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POR: TOMÁS ANDRÉS DE LA SOTTA KRAUSE
FECHA: 2023
PROF. GUÍA: JOSÉ M. SAAVEDRA RONDO

ASEGURAMIENTO DE CALIDAD RADIOLÓGICA EN IMAGENOLOGÍA
DIGITAL EN RAYOS-X DE TÓRAX

Casi el 30% de las radiografías tomadas en todo el mundo nunca son vistas por un radiól-
ogo cualificado, lo que supone una enorme disminución en la salud de las personas. Este
valor aumenta constantemente con el tamaño de la población, y debe ser contenido.

La inteligencia artificial se ha acercado a este problema de varias maneras, pero aún carece
de la capacidad de mejorar la calidad y la eficiencia del trabajo del médico radiólogo.

En el siguiente documento, desarrollamos un sistema basado en IA para determinar los
estándares de calidad en imágenes de rayos X de tórax. Para ello, estudiamos los están-
dares médicos de calidad de imagen, determinando un sistema de garantía de calidad en dos
pasos. Dado que la calidad de la imagen médica de rayos X de tórax depende de las estruc-
turas semánticamente visibles presentes en la cavidad torácica, primero estudiamos múltiples
variaciones de modelos U-Net para la segmentación estructural, seguido de la evaluación de
técnicas de image processing basadas en la pre-segmentación de órganos para la determi-
nación de la calidad.

Dentro del estudio de modelos de visión por computador, se ha demostrado que las capas
atencionales mejoran el rendimiento, permitiendo al modelo “elegir dónde ver”, aumentando
la eficiencia y reduciendo el número de imágenes necesarias en el momento del entrenamiento.
Para ello, se estudian varias arquitecturas estado-del-arte de segmentación de rayos X de
tórax, basadas en U-Net y modificadas con mecanismos attencionales, presentando técnicas
convolucionales, atencionales y mixtas para la resolución del problema propuesto. Estos
modelos son entrenados y evaluados sobre cuatro datasets públicos independientes, siendo
estos, los datasets correspondientes a: Montgomery County, Shenzhen Tuberculosis, JSRT y
VinDr-RibCXR.

Para la determinación de la calidad radiológica, se aplican algoritmos de image processing
a las segmentaciones dadas, los cuales permiten la definición de ciertas métricas de calidad
en cada una de las áreas definidas.

Como resultado, se observa una mejora en el rendimiento, precisión y robustez de los
modelos de segmentación presentados, junto con una disminución en el número de imá-
genes necesarias para entrenar estos sistemas. Esta mejora se observa en hasta un 6,4% de
incremento en el valor DICE respecto al modelo U-Net entrenado en 222 imágenes de entre-
namiento y un 2,9% de incremento para 610 imágenes, mostrando resultados aceptables en
la calidad, siendo 48%, 23% y 22% de accuracy para las categorías respectivas.
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Almost 30% of world-wide taken x-ray images are never seen by a trained radiologist,
causing a huge reduction in people’s health. This value is steadily incrementing with popu-
lation size, and must be contained.

Artificial intelligence has approached this problem in several ways, yet lacking the capacity
to improve the quality and time-efficiency of radiologist’s work.

In the following document, we develop an AI based system to determine the quality stan-
dards for chest x-ray imaging. For this purpose, we study the medical standards for image
quality, determining a two-step quality assurance system. As medical chest x-ray image
quality depends on the semantically visible structures present in the thoracic cavity, we first
study multiple U-Net model variations for structural segmentation, followed by evaluating
organ-segmented based image processing techniques for quality determination.

Within the study of computer vision models, it has been shown that attentional layers
improve their performance, allowing the model to “choose where to see”, increasing efficiency
and reducing the number of images needed at the time of training. For this purpose, several
U-Net based state-of-the-art x-ray architectures are studied and modified with attentional
mechanisms, presenting convolutional, attentional and mixed techniques for the resolution of
the proposed problem. These models are trained and evaluated on four independent public
datasets, being these, the datasets corresponding to: Montgomery County, Shenzhen Tuber-
culosis, JSRT and VinDr-RibCXR.

For the determination of radiological quality, image processing algorithms are applied to
the given segmentations, which allow the definition of certain quality metrics in each of the
defined areas.

As a result, an improvement in the performance, accuracy and robustness of the presented
segmentation models is observed, together with a decrease in the number of images required
to train these systems. This improvement is observed in up to a 6.4% increase in the DICE
value over the U-Net model in 222 training images and a 2.9% increase for 610 images, show-
ing acceptable results for quality assurance of 48%, 23% and 22% accuracy for each of the
quality assurance categories.
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Una vez que la tormenta termine, no recordarás cómo lo lograste, ni cómo
sobreviviste. Ni siquiera estarás seguro de si la tormenta ha terminado

realmente. Pero una cosa sí es segura. Cuando salgas de esa
tormenta, no serás la misma persona que entró en ella.

De eso trata la tormenta

Haruki Murakami
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Chapter 1

Introduction

1.1. Introduction
Medical imaging is an area of medicine that focuses on image-based diagnosis. This area
has allowed physician to improve diagnosis and treatments through non-invasive procedures.
Some popular medical imaging modalities are X-ray projection radiography, X-ray computed
tomography (CT), magnetic resonance imaging (MRI), nuclear imaging like SPECT and
PET, fluoroscopy, among others [1].

X-ray imaging is considered the oldest medical imaging modality that appeared after the
Roetgen’s discovery at the end of the 19th century [2]. The X-ray procedure is simple and
provides images directly, without any reconstruction or costly methods.

In this vein, chest X-ray imaging is the most common image-based means for probing
pulmonary disorders. For instance, tuberculosis, tumors, pneunomia, fibrosis and pulmonary
nodules are prime examples of disorders that can be detected by a chest X-ray procedure.
According to Broader [3], chest X-ray is one of the most cost-effective and non-intrusive
imaging examination. Through a chest X-ray physicians can inspect organs like heart, lungs,
ribs, bones or even blood vessels.

Although X-ray is the lowest-cost imaging, its capabilities are far from low when studied
by a trained radiologist, giving the possibility of detecting complex diseases with a fast and
almost cost-free exam. This allows us to enhance patient’s experience, reducing time, cost
and, over all things, complex machinery, being able to get good results in almost every med-
ical center conditions.

Regrettably, this type of exam is considerably overused, presenting over 5 million chest
x-ray images taken in Chile the year 2017, being approximately 27% of the country’s pop-
ulation. Considering that in 2017 there were around 1,100 expert radiologists, the problem
arises. In world-wide considerations, around 30% of x-rays are never seen by a trained radi-
ologist, which causes a decrease in people’s health due to thousands undetected conditions.

The principle of X-ray images is based on the level of absorption of the organs when a
X-ray beam passes through them. Dense organs present more absorption levels than lesser
dense ones. Thus, high-density structures, like bones, appear white in the X-ray image, while
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soft organs, like lungs, appear in a gray color scheme [4].

Although an X-ray examination is a quick procedure, it requires an expert to interpret the
image. The inter-patient variability and the fuzzy delimitation of organs makes the image
interpretation a difficult task. In addition, the workload of experts can increase the chance
of error during this process.

Considering that the images are taken by a manually-configured machine on unprofes-
sional x-ray model patients, the quality of the outputted image can be considerably affected.
Low quality images can reduce the inner-chest visibility as well as compressing the organs,
leading to wrong diagnosis or hidden conditions that remain unseen.

A critical stage in image analysis and quality assurance is image segmentation. The goal
of segmentation is to delimit different meaningful parts of an image at a pixel-size level. In
the case of medical images a segmentation method should delimit organs, bone tissues and
vascular structures [2]. As a result of structural x-ray segmentation, physicians are able to
provide more accurate diagnosis or efficient radiotherapy plans. In fact, lung segmentation
in chest x-ray imaging is critical for cancer diagnosis [5].

Computational advances have made possible to generate new solutions for the adversities
mentioned above, especially in matters related to artificial intelligence and image applications;
which currently work as an assistant for the specialist both in the scientific area (investigating
causes and analyzing results) and the medical area (when supporting diagnoses and treat-
ments). In this sense, the significant advances in deep learning and computer vision, have
allowed to find more precise and valuable characteristics, and patterns, that provide clues or
conclusions about an image’s context.

In the extent of this document, we will study different U-Net variants for determining
clavicles, ribs, heart and lung segmentation masks, with the objective to define a system that
provides quality assurance advice for digital chest x-ray imaging.

1.2. The Quality Assurance Problem
Medical image quality assurance is not as simple as traditional image quality assessments.
This complexity is due to the importance of image semantics in the medical field, leaving
the remaining factors; such as contrast, saturation, focus, color, etc.; in a not less valuable
second plane.

As we work specifically with ambulatory chest x-rays, it is really important to know the
difference and characteristics of this specific imaging segment.
First of all, ambulatory imaging is based on the assumption that the patient is able to be
positioned in what is called bipedestation, or standing in a more common and, almost, over-
simplified manner. This assumption is crucial for this document, because most of the organs
inside our body are made from soft tissue, which deforms differently, depending on the pa-
tient’s position. This natural deformation could, for example, show signs of cardiomegaly;
the enlargement of the heart; in posteroanterior chest x-ray imaging on lying patients.
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(a) Severe case of sco-
liosis

(b) Pacemaker (c) External chest
electrodes

(d) Sternal wiring

Figure 1.1: Medical artifacts in chest x-rays

The second ambulatory assumption consists on non-artifacts carrying patients. These ar-
tifacts consist, principally, on sternal wires, pacemakers, electrodes and other medical devices.

Finally, the third ambulatory assumption consists on a reduced condition list, as there
are many conditions that will never be present in ambulatory cases due to their complexity
or the urgency. For this point is important to highlight that emergency room cases are not
considered ambulatory in medical terms, so the system will never encounter some severe sit-
uations.

1.2.1. Quality Assurance Factors
In medical imaging, there are three main factors for determining quality: the radiation
penetration, the patient rotation and the lung insuflation.

1.2.1.1. Radiation Penetration

One of the most tackled problems in AI for medical image quality assurance is the radiation
penetration or image hardness. This problem is the simplest of the three presented in this
section, because is highly related to the classical contrast-ratio and image-histogram quality
problem.

Figure 1.2: Correctly Penetrated X-Ray Visualization
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For the extent of this document, we will look to the radiation penetration problem as the
number of thoracic vertebrae visible behind the heart’s shade, as detailed by the radiologists
team associated with RetinaRX. Three to four vertebrae are considered ideal for classical
chest x-ray images, as shown in fig. 1.2.

1.2.1.2. Patient Rotation

The patient rotation is one of the key aspects in radiological quality assurance. It ensures
that the image projection is correctly positioned in the frontal plane, reducing at it’s max-
imum, the visible organs superposition. As an ambulatory chest x-ray patient has to be
standing, we study only the longitudinal (vertical) axis rotations. The other two rotational
axes imply the patient inclined or laying down, both of which cases are excluded in the base
assumptions of this document.

Figure 1.3: Slightly Rotated Image Visualization

For determining the rotation of an image, it is key the study of the clavicles themselves. As
there are various patients presenting scoliosis or curving, the rotation is studied over a single,
fixed and invariant point: the clavicle distance from the medial plane. This metric measures
the distance relationship between each clavicle’s head and the medial plane, described as the
division of both gaps. A correctly rotated image should present this metric in the vicinity of
1. Larger or smaller numbers outside of a tolerated threshold are to be considered rotated
and should be retaken.
The medial plane can be determined by the vertebral column, the sternum, the ribs or the
whole thoracic cage. In fig. 1.3, the medial plane is determined by the column itself. Cases
of scoliosis are complex situations for this medial plane determination way.

1.2.1.3. Lung Insuflation

The amount of air holded by the patient during the image acquisition is called lung insu-
flation and determines the amount of compression in the thoracic cage. If the lungs are
overinsuflated, the organs will be compressed against each other. If the patient underinsu-
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flates his lungs, the thoracic cage will be shrinken down, resulting in the same problem as
overinsuflation: compression.

For determining the lung insuflation over an image, the proceeding is quite simple: count-
ing visible ribs. Human beings have around 12 ribs in each thorax side, 10 true ribs that
converge in the sternum, and 2 floating ribs that are simply linked to the vertebral spine.
This set of ribs is medically subdivided in two sections: anterior ribs and posterior ribs. An-
terior ribs count a total number of 10 different bone structures, all linked to sternum. This
set of ribs correspond to the frontal section of the thoracic cage, while divided by the coronal
plane. The posterior ribs are exactly the opposite, being the section of ribs to the back of the
same plane. As posterior ribs consider the two floating ribs, the number of total posterior
ribs adds up to 12, two more than the anterior case.

(a) Correctly Lung-Insuflated
Image

(b) Anterior and Posterior Ribs
Manually Segmented

Figure 1.4: Lung Insuflation Visual Representation

An ideal mark for insuflation quality assurance consists on counting 6 visible anterior ribs
or 10 posterior ribs with the same characteristics, as shown in figure 1.4.

1.3. The Architectural Background
In the extent of this section, we will develop the basic knowledge around the theory used for
developing this document. It is important to note that this section is not an introduction
to deep learning, but is a simple, reduced and explained background for understanding the
basic details of the used architectures.

1.3.1. A Brief Explanation of Deep Learning
It is usually misunderstood the way machine learning works, thinking it similes a human
brain, having a curiously mystic and magical idea over them. Lamentably, this is not the
way AI systems work, so lets break the idea on how they do work.
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1.3.1.1. Linear Layer

One of the first models called neural are basically what is known today as Multi-Layer
Perceptron or MLP. These models are basically a set of learnable parameters, or weights,
that ponderate the input values, independently, to create a determined-size output. For
example, given an input vector of size 3 and a desired 2-size output vector, we define the
MLP layer as the set of weights A given as shown in equation 1.1.

A = {a1
1, a2

1, · · · , a3
2} (1.1)

This weights add and multiply each point of the input vector for getting each output. Note
that we defined the names of the weights with an subscript, defining the input parameter
to which it multiplies, and a superscript revealing the output element where added. This
application is shown in equation 1.2, where the input vector is a 3-size vector defined as
[x1, x2, x3].

output =
[
v1

v2

]
=
[
x1 · a1

1 + x2 · a1
2 + x3 · a1

3
x1 · a2

1 + x2 · a2
2 + x3 · a2

3

]
(1.2)

To simplify the notation, we redefine A as a matrix, by arranging the values as shown in
equation 1.3

A =



a1

1 a2
1

a1
2 a2

2
a1

3 a2
3

 (1.3)

Using this notation, we can re-write the output vector V in a matrix equation as shown
in 1.4, where V is the output vector, X the input vector and A the redefined weight matrix.

V = X · A (1.4)

This linear operation allows to have learnable parameters, which correspond to the matrix
A. The problem behind this operation is that most of the tasks are not linear, so they can’t
be modelled by this solely equation. For resolving this issue, a non-linearity function f is
added, so it transforms a linear space to a non-linear space. We also add a bias vector B,
that corresponds to another set of weights that adds to the output, giving more information
to the layer. The final non-linear layer, called Fully Connected (FC), is shown in equation
1.5. A stack of consecutive FC layers is usually called Multi-Layer Perceptron (MLP1).

V = f(X · A + B) (1.5)

1.3.1.2. Learning? No, Optimization

Having the mathematical structure of a simple network, the question of how it learns it’s
parameters is implicitly posed. As said in prior sections, the model does not learn magically,

1 MLP refers to a network type built only by a set of FC layers, with their corresponding non-linearities,
being a specific case of Feed-Forward Networks
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instead it solves the Descending gradient Problem, a method of mathematical optimization
for unknown vector spaces.
The idea behind the problem is to determine the best set of weights possible for resulting in
the lowest error attainable. Usually, a lot of mathematical problems can be modelled as a
function or an equation, but, regrettably, some of them are not possible to approach in this
manner.
For this method we will use a simple analogy. Imagine you want to get to the lake, near
the local hill in where you are vacationing, with your eyes closed. As you are incapable of
seeing, you decide to walk down the hill, hoping the lake will be in the bottom-most part of
it. So the first thing you do is walk a single step towards any direction to see if you are going
upwards or downwards. If you are going upwards, you turn around and try another step in
that new direction. If you are going downwards, you take another step in that direction and
evaluate again. This way you know that, in each step, you are assuring you continue to go
down the hill, hoping you get to your desired place.
As seen in the analogy, the gradient descent algorithm does exactly the same: it determines
the most-decreasing direction via the gradient operator, and takes a step in that direction.
In this case, the step size is determined by a parameter called learning rate. This way,
gradient descent can be defined as shown in equation 1.6, where the function F represents
the following layers parameters.

Xn+1 = Xn − lr · ∇F (Xn) (1.6)

To determine the gradient, the Loss Function is a defined metric which determines how
far the result is out from the desired output. As the model is composed as a stack of layers,
the gradient in each of them depends on the loss function’s derivative, the non-linearities,
and latter layer’s weights.

1.3.2. Convolutional Neural Networks
Linear layers require at least n × m parameters, where n is the size of the input vector and
m, the size of the output, considering no use of bias. If we consider a color image of 512×512
pixels, an output of size 1024 and an standard float32 codification, each layer will have around
805M parameters, weighting around 3GB of memory without compression. A single layer of
3GB is extremely heavy, specially considering that models, today, often present more than
50 layers in depth. For this reason, in image modelling, one of the most used architectures
is the CNN or Convolutional Neural Network, which is constructed over low-weight layers,
called Convolutional Layers.
Convolutional layers are based over a moving window concept, allowing a single, and small,
matrix to move around the whole image, weighting every single pixel without the need of a
high parameter count.

1.3.2.1. The Convolution Layer

Based over the concept of the mathematical convolution operator, the convolutional layer
consists on a moving, odd size, window, weighting and adding the values inside the space
it covers at each position. This movement is determined by a stride value, that represents
how many pixels the window moves at each step, and a padding value, that adds a border
around the image. The window presented in the convolution corresponds to a matrix that
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is point-to-point multiplied and then added together, to reveal the value positioned at the
center of the window in the new image. To avoid the reduction of size, it is usually used a
padding value determined by the floor division by two of the kernel matrix size, for a stride
of one.

Figure 1.5: Convolutional Operator [6]

1.3.2.2. The Residual Block

A common problem in deep neural networks is that the gradient itself, while propagated
through the networks, will lose it’s value and become negligible. In deeper models, the step-
size variation can be, practically, null, reducing the capacity of the model to learn on deeper
layers. This problem is called The vanishing gradient problem.
To reduce this problem, the authors of ResNet; a model that we will tackle later on in this
document; proposed to define a bypass every determined set of blocks, as shown in fig. 1.6.
This method is implemented by outputting the addition of the input and the output of the
layer set.
Mathematically, as the gradient propagates backwards on the network, this bypasses will
act as an identity layer, from which the gradient will present small variations given by the
propagation of the layer set inside the block. This method increases the gradient’s scope in
high-count layer models, allowing deeper structures to learn better, faster, and with less data
needs.
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Figure 1.6: Residual Block [7]

1.3.3. Attentional Models
In the development of element-sequence capable models, natural language processing (NLP)
has been one of the most remarkable research areas. During these years, models based on
recurrent neural networks (RNN)1 were the basal structure on this area. These models, as
the data was sequentially added to the previous information, lose, at each step, information
about the preceding elements in the sequence. With the objective of solving this problem, an
idea based over a quasi-linear layer that considered every previous output, took a valuable
place. The idea proposed allowed the model to to pay attention, choosing the valorization
of each step, somehow solving this problem; due to this, the model’s structure was called
“attention”. In 2017, a group of investigators leaded by Ashish Vaswani, showed that these
layers could dispense of the RNN, generating a new, better model by themselves, the Trans-
former.
As for today, attention is a critical component of visual systems. This is close to the Gestalt
Principles [8] that make some objects be perceived as a whole, facilitating the visual per-
ception. This phenomenon is also called Perceptual Grouping and suggests that different
receptive fields of an scene influence the others. In computer vision, perceptual grouping can
be implemented by attention mechanisms like the popular Transformer modules presented
by Vaswani [9].

1.3.3.1. The Attention Block

Fig. 1.7 illustrates the mechanism of self-attention for visual recognition tasks using the
Transformer’s strategy. As described by Vaswani et al. [9], a transformer module receives
the input as a sequence of embeddings. For image tasks, the embeddings can be obtained
from a feature map 2 produced by a convolutional neural network [10].
1 RNN models are a concept of building networks with a fixed set of trainable parameters, over which,

sequentially ordered input segments are recurrently complemented to the data over a single layer.
2 A feature map refers to a set of tensors, usually matrices or vectors, that represent some information in a

different vector space. In this case, an image feature map is a set of lower pixel-count matrices obtained
by convolutional transforms applied to the original image.
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Figure 1.7: Attention mechanism

In addition, we can compute positional encoding that are summed with the visual embed-
dings. The result is then used as input to the attention block. The attention block requires
three representations computed by linear transformations from the input embeddings. These
representations are Q, K and V , where the letters come from “Query”, “Key” and “Value”,
respectively. When these three representation comes from the same source, the attention is
called “self-attention”, but when Q come from a source different from that from where K
and V are produced, the attention is called “cross-attention”. In any case, after obtaining Q,
K and V , the attention is computed by the Equation 1.7, where dk is a scalar factor given
by the dimension of the input tensor.

attention(Q, K, V ) = softmax(QKT

√
dk

)V (1.7)

Multi-Head Attention models are mostly used, being these, comprised by a linearly-
independent stack of attention modules output-concatenated [9].

1.3.4. The Segmentation Problem
One of the most known computer vision tasks is segmentation. As classification searches
to determine a classes for each image, segmentation tries to define the object’s form and
position. Fig. 1.8 shows that, given an input image, the segmentation model returns the set
of pixels associated to the detected object.

Figure 1.8: Scheme of a segmentation task, where an input image is decom-
posed into k parts.

Unlike object detection, segmentation aboards a pixel-wise detection, whilst object detec-
tion retrieves the object’s bounding box. This problem is considered one of the most complex
in the computer vision area. The differences between segmentation and object detection are
shown in fig. 1.9.
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Figure 1.9: (a) Segmentation of Lungs, (b) Object Detection of Lungs

1.4. Base Models
1.4.1. U-Net
U-Net [11] is the most popular deep-learning segmentation model for medical images. It
consists of a three-part convolutional neural architecture; the first block is called the encoder,
which is in charge of computing relevant features from the input image to facilitate the seg-
mentation. Like most neural models, the encoder is a multi-resolution architecture, starting
from a high-resolution representation with poor semantic features to lower resolutions with
more discriminant features. The encoder is also known as the backbone in a diversity of tasks.

Different from a traditional classification task, where features are aggregated into coarse
levels, in the segmentation problem, we need to classify at the finest levels, almost at a
pixel level. Therefore, the model needs to take the features produced by the encoder to
generate segmentation masks from coarse to the finest levels. To this end, U-Net uses a
second block called the decoder, that combines information from deeper decoder’s layers with
higher-resolution encoder levels, allowing the model to generate high-resolution segmentation
masks. Figure 1.10 shows a scheme of the U-Net architecture.

Finally, the third block is implicitly positioned, but will take high importance for this
document. It is called skip layers. The skip layers transport the information gathered by
each encoder layer, to the corresponding decoder layer. This is simply done by an identity
layer, but will be thoroughly modified and studied.
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Figure 1.10: UNet Architecture [11]

1.4.2. ResNet
As detailed in section 1.3.2.2, the vanishing gradient problem was, and still is, one of the
biggest barriers in what is called Deep Learning. For this same reason, ResNet model, pre-
sented in 2015 proposed the residual block, shown in figure 1.6, which allowed for the first
time to get networks over 50 layers in depth.
ResNet presented multiple models, but for this document, three of them are studied: ResNet-
18, ResNet-34 and ResNet-50.

1.4.2.1. ResNet Architectures

ResNet-18 model is an 18-layer depth network with residual blocks bases over two 3x3 con-
secutive convolutional layers with ReLU and a residual connection. ResNet-34 presents the
same structure, but with 34 layers in depth. Both of these models output a standard 1024-
size vector for the ImageNet dataset.
ResNet-50 presents a different -and more interesting- approach. This model has 50 layers
in depth, with a modified residual block, known as “bottleneck residual block”, comprised
by a dimensional reduction with a 1x1 convolution layer, a characteristics extraction 3x3
convolutional layer, and a dimension-restoring 1x1 convolution layer. All the ResNet model
architectures are shown in figure 1.11.
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Figure 1.11: ResNet Architectures [12]

Deeper models as ResNet-101 and ResNet-152 are 101-layer and 152-layer networks based
over the bottleneck residual blocks presented in ResNet-50.

1.4.3. Swin Transformer
As detailed in section 1.3.3, transformers are a critical component for computer vision, but
they lack of high-resolution capabilities due to their size and memory use.
Multiple models have presented nouvel image-transformers architectures, but two of them
stand out for computer vision engineers: the Vision Transformer [10], ViT; and the Swin
Transformer, [13].
ViT presents a patch-embedding structure to feed the information to the original NLP trans-
former architecture, but this model’s complexity escalates extremely fast over a variation on
the input image size. For segmentation tasks, this model has not been so fruitful due to the
16x16 pixel partitions that, sometimes, are too big for pixel-wise detailed information needs.
Distinctively to ViT, Swin transformer’s block architecture is based on patch-partitioning,
residual connections, basic MLPs and a new attention module called Shifted Window Multi-
Head Self Attention or SW-MSA3. This module can use smaller patches than ViT and, as its
attention is limited to a small set of patches, the architecture is capable to extract pixel-level
characteristics without model-size escalation over image-size.

1.4.3.1. SW-MSA Module

The Self-Attention module presented by the Swin Transformer consists on the application of
a multi-head self-attention block over small subsets of patches, guided by a moving window
strided by the window size, as shown in figure 1.12. This shifting allows the model to capture
patch-edge information over standard partitioning.

3 When shifting is deactivated, the module is usually refered as W-MSA.
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Figure 1.12: Illustration of Shifted Windowing. In (a), a regular W-MSA
window partitioning is used, while in (b), the window partition is shifted as
used in SW-MSA. Note that the window is represented as a purple square,
computing self-attention over a set of patches.

The small patch subsets allow the model to be relatively small compared to a full-set sized
transformer block.

1.4.3.2. Swin Block Architecture

The Swin Stage is conformed by patch partitioning and multiple-of-two set of Swin blocks,
each one comprised by a SW-MSA module, an MLP module, and two linear layers.
The Swin Stage architecture has a three-step structure. The first step consists on a 4x4 patch
partitioning applied to the input. Because of the small window used, this allows the model
to observe pixel-size details. Considering a 3-channel RGB image, each patch will represent
a tensor of size 4 × 4 × 3 = 48 pixels.
The second and third steps consist on a repeating pattern. Each one of these has two consec-
utive blocks, where the first one is comprised by two residual connections, one over a linear
embedding module and a W-MSA layer, and the other one by a linear embedding and a
simple MLP. The linear embedding transforms each patch to a C-dimensional space, with C
determined as a model’s hyperparameter. The W-MSA layer is applied over the embedded
patches to extract the latent characteristics over the first part of the block. The GeLU-based
2-layer MLP step reaches the output residual connection of each transformer block. The
Swin Transformer’s architecture is shown in figure 1.13.a, where in figure 1.13.b the two-
block structure is mostly detailed.
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Figure 1.13: Swin Transformer Architecture [13]. (a) Swin Transformer
Architecture (Swin-T). (b) Swin Transformer two-block sequential architec-
ture.

As mentioned before each stage present a multiple-of-two set of blocks, so the second
sub-block can replace the simple W-MSA with an SW-MSA. This particular change allows
the model to detect objects and characteristics that were previously split by the patch parti-
tioning. Each of this multiple-of-two set of blocks are divided into the architecture presented
in 1.13.b.

1.4.4. BoTNet: Bottleneck Transformers
Another transformer-based approach taken in computer vision is implied in BoTNet [14],
a pseudo-attentional model based on ResNet and the attentional operator to develop a
backbone-style semi-convolutional network. This model utilizes the structure provided by
ResNet-50, replacing the central 3x3 convolution by a new pseudo-attentional module, in-
accurately called BoTNet Multi-Head Self Attention or MHSA. For the development of this
document we will use the term Attention indistinguishably for pseudo-attentional and real-
attention based models, this does will not affect the comprehension of the models and, if
needed, will be pointed out and specified.

1.4.4.1. BoTNet Multi-Head Self Attention Module

The module presented in BoTNet is heavily used in the development of this work. It is based
over the classical attention mechanism showed in equation 1.7, replacing each input’s linear
layer with simple 1x1-sized convolutional ones, as shown in figure 1.14.
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Figure 1.14: BoTNet Multi-Head Self Attention module architecture [14].

A positional encoding layer is added to the query Q value.

1.5. Loss Functions and Metrics
As detailed in section 1.3.1.2, loss functions determine the network step-variation needed for
learning, being a hugely important and critical part of the training procedure. In this brief
section, the used loss function and the main evaluation metric will be explained.

1.5.1. Dice-Sørensen Score
Given a hand-made segmentation, there are various methods to evaluate the quality of image
segmentation. In general, the idea is to measure the difference between the automatic seg-
mentation S against the manually segmented image G by computing some evaluation metric.
These metrics can be based on spatial overlap measures (e.g., Dice coefficient [15]) and on
distance measures (e.g., Hausdorff distance [16]).

Our evaluation metric is similar to the one used in previous works related to organ segmen-
tation, that is, the Dice coefficient, to compare our results to the ones of the state-of-the-art
methods.

The Dice coefficient value is calculated as shown in eq. 1.8.

D = 2|S ∩ G|
|S| + |G|

(1.8)

where S represents an automatic segmentation method, and G represents the hand-
segmented masks (gold-standard). Therefore, the Dice coefficient values vary in the range
[0, 1], where 0 indicates no spatial overlap between S and G, while 1 indicates complete
overlap.
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1.5.2. Cross-Entropy Loss
Given a manually-classified input tensor, the determination of the loss, or sometimes mis-
called distance, is key for deriving the gradient value for training. Multiple loss functions
have been proposed, but one of the most used is the Cross-Entropy loss function.
Derived from the maximum-likelihood estimator, the log-like cross-entropy loss has shown to
best perform most of the traditional loss functions in classification tasks. This function is
structured over the logarithmic probability for each class, weighted by the true label of itself,
as shown in equation 1.9.

LCE
4 = −

n∑
i=1

ti log(pi) for n classes (1.9)

4 Cross-Entropy Loss, where ti corresponds to the true label and pi represents the Softmax probability for
the ith class. Note log equivalent to base 2 logarithm log2 for this representation.

17



Chapter 2

Related Work

2.1. Image Segmentation
For image segmentation, the first computer-based segmentation method for medical images
were based on low-level features like pixel intensities or colors and mid-level features like
local patterns, but none to them analyzes the semantic content of the images [17]. More
close to a semantic approach are the ATLAS-based models that take into account anatomy
information [18].

However, with the explosion of deep learning in different computer vision tasks, mod-
els have achieved outstanding performance. This is the case of image segmentation, where
models leverage labeled images (segmentation masks) to make a model learn a mathematical
approximation function that discriminates pixels among a fixed set of classes.

In the medical context, U-Net [11] is the most popular deep-learning architecture proposed
for segmenting medical images. It generalizes a previous segmentation model named FCN
(Fully convolutional network) [19] that combines features from high resolution layers with
those from deeper ones.

In recent years, attention mechanisms have attracted the interest of the community, spe-
cially after the positive impact in natural language processing [9]. In visual perception, there
is a phenomenon called “perceptual grouping” where various elements in a complex display
are perceived as going together in one [20]. The interrelation of different visual components
(a.k.a. visual structure) may be learned from experience, particularly during the first months
of our lives. Regarding the relevance of perceptual grouping for a visual system, it also can
bring improvements in medical image segmentation.

Even though, attention is a popular mechanism in natural language processing, the effec-
tiveness in medical image segmentation has not been deeply studied. Therefore in this work
we evaluate the impact of attention mechanisms for multiple chest organ segmentation. We
incorporate attention modules in a U-Net architecture under different settings.
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2.2. Chest X-Ray Structure Segmentation
U-Net has been widely studied in the context of medical images. For instance, [21] proposed
an improved U-Net for lung segmentation. They improved U-Net by using the pre-training
Efficientnet-b4 as the encoder and residual blocks and LeakyReLU activations in the decoder.

In [22], the medical-image implementation of ResNet-UNet model [23] is another U-Net
improvement, replacing the model encoder with different ResNet variations.

As seen in [24], U-Net++ variation was evaluated in the Montgomery-Shenzhen compound
dataset for lung segmentation, providing state-of-the-art results in the defined task.

To improve diversification in the attention mechanism, Vaswani et al. [9] proposed a
multi-head attention module, that applies multiple single attention over the input sequence
of embedding, independently. All the attentional outputs are then combined by concate-
nation, and passed through a linear transformation. Figure 2.1 illustrates an scheme of a
three-head attention module, as proposed by [9].

Figure 2.1: A Three-Head Attention Module [9]

In terms of attention regions, [25] proposed a three-input channel-wise attention mecha-
nisms for lung segmentation, combining features from both the encoder and the decoder. Fig.
2.2 depicts the attention module proposed in [25]. However, this proposal does not leverage
the interrelation between different receptive field as modern attention Transformers do.

Figure 2.2: A three-input attention proposed in [25] for lung segmentation.
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In [25], [26] presents another pseudo-attentional U-Net based model is presented, evalu-
ating the use of attentional feature-extraction and feature-merging in encoder and decoder
layers, as shown in figure 2.3.

Figure 2.3: Full Application of X-Y Attention Modules [26].

Another lung segmentation approach evaluated the use of variational data inputation over
the U-Net base model [27], showing an improvement over the base model, but not achieving
state-of-the-art results.

Finally, some non U-Net-like approaches have been evaluated, such as [28] that uses SVMs
and Active Shape Models, ASM, to segment the lung in thoracic PA and AP images.

For ribs, heart and clavicles, the segmentation models are vaguely approached. In [29] the
MDU-Net is proposed, a state-of-the-art model in clavicle and ribs segmentation, presenting
a U-Net base model with feature adaptation skip layers. Regrettably, this document’s model
is trained over a proprietary dataset, showing excellent, but incomparable, results. In [30]
another approach for rib segmentation is taken, using Mask-RCNN models, with lower results
than the presented by [29], but hanging on the same data-incomparability principle.

Therefore in this work we evaluate different attention strategies over a U-Net architecture
for chest X-ray segmentation. We evaluate our proposal for lung, heart, clavicles and ribs
segmentation.

2.3. Quality Assurance Models
End-to-end models5 have been highly investigated in the last period of time. Due to this
searched characteristic, quality assurance models have been mostly under-valued and under-
investigated.
A rotation-determination approach [31], used generalized line histograms of rib-orientations
for the accomplishment of this task. Later on, the same authors published a detailed model’s
evaluation in [32]. The model utilizes a SIFT-based lung segmentation algorithm to reduce
5 End-to-end refers a model that has the capability of outputting a final result over a defined input, without

the need of data pre-processing or output analysis.
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the variability over the thorax’s outside. This lung-segmented image is then fed to rotated
gaussian filters to determine the rib’s generalized line histogram, see fig. 2.4.

Figure 2.4: Rotated Gaussian Filters Application as Shown in [32]

For radiation penetration, an image hardness-based approach was presented in [33]. The
model is based over a pretrained ResNet-34 to determine the spine area, and a modified ridge
chart structure to determine the vertebraic boundaries for counting, see fig. 2.5. Note that
this model counts all thoracic vertebrae found, being far from the defined vertebrae-behind-
the-heart approach convened by our associated medical team.
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(a) ResNet-34 Based Spine Determination.

(b) The original Image, Standard Histogram
Equalization, Adaptive Histogram Equaliza-
tion and I1 Second Ridge Structure

(c) I2 Second Ridge Structure, Binarized I1
Second Ridge Structure, Binarized I2 Second
Ridge Structure and Intersection of the Bina-
rized I1 and I2 Second Ridge Structures

Figure 2.5: Spine Detection and Vertebrae Counting [33]

No data was found for the lung insuflation problem.
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Chapter 3

U-Net Models for Thorax
Segmentation

3.1. Blocks
For the investigation presented in this document, we use the U-Net base model, adding three
new types of blocks.

3.1.1. Three Head Attention Block
As proposed in [25], we implement the three head attention block with the same configuration
set in the cited document. This implementation allows us to study pseudo-attentional models,
as well as generating variations of it and giving us a second baseline to compare to. This
block is shown in figure 3.1

Figure 3.1: Three Terminal Attention Block as Proposed in [25]

3.1.2. Spatial Attention Block
In variation of the three head attention block, we use a simple classical image to image
matrix multiplication attention in replacement to the spatial sub-block proposed in [25].
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The modified block is comprised by a Squeeze and Excitation Block of latent size 16 and
a Spatial or Full Spatial Attention Sub-Block. Two variants of the model are used, the
first one presenting a single matrix multiplication of Query and Key’s values, called spatial
attention, and the second one, presenting two keys in the same multiplication, named full
spatial attention.

C i
k = (AB)ik =

N∑
j=1

AijBjk (3.1)

As a matrix multiplication operates over each row and column, as shown in eq. 3.1, ev-
ery position represents the relationship of the vertical and horizontal positions it represents,
forgetting about the macro of the image. The concept behind a triple matrix multiplication
relies behind the argument that, as the first operation connects every row and column to-
gether, while the second one considers that each pixel contains the whole column information,
retrieving each row pixel in every image location. In this document, we will refer to this triple
matrix multiplication as full matrix multiplication, shown in eq. 3.2.

Din = (ABC)in =
N∑

n=1

N∑
j=1

AijBjkCkn (3.2)

In figure 3.2 our proposed single matrix multiplication or Spatial Attention layer is shown,
as described in eq. 3.1 and based over the Three Head Attention Block described in sec. 3.1.1.

Figure 3.2: Proposed Spatial Attention Layer

As described in eq. 3.2 and based on fig. 3.2, our Full Spatial Attention layer is described
in fig. 3.3.
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Figure 3.3: Proposed Full Spatial Attention Layer

3.1.3. Spatial Multi-Head Cross Attention Block
Based on the Spatial Attention Sub-Block presented previously, a multihead cross-attentional
variation of the Spatial Attention architecture is tested. This layer-block consists in multiple
concatenated Spatial Attention Sub-Blocks in parallel to an Squeeze and Excitation block as
in before, but connecting only the encoder and decoder inputs as done originally in [9].

Figure 3.4: Proposed Cross-Attention Module
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3.2. Architectures
In this section we will briefly define the architectures used for the development of this doc-
ument. Although the descriptions are self-complete, a visual representation of each model is
presented in Annex B

3.2.1. U-Net
Of the tested architectures presented, UNet serves as one of the best medical image segmen-
tation models for baseline comparison. This architecture is used as originally presented in
[11].

3.2.2. Encoder Variations
The encoder of the UNet model allows the image’s characteristics extraction, so it represent
an interesting reestrucuturing point to study. In this behalf, we study five UNet variations,
replacing the UNet encoder with ResNet 18, 34 and 50, Swin Tranformer Base Model and a
simple residual structure comprised by a single ResNet 50 [12] residual block, prior to each
UNet encoder layer.

3.2.3. Skip Layer Variations
In the original UNet, the skip layers are just identity layers connecting each encoder block
with it’s corresponding decoder. For these experiments, we replace these layers with three-
headed blocks, as presented in [25]. The blocks themselves have three inputs for the encoder,
the decoder feedback and the lower skip layer. The decoder input is connected to the upsam-
pling layer after each block and the three-headed block outputs are inputted as a normal UNet
Skip layer to the corresponding decoder block. A simple representation of these connections
can be seen in figure 3.5.

Figure 3.5: Three Head Skip Layers

3.2.4. Decoder Variations
As a proof of concept, the attention mechanism is tested at the UNet decoder. For this, we
propose two variations, both adding a block prior to each decoder layer.
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The first variation consists in the Cross-Attention module presented in section 3.1.3.
For the second alternative, the Spatial Attention block is modified by deleting the last layer
input, leaving only one key value. This block is then furtherly modified by concatenating the
encoder and decoder outputs and giving them as a fully self-attention layer [9], shown in fig.
3.6.

Figure 3.6: Proposed Modified Spatial Attention Block
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Chapter 4

Data and Image Preprocessing for
Thorax Segmentation in U-Net
Models

4.1. Datasets
For these experiments, we used four public zone-specific semantic segmentation datasets:
JSRT Dataset for clavicles and heart, Montgomery County Tuberculosis Dataset, Shenzhen
Tuberculosis Dataset for lung segmentation, and VinDr-RibCXR for rib segmentation.

4.1.1. JSRT Dataset
This dataset includes 247 12-bit grayscale raw frontal chest X-ray images from the Japanese
Society of Radiological Technology. It comprises 154 nodule-presenting images; including 100
malignant and 54 benign; and 93 normal cases. It provides basic patient report information
(age and gender), nodule type diagnosis, nodule center coordinates and a basic nodule loca-
tion map. The SCR dataset is a JSRT complementary set that adds full size segmentation
masks for the images within the original database. It includes the independent, left and
right, masks for clavicles and lungs, and the heart segmentation mask for the JSRT images.

4.1.2. Montgomery County TB Dataset
This dataset includes 138 12-bit grayscale frontal chest X-ray images from Montgomery
County’s Tuberculosis screening program [34]. There are 58 images with the presence of
tuberculosis and 80 images free of tuberculosis. The dataset includes primary patient reports
and lung segmentation masks, including age and gender.

4.1.3. Shenzhen TB Dataset
This dataset includes 662 frontal grayscale chest X-rays from Shenzhen’s No.3 People’s Hos-
pital [34]. It comprises 336 cases with tuberculosis and 326 tuberculosis-free cases, including
pediatric antero-posterior (AP) images. As the Montgomery Dataset, it provides basic pa-
tient reports (age and gender) and lung segmentation masks.
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4.1.4. VinDr-RibCXR Dataset
This dataset is a private on-demand image set for automatic segmentation and labeling of
individual ribs from chest X-ray (CXR) scans [35]. The VinDr-RibCXR contains 245 CXRs
with corresponding ground truth annotations provided by human experts. All scans have
been de-identified to protect patient privacy. Each image was assigned to an expert, who
manually segmented and annotated each of 20 ribs, denoted as L1→L10 (left ribs) and
R1→R10 (right ribs). The masks of ribs were then stored in a JSON file that can later be
used for training instance segmentation models.

4.1.5. PadChest
This dataset includes more than 160,000 chest x-rays from 67,000 patients [36]. It presents
192 different classes for image multi-label classification, from which 39,039 are manually
labeled and 121,829 are machine classified. For this document, we use a 26,387 image sub set
of manually adults-only frontal chest x-rays, excluding the pediatric, automatically classified
and lateral images of the database.

4.2. Image Preprocessing
As medical images represent space-sensitive information, image preprocessing for these tasks
is greatly reduced. In this section, the input image preprocessing is described.

4.2.1. Resizing
For U-Net models, the standard 512x512 input size is used. This size allows the model to
capture detailed information, without overloading the model’s capabilities. This is important
for attentional modules, because they scale quickly given the input size.

4.2.2. Contrast and Histogram Equalization
Grey-scale images, such as chest x-rays, lack of hue and saturation, being described mostly
by its contrast. Histogram equalization methods were developed to enhance image’s contrast,
what could be beneficial to x-ray analysis.
An experiment we developed over the base U-Net model, showed that general histogram
equalization improves as much as 5.5 additional points over segmentation results, depending
of the segmented structure. For CLAHE6, results improved only for bone structures, showing
worse results for lesser dense ones, being surpassed by traditional histogram equalization in
all tests. A representation of each of the two methods is shown in figure 4.1.

Given this small analysis, classical histogram equalization is a step taken during evary
image’s preprocessing.

4.2.3. Data Augmentation
Due to the sensitivity of medical image data, data augmentation techniques were not used
for these experiments, as they represent possible medical conditions that are out of the
boundaries of ambulatory medicine.
6 CLAHE is an adaptive histogram equalization method that enhances local contrast instead of the general

histogram.
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Figure 4.1: Histogram Equalization Methods
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Chapter 5

Supervised Training Methods for
U-Net Models in Thorax
Segmentation

5.1. Training Methodology
For training these networks we use PyTorch over a single RTX3080 with batch size 8 and
RMSProp optimizer with base learning rate of 1e − 5 and ReduceLROnPlateau with factor
0.5 and patience 2 for scheduler. For the training losses, we use Cross-Entropy and DICE
losses, summed together. These metrics and optimizers were extensively tested over the base
U-Net model, showing the best overall performance over the available PyTorch optimizers.
The scheduler is set every epoch over the validation DICE Score.

For each variation, the performance shown corresponds to random weights initialization
and a pretrained model over the Lungs dataset. It is also included, as completion matter,
the classification-pretrained encoder version for the Encoder Variations models, as the other
models over classification-pretrained encoders doesn’t present any alteration in the overall
results.

5.1.1. Evaluation
Each model has been trained 3 times, presenting the average DICE Score performance and
IoU estimation over this value [IoU = DSC

2−DSC
].

5.2. Result Analysis
In this section we present the results, divided by each specific variation.

5.2.1. Encoder Variations
Each encoder variation was trained over a randomly initialized set of weights and a lung-
pretrained one. Every encoder was previously pretrained on ImageNet 1k. The next sections
show the results given by each training variation.

As seen in table 5.1, the encoder variations improve consistently over the Montgomery-
Shenzhen lungs dataset, but mostly fail in the lower image-count sets. These models decrease
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Table 5.1: Encoder Variations Over Randomly Initialized Weights

Model Montgomery-Shenzhen
Lungs

VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 610/68 221/24 222/24 222/24

U-Net 0.930 0.876 0.798 0.481
Residual U-Net 0.934 0.883 0.831 0.511
ResNet-UNet-18 0.956 0.864 0.812 0.525
ResNet-UNet-34 0.953 0.862 0.815 0.515
ResNet-UNet-50 0.949 0.859 0.815 0.522
Swin-UNet 0.933 0.782 0.768 0.469

their performance proportionally to the encoder’s depth in residual backbones, result prob-
ably due to insufficient training data for these model’s depths.
For the fully attentional encoder model, Swin-UNet, the 0.3 point improvement over the base
U-Net model shows considerably lower results over the nineteen-point improvement given by
the ResNet-UNet-34 model.
For the lower image-count datasets, the performance stands out over the shallower mod-
els, revealing a lack of training data for these heavy-weighted architectures. By this same
consideration, we do not yet discard the Swin-UNet model for further studying in larger
image-count datasets.

Table 5.2: Encoder Variations Over Lung-Pretrained Weights

Model VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 221/24 222/24 222/24

U-Net 0.870 0.805 0.521
Residual U-Net 0.872 0.818 0.524
ResNet-UNet-18 0.865 0.815 0.532
ResNet-UNet-34 0.857 0.813 0.524
ResNet-UNet-50 0.856 0.801 0.520
Swin-UNet 0.788 0.801 0.480

In 5.2, the lung-pretrained models show a considerably better begining during the training
procedure, presenting results over 80% of the best validation DSC score, on epoch one.
Regretfully, these models confirm the lack of training data, by overfitting around epoch two,
presenting almost the same results than the non-pretrained models, but in extremely lower
training epoch count.

Finally, the classification-pretrained encoders over these models in figure 5.3, show little
to none improvement over the non-pretrained ones, possibly due to task-difference from the
first layers taken by the skip connections. This results propose the study over an hybrid
model between enhanced skip layers, for processing and transforming the raw classification
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Table 5.3: Encoder Variations Over Classification-Pretrained Weights

Model Montgomery-Shenzhen
Lungs

VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 610/68 221/24 222/24 222/24

U-Net 0.930 0.876 0.798 0.481
ResNet-UNet-18 0.950 0.864 0.792 0.532
ResNet-UNet-34 0.951 0.853 0.785 0.501
ResNet-UNet-50 0.946 0.864 0.796 0.498
Swin-UNet 0.817 0.701 0.813 0.479

data from the encoder to the characteristic-extracted decoder input.

5.2.2. Skip Layer Variations
For the skip layer variations, the same procedure of the encoder variation’s section is used.
Due to the classification-pretrained non-variant results over the base models, this data is not
shown, as it is almost identical to the results shown in table 5.4.

Table 5.4: Skip-Layer Variations Over Randomly Initialized Weights

Model Montgomery-Shenzhen
Lungs

VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 610/68 221/24 222/24 222/24

U-Net 0.930 0.876 0.798 0.481
Three-Head Attention U-Net 0.948 0.880 0.812 0.485
Spatial Attention U-Net 0.959 0.870 0.807 0.475
Double Spatial Attention U-Net 0.946 0.863 0.803 0.493
Full Spatial Attention U-Net 0.959 0.872 0.817 0.489
Swin Spatial Attention U-Net 0.926 0.878 0.808 0.513

As presented in table 5.4, attentional skip layers show an improvement over the base
U-Net architecture due to their aggregated complexity and learnable parameters. For this
same reason, saying that attentional skip layers are better than every other block would be
a rushed conclusion.

As seen in table 5.5, lung pre-training does not show great variations on the segmentation
dice score, lowering, in most cases, the final score of each model. This can be described
by attention and pseudo-attentional mechanisms used in this category. Attentional models
search for area-specific information. As such, the lungs take almost the whole thorax region,
being spatially distant in some space-specific areas.

5.2.3. Decoder Variations
Decoder variations affect the way the information is mixed and the image-size object rebuilt.
As it is dependant on the characteristics extraction given by the encoder, and the feature

33



Table 5.5: Skip-Layer Variations Over Lung-Pretrained Weights

Model VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 221/24 222/24 222/24

U-Net 0.870 0.805 0.521
Three-Head Attention U-Net 0.873 0.799 0.538
Spatial Attention U-Net 0.875 0.809 0.545
Double Spatial Attention U-Net 0.858 0.799 0.481
Full Spatial Attention U-Net 0.865 0.820 0.503
Swin Spatial Attention U-Net 0.868 0.800 0.473

adaptation of the skip layers, it is not expected to improve in detail finding, but working
better in the output generation quality and pixel details.

Table 5.6: Decoder Variations Over Randomly Initialized Weights

Model Montgomery-Shenzhen
Lungs

VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 610/68 221/24 222/24 222/24

U-Net 0.930 0.876 0.798 0.481
Spatial Decoder 0.800 0.851 0.810 0.538
Cross Attention 0.820 0.853 0.775 0.415

For U-Net models over non-pretrained weights, as seen in table 5.6, attentional-complexity
layers show a reduction in the model learning capabilities and lower DICE Scores.
Attention layers are mostly used for area-specific semantic depictions or time-space variant
characteristic extractions. This is far from the concept over the U-Net model’s decoder,
which reconstructs and upsamples the retrieved information.

Table 5.7: Decoder Variations Over Lung-Pretrained Weights

Model VinDr Rib-CXR
Ribs

JSRT
Heart

JSRT
Clavicles

Images (Train/Val) 221/24 222/24 222/24

U-Net 0.870 0.805 0.521
Spatial Decoder 0.862 0.818 0.517
Cross Attention 0.828 0.770 0.494

As well as presented in previous cases, lung pretraining does not show a big variation over
non-pretrained models. The low image-count need of the models is compensated completely
after a couple of epochs, showing similar results to pretrained models. Even though pretrain
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does not considerably affect the output, it reduces extremely the time needed to train the
model.
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Chapter 6

Quality Assurance Determination
Based on Semantic Chest Structures
Segmentation

For determining an image’s quality assurance, it is important to note the segmentation ca-
pabilities that we currently have. For accomplishing this objective, we have to consider a
baseline clavicle segmentation, a relatively good heart and rib segmentation, a very well made
lung segmentation and no vertebrae segmentation.

6.1. Centered Image and Segmentation Pre-Check
During the evaluation of the models presented, a lot of Non-Centered images and black-masks
were encountered. To tackle this problem, we use the lung segmentation mask to determine
if the image can be considered centered and the image pixel-sum to determine if there is an
actual, an viable, segmentation detected.

6.2. Patient Rotation
As described in section 1.2.1.2, the patient’s rotation is determined by the clavicle’s head to
the medial line. For approaching this problem, we use the lung segmentation as a mean to
find the medial line, as the lung horizontal borders are symmetric regarding the medial plane.
The clavicle horizontal margins are determined by a simple axial sum on the horizontal plane.
The detailed procedure is as it follows:

1. Lung Border Determination

a) Extract the best lung segmentation from the image.
b) Apply a 5x5 kernel-size Gaussian Blur with standard deviation 5 to reduce small

pixel outliers in the lung’s outer section.
c) Sum the mask’s pixels vertically to get a x-axis vector representation histogram.
d) As the lung segmentation results are highly detailed, we are confident to determine

the lung margins as the leftmost and rightmost non-zero value.
e) The medial line is determined as the mean value of the lung’s border limits. A

simple visualization of these margins is shown in fig. 6.2.a.
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2. Clavicle Horizontal Margins Determination

a) Extract the best possible clavicle segmentation mask from the input image, as shown
in fig. 6.1.a.

b) Sum the mask’s pixels vertically to get a x-axis vector representation histogram, see
fig. 6.1.b.

c) As the clavicle representation isn’t as robust as lungs segmentation, we binarize the
x-axis histogram. In this step is important to note that the clavicle’s segmentation
could be non-contiguous, being composed by a set of smaller blocks instead of two
independent full ones, see fig. 6.1.c.

d) To determine the central boundaries of a composite clavicle, we multiply the bina-
rized histogram vector with a medial-line-centered gaussian distribution, resulting
in sector-defined split gaussian vector, see fig. 6.1.d.

e) The central borders are selected as the maximum argument of the split distribution
for each side of the medial line.

f) To determine the border boundaries of this composite clavicles, a similar approach
is taken with an upside-down inverted gaussian distribution.

g) The extreme borders are selected the same way as central limits: as the maximum
argument of the inverted split distribution for each side of the medial line.

3. Rotation Determination

a) Taking in acquaintance the clavicle margins and the medial line, we determine the
rotation as the relation of the clavicle’s boundaries with the medial line, as shown
in figure 6.2.b.

b) With a threshold tolerance of 50%, we consider an image Rotated. For the [15%,
50%] range, the image is considered as Slightly Rotated. Finally, the values lower
than 15% variation, are considered Correctly Positioned.

(a) Step 2.a (b) Step 2.b (c) Step 2.c (d) Step 2.d

Figure 6.1: Step 2: Clavicle Border Determination
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(a) Lung Borders and Medial Line (b) Rotation Determination

Figure 6.2: Rotation and Medial Line Determination

6.3. Lung Insuflation
As described in section 1.2.1.3, the lung insuflation is determined by counting anterior and
posterior ribs. As our segmentation method does not separe anterior from posterior ribs, we
approach the problem as the count of superposed rib count. As they are 12 posterior ribs
and 10 anterior ribs, we hope to see 10 and 6 of them, respectively. Depending the patients
height, some rib cages have more separation between ribs than other people. For this case,
we found that using a superposed rib count in the range ]7,9] led to best insuflation results.
The rib superposition count is done as follows:

1. As described by [32], we apply rotated gaussian kernels. These kernels are determines
as follows:

a) Define a kernel-size zero array.
b) Set every horizontal-center pixel to a value of 1, to determine the rotation angle.
c) Symmetrically set each pixel to a value of a defined alpha to the power of the

distance to the farthest kernel border to expand the line width. For this definition,
the value of alpha must be in the range [0,1].

d) Rotate this kernel to the desired angle.
e) Normalize the kernel, so the sum of pixels be 1.
f) Multiply the kernel to a 2D gaussian distribution of standard deviation sigma.

2. Determine the horizontal line histogram.

a) With a previously calculated rotated kernel7, we filter the input image. Steps 2.a,
2.c and 3.g are shown in a composite visual representation presented in figs. 6.3.c
and 6.3.f.

7 Kernel properties: size 121x121, rotation 180o, alpha 0, sigma 51
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b) To obtain side-by side the vertical line histograms, we divide the image in half by
the medial plane. As the image already has been tested to be centered, we ensure
that each section contains, exactly, half of the thoracic cage.

c) We sum, vertically, the pixels values of each of the halves of the filtered image
to obtain the histograms. Steps 2.a, 2.c and 3.g are shown in a composite visual
representation presented in figs. 6.3.c and 6.3.f.

3. For counting the superposed ribs, we apply a centroid-based algorithm as follows:

a) Determine the non-zero index values of the array. Note that the used histogram is
one-dimensional.

b) Obtain the first derivatives of the array. For this determination, we substract each
index value with the next and vice-versa, obtaining the two side-derivatives of the
array.

c) We binarize each array, with value 0 corresponding to each 1-pixel difference (eg.
156, 157 -> 158-157 = 1), and value 1 to all others. It’s important to note these
last two steps as a determination of the greater-than-zero pixel-set borders.

d) We define each set of borders as the maximum and minimum index value of each
greater-than-zero section.

e) We propose each of the defined sections to be centroid candidates.
f) We repeat these steps for the other half of the filtered image.
g) We determine the rib-count as the mean value of total candidates. Steps 2.a, 2.c

and 3.g are shown in a composite visual representation presented in figs. 6.3.c and
6.3.f.
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(a) Original Image (b) Lung Segmentation (c) Steps 2.a, 2.c and Centroid
Classification

(d) Original Image (e) Lung Segmentation (f) Steps 2.a, 2.c and Centroid
Classification

Figure 6.3: Superposed Rib Clusterization Counting. On top: a complex
case where ribs are extremely superposed, on bottom: a standard superpo-
sition case.

6.4. Radiation Penetration
Due to the lack of spinal-region or vertebrae segmentation, the penetration determination is
the hardest of them all. For this section we will be detailing a behind-the-heart vertebrae
count determination based on [33]. For this counting, we use only the heart shape mask and
the original image, determining the vertebrae count by image-processing means.

1. Image Pre-Processing

a) Given the base image and it’s heart segmentation map, we redefine the image as the
multiplication of them both, leaving only heart-masked area. For better detection,
the image is grayscale-inverted and histogram-equalized before masking.

b) For determining the heart position, vertical and horizontal pixe-wise additions are
used. For preventing small-sized outliers, a 5x5-size kernel gaussian blur is applied.
The vertical an horizontal pixel sum is visually represented in fig. 6.4.a.

c) As presented in section 1.2.1.2 a simple binarization of each axis’s sum is applied.
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This binarization allows us to have a simple step function for both axes, as shown
in fig. 6.4.b.

d) The maximum and minimum arguments are determined by the index of the first
and last non-zero values over the vertical and horizontal sums.

e) Given the limits of the heart area, the image is cropped to show the minimum
rectangle containing the full heart’s shade, as shown in figure 6.4.c.

2. Spine-Area Detection

a) For determining the spine area, bests results are got using the application of CLAHE8

over the image, as shown in fig. 6.4.d.
b) After the CLAHE application, a uniform-like filter is applied to the image. The

filter kernel corresponds to a 3x3 ones matrix, with central value of -8, assuring the
total sum of values corresponds to 0.

c) For smoothing the detected rough borders, a 3x3 size gaussian blur kernel is applied
to the image.

d) As the spine represents the brightest area in the heart’s shadow, an x-axis sum is
applied.

e) The spine boundaries are determined by the 25% brightest contiguous horizontal
pixel areas in the image.

f) We return a cropped version of the spine area, see fig. 6.5.a.

3. Vertebrae Detection

a) For best results, we observed that applying a 7x3-kernel gaussian blur works better.
This stage horizontally expands the bright areas and reduces the small-size outliers
in the vertical axis.

b) As presented in [33], we determine the four second derivatives of the image, named
Lxx = ∂2

∂x2 , Lxy = ∂2

∂x∂y
, Lxx = ∂2

∂y∂x
, Lxx = ∂2

∂y2 .
c) We reshape each of the L tensors to a 1 dimensional array and concatenate them

pixel-wise in a matrix L =
(

Lxx Lxy

Lyx Lyy

)
d) For each dimension of obtained tensor, we derive the eigenvalues of the 2x2 matrix.

Note that these eigenvalues are all real-type data.
e) For each of the two eigenvalues for each matrix, we construct two new vectors with

the maximum dimension-values and minimum dimension-values, respectively.
f) The maximum and minimum vectors have the same size as the original spine area,

and they are reshaped to their original form. Now we have two images composed by
pixel-wise maximum and minimum eigenvalues of the second derivative of the spinal
area. These maximum and minimum second-derivative eigenvalues are represented
in figs. 6.5.b and 6.5.c, respectively.

g) With threshold values 20 and 10, we binarize the maximum and minimum eigen-
images, as shown in figs. 6.5.d and 6.5.e.

8 CLAHE is an adaptive local contrast adjusting method.

41



h) The intersection of these images is determined by multiplicating their binary masks,
see fig. 6.5.f.

i) Finally, the vertebrae are counted the same way presented in section 1.2.1.3, step
3 (centroid-based counting). This centroid-determined number corresponds to the
number of visible vertebrae in the spine defined area.

(a) Step 1.b Vertical
and Horizontal Pixel-
Sums

(b) Step 1.c Binarized
Vertical and Horizon-
tal Pixel-Sums

(c) Step 1.e Cropped
Heart Shade

(d) Step 2.a Cropped
CLAHE-Applied
Heart Shade

Figure 6.4: Heart Boundaries Determination

(a) CLAHE-
Applied
Spine Area

(b) Step 3.f
Maximum
Eigenvalues
Visualiza-
tion

(c) Step 3.f
Minimum
Eigenvalues
Visualiza-
tion

(d) Step 3.g
Binarized
Maximum
Eigenvalues
Visualiza-
tion

(e) Step 3.g
Binarized
Minimum
Eigenvalues
Visualiza-
tion

(f) Step 3.h
Visualiza-
tion

Figure 6.5: Step 3: Vertebrae Counting Steps Visualization Based on [33]

6.5. Result Analysis
Due to the lack of quality assurance datasets, a systematic approach to determining the
validity was taken. For accomplishing this objective, our associated radiologists selected an
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image subset with well distributed data over 8 multi-label classes, being:

1. Penetration Classes

a) Under-Penetrated
b) Correctly-Penetrated
c) Over-Penetrated

2. Insuflation Classes

a) Under-Insuflated
b) Correctly-Insuflated
c) Over-Insuflated

3. Rotation Classes

a) Non-Rotated
b) Rotated

It is important to note that a correctly taken normal image corresponds to the classes:
Correctly-Penetrated, Correctly-Insuflated and Non-Rotated. 50 randomly selected chest x-
rays from this subset were used for determining the confusion matrices and precision, f1-score,
recall and accuracy values for each class.

As there is almost no data for radiological image quality determination, we will approach
the problem by using standard classification metrics as made explicit at the beginning of this
section, after the defined classes were presented. In table 6.1 we present the obtained results
for f1-score, precision, recall and accuracy, over the three main class divisions. For this data,
we define the true positive for correctly classified well taken images.

Table 6.1: Result Analysis For Quality Assurance Assesments

Metric Penetration
Detection

Insuflation
Detection

Rotation
Detection

Accuracy 0.48 0.23 0.22
Precision 0.89 0.23 0.89
Recall 0.41 1.00 0.18
F1-Score 0.57 0.37 0.30

As clavicle segmentation models are considerably weak, the bone heads are not always
detected as one should expect. This causes a lot of erratic variation from the medial line,
specially considering the excellent results for lung segmentation models. As we apply im-
age processing to masks, if we deliver a good segmentation of the lungs, ignoring small-spot
outliers, the medial line determination is almost perfect. Regrettably, it is not the same
for the case of clavicles, as the wrongly segmented areas cause irreparable damage to the
image’s segmentation map, therefore, displacing the mid-point between the bone heads from

43



the medial plane. In rotation determination, these facts present themselves as almost no false
positives, a lot of false negatives, and an almost perfect score for true negatives. This causes
accuracy to be in an almost upper-central result, just above the 50% barrier, a good preci-
sion result and low recall value. The confusion matrix for general rotation is shown in fig. 6.6.

Figure 6.6: Rotation Confusion Matrix

For the insuflation problem, the rib segmentation has shown good results, but, as shown
in fig. 6.3, the superposition of posterior ribs sometimes is excessive, leading to a higher
centroid-count. This problem is visible in the augmented false negatives count, lowering the
result of true positive values. As the rib superposition is augmented on over-insuflated cases,
the centroid count is also augmented, presenting lower results for the under-insuflated detec-
tion. This under-insuflated cases are commonly detected as correctly-insuflated cases, which
leads to an augment in false positives for the mentioned case, but showing good results in
true negatives detection for the general insuflation class. These results lead to the decreased
precision score, and almost perfect recall value. The confusion matrix for general insuflation
is shown in fig. 6.7.

Finally, for the penetration case, the thing is a little more complex, due to the third image
processing step. Using thresholds to define certain conditions can be, sometimes, misleading.
As the contrast-ratio of different images vary, threshold values tend to work better in some
cases than others. In this case of application, it is important to note that the image is first
histogram-equalized, and re-equalized with CLAHE support for detection, leading to a more
standard, yet not perfect, contrast balance. Heart segmentation, on the other hand, does not
show perfect results, sometimes enlarging the heart’s shade and, for instance, augmenting the
vertebrae-count, leading to a greater over-penetration classification at true positives cost.
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Figure 6.7: Insuflation Confusion Matrix

As seen in figure 6.2, thresholding and filtering not always removes small outliers, which
results in higher vertebrae count, supporting the false negative augment presented in the
last point. These results show diminished results in all metrics, being f1-score and recall the
lowest of them all. The confusion matrix for general penetration is shown in fig. 6.8.
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Figure 6.8: Penetration Confusion Matrix
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Chapter 7

Conclusions and Discussion

7.1. Discussion
7.1.1. U-Net Based Chest X-Ray Image Segmentation
Semantic segmentation is one of the most complex computer vision problems, being consid-
ered AI-hard, the same level as human emotion-comprehensive systems. As well as segmen-
tation is a complex area, the number of manually segmented images in medical areas are
hard to find.
Considering the points listed above, medical image segmentation is an ongoing investigation
work, which is far from perfect.
Observing the obtained results in table 7.1, our models are near state-of-the-art results.

Table 7.1: Dice Score Comparison over Used Datasets

Model Lung
Segmentation

Rib
Segmentation

Clavicle
Segmentation

Images (Train/Val) 221/24 222/24 222/24

[26] 0.9740 - -
[27] 0.8503 - -
[22] 0.9496 - -
[25] 0.9584 - -
[28] 0.9483 - -
[24] 0.9796 - -
[30]1 - 0.7340 -
[29]1 - 0.8838 0.9378
Our 2 0.9590 0.8780 0.5380

As most data scientists and machine learning engineers would like more data, medical

1 Use of proprietary training dataset which does not compare to the training conditions shown in our work.
2 This shows our best models for each task. For lungs, it represents Spatial Attention U-Net model. For

Ribs, it represents the Swin-Block Skip architecture. For clavicles, it represents the Three-Head Attention
U-Net model
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image segmentation and classification is a high-cost ethics-protected work, that will barely
be published, fomenting the development of models in need for lesser image counts, being
further apart from modern image segmentation architectures.

Semi-supervised learning has been one of the raising investigation areas that, hopefully,
will permit medical models to be fully viable, thus it will not replace the basic image segmen-
tation models and lower image-count models due to the necessity of fine-tuning data. This
way, further models proposed should be structured and based on semi-supervised learning
over low image-count needy architectures.

Recent open-source work in x-ray analysis [37] and [38] present trained models and multiple
techniques for image classification and 3D image segmentation.

7.1.2. Quality Assurance Determination for Chest X-Ray Imag-
ing

Even though quality assurance is barely mentioned in the existing bibliography due to the
classical end-to-end approaching attempts, it adds multiple image capabilities, ensuring a
good quality over out-of-the-box imaging.
The patient’s rotation determination is approached in [32] with quite unfruitful results. The
same was done in [33] for penetration determination, but with no ideal results.

7.2. Ongoing Work
By the moment of the delivery of this document, a paper associated to the segmentation
of chest x-ray images is being reviewed for publication, addressing the themes presented in
chapters three trough five. This paper will be published under the name “Impact of Attention
Modules for Organ Segmentation in Chest X-ray Images under U-Net Architectures” (de la
Sotta et al., 2022) for further reading, not yet published.
Two digital posters are available at the moment, presented in the European Congress of Ra-
diology 2023 9, entitled “Attentional Layers Improve U-Nets Multi Structure Chest X-Ray
Segmentations Using Less Training Data” (ECR) (de la Sotta et al., 2023) and the Chilean
Congress of Radiology 202210 (CChR) (de la Sotta et al., 2022).

7.3. Future Work
Future work on this area corresponds to the study of different semi-supervised learning tech-
niques to improve the results over the presented models. Although we tackled the rib counting
and vertebrae detection in an image processing manner, a small dataset including separated
anterior and posterior ribs and vertebrae is being constructed for reducing the result vari-
ability in these specific tasks.

9 Accepted, will be published and presented during the 2023 congress, March 1-5, Viena.
10 Published, https://congresochilenoradiologia.cl/envio-de-posters/redes-neuronales-semi-atencionales-tipo-

u-net-para-segmentacion-multi-estructura-en-radiologia-de-torax/
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Although Data Augmentation was discarded for the development of this document, the study
and evaluation of new Data Augmentation techniques should be addressed in future work.
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ANNEXES

A. Additional Results
A.1. Visualization of Cases

A.1.1. Image Sample

Figure A.1: Evaluation Image Subset

A.1.2. Complex Cases in Lung Segmentation

Complex cases in lung segmentation usually correspond to tuberculosis presenting cases. In
figure A.2 we sample a group of complex cases. As you can determine, lowermost borders
remain untouched, not influencing on the medial line determination algorithm.
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Figure A.2: Complex Cases in Lung Segmentation

A.1.3. Heart Segmentation Sample

Figure A.3: Heart Segmentation Sample
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A.1.4. Rib Segmentation Sample

Figure A.4: Rib Segmentation Sample

A.1.5. Clavicle Segmentation Sample

Figure A.5: Clavicle Segmentation Sample

B. Architecture Representations
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B.1. UNet

Figure B.1: U-Net Model

B.2. ResNet-UNet

Figure B.2: ResNet-UNet Model

B.3. Swin-UNet

Figure B.3: Swin-UNet Model
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B.4. Three Head Attention U-Net

Figure B.4: Three Head Attention U-Net Model

B.5. Spatial Attention U-Net

Figure B.5: Spatial Attention U-Net Model

B.6. Double Spatial Attention U-Net

Figure B.6: Double Spatial Attention U-Net Model
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B.7. Full Spatial Attention U-Net

Figure B.7: Full Spatial Attention U-Net Model

B.8. Spatial Decoder U-Net

Figure B.8: Spatial Decoder U-Net Attention Block
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