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Aplicaciones de Optimización Estocástica y Binivel a
Problemas de Redes

Resumen

El presente trabajo corresponde a una Tesis de Doctorado, elaborada en el Departamento
de Ingeniería Matemática de la Universidad de Chile, para obtener el grado de Doctor en
Ciencias de la Ingeniería, Mención en Modelamiento Matemático.

Las siguientes páginas están compuestas por dos partes principales. En la primera de ellas se
trabaja con optimización binivel, donde se define un indicador denominado Valor Esperado
de Información Compartida para medir si es conveniente o no para el líder de un juego binivel
compartir información con el seguidor del mismo. Este indicador es aplicado al modelamiento
de la reubicación de conductores de una plataforma de ride-hailing, donde una formulación
del problema es construida usando técnicas de optimización binivel. En este trabajo, se
modela a la empresa duela de la plataforma de ride-hailing como el líder del problema, y al
conjunto de conductores de la misma como un seguidor.

La segunda parte trabaja el diseño óptimo de ecoparques industriales, que consisten en
comunidades de negocios de manufactura y servicios ubicados en una propiedad común,
cuyos miembros buscan mejores desempeños a nivel medioambiental, económico y social a
través de la colaboración en el manejo de temas medioambientales y de recursos. En este
contexto, definimos un nuevo indicador, denominado resiliencia de un ecoparque industrial,
que mide el número de escenarios suficientemente buenos que pueden ser obtenidos en la
operación diaria del parque, cuando se considera incertidumbre en ella. En este trabajo,
restricciones física y económicas para la operación diaria del ecoparque son consideradas, y
la introducción del concepto de resiliencia es contrastado con herramientas clásicas en diseño,
tales como eficiencia y costos de inversión.

En ambos trabajos, simulaciones numéricas son consideradas para comparar los resultados
obtenidos. Por una parte, en el problema de ride-hailing, nuestras simulaciones sugieres que
efectivamente es conveniente para el líder del problema (los dueños de la plataforma) compar-
tir información con el seguidor (vale decir, el conjunto de conductores usando la aplicación).
Por otra parte, en el diseño y operación de parques industriales, nuestro resultado más prom-
etedor consiste en que, minimizando costos de inversión para el diseño, pero pidiendo un
nivel mínimo de resiliencia deseado, podemos obtener importantes reducciones en inversión,
reduciendo la performance del ecoparque en una cantidad muy pequeña.
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Applications of Stochastic and Bilevel Optimization to
Network Problems

Abstract

This work corresponds to a PhD Thesis elaborated at the Department of Mathematical
Engineering of the University of Chile for obtaining the Degree of Doctor in Engineering
Sciences, Mention in Mathematical Modeling.

The following pages are composed by two main parts. The first one deals with bilevel opti-
mization, where an indicator called the Expected Value of Shared Information is defined in
order to measure whether is convenient or not for the leader of a bilevel problem to share
information with its follower. This indicator is then applied to the modeling of reallocation
of drivers in ride-hailing platforms, where a formulation of the problem is constructed using
bilevel optimization techniques. In this work, we model the ride-hailing enterprise as the
leader of the problem, and the group of drivers as a follower.

The second part deals with the optimal design of eco-industrial parks, which consist in
communities of manufacturing and service businesses located together on a common property,
whose members seek enhanced environmental, economic, and social performance through
collaboration in managing environmental and resource issues. In this context, we define a
new indicator, called the resilience of an eco-industrial park, which measures the number
of good enough scenarios that can be obtained on the eco-industrial park daily operation,
when uncertainty is considered. In this work, physical and economical constraints for daily
operation of an eco-industrial park are considered, and the introduction of the resilience is
contrasted with classical tools in design, such as efficiency and investment costs.

In both works, numerical simulations are considered in order to compare the obtained results.
On one hand, in the ride-hailing problem, our simulations suggest that it is indeed convenient
for the leader of the problem (that is, the ride-hailing platform owner) to share information
with the follower (the drivers using the application). On the other hand, in the eco-industrial
park design and operation problem, our most promising result consists in that minimizing
investment costs for the design, but asking for a desired level of resilience, we can obtain
important investment deductions, reducing the overall performance of the eco-industrial park
in a very small amount.
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Introduction

This work corresponds to a PhD Thesis elaborated at the Department of Mathematical
Engineering of the University of Chile for obtaining the Degree of Doctor in Engineering
Sciences, Mention in Mathematical Modeling.

The following pages are composed by two main parts. The first one deals with bilevel opti-
mization, where an indicator called the Expected Value of Shared Information is defined in
order to measure whether is convenient or not for the leader of a bilevel problem to share
information with its follower. This indicator is then applied to the modeling of reallocation
of drivers in ride-hailing platforms. The second part deals with the optimal design of eco-
industrial parks, where a new indicator, called the resilience of an ecopark is defined. In this
second part, the physical and economical constraints for daily operation of an ecopark are
considered, and the introduction of the resilience is contrasted with classical tools in design,
such as efficiency and investment costs. In both works, numerical simulations are considered
in order to compare the obtained results.

In this introduction, we summarize the main contributions of the thesis, which are detailed
in Chapters 3 and 4. In Chapter 1, we enunciate the preliminary results on Optimization,
Convex Analysis and Probability that will be needed in order to detail foundational elements
of Bilevel and Two-Stage Programming in Chapter 2. If a reader wants to have a general
overview of this work, reading this Introduction would suffice for such a goal. In contrast, for
a full in-depth reading of this work, this Introduction can be skipped, as it content is largely
revisited on the main Chapters 3 and 4.

Allocation Problems in Ride-Hailing Platforms
Ride-hailing consists on a form of transportation service delivered using platforms (such as
Uber and Lyft), usually through smart-phone applications, where riders connect with drivers.
Here, we are interested in the way information affects the relation between a ride-hailing
company and its drivers.

The abstract model that will be used to describe the interaction between a ride-hailing
company and its drivers is the following optimistic parametric bilevel programming problem

1



φ(z1, z2) =


min
x,y

θ(x, y, z1, z2)

s.t.


x ∈ X

y solves

{
min
y
f (x, y, z1, z2)

s.t. y ∈ Y (x),

where (z1, z2) ∈ Z = Z1 ×Z2 ⊂ Rk1 ×Rk2 are the parameters. Here, the function φ : Z → R
is called the value function of this problem. For each pair (z1, z2) ∈ Z, the leader aims to
minimize the loss function θ : Rn × Rm × Rk1 × Rk2 → R. He or she only controls the first
variable x ∈ X ⊂ Rn, which we call the leader’s decision. The set of admissible leader’s
decisions X ⊂ Rn is fixed. In a similar way, for each pair (z1, z2) ∈ Z and each leader’s
decision x ∈ X, the follower aims to minimize the loss function f : Rn×Rm×Rk1 ×Rk2 → R.
He or she only controls the second variable y ∈ Y (x) ⊂ Rm, which we call the follower’s
decision. The set of admissible decisions Y (x) ⊂ Rm depends on the leader’s decision x,
inducing a set-valued map Y : X⇒Rm.

Given some hypothesis for this problem, thoroughly described in Chapter 3, the existence
of solutions is ensured. In this setting, uncertainty is formalized as random variables ζ =
(ζ1, ζ2) : Ω → Z1 × Z2 and ξ = (ξ1, ξ2) : Ω → Z1 × Z2, over a probability space (Ω,Σ,P).
These variables determine the parameters (z1, z2).

For this type of problems, we introduce the Shared Wait-and-See (SWS). This indicator,
which is given by the formula

SWS := Eζ(φ) =

∫
Ω

φ(ζ1(ω), ζ2(ω))dP(ω),

which captures the expected value for a leader that has perfect information and shares it with
the follower. Comparing with the classic (see, e.g., [111, 21]) Wait-and-See (WS) indicator, we
define the Expected Value of Shared Information (EVSI), that measures the value of sharing
information in the context of Stackelberg games. This indicator is relevant in problems where
both agents, the leader and the follower, must make their decisions prior to some uncertain
event in a non-full cooperative nor-full competitive scheme, such as the ride-hailing problem.

In this approach, we consider the following model: a driver associated with a ride-hailing
company that has not been matched with a passenger must decide whether to keep searching
for a match around his or her current location, or to move to another one within the city.
We can model the different locations as a finite set of zones, I = {1, . . . , n}, connected as a
directed graph.

If the driver is in the ith zone, his or her reallocation decision will depend on five factors: 1)
the vector of marginal prices fixed by ride-hailing company, p = (pi : i ∈ I); 2) the vector of
previously matched drivers who will arrive to each node (and will become available at that
node), y = (yi : i ∈ I); 3) the vector of demands of each zone d = (di : i ∈ I); 4) the
marginal costs of moving to another zone, αi = (αij : j ∈ I); and 5) the vector of previously
unmatched drivers that will be at each node, x = (xi : i ∈ I).

In this work, we model the situation where drivers can communicate between them outside
the ride-hailing platform, and they can coordinate their allocation. Thus, we model all
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unmatched drivers as a single new follower, who aims to maximize the social welfare of all
drivers. Then, for a given price vector p, the aggregated allocation problem is posed as
follows:

F (p) :=


maxv

∑n
i=1 cpiEξ [min(xi + yi, di)]−

∑
i ̸=j αijvij

s.t

{
v ≥ 0∑

k ̸=j vjk ≤ x0,j, ∀j ∈ I

,

where c ∈ (0, 1) is the fraction of the ride price that the driver gets, and vij models the
number of unmatched drivers that move from zone i to zone j. The first sum at the objective
function represents the expected revenue of all drivers, while the second sum stands for the
aggregated costs of reallocation.

The distribution of ξ, which models the belief over y and d0, must reflect the fact that drivers
have not access to the data of the ride-hailing company. On the one hand, we will model the
vector of previously matched drivers who will arrive to each node as an uniformly distributed
random variable. This distribution represents the lack of information for the unmatched
drivers about the matched ones. On the other hand, we will assume that drivers perceive the
distribution of the nominal demand as a discrete one, considering m ∈ N feasible scenarios,
{ω1, . . . , ωm}. Thus, we can write

Eξ [pimin(xi + yi, di)] = −Eξ(pi max(−xi − yi,−di))

= −
m∑
k=1

piEy[max(−xi − yi,−di,k)] · P(ωk),
(1)

where we define the discrete expression di,k = di(ωk). Therefore, the follower will deal with
a discrete version of its original problem F (p), given by

Fm(p) :=


minv c

n∑
i=1

m∑
k=1

piEy[max(−xi − yi,−di,k)] · P(ωk) +
∑
i ̸=j

αijvij

s.t

{
−v ≤ 0∑

j ̸=i vij − x0,i ≤ 0, ∀i ∈ I

. (2)

Now, the ride-hailing company must decide the price vector p. The company does not
necessarily know the exact value of the demand vector d, but it knows the vector y of occupied
drivers. Since the company aims to maximize its revenues, it must solve the following bilevel
programming problem:

L(y) :=


maxp,v

∑n
i=1(1− c)pi · Eζ [min(xi + yi, di)]

s.t

{
pi ∈ [pi,min, pi,max], ∀i ∈ I

v solves Fm(p).

(3)

Here ζ is the random variable that models the belief of the leader about the behavior of
the nominal demand. The distribution of ζ should be multivariate normal-like distribution
around a nominal value d̄0 = (d̄0,i : i ∈ I). Observe that the objective function of the leader
is partially cooperative with the follower, in the sense that both of them share the term of
aggregated revenues of the fleet.

3



In order to compute the EVSI, MPCC reformulations to single bilinear optimizations are
obtained. This technique is classic in Bilevel Programming (see, e.g., [32]). Our main results,
in relation to this announced reformulations, are the following:

Theorem 1 For any given value of the random vector ζ = (y, d0), the Wait-and-See problem
associated to the leader’s problem (3.13) is equivalent (in the sense of global solutions) to its
MPCC reformulation given by

max
p,v,λ,γ

n∑
i=1

(1− c)pi ·min(xi + yi, di)

s.t



pi ∈ [pi,min, pi,max], ∀i ∈ I∑
j ̸=i vij − x0i ≤ 0, ∀i ∈ I

m∑
k=1

(piβi,k − pjβj,k) + αij − λij + γi = 0, ∀i ̸= j ∈ I

γi(
∑

j ̸=i vij − x0i) = 0, ∀i ∈ I

λijvij = 0, ∀i ̸= j ∈ I

v ≥ 0, γ, λ ≥ 0,

where the coefficients {βi,k : i ∈ I, k ∈ K} are given by

βi,k :=


0 if di,k − xi ≤ 0

cP(ωk)
xi−di,k

ȳ
if 0 ≤ di,k − xi ≤ ȳ

−cP(ωk) if di,k − xi ≥ ȳ.

Furthermore, the multipliers γ = (γi : i ∈ I) and λ = (λij : i ̸= j ∈ I) verify

0 ≤ γi ≤ 2mpmax and 0 ≤ λij ≤ 4mpmax,

where pmax = maxi∈I{pi,max}.

Theorem 2 For any given value of the random vector ζ = (y, d0), the Shared-Wait-and-
See problem associated to the leader’s problem (3.13) is equivalent (in the sense of global
solutions) to its MPCC reformulation given by

max
p,v,λ,γ,β

n∑
i=1

(1− c)pi ·min(xi + yi, di)

s.t.



pi ∈ [pi,min, pi,max], ∀i ∈ I∑
j ̸=i vij − x0i ≤ 0, ∀i ∈ I

c(βi − βj) + αij − λij + γi = 0, ∀i ̸= j

γi(
∑

j ̸=i vij − x0i) = 0, ∀i ∈ I

λijvij = 0, ∀i ̸= j ∈ I

v ≥ 0, γ, λ ≥ 0,

where the variables {βi : i ∈ I} verify that

βi ∈


{0} if di − xi < yi

{pi} if di − xi > yi

[0, pi] if di − xi = yi

.
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Furthermore, the multipliers γ = (γi : i ∈ I) and λ = (λij : i ̸= j ∈ I) verify that

0 ≤ γi ≤ 2pmax and 0 ≤ λij ≤ 4pmax,

where pmax = maxi∈I{pi,max}.

Using both theorems, we are able to compute the EVSI for randomly generated data, that
supports the idea that sharing information with the drivers, might be beneficial for the ride-
hailing platform.

Resilient Design of Eco-Industrial Parks
An Eco-Industrial Park (EIP), as defined in [76], consists in a community of manufacturing
and service businesses located together on a common property. Member businesses seek en-
hanced environmental, economic, and social performance through collaboration in managing
environmental and resource issues. In this work, as it is usual in the literature, we model the
EIP community as a central authority in charge of the design of the park at a first stage, and
of optimizing the interactions within the members in the daily operation during its lifetime.

A canonical example of EIP corresponds to the modeling of water exchange networks (see,
e.g., [23, 102, 108] and the references therein), where each participant of the EIP needs to
consume fresh water for its industrial processes, and to send away partially contaminated
water. In parallel, there is a central authority of the EIP, which is in charge of design the
park and operate it afterwards, following some criteria that reflects environmental, economic
and/or social benefits.

This work falls into the context of Two-Stage problems, which are optimization problems
where a single-agent must take decisions before some random events occur, and other decisions
(also called recourse actions) afterwards. In this sense, Recourse programs can be seen as
a particular case of Stochastic Bilevel programming, where the same agent is solving the
upper-level and lower-level problem.

A general two-stage problem can be stated as

min
x∈X

f1(x) + E[Q(x, ξ)],

where X is a nonempty (usually compact) subset of Rn, f1 : Rn → R is a real-valued (usually
continuous) function, andQ(x, ξ) is obtained as the optimal value of the so called second-stage
problem {

min
y

f2(x, y, ξ)

s.t. y ∈ Y (x, ξ).

Here, f2 : Rn × Rm × Rp → R and Y : Rn × Rd ⇒ Rm is a set-valued function. This
representation shows the sequence of events, where the first-stage decisions x are taken with
uncertainty about future realizations of ξ, and after that, some corrective actions y can be
taken.
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In order to design an EIP, an important uncertain quantity must be considered: the mass
load production of contaminant for every participant, ξ = (M1, . . . ,Mn) is uncertain at the
design stage, because each process has daily unpredictable variations. These variations are
only revealed during the daily operation of the EIP, and of course, they can be different
every time. The operation variables of the park are given by: 1) the fresh water consumption
of each agent, given by the vector z = (zi : i ∈ I); 2) the exchange water matrix F =
(Fij : i ̸= j ∈ I); and 3) the discharge of each agent to the sink node, given by the vector
O = (Oi : i ∈ I).

A valid operation is then given by values of (z, F,O) satisfying the following operation con-
straints:

1. Water Mass Balance: for every participant i ∈ I, the total inlet flux must coincide
with the total outlet flux.

zi +
∑
k ̸=i

Fki =
∑
j ̸=i

Fij +Oi.

At the sink node, there is no balance constraint.

2. Contaminant Mass Balance: For every participant i ∈ I, the total inlet contaminant
mass must coincide with the total outlet contaminant mass, that is,

Mi +
∑
k ̸=i

Ck,outFki = Ci,out

(
Oi +

∑
j ̸=i

Fij

)
.

The mass is computed from the fluxes F thanks to the optimality assumption that the
outlet concentration is always attained.

3. Inlet/Outlet Concentration Constraints: for every participant i ∈ I, we have that

∑
k ̸=i

Ck,outFki ≤ Ci,in

(
zi +

∑
k ̸=i

Fki

)
.

The above inequality is the inlet concentration constraint expressed in terms of con-
taminant mass.

4. Positivity of Fluxes: all the fluxes in the EIP must be non-negative, that is,

Fij ≥ 0, ∀i ̸= j ∈ I and zi, Oi ≥ 0, ∀i ∈ I.

5. Boundedness of exchanges: all the fluxes in the EIP must be within the capacities
given by the vector L, that is,

Fij ≤ Lij, ∀i ̸= j ∈ I.
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The central authority’s goal at the daily operation is to minimize the global fresh water
consumption. Nevertheless, this is not necessarily aligned with the individual participants’
interests, which is to minimize their operational costs. Hence, jointly with the already de-
tailed physical constraints, we must add economical ones for the daily operation of every
participant, considering the principle of individual rationality : any enterprise will take part
of the EIP only if this participation is economically convenient (see, e.g., [61]). Therefore,
we will add a constraint for the model in order to tackle the individual rationality of ev-
ery participant, which ensures that the operational costs for every agent are less than the
stand-alone operation, that is,

Costi(F, z) ≤ SAi(Mi).

An option to solve this two-stage problem, is to obtain or define first an analytical expression
for Q(L, ξ). However, this is not always possible. Instead, we will solve this problem using
the implicit expression of Q(L, ξ) as the optimal value of the second-stage problem. This
general approach is known as stochastic optimization with recourse [21, 111, 75].

On a first approach, is natural to consider the averaged fresh water consumption costs of the
EIP as the objective function to minimize. This correspond to expected value AE[Q(L, ξ)],
where A is the lifetime factor, and allows us to control some kind of “average day” on its
long-term operation. However, this does not necessarily give us an optimal EIP considering
other indicators, such as robustness in face of uncertainty.

In this context, we define in Chapter 4 the resilience of an EIP, which measures the number
of good scenarios from an economic point of view, for the EIP daily operation. In order to
quantify this goal, we introduce here what we call the (1−α)-level of goodness for an EIP as

Gα(L, ξ)
.
= Q(L, ξ)− αSA(ξ),

where SA(ξ) =
∑

i∈I SAi(Mi) is the total net cost, if all the agents worked on stand-alone
operation. If Gα ≤ 0, it means that the EIP operation is better than the stand-alone one.
Hence, we define the resilience of the EIP as

Resα(L) = P[Gα(L, ξ) ≤ 0]

We consider this functional as a part of the objective function in the design stage, or as a
chance constraint at the same stage. Also, investment constraints are considered, then, the
problem of optimal design can be formulated as follows:

P =


minL w1⟨c, L⟩+ w2E[Q(L, ξ)]− w3Resα(L)
s.t. L ≥ 0

c1(⟨c, L⟩ −B) ≤ 0

c2 (Resα(L)− β) ≥ 0

,

where c1, c2 ∈ {0, 1}, allowing us to consider or dismiss budget and resilience constraints.
Similarly, w1, w2, w3 are non-negative weights, indicating the priority of each element of the
objective function.
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In order to compute some calculations and comparisons between these two configurations, we
consider the Sample Average Approximation reformulation of the Two-Stage problem, and
numerical results are obtained. The SAA formulation of P is given by

P̂0 =


min
L

w1⟨c, L⟩+ w2q̂N(L)− w3R̂esα(L)

s.t. L ≥ 0

c1(⟨c, L⟩ −B) ≤ 0

c2(R̂esα(L)− β) ≥ 0

,

where q̂N and R̂esα are the empirical values of E[Q(L, ξ)] and Resα(L), respectively, for a
given sample {ξ̂1, . . . , ξ̂N}. By introducing auxiliary variables (z, F, y), we can write the
following MIP formulation

P̂1 =



min
L,z,F,y

w1⟨c, L⟩+
w2

N

N∑
m=1

n∑
i=1

zmi − w3

N

N∑
m=1

ym

s.t. L ≥ 0

c1(⟨c, L⟩ −B) ≤ 0

c2

(
1

N

N∑
m=1

ym − β

)
≥ 0

(zm, Fm) ∈ X(L, ξ̂m), ∀m ∈ [N ]∑n
i=1 z

m
i − αSA(ξ̂m) ≤ SA(ξ̂m)(1− ym), ∀m ∈ [N ]

y ∈ {0, 1}N ,

where X(L, ξ̂m) stands for the feasible set of the second-stage problem, for a given L and ξ̂m.
Our main result in this section states the following.

Theorem 3 If L∗ is an optimal solution of Problem P̂0, then there exists (z∗, F ∗, y∗) such
that (L∗, z∗, F ∗, y∗) is an optimal solution of Problem P̂1. Conversely, if (L∗, z∗, F ∗, y∗) is
an optimal solution of Problem P̂1, then L∗ is an optimal solution for Problem P̂0. In both
cases, one has that

w1⟨c, L∗⟩+ w2q̂N(L
∗)− w3R̂esα(L∗) = w1⟨c, L∗⟩+ w2

N

N∑
m=1

z∗m − w3

N

N∑
m=1

y∗m.
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Chapter 1

Preliminaries on Variational Analysis
and Probablity

In this chapter, we will briefly describe the preliminary ideas and concepts on Optimization
and Probability that will be widely used in the development of this work.

1.1 Optimization and Convex Analysis
Let us consider the optimization problem

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ I
hj(x) = 0, j ∈ J

(1.1)

and define X = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, ∀i ∈ I, j ∈ J}.

In this section, we aim to recall what are the first-order optimality conditions of (1.1), by
means of the well-known Karush-Kuhn-Tucker (KKT) equations. First, we recall a basic
first-order result for problems like (1.1).

Theorem 1.1 ([106, Theorem 6.12]) Consider the problem

min
x∈X

f(x),

where f is a differentiable function. If x∗ is a local optimal point, then

0 ∈ ∇f(x∗) +NX(x
∗),

where NX(x
∗) = {v ∈ Rn : ⟨v, x− x∗⟩ ≤ 0, ∀x ∈ X} is the normal cone to X at x∗.

Remark When X is convex, the necessary condition from the last theorem can be written
as

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ X.
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This means that the linearization of f , given by l(x) .= f(x∗) + ⟨∇f(x∗), x− x∗⟩, attains its
minimum over X at x∗. If f is also convex, then this condition becomes sufficient for global
optimality for x∗.

Definition 1.2 (Active Inequality Constraints) If x ∈ Rn is a feasible point of (1.1), we
define the set

I(x)
.
= {i ∈ I : gi(x) = 0}

as the set of active constraints at x.

Definition 1.3 (Lagrangian Function) We call the Lagrangian of Problem (1.1) to the func-
tion

L(x, µ, λ) = f(x) +
∑
i∈I

µigi(x) +
∑
j∈J

λjhj(x).

The vectors µ, λ are called the Lagrangian multipliers.

Using these concepts, we can now define the Karush-Kuhn-Tucker conditions as follow.

Definition 1.4 (KKT Conditions) Let us consider problem (1.1), with continuously differ-
entiable functions f and gi, for every i ∈ I. The conditions

∇xL(x, µ, λ) = 0
µ ≥ 0, µTg(x) = 0

(1.2)

are called the KKT conditions, and (x∗, µ∗, λ∗) that satisfies them, is called a KKT point.

We will now enunciate the famous Karush-Kuhn-Tucker Theorem, which states that, under
some Constraint Qualifications, we can relate the KKT conditions to the normal cone NX(x),
and therefore, to the the first-order optimality conditions given in Theorem 1.1.

Definition 1.5 (Constraint Qualifications) Consider Problem (1.1) and x̃ ∈ Rn a feasible
point.

1. We say that Problem (1.1) satisfies the Linear Independence Constraint Qualification
(LICQ) at x̃ if the set

{∇gi(x̃) : i ∈ I(x̃)} ∪ {∇hj(x̃) : j ∈ J}

is linearly independent.

2. We say that Problem (1.1) verifies the Mangarasarian-Fromovitz Constraint Qualifica-
tion (MFCQ) at x̃, if the set

{∇hj(x̃) : j ∈ J}

is linearly independent, and there exists d ∈ Rn such that ∇gi(x̃)Td < 0 for all active
constraints i ∈ I(x), and ∇hj(x̃)Td = 0 for all j ∈ J .
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Similarly, if f and gi are convex functions for every i ∈ I, we say that Problem (1.1) satisfies
the Slater’s Constraint Qualification if there exists x̃ ∈ Rn such that gi(x̃) < 0, ∀i ∈ I and
hj(x̃) = 0 for all j ∈ J .

Theorem 1.6 (Karush-Kuhn-Tucker Theorem) Let x∗ ∈ X. If any of the Contraint Quali-
fications detailed in Definition (1.5) is verified, the normal cone NX(x

∗) can be written as

NX(x
∗) =

{∑
i∈I

µi∇gi(x∗) +
∑
j∈J

λj∇hj(x∗) : µ ≥ 0, µTg(x∗) = 0

}

In particular, if x∗ is a local minimizer of Problem (1.1), then there exists Lagrangian mul-
tipliers (µ∗, λ∗) such that (x∗, µ∗, λ∗) is a KKT point.

1.1.1 Set-valued analysis

In this section, we aim to detail the tools that we need, in order to tackle set-valued functions
(from now on, multifunctions) and its main properties.

Let X and Y be two non-empty sets, and let us denote by P(Y ) the power set of Y . A
multifunction (also known as correspondence) F is a function F : X → P(Y ), that is, a
function which, for every x ∈ X, assigns F (x) ⊆ Y . We denote such a multifunction

F : X⇒Y.

We now define two associated ideas of continuity for a multifunction, given that X and Y are
treated as metric spaces. From now on, we say that F : X⇒Y is closed-valued if F (x) ⊆ Y
is closed, for every x ∈ X.

Definition 1.7 (Upper Semicontinuity) A multifunction F is called upper semicontinuous
at x0 ∈ X if, for each neighborhood G of F (x0) in Y , there exists a neiborhood U of x0 in X
such that

F (x) ⊂ G, ∀x ∈ U.

If F is upper semicontinuous at every x ∈ X, we simply say that F is upper semicontinuous.

In general, checking upper semicontinuity for a multifunction is a hard task. Therefore, it
is relevant to have some characterizations of these concept, easier to work with. We will
establish a relation between closedness of F and its upper semicontinuity.

Definition 1.8 (Closed Multifunction) We say that F : X⇒Y is closed if its graph

gph(F ) = {(x, y) : x ∈ X, y ∈ F (x)}

is closed in the product space X × Y .

The following result, displays a strong relationship between the definitions listed before.
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Theorem 1.9 Let X, Y be metric spaces, Y being compact. Then, F : X⇒Y is upper
semicontinuous and closed-valued in X if, and only if, F is closed.

Therefore, for x ∈ X, F (x) is closed and F is upper semicontinuous in x if, and only if, for
every (xk)k∈N ⊆ X such that xk → x, (yk)k∈N ⊆ Y such that yk → x0 and yk ∈ F (xk) for
every k ∈ N, then y0 ∈ F (x0).

Of course, the idea of lower semicontinuity is also important to consider, as we will define
afterwards the notion of continuous multifunctions.

Definition 1.10 (Lower Semicontinuity) A multifunction F is called lower semicontinuous
at x0 ∈ X if, for each open set G ⊂ Y for which

F (x0) ∩G ̸= ∅,

there exists a neighborhood U of x0 such that

F (x) ∩G ̸= ∅, ∀x ∈ U.

If F is lower semicontinuous at every x ∈ X, we simply say that F is lower semicontinuous.

Similarly to closedness we can establish a sequential characterization of lower semicontinuity.
More precisely, F is lower semicontinuous at x0 ∈ X if, and only if, for every sequence (xk)k∈N
such that xk → x0 and for every point y ∈ F (x0), there exists a sequence (yk)k∈N such that
yk → y and yk ∈ F (xk), ∀k ≥ k0 ∈ N. We say that F is continuous if it is upper and lower
semicontinuous simultaneously. With this notion of continuity, it is possible to establish the
following important theorem of stability of optimization problems, known as the Maximum
Principle.

Theorem 1.11 (Maximum Principle [60, Theorem 2.3.1 ]) Let X, Y be metric spaces, f :
X ×Y → R a continuous function, and K : X⇒Y a non-empty-valued, compact-valued and
continuous multifunction in X. Then,

1. The function φ : X → R given by

x 7→ φ(x) = max{f(x, y) : y ∈ K(x)}

is continuous in X.

2. The multifunction Φ : X⇒Y given by

x 7→ Φ(x) = {y ∈ K(x) : f(x, y) = φ(x)}

is upper semicontinuous in X.

Another version of the maximum principle can be found in [5], where the continuity of the
marginal function φ is decoupled in two semicontinuity results. Here we state one of those
results, which will be useful in the sequel.
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Theorem 1.12 ([5, Theorem 1.4.16]) Let X, Y be metric spaces, f : X × Y → R an upper
semicontinuous function, and K : X⇒Y a non-empty-valued, compact-valued and upper
semicontinuous multifunction in X. Then, the marginal function φ : X → Y given by

φ(x) = sup
y∈K(x)

f(x, y)

is upper semicontinuous.

1.1.2 Convex Subdifferential

When f is not necessarily differentiable, we can resort to what is called convex subdifferential
analysis. For this section, let f : Rn → R be a convex function (which is known to be
continuous, see e.g. [105]).

Definition 1.13 (Subdifferential) The subdifferential of f at x ∈ Rn, is the set

∂f(x)
.
= {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩, ∀y ∈ Rn}.

A vector v ∈ ∂f(x) is called a subgradient of f at x.

Several calculus rules for the subdifferential have been developed in the literature. Specifi-
cally, we recall the following sum rule:

Theorem 1.14 ([8, Corollary 16.48]) If f, g : Rn → R are convex functions. Then,

∂(f + g)(x) = ∂f(x) + ∂g(x).

When we do not have differentiability for the objective function f in a minimization problem,
we still have the following result, similar to Theorem (1.1).

Theorem 1.15 (Optimality relative to a Set, [106, Theorem 8.15]) Let us consider the
problem

min
x∈X

f(x),

where f is a convex function and X is a convex set. Then, x∗ is an optimal point if, and
only if,

0 ∈ ∂f(x∗) +NX(x
∗),

where NX(x
∗) is the normal cone (1.1).

In particular, if x∗ verifies any of the Constraint Qualifications from Definition (1.5), then
there exists a Lagrange multiplier λ∗ such that

∂xL(x∗, λ∗) = ∂f(x∗) +
∑

i∈I µ
∗
i∇gi(x) +

∑
j∈J λj∇hj(x) ∋ 0

λ∗ ≥ 0, (λ∗)Tg(x) = 0
(1.3)

13



1.2 Probability

1.2.1 Random Variables and Functions

Let (Ω,F ,P) be a probability space, and B(Rℓ) be the Borel sigma algebra of Rℓ. Recall that
a mapping V : Ω → Rℓ is said to be measurable if for any Borel set B ∈ B(Rℓ), its inverse
image

V −1(B) = {w ∈ Ω : V (w) ∈ B}

is F -measurable.

Definition 1.16 (Random Vectors and Variables) A mapping V (w) from the probability
space (Ω,F ,P) into Rℓ is called a random vector. If ℓ = 1, we call V a random variable.

Since, in general, in this work we will deal with random variables which are given as optimal
values of optimization problems, we need to consider random variables that can take ±∞
values. We will call the measurable functions Z : Ω → R as extended random variables.

Definition 1.17 (Expected Value) The expected value or expectation of an extended ran-
dom variable Z : Ω → R is defined by the integral

E[Z] .=
∫
Ω

Z(w) dP(w).

If Z can only take a finite or at most countable number of different values, let us say {zi}i∈N,
it is said to be discrete. In that case,

E[Z] =
∑
i∈N

zi · P[Z = zi]

Definition 1.18 (Random Function) We say that F : Rn ×Ω → R is a random function if,
for every fixed x ∈ Rn, F (x, ·) is F-measurable.

For a random function F (x,w), we can define its corresponding expected value function

f(x)
.
= E[F (x,w)] =

∫
Ω

F (x,w) dP(w). (1.4)

We can also see F (·, w) as an extended real valued function, for every w ∈ Ω.

1.2.2 The Law of Large Numbers and Sample Average Functions

Let us consider a sequence {ξj}j∈N of ξj = ξj(w) random vectors, defined on a probability
space (Ω,F ,P). In this section, we will treat ξj as an element of its support Ξ ⊆ Rℓ, equipped
with its Borel sigma algebra, B(Rℓ).
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Definition 1.19 (Identical Distribution) The random vectors {ξj}j∈N are identically dis-
tributed, if each ξj has the same probability distribution on (Ξ,B(Rℓ)). Furthermore, if all ξj
are independent, we will say that they are independent identically distributed, or from now
on, iid.

Remark If {ξj}j∈N are identically distributed and F : Ξ → R is a measurable function, then
{F (ξj)}j∈N ⊆ Rℓ are also identically distributed. Hence, the value of E[F (ξj)] is the same
for every j ∈ N.

Theorem 1.20 (Classical Law of Large Numbers (LLN)) If {ξj}j∈N are identically dis-
tributed, then

1

N

N∑
j=1

F (ξj) → E[F (ξ1)],

where the convergence is with probability 1 as N → ∞. That is,

P

[
lim

N→∞

1

N

N∑
j=1

F (ξj) = E[F (ξ1)]

]
= 1.

Let us consider a random function F : X×Ξ → R, where X ⊆ Rn in non-empty and ξ = ξ(w)
is a random vector supported on Ξ. Let us suppose that

f(x) = E[F (x, ξ)]

is well defined and finite-valued for every x ∈ X. Let {ξj}j∈N be an iid sequence of random
vectors having the same distribution as ξ.

Definition 1.21 (Sample Average Function) For every N ∈ N, we define the sample average
functions of f , given by

f̂N(x)
.
=

1

N

N∑
j=1

F (x, ξj). (1.5)

Observe that, for every fixed x ∈ X, the LLN holds, which means that f̂N converges point-
wisely to f(x). This is known as pointwise LLN. Unfortunately, this convergence is usually
not enough to guarantee good properties in the context of stochastic optimization. This is
why we recall the notion of uniform LLN.

Definition 1.22 (Uniform LLN) We say that f̂N(x) converges to f(x) with probability 1
uniformly on X if

sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣→ 0, (1.6)

with probability 1 as N → ∞.
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Let us recall that F (x, ξ) is dominated by another integrable function g, if E[g(ξ)] < +∞
and for every x ∈ X, the inequality

|F (x, ξ)| ≤ g(ξ)

holds, with probability 1. The following theorems give us sufficient conditions to guarantee
the desired uniform LLN.

Theorem 1.23 Let X ⊆ Rn be compact and non-empty, and suppose that: 1) for every
x ∈ X, F (·, ξ) is continuous at x for a.e. ξ ∈ Ξ; 2) F (x, ξ) is dominated by an integrable
function; and 3) the sample {ξj} is iid. Then, the expected value function f(x) is finite-valued
and continuous on X, and

f̂N(x) → f(x)

with probability 1, uniformly on X.

Theorem 1.24 Suppose that the random function F (x, ξ) is also convex, and X ⊆ Rn

compact and non-empty. Suppose that the expectation function f(x) is finite-valued on a
neighborhood of X and the pointwise LLN holds for every x in that neighborhood. Then,

f̂N(x) → f(x)

with probability 1, uniformly on X.

1.2.3 Monte Carlo Sampling Methods

Let f : [0, 1]n → R be an integrable function (with respect to the usual Lebesgue measure on
[0, 1]n). When working with numerical integration, the task of computing

I(f) =

∫
[0,1]n

f(x)dx

can not be obtained analytically in general, since f could not have an explicit primitive
function; or, if it does exist, the expression might fail to be computable.

In order to tackle this difficulty, we recall in the following what is called the Monte Carlo
method. Here, we try to approximate the integral I by an expression of the form

IN(f)
.
=

1

N

N∑
j=1

f(xj), (1.7)

where {x1, . . . , xN} ⊆ [0, 1]n.

Definition 1.25 (Integration Error) Given f : [0, 1]n → R and a set {x1, . . . , xN}, we define
the integration error as

e(f, {x1, . . . , xN}) = I(f)− IN(f) (1.8)
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The main idea is to pickN independent and uniformly distributed random variablesX1, . . . , XN

in [0, 1]n, choose a realization for every one of them, and check the expected value for the
resulting error. In other words, use IN as an statistical estimator for I, writing now

ÎN(f)
.
=

1

N

N∑
j=1

f(Xj).

Considering f as a random variable on the probability space ([0, 1]n,B(Rℓ), λn), where λn is
the Lebesgue measure; we can obtain that, using the linearity of the expected value,

E
[
ÎN(f)

]
=

1

N

N∑
j=1

E[f ] = E[f ] = I,

and therefore, ÎN(f) is an unbiased estimator of I(f). Moreover, Theorem 1.20 ensures that

P
[
lim

N→∞
ÎN(f) = I(f)

]
= 1.

To bound the estimation error of ÎN(f), we need to control its variance.

Definition 1.26 (Variance and Standard Deviation) The variance of f is given by

V[f ] .=
∫
[0,1]n

(
f(x)−

∫
[0,1]n

f(y)dy

)2

dx, (1.9)

and its standard deviation is given by σ[f ] .=
√

V[f ].

Theorem 1.27 Let f ∈ L2([0, 1]
N) and X1, . . . , XN be independent and uniformly distributed

random variables. Then, for every N ∈ N, we have

V[ÎN(f)] =
V[f ]
N

.

Note that
V[ÎN(f)] = E[(ÎN(f)− I(f))2] = E[e2(f, {X1, . . . , XN})]

Therefore, the following result follows directly from Jensen’s inequality and Theorem (1.27).

Corollary 1.28

E [|e(f, {X1, . . . , XN})|] ≤
√

E[e2(f, {X1, . . . , XN})] =
σ[f ]√
N
.

For more details on the Monte Carlo method, its properties and extensions, we refer to
[25, 92].
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Chapter 2

Elements of Bilevel Programming and
Uncertainty

In this chapter we review the key elements of Bilevel programming and Optimization that are
used to develop the scientific contributions of this thesis. While both fields are quite broad,
we will try to keep the exposition as concise and self-contained as possible. We present
both subjects together since optimization with recourse can be viewed as a particular case
of bilevel programming with uncertainty, where the upper and lower level share the same
objective function.

2.1 Deterministic Bilevel Programming
Bilevel optimization tackles a special kind of programs, where one problem is nested within
another, forcing some variables to be the solution of a second optimization problem. This
allows bilevel optimization to model hierarchical decision processes.

Historically, the first study related to bilevel optimization can be found in the seminal work
of Heinrich von Stackelberg [123] in the field of game theory. This work from 1934 studies
the economic equilibrium of a duopoly, under the particular condition where one of the
enterprises “somehow knows” the decision process of the other one. The model captures the
possible asymmetry between “big and small” firms. The larger firm is known as the leader
and it makes its decision first, taking into account the future reaction of the smaller firm,
known as the follower. The follower then reacts optimally in a second stage.

While this first model was focus on traditional economics, the proposed hierarchical structure,
nowadays known as bilevel programming or Stackelberg games, derived in many applications
such as: toll-setting problems [26]; structural optimization [30]; human resources models [13]
and water resources allocation [28], to mention a few.

In this section, we will review the main tools needed for its mathematical formulation, the
existence of solutions for bilevel programs, and reformulations to single-level nonlinear prob-
lems.
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2.1.1 Mathematical Formulation

We start with the formal definition of a bilevel optimization problem, as presented in [10].

Definition 2.1 (Bilevel Programming problem) A general Bilevel Optimization or Bilevel
Programming problem can be stated as{

min
x,y

F (x, y)

s.t. x ∈ X, y ∈ S(x)
(2.1)

where S(x) is the set of optimal solutions of the problem{
min
y∈Y

f(x, y)

s.t. g(x, y) ≤ 0
(2.2)

Here, X ∈ Rn, Y ∈ Rm, F, f : X × Y → R, and g : X × Y → Rℓ. The problem formed by
the equations (2.1) is usually called the upper-level or leader’s problem and the equations
(2.2) form the so-called lower-level or follower’s problem. In some cases, we can add to the
upper-level an extra constraint G(x, y) ≤ 0, where G : X × Y → Rp, called the coupling
constraint. However, in the context of this work, we will maintain the setting of Definition
2.1.

The names leader and follower come from the setting of Stackelberg games, where both
problems (2.1)-(2.2) are solved by different agents within the hierarchical structure. That is,
the leader decides x first, by solving (2.1) and anticipating the decision y to be rational, that
is, to respect the inclusion y ∈ S(x). Then, the follower reacts, deciding y by solving the
parametric problem (2.2).

Definition 2.2 (Shared Constraint Set and Inducible Region) For the bilevel programming
problem (2.1)-(2.2), we define the following sets:

1. The set
Z = {(x, y) ∈ X × Y : g(x, y) ≤ 0}

is called the shared constraint set, and its projection onto the x-space is denoted by

Zx = {x ∈ X : ∃y, (x, y) ∈ Z}.

2. The set
F = {(x, y) ∈ X × Y : x ∈ Zx, y ∈ S(x)} = gph(S),

is called the inducible region or bilevel feasible set.

In this work, just as in (2.1), the optimistic version of the bilevel problem is considered,
where the leader is able to optimize over the lower-level outcome y ∈ S(x), whenever this set
fails to be a singleton. However, this is not the only alternative to deal with the situation
where the optimal response of the follower is not unique.
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Another popular approach is the pessimistic version of the problem, which is defined as

min
x∈X

max
y∈S(x)

F (x, y)

s.t. x ∈ X.
(2.3)

The main difference here is that the leader and the follower have an adversarial (but still
rational) behaviour. In this case, the leader must be prepared for every rational decision of
the follower, hence, for any decision y ∈ S(x) that optimizes the follower’s objective function.
The pessimistic approach assumes that the follower will select the response y ∈ S(x) that
harms the leader the most, leading to the robust formulation (2.3).

Example Let S : [0, 10]⇒[0, 8] with

gph(S) = co {(0, 4), (8, 0), (8, 8), (10, 1), (10, 5)}

and consider the leader’s problem given by

min
x

{y : y ∈ S(x), x ∈ [0, 10]} . (2.4)

Let φo(x) = miny y and φp(x) = maxy y. The following figure shows the difference between
these approaches (φo in red and φp in blue).

φo

φp

108

1

4

5

8

Figure 2.1: Difference between approaches (2.1) and (2.3).

On the one hand, for the optimistic approach, the optimal decision of the leader is x = 8
with y = φo(x) = 0. On the other hand, the optimal decision for the pessimistic approach is
x = 0 with y = φp(x) = 4. ♢

Remark If the lower-level solution is unique for all x ∈ Zx, both the pessimistic and the
optimistic variants of the bilevel problem coincide.
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Some other approaches have been proposed in the literature, such as moderate approach
[1, 62, 3], selection approach (see, e.g., [34, pp. 6]), and Intermediate/Bayesian approach
[83, 109]. Nevertheless, the most relevant in the literature are the pessimistic and optimistic
ones. For a more in-depth revision of the pessimistic approach for Stackelberg games, we
refer to [126, 72, 73].

2.1.2 Existence of Solutions

Bilevel programs can be studied as non-linear optimization problems. Therefore, a natu-
ral approach is to analyze its existence of solutions by applying Weierstrass Theorem. The
following theorem, shows the simplest result in this way, deduced from the well-known Max-
imum Principle (see Chapter 1). Since this theorem is hard to find in the literature in its
presented form, we include a short proof.

Theorem 2.3 For Problem (2.1)-(2.2), let us consider the set-valued map K : X⇒Y given
by

K(x) = {y : g(x, y) ≤ 0},

and suppose that: 1) F is lower-semicontinuous; 2) f and g are continuous; 3) X and Y
are compact sets and; 4) K(x) is continuous in the sense of multifunctions (see Chapter 1).
Then, Problem (2.1)-(2.2) admits a solution.

Proof. Given that Y is a compact set and g is continuous, K : X⇒Y is closed-valued, and
therefore compact-valued. Since f is continuous, we deduce directly that

S(x) = argmin
y

{f(y) : y ∈ K(x)}

is closed and nonempty for every x ∈ X. Furthermore, we can apply the Maximum Principle
(1.11) and conclude that S is upper-semicontinuous, and hence closed. Now, since gph(S) ⊂
X × Y , we conclude that it is compact.

Finally, considering that the upper-level problem (2.1) can be written as{
min
x,y

F (x, y)

s.t. (x, y) ∈ gph(S)
, (2.5)

and applying a last time the Weierstrass Theorem, given that F is a lower-semicontinuous
function over a compact set, we conclude that Problem (2.1)-(2.2) has a solution.

In general, upper semicontinuity for K is easy to obtain. In fact, continuity of g suffices
for having this result (see Chapter 1). Nonetheless, lower semicontinuity is harder to get.
In some cases, we can assume that K(x) = Y , which verifies lower semicontinuity trivially.
This case consist in bilevel programs where the leader’s decisions only affect the follower’s
objective function. Another favorable case where lower semicontinuity is also verified is when
K is given by linear constraints, as stated in the following result.
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Theorem 2.4 If K(x) is given by linear constraints, that is, when

g(x, y) = Ax+By − b

(where A,B and b are two matrices and a vector of appropiated dimensions), then K is lower
semicontinuous. Therefore, in this context, Problem (2.1)-(2.2) admits a solution.

2.1.3 Single-Level Karush-Kuhn-Tucker Reformulation

Starting with the seminal work of [43], a popular way used to solve a bilevel problem consists
in re-formulate it into a single-level optimization problem. There are at least two approaches
in order to do so: consider the optimal value function of the problem, or reformulate it using
the Karush-Kuhn-Tucker equations for the lower-level problem.

Let us first discuss the value function alternative. Defining the optimal value function for
the lower-level problem

φ(x)
.
= min

y∈Y
{f(x, y) : g(x, y) ≤ 0}, (2.6)

we can re-formulate the general optimistic bilevel problem (2.1)-(2.2) as


min

x∈X,y∈Y
F (x, y)

s.t. g(x, y) ≤ 0
f(x, y) ≤ φ(x)

(2.7)

which is now a single-level problem. However, we have a major set of difficulties working
with the function φ. This function can be evaluated, but in order to do so, we have to solve,
for the given x, the lower-level problem. Moreover, in general, this function does not have
an algebraic expression.

There is a lot of work in the study of optimal value functions, also known as marginal functions
and its difficulties. As can be seen in [105, 47, 24] to name a few, this functions are deeply
non-smooth, so generalized derivatives of various kinds are used to study their properties. In
later works from B. S. Mordukhovich [89, 88, 90], significant progress was made in this area.

Now, we will discuss the alternative using Karush-Kuhn-Tucker equations, which is the one
we use in this thesis. Let us suppose that the lower level problem is parametric convex, that
is, for all x ∈ X, the set K(x) is given by K(x) = {y : g(x, y) ≤ 0}, every function gi(x, ·)
is convex for each i = 1, . . . , ℓ, and f(x, ·) is convex. Then, the following direct application
of the celebrated Karush-Kuhn-Tucker theorem holds (see, e.g., [32, 10]).

Theorem 2.5 (First-order optimality for the lower-level problem) Consider the bilevel prob-
lem (2.1)-(2.2) with parametric convex lower level. Suppose f(x, ·) is differentiable. Then

y ∈ S(x) ⇐⇒ 0 ∈ ∇yf(x, y) +NK(x)(y). (2.8)
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Moreover, if g : X×Y → Rℓ is continuously differentiable, and K(x) satisfies any Constraint
Qualification (see Chapter 1), then we can write

y ∈ S(x) ⇐⇒ ∃λ ∈ Rℓ such that
{

∇yf(x, y) +
∑

i λi∇ygi(x, y) = 0
0 ≤ λ ⊥ g(x, y) ≤ 0.

(2.9)

When our problem is reformulated using its Karush-Kuhn-Tucker equations given by (2.9), we
can reduce the overall bilevel optimization problem to a single-level constrained optimization
problem. This new problem is the mathematical program with complementarity constraints
(MPCC) reformulation, and is given by

min
x,y

F (x, y)

s.t. ∇yf(x
∗, y∗) +

∑ℓ
i=1 λi∇ygi(x

∗, y∗) = 0
λ ≥ 0, λTg(x∗, y∗) = 0
x ∈ X

(2.10)

MPCC problems are a research field in itself, beyond its applications to bilevel programming.
For an in-depth revision on the details of this kind of problems, we refer to [80]. There is an
active field of work onto optimally solving MPCC problems, considering different strategies
as can be seen in [45, 58, 40] to name a few.

At this point, a natural question arises: is the MPCC reformulation (2.10) equivalent to
(2.1)-(2.2), in the sense of sharing the same optimal solutions? Let us start by looking at the
global solutions of both problems.

Theorem 2.6 (See [33, Theorem 2.1]) Let (x∗, y∗) be a global optimal solution of (2.1)-(2.2).
If (2.2) is convex and satisfies LICQ for x∗, then the point (x∗, y∗, λ∗) is a global optimal
solution of (2.10), for every

λ ∈ Λ(x∗, y∗) =
{
λ ≥ 0 : ∇yf(x

∗, y∗) + λT∇yg(x
∗, y∗) = 0, λTg(x∗, y∗) = 0

}
.

Under some additional hypothesis, the converse is also true, as stated in the following result.

Theorem 2.7 (See [33, Theorem 2.3]) Let (x∗, y∗, λ∗) be a global optimal solution of (2.10)
and let (2.2) be convex. If the lower-level problem satisfies LICQ for all x ∈ X, then (x∗, y∗)
is a global optimal solution of (2.1)-(2.2).

Once revised the global optimal solutions behaviour, we can now consider the relationship
between the local optimal values of (2.1)-(2.2) and (2.10). As it turns out, the local optima of
(2.10) is not necessarily local optima of (2.1)-(2.2). In [33], additional contraint qualifications
are considered, in order to obtain equivalence for local optima.

Definition 2.8 (Slater’s and Constant Rank CQs) For the bilevel problem (2.1)-(2.2), we
consider the following constraint qualifications:
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1. Slater’s CQ: There exists ȳ(x) such that gi(x, ȳ(x)) < 0, for i = 1, . . . , ℓ.

2. Constant Rank CQ (at (x∗, y∗)): There exists an open neighborhood V of (x∗, y∗)
such that for each I ⊆ {j : gj(x

∗, y∗) = 0}, the family of gradients {∇ygj(x, y) : j ∈
I} has the same rank on V .

The main results of [33] can be summarized in the following theorem.

Theorem 2.9 (See [33, Theorem 3.2, Corollary 3.3]) Let the problem (2.2) be convex, Slater’s
CQ be satisfied at x∗, and (x∗, y∗, λ∗) be a local optimal solution of (2.10), for all λ∗ ∈
Λ(x∗, y∗). Then, (x∗, y∗) is a local optimal solution of problem (2.1)-(2.2) too. Additionally,
if Constant Rank CQ is assumed, local optimality of (x∗, y∗, λ∗) for all vertices λ∗ ∈ Λ(x∗, y∗),
implies local optimality of (x∗, y∗).

2.1.4 Stochastic Bilevel Programming

Uncertainty has been recently introduced in bilevel programming models, defining what we
call stochastic bilevel programs.

In the classical (one-level) optimization context, there are mainly two ways to address uncer-
tainty: stochastic optimization, where the uncertain parameter is modeled by probabilistic
scenarios observed by random variables (see, e.g. [21, 64]); and robust optimization (see, e.g.
[14, 17, 15]), where the range of the uncertain parameter values is defined by a set, over which
the worst-case scenarios must be considered. This same two roads have been developed for
bilevel optimization problems.

The sources of uncertainty in bilevel programming can be separated mainly in two kinds:
data and decision.

Data uncertainty is seen when, for example, the lower-level agent only has limited access to
data, or its data is inaccurate. Let represent this, for a leader’s decision x, and a specific
realization of the uncertainty ξ, with the set of optimal follower’s decisions

S(x, ξ) =

{
min
y∈Y

f(x, y)

s.t. g(x, y) ≤ z(ξ),
(2.11)

where z(ξ) ∈ Rℓ represents the uncertainty, for the given realization ξ. Popular approaches
are the two following.

• Uncertainty is assumed to take values in a given set Ξ. Following a robust approach,
we can consider the worst-case scenario for the uncertainty realizations; i.e.,

min
x∈X

max
ξ∈Ξ

F (x, y)

s.t. x ∈ X, y ∈ S(x, ξ).
(2.12)

• On a more stochastic approach, we assume that the uncertainty can be tackled consid-
ering its distributions. Hence, we can consider solving the problem in a probabilistic
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sense, by optimizing the expected value

min
x,y

Eξ[F (x, y)]

s.t. x ∈ X, y ∈ S(x, ξ).
(2.13)

In both of these cases, we are considering a specific timing,

x is decided → ξ is revealed → y is decided considering (x, ξ), (2.14)

which is: the leader makes a here-and-now decision (without information about the real-
ization of the uncertainty), then uncertainty realizes, and finally the follower decides in a
wait-and-see scenario.

However, other timings can be taken into account. For example, considering problems of the
form

min
x,y

F (x, y)

s.t. x ∈ X, y ∈ S(x, ξ),
(2.15)

where now S(x, ξ) has the form

S(x, ξ) =

{
min
ȳ∈Y

f(x, ȳ)

s.t. g(x, ȳ) ≤ z(ξ), ∀ξ ∈ Ξ
. (2.16)

That is, when we consider some kind of fixed scenario for y (representing e.g. an average
situation), given that in this case, the follower also makes its decision before the uncertainty
realizes. Hence, we are considering the timing

x is decided → y is decided considering x→ ξ is revealed. (2.17)

Data uncertainty can also happen in the upper-level problem’s data and even in its objective
function.

On a different scope, uncertainty can be also taken into account at the decision making.
Decision uncertainty refers to cases where any of the agents face uncertainties regarding the
decision of the other ones. Although this kind of uncertainty is not considered in this work,
we refer to [11, 18] for extensive reviews on the subject.

2.2 Same Agent: Two-Stage Problems
Two-Stage problems, also known as Recourse Programs, are optimization problems where a
single-agent must take some decisions before some random events occur, and other decisions
(also called recourse actions) afterwards. In this sense, Recourse programs can be seen as
a particular case of Stochastic Bilevel programming, where the same agent is solving the
upper-level and lower-level problem.
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Therefore, we have two kinds of actions in this context: There is the decision vector x ∈ Rn

taken before the uncertainty, modeled as a random vector ξ(ω), occurs. We call them first-
stage or here-and-now decisions. Then, after the uncertainty data reveals itself, there is a
new set of decisions y to be made, for which the decision-making process takes into account
both, the first-stage decision and the realization of the random vector. These are called the
second-stage or wait-and-see decisions. This chain of events can be then modeled as

x is decided → ξ(ω) is revealed → y is decided considering (x, ξ(ω)). (2.18)

The first references of the two-stage stochastic linear program with recourse can be found in
[9, 31]. Specifically in [31], George B. Dantzig proposed that linear programming methods
could be extended to include the case of uncertain information, such as the problem of optimal
allocation of a carrier fleet to airline routes to meet an anticipated demand distribution.

Recourse programs can be easily used in order to model different situations. First off, the
uncertainty may represent a limited number of well studied scenarios of a specific event. This
way of using the uncertainty has been used, for example, in overbooking and revenue man-
agement [2, 121]. Another modeling option, consists on using the randomness to represent
uncertainties that recur frequently on a short-term basis, over a longer time horizon. Then, it
would be desirable to compute a mean over a lot of possible values of this daily operation, so
that the expected value will match closely. This kind of models have been applied in optimal
design of non-conventional renewable energy systems [127, 51].

Some relevant applications of Two-Stage programming are, to name a few, stochastic ve-
hicle routing [122], stochastic networks and stochastic facility locations problems [54] have
been mostly treated as a natural extension of the stochastic transportation problem with
simple recourse [128, 55]. An important extension of Recourse Programs is called Multistage
Stochastic Programs, which has allowed a more realistic treatment of the dynamics or sequen-
tial structures of decision problems. Approaches to portfolio management have become the
cornerstone of the contemporary financial applications and have contributed also to modeling
and software development for multistage stochastic programs. See, e.g. [84, 36].

Nowadays, one popular result is financial applications of stochastic programming. Another
application areas contains planning and allocation of resources [68, 70, 71], energy produc-
tion and transmission [49], production planning and optimization of technological processes,
logistics problems [99, 46] and telecommunications [103, 104].

In this section, we summarize the key elements of Two-Stage Stochastic Programming. For
a more extensive primer in the field, we refer to [75] and [111], and a list of applications,
achievements and unsolved problems which can be found in [39, 124].

2.2.1 Mathematical Formulation

Let (Ω,Σ,P) a probability space and let ξ : Ω → Rp be a random vector. A general two-stage
problem can be stated as

min
x∈X

f1(x) + E[Q(x, ξ)], (2.19)
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where X is a nonempty (usually compact) subset of Rn, f1 : Rn → R is a real-valued (usually
continuous) function, andQ(x, ξ) is obtained as the optimal value of the so called second-stage
problem {

min
y

f2(x, y, ξ)

s.t. y ∈ Y (x, ξ).
(2.20)

Here, f2 : Rn × Rm × Rp → R and Y : Rn × Rd ⇒ Rm is a set-valued function. This
representation shows the sequence of events, where the first-stage decisions x are taken with
uncertainty about future realizations of ξ, and after that, some corrective actions y can
be taken. The first-stage decisions are made taking future effects into account, which are
measured by the expected value of the function Q(x, ·), also known as the cost-to-go function.
The main difficulty in stochastic programming lies then in the computation of the expected
value E[Q(x, ξ)]. Therefore, it is interesting to study the main properties on this function,
in order to get its optimal values.

Definition 2.10 (Carathéodory Function) We say that a function F : Rd × Ω → R is a
Carathéodory function if

1. F (z, ·) is measurable z ∈ Rd,

2. F (·, ω) is continuous for almost every ω ∈ Ω.

Proposition 2.11 If (x, y, ω) 7→ f2(x, y, ξ(ω)) is a Carathéodory function, then the optimal
value function Q(x, ·) is measurable. Moreover, if Q(·, ξ) is continuous for a.e. ξ ∈ Ω, then
Q(x, ξ) is also a Carathéodory function.

The previous proposition is important in order to prove the following theorem.

Theorem 2.12 Let M = Lp(Ω,F , P ) with p ∈ [1,+∞]. The general two-stage problem
(2.19)+(2.20) is equivalent to the problem

{
min

x∈Rn, y∈M
f1(x) + E[f2(x, y(ξ), ξ)]

s.t. x ∈ X, y(ξ) ∈ Y (x, ξ) a.e. ξ ∈ Ω.
(2.21)

in the sense that optimal values of problems (2.19) and (2.21) are equal to each other, provided
that the optimal value of (2.21) is finite. Moreover, (x̄, ȳ) is an optimal solution of problem
(2.21) if and only if x̄ is a solution of (2.19) and ȳ = ȳ(ξ) is an optimal solution of (2.20).

If the set X is closed and convex, and for every ξ ∈ Ω the function

f̄2(x, y, ξ) =

{
f2(x, y, ξ) if y ∈ Y (x, ξ)

+∞ otherwise
(2.22)
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is convex in (x, y) ∈ Rn+m, we say that the problem (2.19)+(2.20) is convex. In this context,
the optimal value function Q(x, ξ) is also convex [111, Section 2.3.2], and therefore (2.19) is
a convex problem.

In our work, we will focus on a particular class of Two-Stage Linear Programs, which have
the general form

{
min
x∈X

cTx+ E[Q(x, ξ)]

s.t. A1x ≤ b1,
(2.23)

where c ∈ Rn, b1 ∈ Rm are known vectors, A1 ∈ Mm×n(R) and Q(x, ξ) is the cost-to-go
function of a problem of the form

Q(x, ξ) =

{
min
y∈Y

qTy

s.t. A2x+B2y ≤ b2(ξ).
(2.24)

Here, A2 and B2 (known as the recourse matrix) are fixed matrices, and the parameter b2(ξ)
is the data of the second-stage problem, where the randomness is taken into account. The
problem (2.23)+(2.24) is known in this context as a Two-Stage Stochastic Linear Program
with Fixed Recourse.

Definition 2.13 A random variable ξ is said to be discrete if the set of values it can take
(also called support) has either a finite or an infinite but countable number of elements.

We now present some basic properties when ξ is a discrete random variable. This is an
important class of random variables, because are widely used in applications, either directly
or through sampling of a continuous distribution.

Definition 2.14 (Feasibility Sets) • We define the first-stage feasibility set as

K1 = {x : A1x ≤ b1}. (2.25)

• For a given ξ, we define the elementary second-stage feasibility set as

K2(ξ) = {x : y exists s.t. A2x+B2y ≤ b2(ξ)}. (2.26)

• When ξ is discrete with support Ξ, we define the second-stage feasibility set as

K2 =
⋂
ξ∈Ξ

K2(ξ). (2.27)

Theorem 2.15 1. For any given realization of ξ, K2(ξ) is a convex polyhedron.
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2. When ξ is finite and discrete, K2 is a convex polyhedron.

Definition 2.16 (Polyhedral Function) An extended real valued function f : Rn → R̄ is
called polyhedral if it is proper convex and lower semicontinuous, its domain is a convex
closed polyhedron, and f is piece-wise linear on its domain.

Proposition 2.17 For problem (2.24), for any given realization of ξ, the function Q(·, ξ) is
convex. Moreover, when ξ is finite and discrete, Q(·, ξ) is polyhedral.

Proposition 2.18 If ξ is discrete and finite, and E[Q(·, ξ)] has a finite value in at least one
point x, then E[Q(·, ξ)] is polyhedral in K2.

When ξ is not a discrete random variable, we may now re-define K2 as,

K2 = {x : Q(x, ξ) <∞} (2.28)

and our first definition (for the discrete case) can be re-named as in [21] as the possibility
interpretation of K2

Kp
2 =

⋃
ξ∈Ξ

K2(ξ) (2.29)

Intuitively, a first-stage decision x belongs to Kp
2 if, for all possible values of ξ, a feasible

second-stage decision y can be taken.

Theorem 2.19 If ξ has finite second moments,

1. The sets K2 and Kp
2 coincide.

2. E[Q(·, ξ)] is a Lipschitz convex function, and is finite in K2.

Theorem 2.20 Suppose that ξ has finite second moments and K is bounded. Then, if
problem (2.23) has a finite optimal value, it is attained for some x ∈ Rn.

2.2.2 The Sample Average Approximation Method

The Sample Average Approximation (SAA), firstly shown in [67], allows one to tackle two-
stage problems through the use of sampling and optimization Monte-Carlo based methods,
in order to be able to use deterministic programming tools to solve them. In this section, we
will briefly visit how the Sample Average Approximation Method works. For recent surveys,
please refer to [56, 111].

Let us consider a minimization problem to be the expected value of a function, that is,

min
x∈X

q(x) = E[Q(x, ξ)], (2.30)
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where x ∈ Rn and ξ ∈ Rm, X ⊆ Rn is a fixed set and ξ = ξ(ω) is a random vector. We
denote by Ξ ∈ Rm the support of the probability distribution of ξ, that is, the smallest closed
set of Rm such that P(ξ ∈ Rm \ Ξ) = 0.

If we have a set of i.i.d. random vectors with the same distribution as ξ, say {ξ1, ξ2, . . . , ξN}
(normally called a sample) of size N , we can estimate q(x) by averaging the values of Q(x, ξj),
with j = 1, . . . , N . This leads to the main idea of the Sample Average Approximation (SAA)
method, where we replace q(x) with its average approximation

qN(x)
.
=

1

N

N∑
j=1

Q(x, ξj). (2.31)

From a statistics approach, since each ξi has the same distribution as ξ, it is clear that

E [qN(x)] = q(x), (2.32)

and then, qN(x) is an unbiased estimator for q(x). Then, given a realization {ξ̂1, ξ̂2, . . . , ξ̂N}
of the sample, we can define

q̂N(x, ξ̂
1, . . . , ξ̂N)

.
=

1

N

N∑
j=1

Q(x, ξ̂j), (2.33)

which is now a deterministic expression, so it can be tackled with standard optimization
tools, in order to get an approximated solution of (2.30) by computing the solution of

min
x∈X

q̂N(x, ξ̂
1, . . . , ξ̂N) =

1

N

N∑
j=1

Q(x, ξ̂j), (2.34)

The optimal value ν̂N and an optimal solution x̂N of the problem (2.34) will be considered sta-
tistical estimators of their counterparts of the original problem (2.30), ν∗ and x∗ respectively.
Naturally, when using this technique, some questions arise

1. Is this method consistent? That is, do the solution of the SAA version of the problem
converge in some way to the original problem solution?

2. Can we give any guarantees about a solution obtained by this method? Are the obtained
solutions any good?

Statistical Properties of SAA Estimators

Definition 2.21 (Consistency) Let ŜN be the set of optimal solutions of (2.34) and S the
set of optimal solutions of the original problem (2.30). We say that

1. ν̂N is a consistent estimator of ν∗ if ν̂N → ν∗ with probability one, as N → ∞.

2. x̂N is consistent if dist(x̂N , S) = 0 with probability one, as N → ∞.
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Theorem 2.22 Suppose that for almost every ξ ∈ Ξ the function Q(·, ξ) is convex, the
function q(·) is lower semicontinuous and its domain has a non-empty interior, and the LLN
holds pointwise. Then, q̂N epiconverges to q with probability one.

Corollary 2.23 Suppose that for almost every ξ ∈ Ξ the function Q(·, ξ) is convex and the
LLN holds pointwise. Let C ⊆ Rn a compact set such that q is finite valued on a neighborhood
of C. Then q̂N epiconverges to f uniformly on C, that is

sup
x∈C

|q̂N(x)− q(x)| → 0 with probability one as N → ∞.

Theorem 2.24 Suppose that: 1) Q is random lower semicontinuous; 2) For a.e. ξ ∈ Ξ the
function Q(·, ξ) is convex; 3) X is closed and convex, 4) q is lower semicontinuous; 5) The
set of optimal solution S of the problem (2.19) is non-empty and bounded; and 6) The LLN
holds pointwise.

Then, ν̂N → ν∗ and
sup
x∈ŜN

dist(x, S) → 0 with probability one.

as N → ∞.

Assessing Solution Quality

Lets denote a candidate solution of the original problem as x̂ ∈ X. One of the approaches
for assessing solution quality is to bound the candidate solution’s optimality gap, for which
we can use a method called the Multiple Replications Procedure (MRP) as presented in [82] .

The optimality gap for x̂ can be computed as f(x̂)− ν∗. The value of ν∗ is not known, but
can be bound as in [94] by the bias result

E[νN ] ≤ ν∗.

Therefore, an upper bound on the optimality gap of x̂ (from now on, point estimator of the
optimality gap of x̂), can be estimated via

GN(x̂) = fN(x̂)− νN . (2.35)

When viewed as an estimator of the optimality gap, GN(x̂) is biased, E[GN(x̂)] ≥ f(x̂)− ν∗.

In order to compute this estimator, we can use the same i.i.d. random variables ξ1, . . . , ξN
from the distribution of ξ for both terms in (2.35). That is, given a realization {ξ̂1, ξ̂2, . . .}
of the random vector ξ, we compute

ĜN(x̂) = f̂N(x̂, ξ̂
1, . . . , ξ̂N)− ν̂N(ξ̂

1, . . . , ξ̂N),
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where the notation ν̂N(ξ̂1, . . . , ξ̂N) emphasizes that this quantity corresponds to the optimal
value of the approximated problem, for the particular realization {ξ̂1, . . . , ξ̂N}. The use of
the same observations in both terms of ĜN results in variance reduction.

As shown in [110], GN(x̂) is typically not asymptotically normal, complicating statistical
inference. This difficulty can be avoided employing a “batch-means” approach, commonly
used in the simulation literature. Thinking of this approach as an algorithm, the process
goes as follows:

1. First off, a number of “batches” NG is decided, in order to compute a confidence interval
for the point estimator of the optimality gap. As mentioned in [56], tipical values for
NG move between 20 or 30.

2. Observations {ξk1, ξk2, . . . , ξkN}, for k = 1, 2, . . . , NG are generated; and these are av-
eraged to obtain a point estimator of the optimality gap

Ḡ(x̂) = 1

NG

NG∑
k=1

Gk
N(x̂),

where Gk
N is computed following (2.35), using the k−th batch of observations.

3. We compute the sample variance as

S2
G =

1

NG − 1

NG∑
k=1

(
Gk
N(x̂)− Ḡ(x̂)

)2
.

4. An approximate (1− γ)-level confidence interval estimator on the optimality gap of x̂
is given by [

0, Ḡ(x̂) + zγSG√
NG

]
,

where zγ denotes a (1− γ)-quantile from a standard Normal distribution.

2.2.3 Chance constraints in two-stage problems

Chance constrained optimization appeared firstly in [29] and [86]. It is a probabilistic way
of handling uncertainty, by using probability tools in order to tackle inequality constraints.
This kind of optimization is a relatively robust approach, often difficult to solve.

Consider a chance constrained problem of the form{
min
x∈X

f(x)

s.t. P[C(x, ξ) ≤ 0] ≥ 1− γ,
(2.36)

where X ⊆ Rn is a closed deterministic set, f : Rn → R is continuous, γ ∈ (0, 1) is some
significance level and C is a Carathéodory function.
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Problems like (2.36) have been extensively studied. Both from theoretical and computational
points of view, it is recognized that chance constrained problems are hard to treat [100, 64],
mainly for two primary reasons. First, the function

φ : x 7→ φ(x) = P[C(x, ξ) ≤ 0]

is hard to compute, as this requires multidimensional integration techniques. Therefore, just
checking the feasibility of a solution is, in general, difficult. Second, the feasible region defined
by a chance constraint generally is not convex, even if X is convex and C is convex in x.

Some recent contributions for this kind of problem have been carried on two different ap-
proaches. One is to discretize the function φ and consequently solve the obtained combina-
torial problem [78, 79, 35]; and the other one is to employ convex approximations of chance
constraints [93].

Chance constraints have been used in various applications including supply chain manage-
ment [69], production planning [91], optimization of chemical processes [53] and water quality
management [116]. For an in-depth theoretical background, see [100].

Chance Constraints and the SAA Method

As shown in [111] (Chapter 5, Section 5.7), a way of solving (2.36) is using a SAA approach.
First, note that we can write the probability constraint as

P[C(x, ξ) ≤ 0] = E[11(−∞,0](C(x, ξ))]

and estimate this by the corresponding sample average approximation

P̂N(x) =
1

N

N∑
i=1

11(0,∞)(C(x, ξ̂
i)). (2.37)

Proposition 2.25 ([111, Proposition 5.29]) Let C(x, ξ) be a Carathéodory function. Then,
the functions P̂N and P[C(x, ξ) ≤ 0] are upper semicontinuous. Moreover, assume that for
every x ∈ X it holds that

P[ξ ∈ Ξ : C(x, ξ) = 0] = 0, (2.38)

that is, C(x, ξ) ̸= 0 with probability one. Then, P[C(·, ξ) ≤ 0] is continuous on X and P̂N

converges to P[C(x, ξ) ≤ 0] with probability one, uniformly on any compact subset of X.

Theorem 2.26 ([111, Proposition 5.30]) Suppose that in the problem (2.36) we have: 1) X is
compact; 2) f is continuous; 3) C is a Carathéodory function; 4) the sample {ξ1, ξ2, . . . , ξN}
is iid.; and 5) the following condition holds: there is an optimal solution x̄ such that for every
ε > 0 there is x ∈ X with ∥x− x̄∥ ≤ ε and P[C(x, ξ) > 0] < γ. Then, ν̂N → ν∗ and

sup
x∈ŜN

dist(x, S) → 0 with probability one.
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2.3 The Value of Information
When dealing with uncertainty in optimization problems, different levels of information about
it can be considered. For a given random variable ξ, one can know: its expected value
ξ̄ = E[ξ]; its distribution which gives us access to the map x 7→ E[φ(x, ξ)], for any function
φ; and even its future realizations, ξ(ω), which would allow us to optimize φ(x, ξ(ω) in a
deterministic fashion.

Usually, each level of information requires to invest more resources in order to obtain it.
Thus, it is important to be able to measure the gain that one might obtain by improving
them. We finish this Chapter my quickly summarize the different indicators that allows us
to do so.

2.3.1 The Expected Value of Perfect Information

First appearances on the concept of Expected Value of Perfect Information (from now on,
EVPI) are seen in the context of decision analysis [101]. This quantifies how much a decision
maker would pay, in order to obtain complete information about the future.

Consider (2.23) and define the problem

{
min
x∈X

φ(x, ξ) = cTx+Q(x, ξ)

s.t. A1x ≤ b1,
(2.39)

associated with a specific scenario ξ and Q(x, ξ) is the cost-to-go function of the problem
(2.24). Assuming that for all ξ ∈ Ξ, there exists at least one x ∈ Rn such that φ(x, ξ) < ∞,
it implies the existence of at least one optimal solution, let us denote it x∗(ξ).

Assuming that we have the ability to find these decisions for every ξ, we are able to compute
the expected value of φ.

Definition 2.27 (Wait-and-See/Here-and-Now Solutions) We define the Wait-and-See So-
lution (from now on, WS) as

WS = Eξ[min
x
φ(x, ξ)] =

∫
Ω

φ(x∗(ξ(ω)), ξ(ω))dP(ω), (2.40)

and the Stochastic Solution (from now on, STO) as

STO = min
x

Eξ[φ(x, ξ)] = min
x

∫
Ω

φ(x(ξ(ω)), ξ(ω))dP(ω), (2.41)

Definition 2.28 (EVPI) The EVPI is defined as

EVPI = STO −WS. (2.42)
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The EVPI measures the expected gain of knowing the value of ξ, without uncertainty with
respect to STO.

2.3.2 The Value of the Stochastic Solution

When STO is too hard to solve, a simpler idea is to solve the problem obtained by replacing
all uncertainty by the expected value of the random variables that model it.

Definition 2.29 The Expected Value Problem is defined as

EV = min
x
φ(x, ξ̄), (2.43)

where ξ̄ = E(ξ) denotes the expected value for the random variable.

Definition 2.30 (Expected result of using EV) Let x∗(ξ̄) be an optimal solution for (2.43).
The Expected result of using the EV solution (from now on, EEV ) is defined as

EEV = Eξ[φ(x
∗(ξ̄), ξ)] =

∫
Ω

φ(x∗(ξ̄(ω)), ξ(ω))dP(ω). (2.44)

Definition 2.31 (Value of Stochastic Solution) The Value of Stochastic Solution (from now
on, VSS) is defined as

VSS = EEV − STO.

The VSS measures the gain of solving STO despite the difficulties.

The relationship between all of the above indicators, can be summarized in the following
propositions.

Proposition 2.32 For any stochastic program, we have that

WS ≤ STO ≤ EEV,

and therefore,
EVPI ≥ 0, VSS ≥ 0.

Proposition 2.33 For stochastic programs with fixed recourse and fixed objective coefficients,
we have that

EV ≤ WS,

and therefore,
EVPI ≤ EEV − EV, VSS ≤ EEV − EV.
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Chapter 3

Allocation Problems in Ride-Hailing
Platforms

Ride-hailing consists on a form of transportation service delivered using platforms, usually
through smart-phone applications, where riders connect with drivers. Unlike ride-sharing,
the vehicle used in ride-hailing is not necessarily shared among multiple riders for each trip.

The growing popularity of ride-hailing companies, such as Uber and Lyft, has changed the
way we move around the city. There is a new relation between passengers and drivers,
which now interact through this new third party. Several new problems have arisen from
this context, such as spatio-temporal pricing [20], reallocation of resources [7, 52], or online
matching [41] (see, e.g., [125, 16] for some recent surveys). Here, we are interested in the
way information affects the relation between a ride-hailing company and its drivers.

To understand this relation, let us describe the general framework we are set in, which is
motivated by recent literature [125, 16, 20]. First, a city can be understood as a network of
interconnected locations, to which drivers are allocated. At every given time, new passengers
appear in the locations, requesting a ride. The ride-hailing company then matches each
passenger with a driver in the same location, and receives a compensation proportional to
the cost of the ride. While the compensation can be assumed to be constant, the company
has the liberty to adapt prices, generating different fares depending on the location and time.

Of course, pricing affects the demand. But more interesting for us, spatial pricing (different
fares between locations) can induce reallocation of unmatched drivers. Indeed, a particu-
larity of the Ride-sharing companies is that they do not employ drivers, but rather they
consider drivers as independent operators using the matching service. Thus, drivers are free
to reallocate themselves whenever they consider it convenient.

Some key elements for an unmatched driver to decide whether to change location or not are
the following: the available ride fares, the costs of reallocation, the number of demanded rides
at each location, and the number of previously matched drivers at each location (who can be
matched to other passengers as soon as they finish their previous rides). The first two are
known information for the drivers, but the demand which has random variations (exogenous
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uncertainty) and the previously matched drivers (endogenous uncertainty) are not. On the
other hand, at each stage of reallocation and matching, the ride-hailing company can forecast
the exogenous uncertainty, and has all the information available for the endogenous one.

The goal of this chapter is to assess whether the ride-hailing company might benefit from
sharing its information with the unmatched drivers. This behavior is observed nowadays,
where ride-hailing companies provide some demand information to the drivers beyond spatial
pricing (see, e.g., the Uber’s driver-app description in [120]).

The notion of sharing information has been studied before, for example in the context of
supply chains [107, 74], network restoration [112] and pricing problems [114], where different
parties on each context, can be benefited from sharing information between them. Here, we
propose to study the problem of value of information through the lens of Stackelberg games
(see, e.g., [32, 34]).

On one hand, the company acts as the leader, deciding the spatial prices. On the other
hand, the drivers act as followers, solving a stochastic allocation equilibrium problem. By
considering the demand to be uncertain for both, the company and the drivers, we derive a
model where all agents must decide their actions in a here-and-now fashion, that is, prior to
the revelation of the nature. In this context, to evaluate the value of perfect information, we
consider two indicators: the classic Expected Value of Perfect Information (EVPI), defined
for example in [21, Chapter 4], which measures the impact of forecasting on the leader’s
benefits; and a new indicator that we call the Expected Value of Shared Information (EVSI),
which measures the impact, again for the leader, of forecasting and then sharing the perfect
information with the drivers.

3.1 Information indicators for general stochastic bilevel
problems

In the following, we present the abstract model that we will use in the sequel to describe
the interaction between a ride-hailing company and its drivers. The setting fits into the
general framework of stochastic bilevel optimization, but with the particular property that
randomness is revealed after the followers’ decision, differing from the usual concept of the
problem (see, e.g., [27]).

Here-and-now Stochastic bilevel problems

We consider the following optimistic parametric bilevel programming problem

φ(z1, z2) =


min
x,y

θ(x, y, z1, z2)

s.t.


x ∈ X

y solves

{
min
y
f (x, y, z1, z2)

s.t. y ∈ Y (x),

(3.1)

where (z1, z2) ∈ Z = Z1 ×Z2 ⊂ Rk1 ×Rk2 are the parameters. Here, the function φ : Z → R
is the value function of Problem (3.1). For each pair (z1, z2) ∈ Z, the leader aims to minimize
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the loss function θ : Rn × Rm × Rk1 × Rk2 → R. He or she only controls the first variable
x ∈ X ⊂ Rn, which we call the leader’s decision. The set of admissible leader’s decisions
X ⊂ Rn is fixed.

Similarly, for each pair (z1, z2) ∈ Z and each leader’s decision x ∈ X, the follower aims to
minimize the loss function f : Rn ×Rm ×Rk1 ×Rk2 → R. He or she only controls the second
variable y ∈ Y (x) ⊂ Rm, which we call the follower’s decision. The set of admissible decisions
Y (x) ⊂ Rm depends on the leader’s decision x, inducing a set-valued map Y : X⇒Rm. The
range of Y is contained in an ambient set Ȳ ⊂ Rm, that is,

R(Y ) :=
⋃
x∈X

Y (x) ⊂ Ȳ .

In what follows, we consider the following (standard) assumptions over Problem (3.1):

(A.1) The sets X and Ȳ are nonempty, convex and compact, and Z is nonempty and closed.

(A.2) The loss functions θ and f are continuous.

(A.3) The loss function f is convex in the second variable.

(A.4) The set-valued map Y has nonempty convex compact values, and it is both upper and
lower semicontinuous.

Under this framework, which is fairly general, one can ensure the existence of solutions of
the parametric Problem (3.1). This existence result is classic in the literature (see, e.g., [32]),
and we recall it for completeness.

Lemma 3.1 Assume hypotheses (A.1)-(A.4). Then, for each (z1, z2) ∈ Z, Problem (3.1)
admits at least one solution. Furthermore, the value function φ : Z → R is lower semicon-
tinuous.

Proof. To simplify notation, let us write z = (z1, z2) ∈ Z. Let us denote S : X × Z⇒ Ȳ
given by

S(x, z) = arg min
y∈Y (x)

f(x, y, z)

Using once more the Maximum Principle (Theorem 1.11), we conclude that S is upper-
semicontinuous, and given that f is continuous, it is also closed-valued. Now, by Theorem
1.9, we obtain that gph(S) is closed.

Let us define K : Z⇒X × Ȳ given by

K(z) = {(x, y) ∈ X × Ȳ : (x, y, z) ∈ gph(S)}.

Noting that K(z) is compact for every z, since it is closed and a subset of X × Ȳ , and that
Problem (3.1) can be written as

φ(z) = min
x,y

{θ(x, y, z) : (x, y) ∈ K(z)},
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we deduce from Weierstrass theorem that Problem (3.1) has a solution for every fixed z ∈ Z.

Since gph(K) = gph(S) and K is compact-valued, Theorem 1.9 entails that K is upper-
semicontinuous. Moreover, since θ is continuous, we can apply Theorem 1.12 to conclude
that z 7→ sup(x,y)∈K(z) −θ(x, y, z) is upper semicontinuous. The result follows by noting that

φ(z) = inf
(x,y)∈K(z)

θ(x, y, z) = − sup
(x,y)∈K(z)

−θ(x, y, z),

which is therefore lower semicontinuous.

In our setting, uncertainty is formalized as random variables ζ = (ζ1, ζ2) : Ω → Z1 × Z2 and
ξ = (ξ1, ξ2) : Ω → Z1 × Z2, over a probability space (Ω,Σ,P). These variables determine the
parameters (z1, z2) in Problem (3.1). Specifically,

• The leader knows the first parameter z1, which is the realization of a random variable
ζ1.

• The variable ζ2 determines the value of z2 for the leader, and its value is unknown for
the leader.

• Both parameters (z1, z2) are unknown for the follower, and are given by the variables
ξ1 and ξ2, respectively.

We allow the leader and the follower to have different beliefs about z1 and z2, and thus the
distribution of ζ = (ζ1, ζ2) might differ from the distribution of ξ = (ξ1, ξ2).

With this model, the follower solves a here-and-now problem, considering the leader’s decision
x as a parameter and the value of z = (ξ1(ω), ξ2(ω)) as uncertain. Thus, for each leader’s
decision x, the follower is solving the problem

D(x) =

{
min
y

E [f (x, y, ξ1(ω), ξ2(ω))]

s.t. y ∈ Y (x) .
(3.2)

We refer by D(x) to both Problem (3.2) and its solution set. From the leader’s perspective,
for each decision vector x, the follower’s optimal response is a deterministic point y ∈ D(x).
Thus, the leader is solving a parametric here-and-now problem, simultaneously with the
follower, which is given by:

STO(z1) :=


min
x,y

E [θ (x, y, z1, ζ(ω))]

s.t.
{
x ∈ X
y ∈ D(x).

(3.3)

We set the Stochastic value of Problem (3.3) as

STO = E[STO(ζ1)] =
∫
Ω

STO(ζ1(ω))dP(ω), (3.4)

which is given by the averaged cost for the leader, according to the distribution of ζ1, for
an optimal policy x : Z1 → Rn. In what follows, we will assume that all expectations are
well-defined and finite.

39



Measuring the value of information: Expected Value of Shared Information

In stochastic bilevel optimization, Problem (3.3) has not got too much attention, since its
formulation fits into the setting of stochastic optimization with recourse (see, e.g., [21, 111]).
This reduction follows from the fact that the random parameter z2 is revealed after the
follower’s decision, leading to a sequential structure of the form

Leader decides x→ Follower decides y → (z1, z2) is revealed.

In contrast, stochastic bilevel optimization, as understood in the literature (see, e.g., [27]),
focuses on bilevel programs where the random parameter is revealed before the follower’s
decision, inducing a here-and-now problem for the leader, and a wait-and-see problem for
the follower, that is,

Leader decides x→ (z1, z2) is revealed → Follower decides y.

In this second case, when one aims to assess the expected value of perfect information (EVPI),
it is enough to do it for the leader only. Indeed, the follower already has the perfect infor-
mation. Thus, one can follow the standard developments of, e.g., [21, Chapter 4] or [111,
Chapter 2].

Similarly, in our context, we propose to set the EVPI as a measure for the leader only. The
proposal is motivated by the interpretation of a bilevel problem as a Stackelberg game: the
bilevel optimization problem is the problem of the leader only, who is able to anticipate the
follower’s best response [57].

Definition 1 (EVPI) For Problem (3.3), we define the Wait-and-See Value (WS) as the
expected value of the value function

ψ(z1, z2) :=


min
x,y

θ (x, y, z1, z2)

s.t.
{
x ∈ X
y ∈ D(x),

(3.5)

that is,

WS := Eζ(ψ) =

∫
Ω

ψ(ζ(ω))dP(ω). (3.6)

The Expected Value of Perfect Information (EVPI) is then defined as

EV PI := STO −WS,

which is always non-negative, and measures the gain of the leader under perfect information.

While the above definition is consistent with the interpretation of Problem (3.3) as a para-
metric problem with recourse, the leader has another option in Stackelberg games under
perfect information: he or she might share this information with the follower. This alter-
native comes from the fact that the follower is an independent agent, which reacts to new
information. In order to measure the value of sharing perfect information, we introduce the
following definition:
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Definition 2 (EVSI) For Problem (3.3), we define the Shared Wait-and-See Value (SWS)
as the expected value of the value function φ from the parametric problem (3.1) that is,

SWS := Eζ(φ) =

∫
Ω

φ(ζ1(ω), ζ2(ω))dP(ω), (3.7)

The Expected Value of Shared Information (EVSI) is then defined as

EV SI := WS − SWS,

which measures the gain or loss of the leader having perfect information and sharing it with
the follower.

When evaluating the value of perfect information for the leader, both WS and SWS should
be computed, since SWS is, in general, neither a lower bound nor an upper bound of WS nor
STO, as the following example shows.

Example Let us consider only an exogenous random event ξ to be a fair Bernoulli trial and
the indicator functions δ0 and δ1 given by

δi(ξ) =

{
1 if ξ = i

0 otherwise,
for i = 0, 1.

Let the leader’s decision set to be X = [0, 1] and the follower’s decision set to be Y (x) = [0, 1],
for all x ∈ X. Let the follower’s loss function to be

f(y, ξ(ω)) := y2δ0(ξ(ω)) + (1− y)2δ1(ξ(ω)).

Assume that ζ = ξ and consider two possible loss functions for the leader:

θ+(x, y, ξ(ω)) =
1

2

(
x2δ0(ξ(ω)) + (1− x)2δ1(ξ(ω))

)
+ f(x, y, ξ(ω))

θ−(x, y, ξ(ω)) =
1

2

(
x2δ0(ξ(ω))− (1− x)2δ1(ξ(ω))

)
− f(x, y, ξ(ω))

We consider then two problems of the form of Problem (3.3):

min
x,y

E (θ+(x, y, ξ(ω)))

s.t.


x ∈ [0, 1]

y solves

{
min
y

E (f (y, ξ(ω)))

s.t. y ∈ [0, 1].

min
x,y

E (θ−(x, y, ξ(ω)))

s.t.


x ∈ [0, 1]

y solves

{
min
y

E (f (y, ξ(ω)))

s.t. y ∈ [0, 1].

Plus Case Minus Case

It is easy to see that the optimal solutions for the leader and the follower are very similar.
Observe too that the decision of the leader has no influence on the follower’s decision, but
the objective of the follower is directly included in the leader’s objective. The set of optimal
decisions is easy to determine. In the stochastic case, where no information is given to either
of the players, we have x∗ = y∗ = 0.5. On the other hand, if the players have access to the
perfect information, we have x∗0 = y∗0 = 0 for ξ = 0, and x∗1 = y∗1 = 1 for ξ = 1. Thus we can
compute the values of STO, WS (as in [21, Chapter 4]) and SWS, displayed in Table 3.1. ♢
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Plus Case Minus Case
STO 0.375 −0.125
WS 0.25 −0.25
SWS 0 0

Table 3.1: Values of STO, WS and SWS

The above example is quite simple but very illustrative. First, for the Minus Case it shows
that the SWS is not necessarily a lower bound of WS, nor even of STO. However, for
the Plus Case it shows that sharing information could be beneficial, beyond having perfect
information. The intuition behind this example is simple. On the one hand, the Plus Case
is collaborative: the leader wants to collaborate with the follower, since the leader is losing
what the follower loses as well.

On the other hand, the Minus Case is adversarial: the leader is against the follower, since
what the follower loses translates in gains for the leader. However, in practical situations,
the collaboration or competition between the leader and the follower might not be so clear.

3.2 The Ride-Hailing Bilevel Model
Let us consider the following situation: at a certain moment, a driver associated with a
ride-hailing company that has not been matched with a passenger must decide whether to
keep searching for a match around his or her current location, or to move to another one
within the city. We can model the different locations as a finite set of zones, I = {1, . . . , n},
connected as a directed graph.

1

2

3

4

Figure 3.1: Directed Graph Modeled for n = 4 zones.

If the driver is in the ith zone, his or her reallocation decision will depend on five factors:

1. The vector of marginal prices fixed by ride-hailing company, p = (pi : i ∈ I).

2. The vector of previously matched drivers who will arrive to each node (and will become
available at that node), y = (yi : i ∈ I).

3. The vector of demands of each zone d = (di : i ∈ I).

4. The marginal costs of moving to another zone, αi = (αij : j ∈ I). Of course, αii = 0.
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5. The vector of previously unmatched drivers that will be at each node, x = (xi : i ∈ I).

The demand on each zone i ∈ I, depends on two factors: the marginal price pi and a random
variable which models the uncertain variation. In this work, we model this dependency as
a nominal value d0,i(ω) which represents the demand for the minimal price pi,min, multiplied
by a linear discount factor depending on the price:

di = di(pi, ω) = d0,i(ω)

(
1− δ

pi − pi,min

pi,max − pi,min

)
(3.8)

Since each driver has limited observability about the other drivers, the value of y = (yi :
i ∈ I) is uncertain, even though it is known information for the ride-hailing company. Thus,
from the drivers’ perspective y = y(ω) is also a random variable. Then, by setting ξ(ω) =
(y(ω), d0(ω)), each driver must solve the following optimization problem:

max
j∈I

Eξ

[
pj min

(
dj

xj + yj
, 1

)]
− αij, (3.9)

where xj + yj is the amount of available drivers in zone j, and the value min
(

dj
xj+yj

, 1
)

represents the probability of being matched in zone j: if dj ≥ xj + yj, then the driver will
be matched. On the other hand, if dj < xj + yj, the probability of being matched coincides
with dj/(xj + yj), assuming that in such a case, all passengers will be matched.

We will model the situation where drivers can communicate between them outside the ride-
hailing platform, and they can coordinate their allocation. Thus, we model all unmatched
drivers as a single new follower, who aims to maximize the social welfare of all drivers. Such
situation has been recently studied in [118]. We will assume that only unmatched drivers
report to this central decision-maker, while matched drivers become unavailable. Thus, the
follower must decide the allocation of unmatched drivers x = (xi : i ∈ I) while the vector
y = (yi : i ∈ I) is uncertain.

Now, to model the decision process of the single follower, let us assume that there is an
amount of N0 drivers unmatched, with initial allocation x0 = (x0,1, . . . , x0,n) ∈ Rn. Let us
define the variable vij as the amount of unmatched drivers who will change from zone i to
zone j, and let v be the matrix that collects all this information. In this context, vii = 0
for all i ∈ I. Then, we can compute a reallocation x in terms of the displacement matrix v
simply as:

xj(v) = x0,j +
∑
i ̸=j

vij −
∑
k ̸=j

vjk, ∀j ∈ I. (3.10)

Then, for a given price vector p, the aggregated allocation problem is posed as follows:

F (p) :=


maxv

∑n
i=1 cpiEξ [min(xi + yi, di)]−

∑
i ̸=j αijvij

s.t

{
v ≥ 0∑

k ̸=j vjk ≤ x0,j, ∀j ∈ I

,

where c ∈ (0, 1) is the fraction of the ride price that the driver gets.
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The distribution of ξ, which models the belief over y and d0, must reflect the fact that drivers
have not access to the data of the ride-hailing company. On the one hand, we model the
vector of previously matched drivers who will arrive to each node as an uniformly distributed
random variable, that is, yj ∼ U(0, ȳ) where ȳ is a constant value for all nodes. This
distribution represents the lack of information for the unmatched drivers about the matched
ones. On the other hand, we assume that drivers perceive the distribution of the nominal
demand as a discrete one, considering m ∈ N feasible scenarios. Thus, we can write

Eξ [pi min(xi + yi, di)] = −Eξ(pi max(−xi − yi,−di))

= −
m∑
k=1

piEy[max(−xi − yi,−di,k)] · P(ωk),
(3.11)

where we define the discrete expression di,k = di(ωk). Therefore, the follower will deal with
a discrete version of its original problem F (p), given by

Fm(p) :=


minv c

n∑
i=1

m∑
k=1

piEy[max(−xi − yi,−di,k)] · P(ωk) +
∑
i ̸=j

αijvij

s.t

{
−v ≤ 0∑

j ̸=i vij − x0,i ≤ 0, ∀i ∈ I

. (3.12)

Now, the ride-hailing company must decide the price vector p. The company does not
necessarily know the exact value of the demand vector d, but it knows the vector y of occupied
drivers. Since the company aims to maximize its revenues, it must solve the following bilevel
programming problem:

L(y) :=


maxp,v

∑n
i=1(1− c)pi · Eζ [min(xi + yi, di)]

s.t

{
pi ∈ [pi,min, pi,max], ∀i ∈ I

v solves Fm(p).

(3.13)

Here ζ is the random variable that models the belief of the leader about the behavior of
the nominal demand. The distribution of ζ should be multivariate normal-like distribution
around a nominal value d̄0 = (d̄0,i : i ∈ I).

Observe that Problem (3.13) fits the setting of Problem (3.3), by considering z1 = y as the
endogenous uncertainty known by the leader, and z2 = d0 as the exogenous uncertainty. Since
ride-hailing companies already invest in demand forecasting (see, e.g, [119, 81]), we want to
know what the policy should be about this information: should the perfect information be
kept private or should it be shared with the drivers?

3.3 Reformulation to Single Bilinear Optimization
In this section, we will focus in how to compute WS and SWS for Problem (3.13), and then
obtaining the EVSI. Here, we assume that the leader already has perfect information, and
thus, the values of ζ = (y, d0) are known for it. In what follows, we identify the scenario set
{ω1, . . . , ωm} with the set of indexes K = {1, . . . ,m}.
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In order to compute the EVSI, our approach is to follow a Monte-Carlo estimation: first, we
consider a sampling (y1, d10), . . . , (y

T , dT0 ) of the random parameters (y, d0), accordingly to the
leader’s distributions. Then, to compute the empirical expectations of the value functions ψ
given by (3.5) for the WS, and φ given by (3.1) for the SWS. Finally, we compute the EVSI
as

EV SI =
1

T

T∑
t=1

φ(yt, dt0)−
1

T

T∑
t=1

ψ(yt, dt0). (3.14)

Thus, our problem is reduced to compute the value functions ψ(yt, dt0) and φ(yt, dt0) for each
sample (yt, dt0). Our technique is, for both values, to reformulate the corresponding bilevel
programming problems into single level bilinear problems. In both cases, we replace the
corresponding follower’s problem by its Karush-Kuhn-Tucker (KKT) conditions and consider
the associated multipliers as new variables. This approach, known as the Mathematical
Programming with Complementarity Constraints (MPCC) reformulation, is quite popular
in the literature and can be applied whenever the follower’s problem satisfies a constraint
qualification (see, e.g., [34, Chapter 3] and the references therein).

In this section, we show that the reformulations we obtain through this technique have two
main properties: firstly, they preserve global solutions in the sense that a pair (x, y) of leader-
follower decision variables is a global solution of a bilevel program if and only if there exists a
multiplier u such that (x, y, u) is a global solution of the MPCC reformulation; and secondly,
the MPCC reformulations can be rewritten as mixed-integer bilinear problems.

3.3.1 Constraint Qualifications of the lower-level

Before studying the single-level reformulations for WS and SWS, we will study the regularity
properties of the feasible set of Problem Fm(p), defined in (3.12). To do so, we consider the
following notation and definitions. First off, we identify Rn(n−1), which is the space of decision
variables of the follower, with the subspace V of n× n square matrices with 0-entries in the
diagonal. For every i, j ∈ {1, . . . , n} with i ̸= j, we denote by eij as the n× n matrix given
by

eij(a, b) =

{
1 if a = i and b = j,

0 otherwise.
(3.15)

and we denote by ei• =
∑

j : j ̸=i eij, which is the n × n matrix with 1-entries in the ith row
(except for the entry (i, i)), and 0 otherwise. Similarly, we set e•j =

∑
i : i ̸=j eij which is the

n× n matrix with 1-entries in the jth column (except for the entry (j, j)), and 0 otherwise.
We now state the following key lemma.

Lemma 3.2 Assume that the initial allocation vector x0 is strictly positive (i.e. x0,i > 0 for
each i ∈ {1, . . . , n}). Then, the feasible set of the followers’ problem, which is given by{

v ∈ V :
v ≥ 0∑

j ̸=i vij ≤ x0,i, ∀i ∈ I

}
satisfies Slater’s CQ, and it satisfies (LICQ) an every point.
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Proof. First, we define x0,min = min{x0,1, . . . , x0,n}. We claim that

vij =
x0,min

2(n− 1)

is a Slater point. In fact, it is clear that vij > 0 for every i ̸= j, and furthermore,∑
j ̸=i

vij =
∑
j ̸=i

x0,min

2(n− 1)
= (n− 1)

x0,min

2(n− 1)
=
x0,min

2
< x0,i, ∀i ∈ I.

Thus, the claim is verified and this finishes the first part of the proof. Now, let us show that
(LICQ) is verified at every point. For every i ∈ I, and every j ̸= i, let gij(v) = −vij and let
hi(v) =

∑
j ̸=i vij − x0,i. Then, this set can be written as{

v ∈ V :
gij(v) ≤ 0, ∀i ̸= j
hi(v) ≤ 0, ∀i ∈ I

}
Now, suppose that there exists v∗ in this set, not satisfying (LICQ). It is not hard to see that
∇gij(v∗) = −eij and ∇hi(v∗) = ei•. Thus, since {∇gij(v∗) : i ̸= j} is linearly independent,
there must be i0 ∈ I such that hi0(v∗) = 0, and such that ∇hi0(v∗) = ei0• is a linear
combination of the gradients of the other active constraints. However, this is only possible if
gi0j is active at v∗ for every j ̸= i0, which would mean that∑

j ̸=i0

vi0j = x0,i0 and vi0j = 0, ∀j ̸= i0,

which is a contradiction since x0,i0 ̸= 0. This finishes the proof.

3.3.2 Reformulation of Wait-and-See

Recall that we want to solve Problem (3.5), which in this context is given by

ψ(y, d0) :=


min
p,v

n∑
i=1

(1− c)pi · Eζ [max(−xi − yi,−di)]

s.t.
{
pi ∈ [pi,min, pi,max], ∀i ∈ I
v solves Fm(p).

(3.16)

Based on (3.11), for each scenario k ∈ K and each location i ∈ I, we set (recalling that
yi ∼ U(0, ȳ)) a function ϕi,k as follows:

ϕi,k(xi) = Eyi [max(di,k − xi − yi, 0)]

=
1

ȳ

∫ ȳ

0

max(di,k − xi − yi, 0)dy

=


0 if di,k − xi ≤ 0
(di,k−xi)

2

2ȳ
if 0 ≤ di,k − xi ≤ ȳ

(di,k − xi)− ȳ
2

if di,k − xi ≥ ȳ

(3.17)
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Then, it is not hard to see that the follower’s problem Fm(p) can be written as

Fm(p) :=


minv c

n∑
i=1

m∑
k=1

pi(ϕk,i(xi)− di,k) · P(ωk) +
∑
i ̸=j

αijvij

s.t

{
−v ≤ 0∑

j ̸=i vij − x0i ≤ 0, ∀i ∈ I.

(3.18)

Then, we can state the following proposition.

Theorem 3.3 For any given value of the random vector ζ = (y, d0), the Wait-and-See
problem associated to the leader’s problem (3.13) is equivalent (in the sense of local and
global solutions) to its MPCC reformulation given by

max
p,v,λ,γ

n∑
i=1

(1− c)pi ·min(xi + yi, di)

s.t



pi ∈ [pi,min, pi,max], ∀i ∈ I∑
j ̸=i vij − x0i ≤ 0, ∀i ∈ I

m∑
k=1

(piβi,k − pjβj,k) + αij − λij + γi = 0, ∀i ̸= j ∈ I

γi(
∑

j ̸=i vij − x0i) = 0, ∀i ∈ I

λijvij = 0, ∀i ̸= j ∈ I

v ≥ 0, γ, λ ≥ 0,

(3.19)

where the coefficients {βi,k : i ∈ I, k ∈ K} are given by

βi,k :=


0 if di,k − xi ≤ 0

cP(ωk)
xi−di,k

ȳ
if 0 ≤ di,k − xi ≤ ȳ

−cP(ωk) if di,k − xi ≥ ȳ.

(3.20)

Furthermore, the multipliers γ = (γi : i ∈ I) and λ = (λij : i ̸= j ∈ I) verify

0 ≤ γi ≤ 2mpmax and 0 ≤ λij ≤ 4mpmax, (3.21)

where pmax = maxi∈I{pi,max}.

Proof. The equivalence between the bilevel problem (3.13) and the MPCC reformulation
follows from Lemma 3.2. Indeed, since Slater’s CQ is verified, and LICQ implies Constant
Rank CQ, the desired conclusion follows from [33, Theorem 3.2 and Corollary 3.3]. Thus, it
is enough to show that problem (3.19) coincides with the MPCC reformulation (3.13).

Based on (3.17) we can compute the partial derivatives of ϕi,k as

∂

∂xi
ϕi,k =


0 if di,k − xi ≤ 0
xi−di(ωk)

ȳ
if 0 ≤ di,k − xi ≤ ȳ

−1 if di,k − xi ≥ ȳ
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Let f(v) be the objective function for Fm(p). By a mild application of the chain rule,
considering the definition of xr in Equation (3.10) we can compute its partial derivative as

∂f

∂vij
(v) =

∂

∂vij

(
c

n∑
r=1

m∑
k=1

prϕr,k(xr)P(ωk)− c

n∑
r=1

m∑
k=1

prdr(ωk)P(ωk) +
∑
r ̸=s

αrsvrs

)

=
∂

∂vij

(
c

m∑
k=1

piϕi,k(xi)P(ωk) + c
m∑
k=1

pjϕj,k(xj)P(ωk) + αijvij

)

= c
m∑
k=1

(pi
∂

∂xi
ϕi,k(xi)P(ωk)− pj

∂

∂xj
ϕj,k(xj)P(ωk)) + αij

=
m∑
k=1

(piβi,k − pjβj,k) + αij,

where the coefficients {βi,k : i ∈ I, k ∈ J} are defined as in (3.20). Hence, the KKT
equations for Fm(p) have the form

m∑
k=1

(piβi,k − pjβj,k) + αij − λij + γi = 0, ∀i, j ∈ {1, . . . , n}, i ̸= j

with the complementarity constraints

λijvij = 0, ∀i, j ∈ {1, . . . , n}, i ̸= j.

γi

(∑
j ̸=i

vij − x0i

)
= 0, ∀i ∈ {1, . . . , n}.

(3.22)

Putting all together, we get that the MPCC reformulation of (3.13) is given by (3.19).

Lastly, we compute the multiplier bounds. Fix a feasible price vector p and let v∗ be an
optimal point of Fm(p). Let (λ, γ, β) be a feasible tuple of multipliers for problem (3.19).
Then, for the ith coordinate, we have that

m∑
k=1

(piβi,k − pjβj,k) + αij − λij + γi = 0, ∀j ̸= i.

We have two possible scenarios:

• If γi = 0, then

λij =
m∑
k=1

(βi,k − βj,k) + αij ≤ 2mpmax, ∀j ∈ {1, . . . , n}.

• If γi ̸= 0, then the second complementary equation of (3.22) implies that x0i =
∑

j ̸=i v
∗
ij.

Since x0i ̸= 0, this also implies that there exists a value of j such that v∗ij ̸= 0, in which
case λij = 0 using the first complementary equation of (3.22). Hence, we conclude that∑m

k=1 (βi,k − βj,k) + αij + γi = 0
=⇒

γi =
∑m

k=1 (βj,k − βi,k)− αij ≤ 2mpmax,
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and so we can compute

λij =
m∑
k=1

(βi,k − βj,k) + γi + αij ≤ 4mpmax, ∀j ∈ {1, . . . , n}.

Regardless the case, we conclude that

λij ∈ [0, 4mpmax], γi ∈ [0, 2mpmax],

finishing our proof.

This result allows us to compute the Wait-and-See value by sampling ζ = (y, d0) and solving
(3.19). To do so, we will follow the classic big-M strategy, which seems to be first introduced
in the context of bilevel optimization in [44]. Even though computing a sufficiently large
M is hard in general [65], the above proposition has already provided the needed bounds in
(3.21). Hence, defining M = 4mpmax, we proceed as follows:

1. For each pair i ̸= j ∈ I, we introduce a boolean variable zij ∈ {0, 1} and replace the
constraint λijvij = 0 by

−Mzij ≤ λij ≤Mzij

−M(1− zij) ≤ vij ≤M(1− zij)
(3.23)

2. For each i ∈ I, we introduce a boolean variable wi ∈ {0, 1} and replace the constraint
γi(
∑

j ̸=i vij − x0i) = 0 by

−Mwi ≤ γi ≤Mwi

−M(1− wi) ≤
∑
j ̸=i

vij − x0,i ≤M(1− wi) (3.24)

The last numerical consideration involves the additional constraints which are used to tackle
the term βi,k, which are given piecewise linear functions. We first define a constant

C ≥ max{d0,i(ωk) : i ∈ I, k ∈ J}+N0,

which is an upper bound of |di(ωk)−xi| for every i ∈ I and every scenario ωk. Then, for each
term βi,k, we define three integer variables ai,k, bi,k, ci,k ∈ {0, 1}, three continuous variables
ri,k, si,k, ti,k, and we replace (3.20) by the set of constraints

ai,k + bi,k + ci,k = 1

di,k − xi = ri,k + si,k + ti,k

−Cai,k ≤ ri,k ≤ 0

0 ≤ si,k ≤ ȳbi,k

ȳci,k ≤ ti,k ≤ Cci,k

βi,k = −cP(ωk)
(

si,k
ȳ

+ ci,k

)
(3.25)

The above replacement works as follows:
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• If ai,k = 1, then bi,k = ci,k = si,k = ti,k = 0. Hence, di,k − xi = ri,k ≤ 0, and βi,k = 0.

• If bi,k = 1, then ai,k = ci,k = ri,k = ti,k = 0. Hence, di,k − xi = si,k ∈ [0, ȳ], and

βi,k = −cP(ωk)
si,k
ȳ

= cP(ωk)
(xi−di,k)

ȳ
.

• If ci,k = 1, then ai,k = bi,k = ri,k = si,k = 0. Hence, di,k − xi = ti,k ≥ ȳ, and
βi,k = −cP(ωk).

The final problem we solve for each ζ = (y, d0) is then given by

max
n∑

i=1

(1− c)pi ·min(xi + yi, di)

s.t.



pi ∈ [pi,min, pi,max], ∀i ∈ I∑m
k=1(piβi,k − pjβj,k) + αij − λij + γi = 0, ∀i ̸= j ∈ I,

−Mzij ≤ λij ≤Mzij

−M(1− zij) ≤ vij ≤M(1− zij)

−Mwi ≤ γi ≤Mwi

−M(1− wi) ≤
∑

j ̸=i vij − x0i ≤M(1− wi)

ai,k, bi,k, ci,k ∈ {0, 1}, ∀i ∈ I,∀k ∈ K

ai,k + bi,k + ci,k = 1, ∀i ∈ I,∀k ∈ K

di,k − xi = ri,k + si,k + ti,k, ∀i ∈ I,∀k ∈ K

−Cai,k ≤ ri,k ≤ 0, ∀i ∈ I,∀k ∈ J

0 ≤ si,k ≤ ȳbi,k, ∀i ∈ I,∀k ∈ K

ȳci,k ≤ ti,k ≤ Cci,k, ∀i ∈ I,∀k ∈ K

βi,k = −cP(ωk)
(

si,k
ȳ

+ ci,k

)
, ∀i ∈ I,∀k ∈ K.

(3.26)

3.3.3 Reformulation of Shared-Wait-and-See

When the leader shares the value of the vector d0 with the follower, we must consider this
information in the objective function. Since prices are also parameters, the demand vector d
becomes fixed (given by (3.8)) and known by the follower. The leader then must solve

φ(y, d0) :=


maxp,v

∑n
i=1(1− c)pi ·min(xi + yi, di)

s.t.

{
pi ∈ [pi,min, pi,max], ∀i ∈ I

v solves F (p).
(3.27)

where F (p) is given by

F (p) :=


minv

∑n
i=1 cpi max(−xi − yi,−di) +

∑
i ̸=j αijvij

s.t.

{
−v ≤ 0∑

j ̸=i vij − x0i ≤ 0, ∀i ∈ I

(3.28)

In this scenario, we can state the following proposition.
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Theorem 3.4 For any given value of the random vector ζ = (y, d0), the Shared-Wait-and-
See problem associated to the leader’s problem (3.13) is equivalent (in the sense of global
solutions) to its MPCC reformulation given by

max
p,v,λ,γ,β

n∑
i=1

(1− c)pi ·min(xi + yi, di)

s.t.



pi ∈ [pi,min, pi,max], ∀i ∈ I∑
j ̸=i vij − x0i ≤ 0, ∀i ∈ I

c(βi − βj) + αij − λij + γi = 0, ∀i ̸= j

γi(
∑

j ̸=i vij − x0i) = 0, ∀i ∈ I

λijvij = 0, ∀i ̸= j ∈ I

v ≥ 0, γ, λ ≥ 0,

(3.29)

where the variables {βi : i ∈ I} verify that

βi ∈


{0} if di − xi < yi

{pi} if di − xi > yi

[0, pi] if di − xi = yi

. (3.30)

Furthermore, the multipliers γ = (γi : i ∈ I) and λ = (λij : i ̸= j ∈ I) verify that

0 ≤ γi ≤ 2pmax and 0 ≤ λij ≤ 4pmax, (3.31)

where pmax = maxi∈I{pi,max}.

Proof. The equivalence between the bilevel problem (3.27) and the MPCC reformulation
follows as in the proof of Theorem 3.3. Thus, it is enough to show that problem (3.29)
coincides with the MPCC reformulation of problem (3.27).

Fix a pair of multipliers (λ, γ). As the objective function for the follower is non-differentiable
this time, the Fermat condition within the Karush-Kuhn-Tucker equations is given by the
inclusion 0 ∈ ∂L(v), where

L(v) =
n∑

i=1

cpi max{−xi − yi,−di}+
∑
i ̸=j

αijvij − ⟨λ, v⟩+
∑
i∈I

γi(
∑
j ̸=i

vij − x0i).

Furthermore, as all the involved functions in this formula are convex and continuous we can
compute the required subdifferential as a sum of separated subdifferentials (see Chapter 1).
If we call Γ(t) = ∂(max{0, ·})(t), it is clear that

Γ(t) =


{0} if t < 0

{1} if t > 0

[0, 1] if t = 0

.
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Therefore, by the convex subdifferential chain rule (see, e.g., [8, Chapter 16]),

∂

(
n∑

i=1

cpimax{−xi − yi,−di}

)
=

n∑
i=1

cpi∂ (max{0,−xi − yi + di})

=
n∑

i=1

cpiΓ(−xi − yi + di)∇v(−xi)

=
n∑

i=1

cpiΓ(−xi − yi + di)(ei• − e•i)

With this formula in mind, the inclusion 0 ∈ ∂L(v) is equivalent to the existence of a vector
β ∈ Rn such that βi ∈ piΓ(−xi − yi + di) for every i ∈ I, and such that

0 =
n∑

i=1

cβi(ei• − e•i) +∇

(∑
i ̸=j

αijvij − ⟨λ, v⟩+
∑
i∈I

γi(
∑
j ̸=i

vij − x0i)

)
.

The above vector equation can be equivalently written as the set of equations

0 = c(βi − βj) + αij − λij + γi, ∀i ̸= j.

where {βi : i ∈ I} are new variables verifying the inclusion (3.30).

The complementary equations are still the same as in (3.22). Thus, putting all together, we
conclude that the MPCC reformulation of (3.27) is indeed given by (3.29).

Finally, similar to the Wait-and-See case, we can prove the following:

• If γi = 0, then
λij = cβi − cβj + αij ≤ 2pmax, ∀j ∈ {1, . . . , n}.

• If γi ̸= 0, then the second complementary equation implies that x0i =
∑

j ̸=i v
∗
ij. Since

x0i ̸= 0, this also implies that there exists a value of j such that v∗ij ̸= 0, in which case
λij = 0 using the first complementary equation. Hence, we conclude that

cβi − cβj + αij + γi = 0 =⇒ γi = cβj − cβi − αij ≤ 2pmax,

and so we can compute

λij = cβi − cβj + γi + αij ≤ 4pmax, ∀j ∈ {1, . . . , n}.

Regardless the case, we conclude that

λij ∈ [0, 4pmax], γi ∈ [0, 2pmax],

finishing our proof.
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This proposition allows us to replicate the big-M strategy used with the Wait-and-See value,
regarding the complementarity constraints. In the Shared-Wait-and-See case, one last nu-
merical consideration involves the additional constraints used to tackle the βi terms. We
define now

C = pmax(max{d0,i(ωk) : i ∈ I, k ∈ J}+N0)

and two additional boolean variables,

si, ti ∈ {0, 1} , si + ti ≤ 1

so at most, one of them gets the value 1. Then, we add the following constraints:

βi ≤ pi,max(1− si) , xi + yi − di ≥ −C(1− si)

pi − βi ≤ pi,max(1− ti) , xi + yi − di ≤ C(1− ti)

xi + yi − di ≤ C(si + ti) , xi + yi − di ≥ −C(si + ti).

Here we have three feasible scenarios:

• If si = 1, then ti = 0, the first set of equations leads to βi = 0, and the other ones leave
xi + yi − di able to get positive values.

• If ti = 1, then si = 0, the second set of equations leads to βi = pi, and the other ones
leave xi + yi − di able to get negative values.

• If si = ti = 0, the third set of equations leads to xi + yi − di = 0, and the other ones
leave βi ∈ [0, pi,max].

The final problem we solve for each ζ = (y, d0) is then given by

max
n∑

i=1

(1− c)pi ·min(xi + yi, di)

s.t



pi ∈ [pi,min, pi,max], ∀i ∈ I

c(−βi + βj) + αij − λij + γi = 0, ∀i ∈ I, ∀j ̸= i

−Mzij ≤ λij ≤Mzij

−M(1− zij) ≤ vij ≤M(1− zij)

−Mwi ≤ γi ≤Mwi

−M(1− wi) ≤
∑

j ̸=i vij − x0i ≤M(1− wi)

xi = x0,i +
∑

j ̸=i vji −
∑

k ̸=i vik, ∀i ∈ I

βi ≤ pi,max(1− si), ∀i ∈ I

xi + yi − di ≥ −C(1− si), ∀i ∈ I

pi − βi ≤ pi,max(1− ti), ∀i ∈ I

xi + yi − di ≤ C(1− ti), ∀i ∈ I

xi + yi − di ≤ C(si + ti) ∀i ∈ I

xi + yi − di ≥ −C(si + ti), ∀i ∈ I

si + ti ≤ 1, ∀i ∈ I

zij ∈ {0, 1}, wi, si, ti ∈ {0, 1}, ∀i ∈ I

(3.32)
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Remark It is worth to notice that both MPCC reformulations (3.26) and (3.32) are mixed-
integer bilinear programming problems. While in general even the simplest bilevel program-
ming problems are NP-hard [12], mixed-integer bilinear problems can be handled efficiently
by some commercial solvers, like Gurobi [50]. Of course, the treatment of these problems is
heuristic, but with good results in practice.

3.4 Numerical Results
In order to compare the WS and SWS indicators and test the previously presented for-
mulations, we designed some numerical experiments with artificial data. We consider I =
{1, 2, 3, 4} (four connected zones) who simulate four different communes of the Metropolitan
Region of Chile (Santiago, Renca, Maipu, La Florida), m = 3 (low, normal and high demand
scenarios) and c = 0.75 (75% of the ride fare is taken by the driver). Equation (3.8), that
represents the connection between the ride price on each zone and the respective effective
demand, is considered with δ = 0.9, and the ride prices are delimited on each zone with
pi,min = 2.5 USD and pi,max = 12.5 USD. The costs αij are modeled considering the actual
distance between the four communes and the price of gasoline in May 2021, i.e. 1.10 USD.

Distances (km) 1 2 3 4
1 - 11 17 20
2 11 - 22 33
3 17 22 - 18
4 20 33 18 -

Table 3.2: Distances considered between zones.

A total fleet of N0 = 1000 unmatched drivers is considered. For every i ∈ I, we generated 10
uniformly distributed values h0,i in the [0, 1] interval. From those values, we built samples
for the nominal demand given by

d̄0,i = D0h0,i, ∀i ∈ I.

For each of these scenarios, we simulated a hundred samplings for the triangular distributed
nominal demand d0,i ∼ Tri(0.7d̄0,i, 1.3d̄0,i). These simulations are combined with the following
scenarios for the demand and the previously matched drivers:

1. We consider the aggregated demand coefficient D0 as a function of the total fleet of
unmatched drivers: that is, D0 = PN0, with P = 1, 2, 3, 4, 5. This leads to the con-
struction of the samplings for (d0,i : i ∈ I).

2. The quantity of previously matched drivers yj ∼ U(0, ȳ), with ȳ as a proportion of the
total fleet of unmatched drivers, ȳ = QN0, with Q = 1/4, 1/2, 3/4.

Therefore, we consider a total of 15 different scenarios as a combination of the values for
D0 and ȳ. Then, for each scenario, we consider 10 different nominal values for the vector d̄0
(given by the generated vectors (h0,j)j∈I), and for each of those nominal values, we compute
solutions for the WS and SWS reformulated problems for 100 different samplings of the pairs
(y, d0). Thus, for each scenario, we solved 1000 samples.
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For each sample of (y, d0), we solved problems (3.26) and (3.32) using Gurobi v9.1.2 as
solver [50], and Julia v1.6.2 as programming language [19], with the extra constraint of
having integer fluxes between the zones. Our results are displayed in Figures 3.2, 3.3 and
3.4, which are organized as follow: each figure represents 5 scenarios, given by a fixed value
of Q and the five values of P . The plotted values are the mean values from the 1000 samples
for the corresponding scenario: in blue dots, the values for the Wait-and-See problem (3.26);
in red triangles, the values for the Shared-Wait-and-See problem (3.32).
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Figure 3.2: WS and SWS Comparison: N0 = 1000, ȳ = N0/4
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Figure 3.3: WS and SWS Comparison: N0 = 1000, ȳ = N0/2
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Figure 3.4: WS and SWS Comparison: N0 = 1000, ȳ = 3N0/4
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As we can see in Figure 3.2, the SWS solution generates a greater total income for the
scenarios with ȳ = N0/4, especially in the middle scenarios, when the aggregated demand
coefficient does not reach extremely low or extremely high values. This behavior seems to
be the same as the floating population of previously matched drivers increases, that is in
Figures 3.3 and 3.4, where ȳ = N0/2 and ȳ = 3N0/4 respectively. It seems that the EV SI,
which is given by SWS −WS, is positive and has a concave behavior: when the aggregated
demand is too small or too large, the EV SI seems to be zero, reaching its maximum in a
middle value.

Another effect we observe in our results is that pricing along is not enough to modify the
behavior of the drivers. Their beliefs about the chances of getting a ride are also influential.
Thus the revealing of such information has an important effect in the final reallocation.

As an illustrative example, we show how different the WS and the SWS solutions are for
a particular scenario, given by one of the numerical experiments we did. In this scenario,
ȳ = 750 and P = 5, and the values for x0, y and d0 are the ones described in Table 3.3.

Zone x0 y d0
1 107 444.55 510
2 283 296.68 1945
3 399 420.20 1010
4 211 568.07 1535

Table 3.3: Particular scenario with ȳ = 750 and P = 5.

The WS and SWS solutions are presented in Figures 3.5 and 3.6, respectively. The miss-
ing edges in each graph have 0-flow. The value functions for each solution are ψ(y, d0) =
3935.4 USD and φ(y, d0) = 4635.4 USD.

1
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x1 = 107
p1 = 6.85

x2 = 283
p2 = 9.07

x3 = 93
p3 = 6.05

x4 = 517
p4 = 8.46

30
6

Figure 3.5: Graph with perfect infor-
mation (Wait-and-see solution). Op-
timal value: 3935.4 USD.
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x3 = 1
p3 = 6.94

x4 = 386
p4 = 9.54

107

330

68

Figure 3.6: Graph with shared in-
formation (Shared wait-and-see solu-
tion). Optimal value: 4635.4 USD.

We can appreciate that the revelation of information produces a huge change in the solution.
For this scenario, Zone 2 has a huge demand, but drivers simply do not know it since this
value is vastly different of what they usually observe. With the second reallocation (Figure
3.6), the ride-hailing company can increase the prices in zones 2 and 4.
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Chapter 4

Resilient Design of Eco-Industrial Parks

4.1 Overview of Eco-Industrial Parks Optimal Design Prob-
lems

An Eco-Industrial Park (EIP), as defined in [76], is a community of manufacturing and service
businesses located together on a common property. Member businesses look for environmen-
tal, economic, and social performance through collaboration in managing environmental and
resource issues. In this work, as it is usual in the literature, we model the EIP community
as a central authority in charge of the design of the park at a first stage, and of optimizing
the interactions within the members in the daily operation during its lifetime.

An example of EIP corresponds to the modeling of water exchange networks (see, e.g., [23,
102, 108] and the references therein). In this model, each participant of the EIP needs to
consume fresh water for its industrial processes, and to send away partially contaminated
water. In parallel, there is a central authority of the EIP, which is in charge of design the
park and operate it afterwards, following some criteria that reflects environmental, economic
and/or social benefits. The EIP design problem has already been studied under the setting of
deterministic optimization, as reviewed in [22]. In this section, we aim to describe the model
that we are going to use, in order to approach the design problem considering uncertainty.
Most part of the water exchange model we present here is well-known in the literature, and
we are based mainly on [102, 108].

During the last decades, uncertainty has gained major attention in the vast majority of
the engineering and scientific research fields due to the need to deal with both the market
volatility and the variation related to the operating conditions.

According to the works of Oberkampf et al. in [96], uncertainty can classified into three
main categories, namely aleatory uncertainty or variability, epistemic uncertainty or reducible
and error. The first one refers to inherent variation of the physical environment under
consideration while the second one is related to any lack of knowledge or information. Finally,
error is defined as a recognizable deficiency during the modelling or simulation phases that
is not due to the lack of knowledge. According to this definition, the fluctuation of input
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data or operating conditions, as in this research work, can be directly related to the so called
aleatory or stochastic uncertainty.

The approach to integrate uncertainty in modeling and simulation has been discussed in
detail in [95] and several applications with different methodologies are available in literature.
One of the possible applications in the process industry is design for flexibility that exploits
both deterministic [115] and stochastic flexibility [98] indexes for various applications such
as process units design [38] and optimal scheduling [37].

4.2 The Eco-Industial Park Bilevel Model
A water exchange network can be modeled as a simple directed graph G = (V, E⃗) with
some specific conditions. First, the set V = {0, 1, . . . , n} represents the n agents/enterprises
participating of the EIP, and 0 is an extra sink node. We will denote I = {1, . . . , n} to
describe the set of agents of the park, and so V = I ∪ {0}. The sink node 0 receives all the
residual water exiting the park as final waste. Every agent is connected to the sink node,
that is, (i, 0) ∈ E⃗ for each i ∈ I, and 0 is not connected back to any participant, that is,
(0, i) /∈ E⃗ for each i ∈ I.

1 2

3 4 5

0

Figure 4.1: Example of G = (V, E⃗) for 5 agents.

In this model, we consider flux capacities L = (Lij : i, j ∈ I) [ton/h] for the connections
between every pair of participants i, j ∈ I. For a pair i, j ∈ I, Lij is non-negative and it
determines how much water can be sent from i to j. We assume that the capacities of the
connections (i, 0) are unbounded. If Lij = 0, then (i, j) /∈ E⃗. Therefore, each EIP is uniquely
defined by its capacity vector L.

At the design stage, the design problem is to decide the vector L. When L is decided, we
implicitly solve the problem of deciding the connections in E⃗.

4.2.1 Physical operation model

After the design stage, for a given EIP with capacities L = (Lij), there is a set of operational
constraints that every participant i ∈ I must follow. These constraints must hold every day
of the park’s operation, during the whole lifetime horizon.

Each day, each enterprise i ∈ I produces a mass load of contaminant Mi [kg/h] that needs
to be diluted, considering a maximum inlet outlet concentration Ci,out [mg/L]. To do so,
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the enterprise can buy fresh water zi [ton/h] and receive partially polluted water from other
enterprises. We denote by Fki [ton/h] the water sent from participant k ∈ I to participant i.

We will assume that the operation of every participant is optimal, in the sense that their
maximal outlet concentration is always attained and no excess of fresh water is consumed
(see, e.g., [108, 102]).

Finally, after diluting Mi, participant i must send away the polluted water, by either sending
part of their polluted water to another participant j ∈ I, through the flux Fij [ton/h], or by
discharging residual polluted water to the sink node through the flux Oi [ton/h].

Also, for an exchange to be valid, every participant can accept polluted water with a maxi-
mum inlet concentration Ci,in [mg/L]. This constraint is given by the process description of
each participant. We assume that all inlet fluxes, including the fresh water, are mixed before
entering the process. Thus, the inlet concentration constraint is evaluated in the mixed inlet
flux.

Figure 4.2: Water Mixture Description for Agent i. Original Figure from [108].

To sum up, the operation variables of the park are given by: 1) the fresh water consumption
of each agent, given by the vector z = (zi : i ∈ I); 2) the exchange water matrix F =
(Fij : i ̸= j ∈ I); and 3) the discharge of each agent to the sink node, given by the vector
O = (Oi : i ∈ I). A valid operation is then given by values of (z, F,O) satisfying the
following operation constraints:

1. Water Mass Balance: for every participant i ∈ I, the total inlet flux must coincide
with the total outlet flux.

zi +
∑
k ̸=i

Fki =
∑
j ̸=i

Fij +Oi. (4.1)

At the sink node, there is no balance constraint.

2. Contaminant Mass Balance: For every participant i ∈ I, the total inlet contaminant
mass must coincide with the total outlet contaminant mass, that is,

Mi +
∑
k ̸=i

Ck,outFki = Ci,out

(
Oi +

∑
j ̸=i

Fij

)
. (4.2)

The mass is computed from the fluxes F thanks to the optimality assumption that the
outlet concentration is always attained.
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3. Inlet/Outlet Concentration Constraints: for every participant i ∈ I, we have that

∑
k ̸=i

Ck,outFki ≤ Ci,in

(
zi +

∑
k ̸=i

Fki

)
. (4.3)

The above inequality is the inlet concentration constraint expressed in terms of con-
taminant mass.

4. Positivity of Fluxes: all the fluxes in the EIP must be non-negative, that is,

Fij ≥ 0, ∀i ̸= j ∈ I and zi, Oi ≥ 0, ∀i ∈ I. (4.4)

5. Boundedness of exchanges: all the fluxes in the EIP must be within the capacities
given by the vector L, that is,

Fij ≤ Lij, ∀i ̸= j ∈ I. (4.5)

4.2.2 Economical constraints for participation

The central authority’s goal at the daily operation is to minimize the global fresh water
consumption. Nevertheless, this is not necessarily aligned with the individual participants’
interests, which is to minimize their operational costs. Hence, jointly with the already detailed
physical constraints, we must add economical ones for the daily operation of every participant,
considering their individual rationality ; a well-known principle : any enterprise will take part
of the EIP only if this participation is economically convenient (see, e.g., [61]).

Consider the operation of an isolated agent i ∈ I (i.e. no participation in an EIP). This agent
should operate by stand-alone conditions, where all the water needed to dilute the mass load
of contaminant should be bought fresh, and all the water waste should then be discharged
to the sink. This means that all the fresh water zi and the discharged waste Oi, are given by
the same following expression:

zi =
Mi

Ci,out

and Oi =
Mi

Ci,out

. (4.6)

Then, if we denote by c as the marginal cost for consuming fresh water, and by d the marginal
cost for the discharging water, the daily stand-alone operational cost is given by

SAOi(Mi) = (c+ d)SAi(Mi), (4.7)

with SAi(Mi) =
Mi

Ci,out

.

Now, let us consider the operation of an agent i ∈ I connected to other participants in an
EIP. Now, this agent has two additional options for its operation: it can partially replace
fresh water consumption by receiving partially polluted water from other participants, and it
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also can send some of its own water waste to other agents as partially polluted water. Hence,
the daily operational cost in this new scenario is given by

Costi(F, z) = e

(∑
j ̸=i

Fij +
∑
k ̸=i

Fki

)
+ dOi + czi, (4.8)

where e models a marginal costs for using the connections of the park, which is co-paid for
the sending and receiving participants.

After this discussion, we add an additional constraint for the model in order to tackle the
individual rationality of every participant, which ensures that the operational costs for every
agent are less than the stand-alone operation, that is,

Costi(F, z) ≤ (c+ d)SAi(Mi). (4.9)

This economic constraint was first introduced in [108] to validate models with a central
operation under the assumption of selfish agents. It was then used in [6] with the same
purposes. While here we are not necessarily considering selfish agents, constraint (4.9) is still
needed to model rational (cooperative) agents that follow the central operation.

4.2.3 Uncertainty and Two-stage model

In order to design the EIP, we have to consider a new element: the mass load production of
contaminant of every participant, ξ = (M1, . . . ,Mn) is uncertain at the design stage, because
each process has daily unpredictable variations. These variations are only revealed during
the daily operation of the EIP, and of course, they can be different every time. Thus, after ξ
is revealed, we can define for a given capacity vector L, the daily operation problem Q(L, ξ)
as

Q(L, ξ) =



min
(z,F )

Z :=
∑n

i=1 zi

s.t. zi +
∑

k ̸=i Fki = Oi +
∑

j ̸=i Fij

Mi +
∑

k ̸=iCk,outFki = Ci,out

(
Oi +

∑
j ̸=i Fij

)
∑

k ̸=iCk,outFki ≤ Ci,in

(
zi +

∑
k ̸=i Fki

)
Costi(F, z) ≤ (c+ d)SAi(Mi)

0 ≤ F ≤ L

z ≥ 0,

(4.10)

It is well known that ξ 7→ Q(L, ξ) is a measurable random function (see, e.g. [111, Chapter
2]) and therefore, its expected value is well defined.

For L and ξ fixed, we define X(L, ξ) as the feasible set of Problem (4.10), which is given by
linear constraints only. That is,
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X(L, ξ) :=


(z, F ) :

zi +
∑

k ̸=i Fki = Oi +
∑

j ̸=i Fij

Mi +
∑

k ̸=iCk,outFki = Ci,out

(
Oi +

∑
j ̸=i Fij

)
∑

k ̸=iCk,outFki ≤ Ci,in

(
zi +

∑
k ̸=i Fki

)
Costi(F, z) ≤ (c+ d)SAi(Mi)
0 ≤ F ≤ L
z ≥ 0.


(4.11)

This is the general setting of a two-stage problem: minimize a cost function, which depends
on the design variables L (decided here-and-now), taking into account the optimal operation
of every day, which is given by the parametric problem (4.10).

An option to solve this two-stage problem, is to obtain or define first an analytical expression
for Q(L, ξ). See, e.g.[38] for an application. However, this is not always possible. Instead,
we will solve this problem using the implicit expression of Q(L, ξ) as the optimal value of the
problem (4.10), leading to a stochastic optimization problem with recourse (see Chapter 2).
Using this tool, we can avoid the determination of the analytical expression for Q, and work
directly with the optimal value obtained in the daily operation stage.

Therefore, we can consider for the first stage, the minimization of an objective function of
the form

⟨κ, L⟩+R[Q(L, ξ)], (4.12)

where κ models investment costs and R is a operator that takes into account the stochasticity
of the model, and computes what is called a risk measure. These kind of measure aim to
characterize the uncertain value of Q(L, ξ) by two relevant characteristics, its mean (to
measure the expected outcome) and its risk or dispersion (to measure its uncertainty).

This kind of functions allow us to go beyond classic computations (such as the expected value)
and consider risk-averse design (see, e.g. [111, Chapter 6]), in order to get, for example, an
EIP that is resilient in some sense to difficult or undesired conditions during its lifetime.
Other works (see, e.g. [48]) discuss these ideas in different contexts.

4.3 Optimization Criteria: Performance vs. Resilience
Once defined Q(L, ξ), we can tackle the optimal design problem: to decide the best capacity
vector L, taking into account the uncertain operational cost-to-go Q(L, ξ).

On a first approach, is natural to consider the averaged fresh water consumption costs of the
EIP as the objective function to minimize. This correspond to expected value AE[Q(L, ξ)],
where A is the lifetime factor, and allows us to control some kind of “average day” on its
long-term operation. However, this does not necessarily give us an optimal EIP considering
other indicators, such as robustness in face of uncertainty.

Another possible approach is to design an EIP that admits good-enough operations in most
of the uncertain scenarios, for example by fixing an admissible level of improvement on the
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total expendings for the daily operation, and look for a configuration that allows us to get
the greatest possible number of scenarios where this improvement is achieved.

In order to quantify this goal, we introduce here what we call the (1 − α)-level of goodness
for an EIP as

Gα(L, ξ)
.
= Q(L, ξ)− αSA(ξ), (4.13)

where SA(ξ) =
∑

i∈I SAi(Mi) is the total net cost, if all the agents worked on stand-alone
operation. If Gα ≤ 0, it means that the EIP operation is better than the stand-alone one.
Hence, we define the resilience of the EIP as

Resα(L) = P[Gα(L, ξ) ≤ 0] (4.14)

In order to maximize the number of good scenarios, we can maximize the value of Resα(L)
(correspondingly minimizing −Resα(L)) as a part of the objective function. Using this idea
we can obtain more resilient designs, that ensure us that most of the scenarios work well for
the imposed improvement level.

Hence, an unifying formulation that considers the average fresh water consumption, the
resilient design and the investment costs, is given by:{

minL w1⟨κ, L⟩+ w2E[Q(L, ξ)]− w3Resα(L)
s.t. L ≥ 0

where w = (w1, w2, w3) ≥ 0 is a specific weight vector, which allows us to prioritize the
criteria. Therefore, our general two-stage problem is given by the design problem (4.17) in
the first stage, and the daily operation (4.10) in the second one.

Finally, at the constraints level in the design stage, similarly to the objective function con-
struction, we can add criteria for the design of the EIP. Consider for this, the following
models:

• Budget constraints: For a budget B ≥ 0 [$], a budget constraint is given by

⟨κ, L⟩ ≤ B (4.15)

we can control the total budget for the design of the EIP, combined with a minimization
of its resilience and/or its fresh water consumption.

• Minimal Desired Resilience: considering the definition (4.14), this can be also
considered as a constraint, writing for example

Resα(L) ≥ β. (4.16)

There’s a lot of work in this area, known as chance constraints optimization, where,
as discussed in Chapter 2, the value of a probability function is fixed over a desired
quantity.
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Therefore, we get the general problem,

P =


minL w1⟨κ, L⟩+ w2E[Q(L, ξ)]− w3Resα(L)
s.t. L ≥ 0

c1(⟨κ, L⟩ −B) ≤ 0

c2(Resα(L)− β) ≥ 0

, (4.17)

where c1, c2 ∈ {0, 1} will be used in order to eventually consider budget or resilience con-
straints, as recently defined.

4.4 Reformulation under SAA Method
Considering the elements detailed in Section 2.2.2, we can now reformulate our two-stage
problem using the Sample Average Approximation Method.

Given a sample {ξ1, ξ2, . . . , ξN} for the mass load production of contaminant, where each
ξm = (Mm

1 , M
m
2 , . . . , M

m
n ) for m = 1, . . . , N , we can compute the estimator for the

expected value of Q as

qN(L) =
1

N

N∑
m=1

Q(L, ξm), (4.18)

and given a realization {ξ̂1, ξ̂2, . . . , ξ̂N} of this sample, we can define

q̂N(L) =
1

N

N∑
m=1

Q(L, ξ̂m), (4.19)

which, as discussed before, is now a deterministic expression.

For Resα(L), as it is defined in (4.14) by a probability, it can also be written as an expected
value, considering the corresponding indicator function for Gα(L, ξ). Namely,

Resα(L) = P[Gα(L, ξ) ≤ 0] = E
[
1(−∞,0][Gα(L, ξ)]

]
.

Here, for a set A ⊂ R, 1A stands for the indicator function of A, that is,

1A(t) =

{
1 if x ∈ A.

0 otherwise.
(4.20)

Following the same previously considered realization of the sample, we can define in this case

R̂esα(L) =
1

N

N∑
m=1

1(−∞,0][Gα(L, ξ̂
m)]. (4.21)

With all of this in mind, we define the initial reformulation of the Problem (4.17)

P̂0 =


min
L

w1⟨κ, L⟩+ w2q̂N(L)− w3R̂esα(L)

s.t. L ≥ 0

c1(⟨κ, L⟩ −B) ≤ 0

c2(R̂esα(L)− β) ≥ 0

, (4.22)
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where c1, c2 ∈ {0, 1} will be used in order to eventually consider/remove budget or resilience
constraints, as defined in (4.15) and (4.16) respectively.

In order to compute the objective function for this problem, two main difficulties arise: we do
not have an explicit expression for Q(L, ξ̂m) at any realization ξ̂m, and the indicator functions
that define R̂esα(L) do not have good properties for optimization in general (they are not
convex nor continuous).

To avoid computation of Q(L, ξ̂m), we create variables (zm, Fm) that, a posteriori, will rep-
resent the optimal operation of the ecopark at the second-stage, given the realization ξ̂m.
Similarly, to avoid computation of 1(−∞,0][Gα(L, ξ̂

m)], we will include a binary variable ym
that represents the value of the indicator function. The idea is to formulate a mixed linear
problem that, a posteriori, will verify

Q(L, ξ̂m) =
∑
i

zmi and 1(−∞,0][Gα(L, ξ̂
m)] = ym.

For dealing with the computation of q̂N , we consider for every m ∈ [N ] = {1, . . . , N},
(zm, Fm) ∈ X(L, ξ̂m) and

Zm =
n∑

i=1

zmi .

The sum of every Zm will be used as a replacement of q̂N(L) in our final reformulations of
Problem (4.22). Now, in order to compute the indicator functions needed at the resilience
term, we define an additional binary variable y ∈ {0, 1}N that works as follows: our objective
function is reformulated as

f(L, y) := w1⟨κ, L⟩+
w2

N

N∑
m=1

Zm − w3

N

N∑
m=1

ym, (4.23)

where ym verifies, for every realization ξ̂m, the additional constraint

Gα(L,Z
m, ξ̂m) ≤ SA(ξ̂m)(1− ym), (4.24)

where Gα(L,Z
m, ξ̂m) = Zm − SA(ξ̂m), is an extension of the goodness function Gα that

evaluates how good is the operation (zm, Fm) for the realization ξ̂m. This works as follows:
if ym = 1, then (4.24) implies that Gα(L,Z

m, ξ̂m) ≤ 0, or in other words,

ym = 1 =⇒ 1(−∞,0][Gα(L,Z
m, ξ̂m)] = 1.

If ym = 0, then (4.24) implies that

Gα(L,Z
m, ξ̂m) ≤ SA(ξ̂m),

which becomes a non-active constraint, as we can see that

Gα(L,Z
m, ξ̂m) = Zm − αSA(ξ̂m)

≤ SA(ξ̂m)− αSA(ξ̂m)

= (1− α)SA(ξ̂m)

≤ SA(ξ̂m).
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Before stating our main result for this section, we define the following reformulation of prob-
lem (4.17), considering the additional constraint (4.24).

P̂1 =



min
L,z,F,y

w1⟨κ, L⟩+
w2

N

N∑
m=1

Zm − w3

N

N∑
m=1

ym

s.t. L ≥ 0

c1(⟨κ, L⟩ −B) ≤ 0

c2

(
1

N

N∑
m=1

ym − β

)
≥ 0

(zm, Fm) ∈ X(L, ξ̂m), ∀m ∈ [N ]

Gα(L,Z
m, ξ̂m) ≤ SA(ξ̂m)(1− ym), ∀m ∈ [N ]

y ∈ {0, 1}N

(4.25)

Theorem 4.1 If L∗ is an optimal solution of Problem (4.22), then there exists (z∗, F ∗, O∗, y∗)
such that (L∗, z∗, F ∗, O∗, y∗) is an optimal solution of Problem (4.25). Conversely, if (L∗, z∗, F ∗, O∗, y∗)
is an optimal solution of Problem (4.25), then L∗ is an optimal solution for Problem (4.22).
In both cases, one has that

w1⟨c, L∗⟩+ w2q̂N(L
∗)− w3R̂esα(L∗) = w1⟨c, L∗⟩+ w2

N

N∑
m=1

z∗m − w3

N

N∑
m=1

y∗m. (4.26)

Proof. If L∗ is an optimal solution of Problem (4.22), we can define, for each m ∈ [N ],
(z∗m, F ∗m, O∗m) as the optimal solution of the second-stage problem (4.10), for L∗ and the
realization ξ̂m. Then, one has that

Z∗m =
n∑

i=1

z∗mi = Q(L∗, ξ̂m).

We can also define y∗ = (y∗m) as

y∗m = 1(−∞,0][Gα(L
∗, Z∗m, ξ̂m)].

Then, it follows that

q̂N(L) =
N∑

m=1

Z∗m, R̂esα(L) =
1

N

N∑
m=1

ym,

and that constraint (4.24) is verified for each m ∈ [N ].

Let us suppose that Problem (4.25) had a different optimal solution, let us say (L̄, z̄, F̄ , Ō, ȳ).
As we discussed before, if ȳm = 1, then Gα(L̄, Z̄, ξ̂

m) ≤ 0, implying that

1

N

N∑
m=1

ȳm ≤ R̂esα(L̄).
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Moreover, 1
N

∑N
m=1 Z̄m ≥ q̂N(L̄). Thus, we can write:

w1⟨c, L∗⟩+ w2q̂N(L
∗)− w3R̂esα(L∗) = w1⟨c, L∗⟩+ w2

N

N∑
m=1

Z∗m − w3

N

N∑
m=1

y∗m

> w1⟨c, L̄⟩+
w2

N

N∑
m=1

Z̄m − w3

N

N∑
m=1

ȳm

≥ w1⟨c, L̄⟩+ w2q̂N(L̄)− w3Resα(L̄),

which is a contradiction, given that L∗ was an optimal solution for Problem (4.22). Therefore,
we conclude that (L∗, z∗, F ∗, O∗, y∗) is optimal for Problem (4.25), and moreover, (4.26) holds.

Conversely, if (L∗, z∗, F ∗, O∗, y∗) is an optimal solution of Problem (4.25), we claim that L∗ is
feasible for (4.22). Clearly, L∗ is nonnegative and it verifies the budget constraint whenever
c1 = 1. We only need to show that, whenever c2 = 1, L∗ also verifies the resilience constraint
R̂esα(L∗) ≥ β. Note that, we always have that

Gα(L
∗, Z∗m, ξ̂m) = Z∗m − SA(ξ̂m) ≥ Q(L∗, ξ̂m)− SA(ξ̂m) = Gα(L

∗, ξ̂m).

Then, constraint (4.24) yields that

1

N

N∑
m=1

y∗m ≤ 1

N

N∑
m=1

1(−∞,0]Gα(L
∗, Z∗m, ξ̂m) ≤ 1

N

N∑
m=1

1(−∞,0]Gα(L
∗, ξ̂m) = R̂esα(L∗).

Thus, since 1
N

∑N
m=1 y

∗
m ≥ β, the conclusion follows. The claim is then proved.

Now, we will show that optimality of (L∗, z∗, F ∗, O∗, y∗) entails that

1(−∞,0][Gα(L
∗, Z∗, ξ̂m)] = y∗m, ∀m ∈ {1, . . . , N}.

Indeed, if this were not the case, we would have that at least one j ∈ {1, . . . , N} such that
1(−∞,0][Gα(L

∗, Z∗, ξ̂j)] ̸= y∗j . That situation only happens if Gα(L
∗, Z∗, ξ̂j) ≤ 0 and y∗j = 0.

However, that is not possible, because in that case, we could define ỹ such that

ỹm =

{
y∗m if m ̸= j

1 if m = j
,

which is a contradiction, because (L∗, z∗, F ∗, O∗, ỹ) would be a better point that (L∗, z∗, F ∗, O∗, y∗).
Noting that for each m ∈ [N ], optimality of (L∗, z∗, F ∗, O∗, y∗) yields that Z∗m = Q(L∗, ξ̂m),
we deduce that (4.26) holds.

To finish, let us suppose that the optimal solution of Problem (4.22) is not L∗, but instead
is another solution, L̃. In this case, using our previous development, there would exist
(z̃, F̃ , Õ, ỹ) such that (L̃, z̃, F̃ , Õ, ỹ) would be feasible and, thanks to (4.26), it would be
a better solution of Problem (4.25). This contradicts the optimality of (L∗, z∗, F ∗, O∗, y∗),
finishing the proof.
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Remark Up to now, we do not know if Problem (4.22) is a good approximation of Problem
(4.17) in the case c2 = 1, that is, when resilience constraints are active. If one wants to apply
Theorem 2.26, a variational stability condition must be verified at the optimal solution of
Problem (4.17). In our case, we don’t know if such a condition holds. Thus, a theoretical
study is required, which is a perspective of this work. Nonetheless, the numerical results of
the next section are very promising in this line.

4.5 Numerical Experiments
In this section, we show our main numerical results using the SAA approach in order to solve
the two-stage problem of the EIP design and operation.

For our simulations, we consider water exchange networks between 4, 10 and 15 agents. For
each network, we have to define the inlet and outlet concentrations for every agent, and
a nominal value of contaminant mass loaded by each participant, M̄i. Using this nominal
values as means, we work with three different distributions (two of them symmetrical).

Figure 4.3: Beta Distribution, a = 2, b = 5.

Specifically, we consider:

1. Uniform Distribution, with range [a, b] = [0.9M̄i, 1.1M̄i].

2. Normal Distribution, with µ = M̄i and σ = 0.1M̄i.

3. Beta Distribution, centered in M̄i with a = 2, b = 5.

The Beta Distribution with these chosen parameters, has the shape seen in Figure 4.3.

Agent Cin [mg/L] Cout [mg/L] Nominal Mass Load (kg/h)
1 0 200 7.00
2 100 500 22.40
3 200 650 62.55
4 0 200 2.00

Table 4.1: First Study Case, n = 4 participants.
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Agent Cin [mg/L] Cout [mg/L] Nominal Mass Load (kg/h)
1 25 80 2.00
2 25 90 2.88
3 25 200 4.00
4 50 100 3.00
5 50 800 30.00
6 400 800 5.00
7 400 600 2.00
8 0 100 1.00
9 50 300 20.00
10 150 300 6.50

Table 4.2: Second Study Case, n = 10 participants.

Agent Cin [mg/L] Cout [mg/L] Nominal Mass Load (kg/h)
1 30 100 7.50
2 0 200 6.00
3 50 100 5.00
4 80 800 30.00
5 400 800 4.00
6 20 100 2.50
7 50 100 2.20
8 80 400 5.00
9 100 800 30.00
10 400 1000 4.00
11 30 60 2.00
12 25 50 2.00
13 25 75 5.00
14 50 800 30.00
15 100 900 13.00

Table 4.3: Third Study Case, n = 15 participants.

The smaller network is considered in order to compare the results for this approach, with the
one proposed by [117] on their previous work. The bigger academic examples considered are
the following, based on EIPs suggested by [108] and [6] respectively.

The marginal costs c = 0.13 [USD/ton] for consuming fresh water, d = 0.22 [USD/ton] for
the discharging water and e = 0.01 [USD/ton] for using the connections of the park, are
considered for every simulation.

All the simulations where implemented in a computer with an Intel Core(TM) i7-10700F
processor, running at 2.90GHz, with 16 GB of RAM, running Windows 10 Pro; with Julia
v1.6.1 programming language, using Gurobi v9 as solver.

69



4.5.1 Sensitivity Analysis for the Sample Size

First, we perform a sensitivity analysis of the sample size N , in order to choose a value that
ensures a good optimality gap, without increasing too highly the CPU time. For this, we
consider different values of N , considering the Beta distribution for every simulation, in order
to get a comparable set of data.

Sample Size N CPU time (s) Opt.Gap (%)
500 3.64 0.09
1000 14.07 0.08
2000 29.85 0.05
3000 45.49 0.04
4000 66.68 0.04
5000 80.34 0.03
10000 178.75 0.02
20000 419.22 0.02
30000 662.95 0.02

Table 4.4: n = 4 agents, increasing sample size, batch size = 30.

Sample Size N CPU time (s) Opt.Gap (%)
500 954.97 0.07
1000 5424.30 0.05
2000 10735.23 0.05
3000 16145.14 0.04
4000 21295.41 0.03
5000 26741.33 0.03
10000 135487.75 0.02
20000 248945.71 0.02
30000 389463.57 0.01

Table 4.5: n = 10 agents, increasing sample size, batch size = 30.

As we can see considering the two smaller EIPs, fixing N = 5000 gives us a good compromise
between solution quality and CPU time.

4.5.2 Sensitivity Analysis for α

In this part, we will present a sensitivity analysis for α, which measures the desired costs
reduction comparing to the stand-alone global operation of the EIP (see equation (4.13)).

It is clear that, if we demand a higher costs reduction, the obtained resilience will decrease,
because less tested scenarios will achieve the desired level. In order to show this, we analyze
the problem of maximizing resilience, considering cost penalization, for different values of α.
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α Resα (%)
0.78 0.00
0.79 0.06
0.80 0.98
0.81 7.13
0.82 26.94
0.83 56.99
0.84 89.21
0.85 98.86
0.86 99.99
0.87 100.00

Table 4.6: n = 4 agents, increasing α, batch size = 30.
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Figure 4.4: Obtained Resilience for EIP, n = 4, increasing desired Cost Reduction

α Resα (%)
0.64 0.12
0.65 3.00
0.66 15.36
0.67 47.86
0.68 77.86
0.69 94.93
0.70 97.99
0.71 99.21
0.72 99.86
0.73 100.00

Table 4.7: n = 10 agents, increasing α, batch size = 30.

We see that, around the value α = 0.83 for the smaller EIP, we have a very sensible change for
the obtained resilience. This value differs, according to the studied EIP, as we have α = 0.68
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Figure 4.5: Obtained Resilience for EIP, n = 10, increasing desired Cost Reduction

α Resα (%)
0.60 0.06
0.61 0.85
0.62 1.03
0.63 6.29
0.64 28.71
0.65 62.86
0.66 84.99
0.67 92.87
0.68 98.13
0.69 98.45

Table 4.8: n = 15 agents, increasing α, batch size = 30.

for the n = 10 EIP critical value and α = 0.65 for the bigger one.

4.5.3 Efficiency vs. Resilience

In this section, we compare the results of solving the following two different versions of (4.17).

P1 =

{
minL w1⟨κ, L⟩+ w2E[Q(L, ξ)]
s.t. L ≥ 0

(4.27)

P2 =

{
minL w1⟨κ, L⟩ − w3Resα(L)
s.t. L ≥ 0

(4.28)

Problem (4.27) corresponds to (4.17) considering w3 = 0 and (4.28) corresponds to (4.17)
considering w2 = 0. This allows us to compare the efficiency and the resilience as optimization
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Figure 4.6: Obtained Resilience for EIP, n = 15, increasing desired Cost Reduction

criteria.

Both experiments consider penalization over the investment costs term. By doing this, the
investment costs are not too high, and actually constructing connections is feasible.

The results are given in the following tables, for the n = 4 and n = 10 EIPs.

Mi distrib. α Q(L, ξ) [ton/h] Resα (%) EIP size Opt.Gap (%) CPU time (s)
Beta 0.83 160.61 56.90 84.09 0.03 80.24

Uniform 0.83 154.03 59.26 75.35 0.02 79.78
Normal 0.83 154.01 55.71 82.63 0.03 80.78

Table 4.9: n = 4 agents, penalized costs and efficiency, sample = 5000, batch size = 30.

Mi distrib. α Q(L, ξ) [ton/h] Resα (%) EIP size Opt.Gap (%) CPU time (s)
Beta 0.83 162.44 61.11 63.15 0.04 289.08

Uniform 0.83 155.26 64.36 53.53 0.03 275.64
Normal 0.83 156.05 58.95 62.90 0.03 267.95

Table 4.10: n = 4 agents, penalized costs and resilience, sample = 5000, batch size = 30.

Mi distrib. α Q(L, ξ) [ton/h] Resα (%) EIP size Opt.Gap (%) CPU time (s)
Beta 0.83 175.31 100.00 164.27 0.02 26741.33

Uniform 0.83 175.34 100.00 164.36 0.03 25465.91
Normal 0.83 168.56 100.00 165.33 0.02 24712.66

Table 4.11: n = 10 agents, penalized costs and efficiency, sample = 5000, batch size = 30.

4.5.4 Budget Constraints

In this part, our goal is to compare the EIPs designs, when budget constraints are considered,
instead of having the investment costs on the objective function. In particular, we are
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Mi distrib. α Q(L, ξ) [ton/h] Resα (%) EIP size Opt.Gap (%) CPU time (s)
Beta 0.83 217.37 100.00 138.75 0.02 90549.33

Uniform 0.83 208.92 100.00 139.36 0.02 89447.31
Normal 0.83 208.44 100.00 141.33 0.03 91290.13

Table 4.12: n = 10 agents, penalized costs and resilience, sample = 5000, batch size = 30.

interested in analyze the obtained resilience in two cases: when maximizing efficiency, or
maximizing resilience.

In the following tables, we alter the optimal budget obtained in the previous simulations by
a percentage of itself, varying from 80% to 120%.

Budget Resα (%)
80% 45.48
90% 54.70
95% 56.82
100% 57.06
105% 57.06
110% 57.10
120% 57.10

Table 4.13: n = 4 agents, α = 0.83, increasing budget.

Budget Resα (%)
80% 66.59
90% 74.61
95% 75.32
100% 77.17
105% 77.19
110% 77.22
120% 77.23

Table 4.14: n = 10 agents, α = 0.68, increasing budget.

Budget Resα (%)
80% 53.52
90% 59.16
95% 60.33
100% 62.77
105% 63.19
110% 63.24
120% 63.31

Table 4.15: n = 15 agents, α = 0.65, increasing budget.
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4.5.5 Resilience Constraints

In this last analysis part, our goal is to compare the EIPs designs, when resilience constraints
are considered. Particularly, in this case we will be interested in minimizing the investment
costs, without maximizing the efficiency of the EIP.

For the maximum efficiency EIP in the n = 4 case, we have that the obtained resilience for
α = 0.83 is Res0.83 = 61.6%, with an investment of 89.1. Considering only the minimization
of investment, with increasing asked resilience, we get the following results

Resα (%) Budget
53 53.44
54 54.96
55 56.47
56 57.78
57 58.65
58 59.29
59 59.84
60 60.35

Table 4.16: n = 4 agents, α = 0.83, increasing β.

4.6 Discussion of the results
The results of Section 4.5.2 shows us that, when dealing with resilience, there exists some kind
of critical value for the parameter α, at which is not possible to build connections between
participants that gets us the desired cost reduction.

Looking at the results obtained in Section 4.5.3 we can observe that designing a resilient EIP,
instead of designing a more efficient one, is cheaper in terms of investment costs. This makes
sense, as we ask for a minimum of good enough scenarios instead of trying to maximize the
efficiency of the whole EIP when dealing with resilience instead. Nevertheless, the CPU time
is higher (in between 3 or 4 times) when dealing with this indicator. The increase in CPU
time is expected, since Problem 4.28 is more difficult due to the integer variables y ∈ {0, 1}N
used to model the risk measure R̂esα(L).

According to the experiments developed in Section 4.5.4, we see that, past from the total
reference budget, we are not able to increase significantly the obtained resilience. For every
value of α, we can reach a limit resilience, not depending on the considered budget to do so.
At the network configuration, we see that, adding more budget to the simulations, gives us
bigger, but not more resilient EIPs.

From our point of view, the most important results are the ones obtained in the last set
of experiments, as they seem as a very promising result: minimizing investment but asking
for a desired level of resilience, gives us important investment deductions, as we will further
discuss in the Conclusions of this Thesis.
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4.7 Future Work
From this starting point, a lot of work can be done at designing eco-industrial parks that can
be able to endure different uncertain scenarios, such as the developed here, where resilience
is defined as an indicator that measures the capability of an EIP to have a minimum level of
good operating scenarios, looked from an economical point of view.

As a first natural extension of this work, we could include more uncertainty to the model,
adding to the operational time horizon, a probability that, at the end of any given period
(for example, yearly), a number of participants could leave the EIP. It would be desirable
that, given this event, the ecopark could still maintain its operations going.

Another extension, considering the works on EIP design by [108, 6], non-cooperative models
can be added to the model, e.g., blind-input, control-input or de-regulated exchange markets.
In this last scenario, adding decision uncertainty between the participants adds a challenging,
but also interesting component.
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Conclusions

During the development of Chapters 1 and 2, we focused our attention on the main tools that
we needed to work with Bilevel and Stochastic Optimization, this being: Bilebel Program-
ming, Two-Stage Problems and Value of Information in this context. The first important
point was to enunciate and study the theorems and previous results that we needed to apply
in two different problems: the Allocation Problem in Ride-Hailing Platforms (Chapter 3),
studying the value of sharing information between enterprises and drivers; and the Resilient
Design of Eco-Industrial Parks (Chapter 4) using the Two-Stage programming approach, in
order to model the EIP design and daily operation. In both problems, we tackle uncertainty
as a very important property of the studied problems.

In Chapter 3, we presented a new indicator, the Expected Value of Shared Information, that
allows us to measure the value of sharing information in the context of Stackelberg games.
This indicator is relevant in problems where both agents, the leader and the follower, must
make their decisions prior to some uncertain event.

As an application, we studied the value of sharing information in the context of ride-hailing
companies, considering the demand as the uncertain information. We studied the problem
of allocation: prior to the reveal of the demand, the ride-hailing company (leader) decides
the spatial prices, while the unmatched drivers (the followers) decide their allocations.

Our numerical results, coming from simulations with randomly generated data, strongly
suggests that sharing information is beneficial for the leader. This conclusion is coherent with
what is observed nowadays, where ride-hailing companies provide some demand information
to the drivers beyond spatial pricing.

As a first work dealing with this new indicator in the context of ride-hailing companies,
several simplifying assumptions where made: 1) we studied only the one-stage problem; 2)
we simplified the drivers’ equilibrium problem into a single welfare optimization problem; 3)
we worked with artificially generated data; and 4) we assumed that the leader had access to
a perfect forecast of the demand. Motivated by the promising results we obtained here, we
aim to improve all these aspects in future works.

In Chapter 4, the results of the last set of experiments are, from our point of view, the
most important ones. Here we can conclude that, minimizing investment but asking for a
desired level of resilience, we can obtain investment deductions up to a 25%, only losing 1%
of resilience.
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Figure 4.8: EIP at Resα = 56%
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Figure 4.9: EIP at Resα = 59%
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Figure 4.10: Eff. EIP, Resα = 61.6%

Considering bigger EIPs, the results are still promising, considering that the investment cost
is still reduced by at least 25% in both examples, only losing 2% of resilience. At the n = 10
and n = 15 EIPs, we also need less connections between participants (downgrade from 40 to
32 at the n = 10 EIP, and from 66 to 57 at the n = 15 EIP).
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Figure 4.11: Most Efficient n = 10
EIP, Resα = 77.17%
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Figure 4.12: n = 10 EIP at Resα =
75%, minimizing investment.
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