surface metabolites directly from microbial colonies (Fang & Dorrestein, 2014).
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in order to understand it's genetic and metabolic relationship, for the antimicrobial-
producer marine actinomycete Streptornyces sp. H-KF8, , a multiple procedure involving: i) the
identification of its BGCs within the genome, with special focus in the NRPS clusters where a
bioinformatics-based prediction of the monomers that compose the metabolites is proposed; ii)
the conventional approach that involves the extraction of the antimicrobial compound(s) from
cell culture was addressed; and iii) the analysis of crude extract using the mass spectrometry
techniques of Electrospray lonization — Fourier Transform — lon Cyclotron Resonance {ESI-FT ICR
MS), Matrix assisted Laser Desorption/lonization — Time of Flight (MALDI-TOF MS) and Imaging-
MS techniques (MALDI-FT ICR MS) was accomplished. Overall, the complement of these genomic
and metabolic analyses will provide the basis for establishing the connection between the whole
metabolome interaction and those specific molecules that are involved in an antagonistic

inhibition interaction.
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5.3.2 Materials and Methods

5.3.1.1 Bioinformatic prediction of the chemical structure of metabolites synthesized by

NRPS biosynthetic gene clusters

Biosynthetic gene clusters were identified through the antiSMASH online platform
(Weber et al., 2015) using the whole genome sequence of the previously selected actinomycetes
(Arthrobacter sp. H-IH3, Brevibacterium sp. H-BE?7, Kocuria sp. H-KB5, Rhodococcus sp. H-CASF
and Streptomyces sp. H-KF8). Streptomyces sp. H-KF8 was considered for subsequent analyses,
due to the presence of two complete NRPS BGCs. For this bacterium, each cluster was analyzed
separately, in terms of it similarity with other known BGCs which are available in MIBiG Database
(Medema et al., 2015). For both NRPS BGCs, each gene function was manually analyzed through
BLASTp, with subsequent analysis of their conserved domains. With the complementation of
these bioinformatic tools it was possible to generate a predicted structure of the core molecule
for each NRPS BGC, which was verified through PRISM software {Skinnider et al., 2015). Genes
involved in tailouring reactions were not used for the core prediction, although their functionality

was suggested. Predicted molecules were drawn by ChemDraw software (PerkinElmer).

5.3.1.2 Extractions of antimicrobial compounds from actinomycetes in liquid cultures

using organic solvents

Antimicrobial activity of actinomycetes were previously demonstrated, and assessed in
several solid media (Chapter 1 and Chapter Ill). ISP2 and V media were selected to perform liquid

cultures with Streptomyces sp. H-KF8. In ISP2 medium (Shirling & Gottlieb, 1966), Streptomyces

sp. H-KF8 showed high antimicrobial activity mainly against Staphylococcus aureus NBRC




1009107 and Listeria monocytogenes 07PF0776 {see Chapter l). In medium V (Marcone et al.,
2010), Streptomyces sp. H-KF8 showed favourable and rapid growth. After 30 and 15 days of
growth in ISP2 and V media, with constant shaking at 30 °C, solvent extractions were performed.
For non-mycelial strains {Arthrobacter sp. H-JH3, Brevibacterium sp. H-BE7, Kocuria sp. H-KB5
and Rhodococcus sp. H-CA8F), a 50 mL culture incubated for 10 days in ISP2 medium with
constant shaking at 30 °C was used. Due to their different polarities, several organic solvents
were employed in a 1:1 ratio (v/v) for two times extraction of bioactive compounds. Hexane,
ethyl acetate, methanol, ethanol, isopropanol, acetone, methanol-water (1:1) and acetone-
water (8:2) were used to obtain extracts from the Streptomyces sp. H-KF8 cells supernatant and
pellet. For non-mycelial strains, hexane, ethyl acetate and methanol were used to produce
extracts from the cell supernatant and pellet. Solvent evaporation was carried out using a speed
vacuum, Crude extracts was subsequently dissolved in methanol-water (1:1) for Streptomyces
sp. H-KF8 and 10% dimethyl sulphoxide {DMSQ) for non-mycelial extracts, until a final

concentration of 5 mg/mL.

5.3.1.3 Biological activities assays of crude extracts

Activities of crude extracts were evaluated with several biological model targets. For
antibacterial activity, bacterial reference strains Staphylococcus aureus NBRC 1009107, Listeria
monocytogenes 07PF0776, Escherichia coli FAP1, Salmonella enterica LT2" and Pseudomonas
aeruginosa DSM50071" were grown overnight with constant shaking at 37 °C. LB-plates were
spread with a final concentration of turbidityse=0.3 for each bacterial reference strain, and once
dried, 10 pL of each crude extract at a final concentration of 5 mg/mL was added on the plate.

Inhibitions zones were evaluated 24 and 48 h after incubation at 37 °C. The respective medium
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along with 10 % DMSO and methanol-water, were used as negative control (Balouiri, Sadiki &

lbnsouda, 2016).

Streptomyces sp. H-KF8 crude extracts were evaluated for antifungal activity. The
methodology mentioned above was slightly modified, using Saccharomyces cerevisiae as model
unicellular fungi. Inhibition zones were evaluated in Sabouraud agar after 24 h and 48 h of

incubation at 25 °C {Balouiri, Sadiki & Ibnsouda, 2016).

To test anti-proliferative activity, four human cell lines were evaluated: MCF-7 cells
(breast cancer}, CACO-2 cells (colon cancer), SH-SY5Y (neuroblastoma) and fibroblasts. Cell line
proliferation was measured using the resazurin method (Sarker, Nahar & Kumarasamy, 2007}
after incubation with crude extracts obtained from Streptomyces sp. H-KF8. Experiment was

performed in triplicate.

5.3.1.4 Exploring the chemical nature of Streptomyces sp. H-KF8 extract

Susceptibility of Streptomyces sp. H-KF8 crude extract to several temperatures (-80, -20,
4, 25, 37, 60, 80 and 100 °C) was tested after a one-hour incubation period. Additionally,
susceptibility of the crude extract to various enzymes (proteinase K, lysozyme and trypsin) was
carried out separately, and in combinations. Enzyme incubation was performed at 37 °C
sequentially for 30 min. Enzyme were inactivated by heat shock at 80 °C for 15 min. Antibacterial
activity after each treatment was assessed as previously described, using the bacterial reference
strains S. aureus NBRC 1009107 and L. monocytogenes 07PF0776. After 24 and 48 h incubating

at 37 °C, inhibition zones were measured. Experiments were performed in triplicate using three
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biological replicates. A statistical Student’s t-test analysis was applied to all data (n=9), using as

significate a p value <0.01.

An absorbance spectrum scanning through several wavelengths starting from 230 to 600
nm was carried out with Streptomyces sp. H-KF8 crude extract, with a wavelength step size of 2
nm. Additionally, fluorescence emission spectrum starting from 280 to 700 nm was determined
by excitation of the sample at a wavelength of 260 nm, also with a wavelength step size of 2 nm.
A 1:10 dilution of the extract was used for these experiments. Aromatic amino acids (tyrosine,
tryptophan and phenylalanine) were used for comparison, and methanol-water as negative
control. Absorbance and fluorescence measurements were monitored using a microplate

multireader Tecan Infinite 200 PRO.

Crude extract obtained from growth of Streptomyces sp. H-KF8 on different media (I1SP2
and V medium) were evaluated through thin layer chromatography (TLC) using pre-coated silica
gel aluminum sheets. Several different mixtures of solvents were used for migration of
compounds such as: acetonitrile:chloroform:methanol (2:4:4); acetone:methanol (7:3),
methanol:hexane:chloroform (6:2:2), acetate:hexane (1:1), ethyl acetate:methanol (7:3).
Different detection procedures with several visualization reagents were used, such a UV light
exposure at 312 and 565 nm and heat. Staining with ninhydrin/ethanol/glacial acetic acid;
orcinol/glacial acetic acid; and heat shock at 110 °C were used for spots detection

(http://icso.epfl.ch/files/content/sites/lcso/files/load/TLC Stains.pdf).
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5.3.1.5 Chemical characterization of the antimicrobial compounds through HPLC-

bioguided fractionation

Once conditions to obtain active crude extracts were standardized, middte-
fermentations of Streptomyces sp. H-KF8 were carried out using a total culture of 2.4 L, with the
aim of obtaining an increased amount of crude extract. Crude extracts were obtained from two
different media (ISP2 and V medium) that were used for comparison. After 30 days of incubation,
supernatant was separated and cells were left in methanol overnight under constant shaking.
Solvent was evaporated and crude extracts were weighted, to obtain a final concentration of 50
mg/mL (Sharma, Kalita & Thakur, 2016). Extract was diluted in water-trifluoroacetic acid (TFA)
0.1%, centrifuged and filtered for high pressure liquid chromatography {HPLC) in a AKTA purifier
chromatography system (GE Healthcare). A mobile phase with a TFA-water/methanol gradient
was used, ranging from 0 to 100% of methanol in 7 column volumes. A Jupiter C18 250/10 column
and a flow rate of 5 mL/min were used. In addition, a gradient with water-TFA/acetonitrile under
the same conditions was also tested. Absorbance was simultaneously monitored at wavelengths
260 and 280 nm. Peaks were analyzed through the UNICORN software. Fractions with a volume
of 1 mL were recovered and dried with a speed-vacuum. Fractions were resuspended in 15 pl of
water-TFA 0.1% and antibacterial activity of each fraction was evaluated on LB-plates, by adding
3 yl of each fraction above a previously autoclaved paper disk, or directly above the plate.
Bacterial strains Staphylococcus aureus ATCC 297407, Staphylococcus epidermidis ATCC 359847,
Escherichia coli ATCC 87397, Listeria monocytogenes ATCC 19114%, Pseudomonas geruginosa
ATCC 278537, Klebsiella pneumoniae ATCC 138837, Enterococcus faecalis ATCC 194337,
Micrococcus luteus ATCC 93417 and Bacillus subtifis ATCC 1668 were used. Each bacterial strain

was grown as a thin lawn from an overnight-liquid culture. Plates were incubated at 37 °C and
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inhibition around paper disks was observed. Active fractions were evaluated through absorbance
scanning from 200 to 500 nm, to test the presence of another possible peaks at wavelengths

different that 260 nm or 280 nm.

5.3.1.6 Analysis of metabolite expression by analytical mass-spectrometry

Active fractions were further characterized through analytical mass spectrometry, using
ESI-FT ICR MS, MALDI-TOF MS and Imaging-MS techniques SolariX 9.4T (Bruker, Bremen,
Germany). For ESI-FT ICR MS, samples were diluted (up to 50%, depending of the UV absorption
intensity} and tested in positive and negative ion mode (Debois et al., 2013). Spectra were
recorded from 72 to 3000 m/z. lon accumulation time was optimized for every sample in order
to avoid overfilling of the analyzer. MS/MS experiments were performed on ions with the higher

intensity (Debois et af., 2013).

Fractions that were obtained under different culture conditions and presented different
profiles of activity were compared, leading to the selection of m/z ions candidates from each
fraction which could be associated to metabolites responsible for the antibacterial activity. The
specific mfz of these selected ions was compared with StreptomeDB online database
(http://www.pharmaceutical-bioinformatics.de/streptomedb/) and those with no potential
identification were further selected. Imaging-M$S was performed under several conditions:
Streptomyces sp. H-KF8 after 10 and 15 days incubation, was confronted either with S. gureus
ATCC 297407, S. epidermidis ATCC 359847 and P. geruginosa ATCC 278537, in order to evaluate
the metabolites that are expressed in the inhibition zone due to the specific interaction between
these strains. As a control, Streptomyces sp. H-KF8 was also incubated alone during 10 and 15

days. All incubations were performed in modified-ISP2 medium over MALD! ITO glass slides (Yang
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et al., 2012; Vergeiner et al., 2013). Matrix deposition, a-cyano-4-hydroxycinnamic acid (HCCA)
5 mg/mL in ACN/H,0-TFA 0.33 % (70/30 v/v) was performed using a SunCollect {Sunchrom)
equipment with a flow of 20 pt/min (Debois et al., 2013). Laser ionization zones and magnitude
were set at 50 pm for the pixel size and 200 pm for the raster width {Debois et al., 2013). lons
with a high expression in confrontation conditions were further selected for MALDI-TOF MS
analysis. Samples were mixed with two different matrices: HCCA and 2,5-dihydroxybenzoic acid
(DHB) {Sigma) in a 1:1 ratio (Debois et a/., 2013). Samples were dried at room temperature to
prior analysis in both positive and negative LIFT mode. Fragmentation patterns and
interpretation were analyzed manually. All data analysis was performed with the DataAnalysis

or FlexAnalysis, Flex-Imaging and SCiLs software (Bruker).
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5.3.2 Results

5.3.2.1 Bioinformatic prediction of the chemical structure of metabolites synthesized by

NRPS biosynthetic gene clusters

Prediction of core chemical structures of the skeleton of the secondary metabolites that
are synthesized by the NRPS biosynthetic gene clusters can be achieved by the analysis of the
adenylation domains. The adenylation domains are conserved domains responsible for the
selection of the amino acid monomer that is incorporated into each module. This selection is
governed by the Stachelhaus code, which indicates potential amino acids to be incorporated
(Stachelhaus, Mootz & Marahiel, 1999). This analysis was performed with Streptomyces sp. H-

A
KF8, where two complete NRPS BGCs were detected. By merging information obtained by both
antiSMASH and PRISM platforms, a prediction of the amino acid substrates was obtained for

cluster #5 and cluster #6.

Cluster #5 harbours a total of 81,285 bp that bears 60 genes including 5 NRPS genes
involved in the incorporation of six amino acids (valine + valine + tryptophan + tryptophan +
tryptophan-valine) and a hybrid PKS-NRPS module which incorporates a modified phenylalanine
{+Phe*), which undergoes a decarboxylation by the 3R-hydroxyacyl-CoA-dehydrogenase PKS
gene which harbours a ketoreductase domain (7K~R). Additionally, genes encoding for glutamate
synthase, glutamate/methyl aspartate mutase and asparagine ligase are within the cluster,
suggesting an additional amino acid incorporation (asparragine). In summary, the peptidic core
which is synthesized by the enzymes encoded in cluster #5 is composed by 7 amino acids

(pheny[alanine*-vaIine-valine—tryptophan—tryptophan-tryptophan-vaIine-asparragine). Two
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genes encoding for thioesterase and one encoding for a cyclase are also present within the

cluster #5, which may be involved in the cyclization of the linear assembily.

On the other hand, cluster #6 presents a total of 79,174 bp that harbour 33 genes, with
two main NRPS genes responsible for the incorporation of ten amino acids (tryptophan-alanine-
valine-alanine-tryptophan + ornithine-threonine-ornithine-valine-tryptophan). Five
epimerization domains are encoded within the two biosynthetic NRPS genes, which are involved
in the incorporation of the D-amino acid form of two tryptophan, one valine, threonine and one
ornithine, An additional gene coding for a thioesterase domain situated upstream from the main
biosynthetic NRPS genes, may be responsible for the release and subsequent cyclization of the
predicted linear molecule. In addition, tailouring genes may be playing a role in the post-
assembly modification of the peptidic core, acting on the incorporation of sugar moieties.
Interestingly, an unusual gene {(aurF) encoding for a p-amino benzoate N-oxygenase is present
within cluster #6, which may be involved in the conversion to p-nitro benzoic acid. A general
scheme for each BGC with the corresponding modules, domain and prediction of monomers

incorporated is presented in Figure 19 for cluster #5 and Figure 20 for cluster #6.
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5.3.2.2 Extractions of antimicrobial compounds from actinomycetes in liquid cultures

using organic solvents

Extractions led to different results among the actinomycetes strains evaluated. Overall,
the organic soivent hexane was not suitable to obtain metabolites with antibacterial activity
against bacterial reference strains. On the contrary, ethyl acetate and methanol yielded better
results. For non-mycelial strains, antibacterial activity against both Gram-positive and Gram-
negative reference strains was observed with supernatant-extracts of Rhodococcus sp. H-CA8F
obtained with ethyl acetate. For Kocuria sp. H-KB5, antibacterial activity of crude extracts was
observed only against gram-negative bacterial reference strains, using ethyl acetate to perform
supernatant-extracts. Brevibacterium sp. H-BE7 ethyl acetate extracts only displayed
antibacterial activity against S. enterica LT2". Conversely, antibacterial activity in Arthrobacter sp.
H-JH3 crude extracts was observed only when extractions were performed with methanol, from
the cells, whereas no activity was observed from supernatant cultures. For complete

antimicrobial activities of crude extracts, please see Table 2 of Chapter|.

For mycelial strains, liquid cultures have to be adapted to the growth requirements of
each strain. Streptomyces sp. H-KF8 is characterized for a slow growth and complex
developmental cycle in liquid media. In ISP2 medium, morphology of clumps and fragmented
hyphae was observed after 15 days of growth. When supernatants were tested directly, no
antimicrobial activity was observed, although activity was observed when the cell pellet was used
(Figure 21A). Regarding solvent extractions, neither hexane nor ethyl acetate were suitable to

obtain a crude extract that displayed antibacterial activity. On the contrary, other polar organic
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solvents were also evaluated, which indeed presented antibacterial activity (Figure 21B). In this
line, activity against S. aureus NBRC 100910 was observed when extraction was performed
directly from mycelial cells using methanol, even when using only 1 pL of crude extract (Figure
21C). Overall, these results suggest that the chemical nature of the antibacterial compounds
detected is clearly different in each actinomycete strain. Interestingly, antibacterial compound(s)
from Streptomyces sp. H-KF8 have a polar nature that is reflected in the efficient extraction when
using methanol, whereas antibacterial compounds from non-mycelial strains are observed when
using a solvent of intermediate polarity. Moreover, in Streptomyces sp. H-KF8, antibacterial
compound(s) remains attached to the cell surface when grown in liquid media, and are not

observed when extractions are performed from the culture supernatant.

Figure 21: Solvent extractions of antimicrobial compounds for Streptomyces sp. H-KF8 against
S. aureus NBRC 100910'. A) Antibacterial activity directly from the culture after 30 days of
incubation. 1, supernatant; 2, cell pellet; 3, fermentation media ISP2 as negative control. B)
Antibacterial activity observed when extraction was performed with various polar solvents. 1,
ethanol; 2, methanol; 3, isopropanol; 4, acetone; 5, methanol-water; 6, acetone-water. C)
Antibacterial activity of the crude extract. 1, solvent methanol as technical control; 2, 1 plL of
crude extract of Streptomyces sp. H-KF8; 3, methanol-water as negative control.
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5.3.2.3 Exploring the different biological activities of Streptomyces sp. H-KF8 crude extract

To further explore other biological activities apart from the antibacterial ones against S.
aureus NBRC 100910" (Figure 22A) observed with Streptomyces sp. H-KF8 methanol-extract,
different biological models were tested. In this line, activity against L. monocytogenes 07PF0776
(Figure 22B) and E. coli FAP1 (Figure 22C) was observed, although no antibacterial activity was
observed against P. aeruginosa DSM 50071" and S. enterica LT2" when extraction with methanol
was performed directly from mycelial cells. In addition, no antifungal activity was observed when

tested against S. cerevisiae (data not shown).

Figure 22: Antibacterial activity of Streptomyces sp. H-KF8 crude extract. 1, Methanol-water as
negative control; 2, 5 pL of crude extract. A) S. aureus NBRC 100910". B) L. monocytogenes
07PFO776. C) E. coli FAP1.

In addition, crude extract activity against cancer cell lines was evaluated, and mainly an
antiproliferative concentration-dependent effect was observed, at extract concentration upto5
mg/mL (Figure 23). Notably, Streptomyces sp. H-KF8 crude extract showed a major decrease in
the proliferation of SH-SY5Y neuroblastoma cells, leaving only up to 20 % of cell proliferation
(Figure 23A); and up to a 40 % of cell proliferation in CACO-2 colon cancer cell lines (Figure 23B).

On the other hand, no significant effect was observed for MCF-7 breast cancer cells (Figure 23C).
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However, an important activity was also observed when the extract was tested against human
fibroblasts as a model for non-cancer cell line (Figure 23D). Overall, our results show that the
crude extract of Streptomyces sp. H-KF8 displays various bioactivities, which suggests that several
compounds with different mode of action and different model targets are present within the

extract obtained, or alternatively, it could be one family of compounds which present both

antibacterial and antiproliferative activities.
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)

Figure 23: Antiproliferative activity of Streptomyces sp. H-KF8 crude extract. Antiproliferative
activity was evaluated with the resazurin method. A) SH-SY5Y neuroblastoma cells. B) CACO-2
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colon cancer cells. C) MCF-7 breast cancer cells. D) human fibroblasts cells.
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5.3.2.4 Exploring the chemical nature of Streptomyces sp. H-KF8 crude extract

The Streptomyces sp. H-KF8 crude extract was evaluated in terms of it susceptibility to
temperatures (Figure 24) and enzymes (Figure 25). Regarding the temperature assay, the
inhibition areas against S. gureus NBRC 100910" did not visibly change when the extract was
incubated at different temperatures {Figure 24A). A decrease in the temperature of incubation
did not affect the antibacterial activity observed (Figure 24A). Nevertheless, a statistically
significant decrease of the inhibition zone was observed when the extract was incubated at 80
°C and this effect was more pronounced at 100 °C (Figure 24B), although the antimicrobial
activity was rather stable. As protein denaturation usually occurs at high temperatures, our
results suggests that the functional groups within the antibacterial compound are not
constituted solely by amino acids. In this sense, an assay to test susceptibility to enzymes was
proposed, using the following enzymes: lysozyme, which is a glycoside hydrolase; proteinase K,
which targets between aliphatic amino acids and aromatic amino acids; and trypsin, which
targets between positively charged amino acids such as lysine and arginine. Results showed that
a decrease in the inhibition zone was observed in all the treatments were lysozyme was
employed (Figure 25A and Figure 25B). The combination of enzymes did not present an
accumulative effect, mainly because the activity of the extract was not affected by proteinase K
and trypsin (Figure 25B). Due to the lysozyme susceptibility observed, our results suggest that
sugar moleties may be necessary to preserve intact the bioactivity of the antibacterial compound
and are somewhere added to the amino acidic core skeleton. The aglycone structure still

maintains its bioactivity by itself, although with a lower effectivity.
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Figure 24: Streptomyces sp. H-KF8 crude extract thermal susceptibility assay. A) A
representative plate showing inhibition areas against S. aureus NBRC 100910, 1,-80°C; 2, -20
°C;3,4°C;4,25°C,5,37°C; 6,60°C; 7, 80 °C; 8, 100 °C. B) Effect of temperatures on the crude
extract bioactivity. Biological and technical triplicates were performed (N=9; p<0,01 Student’s t-
test).

The Streptomyces sp. H-KF8 crude extract was evaluated regarding its absorbance and
fluorescence spectra, to further gain insights into the functional groups that may be present in
the antibacterial compound(s) (Figure 26). Absorbance spectrum demonstrated that the extract
presented a maximum peak at a wavelength of 260 nm (Figure 26A). In parallel, absorbance of
amino acids in solution was performed and phenylalanine showed a similar maximum peak at
260 nm (Figure 26A), suggesting the presence of this amino acid in the crude extract of
Streptomyces sp. H-KF8. In addition, fluorescence was measured using a 260 nm excitation
wavelength. Interestingly, the crude extract of Streptomyces sp. H-KF8 presented two peaks: one
at 330 nm of wavelength, which resembles the tryptophan spectrum, and another at 460 nm of
wavelength, which did not present similarities to the amino acids tested (Figure 26B). These
results support the overall hypothesis, which suggests that the antibacterial compound(s) has a

mixed and complex structure of, at least, amino acids and sugars, and by this technique, it was

possible to determine the presence of phenylalanine and tryptophan.
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Figure 25: Streptomyces sp. H-KF8 crude extract susceptibility to hydrolytic enzymes. A) A
representative plate showing inhibition areas against S. aureus NBRC 100910, 1, Lysozyme; 2,
Proteinase K; 3, Trypsin; 4, Lysozyme + Proteinase K; 5, Lysozyme + Trypsin; 6, Proteinase K +
Trypsin; 7, Lysozyme + Proteinase K + Trypsin; 8, Control without the effect of temperature (RT);
9, Control of effect of 37 °C; 10, Control of effect of 37 °C + 80 °C. B) Overall effect of several
enzymes on the biological triplicates and technical triplicates over the bioactivity of the extract
(N=9; p<0,01 Student’s t-test).
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Figure 26: Absorbance and fluorescence spectra of crude extracts from Streptomyces sp. H-
KF8. The 1:10 dilution of the extract is shown in light blue in both graphs. In colours, the following
amino acids are shown: tyrosine, red; tryptophan, green; phenylalanine, orange. Negative
control, methanol-water, the solvent in which the extract is resuspended, is shown in black. A)
Absorbance spectrum showing a maximum crude extract peak at 260 nm of wavelength. B)
Fluorescence spectrum showing the two crude extract peaks, one at 330 nm and the other at
460 nm of wavelength.
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Thin layer chromatography (TLC) was performed in order to confirm the above
hypotheses (Figure 27), and the extract of Streptomyces sp. H-KF8 was successfully stained with
the ninhydrin reagent, which is commonly used to visualize amino acids, amino sugars and /for
amines (Figure 27A). In addition, the orcinol reagent was also effective in revealing spots,

indicating presence of glycosides and/or glycolipids (Figure 27B).

Figure 27: Thin layer chromatography of crude extract of Streptomyces sp. H-KF8. A) Ninhydrin
reagent visualizing spots corresponding to amino acids, amino sugars and/or amines. 1, amino
acid standard; 2, dilution 1:3 of the extract. B) Orcinol reagent visualizing spots corresponding to
glycosides and/or glycolipids. 1, extract obtained from ISP2 medium; 2, extract obtained from
medium V.

5.3.2.5 Chemical characterization of the antimicrobial compounds through HPLC-

bioguided fractionation

Crude extract was resuspended in water-TFA 0.1%, centrifuged and filtered prior
injection to HPLC, where a C18 column was used. Various mobile phases were tested, and as a
result the water-TFA/methanol gradient was the best suited, from which several peaks were

obtained (Figure 28). For comparison purposes, crude extracts obtained from two different
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media were used: from ISP2 medium, where a total of 36 different fractions were retrieved
(Figure 28A); and from V medium, where 12 fractions were obtained (Figure 28B). In both
detections, an absorbance of 260 nm (blue) and 280 nm (pink) were selected for measurement.
Each different fraction (of 1 mL volume) was collected and subsequently evaluated in terms of

their antimicrobial activity.
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Figure 28: HPLC chromatograms of Streptomyces sp. H-KF8 crude extract. Diagonal line
corresponds to the mobile phase gradient, water-TFA/methanol. A Jupiter C18 column was used.
A) Extract obtained from fermentations in ISP2 medium. B) Extract obtained from fermentations
in medium V.

Antibacterial activity of each fraction was evaluated against nine bacterial strains, and
different inhibition patterns were observed. From the I1SP2 extract, the most inhibited bacterial
reference strains were S. aureus ATCC 297407 (Figure 29A), E. coli ATCC 87397 (Figure 29B) and
P. aeruginosa ATCC 27853" (Figure 29C) where 37 of 38 fractions (97.3 %) showed bioactivity. In
addition, 86.1 % of the fractions showed growth inhibition against S. epidermidis ATCC 35984;
77.7 % against L. monocytogenes ATCC 19114" and 61.1 % against Bacillus subtilis ATCC 1668".

On the other hand, Enterococcus faecalis ATCC 194337, Micrococcus luteus ATCC 9341" and

Klebsiella pneumoniae ATCC 13883" were less inhibited, with 36 to 39 % of fractions showing
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activity. The three most active fractions and the detail of their inhibition results are depicted in
Table 9. In contrast, when assessing the antimicrobial activity of the fractions retrieved from V

medium, only one fraction from a total of 12 was active (fraction 114). Nevertheless, activity was

observed as a broad-spectrum against all nine bacterial reference strains (Table 9).

Figure 29: Antimicrobial activities from separated fractions obtained from Streptomyces sp. H-
KF8 cultures grown in ISP2 medium. A) S. aureus ATCC 29740'". B) E. coli ATCC 8739'. C) P.
aeruginosa ATCC 27853".

Table 9. Antibacterial activity of selected fractions against nine bacterial pathogens.

FRACTION MEDIA STAU STEP ESCO LIMO PSAU KLPN ENFA MILU BASU

| ) + + 4
19 | ISP2 + + + + +
|V - - - - - - - -
168 | ISP2 + + + + + + + +
Y} - - 5 . . . . .
114 |V + + + + + + + +

+, with antibacterial activity; -, without antibacterial activity.

Bacterial strains: STAU, Staphylococcus aureus ATCC 29740"; STEP, Staphylococcus epidermidis
ATCC 35984"; ESCO, Escherichia coli ATCC 8739"; LIMO, Listeria monocytogenes ATCC 191147;
PSAU, Pseudomonas aeruginosa ATCC 27853"; KLPN, Klebsiella pneumoniae ATCC 13883"; ENFA,
Enterococcus faecalis ATCC 19433"; MILU, Micrococcus luteus ATCC 93417; BASU, Bacillus subtilis

ATCC 1668".
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5.3.2.6 Analysis of overall metabolite expression by analytical mass-techniques

Active fractions were subsequently analyzed through mass-spectrometry technigues.
Altogether, the 36 samples from ISP2 medium together with the 6 samples from V medium were
analyzed with two different matrices, and in positive and negative mode each, reaching a total
sample number of 176. Several criteria to perform data analysis of the 176 samples were applied.
Firstly, the ESI-FT ICR MS was employed to evaluate the amount of different ions present in active
fractions. In general, several different masses were observed in each active fraction (Figure 30:
e.g., fraction 168). Nevertheless, a primary composition of the functional groups in samples was
determined (Figure 30: e.g, fraction 168) where some sugar moieties were observed. All samples
were analyzed in order to look for masses corresponding to matrix adducts, to discard them.
Concerning the antibacterial activity criteria, the fractions 19 and 168 from ISP2 medium were
selected, and fraction 114 from V medium (Table 9). A comparison between the mass spectra of
the fractions that were present in both media was performed to discard the masses which appear
in both spectra, as only the fraction from one medium (ISP2) was the active one. An example of
this analysis is shown in Figure 31 for fraction 19, which presented activity in I5P2 medium, and
not in V medium. As shown in Figure 31, some masses appears in both spectra of the same
fraction obtained from the two different media. Therefore, these masses may not be responsible
for the antibacterial activity previously demonstrated, and these masses were discarded from
further analyses. This analysis was performed with all samples, leading to a candidate list of 66
different masses, corresponding to three distinct fractions, shown as follows: 8 masses in positive
mode and 5 masses in negative mode for fraction 19; 26 masses in positive mode and 22 masses
in negative mode for fraction 168 and 2 masses in positive mode and 3 masses in negative mode

for fraction 114.
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Figure 30: ESI-FT ICR MS mass spectrum for fraction 168 obtained from Streptomyces sp. H-KF8
grown in ISP2 medium. In pink, several masses can be appreciated. Some mass differences can
be explained by the loss of sugar moieties, such as hexoses, a pentose and fucose. In the inset
panel, the HPLC chromatogram is shown, depicting fraction 168 obtained from the bioguided
fractionation of the crude extract that derives from ISP2 medium.
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Figure 31: Comparison of ESI-FT ICR MS mass spectra of fraction 19. Fraction 19 obtained from
ISP2 medium (with antimicrobial activity) is depicted in green, whereas fraction 19 obtained from
V medium (without antimicrobial activity) is shown in pink. Black arrows point to masses that are
common between both spectra, and therefore are discarded for further analysis. In the inset
panel, the HPLC chromatogram is shown, depicting fraction 19 obtained from the bioguided
fractionation of the crude extract that derives from ISP2 medium.
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Imaging-MS was performed to select those masses from the candidate list that are
specifically expressed in an antagonist condition of bacterial inhibition. To test this, several
conditions were proposed (see materials and methods). Overall analysis consisted of recording,
through images, those metabolites that the bacterium Streptomyces sp. H-KF8 is releasing to the
agar in conditions where it is incubated on its own, or, when it is confronting another bacterium.
These metabolites can be visualized through an average mass spectrum of all conditions, and
also, in each condition separately, allowing to compare all treatments tested. Moreover,
association of metabolite intensity can be noticed, where blue is no expression and light-blue to
yellow means an increase in intensity of its production. Therefore, this technique is crucial for
understanding when a specific metabolite is produced and determining the exact condition of its
expression. Sample preparation after matrix deposition (HCCA) and selected areas (black

rectangles) to be analyzed by the laser, are shown in Figure 32.

Figure 32: Imaging-MS slides showing analyzed surrounding areas for Streptomyces sp. H-KF8.
A) A slide where Streptomyces sp. H-KF8 (1, blue arrow) was incubated confronting S. aureus
ATCC 297407 (4, green arrow). The inhibition area is shown as 3 (yellow arrow). As a control, the
metabolites released to the agar but not confined solely to the inhibition area are shown as 2
(vellow arrow). B) A slide after matrix deposition (white area). Black rectangles shows areas 2
and 3, respectively, where the laser will be deposited.

Comparison with the masses predicted by genome mining (see Chapter lil) was
performed in order to determine if one of these masses was expressed under an antagonist

condition. Imaging-MS results regarding incubation-day 15 are listed in Table 10. A 39% of the
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predicted masses were observed by Imaging-MS. However, not all of them were expressed in the
condition of antibacterial inhibition. For example, masses 2195 m/z and 476.9 m/z
corresponding to the albaflavenone and isorenieratene compounds, respectively, both predicted
with a 100 % identity, were observed only when Streptomyces sp. H-KF8 is incubated alone, and
the expression of these masses Is lost under a confrontation condition (Table 10). By contrast,
the observed mass 1450.1 m/z was expressed in all three antagonistic interactions and it is also
present when Streptomyces sp. H-KF8 is incubated alone (Table 10). This mass presents a match
with the mannopeptimycin compound, although it only has a 7 % of identity with it. These results
suggest that mass 1450.1 m/z can be related to the mannopeptimycin family of compounds,
although the overall chemical structure may be probably different, due to the very low similarity

reflected between them.

Table 10. Imaging-MS of the molecules predicted by genome mining of Streptomyces sp. H-
KF8, after 15 incubation days.

MOLECULE {IDENTITY* %) PREDICTED OBSERVED H-KF8 H-KF8 H-KF8 H-KF8

m/z (Da) m/z {Da) +STAU  +STEP  +PSAU
Moenomycin (100)* -« 7|  1580.5 NJO . T oty L B
Stenothricin {13) 1118.6 N/O
Streptolydigin (13) + ° 6017 N/O L T
‘Mannopeptimycin (7) 1449.2 1450.1 +- +- +- +-
Hopene™ =, = 410.7 41107 .- U -a e L F
Himastatin (12) 14847 NO |
‘FuraquinocinA 4024 4020 ~ - - U L s
Isorenieratene (100} 528.8 5271 - - - -
Griseoviridin.(11) . "+ |- 4771 4769 - F- b, s 0 TE
Stambomycin {52) 1376.9 N/O_
Kifromycin (6) <} _796.9 7961 T ST T s L TRURL
Albaflavenone (100) - 2183 219.5 + - - - -
'SGR PTMS {100) "7 5112 N/O %, el TS e o
Neomycin (5) | 6146 N/O
Ectoine (100} &=~ & |- 1421 N/fO© Lt Tm o T
Melanin {100) 1 3182 N/O
“Desferrioxiamine 8 (83) 7| 560.6 N/O - S AT
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*Identity corresponding to the similarity of Streptomyces sp. H-KF8 biosynthetic gene clusters
with known-BGCs from MIBIG database.
Imaging-MS expression results determined as: N/O, not observed; -, no change in intensity
between conditions; - +, change in the intensity close to the antagonistic bacterium; + -, change
in intensity close to Streptomyces sp. H-KF8. Bacterial antagonistic strains: STAU, Staphylococcus
aureus ATCC 29740Q7; STEP, Staphylococcus epidermidis ATCC 35984"; PSAU, Pseudomonas
geruginosa ATCC 27853T,

An Imaging-MS analysis of the selected masses from the candidate list obtained by the
ESI-FT ICR MS results was also performed. From the 66 masses selected, 28 were shown to
appear under the various confrontational conditions tested, as observed by Imaging-MS. Nine of
these masses corresponded to masses that were visualized under the positive mode, and are
presented in Table 11. Overall, a total of 20 masses showed some degree of intensity at least in
one condition tested. Masses shown to be expressed by the antagonistic bacterium, such as
489.1 m/z and 527.1 m/z and 619.1 m/z, were discarded for further analysis. On the contrary,
masses where expression was observed from Streptomyces sp. H-KF8 in the condition of
antibacterial inhibition (i.e., masses 550.0 m/z and 689.2 m/z from fraction 19; and masses 820.1
mfz, 981.1 m/z and 1450.1 m/z from fraction 168), were compared according to its image
patterns, and those with an interesting pattern were further selected for MALDI-TOF MS
fragmentation. From fraction 114 (obtained from fermentation in V medium)}, only two masses
were observed in the Imaging-MS experiment. However, these masses did not present intensity;
hence, they were not expressed in the conditions tested. This is in accordance with the medium-

dependent expression of metabolites, and the hypothesis that metabolite synthesis changes

when growth media is different.
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Table 11. ESI-FT ICR MS selected masses that presented an expression by Imaging-MS after 15
days of incubation.

OBSERVED H-KF8 H-KF8 H-KF8 H-KF38
m/z (Da) +STAU +STEP +PSAU

3

T

FRACTION

- s i igi?r Fow
S Ca

" 1450.1 +-

Imaging-MS expression results: -, no change in inten
intensity close to the antagonistic bacterium; +, change In intensity close to Streptomyces sp. H-
KF8. Bacterial antagonistic strains: STAU, Staphylococcus aureus ATCC 29740"; STEP,
Staphylococcus epidermidis ATCC 35984"; PSAU, Pseudomonas aeruginosa ATCC 27853'.

Interestingly, two of these masses (1450.1 m/z and 981.1 m/z) showed an intensity in
their expression in all the antagonistic conditions tested. These masses derived from the active
fraction 168, obtained from fermentation in ISP2 medium. As an example, the Imaging-MS result
for mass 1450.1 m/z in all conditions (when incubated Streptomyces sp. H-KF8 alone or in
confrontation, at 10 or 15 days of incubation) is shown in Figure 33. Although a mild expression
without a specific location was observed at 10 days of incubation (Figure 33A), its expression
became even more intense at 15 days of incubation (Figure 33B). Moreover, at day 15, intensity
of this mass decreases when Streptomyces sp. H-KF8 is incubated alone, and the expression of
this metabolite is enhanced when Streptomyces sp. H-KF8 was confronted with other bacteria,
independent if it is a Gram-positive {i.e., Staphylococcus aureus and Staphylococcus epidermidis)
or Gram-nhegative bacterium (i.e., Pseudomonas aeruginosa) (Figure 33B). Therefore, the mass
1450,1 m/z is expressed only in a context of antagonistic confrontation, suggesting a crucial

activity as an antibacterial metabolite.
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The masses selected by ESI-FT ICR MS whose expression was positive by Imaging-MS,
were selected to further perform MALDI-TOF MS/MS. This technique will gain insights into the
composition of the metabolites selected, as a consequence of the fragmentation of the molecule.
Thus, it will provide valuable information about the functional groups present in such masses,
therefore generating the link between the bioinformatic prediction and the experimental

observation.

STAU

Figure 33: Imaging-MS for the selected ion 1450.1 m/z. First line corresponds to Streptomyces
sp. H-KF8 (blue) incubated alone. Second and third line, corresponds to the confrontation against
the Gram-positive bacteria S. aureus ATCC 29740" (STAU, light-green) and S. epidermidis ATCC
35984 (STEP, green), respectively. Fourth line corresponds to the confrontation against a Gram-
negative bacterium, P. aeruginosa ATCC 27853" (PSAU, purple). A) Experiment performed at 10
days of incubation. B) Experiment performed at 15 days of incubation.

The parental ion 1450.1 m/z previously depicted in Figure 33 was isolated and its MALDI-
TOF MS/MS fragmentation pattern is shown in Figure 34 (observed mass 1448.7520 m/z by

MALDI-TOF MS/MS). In effect, it was possible to visualize several amino acids, such as one
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tryptophan, two valines, two alanines {one as dehydroalanine) and two of the non-conventional
amino acids ornithines. In addition, sugar moieties were also observed, such as hexoses and a
pentose, in agreement with the ESI-FT ICR MS spectrum previously shown. The amino acids
observed in this sample resemble the amino acids predicted in cluster #6 (Figure 20), where 8 of
the 10 amino acids presents a correlation. Interestingly, a nitro-tyrosine (mass 209.19 m/z} was
observed during the fragmentation of this parental ion (1450.1 m/z), and also in the 820.114 m/z
ion. Accordingly, it was possible to observe the expression of this mass {209.19 m/z) through
Imaging-MS (Table 11). Therefore, we suggest that a nitro-tyrosine is present in the core
metabolite structure instead of a tryptophan, thus resulting in two tryptophans instead of the
three tryptophans that were originally predicted (Figure 20). As fragmentation patterns of these
parental fons observed by MALDI-TOF MS are related, they might represent different
fragmentation sections of the overall metabolite. This is also in agreement with the similar amino
acid composition among the three parental ions, which confirms the presence of the predicted

amino acids of cluster #6 (Table 12).
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Figure 34: MALDI-TOF MS/MS of parental ion 1450.1 m/z. In red, the monomer composition of
the fragmentation pattern of the parental ion show several amino acids, which are related to the
prediction of the NRPS BGC of cluster #6.

In the same line, the analysis of the mass 981.1 m/z whose expression was observed in
all the conditions tested (Table 11) was performed. The intensity of its expression is depicted in
Figure 35. Interestingly, this ion shows a similar pattern to ion 1450.1 m/z (Figure 33), where an
intense expression is observed when Streptomyces sp. H-KF8 is incubated alone (Figure 35A; first
line) and a disperse location is observed when it is confronted to an antagonistic interaction
(Figure 35A; second, third and fourth line) at 10 days of incubation. On the contrary, the
expression of this metabolite decreases at 15 days of growth when it is incubated alone (Figure
35B; first line) and its intensity increases when it is in a confrontation condition (Figure 35B;
second, third and fourth line). In addition, the mass 981.1 m/z can be observed in conditions

involving both Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis,
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and even in the Gram-negative bacterium Pseudomonas aeruginosa (Figure 35B). As the
expression of the mass 981.1 m/z is enhanced in an antagonistic condition rather than when it is
incubated by itself, the presence of this mass can be related to bacterial inhibition. Therefore,

this mass was also selected for MALDI-TOF MS/MS.
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Figure 35: Imaging-MS for the selected ion 981.1 m/z. First line corresponds to Streptomyces sp.
H-KF8 (blue) incubated alone. Second and third line, corresponds to the confrontation against
the Gram-positive reference strains S. aureus ATCC 29740" (STAU, light-green) and S. epidermidis
ATCC 35984" (STEP, green), respectively. Fourth line corresponds to the confrontation against a
Gram-negative reference strain, P. aeruginosa ATCC 27853" (PSAU, purple). A) Experiment
performed at 10 days of incubation. B) Experiment performed at 15 days of incubation.

The fragmentation pattern of parental ion 981.1 m/z (observed mass 980.4 m/z by
MALDI-TOF) is shown in Figure 36. In red, the functional groups product of the fragmentation
can be observed. Specifically, the amino acids threonine, two valines, two alanines were
depicted, in addition to the sugar pentose and the amino sugar N-acetyl-hexosamin (Figure 36).
These monomers show a relationship to the MALDI-TOF MS/MS fragmentation pattern observed

for the parental ion 1450.1 m/z (Figure 34). Moreover, their Imaging-MS expression pattern of
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both ions (1450.1 m/z and 981.1 m/z) are also related {Figure 33 and Figure 35, respectively).
Therefore, these results suggests that these masses may be related, and, in addition to mass
820.1 m/z that presents a similar pattern {data not shown), these three masses are proposed to
explain the functional groups present into the overall metabolite, responsible for the
antibacterial activity observed (Table 12). In addition, the observed amino acids from the
fragmentation pattern of the three masses indicate that this metabolite is likely to be synthesized
by the NRPS enzymes which were predicted from the BGCs, specially to cluster #6 (Table 12).
Overall, these results strongly suggests that it is possible to correlate the predicted bioinformatic
genomic data to the metabolic profiles obtained experimentally, which in turn, may explain the
core structure and functional nature of the antimicrobial metabolite(s) observed in the marine

actinomycete Streptomyces sp. H-KF8.

127




X
(=]
B

E 160111-1 68-MSMSQB_&B:.L‘;3 LIFT 980.449C
@ F Threonine < b— MN-AcetylHexosamin —i i
c |
a
= b= Vaine =4
b FENI0SE  s—]
4
) 1 Alaning | I Alanine |1
34
b= Vaine =4 883.850!
] |
24 ‘
oo
; |
841.028 |
14 i i
802.084
110.130 —| i L
=SB i 956.002
426.136 515.138 I M
£4.108 195.118 561415 334150 ——— o= 13
L dbilli ‘ i j i TR
o+ R 70 P | O W TR AR O TR e T e ST Sy, Fe U ey e a1 4 i LN
LS IS B S s s e s s Sy e B e S e s s e e e e e e e T L e e e e e e e e e e S
100 200 300 400 500 600 700 800 900 1000

miz

Figure 36: MALDI-TOF MS/MS of parental ion 981.1 m/z. In red, the monomer composition of
the fragmentation pattern of the parental ion show several amino acids, which are related to the
prediction of the NRPS BGC cluster #6. In addition, sugar moieties (pentose + N-acetyl-
hexosamine) are present.

Table 12. MALDI-TOF MS/MS parental ions with their respective monomer composition, and
their relationship with the amino acid prediction of NRPS BGC cluster #6.

Or:?fl(lg:)D Trp Ala Vval Ala Trp Orn Thr Orn Val Tyr-NO:
8201 | x  x  x i R e
981.1 X X x x X
1450.1 | X X X * X x x X ®

Amino acids are shown as: Trp, tryptophan; Ala, Alanine; Val, Valine; Orn, Ornithine; Thr,
Threonine; Tyr-NO;, Nitro-tyrosine.
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5.3.1 Addendum Chapter IV

Table 13. Genes present in the NRPS BGC corresponding to cluster #5 of Streptomyces sp. H-
KF8. Genes are categorized according to their respective functions depicted with the following
colours: blue, biosynthetic genes; light-blue, tailouring reactions; green, regulatory genes;

purple, transport; orange, resistance; black, unknown/non-directly related.

GENE ID START END PREDICTED FUNCTION
(bp) (bp)

A4U61_01965 144765 146073  Precorrin 3B synthase (CobG)
A4U61_01970 | 146108 146741  Precorrin 8X methylmutase (CobH)
A4U61_01975 146737 148234  Precorrin 3B-C17 methyltransferase (CobF)
A4U61_01980 148247 149018 Cobalt precorrin 6X reductase (CobK)
A4U61_01985 149077 150196 Cobalt precorrin 6A synthase (CobE)
A4U61_01990 150299 151049 Precorrin 4-C11 methyltransferase (CobM)
A4U61_01995 151045 152365 Precorrin 6Y methyltransferase (CoblL)
A4U61_02000 152769 154140 Sphingolipid synthesis
A4U61_02005 154478 155000 ABC transporter type | (peptide exporter)
A4U61_02010 155148 155691 Hypothetical protein
A4U61_02015 155674 156646 Dioxygenase
A4U61_02020 156742 157333 Hemerythrin binding protein
A4U61_02025 157341 158541 Hypothetical protein
A4U61_02030 158821 159730 3R-hydroxyacyl-CoA-dehydrogenase (PKS KR)
A4U61_02035 159726 160926 Acetyl CoA-Acetyltransferase (PKS TE)
A4U61_02040 | 161127 162468 Major facilitator superfamily (MFS)
A4U61_02045 | 162506 164135 Long Chain Fatty Acid CoA-Ligase (PKSA KS)
A4U61_02050 | 164187 164820 Transcriptional regulator multidrug efflux pump
A4U61_02055 = 165177 165804 Transcriptional regulator multidrug efflux pump
A4U61_02060 | 165904 166558 Acyltransferase resistance protein
A4U61_02065 | 166933 167182 Hypothetical Protein
A4U61_02070 | 167465 167837 Hypothetical Protein
A4U61 02075 168451 169552 Two-component system histidine kinase sensor
A4U61_02080 @ 169548 170214 DNA-binding response regulator
A4U61_02085 170534 171086 Histidine phosphatase (PhoE)
A4U61_02090 172056 172704 Hypothetical protein
A4U61_02095 172771 173380 Sortase
A4U61_02100 173636 174056 Snoal-like domain (PKS cyclase)
A4U61_02105 \ 174350 177366 Transcriptional regulator SARP
A4U61_02110 177928 178174 Hypothetical protein
A4U61 02115 178422 179736 Transcriptional regulator
A4U61_02120 179933 180968 Ketoacyl-Acyl carrier protein synthase (PKS ACP)
A4U61_02125 181188 181449 Phosphopantetheine attachment site (PKS AT)
A4U61_02130 181486 184231 Non-ribosomal peptide synthetase (NRPS C+A)
A4U61_02135 = 184227 187866 Non-ribosomal peptide synthetase (NRPS C+A)
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A4U61_02140 |

A4U61_02145

A4U61_02150
A4U61_02155 |

A4U61_02160
A4U61_02165
A4UB1_02170

A4U61_02175 |
A4U61_02180
A4U61_02185

A4U61_02190
A4U61_02195
A4U61_02200

A4U61_02205

A4U61_02210
A4U61_02215
A4U61_02220
A4U61_02225
A4U61_02230
A4U61_02235
A4U61_02240
A4U61_02245
A4U61_02250
A4U61_02255
A4U61_02260

A4U61_02265

A4UG1_02270

187965
188919
191755
196490
196490
203788
204200
204808
206088
207113
208476
209474
210882
212278
212564
213475
214188
215241
216264
216557
218414
219002
220209
221146
222070
222833
223433

188766
189951
196252
203792
203792
203992
204674
206074
207090
208427
209406
210890
212160
212560
213479
214192
215358
216202
216510
217904
218852
219584
220962
221704
222514
223295
224303

Thioesterase (NRPS TE)

Dioxygenase

Non-ribosomal peptide synthetase (NRPS A+T)
Non-ribosomal peptide synthetase (NRPS C+A)
Non-ribosomal peptide synthetase (NRPS 2C+2A)
MbtH protein (NRPS T)
Glutamate/Methyl-aspartate mutase
Glutamate/Methyl-aspartate mutase
Asparragine ligase

Glutamate synthase

3-Oxoacyl-ACP synthase (PKS KS)

Carboxylate amine ligase

Diaminoepimelate decarboxylase
Phosphopanteteine binding protein (PKS AT)
Condensing B-ketoacyl ACP synthase (PKS KS)
Hypothetical Protein
Acyl-CoA-Dehydrogenase (PKS DH)
Phosphopantetheine transferase (PKS AT)
Hypothetical protein

MFS transporter

ABC transporter

Transporter

Transcriptional regulator

Hypothetical protein

Universal stress protein

Chaperone

Transcriptional regulator

In PKS: KR, ketoreductase domain; KS, ketosynthase domain; AT, acyl-transferase domain; ACP,
acyl carrier protein; DH, dehydratase domain. In NRPS: A, adenylation domain; T, thiolation
domain, C, condensation domain; TE, thioesterase.

130




Table 14. Genes present in the NRPS BGC corresponding to cluster #6 of Streptomyces sp. H-
KF8. Genes are categorized according to their respective functions depicted with the following
colours: blue, biosynthetic genes; light-blue, tailouring reactions; green, regulatory genes;

purple, transport; orange, resistance; black, unknown/non-directly related.

GENE ID STARY END PREDICTED FUNCTION
(bp) (bp)

A4U61_02855 364271 364742 Anti-sigma regulatory factor
A4U61_02860 364905 365778 DNA-binding protein
A4Ue1_02865 365774 365975 Antibiotics Transcriptlonal regu]ator
A4U61_02870 366101 368477 B-glucosidase (glycosyl hydrolas
A4U61_02875 368485 369304 ABC transporter permease (TM)
A4U61_02880 369300 370218 ABC transporter permease (TM)
A4U61_02885 370228 371533 Sugar-binding protein (PER)
A4U61_02890 371701 372694 Lacl transcriptional regulator
A4U61_02895 373838 374861 Acetyltransferase (Nudix hydrolase)
A4U61_02900 374875 375508 Dipeptidase D-Ala-D-Ala
A4U61_02905 375685 376420 Antibiotic resistance protein
A4U61_02910 376601 378368 l:'rgrﬂm,’:l'j!(i,w-\t! (glycosyl !‘Hg.'ihui»i e)
A4U61_02915 378894 379518 Galactosidase O-Acetyltransferase
A4U61_02920 380202 381486 Neuramini (glycosyl hydrola
A4U61_02925 382139 382778 Hypothetlcal proteln
A4U61_02930 383058 383571 Aminoglycoside N-Acetyltransferase
A4U61_02935 383680 383884 MbtH-like protein
A4U61_02940 383978 403979 Non-ribosomal peptide synthetase
A4U61_02945 403992 422721 Non-ribosomal peptide synthetase
A4U61_02950 422845 424252 B-lactamase D-Ala-D-Ala carboxypeptidase
A4U61_02955 424287 425496 Cytochrome P -l'. )
A4U61_02960 426378 427131 Thioesterase
A4U61_02965 427394 428000 Hypothetical protein
A4U61_02970 428346 430416 PAS sensor protein (light & 0,)
A4U61_02975 430491 431634 Hypothetical protein
A4U61_02980 431873 433421 Ferredoxin-NADP(+) reductase
A4U61_02985 433444 434359 p-aminobenzoate N-oxigenase (AurF)
A4U61_02990 435431 435911 Hypothetlcai proteln
A4U61_02995 435994 438502 Chaperone
A4U61_03000 439096 440821 PAS sensor DNA-binding protein
A4U61_03005 440908 441508 VanZ resistance protein
A4U61_03010 441724 442858 Histidine kinase
A4U61_03015 442854 443502 LuxR regulator

TM, transmembrane; PER, periplasmic
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6 Discussion

In this Ph.D. thesis, the isolation of actinomycetes from an underexplored environment,
the study of its cultivable biodiversity along with their physiological and phylogenetic features as
well as the evaluation of their antimicrobial activity were assessed (Chapter I}. In addition, whole
genome sequencing of selected isolates was performed to unveil the BGCs and perform
comparative genomics {Chapter N}, with a special focus on PKS and NRPS anabolic routes of
secondary metabolites {Chapter HI). Genome sequencing led to the identification of genetic
determinants related to marine adaptations and abiotic stress (such as metal and antibiotic
resistances, along with oxidative and osmotic stress defense systems) (Chapter Il and Chapter
). Finally, middle scale fermentations were pursued to analyze the chemical nature of crude
extracts, using HPLC bio-guided fractionation and mass-spectrometry technigues to obtain the
subsequent characterization of the antimicrobial compound(s) produced by Streptomyces sp. H-

KF8 {Chapter IV).

Actinomycetes from marine sediments have demonstrated to be a prolific source for
natural bioactive products (Zotchev, 2012; Subramani & Aalbersberg, 2012; Manivasagan et al.,
2013). The bioprospection strategy involves the search for novel bioactive compounds from
environmental sources. Members of the Actinomycetales remain the richest source of NP. This
is the first report concerning bioprospection of bioactive cultivable actinomycetes and its
ecophysiological characterization from marine sediments of a Northern Patagonian fjord from
Chile. The Comau fjord, located in the X Region of Los Lagos, is a unique environment suitable
for microbial exploration (Figure 5, Addendum Chapter 1). Comau fjord is especially attractive

due to their unique geographic features, such as its nearby geothermic activity, high precipitation
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rates (5,600 mm annual) and its depth (350-500 m) with surrounding mountains of 2,000 m
height, and fluctuable water salinities and temperatures (Lagger et al., 2009; Pantoja, Luis Iriarte
& Daneri, 2011). This flord demonstrated to be a rich source of antimicrobial-producing
actinomycetes (Chapter I). Twenty-five actinomycetes were isolated from marine sediments and
characterized (Figure 6 and Table 1, Addendum Chapter I). The largest amount of these bacteria
were obtained from deeper samples (>20 m) from Lilihuapi Island (Figure 7, Addendum Chapter
I). Despite that a relatively low number of actinomycetes were retrieved from Comau fjord, a
rather high cultivable biodiversity was observed (Figure 8, Addendum Chapter 1). This
biodiversity was composed of 10 different genera using five different media (Figure 2, Chapter
I). Interestingly, major abundance of isolates were obtained from media with complex carbon
sources (e.g., starch in M1 medium) or low nutrient composition (e.g., NaST21Cx medium)
(Figure 7, Addendum Chapter I). Media composed of relatively simple nutrients has been
reported to yield more actinomycetes from diverse environments {Zhang et al., 2006; Gontang,
Fenical & Jensen, 2007; Qin et al., 2011); which is consistent with the negligible amount of
nutrients that are available in the natural marine environment (Kurtbéke, Grkovic & Quinn,
2007). A trend where an improved growth rate was evidenced when artificial sea water {ASW)
was added in the media preparation, denoting a special nutrient requirement for salts {Table 4,
Addendum Chapter 1). This requirement has been used as a decisive criterion when
demonstrating marine environmental adaptation (Penn & Jensen, 2012). NaCl tolerance was also
evaluated, where the 91 % of the actinomycetes were able to grow even with > 3.5 % of NaCl,
which is the average salinity of sea water (Table 3, Addendum Chapter 1). Also, 72% of the
actinomycetes were able to grow at 4 °C, indicating a psychrotolerant behaviour (Table 2,

Addendum Chapter I). Overall, these features demonstrate that actinomycetes from Comau
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fjord exhibit a wide range of tolerance to abiotic stressful parameters, which is crucial for the

adaptation to the dynamics of the fjord-marine environment.

Phylogenetic trees for actinomycetes are depicted in Figure 13 (Addendum Chapter I). In
general, actinomycetes showed more 165 rRNA gene identity with isolates derived from polar
marine environments (Figure 4, Chapter 1). Four putative new taxa are proposed based on
numerical thresholds for species definition using 16S rRNA gene (Rosseli-Méra & Amann, 2015):
Arthrobacter sp. H-IH3, Brevibacterium sp. H-BE7, Corynebacterium sp. EH3 and Kocuria sp. H-
KB5 (Table 3, Chapter l). Corynebacterium sp. EH3 was not further characterized due to low cell
viability. Instead, Rhodococcus sp. H-CA8F was used as it also presented low 16S rRNA gene
identity (Table 3, Chapter I). For Streptomyces sp. H-KF8, a further evolutionary analysis based
on comparative genomics was performed, which suggested that it may represent a novel specie
due to its low Average Nucleotide Identity (ANI) value, pan-genome and Multi-Locus Sequence

Analysis (MLSA) {(Goris et gl., 2007) (data not shown).

In order to assess antimicrobial activities, an initial screening using the cross streak
method (Haber & llan, 2014) in two different media was proposed. Notably, all isolates were able
to display inhibition towards to at least one of the reference bacteria tested (Figure 3, Chapter
1}). Various inhibition patterns were observed depending on the media tested. In general,
antimicrobial activities were enhanced in TSA-ASW medium than in ISP2-ASW medium ({Table 1,
Chapter I). For example in TSA-ASW medium, 84 % of the actinomycetes were able to inhibit £.
coli growth regarding the Gram-negative bacteria tested, and 64 % of the actinomycetes were
able to inhibit 5. gureus NBRC 1009107 and L. monocytogenes 07PF0776 growth, respectively,

regarding the Gram-positive bacteria tested (Table 1, Chapter 1). A second approach to test
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inhibition activities using extractions with organic solvents was pursued, where 67% of the
antimicrobial activities observed with the cross-streak method were retrieved (Table 2, Chapter
1}). These results suggest that our actinomycetes collection obtained from Comau fjord present a
wide biotechnological potential to produce biologically active compounds with antimicrobial
activities. Actinomycetes generally showed resistance to almost all antibiotics tested (Table 4,
Chapterl). As each biosynthetic cluster normally harbours a gene for the resistance of it bioactive
product (Zotchev, 2014), the widespread resistance phenomena could be due to the presence of
multiple biosynthetic clusters within the bacterial genome, involving different classes of
antibiotic compounds, that could remain cryptic under the above conditions tested (Zazopoulos
et al., 2003). In nature, resource competition is thought to be a major drive of evolutionary
diversification {Svanbéck et af., 2007). Mainly, there are two competitive strategies by which
organisms compete for resources: i} the exploitation competition, which is characterized by rapid
nutrient utilization; and ii} interference competition, which occurs when one organism directly
harms another (Hibbing et al., 2010)}. By our first screening approach to evaluate antimicrobial
activity, the cross streak method, it is possible to address responses by both types of competition.
However, when using liquid fermentations and crude extracts it is possible to obtain activities by
interference competition exclusively, which is mainly due to antibiotic compounds {Patin et .,
2015). Chemical mediated interference competition has been linked to improve fitness and
stimulate biodiversity (Hibbing et al., 2010). in marine environments, interference competition
is more common among particle-associated bacteria that those that are free living (Long & Azam,
2001). As bacteria in marine environments are often submitted to harsh conditions in terms of
pressure, temperature, salinity and depletion of micronutrients, the ability of microbes to survive

and proliferate is dependent on the ability to produce small molecules resulting in antagonistic
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interactions (de Carvalho & Fernandes, 2010; Wietz et al., 2013). Symbiotic relationships with
sessile organisms, such as sponges and corals, where actinomycetes account for 13%.of their
biomass, support the chemical welfare hypothesis (Abdelmohsen et al., 2010; Vicente et 4.,
2013). Therefore, in natural environments these metabolites play important roles as signal
molecules, facilitating intra- or inter-species interactions within microbial communities, related
to virulence, colonization, motility, stress response and biofilm formation (Romero et al., 2011).
NP have been selected by nature for specific biological interactions, evolving to bind
biomolecules and thus presenting drug-like properties (Nisbet & Moore, 1997). Nevertheless, in
a laboratory scenario, several considerations must be taken into account when searching for NP.
For example, the optimal conditions for biosynthesis of secondary metabolites are not
necessarily identical to those for growth. Regarding carbon sources, glucose is a good source for
growth, but, in most cases, represses the production of some metabolites. Secondary metabolic
pathways are often negatively affected by nitrogen sources favourable for rapid growth,
although complex natural sources of nitrogen such as soybeans and casamino acids are indeed
favourable. The optimal phosphate concentration for secondary metabolism is generally lower
than concentrations required for growth (Knight et al., 2003). The antimicrobial activity of
Streptomyces sp. H-KF8 was tested in several different agar media, where the carbon, nitrogen
and phosphorous sources differ. Accordingly, different patterns of antimicrobial inhibition were
observed (Table 1, Chapter Ill). Therefore, as production of microbial secondary metabolites is
finely regulated by the carbon sources, this could explain the different patterns exhibited by the
same strain in various media with different carbon sources (Ruiz et al., 2010; Sédnchez et dl.,
2010). Streptomyces possess a complex developmental life cycle, that affects the secondary

metabolism as well, and changes considerably between solid and liquid media. In solid media,
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Streptomyces substrate mycelium is made of multiple hyphae that grows by tip extension, and
branches in search for nutrients (Chater et al., 2010). In contrast, in liquid media Streptomyces
undergoes programmed cell death of the mycelium to form four morphological classes: pellets,
clumps, branched hyphae and non-branched hyphae (Yagiie et al., 2013). For Streptomyces sp.
H-KF8, these differences in morphology were noticed (Figure 1 and Figure 2, Chapter Hl) and, in
addition, differences in antimicrobial activity were also observed (Figure 14, Addendum Chapter
1 & Table 1, Chapter 111). An important activity against S. gureus NBRC 1009107 was seen after 9
days of incubation in ISP2-agar plates (Figure 3, Chapter lll). In liquid medium, 30 incubation days
were necessary to obtain an active crude extract (Chapter IV). These results suggest that
secondary metabolites are indeed produced by microorganisms to respond to environmental
stimuli, which is supported by the selective activation of BGCs with various stimulatory methods
(Covington, McLean & Bachmann, 2016). In addition, the intrinsically complex nature attributed
to the regulation of secondary metabolite gene clusters also plays an important role (Bibb &
Hesketh, 20089}, where normally there is specific regulation for each product within each cluster,
as well as pleiotropic mechanisms of regulation that can simultaneously control several pathways
(Martin & Liras, 2012). New approaches including the elucidation of the signals that trigger
antibiotic biosynthetic pathways, to improve culture media and co-cultures to mimic
competition-collaboration scenarios in nature are proposed for future studies with the aim to

enhance antibiotic production in Streptomyces (Antoraz et af., 2015).

Marine actinomycetes isolated from Comau fjord presented a widespread distribution of
the presence of PKS (type I and I1) and NRPS genes (Chapter 1). Most isolates bear at least one
biosynthetic gene, where NRPS genes resulted to be the predominant one (91 % of the

actinomycetes) (Table 3, Chapter | and Table 5, Addendum Chapter ). However, primers used
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to detect the presence of these genes are degenerated, and are specialized to target only one
conserved domain of all the possible modules that one gene may have (Ayuso-Sacido &
Genilloud, 2005; Ayuso et al, 2005; Gontang et al., 2010). Therefore, this approach may
introduce some bias in the amplification of false positives, although it may serve well as a primary
screening method (Hodges, Slattery & Olson, 2012). On the other hand, next generation
sequencing has been fundamental to the discovery of NP, including in the identification of their
hiosynthetic pathways through genome mining (Gomez-Escribano, Alt & Bibb, 2016). In this line,
whole genome sequencing of five selected actinomycetes was performed (Chapter 1l and Table
6 Addendum Chapter ll) to confirm the presence of these genes and to study the broad spectrum
of all types of BGCs (Table 3, Chapter 11l). These isolates, along with the criteria for their selection,
were as follows: 1) Kocuria sp. H-KB5, presents the lowest 165 rRNA gene identity (96.97 %) of
all isolates and possibly may represent a new taxon; it is PCR-positive for PKS Il and NRPS genes;
it tolerates up to 10% of NaCl, and was isolated from a shallow sample under low tide conditions
(only 0.25 m of depth) (Table 3, Chapter I). 2) Arthrobacter sp. H-JH3, is below the 165 rRNA
threshold for species definition (with 98.26 % identity); is PCR-positive for NRPS gene; it has a
wide temperature and NaCl tolerance (4-37 °C and 0-10 %, respectively) (Table 3, Chapter 1) and
it showed antimicrobial activity against P. aeruginosa, E. coli and L. monocytogenes (Table 1,
Chapter ). 3) Brevibacterium sp. H-BE7, has a low 16S rRNA gene identity (97.94 %); is PCR-
positive for all three biosynthetic genes tested (PKS I, PKS Il and NRPS); was isolated from the
deepest sample (25.1 m of depth); is able to widely tolerate temperature and salinity {(4-37 °C
and 0-10 %, respectively) (Table 3, Chapter I}; showed resistance to all commercial antibiotic
families tested with exception of sulfonamides (Table 4, Chapter 1) and presents inhibitory

activity against S. gureus NBRC 1009107, and all three Gram-negative reference bacteria tested

138




(Table 1, Chapter 1}. 4) Rhodococcus sp. H-CAS8F, is PCR-positive for PKS Il and NRPS genes, it
cannot tolerate any addition of NaCl although it grows well with ASW (Table 3, Chapter 1); it
showed resistance for all commercial antibiotics tested with exception of erythromycin (Table 4,
Chapter 1) and it showed a strong broad spectrum antimicrobial activity against both Gram-
positive and Gram-negative bacteria (Table 1, Chapter 1). In addition, a mycelial strain 5)
Streptomyces sp. H-KF8 was also selected due to the presence of PKS Il and NRPS biosynthetic
genes and tolerance to temperature and NaCl (4-37 °Cand 0-7 %, respectively) (Table 3, Chapter
1); along with its activity against Gram-positives reference bacteria and £. coli (Table 1, Chapter
1). Moreover, antimicrobial activities of crude extracts using various organic solvents with these
strains was corroborated, demonstrating the potential of these selected strains to produce

antibiotic compounds (Table 2, Chapter1).

Currently, the access to microbial genome sequencing due to its low cost and rapid
results, has revolutionized the NP research field (Doroghazi & Metcalf, 2013; Antoraz et ol., 2015;
Katz & Baltz, 2016). Genome sequencing provides a highly informed approach by which strains
can be prioritized based on a bioinformatic assessment of their biosynthetic potential. This
potential can be used to: i) make generalized predictions about the type of compounds that can
be expected; ii) make specific structural predictions of the produced molecules; and/or iii) infer
the production of known compounds trough the de-replication process (Jensen et al., 2013}, In
this study, whole genome sequencing was used to achieve the i) and ii) previously mentioned
aims. In this line, a total of 26 BGCs were detected through genome mining in the marine
actinomycete Streptomyces sp. H-KF8 (Figure 5, Chapter lli). Also, BGCs were detected in the
non-mycelial actinomycetes as follows: 9 BGCs for Kocuria sp. H-KB5, 1 BGC for Arthrobacter sp.

H-JH3, 6 BGCs for Brevibacterium sp. H-BE7 and 21 BGCs for Rhodococcus sp. H-CASF (Table 7,
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Addendum Chapter II). These results are in agreement with the fact that mycelial strains are
known to harbour more BGCs than non-mycelial strains (Donadio, Monciardini & Sosio, 2007).
Technical disadvantages, such as large number of short reads difficult to assemble in large
contigs, product of llumina sequencing (Table 6, Addendum Chapter i1}, can be a major challenge
when looking for BGCs. As BGCs can usually exceed 100 kb of length, it is mostly uncommon to
capture large pathways on a single contig. Therefore, in this study, a second whole genome
sequencing strategy was pursued to obtain non-fragmented BGCs, involving PacBIO SMRT
technology for Streptomyces sp. H-KF8, due to the possibility to obtain improved assembled
contigs with complete BGCs (Chapter Il). PacBIO provides sequence reads of several kb in length,
meaning that an entire BGC could be represented on a single sequence read, avoiding the
difficulties of assembling repetitive sequence from short fragments (Harrison & Studholme,
2014). Merging the information of both platforms have been demonstrated to give more
confident results than when using these platforms separately, as seen for Streptomyces sp. Mgl
(Hoefler, Konganti & Straight, 2013). Nevertheless, each genome sequence assembly is a
hypothesis, although there are several bioinformatic methods for assessing length,
completeness and accuracy (Studholme, 2016). In this Ph.D. thesis, we are reporting the
Streptomyces sp. H-KF8 whole genome sequence (Figure 16, Addendum Chapter 1I).
Streptomyces sp. H-KF8 genome consists of a linear chromosome of 7,684,888 bp, which is
represented in 11 scaffolds obtained from llumina and PacBIO sequencing, with a 500-fold
coverage (Chapter lI). Annotation grouped in RAST subsystems is presented in Figure 17,
{Addendum Chapter Il}. Detailed COGs distribution of coding-sequence genes is shown in Table
2 (Chapter I} and comparative genomics of COGs with a terrestrial and a marine-derived

Streptomyces strains are depicted in Figure 4 (Chapter Ilf). In general, Streptomyces genus
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possess unstable linear chromosomes that undergo rearrangements, including large deletion and
amplifications, presenting huge terminal inverted repeats at both ends ensuring homologous
sequences for recombination (Hopwood, 1999; Kinashi, 2008). Fven more, NRPS and PKS are
long, modular proteins made up of many repeated domain units; thus, genes encoding these key
enzymes can be particularly difficult to assemble accurately from short sequence reads. These
particular features, along wiih their commonly high GC content and large genome sizes, have
positioned Streptomyces genome assemblies as a real challenge, leading to obtain only 19
complete available Streptomyces genomes among the 125 draft assemblies over the 30,000

strains that have been identified so far (Harrison & Studholme, 2014},

The term ‘genome mining’ has been used to describe the exploitation of genomic
information for the discovery of new processes, targets and products [Challis, 2008). Natural
product biosynthetic potential can be estimated from genomic sequence data through
automated bioinformatic platforms, such as antiSMASH and PRISM (Skinnider et al., 2015; Weber
ef al., 2015). These platforms are capable of comparing sequenced BGCs from previously
sequenced microorganisms available in the MIBiG database (Medema et al., 2015), thus inferring
putative structures of NP. These comparison relations are particularly useful in the
understanding of BGCs that seem novel due to their low identity value with other known-BGCs,
and therefore, in the comprehension of the putative molecule produced. The 81 % of the BGCs
detected in Streptomyces sp. H-KF8 presented low similitudes with known BGCs. From a total of
26 BGCs, two;,'qf’them corresponded to NRPSs, two PKSs and with four NRPS-PKS hybrids (Table
8, Addendum Chapter II). Interestingly, the two NRPS clusters presented very low identity with
known BGCs from the MIBiG database, where NRPS cluster #5 showed a 13 % of similarity with

the streptolydigin BGC {Olano et al., 2009), and NRPS cluster #6 showed a 7 % of similarity with
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the mannopeptimycin BGC {Magarvey et al., 2006) (Table 3, Chapter Ill). In addition, the
distribution of the BGCs was assessed and the two previously mentioned clusters were found in
the same contig (Figure 5, Chapter [fl). As Streptomyces sp. H-KF8 presented nine BGCs with a
rather low similarity (between 5 and 52%), in addition to eight BGCs with no matches to known
BGCs, these results suggest that most secondary metabolites produced by this marine
actinomycete have a novel nature (Table 3, Chapter IlI). In this Ph.D. thesis, a focus on the two
NRPS clusters with the subsequent analysis of their genes is presented (Figure 19, Chapter IV
and Table 13, Addendum Chapter IV for cluster #5 & Figure 20, Chapter IV and Table 14,
Addendum Chapter IV for cluster #6). We predicted the peptidic core structure, and infer a few
tailouring reactions occurring post-assembly due to the organization of their modules and
domains (Figure 19 for cluster #5 and Figure 20 for cluster #6, Chapter 1V). This bioinformatic
approach was fundamentai to guide further experiments to gain knowledge into the nature of
the compound(s) produced by Streptomyces sp. H-KF8. The importance of genome mining has
been reported for other Streptomyces strains, where this approach has led to the identification
of novel BGCs and their metabolites (Gomez-Escribano et al., 2015; Iftime et al., 2015; Tang et

al., 2015).

In addition to genome mining for BGCs, the genome sequence was analyzed to gain
information about ecological abiotic tolerance features (Chapter 1ll). The sea is a unique and
extreme environment characterized by high pressure, low temperature, lack of light and variable
salinity and oxygen concentration {Manivasagan et al., 2013). Thus, microorganisms have to
adapt through functional biological traits in order to survive in this extreme environment. This
praocess of adaptability may, in turn, modulate the synthesis of their bioactive metabolites.

Streptomyces sp. H-KF8 showed a high amount of genes (69 genes) related to oxidative stress,
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with nine genes for thicerdoxins and alkyl hydroperoxide reductases each. An efficient response
against several concentrations of H,0, was observed, being able to tolerate the toxicity even
better than the model strain S. coelicolor A3(2) {Figure 7, Chapter Ill). The antibiotic-resistance
response was evaluated. Streptomyces sp. H-KF8 showed resistance to 14 of the 16 commercial
antibiotics tested, and presented more than 90 genes that could be involved in antibiotic
resistance (Figure 8, Chapter lil). Due to the naturally high concentrations of certain heavy
metals in Chilean Northern Patagonia (Revenga et al., 2012; Hermanns & Biester, 2013), the
ability of Streptomyces sp. H-KF8 to tolerate exposure to metal(loid)s was evaluated.
Interestingly, resistance to copper, cobalt, mercury, tellurite, chromate and nickel was revealed
{Figure 6, Chapter lll). Accordingly, several genetic determinants for metal(loid)s resistance were
found within the Streptomyces sp. H-KF8 genome. The most abundant genes were related to
tellurite resistance. To our knowledge, this is the first tellurite-resistant Streptomyces strain
described so far. Metal exposure, especially trace metal ions and rare earth elements have been
demonstrated to modulate secondary metabolite production {Locatelli, Goo & Ulanova, 2016).
In fact, contrary to the widely held hypothesis that metals are a hindrance in secondary
metabolism, they can induce or enhance the synthesis of potent and medically relevant
metabolites in metal tolerant Streptomyces strains (Haferburg et af., 2008). Even more, it has
been shown that cryptic gene clusters can be induced under conditions of heavy metal stress
(Haferburg et al., 2008; Locatelli, Goo & Ulanova, 2016), opening new possibilities for NP
discovery. Overall, these results suggest a molecular crosstalk between the biological responses
to these abiotic stressors, where Streptomyces sp. H-KF8 proved to be a genetically well-

prepared bacterium with the ability to confront the dynamics of the marine environment,
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Conventional approaches to address the metabolites produced by a bioactive bacterium
involves the fermentation in liquid media and subsequent extraction of the compound(s) using
organic solvents (Sarmiento-Vizcaino et al., 2016). In this study, extraction was performed with
several organic solvents with varying polarities, where polar solvents yielded better results
(Figure 21, Chapter V). Several biological models were tested to evaluate the different
bioactivities. Streptomyces sp. H-KF8 crude extract showed inhibition to S. gureus NBRC 1009107,
L. monacytogenes 07PF0776 and, to a lesser extent inhibition of E. coli FAP1 (Figure 22, Chapter
IV). Cytotoxic activity with cancer cells was also observed (Figure 23, Chapter 1V). No inhibition
against a model yeast was noticed. These results support the hypothesis that several compounds
with different modes of action and different model targets are present within the crude extract,
or alternatively, it may be one family of compounds which present both antibacterial and
antiproliferative activities. Bioguided HPLC fractionation led to the identification of 36 fractions
with different bioactivity patterns when Streptomyces sp. H-KF8 was incubated in 1SP2 medium,
and 12 fractions when it was incubated in V medium (Figure 28, Chapter IV), These two media
were used for comparison purposes, as antimicrobial activity of fractions considerably differed
from each other {Figure 29 and Table 9, Chapter IV). Active fractions were analyzed by three
different mass-techniques: ESI-FT ICR MS, MALDI-TOF MS and MALDI-FT ICR IMS, to profile the
chemical output from the marine actinomycete Streptomyces sp. H-KF8, and, more importantly,
analyze the metabolites in an antagonistic interaction condition of inhibition. These metabolites
that are produced when a Streptomyces strain is co-cultivated with another strain, but do not
necessarily appear under mono-cultivating conditions, are suggested to be interaction-specific
(Hopwood, 2013; Traxler et aol., 2013). Co-culturing metabolomic assays proved that

Streptomyces displays an idiosyncratic response (Traxler et al., 2013). Thus, performing MALDI-
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FT ICR IMS allows a high-resolution mapping of several ions within a sample (Watrous &
Dorrestein, 2011). ESI-FT ICR MS and MALDI-TOF allows to obtain the mass-to-charge ratio {m/z)
of the detected metaholites with high accuracy and fragmentation of parental ions (Figure 30
and Figure 34, respectively, Chapter IV). TOF MS is able to determine mass accuracy with an
error under 1 ppm, and FT ICR MS may perform at sub-ppm mass errors (Covington, Mclean &
Bachmann, 2016). Therefore, the utilization of both techniques is useful to analyze the
metabolites of an antibiotic producer-microorganism, and was applied to understand the
Streptomyces sp. H-KF8 metabolome. Moreover, IMS techniques complement conventional
mass analyzers by providing a two-dimensional visualization of surface metabolites directly
secreted from microbial colonies, enabling the preservation of molecular localization within the
agar plate and spatially mapping microbial molecules {Yang et al.,, 2012). MALDI 1IMS can be
summarized in five steps: i} microbe cultivation on thin agar, ii} transfer of the excised culture-
containing agar slice onto the MALDI target plate, iii) solid matrix application, iv) dehydration of
the sample and v} data acquisition and interpretation (Vergeiner et al., 2013). In an IMS
experiment, the desorption and ionization of the molecules from the sample occurs when a
desorption probe hits the surface of a sample at defined positions controlled by the X-Y stage
{Figure 32, Chapter 1V}, dislodging ions that are then welighed in a mass spectrometer (Fang &
Dorrestein, 2014). As a result, it provides a mass spectrum for each position. The collection of
several mass spectra at each position will be shown as a single image, with each specific mass
displayed as a false-colour gradient, showing the specific molecular distribution and relative
abundance of the metabolites on the sample (Figure 33 and Figure 35, Chapter 1V) (Fang &

Dorrestein, 2014). The number of detectable compounds from a metabolomics extract will vary

depending on the analytical methods used during acquisition, where neutral or poorly ionizing
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species will be transparent to MS detection (Covington, McLean & Bachmann, 2016). In MALDI-
IMS, sample is first covered with a layer of matrix (Figure 32B, Chapter IV), which is a UV-
absorbing organic acid such as DHB (used for glycans, lipids, peptides and polymers) or HCCA
{used for glycans, peptides and proteins) (Yang et al., 2012; Fang & Dorrestein, 2014). Matrix
facilitates desorption and ionization of compounds from the sample surface, where molecules
with m/z up to 110 kDa and higher can be detected (Remoortere, Ze & Oever, 2010). Application
of solid matrix is the crucial step of sample preparation procedures, since the homogeneity of
the coating directly influences sensitivity and achievable MS resolution (Vergeiner et al., 2013).
Several sample preparation techniques can be used, and results obtained differ considerably
{(Vergelner et al., 2013; Hoffmann & Dorrestein, 2015). In this study, a sprayed HCCA matrix
solution onto dried agar-based sample plates was used (Figure 32B, Chapter 1V], to allow a
homogeneous matrix layer where improved ionization efficiency has been demonstrated
(Hoffmann & Dorrestein, 2015). This technique was fundamental to reveal specialized
metabolites that are produced when a Streptomyces sp. H-KF8 was co-cultivated with another
bacterium in an antagonistic interaction, resembling chemical interference competition (Table
10 and Table 11, Chapter IV). The selected ions were then analyzed through MALDI TOF MS, and
amino acid composition of parental ions suggest that they were related with the bioinformatic
prediction of cluster #6 (Table 12, Chapter IV), therefore suggesting that this cluster could be
involved in the synthesis of a specialized compound (or family of compounds), which may explain

the antimicrobial activity observed.

The NRPS cluster #6, is located in the contig tig_02 and bears a length of 79,174 bp
covering at least 33 genes, involved in the biosynthesis, tailouring reaction, regulation, transport

and resistance functions {Table 14, Addendum Chapter V). An antiSMASH result showed that
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7% of the genes within this cluster showed similarity with the known BGC of mannopeptimycins
(Table 3, Chapter ill). Mannopeptimycins are produced by Streptomyces hygroscopicus NRRL
30439, and represent a novel lipoglycopeptide antibiotic with activity against methicillin-
resistant 5. qureus and vancomycin-resistant enterococci (Magarvey et al., 2006). Interestingly,
exploration of the different biological activities of Streptomyces sp. H-KF8 crude extracts
revealed inhibition mainly on Gram-positives (Figure 22A and Figure 22B, Chapter IV), but also
on E. coli {Figure 22C, Chapter IV). These results suggest the presence of different compounds in
the crude extract, each one with a selective mode of action and/or, the presence of a family of
related molecules that have a broad spectrum of inhibition. The exploration of the chemical
nature of the crude extract by TLC (Figure 27) using ninhydrin (Figure 27A) and orcinol (Figure
27B), suggested the presence of compound(s) with amino acids, amino sugars and/or amines,
and a glycoside and/or a glycolipid. Evidence of the complex and mixed structure was also
observed in the crude extract resistant to temperature and enzymes assays (Figure 24 and 25,
respectively, Chapter IV), and the two peaks obtained in the fluorescence spectrum of
Streptomyces sp. H-KF8 crude extract (Figure 26, Chapter IV). These results suggest that
Streptomyces sp. H-KF8 crude extract harbours a glycopeptide type antimicrobial compound,
which presents a rather low similarity with the lipoglycopeptide mannopeptimycins. These
molecules have a cyclic hexapeptide core containing a unique combination of two proteinogenic
(serine and glycine) and four non-proteinogenic {two B-hydroxy-enduracididines, a B-methyl-
phenylalanine and a B-hydroxy-tyrosine) amino acids. Additionally, the hexapeptide is tailoured
with one N-linked mannose and an O-linked di-mannose. Finally, the terminal O-linked mannose
Is modified with an isovaleryl group at one of three different positions, resulting in the y-, - and

g-mannopeptimycins (Magarvey et al, 2006). Similarly to the mannopeptimycin BGC, the
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Streptomyces sp. H-KF8 cluster #6 bears two main biosynthetic NRPS genes, A4U63_02940 and
A4U61_02945 (Figure 20, Chapter IV). They are involved in the incorporation of ten amino acids
(tryptophan-alanine-valine-alanine-tryptophan + ornithine-threonine-ornithine-valine-
tryptophan). In contrast the mannopeptimycin NRPS genes only incorporate six amino acids.
Specifically, the gene A4U61_02940 from Streptomyces sp. H-KF8 is similar to the mmpB gene
from the mannopeptimycin cluster, which is responsible for incorporating three non-
proteinogenic amino acids (two B-hydroxy-enduracididines and a B-hydroxy-tyrosine), However,
these amino acids are not predicted to be incorporated by the NRPS of cluster #6, although a
modified tyrosine (nitro-tyrosine) is proposed instead of one tryptophan (Table 12, Chapter V).
Another similarity between these BGCs, is that both present the carboxypeptidase resistance
genes resembling to vanY and vanZ (A4U61_02950 and A4U61_03005 genes, respectively, in
Streptomyces sp. H-KF8) from the vancomycin BGC (Recktenwald et al., 2002). VanY is a D-Ala-D-
Ala carboxypeptidase/carboxyesterase that cleaves off the terminal D-Ala residue of the forming-
peptidoglycan pentapeptide and acts in series with VanX, which is a D-Ala-D-Ala dipeptidase, to
prevent the accumulation of the substrate for the vancomycin-type glycopeptides (Wright et al.,
1992). This glycopeptide antibiotic family targets Gram-positive bacteria, by binding to the N-
acyl-D-Ala-D-Ala termini of the peptidoglycan and its precursor Lipid Il. This binding sequesters
the substrates of two key enzymes critical to cell wall synthesis: the transglycosylases and D,D-
transpeptidases. The target microorganism rigidifies the cell wall and has the inability to grow,
thus blocking cell division and weakening the wall, ultimately resulting in cell death (Yim et al.,
2014). Since these resistance genes are present within the cluster #6 of Streptomyces sp. H-KF8,
in addition to another gene for glycopeptide resistance (A4U61_02900), a similar mode of action

of the metabolite concerning inhibition of the cell wall biosynthesis is proposed. Also, these

148




genes may be responsible for structural changes within the cell wall of the antibiotic-producer
bacterium, that may render it immune to its own antibiotic. Nevertheless, an additional
bleomycin resistance gene (A4U61_02905) is also located in cluster #6. Since bleomycin mode of
action is primarily involved in the induction of DNA cleavage, the presence of this resistance gene
may suggest probably a dual mechanism of inhibition. Another structural similarity with
mannopeptimycins is the sugar moieties that are added to the peptidic core structure. In this
molecule, three genes encoding mannosyltransferases are in charge of transferring three
mannoses to the aglycone. Although no glycosyltransferase(s) were found within cluster #6 from
Streptomyces sp. H-KF8, it was present in the genetic neighbourhood approximately ~100 genes
upstream of cluster #6. Within cluster #6, several genes involved in sugar modifications post-
assembly are present. These involve three glycosyl hydrolases (A4U61_02870, A4U61_02910and
A4U61_02910 genes) and three sugar acetyltransferases (A4U61_02895, A4U61 02915 and
A4U61_02930 genes) along with sugar transporters (A4U61_02875, A4U61_02880 and
A4U61_02885 genes) (Table 14, Addendum Chapter 1V). Altogether, these results suggests that
sugar moieties are crucial functional groups that are being added, and subsequently
incorporated to the peptidic core, conferring additional glycosylation diversity in the structure.
Sugar moieties are often found in NP, for example in the antibiotics erythromycin (Staunton &
Wilkinson, 1997), vancomycin (Recktenwald et al., 2002) or teicoplanin (Li et al., 2004; Hadatsch
et al., 2007). Usually, the glycosyl groups play an important role in NP, where the sugar unit(s)
directly mediate the bioactivity of the compound; e.g., by promoting binding to a target
biomolecule (La Ferla et al., 2011). This is in agreement with the results obtained with the crude
extract resistance to enzymes assay, where reduced antimicrobial activity resulted when

incubated with lysozyme (Figure 25, Chapter IV). From a structural point of view, glycopeptides
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have a complex architecture due to their highly crosslinked state, where three or four hiaryland
biaryl-ether cross-links between the side chains of aromatic amino acids are present in the
heptapeptide backbone (Butler et al., 2014; Yim et af, 2014). The cytochrome P450s
monooxygenase enzymes install these crosslinks with a strict order of cyclization steps, which
confers the characteristic cup-shape of the aglycone (Peschke, Brieke & Cryle, 2016). In
Streptomyces sp. H-KF8 cluster #6, the A4U61_02955 gene encoding for a cytochrome P450 is
contiguous to one of the NRPS genes, A4U61_029550 (Table 14, Addendum Chapter IV). It has
been demonstrated that P450 monooxygenases acts directly on the NRPS-bounded substrates
(Bischoff et al., 2005). Interestingly, glycopeptides require a 8-hydroxytyrosine as a precursor for
NRPS-catalyzed peptide assembly, where this oxidation is P450-catalyzed (Recktenwald et al.,
2002). As aromatic amino acids are being predicted in the two main NRPS genes that conform
cluster #6, a role for the gene encoding the P450 monooxygenase in the crosslink of these
aromatic side chains and subsequent formation of an ether bond is proposed. These enzymes
play many roles in the biosynthesis of NP, specially in glycopeptides, being able to perform
hydroxylation, epoxidation and aromatic crosslinking with high degrees of selectivity (Cryle, Stok
& De Voss, 2003). In addition, it also has activity as a glycosyl transferase activator, suggesting a
relation with the sugar moieties predicted to be added to the peptidic core structure, as

discussed previously.

Overall, based on the similarities with genes related to known glycopeptide BGCs, we
hypothesize that cluster #6 may be generating a family of glycopeptides whose peptidic core
structure consists of a cyclic decapeptide, that has additional O-linked sugar moieties possibly in
at least one of the aromatic amino acids that are part of the core molecule. To our knowledge,

this NRPS BGC has not been previously described, thus, the proposed structure for its metabolite
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should be unique, suggesting a novel glycopeptide compound. Mareover, Additional analysis
such as NMR will be crucial to fully elucidate the molecular composition of the cluster #6

product(s).
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7 Conclusions

This study showed that the Comau fjord is a rich source for bioprospecting actinomycetes

that produce bioactive compounds, especially those with antimicrobial activity.

The presence of NRPS and/or PKS metabolic routes within the actinomycetes sequenced
genomes, indicated the genetic potential of the selected isolates to produce bioactive

compounds.

Streptomyces sp. H-KF8 harbours novel secondary metabolites biosynthetic gene
clusters. Two NRPS clusters were studied, and the peptidic core of the respective
metabolites was predicted. These peptidic core molecules were composed of modified
amino acids and non-proteinogenic ones, with additional decorating functional groups

such as sugar moieties.

A sustained correlation among the predicted bioinformatic data and one of the NRPS
clusters (cluster #6) of Streptomyces sp. H-KF8 is proposed, together with the molecular
composition from experimental data obtained with mass techniques {ESI FT ICR MS,
Imaging MS and MALDI TOF M5/MS) was accomplished, suggesting the synthesis of a

novel antimicrobial compound of glycopeptide nature.
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8 Research needs

® NMR studies will be crucial to fully elucidate the chemical structure of the previously
purified compound(s} which were predicted by bicinformatic tools in this study, and

therefore, demonstrating the role of the genes that conforms cluster #6.

® A whole comparative genomic study involving marine actinomycetes from other
geographic locations will be useful to understand the distribution and the uniqueness of

the biosynthetic gene clusters described in this study.

® A metagenomics approach will gain insights into the biodiversity of the bacterial
community in the remote Comau fjord, which will be useful to understand the role of

actinomycetes in this marine ecosystem.
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