
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MECÁNICA

QUANTUM MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO

CRISTIAN ANTONIO MAC-KAY CISTERNAS

PROFESOR GUÍA:
ENRIQUE LÓPEZ DROGUETT

MIEMBROS DE LA COMISIÓN:
VIVIANA MERUANE NARANJO

BENJAMIN HERRMANN PRIESNITZ

SANTIAGO DE CHILE
2023

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL MECÁNICO
POR: CRISTIAN ANTONIO MAC-KAY CISTERNAS
AÑO: 2023
PROF. GUÍA: ENRIQUE LÓPEZ DROGUETT

MACHINE LEARNING CUÁNTICO PARA EL
MANTENIMIENTO PREDICTIVO

Durante los últimos años, el aprendizaje de máquinas ha sido utilizado para resolver
problemas sobre mantenimiento predictivo. En este contexto, se han desarrollado apli-
caciones en dos principales tópicos: Diagnóstico y Pronóstico.

El objetivo de desarrollar algoritmos de aprendizaje de máquinas para el diagnóstico
es predecir si un componente o sistema mecánico está fallando o no. Por otro lado, el
objetivo de las aplicaciones del aprendizaje de máquinas sobre el pronóstico es predecir
cuánta vida útil tiene un componente o un sistema mecánico.

Sin embargo, en muchos casos, las técnicas actuales son demasiado caras o no lo
suficientemente fiables para utilizarlas en la industria. Una causa de ello es que hay
aplicaciones para las cuales estos algoritmos son difíciles de entrenar, debido al gran
volumen de datos, a la complejidad de los sistemas o a su multidimensionalidad.

En este contexto surge la idea de explorar las capacidades del aprendizaje de máquinas
cuántico para el mantenimiento predictivo. Debido a que la computación cuántica per-
mite realizar un número indefinido de tareas simultáneamente debido a los principios
cuánticos en los que se basa.

En el desarrollo de este trabajo, se exploran las capacidades de diferentes modelos
de aprendizaje de máquinas cuántico en búsqueda de aquellos que ofrezcan resultados
prometedores. Estos modelos fueron probados con dos casos de estudio pertinentes al
mantenimiento predictivo y cuyos resultados se compararan con los resultados obtenidos
con técnicas clásicas de aprendizaje de máquinas. Para desarrollar el tema, se utiliza en
Python utilizando Jupyter Notebook, IBM Quantum Lab y Google Colab, permitiendo
de esa forma utilizar entornos de ejecución en donde se integren librerías útiles del
aprendizaje de máquinas clásico, como Scikitlearn, Pytorch, Pandas, entre otras, con
bibliotecas utilizadas para la computación cuántica como Qiskit.

i

QUANTUM MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

During the last few years, machine learning has been used to solve predictive main-
tenance problems. In this context, there have been developed applications in two main
topics: Diagnostics and Prognostics.

The goal of developing machine learning algorithms for diagnostics is to predict
whether or not a component or mechanical system is failing. On the other hand, the
goal of machine learning applications on prognostics is to predict the remaining useful
lifetime of a component or mechanical system.

However, in many cases, current techniques are too expensive or not reliable enough
to be used in industry. One reason for this is that there are applications for which these
algorithms are difficult to train, due to the large volume of data, the complexity of the
systems or their multidimensionality.

In this context, the idea of exploring the capabilities of quantum machine learning
for predictive maintenance arises. Because quantum computing allows an indefinite
number of tasks to be performed simultaneously due to the quantum principles on
which it is based.

In the development of this work, the capabilities of different quantum machine learn-
ing models are explored to find those that offer promising results. These models were
tested with two relevant cases of study to predictive maintenance and whose results will
be compared with the results obtained with classical machine learning techniques. To
develop the topic, Python is used in Jupyter Notebook, IBM Quantum Lab and Google
Colab, thus allowing using execution environments where useful libraries of classical
machine learning, such as Scikitlearn, Pytorch, Pandas, among others, are integrated
with libraries used for quantum computing such as Qiskit.

ii

DEGREE TOPIC ABSTRACT TO OBTAIN
THE MECHANICAL ENGINEER TITLE
BY: CRISTIAN ANTONIO MAC-KAY CISTERNAS
YEAR: 2023
GUIDE PROF.: ENRIQUE LÓPEZ DROGUETT

A mis seres queridos, quienes son como las estrellas brillando en mi camino,
iluminando mi sendero hacia el éxito. Gracias por ser mi fortaleza en los momentos

difíciles, por ser la energía que impulsa mis sueños, por darme la oportunidad de
ejecutar mis deseos.

iii

Acknowledgments
The following text is written in Spanish for those who supported me during this

process.

“ Estimados seres queridos que han marcado mi vida durante este proceso. Ocupo
este espacio para expresarles mi gratitud infinita. Por estar a mi lado en esta aventura
llena de momentos. Procedo a dedicarles unas breves palabras a cada uno de ustedes,
empezando por mi amada familia.

Papá, eres mi roca inquebrantable y mi guía fiel, siempre estuviste ahí para apo-
yarme en mis metas y desafíos, a pesar de lo difíciles que pudieran parecer, nunca te
rendiste. Mamá, me has brindado amor incondicional y has inculcado en mí muchos
de los valores que hoy tengo con orgullo, gracias por enseñarme a querer y estar a mi
lado incondicionalmente. Carol, mi querida hermana, gracias por las risas compartidas
y por tu preocupación y apoyo constante hacia mí, pues sin tu iniciativa este proceso
no hubiera comenzado. Daniela, mi amor, gracias por tu compañía y por ser mi luz,
me inspiras y me apoyas en los momentos más oscuros siendo mi hogar y mi todo, te
quiero con todo mi corazón. Tsuki, mi pequeña gatita y fiel compañera, gracias por tu
amor y tus ronroneos, eres mi compañía en las tardes solitarias y un regalo en mi vida.
Gracias a todos por hacer de mi hogar un lugar lleno de amor.

Amigos y compañeros de universidad, gracias por las risas, los aprendizajes y los
desafíos. Hicieron que mi tiempo en la universidad fuera inolvidable. Gracias por su
amistad y por ser parte de mi camino, tanto a aquellos que permanecen en mi vida
como a aquellos con quienes separamos nuestros caminos.

Profesores, gracias por su paciencia y dedicación. Me guiaron y me enseñaron en mi
formación. Fueron faros en mi camino hacia el conocimiento. Me enseñaron a ver más
allá de lo que mis ojos alcanzaban. Tanto a ustedes como a la universidad, gracias
por ofrecerme una formación de excelencia, aprendí tanto dentro como fuera de las
aulas, con el rigor necesario para mi formación. Gracias Universidad de Chile por
ser también un hogar en esta etapa de mi vida, espero poder seguir nutriéndome de
todo lo que me brindaron y seguir creciendo con estas enseñanzas.

Este trabajo significa la culminación de una etapa importante, la conclusión de
mi carrera universitaria. Este texto es solo un pequeño eco de mi profunda gratitud,
cada uno de ustedes ha sido un pilar fundamental en mi camino y estoy agradecido
por su presencia constante en mi vida. Espero poder retribuir en algún momento
todo lo que ustedes han hecho por mi. ¡Gracias por todo! ”

iv

Table of content

1. Introduction 1
1.1. Objectives . 2
1.2. Scopes . 2

2. Background 4
2.1. Machine Learning General Concepts 4

2.1.1. Supervised learning . 4
2.1.2. Unsupervised learning . 4
2.1.3. Overfitting . 5
2.1.4. Evaluation metrics . 5
2.1.5. Obtaining time parameters . 8

2.1.5.1. Time windows . 8
2.1.5.2. Overlap . 8
2.1.5.3. Temporal parameters 8

2.1.6. Dimensionality reduction . 10
2.1.7. One hot encoding . 12
2.1.8. Support Vector Classifier . 12
2.1.9. Neural Networks . 15

2.2. Classical computing . 18
2.3. Quantum computing . 22

2.3.1. Background . 22
2.3.1.1. Quantum Bits . 22
2.3.1.2. Quantum superposition 23
2.3.1.3. Observer effect . 23
2.3.1.4. Quantum interference 25
2.3.1.5. Quantum entanglement 26
2.3.1.6. Quantum Circuits . 27
2.3.1.7. Quantum Gates . 28

2.3.1.7.1. Bit Flip Pauli Gate (X-Gate) 29
2.3.1.7.2. Hadamard Gate (H-Gate) 29
2.3.1.7.3. Rotation Gates . 30
2.3.1.7.4. Unitary Gate (U-Gate) 32
2.3.1.7.5. Phase (P-Gate) . 33
2.3.1.7.6. C-NOT Gate . 33

2.3.1.8. Qubits Measurements 34
2.3.2. Quantum computers . 35

v

2.3.3. Simulators . 37
2.3.4. IBM Qiskit . 37

2.3.4.1. Backends . 38
2.4. Programming Resources . 39
2.5. Quantum Machine Learning . 41

2.5.1. General Concepts . 42
2.5.1.1. Features Maps . 42
2.5.1.2. Ansatz . 44
2.5.1.3. Optimizer . 45
2.5.1.4. Quantum Neural Network 46

2.5.2. Models used . 48
2.5.2.1. Variatonal Quantum Classifier 48
2.5.2.2. Quantum Neural Network Classifier 49
2.5.2.3. Quantum Neural Network with Pytorch Classifier . . . 50
2.5.2.4. Quantum Support Vector Classifier 52

2.6. Used cases of study . 53
2.6.1. MFPT . 53
2.6.2. C-MAPSS . 55

3. Methodology 57
3.1. Selection of case studies and data exploration 57
3.2. Initial data preparation . 58

3.2.1. Assembling datasets . 58
3.2.1.1. MFPT . 58
3.2.1.2. C-MAPSS . 60
3.2.1.3. Sensor selection . 61

3.3. Selection of used models . 64
3.4. Implement classical model to cases of study 64
3.5. Implement quantum models to cases of study. 65

3.5.1. Variational Quantum Classifier 65
3.5.2. Quantum Neural Network Classifier 67
3.5.3. Quantum Neural Network with Pytorch Classifier 68
3.5.4. Quantum Support Vector Classifier 68

4. Results 70
4.1. Data processing results . 70

4.1.1. Dimensionality reduction . 73
4.2. Classical Support Vector Classifier Results 74

4.2.1. MFPT Fault Dataset Manipulation 74
4.2.2. C-MAPSS Aircraft Engine Simulator 74

4.2.2.1. FD001 Statistics Features 74
4.2.2.2. FD001 Sensors Features 75

4.3. Variational Quantum Classifier Results 75
4.3.1. MFPT Fault Dataset Manipulation 76
4.3.2. C-MAPSS Aircraft Engine Simulator 77

4.3.2.1. FD001 Statistics Features 77
4.3.2.2. FD001 Sensors Features 79

vi

4.4. Quantum Neural Network Classifier Results 80
4.4.1. C-MAPSS Aircraft Engine Simulator 80

4.4.1.1. FD001 Statistics Features 81
4.4.1.2. FD001 Sensors Features 82

4.5. Quantum Neural Network with Pytorch Classifier Results 83
4.5.1. C-MAPSS Aircraft Engine Simulator 83

4.5.1.1. FD001 Statistics Features 83
4.6. Quantum Support Vector Classifier Results 84

4.6.1. C-MAPSS Aircraft Engine Simulator 84
4.6.1.1. FD001 Sensors Features 84

4.7. Unused Quantum Scructures . 85

5. Discussions 87
5.1. Variational Quantum Classifier for MFPT Dataset 87
5.2. Variational Quantum Classifier for CMAPSS Statistics Features Dataset 88
5.3. Variational Quantum Classifier for CMAPSS Sensors Features Dataset 89
5.4. Quantum Neural Network Classifier for CMAPSS Statistics Features

Dataset . 90
5.5. Quantum Neural Network Classifier for CMAPSS Sensors Features Dataset 91
5.6. Quantum Neural Network with Pytorch Classifier for CMAPSS Sensors

Features Dataset . 92
5.7. Quantum Support Vector Classifier for CMAPSS Sensors Features Dataset 93
5.8. Classical Results vs Quantum Results 94

6. Conclusions 97

7. Proposed work 99

101Bibliography

Annex A. Datasets Features Plots 103
A.1. MFPT Features plots . 103
A.2. C-MAPSS FD001 Features plots . 106

Annex B. Models Confusion Matrices 113
B.1. Variational Quantum Classifier . 113

B.1.1. MFPT Fault Dataset . 113
B.1.1.1. FD001 Statistics Features 117
B.1.1.2. FD001 Sensors Features 124

B.2. Quantum Neural Network Classifier . 130
B.2.0.1. FD001 Statistics Features 130
B.2.0.2. FD001 Sensors Features 132

B.3. Pytorch + Quantum Neural Network Classifier 135
B.4. Quantum Support Vector Classifier . 137

Annex C. Codes 138
C.1. Classical SVC . 138
C.2. Variational Quantum Classifier . 138

vii

C.3. Quantum Neural Network Classifier . 140
C.4. Quantum Neural Network with Pytorch Classifier 141
C.5. Quantum Support Vector Classifier . 142

viii

List of Tables

2.1. One-hot encoding example . 12
3.1. MFPT Data after redefining sampling rate and measured time. 59
3.2. MFPT Data Example after grouping in time windows. 59
3.3. MFPT Data Example after stacking time windows for every health condition. 60
3.4. MFPT Data Example after calculating new features. 60
3.5. C-MAPSS Raw Datasets Conditions. 60
3.6. C-MAPSS FD001 Raw Dataset . 61
3.7. C-MAPSS FD001 Raw Dataset with Estimated RUL 62
3.8. C-MAPSS FD001 Dataset after columns droping. 62
3.9. C-MAPSS FD001 Dataset After PCA Feature Reduction 62
3.10. C-MAPSS FD001 RUL Dataset . 63
3.11. C-MAPSS FD001 PCA Features from Sensors Dataset for Classification . 63
3.12. C-MAPSS FD001 Statistical Features Dataset 63
3.13. C-MAPSS FD001 Statistical Features after PCA Reduction with Labels . 64
4.1. Datasets PCA Reduction Results . 73
4.2. Classical Predictions Results . 75
4.3. VQC for MPFT Dataset Results . 77
4.4. VQC for C-MAPSS FD001 with Statistics Features Results 78
4.5. VQC for C-MAPSS FD001 with Sensor Features Results 80
4.6. QNN for C-MAPSS FD001 with Statistics Features Results 81
4.7. QNN for C-MAPSS FD001 with Sensors Features Results 82
4.8. Pytorch + QNN for C-MAPSS FD001 with Statistics Features Results . 84
4.9. QVSC for C-MAPSS FD001 with Sensors Features Results 85
4.10. Unused Structures . 86

ix

List of Figures

2.1.1. Example of labeled and unlabeled data for classification and clustering. . 5
2.1.2. Overfitting example. 5
2.1.3. Confusion matrix example. 6
2.1.4. Hyperplane illustrations. 13
2.1.5. Optimal hyperplane example. 13
2.1.6. Kernel Example. 14
2.1.7. Artificial Neuron Scheme. 16
2.1.8. Artificial Neural Network Scheme. 16
2.1.9. Activation Functions. 17
2.2.1. Classical Logic Gates. 19
2.2.2. Schematic diagram of a classic transistor. 19
2.2.3. Scheme of AND operation with transistors. 20
2.2.4. Scheme of OR operation with transistors. 20
2.2.5. Scheme of XOR operation with transistors. 20
2.2.6. Half Adder circuit diagram. 21
2.2.7. Schematic diagram of the ALU TI 7400. 21
2.3.1. Comparision between a classical bit and a quantum bit. 22
2.3.2. Classical noise cancel example. 25
2.3.3. Multiple states superposition. 26
2.3.4. Quantum Circuit Example. [11] . 27
2.3.5. Illustration of an angle representation for a Quantum State. 30
2.3.6. Illustration of states rotations on Blech Sphere. 31
2.3.7. An inside view of IBM Quantum System One. 36
2.5.1. Classical Neural Network vs Quantum Neural Network Comparison . . . 47
2.5.2. VQC Example Circuit . 49
2.5.3. QNN Classifier Example Circuit . 50
2.6.1. MFPT Fault Dataset Manipulation . 54
2.6.2. C-MAPSS Aircraft Engine Simulator . 55
3.5.1. VQC FeatureMap and Ansatz Example 66
3.5.2. VQC Callback Graph Example . 67
4.1.1. MFPT Raw Dataset Plot . 70
4.1.2. MFPT Dataset Mean Plot . 71
4.1.3. MFPT Dataset Variance Plot . 71
4.1.4. MFPT Dataset RMS Plot . 71
4.1.5. C-MAPSS Aircraft Correlation Matrix Between Features 72
4.1.6. C-MAPSS FD001 Train Dataset LPC Outlet Temperature Plots 73
4.1.7. C-MAPSS FD001 Test Dataset HPT Coolant Bleed Plots 73

x

4.2.1. Confussion Matrixes for Classical SVC applied to MFPT 74
4.2.2. Confussion Matrixes for Classical SVC applied to C-MAPSS FD001 with

Statistics Features . 74
4.2.3. Confussion Matrixes for Classical SVC applied to C-MAPSS FD001 with

Statistics Features . 75
4.3.1. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA

applied to MFPT . 76
4.3.2. Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and

COBYLA applied to MFPT . 76
4.3.3. Confussion Matrixes for VQC with RawFeatures, EfficientSU2 and COBYLA

applied to MFPT . 76
4.3.4. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA

applied to C-MAPSS FD001 with Statistics Features 77
4.3.5. Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes

and COBYLA applied to C-MAPSS FD001 with Sensor Features 78
4.3.6. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SLSQP

applied to C-MAPSS FD001 with Sensor Features 78
4.3.7. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA

applied to C-MAPSS FD001 with Sensor Features 79
4.3.8. Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and COBYLA

applied to C-MAPSS FD001 with Sensor Features 79
4.3.9. Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes

and SPSA applied to C-MAPSS FD001 with Sensor Features 80
4.4.1. Confussion Matrixes for QNN with ZZFeatureMap, RealAmplitudes to C-

MAPSS FD001 with Statistics Features 81
4.4.2. Confussion Matrixes for QNN with ZFeatureMap, RealAmplitudes to C-

MAPSS FD001 with Statistics Features 81
4.4.3. Confussion Matrixes for QNN with ZZFeatureMap, RealAmplitudes to C-

MAPSS FD001 with Sensor Features . 82
4.4.4. Confussion Matrixes for QNN with ZFeatureMap, RealAmplitudes to C-

MAPSS FD001 with Sensor Features . 82
4.5.1. Confussion Matrixes for Pytorch + OpflowQNN with ZZFeatureMap, Re-

alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 83

4.5.2. Confussion Matrixes for Pytorch + CircuitQNN with ZZFeatureMap, Re-
alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 83

4.6.1. Confussion Matrixes for Quantum SVC with ZFeatureMap applied to C-
MAPSS FD001 with Sensors Features . 84

4.6.2. Confussion Matrixes for Quantum SVC with ZZFeatureMap applied to
C-MAPSS FD001 with Sensors Features 85

A.1.1. MFPT Dataset Mean Plot . 103
A.1.2. MFPT Dataset Variance Plot . 103
A.1.3. MFPT Dataset RMS Plot . 104
A.1.4. MFPT Dataset Peak Plot . 104
A.5. MFPT Dataset Valley Plot . 104
A.6. MFPT Dataset Peak to Peak Plot . 105

xi

A.7. MFPT Dataset Crest Factor Plot . 105
A.8. MFPT Dataset Kurtosis Plot . 105
A.9. MFPT Dataset Skewness Plot . 106
A.2.1. C-MAPSS FD001 Dataset LPC Outlet Temperature Mean Plot 106
A.2.2. C-MAPSS FD001 Dataset LPC Outlet Temperature Standard Deviation

Plot . 106
A.2.3. C-MAPSS FD001 Dataset HPC Outlet Temperature Mean Plot 107
A.2.4. C-MAPSS FD001 Dataset HPC Outlet Temperature Standard Deviation

Plot . 107
A.2.5. C-MAPSS FD001 Dataset LPT Outlet Temperature Mean Plot 107
A.2.6. C-MAPSS FD001 Dataset LPT Outlet Temperature Standard Deviation

Plot . 108
A.2.7. C-MAPSS FD001 Dataset Bypass Duct Pressure Mean Plot 108
A.2.8. C-MAPSS FD001 Dataset Bypass Duct Pressure Standard Deviation Plot 108
A.2.9. C-MAPSS FD001 Dataset HPC Outlet Pressure Mean Plot 109
A.2.10.C-MAPSS FD001 Dataset HPC Outlet Pressure Standard Deviation Plot 109
A.2.11.C-MAPSS FD001 Dataset Corrected Fan Speed Mean Plot 109
A.2.12.C-MAPSS FD001 Dataset Corrected Fan Speed Standard Deviation Plot 110
A.2.13.C-MAPSS FD001 Dataset Bypass Ratio Mean Plot 110
A.2.14.C-MAPSS FD001 Dataset Bypass Ratio Standard Deviation Plot 110
A.2.15.C-MAPSS FD001 Dataset Bleed Enthalpy Mean Plot 111
A.2.16.C-MAPSS FD001 Dataset Bleed Enthalpy Standard Deviation Plot . . . 111
A.2.17.C-MAPSS FD001 Dataset HPT Coolant Bleed Mean Plot 111
A.2.18.C-MAPSS FD001 Dataset HPT Coolant Bleed Standard Deviation Plot . 112
A.2.19.C-MAPSS FD001 Dataset HPT Coolant Bleed Mean Plot 112
A.2.20.C-MAPSS FD001 Dataset HPT Coolant Bleed Standard Deviation Plot . 112
B.1.1. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA

applied to MFPT . 113
B.1.2. Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and

COBYLA applied to MFPT . 114
B.1.3. Confussion Matrixes for VQC with RawFeatures, EfficientSU2 and COBYLA

applied to MFPT . 114
B.1.4. Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and

COBYLA applied to MFPT . 114
B.1.5. Confussion Matrixes for VQC with RawFeatures, RealAmplitudes and

COBYLA applied to MFPT . 115
B.1.6. Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SLSQP

applied to MFPT . 115
B.1.7. Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and

SLSQP applied to MFPT . 115
B.1.8. Confussion Matrixes for VQC with RawFeatures, RealAmplitudes and

SLSQP applied to MFPT . 116
B.1.9. Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and

SLSQP applied to MFPT . 116
B.1.10.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SPSA

applied to MFPT . 116

xii

B.1.11.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and SPSA
applied to MFPT . 117

B.1.12.Confussion Matrixes for VQC with RawFeatures, EfficientSU2 and SPSA
applied to MFPT . 117

B.1.13.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA
applied to C-MAPSS FD001 with Statistics Features 117

B.1.14.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
COBYLA applied to C-MAPSS FD001 with Statistics Features 118

B.1.15.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and COBYLA
applied to C-MAPSS FD001 with Statistics Features 118

B.1.16.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
COBYLA applied to C-MAPSS FD001 with Statistics Features 118

B.1.17.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
COBYLA applied to C-MAPSS FD001 with Statistics Features 119

B.1.18.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and COBYLA applied to C-MAPSS FD001 with Statistics Features . . . 119

B.1.19.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SLSQP
applied to C-MAPSS FD001 with Statistics Features 119

B.1.20.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
SLSQP applied to C-MAPSS FD001 with Statistics Features 120

B.1.21.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and SLSQP
applied to C-MAPSS FD001 with Statistics Features 120

B.1.22.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
SLSQP applied to C-MAPSS FD001 with Statistics Features 120

B.1.23.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
SLSQP applied to C-MAPSS FD001 with Statistics Features 121

B.1.24.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and SLSQP applied to C-MAPSS FD001 with Statistics Features 121

B.1.25.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SPSA
applied to C-MAPSS FD001 with Statistics Features 121

B.1.26.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
SPSA applied to C-MAPSS FD001 with Statistics Features 122

B.1.27.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and SPSA
applied to C-MAPSS FD001 with Statistics Features 122

B.1.28.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
SPSA applied to C-MAPSS FD001 with Statistics Features 122

B.1.29.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
SPSA applied to C-MAPSS FD001 with Statistics Features 123

B.1.30.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and SPSA applied to C-MAPSS FD001 with Statistics Features 123

B.1.31.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and COBYLA
applied to C-MAPSS FD001 with Sensor Features 124

B.1.32.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
COBYLA applied to C-MAPSS FD001 with Sensor Features 124

B.1.33.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and COBYLA
applied to C-MAPSS FD001 with Sensor Features 125

xiii

B.1.34.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
COBYLA applied to C-MAPSS FD001 with Sensor Features 125

B.1.35.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
COBYLA applied to C-MAPSS FD001 with Sensor Features 125

B.1.36.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and COBYLA applied to C-MAPSS FD001 with Sensor Features 126

B.1.37.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SLSQP
applied to C-MAPSS FD001 with Sensor Features 126

B.1.38.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
SLSQP applied to C-MAPSS FD001 with Sensor Features 126

B.1.39.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and SLSQP
applied to C-MAPSS FD001 with Sensor Features 127

B.1.40.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
SLSQP applied to C-MAPSS FD001 with Sensor Features 127

B.1.41.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
SLSQP applied to C-MAPSS FD001 with Sensor Features 127

B.1.42.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and SLSQP applied to C-MAPSS FD001 with Sensor Features 128

B.1.43.Confussion Matrixes for VQC with ZZFeatureMap, EfficientSU2 and SPSA
applied to C-MAPSS FD001 with Sensor Features 128

B.1.44.Confussion Matrixes for VQC with ZZFeatureMap, RealAmplitudes and
SPSA applied to C-MAPSS FD001 with Sensor Features 128

B.1.45.Confussion Matrixes for VQC with ZFeatureMap, EfficientSU2 and SPSA
applied to C-MAPSS FD001 with Sensor Features 129

B.1.46.Confussion Matrixes for VQC with ZFeatureMap, RealAmplitudes and
SPSA applied to C-MAPSS FD001 with Sensor Features 129

B.1.47.Confussion Matrixes for VQC with RawFeatureVector, EfficientSU2 and
SPSA applied to C-MAPSS FD001 with Sensor Features 129

B.1.48.Confussion Matrixes for VQC with RawFeatureVector, RealAmplitudes
and SPSA applied to C-MAPSS FD001 with Sensor Features 130

B.2.1. Confussion Matrixes for QNN with ZZFeatureMap, RealAmplitudes to C-
MAPSS FD001 with Statistics Features 130

B.2.2. Confussion Matrixes for QNN with ZFeatureMap, RealAmplitudes to C-
MAPSS FD001 with Statistics Features 131

B.2.3. Confussion Matrixes for QNN with ZZFeatureMap, EfficientSU2 to C-
MAPSS FD001 with Statistics Features 131

B.2.4. Confussion Matrixes for QNN with ZFeatureMap, EfficientSU2 to C-MAPSS
FD001 with Statistics Features . 131

B.2.5. Confussion Matrixes for QNN with RawFeatureVector, EfficientSU2 to C-
MAPSS FD001 with Statistics Features 132

B.2.6. Confussion Matrixes for QNN with RawFeatureVector, RealAmplitudes to
C-MAPSS FD001 with Statistics Features 132

B.2.7. Confussion Matrixes for QNN with ZZFeatureMap, RealAmplitudes to C-
MAPSS FD001 with Sensor Features . 132

B.2.8. Confussion Matrixes for QNN with ZFeatureMap, RealAmplitudes to C-
MAPSS FD001 with Sensor Features . 133

xiv

B.2.9. Confussion Matrixes for QNN with ZZFeatureMap, EfficientSU2 to C-
MAPSS FD001 with Sensor Features . 133

B.2.10.Confussion Matrixes for QNN with ZFeatureMap, EfficientSU2 to C-MAPSS
FD001 with Sensor Features . 133

B.2.11.Confussion Matrixes for QNN with RawFeatureVector, EfficientSU2 to C-
MAPSS FD001 with Sensor Features . 134

B.2.12.Confussion Matrixes for QNN with RawFeatureVector, RealAmplitudes to
C-MAPSS FD001 with Sensor Features 134

B.3.1. Confussion Matrixes for Pytorch + OpflowQNN with ZZFeatureMap, Re-
alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 135

B.3.2. Confussion Matrixes for Pytorch + CircuitQNN with ZZFeatureMap, Re-
alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 135

B.3.3. Confussion Matrixes for Pytorch + OpflowQNN with ZFeatureMap, Re-
alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 136

B.3.4. Confussion Matrixes for Pytorch + CircuitQNN with ZFeatureMap, Re-
alAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 136

B.3.5. Confussion Matrixes for Pytorch + OpflowQNN with RawFeatureVector,
RealAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 136

B.3.6. Confussion Matrixes for Pytorch + CircuitQNN with RawFeatureVector,
RealAmplitudes and LBFGS Optimizer applied to C-MAPSS FD001 with
Statistical Features . 137

B.4.1. Confussion Matrixes for Quantum SVC with ZFeatureMap applied to C-
MAPSS FD001 with Sensors Features . 137

B.4.2. Confussion Matrixes for Quantum SVC with ZZFeatureMap applied to
C-MAPSS FD001 with Sensors Features 137

xv

1 | Introduction

Throughout the technological development, there has been an evolution of the mainte-
nance techniques used in the different engineering industries. These techniques, which
allow to operate with greater efficiency the different stages of the productive processes,
have evolved in an accelerated way starting from corrective strategies, to techniques
which consist of scheduled works such as preventive or predictive maintenance.

The strategies consisting of scheduled maintenance works are aimed at maximizing
the uptime of a system’s components and thus optimizing the available resources. This
objective is achieved by finding the right time to repair or replace a component, thus
avoiding unplanned shutdowns that compromise production and operational safety, as
well as premature replacement of still functional components.

In this context, maintenance strategies have shifted towards predictive maintenance
techniques, which optimize the planning of maintenance tasks, adding information on
reliability that allows to decide more effectively when to execute the respective main-
tenance tasks. These techniques are performed through continuous monitoring of the
components or equipment of a production process, using tools such as accelerometers,
thermographs, ultrasonic sensors, among others.

The previously mentioned predictive strategy has evolved, hand in hand with tech-
nological and theoretical development, towards increasingly sophisticated techniques
that allow processing the information obtained from continuous monitoring to perform
analysis and predictions through computational techniques such as Machine Learning
or Deep Learning. These techniques allow a computer to learn, from the information
provided by equipment monitoring, to perform various useful tasks in order to obtain
a deeper understanding of the condition of the equipment or components.

However, during the development and advancement of these computational machine
learning techniques, it has been found that there are applications where these algo-
rithms are difficult to implement, due to the complexity of the problems to be solved.
This represents an important challenge, since it is of vital importance to obtain in-
creasingly better results, so that they can be applied with reliability in industries that
operate under critical safety conditions, in this case, in the context of maintenance and
reliability.

On the other hand, in recent years, a new computational tool has emerged which

1

generates interest for its promising potential: quantum computing. The potential that
characterizes quantum computing is explained by the quantum principles on which it
is based, allowing to execute an indefinite number of superimposed tasks.

Nowadays, the first quantum processing units are already available through open
APIs (IBM’s Qiskit, among others), which also contain methods for simulating quantum
processing units. Because of this, it is already possible to explore the capabilities that
this new technology offers when used to implement machine learning techniques in the
context of maintenance and reliability for predictive strategies. This area of study
arising from the convergence between machine learning and quantum computing is
called quantum machine learning.

Motivated by the previously described, the capabilities of quantum machine learning
applied to techniques used for reliability and maintenance will be explored in this degree
work.

1.1. Objectives
Overall Objective

The overall objective of the present work is to explore and implement new quantum
machine learning algorithms and models in the context of predictive maintenance.

Specific Objectives

To achieve the overall objective of this work, the following specific objectives were
proposed:

• Select relevant cases of studies, both in the literature and in the community’s
ongoing research.

• Select quantum machine learning techniques, based on the principles of quantum
computing and on the existing machine learning algorithms.

• Apply traditional machine learning algorithms to selected cases.

• Apply the proposed quantum machine learning algorithms to selected cases.

• Train, evaluate and compare both techniques used for a same case study.

1.2. Scopes

The following work involves the implementation of novel quantum machine learning
models to be used in predictive maintenance. The results obtained from the training and
evaluation of these models will be compared with classical machine learning techniques,

2

until finding a model or models that present competitive results with respect to the
performance already achieved with classical techniques. For this, it will be necessary to
know how quantum computing works, differentiating it from classical computing and
how it is used to run the models.

3

2 | Background

In this chapter, an explanation and literature review on quantum computing, machine
learning and maintenance is performed. Subsequently, the datasets used in this work
are presented.

2.1. Machine Learning General Concepts

Machine learning is a branch of computer science that consists of the study and
development of models that allow a system to learn, based on experience, to perform
certain tasks without being explicitly programmed to do so. This learning is achieved
by means of an algorithm that trains the system using a set of data from a monitoring
of system variables. One of the main tasks sought using machine learning is the pre-
diction of the classes to which a data set belongs, which in this context of predictive
maintenance, can be used to classify the health states of a system.

Among the main classifications of machine learning algorithms, there is one that is
based on the type of supervision that is performed on the algorithms at the time of
training. We will review two of the main categories of this classification: supervised
learning and unsupervised learning.

2.1.1. Supervised learning

In supervised learning, the objective is to find patterns in the data sets that are
linked to attributes that define the meaning of each data. These attributes are called
labels, which in general are the classes to which the data belong and which must be
predicted by the model. One of the typical supervised learning tasks are classification
tasks, in which it is predicted, after training, to which class the data belong. [1]

2.1.2. Unsupervised learning

In the same way as in supervised learning, in the unsupervised case, the goal is to
find patterns in the dataset. However, in this case the data are not linked to labels, so
this pattern search is performed through clusters of data. [1]

4

Figure 2.1.1: Example of labeled and unlabeled data for classification
and clustering.

2.1.3. Overfitting

One of the most important challenges when training predictive models is to generalize
the behavior of the data used. When a model loses its generality during training, it
will adjust to a particular behavior found in the data on which it was trained. Because
of this, when executing the task for which the model was trained, but using a different
data set, poor performances will be obtained because the model fails to fit well with
data that is not the training data, while when performing the same task but using the
actual training data, an almost perfect performance is obtained. This phenomenon is
known as overfitting. [2]

Figure 2.1.2: Overfitting example.

2.1.4. Evaluation metrics

To evaluate the performance of a model after training, different metrics are used
depending on the type of task performed. Usually, for a classification model, the most
commonly used metric to evaluate its performance is the so-called confusion matrix.
This metric consists of a matrix that graphically shows the count of correctly and
incorrectly classified data. In the figure 2.1.3, an example of a confusion matrix is
presented.[3]

5

TP

TN

FP

FN

Positive
Po

si
tiv

e
N

eg
at

iv
e

Negative
True Class

Pr
ed

ic
te

d
C

la
ss

Figure 2.1.3: Confusion matrix example.

In the example matrix, there are two classes with which the data are labeled: Positive
and Negative. When performing the prediction of the labels in the classification, the
results are grouped into 4 subgroups defined as follows:

• True positive (TP): Represents the amount of data that were well classified as
positive.

• False positive (FP): Represents the amount of data that were misclassified as
positive.

• False negative (FN): Represents the amount of data that were misclassified as
negative.

• True negative (TN): It represents the amount of data that were well classified
as negative.

From these 4 groups, it is possible to obtain additional evaluation metrics, which are
described below: [3]

Accuracy

The accuracy represents the ratio of classifications performed correctly by the model
with respect to the total number of predictions made. This metric is represented by
the equation 2.1 presented below.

Accuracy = TP + TN

TP + TN + FP + FN
(2.1)

Expression for Accuracy calculation.

6

However, this measure does not reflect the presence or absence of errors in the model,
such as the model predicting Negative classes well but Positive classes very poorly, which
is why the following evaluation metrics emerge.

Precision

Precision is similar to Accuracy, but only considers correct predictions of the Positive
class, so it represents the rate of correctly performed classifications of the Positive class
with respect to all predictions that were predicted as Positive. This metric is represented
by the equation 2.2 presented below.

Precision = TP

TP + FP
(2.2)

Expression for calculating the Precision.

Recall

Recall, also known as Sensivity, is also similar to Accuracy, but only considers the
correct predictions of the Positive class and the actual amount of data classified as
positive. It therefore represents the rate of correct classifications of the Positive class
relative to the actual amount of data classified as Positive. This metric is represented
by the equation 2.3 presented below.

Recall = TP

TP + FN
(2.3)

Expression for Recall calculation.

Specificity

Specifity is the analogous metric to Recall but for cases with Negative labels. This
metric considers the correct predictions of the Negative class and the actual amount of
Negative data, thus representing the rate of correctly performed classifications of the
Negative class with respect to the actual amount of data classified as Negative. This
metric is represented by the equation 2.4 presented below.

Specifity = TN

TN + FP
(2.4)

Expression for Specifity calculation.

Negative Predictive Value (NPV)

Finally, the last metric is the Negative Predictive Value, which is an analog to
Precision but with the data classified as Negative, thus representing the rate of correctly

7

performed classifications of the Negative class with respect to all predictions that were
predicted as Negative. This metric is represented by the equation 2.5 presented below.

NPV = TN

TN + FN
(2.5)

Expresión para el cálculo del NPV.

2.1.5. Obtaining time parameters

This is a technique used to compress the information of the cases, without losing it,
into a dataset that allows a more efficient training, through the separation into time
windows, the use of overlap and the calculation of new parameters.

2.1.5.1. Time windows

In general, in Machine Learning model training, the more samples used, the better the
learning. However, it is necessary to be efficient when distributing the data in order to
optimize execution times without losing information.

For this reason, in problems where the data to be used consist of time series, it is
common to regroup them in time windows of data with a certain length. This window
length is equivalent to a small amount of time compared to the total time in which the
data were obtained. However, defining a very small amount of window length results
in the windows not containing enough information, so it is necessary to balance the
length of the windows with the amount of windows generated.

2.1.5.2. Overlap

The overlap consists of a strategy that improves training performances when using time
windows. This technique consists of allowing the constructed time windows to share
some data.

2.1.5.3. Temporal parameters

Temporal parameters are metrics that are calculated from each of the temporal windows
defined in a particular case. This will allow to build a new dataset, with which the
Machine Learning model will be trained more efficiently and without loss of information.
The important metrics for this work are defined as follows.

Let X be a temporal vector of length n: X = (x1, x2, ..., xn), the following temporal
parameters are obtained:

8

• Mean (µ): Represents a central measure of a data set obtained by dividing the
sum of the values by the number of elements in the set.

µ = 1
n

n∑
i=1

xi

• Variance (σ): Describes the dispersion of a set of data around its mean. The
greater the variance, the greater the dispersion of the data and vice versa. In
other words, the variance measures how far the data are from the mean.

σ = 1
n

n∑
i=1

(µ− xi)2

• Root mean square (RMS): It is used to calculate the square root of the squared
values mean in a data set. It is especially useful for describing electrical or me-
chanical signals, where negative and positive values can cancel each other out. By
squaring all values, negative values are eliminated and ensures that positive values
are accounted for in the average.

RMS =
√√√√ 1
n

n∑
i=1

x2
i

• Peak: It is used to describe the maximum value in a data set. It is useful to
describe the maximum amplitude of a signal.

peak = max(X)

• Peak to peak (P2P): It is used to describe the difference between the maximum
and minimum values in a data set. It is calculated by taking the difference between
the maximum value and the minimum value in the set. It is useful to understand
the total amplitude of a signal, including both positive and negative values.

P2P = max(X)−min(X)

• Crest factor: It is used to describe the relationship between the peak value and
the RMS value of a signal. It is useful to understand the waveform of a signal
and to compare different signals with each other. For example, a signal with a
high crest factor, i.e. a large peak to RMS ratio, has a “sharper” waveform and
contains more energy in the peak values. On the other hand, a signal with a
low crest factor, i.e. a small peak to RMS ratio, has a “smoother” waveform and
contains less energy in the peak values.

crest factor = peak

RMS

• Kurtosis: It is used to describe the shape of a data distribution and the concen-
tration of values around the mean. If the kurtosis is equal to zero, the distribution

9

has a typical bell shape and is said to be mesokurtic. If the kurtosis is greater
than zero, the distribution has more concentration around the mean than a nor-
mal distribution, and is said to be leptokurtic or “pointed”. If the kurtosis is less
than zero, the distribution has less concentration around the mean than a normal
distribution, and is said to be platykurtic or “flattened”. [4]

kurtosis =
∑n

i=1(xi − µ)4

n · σ2

• Skewness: It is used to describe the skewness of a data distribution. If skewness
is equal to zero, the distribution is symmetric, meaning that the mean and mode
are equal and the distribution is balanced on both sides of the mean. If skewness
is greater than zero, the distribution is skewed to the right, meaning that the tail
of the distribution extends to the right of the mean. If the skewness is less than
zero, the distribution is skewed to the left, meaning that the tail of the distribution
extends to the left of the mean. Skewness is useful for understanding the shape of
a distribution and can help identify outliers or extremes. [4]

skewness = m3

m
3/2
2

where: mi = 1
n

n∑
j=1

(xj − µ)i

2.1.6. Dimensionality reduction

The dimensionality of a dataset is defined by how many values exist for each mea-
surement or sample. These values coming, in this context, from continuous monitoring
using sensors are called features. In this way, each sample can be understood as a vector
of dimension equal to the number of features in the dataset.

There are cases where the available data contains a large number of features, so
dimensionality reduction methods are typically used to improve the model training
process by reducing execution times. For this, there are several dimensionality reduction
methods such as: Principal components analysis (PCA), Linear discriminant analysis
(LDA), among others.

The method used in this work is the Principal Component Analysis (PCA), which
consists of applying a series of mathematical transformations to the data to bring them
to a lower dimensional space. In general terms, this method consists of the following,
for a set of vectors {Xn} , n ∈ {1...N} d, the q main axes wj , j ∈ {1...q} are those
orthonormal axes in which the variance contained under their projection is maximum.
Where, the wj vectors are given by the q eigenvectors that have the largest eigenvalues
found in the covariance matrix S.

The covariance matrix S , is given by the expression of the equation 2.6, where t is
the sample mean and λj the respective eigenvalue.

S =
∑

n

(tn − t)(tn − t)T

N
such as: Swj = λjwj (2.6)

10

Expression for the covariance matrix of the PCA method.

Thus, the vector xn = W T (tn− t) with W = (w1, w2, ..., wq), is the representation of
the original vector tn reduced to a space of dimension q. [5]

To define to which value of the new dimension q the data is reduced, an analysis
of variances is performed. To illustrate this analysis, let us take as an example the
following covariance matrix for a data set of 3 variables:

S =

 1.34373 −0.16015 0.18647
−0.16015 0.61920 −0.12668
0.18647 −0.12668 1.48554

In this case, the variances of the three variables are on the diagonal, and their sum
corresponds to the overall variance, which in this case, has a value of 3.448.

However, as previously mentioned, the PCA method performs a new representation
of the data with a different dimension, for this, the method replaces the original vari-
ables with new variables, called principal components coming from the principal axes
wj previously mentioned. These axes, being orthogonal, do not present covariances,
and their variances coming from the covariance matrix in the new space of dimension
q correspond to the eigenvalues of the matrix. Therefore, if we define for this transfor-
mation, a new dimension equal to the original dimension, it is possible to perform an
analysis of which dimensions provide the most information to the data. Then, consid-
ering the previous example but on these new orthogonal axes, the following covariance
matrix is obtained:

S =

1.65135 0.00000 0.00000
0.00000 1.22028 0.00000
0.00000 0.00000 0.57684

The sum of this last matrix diagonal is also 3.448, however, it is now possible to
calculate the importance of each dimension. For this, the percentages of each variance
are calculated:

• First dimension: 1.651/3.448 = 47.9%

• Second dimension: 1.220/3.448 = 35.4%

• Third dimension: 0.577/3.448 = 16.7%

This allows to decide how many dimensions to reduce to. For example, if in this
case it is decided to reduce the dimension of the data to 2, 16.7% of variance would
be eliminated, which would translate into a loss of information by reducing the dimen-
sionality. However, there are cases where the percentage of variance of a dimension is
negligible compared to the rest, so it is easier to decide to reduce the dimensionality

11

without losing information. In general, and in this work, it is decided to keep at least
95% of the variance.

2.1.7. One hot encoding

Sometimes, especially in classification tasks, the data to be worked with contains
labels that are not numeric values, but strings of characters such as a name or a char-
acteristic. For example, an attribute such as color may have values such as ‘red’, ‘blue’
or ‘green’.

However, some algorithms cannot work with category data directly, so it is necessary
to translate them into numerical values. For this purpose, method One-hot encoding is
used.

This method performs a representation of each attribute of a category using new
variables using only binary values. For example, for the case of the color attribute
mentioned above, 3 binary variables are needed, which will take the value 1 to indicate
the color value of the data and the value 0 to indicate that the data does not meet that
characteristic, as exemplified in table 2.1.

Table 2.1: One-hot encoding example

red blue green
Data classified as color red (1 , 0 , 0)
Data classified as color blue (0 , 1 , 0)
Data classified as color green (0 , 0 , 1)

2.1.8. Support Vector Classifier

One of the most popular classification algorithms is the Support Vector Classifier
(SVC). This algorithm belongs to a set of supervised learning methods for classification,
regression and outlier detection tasks, called Support Vector Machines (SVMs).

Support Vector Machines correspond to algorithms that calculate the optimal hyper-
plane capable of separating the classes of data in their space. Examples of hyperplanes
in different dimensions are as illustrated in figure 2.1.4.

12

A hyperplane in 2D A hyperplane in 3D

Figure 2.1.4: Hyperplane illustrations.

There are infinite hyperplanes in the n-dimensional space of the data, so there can
also be infinite hyperplanes that divide the data into their respective classes. For this
reason, the optimal hyperplane is defined as the one that maximizes the margins, that
is, the distance between the hyperplane and the data of each class, as illustrated in
Figure 2.1.5.

Optimal Hyperplane
M

ax
M

ar
gi
n

Figure 2.1.5: Optimal hyperplane example.

The search for optimal margins is related, by means of an optimization problem, to
different parameters. In general, these parameters depend on the type of algorithm,
however, the most usual ones are:

• Regularization parameter (C) : Controls the balance between the training data.
In general, a high value of the regularization parameter would mean a smaller
margin for the hyperplane.

• Kernel : It corresponds to a function K(x) used to perform a dimensionality
increase. This increase is performed because in some cases, it is not possible to
find hyperplanes that separate the classes of the data in their original dimension,
so they are moved to a higher dimensional space in which it is possible to find the
hyperplanes, as illustrated in figure 2.1.6.

• Kernel parameters : They correspond to the parameters of the function K(x)
used as Kernel, which must be adjusted to find the optimal hyperplane.

13

Figure 2.1.6: Kernel Example.

As for the most commonly used Kernel functions, there are some such as the Linear
Kernel, the Polynomial Kernel or the Radial basis function Kernel (RBF). In this
particular case, the RBF Kernel of equation 2.7 is used. [6]

K(x1, x2) = exp(−γ ∥x1 − x2∥2) where: γ = 1
2σ2 and σ as a free parameter

(2.7)
RBF Kernel.

Among the SVMs algorithms, there is the one that is important for this work, the
Support Vector Classifier. This classification algorithm has different variations, but in
this context, the “C-Support Vector Classifier” is used.

In the “C-Support Vector Classifier” algorithm, given a training vector xi ∈ Rn with
i = 1, ..., l in two data classes and a vector indicator y ∈ Rl such that yi ∈ {1,−1}, the
following optimization problem is solved:

min
w,b,ξ

1
2w

Tw + C
l∑

i=1
ξi

subject to yi(wTϕ(xi) + b) ≥ 1− ξi,

with ξi ≥ 0, i = 1, ..., l

(2.8)

C-Support Vector Classsifier Primal Optimization Problem.

In this case, ϕ(xi) represents a function that maps the values of the training vec-
tor xi to a higher dimensional space and the regularization parameter C is positive.
However, due to the possible higher dimension of the variable vector w, the following
case corresponding to the dual problem of the previous optimization problem is usually
solved:

14

min
α

1
2α

TQα− eTα

subject to yTα = 0,
with 0 ≥ αi ≥ 0, i = 1, ..., l

(2.9)

C-Support Vector Classsifier Dual Optimization Problem.

In this new optimization problem, e = [1, ..., 1]T is a vector of ones, and Q is a
semidefinite positive matrix such thatQij = yiyjK(xi, xj), whereK(xi, xj) = ϕ(xi)Tϕ(xj)
is the Kernel function mentioned above.

By finding the solution of the dual problem of equation 2.9, using the relation be-
tween the primal and dual problem, it is obtained that the variable vector w satisfies
the relation of equation 2.10.

w =
l∑

i=1
yiαiϕ(xi) (2.10)

C-Support Vector Classsifier Optimal w vector.

And the decision function of the problem is the one of the equation 2.11. Thus,
finally, the values of yiα ∀i, the values of b constants, label names, support vectors, and
kernel parameters were stored. [7]

sgn(wTϕ(x) + b) = sgn

(
l∑

i=1
yiαiK(xi, x) + b

)
(2.11)

C-Support Vector Decision Function.

2.1.9. Neural Networks

Neural Networks, also known as Artifitial Neural Networks, are a computational
model whose architecture is based on units called artificial neurons. These units receive
their name because of their similarity to their biological counterpart, due to the way in
which neurons are connected to each other.

These models, like those previously mentioned, rely on the use of training data to
learn and improve their accuracy over time. When these learning algorithms are fine-
tuned for accuracy, they are powerful tools that allow us to perform tasks such as data
classification.

The structure of an artificial neuron, as illustrated in figure 2.1.7, takes as input
xn parameters that can come from initial data or data from other neurons. Then,
each input parameter has its corresponding weight wnj by which it is multiplied and
then summed using a transfer function. Finally, the output of the neuron consists of

15

the result of applying an activation function to the sum obtained from the transfer
function.

transfer
function

net input

activation
function

activation

threshold

∑

... ...

θj

oj

W1j

W2j

W3j

Wnj

x1

x2

x3

xn

Figure 2.1.7: Artificial Neuron Scheme.

A neural network bases its architecture on a collection of connected artificial neurons,
which are commonly referred as the nodes of the neural network. This collection of
artificial neurons consists of a series of layers with nodes, within which there is an
input layer, one or more hidden layers and an output layer, as illustrated in Figure
2.1.8 . Each node of the network layers is connected to other nodes of its contiguous
layers, and depending on its weight and threshold it is determined whether it passes
information to the next layer of the network.

Input layer Hidden Layers Output layer

Figure 2.1.8: Artificial Neural Network Scheme.

16

Each of the previously mentioned layers has a defined number of neurons, and are
named according to their position inside the network. In detail, each layer has its own
function within the network:

• Input Layer: Being the first one, it corresponds to the features of the dataset
data, therefore, if there are k features in the data, this layer would have k dimen-
sions.

• Hidden Layer: These are the layers that follow the input layers, and are made
up of Ni neurons, where Ni is a hyperparameter. In these layers each neuron has
its own weights, threshold, and activation function, generating an output for each
neuron. The result of this layer consists of a vector with each neuron output of
dimension Ni.

• Output Layer: It corresponds to the last layer, which takes the output of the
last hidden layer and generates the final result of the neural network, again using
neurons. The dimensions of this layer match the dimensions of the result being
sought. For example, if N different classes of data are being classified, this layer
will have N neurons, one for each class.

The activation function used in the network consists of a nonlinear function that
transforms the output of each neuron to a range of defined values, generating the output
of each neuron. Some of the commonly used functions are the following, illustrated in
the graphs in Figure 2.1.9:

• ReLU (Rectified Linear Unit): f(u) = max(0, u) , where f : R→ R+
0 .

• Sigmoid: f(u) = 1
1+exp(−u) , where f : R→ [0, 1]

• Tanh: f(u) = tanh(u) , where f : R→ [−1, 1]

Figure 2.1.9: Activation Functions.

In addition to layers, neurons and activation functions, neural networks have a num-
ber of additional hyperparameters. These hyperparameters are fixed variables or con-
ditions used during neural network training, among which are:

17

• Epochs: Corresponds to the number of training cycles, in other words, it is the
number of times the model is trained with the training data.

• Initialization weights: They correspond to the initial weight values of the net.

• Error function and Optmizer: It corresponds to the algorithm for updating
the weights and thresholds, and is the one that allows the neural networks to
be trained. The choice of one optimizer or another brings with it the choice of
hyperparameters specific to each optimizer. But a common hyperparameter among
them corresponds to the Learning Rate.

• Learning Rate: Indicates how much influence each update of the weights and
threshold has. Thus, if this value is too large, the next update will end up modi-
fying the values too much, which may prevent the model from converging. Some
optimizers modify this value as they train in order to converge faster.

2.2. Classical computing

In order to understand how quantum computing works, it is necessary to go back to
its classical counterpart and then make the analogy. First, it is necessary to understand
how a classical processor works.

Everything mentioned above in the Machine Learning section works based on its
most fundamental unit: the binary number system. This is because all current classical
electronics is based on this binary system. This numeric system allows to represent
any integer by two symbols (0 and 1), analogously to how in the decimal system ten
symbols (from 0 to 9) are used to represent any integer.

The binary system turns out to be the best way to represent quantities with a single
signal in a computer, because it is used to do the following sort of “translation”:

• If there is current in an electrical circuit, it is interpreted as a 1.

• If there is no current in an electrical circuit, it is interpreted as a 0.

These electrical circuits are typically conductors. For example, with 5 conductors,
using this “translation” it is possible to count from 0 to 15 because with 5 binary
quantities it is possible to represent up to the binary number 10000 which in decimal
is the number 15.

Once this form of numerical representation is achieved through electrical circuits,
it is possible to perform arithmetic operations. For this purpose, special components
called logic gates are used, which are based on Boolean algebra and mathematical logic.
Some of the best known logic gates are shown in the table of Figure 2.2.1.

18

Input Output Input Output Input Output Input Output Input Output Input Output Input Output
A B C A B C A B C A B C A B C A B CA C

0 1

1 0

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

0

0

1

0

1

0

0

1

1

1

0

0

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

0

1

1

0

1

0

1

1

0

0

1

Truth Table

Gate Symbol

Gate Name NOT AND OR NAND NOR XOR XNOR

Algebraic
Expressions C = A C = A + B C = A + B C = A + B C = A + B

Figure 2.2.1: Classical Logic Gates.

In order to put this into practice, for example to perform the ANDoperation, at a
very beginning a component called Relay, then it was passed to the vacuum valves, and
nowadays the transistoresare used. There are many types of transistors, however for
a better understanding, it will be explained using the one that works as a “bridge or
gate”, represented in the illustration of the figure 2.2.2.

nn pIN OUT

“GATE”

+

+

–

Figure 2.2.2: Schematic diagram of a classic transistor.

If the gate of the transistor is supplied with electricity, it opens the way for the input
current to flow to the output of the transistor. In this way, by performing different
combinations, it is possible to perform classical logic operations. For example, in the
figure 2.2.3 shows how by means of two consecutive transistors it is possible to represent
the AND operation. Also, the figure 2.2.4 represent the OR operation using also two
transistors.

19

A and B

A B

Figure 2.2.3: Scheme of AND operation with transistors.

A or B

A B

Figure 2.2.4: Scheme of OR operation with transistors.

By combining these operations, it is possible to construct other operations by in-
creasing their complexity, as is the case of the XOR operation illustrated in Figure
2.2.5.

Figure 2.2.5: Scheme of XOR operation with transistors.

Having understood the above, instead of using illustrative representations of the
transistors, the symbols of each logic gate tabulated in the table in figure 2.2.1 will be
used to simplify the schematics. In this way, it is possible to explain how arithmetic
operations are performed by these transistors.

For this purpose, it is illustrated below in figure 2.2.6 how by combining two logic
gates in one circuit, it is possible to perform an addition. This circuit is known as Half
adder.

20

Figure 2.2.6: Half Adder circuit diagram.

As in the case of the Half adder, it is possible to make more combinations in this
way with more logic gates using more conductors, for example, to sum up to 255 using
8 conductors.

With these logic gates, it is also possible to achieve other operations such as sub-
traction, negation, increment, decrement, along with others that are not achieved by
themselves, but are combinations of the previous operations, thus achieving multipli-
cation and division.

Logic gates and their operations are fundamental and are performed in computer
processors, in a special package called ALU (Arithmetic Logic Unit), which contains a
large number of logic gates such as the one illustrated in the figure 2.2.7.

Figure 2.2.7: Schematic diagram of the ALU TI 7400.

In addition, in the processors there are other units such as the FPU (Floating Point
Unit), which is used to perform arithmetic calculations with decimals, using signals that

21

indicate the digits and others that indicate the place of the decimal, or also memory
units that store the input and output values of the operations.

However, not only numbers can be represented in classical computing using the
binary system, but also other elements such as colors, images, text, among others.

2.3. Quantum computing

Quantum computing provides a new form of computing that differs from classical
computing and represents a new paradigm for computing. It is based on fundamen-
tal principles of quantum mechanics such as superposition, quantum interference and
quantum entanglement. To understand these principles, it is necessary to review some
basic concepts of quantum computing.

2.3.1. Background

2.3.1.1. Quantum Bits

Classically, traditional computing works with traditional bits that represent the state
of a system with two possible states, 0 and 1. In quantum computing there are also
these bits, called Qubits, and unlike the classical conception, in the quantum case the
bits are not restricted to be in each of these states, but can even be in both states at
the same time. This behavior is illustrated in Figure 2.3.1.

0

1

Classical
bit

Quantum
bit

|0〉

|0〉 |1〉+
√2

|1〉

Figure 2.3.1: Comparision between a classical bit and a quantum bit.

Mathematically a qubit is described, as shown in the equation 2.12, by a 2 by 1
matrix, with complex numbers in its components. This matrix in quantum mechanics
is represented using dirac notation and is called ket. This ket describes rather the state
of the qubit and the probabilities with which the quantum bit could be found in each

22

state. [8]

|ψ⟩ = [c0, c1]T , donde: |c0|2 + |c1|2 = 1 (2.12)

Ket representation for a quantum state.

However, also a set of qubits can form a quantum system. The possible states of the
system are given by the tensor product that represents all possible combinations of the
individual states, so this time the ket describing the possible states in this new system
are represented as in equation 2.13. [8]

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψN⟩ (2.13)

Ket representation for a combination of quantum states.

2.3.1.2. Quantum superposition

The quantum state of a system is explained by one of the main principles of quantum
mechanics: The superposition principle. This principle postulates that a particle (or a
system) with possible states represented by elements of vectors in the space |ψn⟩, can
also exist in a complex linear combination of these possible states, represented in the
equation 2.14 [9]

|ψ⟩ =
N∑
i

αi · |ψi⟩ (2.14)

Possible states of a combination.

However, this alone is not so special, since a classical computer configured in such a
way that its bits can take values between 0 and 1 is an ordinary analog computer, which
is not efficient and is barely more powerful than an ordinary computer. This is why the
power of quantum computing is based in part on taking advantage of a particular type
of superposition that allows exponentially many logical states at once. [10]

This means that a qubit system can exist in multiple states at the same time through
this complex linear combination, coming from this particular type of superposition,
whose possible states are determined by the combinations given by Equation 2.13. This
marks the first fundamental difference with classical computing, since this principle is
the one that allows, as mentioned above, that quantum bits can represent the values
0 and 1, or linear combinations of both, and these linear combinations are known as
superposition states. [11]

2.3.1.3. Observer effect

On the other hand, one of the most important phenomena to understand the behavior
of qubits is the observer effect, to understand this, it is necessary to dig deeper into

23

the quantum states and their probabilities. This phenomenon implies that, unless its
value is observed, a qubit is in a state of superposition of 0 and 1, but once its value is
observed, it is obtained that the qubit is in state 0 or state 1. The probabilities that
a qubit turns out to be in one value or another are not necessarily 50:50, but can have
any probability distribution, and this probability distribution that a qubit has when it
is observed depends on its quantum state. [9]

As previously illustrated in equation 2.12, one way to represent quantum state vec-
tors is by means of the ket of the Dirac notation, for example, the 0 state is represented
as |0⟩ = [1, 0]T , and state 1 is represented as |1⟩ = [0, 1]T . It is possible to perform a
linear combination of these two quantum states, respecting the restriction present in
the equation 2.12, which means that the amplitudes of these vectors are proportional to
the probabilities, and the sum of their squares must represent the probability of 100%.
To do this it is necessary to add weights to the quantum states as in equation 2.15.

|ψ⟩ = α|0⟩+ β|1⟩ =
[
1 · α + 0 · β
0 · α + 1 · β

]
=
[
α

β

]
(2.15)

Superposition state equation with weights.

These coefficients must satisfy that α2 +β2 = 1. So, for example, if a state is desired
in which both coefficients are equal, the coefficients must be equal to 1√

2 , which would
give a state like the one in equation 2.16. That a qubit is in this superposition state
means that when measuring it, it is possible to find it in both state |0⟩ and state |1⟩
with 50% probability.

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ =

[
1 · 1√

2 + 0 · 1√
2

0 · 1√
2 + 1 · 1√

2

]
=
[1√

2
1√
2

]
(2.16)

Superposition state equation with equal weigths.

Now, if you want a qubit to be in a superposition state that represents, for example,
a 25% probability of being in the |0⟩ state and 75% of being in the |1⟩ state, it has to
be satisfied that α2 + β2 = 1 with α2 = 1/4, obtaining that α should be 1/2 , and β
should be

√
3/2. In this case, the state is the one illustrated in equation 2.17.

|ψ⟩ = 1/2|0⟩+
√

3/2|1⟩ =
[

1/2√
3/2

]
(2.17)

Superposition state equation with different weigths.

Until now, the notion of quantum state has been explained for a binary quantum
system, i.e., of a single qubit. Until we observe a qubit, it will be in a superposition
state, but once it is observed, there are different probabilities of measuring 0 or 1.
This means that when multiple measurements are made on multiple binary systems
of a single qubit in identical states, they will not deliver the same result, instead,
when observed, it has α2 probability of delivering 0 and β2 probability of delivering 1.
This is the phenomenon known as the observer effect, since the mere observation of a

24

phenomenon changes the observed phenomenon, in this case, the observation of a qubit
changes its state from a superposition of |0⟩ and |1⟩ states to one or the other of the
|0⟩ and |1⟩ states.

For example, if a qubit is in the state represented in the equation 2.17, observing
or measuring it will push the qubit out of its superposition state and collapse it with
probability 25% to the state |0⟩ and 75% to the state |1⟩. Once observed, and conse-
quently collapsed into one of the states, a new observation or measurement will now
cause the qubit to be found with a probability of 100% in one of the two states. [3]

2.3.1.4. Quantum interference

On the other hand, one of the principles of quantum mechanics used in this context is
the quantum interference principle. To understand how this principle is used in this
context, it is useful to study the classical analog: noise cancellation.

Noise cancellation is accomplished by employing the superposition and interference
principle to reduce the amplitude of the unwanted noise, generating a signal of ap-
proximately the same frequency and amplitude as the noise but offset by π or an odd
multiple of π, as shown in the illustration in Figure 2.3.2. This superposition results
in interference and an output that significantly reduces the noise with respect to the
original signal. [11]

+
Noise Signal Cancellation Signal

Cancelled Noise

Figure 2.3.2: Classical noise cancel example.

Although this processing is performed by digital circuits, amplitude and phase are
continuous variables that can never match perfectly in these circuits, so the noise of
the original signal is not completely canceled. In the case of a quantum computer, the
processing is performed in a very similar way, however, this time it deals with quantum
states and not with classical signals such as sound.

In the interference used in quantum computing, a superposition of all possible com-
putational states is prepared, as illustrated in Figure 2.3.3. This superposition is used

25

as the input of a quantum circuit, which will be explained in later sections, that
selectively interferes the components of the superposition according to an algorithm,
canceling unwanted amplitudes and phases to obtain the desired solution as the output
of the quantum circuit. [11]

|0000

|1000

|1100

|0110

|1101

|1011

|0111

|0011

|0101

|1001

|0100
|0001|0010

|1111

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

|1010〉

|1110〉

〉

Figure 2.3.3: Multiple states superposition.

In summary, quantum interference is what allows to bias a quantum system, directing
it toward desired states by destructive interference patterns to eliminate states that lead
to incorrect responses and to reinforce those that take the desired states. [3]

2.3.1.5. Quantum entanglement

Another principle of quantum mechanics present in quantum computing is quantum
entanglement. This principle results in a strong correlation between quantum particles,
remaining perfectly correlated even when they are separated by large distances. More
in detail, the possible states in a system of quantum particles will be a combination
of the individual states of each particle, however these are not independent from each
other, i.e. the state of a particle belonging to the system is not defined by itself but is
entangled with the states of the rest of the particles in the system. [12]

In the context of quantum computing, this principle refers to those states of a system
of qubits, in which the combined state of the qubits contains more information than
the individual states of each qubit. Most of the states of a qubit, superposed between
0 and 1, contained in a set of several qubits, are entangled. These entangled states are
the most valuable and useful superpositions for quantum computation. [10]

In a quantum computer, the entangled states are states of the computer as a whole,
which do not coincide with any “analog” or “digital” state of the individual qubits.
This is why a quantum computer is significantly more powerful than any other classical

26

computer, since, for example, the entangled states between qubits can be used for the
phenomenon of “quantum teleportation”, where an entangled state shared between two
qubits can be manipulated to transfer information from one qubit to another, regardless
of the physical proximity of the qubits. [11]

2.3.1.6. Quantum Circuits

Analogous to the case of classical computing seen previously, quantum computing is
built on the basis of quantum operations with qubits combined in a circuit. In this
case, these are known as quantum circuits.

A quantum circuit consists of a computational routine with quantum operations on
quantum data contained in qubits, combined with classical operations to perform mea-
surements and preprocessing of the classical data before encoding them into quantum
bits. An example of a quantum circuit is illustrated in figure 2.3.4. [11]

Figure 2.3.4: Quantum Circuit Example. [11]

Each of the horizontal lines represented in the illustration of the figure 2.3.4, repre-
sents a qubit, being the left end of the circuit, the initial quantum data in each qubit,
and the right end, the quantum outputs generated by the calculations performed by
the circuit. The operations performed on the qubits are represented by boxes and they
can be qubits measurements or quantum operations which are called quantum gates.

In synthesis, a quantum circuit allows a quantum computer to take classical informa-
tion, encode it into quantum information, take advantage of principles such as quantum
interference, quantum entanglement or the superposition principle, and then translate
the quantum result into a classical solution that solves the given problem.

27

2.3.1.7. Quantum Gates

It follows from the section on quantum circuits, the concept of Quantum Gates. This
concept is analogous to the classical logic gates seen in the classical computing section
and consists of primitive logic operations on quantum data, which represent reversible
transformations that preserve the information stored in the qubits. [11]

These transformations represent the core of a quantum circuit, and consequently,
of all quantum computing. To understand why it is so fundamental, it is important
to understand what was mentioned in previous sections: Classical computers work by
sending pulses of electricity through a circuit, if an electric pulse is received in a given
time, it is interpreted as True, and if the pulse is not received it is interpreted as False,
or rather 1 and 0 using the binary system.

All computation is based on this circuit operation, including quantum computation
in a more complex and sophisticated way with quantum circuits and in a non-binary
way, to make the step towards the quantum case, it is essential to keep in mind the
expressions of the equations 2.15 and 2.12 on a quantum state |psi⟩.

While the state of a classical bit is a boolean, i.e., 0 or 1 for False or True, in the
quantum case, the state of a quantum bit is the superposition of |1⟩ and |0⟩ quantum
states pondered by weights α and β. In that superposition state, the quantum system
is neither 0 nor 1 unless measured. Only when the qubit is measured does the state
collapse to a 0 or 1 state. The square of the α and β weights denote the probabilities
of measuring 0 or 1. To translate this into computational information, it is necessary
to translate it into two-component arrays, which are much more complex numerical
values than boolean or binary data of 0 and 1. This is why in the classical case, it is
possible to use simple logical operations on Boolean values such as the operations not
or or, however, it is not possible to do it in such a simple way in the quantum case with
values that represent probability distributions within a vector.

To illustrate the impossibility of performing these operations in a simple way in the
quantum case, the state of equation 2.17 is examined. In this state, the Qubit has
a 25% probability of being in the |0⟩ state and a 75% probability of being in the |1⟩
state. The vector representing this superposition state is [1/2 ,

√
3/2], and to invert

its components, it is necessary to multiply it by a counterclockwise rotation matrix, as
indicated in the equation 2.18.

R(90o) ·
[

1/2√
3/2

]
=
[
0 1
1 0

]
·
[

1/2√
3/2

]
=
[√

3/2
1/2

]
(2.18)

State Vector Rotation Example

It is possible to perform this exercise with an infinite number of superposition states
with different probability distributions, but it is impossible to list all the results in a
truth table as in classical logical operations. However, from this example, it is possible
to understand the behavior of one of the most fundamental quantum gates in quantum

28

computing, the X-Gate. [3]

Just as classical computation has a set of Boolean operators, quantum computation
also has a set of operators, which in this case are the aforementioned Quantum Gates.
Some of the fundamental Quantum Gates are the following:

2.3.1.7.1. Bit Flip Pauli Gate (X-Gate)

As previously mentioned, the X-Gate quantum logic gate is a fundamental operator in
quantum computing that performs the function of inverting the state of a quantum bit.
This gate operates on an individual qubit and changes the state |0⟩ to |1⟩ and vice versa.
The representative matrix of the X-Gate is a unitary matrix of dimension 2x2, which is
used to transform the state vector of the qubit. The action of the X-Gate, represented
in the equation 2.19, on the quantum state is a unitary operation, which means that it
maintains the norm of the state vector and thus preserves the total probability of the
system. The X-Gate is an essential tool in the construction of quantum algorithms and
in the implementation of logical operations in quantum computing. [3]

X · |ψ⟩ =
[
0 1
1 0

]
·
[
c0
c1

]
=
[
0 · c0 + 1 · c1
1 · c0 + 0 · c1

]
=
[
c1
c0

]
(2.19)

X-Gate over a state.

2.3.1.7.2. Hadamard Gate (H-Gate)

The H-Gate quantum logic gate, also known as the Hadamard gate, is a fundamental
operation in quantum computing that has the ability to create superpositions of quan-
tum states. This gate applies a unitary transformation to a qubit, taking it from a |0⟩
or |1⟩ ground state to a superposition state. The matrix representing the H-Gate comes
from an outer product between the |+⟩ and |−⟩ states, represented in the expression of
the equation 2.20, with the basis state vectors.

|+⟩ = |0 > +|1 >√
2

=
[1√

2
1√
2

]
, |−⟩ = |0 > −|1 >√

2
=
[1√

2
− 1√

2

]
(2.20)

Superposition states |+⟩ and |−⟩.

The |+⟩ and |−⟩ states are quantum superposition states and are represented as
column vectors in the basis system of quantum states. The |+⟩ state is a balanced
superposition of the |0⟩ and |1⟩ basis states while the |−⟩ state is an unbalanced super-
position of the basis states. These states are useful in quantum computation to perform
quantum operations and to describe the behavior of quantum systems in general.

29

H = |+⟩⟨0|+ |−⟩⟨1| = 1√
2
·
[
1 1
1 −1

]
, where: |a⟩⟨b| =

a0
a1
...
an

 ·
[
b0 b1 ... bn

]
(2.21)

H-Gate Matrix.

Applying the matrix resultant from the outer product of the superposition states
|+⟩ and |−⟩, represented in the equation 2.21, on a basis state vector results in a
superposition state with equal probabilities of finding the qubit in either of the two
basis states, as represented in the equation 2.22. The H-Gate is widely used in quantum
algorithms for the creation of superpositions and the implementation of quantum search
and classification algorithms. [3]

H · |0⟩ = 1√
2
·
[
1 1
1 −1

]
·
[
0
1

]
= |0⟩+ |1⟩√

2
(2.22)

H-Gate over the state |0⟩.

2.3.1.7.3. Rotation Gates

Another of the most important quantum gates are the rotation gates. These operations
are useful to change the probabilities determined by the quantum state in which the
Qubits or quantum systems are located.

From the equation 2.15, it is possible to specify the amplitude of the qubit’s proba-
bilities during its initialization. In order to get the desired probability, the qubit must
be initialized in a state that has amplitudes equal to the square roots of the probabili-
ties sought. But to change the probability to measure 0 or 1 outside the initialization
of the qubit it is necessary to use Rotation Gates.

|ψ〉

θ

|1〉|1〉

|0〉|0〉

α

β

Figure 2.3.5: Illustration of an angle representation for a Quantum
State.

30

To control the probability distributions of a state at qubit initialization, rather than
specifying the exact probabilities, it is possible to determine the probabilities by means
of an angle θ. This value represents the angle between the base vector of state |0⟩ and
the state of the qubit |ψ⟩ on the Bloch sphere, as illustrated in Figure 2.3.5. This angle
controls the proximity of the top of the vector to the top or bottom of the system, and
these proximities represent the amplitudes of the probabilities whose squares are the
probabilities of measuring 0 or 1 respectively. Thus, it is possible to derive the values
of α and β and even the state |ψ⟩ through the expression of the equation 2.23

|ψ⟩ = cos
θ

2 |0⟩+ sin
θ

2 |1⟩ =
[
cos θ

2
sin θ

2

]
(2.23)

Angle representation for a Quantum State.

It is possible to use this interpretation to rotate the state of the qubit and conse-
quently change its probability distribution. Considering that θ is the angle between the
state |0⟩ and the state of the qubit |psi⟩, a rotation of the vector |0⟩ at an angle θ trans-
forms it into |psi⟩. Then, the operation |ψ⟩⟨0| denotes this part of the transformation.
On the other hand, the state of the Qubit labeled as |ψ′⟩ represents the rotation of the
state |1⟩ at angle θ, and this time the operation |ψ′⟩⟨1| denotes this second part of the
transformation, as illustrated in Figure 2.3.6.

|ψ〉

|ψ’〉

θ

θ

|−〉 = |0〉−|1〉√
2

|−〉 = |0〉−|1〉√
2

|+〉 = |0〉+|1〉√
2

|+〉 = |0〉+|1〉√
2

|1〉|1〉

|0〉|0〉

α = cos θ
2

β = sin θ
2

α’= −sin θ
2

β’= cos θ
2

Figure 2.3.6: Illustration of states rotations on Blech Sphere.

With these two transformations, is constructed the matrix that represents the rota-
tion operation applicable to a qubit, which is represented in the equation 2.24 and it is
one of the matrices used in the so-called Rotation Gates.

Ry = |ψ⟩⟨0|+ |ψ′⟩⟨1| =
[
cos θ

2
sin θ

2

]
·
[
1 0

]
+
[
−sin θ

2
cos θ

2

]
·
[
0 1

]
=
[
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

]
(2.24)

Ry Rotation Gate Matrix.

31

Since this transformation rotates the Qubit around the y axis of the quantum system,
this function takes the θ angle in radians as the first parameter, where the value of 2π
denotes a rotation of 360°. The second parameter of this function is the position of
the Qubit to which the gate will be applied. However, it should be careful, since the
θ angle does not stop when it "reaches" the |1⟩ state, so it might be possible to rotate
the state beyond it, and instead of increasing the probability of measuring 1, it would
be decreased. However, the Ry gate is easily reversible, applying another Ry gate but
at a −θ angle. [3]

Analogous to the quantum gate Ry, there is the operation Rx, which rotates the
Qubit but this time around the X-axis and using the matrix of the equation 2.25. In
the same way, there is the Rz opetation which rotates the Qubit around the Z-axis,
using the matrix of the equation 2.26. [10]

Rx =
[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
(2.25)

Rx Rotation Gate Matrix.

Rz =
[
e−iϕ/2 0

0 eiϕ/2

]
(2.26)

Rz Rotation Gate Matrix.

2.3.1.7.4. Unitary Gate (U-Gate)

The U-gate in quantum computing is a type of unitary operator used to perform any of
the transformations on the state of a single qubit. This gate has three parameters, two
angles describing the position of the state on the Bloch sphere and the global phase of
the state, which can be adjusted to control the nature of the transformation performed
on the qubit. In the mathematical representation, the U gate is represented, just like
the operations of a single qubit, as a 2 x 2 matrix represented in the equation 2.27 and
its action on a qubit is realized through a matrix product. [10]

U(θ, ϕ, λ) =
[
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

]
(2.27)

U-Gate Matrix.

In summary, the U-gate is an important and highly versatile component in the
implementation of quantum algorithms and problem solving in the field of quantum
computing, since it can represent other Quantum Gates, such as those in the equation
2.28.

U(θ,−π2 ,
π

2) = Ry(θ) , U(θ, 0, 0) = Rx(θ) (2.28)

U-Gate examples.

32

2.3.1.7.5. Phase (P-Gate)

The Phase Gate is a quantum logic gate used in quantum computing. It is defined as a
rotation matrix in qubit space that applies a phase to a quantum state. The phase is a
complex factor that determines the direction in which a quantum state moves in state
space. The Phase Gate applies a phase of eiλ to a |1⟩ state and does not affect the |0⟩
state, using the matrix of the equation 2.29. When the applied phase i −π, this gate is
equivalent to the Rz Gate represented in the 2.26 equation. [10]

P (λ) =
[
1 0
0 eiλ

]
(2.29)

P-Gate Matrix.

2.3.1.7.6. C-NOT Gate

Until now, only the operation of quantum gates on a single qubit has been explained,
however, the space of a quantum processor grows exponentially with the number of
qubits, so for n qubits, the vector space has dimension 2n and to describe the quantum
states in this system the tensor product is used, which for any two operators A and B,
is the one represented in the equation 2.30, where Ajk and Blm are the matrix elements
of A and B respectively. [10]

A⊗B =

A00

(
B00 B01
B10 B11

)
A01

(
B00 B01
B10 B11

)

A10

(
B00 B01
B10 B11

)
A11

(
B00 B01
B10 B11

)
 , (2.30)

Tensor product between matrixes.

With v =

vo

v1
...
vn

 and w =

wo

w1
...
wn

, then v ⊗ w =

[
v0w0 , v0w1 · · · v0wn , v1w0 , v1w1 · · · v1wn · · · vnwn

]T
(2.31)

Tensor product between two vectors.

Let be a pair of qubits |a⟩ and |b⟩ described by the states |a⟩ = a0|0⟩ + a1|1⟩ y
|b⟩ = b0|0⟩ + b1|1⟩, it is possible to represent the states of this quantum system in an
expression, such as in the equation 2.32, using the tensor product between two vectors
denoted in the equation 2.31. [3]

33

|ab⟩ = |a⟩ ⊗ |b⟩ = a0b0|0⟩|0⟩+ a0b1|0⟩|1⟩+ a1b0|1⟩|0⟩+ a1b1|1⟩|1⟩ =

a0b0
a0b1
a1b0
a1b1

 (2.32)

Tensor product between two state vectors.

A multi-qubit quantum gate involves its application on a qubit based on the state
of other qubits, for example, in the case of changing the state of a second qubit when
the first qubit is in the |0⟩ state. This kind of quantum gate is known as a controlled
gate and uses the concept of entanglement to relate the state of two or more qubits.

The CNOT quantum gate is one of the most basic and essential controlled quantum
gates in quantum computing. It is a binary quantum gate that operates on two qubits
and has the ability to invert the state of one of them depending on the state of the other.
This gate is defined by a unitary matrix acting on a pair of qubits. In mathematical
terms, the action of the CNOT gate on a pair of qubits q0 and q1 can be expressed as
the transformation denoted in the equation 2.33, where the operator X is the X-Gate
and the operator I is the identity operator, which produces no change in the quantum
state on which it is applied. [11]

CX q0, q1 = I ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1| =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.33)

C-NOT Gate Matrix.

The effect of this quantum gate is that if the control qubit is in a |0⟩ state, the target
qubit is left unchanged, while if the control qubit is in a |1⟩ state, the state of the target
qubit is reversed. The CNOT gate is a reversible gate and is universal, meaning that it
can be used to implement any unitary operation in a quantum system. In addition, it
is a gate that forms the basis for the implementation of quantum algorithms, such as
quantum factorization and Grover’s algorithm. [10]

2.3.1.8. Qubits Measurements

Measurement in quantum computing is a fundamental process that allows obtaining
information about the quantum state of a system. It is fundamental to remember that
in a quantum system, qubits are in a superposed quantum state, that is, in a linear
combination of basic states and the measurement of a qubit collapses its superposed
state to one of its basic states, in a probabilistic way.

In this context, like the quantum gates, it is possible to execute an operation on
the qubits that perform an observation. This observation is performed in the standard

34

basis, also known as Z-Basis classical bit basis, which is the basis where the basic states
are |0⟩ and |1⟩, which correspond to the logical states “0” and “1” in classical computing.

This operation can be used to perform any type of measurement in combination with
quantum gates. It is important to note that once a measurement is performed on a
qubit, its state becomes deterministic and cannot be changed again until an additional
quantum operation is performed on it. [10]

Unlike quantum gates, this measurement operation extracts partial information
about the state of a qubit or quantum system, often losing the phase, in order to
represent it as a classical bit and write it to some readout device. This is the typical
way of getting information from quantum data to a classical device. [11]

2.3.2. Quantum computers

Quantum computers are an emerging technology that promises to revolutionize the
way calculations are performed and information is processed. Unlike classical comput-
ers, which use binary bits that can only be in a “1” or “0” state, quantum computers
use qubits, which can be in several states simultaneously. This allows them to perform
many operations in parallel, which means they can solve problems much faster than
classical computers.

In the same way that classical transistors can be compared to electrical switches,
which will turn on or off to represent a bit, qubits can be compared to joysticks that
can be at various angles simultaneously to represent various states. This allows them
to perform many operations in parallel and thus speed up information processing.

The basic components of a quantum computer include qubits, which can be physical
or logical, and a control and readout system that allows the qubits to interact with other
components and the environment. Physical qubits can be constructed using materials
such as nitrogen in diamond, silicon or graphite, as well as various technologies including
neutral atoms, trapped ions, superconducting circuits, semiconductor quantum dots and
photons. Each type of qubit has its own strengths and weaknesses, and the choice of
qubit type depends on the specific use for which the quantum computer is being built.
For example, atom-based qubits can be very accurate and stable, but are difficult to
manipulate and scale to large sizes. On the other hand, qubits based on superconductors
are easier to manipulate and scale, but may be less accurate and stable. [11]

In addition to the choice of qubit type, the physical construction of qubits also
requires that certain stringent environmental conditions be achieved. Quantum qubits
are very sensitive to particle interference and environmental energy, which can affect
their ability to perform precise operations. Therefore, it is necessary to keep quantum
computers in controlled environments with extremely low temperatures and to protect
them from external disturbances.

Currently, there are several companies that are developing and manufacturing quan-

35

tum computers and their components, including IBM, Google and Intel. These com-
panies are working on creating larger and more powerful quantum computers, with the
aim of addressing challenges in areas such as materials simulation, route optimization
and artificial intelligence.

Figure 2.3.7: An inside view of IBM Quantum System One.

For example, the IBM Quantum System One, illustrated in the image in Figure
2.3.7 is a quantum computing system designed to be a scalable and reliable platform
for the development and use of quantum computing. It is a self-contained system
consisting of a series of quantum and classical components that work together to perform
quantum computations. The quantum part of the system includes qubits that enable
superposition and entanglement, two unique quantum properties that allow much faster
and more efficient information processing than classical systems.

In addition to the qubits, the IBM Quantum System One also includes a set of control
and measurement devices that allow users to program and measure the quantum states
of the qubits. It also includes quantum cooling and thermal control systems to keep the
qubits in optimal conditions for use. This classic IBM Quantum System One system
consists of a series of computers and communication devices that allow users to interact
with the quantum system and receive results of quantum calculations. It also includes
specialized software that allows users to program and control the quantum system. [10]

In summary, quantum computers are a developing technology that have the potential
to revolutionize the way information is processed and computations are performed.
With continued research and development, it is likely to see an increase in the size and
power of these computers in the near future..

36

2.3.3. Simulators

Quantum computer simulators are computational tools that emulate the behavior
of quantum systems. These simulators are designed to emulate the dynamics and
properties of quantum systems and to enable exploration and analysis of these systems.

These simulators work through a combination of mathematical theories and com-
putational algorithms using the mathematical formalism of quantum mechanics, which
describes the behavior of quantum systems in terms of quantum states and unitary oper-
ations, to represent a quantum system. With this formalism, the simulators numerically
solve the temporal dynamics of a quantum system represented in mathematical terms,
using specific computational algorithms. These algorithms can be simple, such as the
numerical integration of differential equations, or more complex, such as the algorithms
of quantum control theory.

In addition, these simulators generally use a matrix representation of quantum states
and unitary operations, which allows their efficient processing on a classical computer.

In terms of composition, quantum computer simulators are usually composed of a
combination of hardware and software. The hardware can be a classical computer or a
specific quantum computer, while the software includes the algorithms and theoretical
models needed for the simulation.

Some examples of quantum computer simulators are found in IBM Qiskit, a free
software platform that allows users to simulate and code on quantum computers. IBM
Qiskit offers a wide range of tools and resources for simulation, optimization and pro-
gramming of quantum computers, including a quantum compiler, quantum simulators
and a library of quantum algorithms.

In short, simulators work by mathematically representing a quantum system, nu-
merically solving its temporal dynamics and using efficient computational algorithms
for processing. This allows researchers and developers to simulate and understand the
behavior of quantum systems and to design quantum algorithms and technologies, even
when the technology is not available.

2.3.4. IBM Qiskit

IBM Qiskit is an open source programming platform and software tools for develop-
ing and running quantum algorithms on quantum computing systems. It is composed
of a series of modules covering different aspects of quantum algorithm development, in-
cluding building quantum circuits, simulating quantum systems and running algorithms
on real quantum computing systems.

The quantum circuit construction module allows users to create and define quantum
circuits using a wide variety of quantum gates and operations. It also provides a

37

visual interface to facilitate circuit creation and verification. On the other hand, the
quantum systems simulation module allows users to simulate the behavior of quantum
circuits in a classical environment, providing a way to test and verify algorithms prior to
their execution in a real quantum computing system. Finally, the algorithm execution
module allows users to run the algorithms on real quantum computing systems, both
on local systems and in the cloud. In addition, it also provides tools for the analysis
and visualization of the results obtained.

All these modules are importable and executable in a virtual Python environment,
just like any library, making IBM Qiskit a comprehensive and complete tool for the
development and execution of quantum algorithms, allowing users to experiment with
quantum technology and discover new applications in this constantly evolving field.
[11]

2.3.4.1. Backends

Qiskit backends are the devices or platforms that run the quantum programs written
with the Qiskit framework. These backends include quantum simulators in software as
well as real quantum devices, such as superconducting quantum processors and trace
ion-based processors. Qiskit backends communicate with Qiskit programs through a
standardized application programming interface (API), allowing users to write quantum
programs once and run them on different backends without having to modify the code.

In the case of actual quantum devices, IBM offers a variety of quantum systems
based on superconducting qubit technology. These systems are developed on IBM
Quantum System One and are built using the world’s leading components such as
quantum processors, cryogenic components and classical computing technology. The
actual quantum systems determine their capacity according to the types of processors
found in each of them, which are classified into the following families: [10]

• Eagle: This processor family incorporates the most scalable technologies com-
pared to the previous ones, with 127 Qubits.

• Hummingbird: This class of processors uses a heavy-hexagonal layour of qubits
and have up to 65 Qubits.

• Egret: These processors are based on the innovations of tunable couplers to a
33-qubit platform, resulting in faster and higher fidelity two-qubit gates.

• Falcon: This family of processors offers a considerable amount of mid-scale cir-
cuitry and are useful for demonstrating performance and scalability improvements
prior to using larger devices.

• Canary: These devices are small designs containing from 5 to 16 Qubits.

On the other hand, in the case of simulators, IBM offers a collection of high-
performance simulators to run quantum circuits and algorithms in a realistic way even

38

simulating the noise effects present in a quantum computer. Among these are the
following simulators:

• Statevector: It simulates a quantum circuit by calculating the wave function of
the state vector of a qubit when quantum gates and instructions are applied. This
simulator also supports general noise simulations. It supports up to 32 Qubits.

• Stabilizer: It is a Clifford circuits simulator and can also simulate the noise
evolution of a quantum device. It supports up to 5000 Qubits.

• Extended stabilizer: Simulates the action of a quantum circuit using a ranked-
stabilizer decomposition. Supports up to 63 Qubits

• MPS: It performs the simulation of the states using tensors, with the so-called
Matrix Product State representation. It is more efficient with weakly intertwined
states and supports up to 100 Qubits.

• QASM: It is a multi-purpose simulator, useful both for simulating circuits and
the noise of quantum devices. This simulator supports up to 32 Qubits.

• Automatic: Default simulation method. Automatically selects the simulation
method based on the circuit and the noise model.

On the other hand, Qiskit provides the possibility of defining quantum-classical
workloads in near real-time, to create and customize the development of applications
efficiently. For this, before running the work on a quantum device, core functions called
primitives are used, which perform basic quantum computing tasks and are used as an
entry point. Two primitives are currently available: [10]

• Estimator: It allows efficient calculation and interpretation of the variances and
expectation values of the quantum operators used in the algorithms.

• Sampler: This function takes a circuit as input and generates a readout of the
quasi-likelihoods using error mitigation.

In summary, both primitives and backends are the execution platform for quantum
programs written with Qiskit, either in the form of quantum simulators in software or
real quantum devices. These backends allow users to run their quantum programs on a
wide variety of quantum platforms and devices, facilitating research and development
in the field of quantum computing.

2.4. Programming Resources

The application and execution of quantum models requires long times, so to carry
out this work, Python programming was used using three programming environments:
Jupyter Notebook, Google Colab and IBM Quantum Lab.

39

Jupyter Notebook is an interactive programming environment that allows users to
create and share code notebooks that combine code, text and visualizations in a single
document. Jupyter Notebook is the most common implementation of this environment
and supports several programming languages, including Python.

Google Colab is a free service from Google that allows users to create and run Jupyter
Notebooks in the cloud. Like Jupyter Notebook, Colab allows you to write and run
code, add text and visualizations. The advantage of Colab is that it runs on Google
cloud servers, which means you don’t need to install software on your own computer and
can access more powerful computational resources. In addition, Colab also offers paid
plans or free access to Google’s graphics processing units (GPUs) and tensor processing
units (TPUs), which are useful for deep learning and large-scale data processing.

IBM Quantum Lab is an online platform that enables users to learn and experi-
ment with quantum computing using IBM quantum computing systems. The platform
provides a graphical user interface for creating and running quantum programs in the
cloud, as well as a series of tutorials and educational resources for learning the basics
of quantum computing. In addition, the platform also provides an interface for creat-
ing and running Jupyter notebooks with either quantum simulators or real quantum
hardware.

Each of the programming environments requires different treatment to install the
libraries used in this context, however, in all of them a virtual environment was used
with the following Python libraries:

• Qiskit: It is the main library used to apply the quantum models throughout this
work, it includes the possibility to work with qubits and quantum circuits and run
them in quantum simulators or in real quantum hardware.

• Qiksit Machine Learning: It provides tools and algorithms for applying ma-
chine learning in quantum computing. The library is used to design and run ma-
chine learning models in quantum systems, and also to simulate and train machine
learning models in quantum and classical environments.

• Scikit Learn: It is used to apply machine learning algorithms to data sets. It pro-
vides tools for classification, regression, clustering and dimensionality reduction,
as well as data preprocessing. The whole section2.1 of general Machine Learning
concepts can be applied using this library.

• Qiskit aer: It is used to simulate the behavior of quantum systems and to validate
quantum algorithms in the simulation environment described in the section 2.3.3.
It also allows users to model and analyze errors in quantum computing, making it
a useful tool for those who wish to experiment with quantum computing without
needing access to quantum hardware and for those who wish to develop and test
quantum algorithms in a controlled simulation environment.

• Pytorch: It is used to create neural networks and apply deep learning techniques
to tasks in image processing, natural language processing and other areas. The
library allows users to build and train deep learning models using a variety of

40

network architectures, and provides tools for optimization, parallel processing and
data visualization.

• Tensorflow: Like Pytorch, this library is used to create and train machine learn-
ing models. The library is widely used in image processing, natural language
processing and other areas, and allows users to build and train deep neural net-
works using a variety of network architectures. TensorFlow also provides tools for
optimization, parallel processing and data visualization.

• Pandas: It is one of the useful libraries for data preprocessing, used for data
analysis and manipulation. It is used to work with structured data sets, such
as spreadsheets or databases, and allows users to read and write data in various
formats, including CSV, Excel and SQL databases. Pandas also provides tools for
filtering, transforming and grouping data, and for working with missing data.

• Numpy: It is another library used for data preprocessing because it is used to
work with numerical matrices and vectors. It provides tools to perform complex
mathematical operations on matrices and vectors, including linear algebra, statis-
tics and Fourier transform operations. NumPy is also used to generate random
numbers and to work with structured data.

• Matplotlib: It is used to create graphs and data visualizations. It is used to
generate 2D and 3D charts, including line charts, scatter plots, bar charts and pie
charts. Matplotlib allows users to customize the appearance of graphs and add
labels, titles and legends. It also integrates well with other Python libraries, such
as NumPy and Pandas.

• Pylatexenc: Allows you to encode and decode text strings with special charac-
ters used in LaTeX. It is used to process and manipulate technical, scientific or
mathematical documents that have been formatted in LaTeX.

• QuTip: It is used to simulate open and closed quantum systems. It provides tools
to calculate quantum properties, such as the wave function, reduced state and time
evolution of a quantum system. QuTiP is also used to simulate the coupling of
quantum systems to electromagnetic fields and to perform quantum tomography
calculations.

2.5. Quantum Machine Learning

Quantum machine learning is an emerging branch of machine learning that uses
quantum computing to improve the efficiency and accuracy of machine learning models.

Unlike classical machine learning, which relies on conventional bit-based computing,
quantum machine learning uses qubits. Qubits allow the use of quantum algorithms,
such as the quantum Fourier transform, to perform complex operations more efficiently
than classical algorithms.

41

Quantum machine learning can also take advantage of the properties of superpo-
sition, interference and quantum entanglement which can significantly increase the
processing power of a machine learning model. Despite these advantages, quantum
machine learning still faces many challenges, such as the need for highly sophisticated
quantum hardware and the difficulty of designing optimal quantum algorithms.

Although quantum machine learning is at an early stage of development, some
promising algorithms have already been developed that have shown significant improve-
ments over their classical counterparts. For example, the Grover classification algorithm
has been shown to be more efficient than the classical binary search algorithm.

Overall, quantum machine learning has the potential to significantly transform the
field of machine learning, and is likely to play an increasingly important role in advanced
machine learning applications in the future.

2.5.1. General Concepts

During this section, the fundamental concepts and tools on which Quantum Machine
Learning models are built will be explained.

2.5.1.1. Features Maps

In Qiskit, a feature map is a tool used in quantum data encoding that is used to
transform input data into a high-dimensional quantum feature space. A feature map
acts as an additional layer of processing before the input data is fed to a quantum
classification algorithm.

This implies that these feature maps can be used to map the classical data of a
dataset to quantum states. Feature maps are mathematical functions that transform
the input data into a quantum representation. This is achieved by mapping a set of
features from the dataset to a set of qubits, which are encoded into quantum states
using a rotation gate.

In more technical terms, a feature map is a transformation that takes data from
a low-dimensional space and maps it to a higher-dimensional Hilbert space, which is
commonly referred to as the feature space, as in the expression 2.34. In this context,
this transformation is a mapping from a classical space to a quantum space using a
quantum circuit. This process increases the complexity of the feature space and allows
a quantum classification algorithm to detect more complex patterns in the input data.
[13]

ϕ : Rd → H , where: −→x ϕ(−→x)−−−→ |Φ(−→x)⟩⟨Φ(−→x)| for quantum cases
Classical
features

Quantum state
vector

(2.34)

Feature Map Transformation.

42

Feature maps are used in the context of quantum data classification, which is a type
of quantum machine learning problem. In quantum data classification, the input data
is represented by qubits, and the goal is to design a quantum algorithm that can classify
the input data into one of several categories.

In this context and for some applications, it is essential to know how a quantum
circuit will be structured without having explicit information about its size or specific
characteristics. To overcome this limitation, Qiskit has developed an approach in which
the quantum circuit itself can be built dynamically, once all the necessary information is
available. In this way, greater flexibility and adaptability is achieved in the construction
of quantum circuits for different applications. In this way, Qiskit offers several different
types of circuits usable as feature maps, each designed to work with different types of
input data and different quantum classification problems. Some examples of feature
maps are as follows: [11]

• PauliFeatureMap: Encode input data −→x ∈ Rn according to the expression
2.35, where the variable Pi ∈ {I,X, Y, Z} denotes the Pauli matrices, the in-
dex S describes the connectivity between different qubits or datapoints: S ∈
{
(

n
k

)
combinations, k = 1, ...n}

UΦ(x⃗) = exp
i ∑

S⊆[n]
ϕS(x⃗)

∏
i∈S

Pi

 , where: ϕS(x⃗) =

x0 if k = 1∏ (π − xj) otherwise

j∈S

(2.35)
Pauli Feature Map Transformation.

• ZFeatureMap: Encode input data −→x ∈ Rn according to the same expression
2.35, but for the case k = 1 and P0 = Z

• ZZFeatureMap: Encode input data −→x ∈ Rn according to the same expression
2.35, but for the case k = 2, P0 = Z and P0,1 = ZZ

• SatePreparation: It is used to prepare classical data inputs to specific quan-
tum states in a quantum circuit. This object takes as input an amplitude vector
representing the desired quantum state and returns a quantum circuit that pre-
pares that state. To understand how this works, it is important to note that any
quantum state can be expressed as a linear combination of the states of the com-
putational basis. For example, a qubit can be expressed as a linear combination of
the states |0⟩ and |1⟩, as in the equation 2.15, where α y β are the amplitude co-
efficients describing the quantum state. StatePreparation uses a technique known
as “preparation amplitude”, which consists of preparing a quantum state using
a series of quantum gates (Hadamard, rotations and CNOT) acting on an initial
state, which in this case will be of complex amplitudes. In this way a quantum
circuit is dynamically constructed that prepares a specific quantum state from a
given amplitude vector.

43

• RawFeatureVector: This circuit serves as a set of instructions for preparing
state vectors with a defined number of dimensions. The execution of the circuit
depends on the availability of all the parameters necessary for its definition. In the
field of Machine Learning, this circuit can be used to load training data into qubit
states. Unlike applying a kernel transformation, this circuit provides raw feature
vectors. However, it is important to note that it is not compatible with optimizers
that rely on gradient calculations.

It should be noted that in the feaures maps inspired by the Pauli transform, as well
as in the StatePreparation, the resulting quantum circuit to encode classical data into
quantum data consists of a number of qubits equal to the number of features present
in the dataset. However, using RawFeatureVector as a featuremap, a circuit with a
number of qubits equal to the logarithm in base 2 of the number of features is obtained.

In summary, feature maps are an important tool in quantum data processing in
Qiskit. By transforming the input data into a high-dimensional quantum feature space,
feature maps enable quantum classification algorithms to detect more complex pat-
terns in the input data, which can significantly improve the accuracy of quantum data
classification.

2.5.1.2. Ansatz

In physics and mathematics, an ansatz is an initial guess or conjecture about the form
or structure of a solution to a given problem. It is generally used when there is no
known exact solution to the problem and a more creative approach is required to find
an approximate solution.

For example, in the context of quantum mechanics, an ansatz is often used to ap-
proximate the solution of a wave equation, which makes it possible to describe the
behavior of subatomic particles. The ansatz is used to propose a wave function that
fits the conditions of the problem and is then adjusted by mathematical techniques to
determine the most accurate solution.

In this case of quantum computing and in particular in the Qiskit library, the ansatz
are used to prepare a quantum state and consist of a parameterized family of quantum
circuits. These circuits can be modified by varying their parameters to generate different
quantum states.

In Qiskit, there are several predefined ansatz in the library that can be used to
prepare quantum states for various applications, such as:

• RealAmplitudes

• EfficientSU2

• PauliTwoDesign

44

These are just a few examples of the ansatz available in Qiskit, and the choice of
ansatz will depend on the problem at hand and the architecture of the quantum device
used.

2.5.1.3. Optimizer

In the context of prediction tasks, once the predictions of a quantum circuit are ob-
tained, a classical optimization routine is performed to adjust the values of the circuit
to improve the accuracy of the predictions. This process is repeated several times until
a desired level of accuracy is reached.

The main task of the classical optimization routine is to minimize the value of the
loss function associated with the quantum circuit. The loss function is defined as a
measure of the discrepancy between the predictions of the quantum circuit and the
experimental data. In other words, the loss function reflects the distance between the
theoretical predictions and the experimental results, and its minimization results in
higher accuracy of the predictions. Among the most commonly used loss functions are
the following, where yi is the data label, xi is the feature data used for training, y′

i is
the predicted label and N is the train data length:

• Absolute Error: This loss function measures the absolute difference between the
predicted values and the true values.

L(y, y′) = ||y′
i − yi|| (2.36)

Absolute Error Loss Function.

• Mean Squared Error: This function measures the average of the quadratic
difference between the predicted values and the true values.

L(y, y′) = 1
N

N∑
i=1
||y′

i − yi||2 (2.37)

MSE Loss Function.

• Cross Entropy: This loss function measures the discrepancy between the pre-
dicted probability distribution and the true probability distribution.

L(y, y′) = −
N∑

i=1
[y · log(y′

i) + (1− yi) · log(1− y′
i)] (2.38)

Cross Entropy Loss Function.

• Cross Entropy Sigmoid: This loss function is similar to the cross-entropy loss
function, but is used in combination with a sigmoid function in the output layer
of neural networks.

L(y, y′) = − [y · log(y′
i) + (1− yi) · log(1− y′

i)] (2.39)

45

Cross Entropy Sigmoid Loss Function.

The choice of the appropriate optimizer will depend on the specific characteristics
of the problem to be solved and the available resources, and will be crucial to ensure
the effectiveness and efficiency of the optimization process and improve the accuracy of
quantum predictions. There are different optimizers to perform this task, among which
are:

• COBYLA (Constrained Optimization By Linear Approximation optimizer.)

• SPSA (Simultaneous Perturbation Stochastic Approximation optimizer.)

• SLSQP (Sequential Least Squares Programming optimizer.)

• LBFGSB (Limited Broyden–Fletcher–Goldfarb–Shanno optimizer.)

• PBFGS (Parallelized Limited-memory BFGS optimizer.)

• ADAM (A gradient-based optimization algorithm that is relies on adaptive esti-
mates of lower-order moments)

• AQGD (Analytic Quantum Gradient Descent with Epochs optimizer.)

• CG (Conjugate Gradient optimizer.)

• GSLS (Gaussian-smoothed Line Search.)

• NELDER MEAD (Gaussian-smoothed Line Search.)

• NFT (Nakanishi-Fujii-Todo algorithm.)

• POWELL (A conjugate direction method for unconstrained optimization.)

• TNC (Truncated Newton optimizer.)

• UMDA (Continuous Univariate Marginal Distribution Algorithm.)

2.5.1.4. Quantum Neural Network

As mentioned in the previous section on classical computing, classical neural networks
are models inspired by neurons in the human brain that can be trained to recognize
patterns in data and solve complex problems. These networks are based on a series
of interconnected nodes, or neurons, organized in a layered structure, with parameters
that can be learned by applying machine learning or deep learning strategies.

In the field of quantum machine learning, the motivation is to integrate concepts from
quantum computing and classical machine learning to create new and better learning
schemes. Quantum neural networks apply this generic principle by combining classical
neural networks with parameterized quantum circuits.

46

QNNs are models that can be trained to find hidden patterns in datasets, similar to
classical neural networks. These models receive as input classical data in a quantum
state, and then process it with quantum gates parameterized by trainable weights. The
output of measuring this quantum state is used to train the weights by backpropagation
through a loss function.

In a QNN, neurons are represented by qubits, so they are based on parameterized
quantum circuits that can be trained variationally using classical optimizers. These
circuits are composed of feature maps and an ansatz with trainable weights, with which
the values of the weights that minimize the cost function associated with the learning
task in question are searched.

Update ansatz parameters

cost
function

Optimizer

Predictions

Quantum circuit

Measurement

Input
layer

Hidden
layers

Output
layer

Input
layer

Hidden
layers

Output
layer

0

1

2

3

4

ZZFeatureMap RealAmplitudes

q0

q1

q2

q3

q4

Figure 2.5.1: Classical Neural Network vs Quantum Neural Network
Comparison

In this way, the analogy present in the figure ?? could be made, where in comparison
to a classical neural network, in the input layer would be the datasets encoded to quan-

47

tum states by means of a Feature Map, in the hidden layer would be the parameterized
Ansatz circuits, while in the output layer would be the final measurements made after
the optimization to the qubits of the neural network. All this is replicable in IBM Qiskit
by means of the different available circuits and optimizers, in addition there are some
quantum neural networks in Qiskit, in particular for this work, the following ones are
used: [14]

• OpflowQNN: This is a technique that uses a neural network to process informa-
tion through a quantum circuit. This circuit is usually combined, it is composed
of a FeatureMap, which sets the input parameters for the network, and an Ansatz,
which determines the weight parameters. By applying this technique, the neural
network is able to calculate the expectation value for the prediction desired.

• CircuitQNN: Like OpflowQNN, this quantum neural network can take input and
weight parameters from a FeatureMap and an Ansatz to produce samples from the
measurement. In addition, CircuitQNN allows to specify an interpretation func-
tion to post-process the samples, whose functionality is to assign some measured
number to another unassigned number, or to a tuple of unassigned integers, which
are used as new indices for the output matrix. In this way, information is obtained
about the probability distribution of the quantum neural network results and how
they relate to the input values and network parameters.

• EstimatorQNN: In the same way as the previous networks, this one takes input
parameters through quantum circuits with FeatureMap and Ansatz to estimate
the neural network cost function and calculate the approximate gradients.

2.5.2. Models used

This section presents the quantum models used in this work. These models are
based on the properties of quantum mechanics and have proven to be useful in a va-
riety of applications, including data classification. The models presented include the
Variational Quantum Classifier, Quantum Neural Network Classifier, Quantum Neural
Network with Pytorch Classifier and Quantum Support Vector Classifier. Each model
is explained in detail, including its structure and operation.

2.5.2.1. Variatonal Quantum Classifier

The Variational Quantum Classifier (VQC) is a quantum machine learning algorithm
that uses quantum circuits to classify data. VQC is based on supervised classifica-
tion, in which the algorithm is provided with a training data set labeled with known
categories, and the algorithm learns to classify new data into those categories. Like
any classification model, VQC has a training and a testing stage, similar to classical
machine learning models.

This model has a hybrid architecture that uses both quantum and classical resources
to perform classification tasks because it is composed of two main parts: a quantum
circuit that functions as a classifier, such as the one in Figure ??, and a classical

48

optimization algorithm that adjusts the parameters of the quantum circuit to improve
classification accuracy.

q0

q1

q2

q3

q0

q1

q2

q3

H

H

H

H

2.0*x[0]
P

2.0*x[1]
P

2.0*x[2]
P

2.0*x[3]
P

2.0*(x[0])*(x[1])
P

2.0*(x[0])*(x[2])
P

2.0*(x[1])*(x[2])
P

2.0*(x[0])*(x[3])
P

2.0*(x[1])*(x[3])
P

2.0*(x[2])*(x[3])
P

[0]
RY

[1]
RY

[2]
RY

[3]
RY

[4]
RZ

[5]
RZ

[6]
RZ

[7]
RZ

[11]
RY

[10]
RY

[15]
RZ

[8]
RY

[9]
RY

[14]
RZ

[12]
RZ

[13]
RZ

Figure 2.5.2: VQC Example Circuit

The training process is divided into four steps. First, the training data are loaded
into qubits of a quantum circuit using FeatureMaps. Then, they are passed to a varia-
tional quantum circuit, using the Ansatz, which performs the classification task. After
performing the classification, the parameters of the variational circuit are adjusted using
a classical optimization task, such as COBYLA, to improve the classification accuracy
by minimizing the value of the loss function of the equation 2.40. Subsequently, the
quantum circuit is measured and the classical optimization algorithm is continued to
find the optimal parameters of the variational quantum circuit by returning to the
Ansatz recursively to improve the classification accuracy. [11]

L(θ) = 1
N

N∑
i=1
||f(xi, θ)− yi||2 , where

f(xi, θ) : Ansatz
output

xi : Train
data

yi : Data
label

θ : Ansatz
parameters

N : Train Data
Length

(2.40)

Mean Squared Error used as VQC Loss Function.

In summary, Qiskit’s Variational Quantum Classifier uses a quantum circuit and a
classical optimization algorithm to classify input data. The quantum circuit is trained
with labeled data and then used to classify new data into known categories.

2.5.2.2. Quantum Neural Network Classifier

Qiskit’s Quantum Neural Network Classifier (QNN Classifier) is a quantum machine
learning classification model that uses a quantum circuit to perform classification. In

49

this paper, the QNN Classifier is implemented in Qiskit using the Qiskit Machine
Learning library.

This model receives a quantum neural network like those seen previously, which are
constructed from a circuit like the one in figure 2.5.3 with a FeatureMap and an Ansatz.
In principle, a quantum neural network can have a one-dimensional or a multidimen-
sional output. In the first case, the output of the neural network is expected to be
in the range [-1, +1], which makes it suitable for binary classification. In the second
case, the neural network output represents a probability distribution, which means that
each input in the output is non-negative and sums one. To handle this situation, two
different approaches can be used to interpret the results: using one-hot encoding or not
using one-hot encoding. If one-hot encoding is used, each probability vector resulting
from the neural network is considered a single sample and the loss function is applied to
the entire vector. If one-hot encoding is not used, each entry of the probability vector is
considered an individual sample and the loss function is applied to the index, weighting
with the corresponding probability.

q0

q1

q2

q3

0

1

2

3

x[0], x[1], x[2], x[3]

ZFeatureMap

0

1

2

3

[0], [1], [2], [3], [4], [5], [6], [7]

RealAmplitudes

Figure 2.5.3: QNN Classifier Example Circuit

The loss function is optimized using a classical optimization algorithm, such as
COBYLA. These loss functions can be the Mean Squared Error as in the case of VQC,
or Absolute Error, Cross Entropy or Cross Entropy Sigmoid. By default, the Mean
Squared Error is used.

Subsequently, as in any quantum circuit, measurements are performed on the qubits
to obtain the results and, like any classification model, the model evaluation stage is
followed by the test dataset.

2.5.2.3. Quantum Neural Network with Pytorch Classifier

Torch Connector is a library that allows users to connect PyTorch, a popular deep
learning framework, with simulators and quantum hardware. This allows researchers
to experiment with hybrid classical-quantum neural networks that can harness the
power of both classical and quantum computing. In this way, it is possible to integrate
any Quantum Neural Network built in Qiskit into the Pytorch workflow.

In this work, quantum neural networks such as OpflowQNN and CircuitQNNN are

50

used and trained using PyTorch’s automatic differentiation engine. This engine is an
essential tool in the PyTorch framework, which allows users to automatically compute
gradients of mathematical functions. Automatic differentiation is a technique for calcu-
lating derivatives of a function by recording all operations performed on the function,
including elementary operations such as addition, multiplication, and exponentiation.
In particular, this Pytorch engine allows users to define a mathematical function using
PyTorch tensors and tensor operations, and then automatically compute, using back-
propagation, the gradients of the function with respect to the input variables. The
gradients computed by the automatic differentiation engine are needed to train neural
networks using deep learning techniques, such as stochastic gradient descent. [15]

In the case of using the EstimatorQNN network, the workflow is as follows:

1. Encoding data into Torch Tensors

2. Define the circuits to be used for the FeatureMap and Ansatz.

3. Set up QNN con el circuito cuántico definido.

4. Set up the Pytorch module, giving to Torch Connector the QNN weights as initial
weights.

5. Choose the optimizer function and the loss function from Pytorch package .

6. Training the QNN with Torch Connector module and the optimizer rutine.

7. Evaluate the model performance.

On the other hand, in case of using the SamplerQNN network, a more specific setup
is required for the Pytorch engine to successfully perform the backpropagation. The
workflow in this case is as follows:

1. Encoding data into Torch Tensors

2. Define the circuits to be used for the FeatureMap and Ansatz.

3. Set up QNN con el circuito cuántico definido, esta vez prestando atención a su
inicialización, we must make sure that we are returning a dense array of probabili-
ties in the network’s forward pass, para esto el parámetro sparse del SamplerQNN
debe estar seteado como False. Also in this QNN the output can be set up in dif-
ferent formats, and an optional post-processing step can be used to interpret the
sampler’s output, but we must remember to explicitly provide the desired output
shape to the network.

4. Set up the Pytorch module, giving to Torch Connector the QNN weights as initial
weights.

5. Choose the optimizer function and the loss function from Pytorch package .

6. Training the QNN with Torch Connector module and the optimizer rutine.

7. Evaluate the model performance.

51

2.5.2.4. Quantum Support Vector Classifier

Quantum Support Vector Classifier (QSVC) is a quantum classification algorithm that
uses the theory of quantum mechanics to classify data. QSVC is based on the classical
Support Vector Machine (SVM) algorithm, but uses the power of quantum computing
to perform more efficient and accurate computations using a Quantum Kernel.

As mentioned in the 2.1.8 section of the Support Vector Classifier, in many datasets
the distribution of your data can be better interpreted in a higher dimensional feature
space by using a Kernel function k(x⃗i, x⃗j) = ⟨f(x⃗i), f(x⃗j)⟩ where k is the kernel function,
x⃗i, x⃗j are n dimensional inputs, f is a map from n-dimension to m-dimension space and
⟨a, b⟩ denotes the dot product. Sin embargo, in the context of Quantum Machine
Learning using the Qiskit library, a quantum feature map is used. ϕ(x⃗) to map a vector
of classical features x⃗ to a quantum Hilbert space, |ϕ(x⃗)⟩⟨ϕ(x⃗)|, whereby the Kernel
Function can be described by the matrix of the equation 2.41. [11]

Kij =
∣∣∣⟨ϕ†(x⃗j)|ϕ(x⃗i)⟩

∣∣∣2 (2.41)

Quantum Kernel Matrix Representation.

QSVC operates in a quantum Hilbert space, which would potentially perform more
accurate and efficient classification of data. Instead of representing data in terms of
vectors and matrices, QSVC represents data as quantum states and uses quantum op-
erations on quantum circuits to classify them. This is how this model uses a Kernel
built based on FeatureMaps, such as those mentioned above: ZFeatureMap, ZZFea-
tureMap or RealAmplitudes, trough the FidelityQuantumKernel function available in
Qiskit. [11]

Another particularity of this classification method is the implementation of the Pega-
sos algorithm, which consists of a stochastic sub-gradient descent algorithm for solving
the optimization problem cast by Support Vector Machines. This algorithm performs a
stochastic gradient descent with a specific stepsize in the primal optimization problem
such as the 2.8 equation of the 2.1.8 section of Support Vector Classifier. At its start,
when starting to iterate, this algorithm sets the first vector w1 as a zero vector and in a
next randomly chosen t iteration, it replaces the objective function of the primal prob-
lem with an approximation based on the training data (xit , yit) that has been performed
in the chosen t iteration, obtaining a function like the one in the 2.42 equation.

f(w ; (x, y)) = λ

2w
Tw + C

l∑
i=1

ξi(w; (x, y))→ f(w ; it) = λ

2w
Tw + C ξi(w ; it) (2.42)

Pegasos Algorithm aproximation to objective function example.

Subsequently, the algorithm considers the sub-gradient of the objective function
approximation obtained from the problem, such as the equation 2.43. It then updates

52

the values of the vector w such that wt+1 ← wt− ηt∇t using a step size of nt = 1/(λt).
In this way, after a predetermined number of iterations, the objective function of the
primary optimization problem of the model is minimized. [16]

∇t =T
t wt−1[yit⟨wt, xit⟩ < 1] yitxit , where: 1[y⟨w, x⟩ < 1] =

1 , if true
0 , otherwise

(2.43)

Pegasos Algorithm subgradient of aproximated objetive function
example.

In summary, one of the main advantages of QSVC is its ability to handle nonlin-
ear and high-dimensional data. Unlike classical classification algorithms, QSVC could
classify data that cannot be linearly separated in a finite-dimensional space using the
quantum kernel. Moreover, a classical optimization algorithm is employed in this case,
which promises to succeed in solving the optimization problem of SVC. Another ad-
vantage of QSVC is its ability to perform multiple classification tasks at the same
time, which makes it especially useful for machine learning applications where fast and
accurate classification is required.

2.6. Used cases of study

In this study, two widely recognized datasets in predictive maintenance research will
be used: the MFPT (Machinery Failure Prevention Technology) organization’s bearing
dataset known as Fault Dataset Manipulation, and the NASA dataset called C-MAPSS
(Commercial Modular Aero Propulsion System Simulation). These datasets will be used
to test and evaluate the performance of quantum machine learning algorithms in the
early detection of bearing and turbine system failures.

The MFPT bearing dataset consists of vibration measurements of bearings subjected
to different types of failures, while the NASA C-MAPSS dataset consists of measure-
ments of turbine sensors under different operating conditions. Both datasets have been
used in numerous studies on failure diagnosis techniques in rotating machinery systems,
leading to improvements in the efficiency, reliability and safety of these systems.

In this study, quantum machine learning techniques will be used to analyze and
process data from both data sets to detect early failures in bearing and turbine systems.
The use of quantum techniques in the detection of faults in rotating machinery systems
is an emerging and promising field in predictive maintenance research, and the results
of this study are expected to contribute significantly to the advancement in this area.

2.6.1. MFPT

The Machinery Failure Prevention Technology (MFPT) bearing dataset known as
Fault Dataset Manipulation is a valuable resource for research in the field of predictive

53

maintenance of bearing systems. This dataset consists of vibration measurements of
bearings that have been subjected to different types of failures, such as the presence of
cracks and wear. When the rolling elements pass or impact with any of these defects,
high frequency vibrations are produced that can be recorded, for example, using an ac-
celerometer or a transducer. These measurements were taken under different operating
conditions, allowing researchers to study how operating conditions affect the detection
of bearing faults.

d

D

A1

Output
shaft

Ball bearing cross-section (Magnified)

MFPT

Inner race affected by crack
(Exaggerated)

Figure 2.6.1: MFPT Fault Dataset Manipulation

The MFPT dataset has been used in numerous studies on bearing failure diagno-
sis techniques, including the use of machine learning techniques and the creation of
simulation models for early detection of bearing failures. In addition, various method-
ologies have been developed for processing and analyzing this data, which has enabled
researchers to improve the accuracy and efficiency of their diagnostic algorithms.

This data set has been fundamental for the development of predictive maintenance
techniques in bearing systems, which has made it possible to prevent equipment failures
and reduce maintenance costs. In addition, it has been used in the creation of real-time
bearing vibration monitoring systems, which allow machine operators to detect early
bearing failures and take preventive measures to avoid catastrophic failures.

In detail, this dataset consists of experimental vibration measurements of ball bear-
ings under different damage states: failures located in the outer race groove, in the
inner race groove or in the rolling elements. These measurements consist of accelera-
tions, which can be evidenced by means of vibration analysis when a rolling element
passes through one of these failures. In the case of this work, a dataset with three states
is used: failure in the outer race, failure in the inner race and nominal health state.
[17]

54

2.6.2. C-MAPSS

NASA’s Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset
is an important resource for research in the field of aeronautical propulsion system
failure monitoring and diagnosis. This dataset was created through turbofan engine
simulations and consists of several datasets, each representing a different engine failure
scenario.

Fan Combustor N1 LPT

Nozzle
HPT

N2HPCLPC

Figure 2.6.2: C-MAPSS Aircraft Engine Simulator

C-MAPSS data sets have been used in a wide range of research, including the de-
velopment of fault diagnosis techniques using machine learning and the study of the
relationship between diagnostic signals and engine failures. In addition, various method-
ologies have been developed for the analysis and processing of these data, which has
enabled researchers to improve the accuracy and efficiency of their algorithms.

These data sets are widely used as a benchmark to evaluate and compare different
diagnostic and predictive maintenance techniques in the field of aeronautical engineer-
ing. The data include measurements of several engine variables, such as exhaust gas
temperature and compressor pressure, which allow researchers to develop diagnostic
and failure prediction algorithms. These sets further consist of multiple multivariate
time series, where each data set is divided into training and test subsets. Each time
series comes from a different engine, i.e., the data can be considered from a fleet of
engines of the same type, where each starts with different degrees of initial wear and
manufacturing variation that are unknown to the user. This wear and variation is con-
sidered normal, i.e., it is not considered a fault condition, in addition there are three
operating configurations that have a substantial effect on engine performance, which
are also included in the data. The motor operates normally at the beginning of each
time series and develops a fault at some point during the series.

In this case, the C-MAPSS dataset used consists of multiple simulations of turbofan

55

engine degradation under different conditions, both mechanical and operational. In this
sense, the dataset is composed of more than 27000 time series of the turbofan sensors
that, thanks to the turbofan simulation, could be associated to the RUL of the engine.
The features of the dataset are measurements of 21 sensors, at 100 units of the turbofan
engine, each one for a number of cycles between 100 and 200. [18]

56

3 | Methodology

3.1. Selection of case studies and data exploration

The process of searching datasets for predictive maintenance tasks with quantum
computing involves several steps, from the selection of search criteria to the evaluation
and final selection of the most suitable datasets. This process is described below:

1. Selection of search criteria: The first step in the search for datasets is to define
search criteria that fit the specific requirements of the project. These criteria
may include aspects such as the availability of detailed information on system
performance, data quality, relevance of the dataset to the system to be studied,
among others.

2. Dataset search: Once the search criteria have been defined, the search for datasets
that meet these criteria begins. This search may involve the review of scientific
literature, the consultation of data repositories, the search for information in com-
panies, among others.

3. Dataset evaluation: Once the datasets that satisfy the search criteria have been
identified, they are evaluated to determine which are the most suitable for the
project. This evaluation may involve reviewing the quality of the data, the avail-
ability of detailed information about the system and its maintenance, the relevance
of the dataset for the system to be studied, among others.

4. Final dataset selection: Finally, the final selection of the datasets to be used for the
project is made. This process must take into account the results of the evaluation
of each dataset, as well as the specific needs of the project.

In the present case of the search for datasets for predictive maintenance tasks with
quantum computing, the MFPT bearing datasets and the NASA CMAPSS dataset
were chosen. These datasets were selected after a careful evaluation that took into
account aspects such as data quality, availability of detailed information about the
system, relevance of the dataset for mechanical systems and the popularity that these
datasets carry being considered benchmark cases.

57

3.2. Initial data preparation

Data preparation is a fundamental step in the Machine Learning model training
process. Before data can be used to train a model, a series of cleaning, transformation
and preprocessing tasks need to be performed to ensure that the data is suitable for
use in the model. The quality and relevance of the training data has a major impact
on the performance and accuracy of the resulting model.

3.2.1. Assembling datasets

It is essential for this work, to properly assemble the datasets that allow the models
to be executed with the current resources of quantum computing, without leaving aside
that these are useful for the comparison of the models to which they are delivered. The
following describes the process of assembling the datasets of this work.

3.2.1.1. MFPT

First, the data to be used to assemble the dataset must be selected. In this case, the
following data available on the MFPT website are selected:

• Baseline condition at 270 lbs of load, input shaft rate of 25 Hz, sample rate of
97,656 sps, measured for 6 seconds

• Outer race fault condition at 25 lbs of load, input shaft rate 25 Hz, sample
rate of 48,828 sps, measured for 3 seconds

• Inner race fault condition at 50 lbs of load, input shaft rate of 25 Hz, sample
rate of 48,828 sps, measured for 3 seconds

Subsequently, 3 seconds of measurement are taken from each of these measured data
sets, and the number of samples of each one is standardized, redefining for each of the
health states a sample rate of 4882 sps, in order to reduce the large volume of data
for the models to be used. To do this, simply the first of every 20 consecutive data of
the Baseline condition data is taken, and in the cases of Outer race fault condition and
Inner race fault condition the first of every 10 data is taken, thus obtaining data like
those of the table 3.1, where the time is in units of second and the rest of the data is
in units of acceleration “g”.

Then, we proceed to split the training and test data in a ratio of 80:20 for each of
the data sets for each condition. Thus, the following data sets are obtained:

• Train Split Baseline Condition Acelerations

• Test Split Baseline Condition Acelerations

• Train Split Inner Race Fault Condition Acelerations

58

Table 3.1: MFPT Data after redefining sampling rate and measured
time.

Index Time Baseline
Condition

Inner Race
Condition

Outer Race
Condition

0 0.000000 0.831588 -0.069897 -0.176256
1 0.000205 -1.511027 -1.207542 -0.231410
2 0.000410 1.177196 -0.403396 -1.607862
...

14646 2.999508 -0.912831 -0.911982 0.720799
14647 2.999713 -0.917827 -0.895886 -1.212071
14648 2.999918 -0.416342 -0.830530 -0.005353

• Test Split Inner Race Fault Condition Acelerations

• Train Split Outer Race Fault Condition Acelerations

• Test Split Outer Race Fault Condition Acelerations

Then, small subsamples of data are obtained in these new sets, for this, they are
grouped in temporal windows of 96 samples with an overlap of 48 samples, that is to
say, half of the data of each window is shared with its contiguous windows. In this way,
windows like the one in table 3.2 are obtained, where an example is shown for the case
of the Baseline Condition training data.

Table 3.2: MFPT Data Example after grouping in time windows.

Time Windows with Train Healthy Condition Data
Window

Index
1st Window
Component

2nd Window
Component ... 95th Window

Component
96th Window
Component

0 [0.8315881 -1.5110275 ... -1.9110523 -0.1569234]
1 [0.06379319 0.4264816 ... -1.0001166 -0.8816726]
...

241 [-0.8036293 -1.8802995 ... 0.2404058 -0.8571472]
242 [0.6064907 0.5147141 ... 0.2293921 0.1730686]

Subsequently, all windows of all data groups are stacked regardless of their health
condition and a label corresponding to their condition is added, represented by 0 for
Healthy health status, 1 for Inner Race failure and 2 for Outter Race failure, as exem-
plified in table 3.3.

59

Table 3.3: MFPT Data Example after stacking time windows for every
health condition.

MFPT Labeled Time Windows Dataset Example
Index Window Label Condition

0 [0.831588 , -1.511027 , ... , -1.911052 , -0.156923] 0 Healthy
1 [0.063793 , 0.426481 , ... , -1.000116 , -0.881672] 0 Healthy
...

243 [-0.069896 , -1.207542 , ... , 0.094397 , -0.618919] 0 Healthy
244 [2.882126 , 1.810279 , ... , -0.481353 , -0.453111] 1 Outer Race

...
485 [-1.087795 , -0.390770 , ... , -0.867816 , -0.490348] 1 Outer Race
486 [-0.176255 , -0.231410 , ... , -0.117901 , 2.098567] 2 Inner Race

...
727 [-0.157723 , -0.399753 , ... , -5.339973 , 2.405596] 2 Inner Race
728 [0.164306 , -1.747766 , ... , -0.577141 , -2.264203] 2 Inner Race

Then, temporal parameters are calculated to be used as features of the final dataset
with which the models are worked. The mean, variance, rms, peak, valley, peak2peak,
crest factor, kurtosis and skewness are calculated for each Time Windows, thus obtain-
ing a dataset like the one in table 3.4.

Table 3.4: MFPT Data Example after calculating new features.
MFPT Labeled Time Windows Dataset Example

Index Mean Variance RMS Peak Valley Peak to peak Crest factor Kurtosis Skewness Label
0 -0.137602 0.964180 0.991521 2.287067 -1.911052 4.198119 2.306623 -0.694730 0.150808 0
...

244 -0.057800 1.064843 1.033530 2.882126 -2.433998 5.316124 2.788623 0.897920 0.617413 1
...

728 -0.139224 3.448500 1.862225 9.495661 -5.339973 14.835634 5.099093 8.822974 2.148120 2

3.2.1.2. C-MAPSS

The C-MAPSS Aircraft Engine Simulator contains different datasets according to the
operational conditions and failure modes of the turbofan engine. These conditions
are summarized in the table 3.5, and for this work we choose to work with the dataset
FD001 because it is a smaller and more specific subset, although it is still representative
for a classification task.

Table 3.5: C-MAPSS Raw Datasets Conditions.

Dataset Train
trajectories

Test
trajectories

Amount of
operational condition

Amount of
fault modes

FD001 100 100 One (Sea level) ONE (HPC Degradation)
FD002 260 259 Six ONE (HPC Degradation)
FD003 100 100 One (Sea level) TWO (HPC and Fan Degradation)
FD004 248 249 Six TWO (HPC and Fan Degradation)

60

After choosing the dataset FD001, which is seen as in the table 3.6, it is necessary
to understand the content of the columns of the dataset, for this the headers of the 21
sensors of the dataset are labeled, among which are: 1

1. Fan Inlet Temperature

2. LPC Outlet Temperature

3. HPC Outlet Temperature

4. LPT Outlet Temperature

5. Fan Inlet Pressure

6. Bypass Duct Pressure

7. HPC Outlet Pressure

8. Physical Fan Speed

9. Physical Core Speed

10. Engine Pressure Ratio

11. HPC Outlet Static Pressure

12. Fuel Flow Ratio

13. Corrected Fan Speed

14. Corrected Core Speed

15. Bypass Ratio

16. Fuel Burner Air Ratio

17. Bleed Enthalpy

18. Demanded Fan Speed

19. Demanded Fan Conversion Speed

20. HPT Coolant Bleed

21. LPT Coolant Bleed

Table 3.6: C-MAPSS FD001 Raw Dataset

Index Unit Cycles Altitude Air Speed Throttle
Angle

Sensor 1:
Fain inlet

temperature

Sensor 2:
LPC outlet

temperature
...

Sensor 20:
HPT

Coolant bleed

Sensor 21:
LPT

Coolant bleed
0 1 1 -0.007 -0.0004 100 518.67 641.82 ... 39.06 23.419
1 1 2 0.0019 -0.0003 100 518.67 642.15 ... 39.00 23.423
...

191 1 192 0.0003 0.0002 100 518.67 643.38 ... 38.32 23.415
192 2 1 0.0012 -0.0007 100 518.67 642.32 ... 39.14 22.973

...
478 2 287 -0.003 0.0006 100 518.67 643.21 ... 38.74 23.552
479 3 1 0.015 0.0002 100 518.67 642.53 ... 38.93 23.165

...
20630 100 200 0.001 -0.0002 100 518.67 643.85 ... 38.37 23.0522

3.2.1.3. Sensor selection

Although the C-MAPSS simulator contains a dataset with the actual RULs correspond-
ing to each unit, in this step an estimated RUL is calculated by subtracting from the
maximum cycles present in the dataset, which is 200 for unit 100, the cycle in which
each data is found. Thus, the RUL is added as an additional feature in this step such
as the table 3.7. Once obtained the RUL colume, with the method Dataframe.corr()
the correlation of each of the columns of the dataset with the estimated RUL is ob-
tained, thus eliminating those columns that do not have a strong correlation with the
RUL, decreasing the number of features, considering operating conditions and sensor
measurements, from 25 to 12.

1 Where LPC is Low Pressure Compressor, HPC is High Pressure Compressor, LPT is Low Pressure
Turbine, HPT is High Pressure Turbine

61

Table 3.7: C-MAPSS FD001 Raw Dataset with Estimated RUL

Index Unit Cycles Altitude Air Speed Throttle
Angle

Sensor 1:
Fain inlet

temperature
...

Sensor 21:
LPT

Coolant bleed

Estimated
RUL

0 1 1 -0.007 -0.0004 100 518.67 ... 23.419 199 cycles
...

20630 100 200 0.001 -0.0002 100 518.67 ... 23.0522 0 cycles

The deleted columns correspond to Altitude, Air speed, Throttle Angle, Fan Inlet
Temperature, Fan Inlet Pressure, Bypass Duct Pressure, Physical Core Speed, Engine
Pressure Ratio, Corrected Core Speed, Fuel Burner Air Ratio, Demanded Fan Speed
and Demanded Fan Conversion Speed. In addition, the column generated from the
estimated RUL is also detached, resulting in a dataset like the one in the table below.
3.8.

Table 3.8: C-MAPSS FD001 Dataset after columns droping.

Index Unit Cycles
Sensor 1:

LPC Oulet
temperature

...
Sensor 13:

LPT
Coolant bleed

0 1 1 641.82 ... 23.419
...

20630 100 200 643.85 ... 23.0522

Once the number of features in the dataset is reduced with the sensor measurements,
further dimensionality reduction is performed. This time using the Scikit Learn PCA
method. First, the variances of each of the features of the dataset are calculated and it
is decided to reduce the number of features according to the information of how many
features obtain a variance of 0.95 or higher, thus reducing the features of the dataset
as in the table below 3.9.

Table 3.9: C-MAPSS FD001 Dataset After PCA Feature Reduction

Index PCA
Feature 1

PCA
Feature 2

PCA
Feature 3

PCA
Feature 4

0 -109.9947 46.1568 2.1783 3.5121
...

20630 95.1002 -44.5401 16.9480 -2.8483

Subsequently, the actual RUL data are loaded for each engine unit from the FD001
dataset. This dataset contains the real RUL because it comes from a simulation, which
is useful for a more accurate training. In this case, a dataset of the same length as that
of the sensors is built, but with the RUL per unit, thus obtaining a dataset like the one
in the table below 3.10.

62

Table 3.10: C-MAPSS FD001 RUL Dataset

Index RUL
0 112
... ...

20630 20

To the last two datasets of tables 3.9 and 3.10, MinMaxScaler() are performed to
normalize their data and proceed to assemble the first dataset for classification, present
in table 3.11, joining both datasets but replacing the RUL by health status labels, where
a RUL greater than 0.4 is considered as a Healthy health status, and a RUL less than
0.4 is considered as a Degraded health status.

Table 3.11: C-MAPSS FD001 PCA Features from Sensors Dataset for
Classification

Index PCA
Feature 1

PCA
Feature 2

PCA
Feature 3

PCA
Feature 4 Label

0 -109.9947 46.1568 2.1783 3.5121 Healthy
...

20630 95.1002 -44.5401 16.9480 -2.8483 Degraded

AAdditionally, another dataset is constructed by calculating temporal parameters
using as time windows the cycles of each unit. The parameters to be calculated are
the average and the standard deviation for each sensor whose correlation with the RUL
turns out to be strong, i.e. from the dataset of table 3.8, obtaining a dataset like the
one in table 3.12.

Table 3.12: C-MAPSS FD001 Statistical Features Dataset

Index

Feature 1:
LPC Outlet
Temperature

Mean

Feature 2:
LPC Outlet
Temperature

Standar Deviation

...

Feature 25:
LPT

Coolant Bleed
Mean

Featuer 26:
LPT

Coolant Bleed
Standar Deviation

0 642.6210 0.4867 ... 23.3063 0.1051
...

100 642.7413 0.4604 ... 23.2693 0.1028

Finally, MinMaxScaler() is also performed to normalize the data, PCA reduction to
reduce the features, and the second dataset is assembled for the classification, present
in the table 3.13, joining the dataset with statistical features with the RUL dataset,
this time by units, and replacing the RUL by health status labels, where again a RUL
greater than 0.4 is considered as a Healthy health status, and a RUL less than 0.4 is
considered as a Degraded health status.

63

Table 3.13: C-MAPSS FD001 Statistical Features after PCA Reduc-
tion with Labels

Index PCA
Feature 1

PCA
Feature 2

PCA
Feature 3

PCA
Feature 4

PCA
Feature 5 Label

0 0.3909 -0.4672 0.5142 0.0955 -0.0672 Healthy
...

100 -0.2171 -0.3251 -0.0494 -0.2178 0.0457 Degraded

All this dataset processing is also performed on the test data present in the datasets
provided by NASA.

3.3. Selection of used models

In this work, a study on the use of quantum machine learning models for predictive
maintenance is carried out. For this purpose, a rigorous selection of quantum models
was carried out, based on technical and scientific criteria, to determine which were the
most suitable to address the classification tasks posed in the selected datasets.

After a thorough review of the scientific literature, four IBM Qiskit quantum ma-
chine learning models were chosen, namely: Variational Quantum Classifier, Quantum
Neural Network Classifier, Quantum Neural Network Classifier using Torchconector and
Quantum Support Vector Classifier.

In addition, a classical model for comparison was selected: the Support Vector Clas-
sifier present in Scikit Learn. This choice made it possible to contrast the results
obtained by the quantum models with a classical model widely used in the scientific
community.

It is important to note that one of the main challenges faced in this work is the
limited availability of online quantum computing resources through IBM Quantum
Lab, providing only hardware with a small number of qubits. Therefore, simulations
were performed in Qiskit to train and evaluate the performance of quantum models
with more qubits in which to encode dataset features. This approach was considered
appropriate, since it allowed the training and evaluation of the selected quantum models
to be carried out.

3.4. Implement classical model to cases of study

The implementation of the classical model chosen in this work is quite simple. This
is because the Support Vector Classifier method is available in the Scikit Learn library.

In particular, default parameters are used, which are:

64

• Regularization parameter as C = 1.0

• Radial basis function Kernel

In this way, the model is trained by means of the method .fit(X,y) using the training
sets of each case study. Then the evaluation of the model is performed with both the
training and testing datasets to obtain the evaluation metrics.

Finally, the actual labels of the datasets are compared with the predicted labels
using the .predict(X) method and the confusion matrices are made using the functions
available in Scikit Learn.

3.5. Implement quantum models to cases of study.

This section explains how the four quantum machine learning models chosen in this
work are implemented: Variational Quantum Classifier (VQC), QNN Classifier, QNN
Classifier with TorchConnector and Quantum Support Vector Classifier (QSVC). The
methodology used to implement each model is described in detail, including the design
of quantum circuits, the selection of optimization algorithms and the encoding of input
data.

3.5.1. Variational Quantum Classifier

First, the datasets of each of the case studies must be loaded, since this model is
implemented to perform classification tasks with both case studies. Subsequently, the
volume of data to be used must be adjusted because the training cannot be completed
with very large datasets, which is why in the case of the dataset with the PCA fea-
tures of the C-MAPSS FD001 sensors, 50% of the data is taken, using the function
train_test_split() from Scikit Learn. On the other hand, for the MPFT classification
case, it is not necessary to make this cut in the dataset.

Subsequently, we start to build the quantum circuit to be used in this model. First of
all, we choose how to encode the data features to the qubits by means of a Feature Map.
In this step, the number of repetitions of the FeatureMap circuit is chosen, generally
between 1 and 3 repetitions, and the Feature Map is selected from the following options:

1. ZZFeatureMap 2. ZFeatureMap 3. RawFeatureVector

The number of qubits of the circuit is specified, in the cases of ZZFeatureMap and
ZFeatureMap, the number of qubit is chosen as the number of features of the dataset.
On the other hand, in the case of RawFeatureVector, the function defines the number
of qubits as the logarithm base 2 of the number of features of the dataset, so if the
dataset contains a number of features that is not in the domain of the log2() function,
a PCA reduction is performed to the nearest value that meets this constraint.

65

Subsequently, the choice of the circuit for the Ansatz is made, where its number of
input qubits must match the output qubits of the FeatureMap. We must also specify
how many times the Ansatz circuit is repeated in this step, which is typically set between
1 and 3 repetitions. The circuits from which the Ansatz are chosen are as follows:

1. RealAmplitudes 2. EfficientSU2 3. RawFeatureVector

q0

q1

q2

q3

q0

q1

q2

q3

H

H

H

H

2.0*x[0]
P

2.0*x[1]
P

2.0*x[2]
P

2.0*x[3]
P

2.0*(x[0])*(x[1])
P

2.0*(x[0])*(x[2])
P

2.0*(x[1])*(x[2])
P

2.0*(x[0])*(x[3])
P

2.0*(x[1])*(x[3])
P

2.0*(x[2])*(x[3])
P

[0]
RY

[1]
RY

[2]
RY

[3]
RY

[7]
RY

[6]
RY

[4]
RY

[5]
RY

Figure 3.5.1: VQC FeatureMap and Ansatz Example

The complete model circuit can be visualized as in the example in figure 3.5.1, where
a ZZFeatureMap is used to encode the data and a RealAmplitudes as Ansatz.

Then, the optimizer to be used is selected, typically the COBYLA optimizer present
in the Qiskit library, and the maximum number of iterations of the optimizer is specified,
which is typically chosen between 100 and 200 iterations.

In the next case it is defined where the classifier is trained, in a simulator or in a real
quantum computer. Due to the limitation in getting real hardware with enough memory
and qubits for the features, we choose to use simulators. In particular, AerSimulator is
used and initialized by the function QuantumInstance().

The last step before training the model is to define a callback function, which VQC
will use to evaluate the objective function at each iteration in the iteration process.
This function is defined with the weights and the values of the objective function in
those weights as inputs, generating a plot like the one in figure 3.5.2 during the training
of the model.

66

Figure 3.5.2: VQC Callback Graph Example

Subsequently, the function is used to build the Variational Quantum Classifier in
Qiskit, providing the assembled circuit, the optimizer, the simulator and the callback
function to perform the training. Once the training is finished, we proceed to calculate
the different evaluation metrics and to plot the confusion matrices, both with the train
split and the test split for each case study.

3.5.2. Quantum Neural Network Classifier

First, like the previous model, it is necessary to load the case study datasets, however,
in this model only the C-MAPSS dataset is used since the model is used for classification
in both cases. Then, the size of the dataset used for training must be adjusted due to
the fact that training cannot be completed with very large datasets. As in the previous
model, the C-MAPSS FD001 sensor dataset is reduced to use the 50% of the data using
the functiontrain_test_split from Scikit Learn.

Then, as in VQC, quantum circuits and the number of Qubits for the FeatureMap
and Ansatz as well as an optimizer must be selected. For the Feature Map, typically
the same as for the VQC is used, as well as for the Ansatz, and for the optimizer,
typically COBYLA is used. Subsequently, a quantum neural network is created from
the quantum circuit, typically with Qiskit’s EstimatorQNNN network, which receives
the quantum circuit, and the ansatz parameters to be used as the neural network
weights.

As in the previous model, the last step before training the model is to define a
callback function. This function is defined with the weights and the values of the
objective function in those weights as inputs, generating a plot like the one in figure
3.5.2 during the training of the model.

The model is trained using the method .fit(X,y), with the training sets for each case

67

study. The model is then evaluated using both the training sets and the test sets to
obtain the corresponding evaluation metrics.

Finally, the actual labels of the datasets are compared with the predicted labels using
the method .predict(X), and the confusion matrices are created using the functions
provided by Scikit Learn.

3.5.3. Quantum Neural Network with Pytorch Classifier

For this model we follow similar to the previous models, however, the optimization
and training routine is performed using the Pytorch library methods. As in all models,
the first step is the data import, in this case the C-MAPSS datasets are used, from
which a 50% of data is taken to speed up the training routine. In this case, the labels
must be normalized according to the type of neural network to be used, we have the
following cases:

1. For the CircuitQNN network, labels are required to be 0 or 1.

2. For the OpflowQNN network, labels are required to be -1 or +1.

Subsequently, the training and test data must be encoded as Pytorch tensors by
means of the function Tensor()

To continue, the neural network must be built. To do so, the network to be used
and the circuit with which it will be built are chosen, as in the previous models:

1. ZZFeatureMap, ZFeatureMap or RawFeatureVector

2. RealAmplitudes, EfficientSU2 or RawFeatureVector

The difference with respect to the previous model lies in this point, because now a
Pytorch optimization routine is used, typically the LBFGS optimizer with a MSELoss
loss function, which is used to initialize the TorchConnector to subsequently perform
the training using the TorchConnector’s .train() method.

After training is completed, various evaluation metrics are calculated and corre-
sponding confusion matrices are created for both the training set and the test set for
each case study. These matrices are represented visually by plots as in the previous
models.

3.5.4. Quantum Support Vector Classifier

The first step for this model is the import of the data, in this case the C-MAPSS
datasets are used, from which a 50% of data is taken to speed up the training routine.

68

In this case, the data must be MinMaxScaler in a range between 0 and π to ensure the
compatibility of the encoding of this method.

With the dataset used, we have 4 features, so 4 qubits will be used in the circuit. In
addition we must specify the number of steps performed in the training, typically 100
steps are used. In addition we must specify the value of a hyperparameter which acts as
a positive regularization parameter, where a small value of this parameter means lower
training weights and prevents overfitting, while a large value improves the training
performance drastically, typically a regularization parameter of 1000 is used.

Then, a FeatureMap is chosen for the quantum circuit, among which can be ZFea-
tureMap or ZZFeatureMap. Once this is defined, we proceed to transform this quantum
circuit into a QuantumKernel that is able to separate the classes of the dataset using
the function FidelityQuantumKernel of Qiskit.

Subsequently, this Quantum Kernel is delivered to the function PegasosQSVC of
Qiskit which is compatible with all the interface of a Scikit Learn SVC as the one used
in the classical classification model. Finally this model is trained using the .fit method
and the model is evaluated with both the train split and the split test together with
the confusion matrices.

69

4 | Results

4.1. Data processing results

The graphs obtained during the process of preparing the datasets to be used in
the models are presented below. First, the raw acceleration signals of the constructed
MFPT dataset are presented in Figure 4.1.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−3

−2

−1

0

1

2

3

A
cc

el
er

at
io

n
[g

]

Healthy

(a) Healthy Condition

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−30

−20

−10

0

10

20

A
cc

el
er

at
io

n
[g

]

Inner Race

(b) Fault on Inner Race Condition

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n
[g

]

Outer Race

(c) Fault on Outer Race Condition

Figure 4.1.1: MFPT Raw Dataset Plot

70

Subsequently, from Figures 4.1.2 to 4.1.4 are some of the feature plots calculated for
the MFPT dataset, the plots of all the calculated features can be found in Annex A.

0 100 200 300 400 500 600 700

Sample

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

M
ea

n

Train Split Mean
Healthy

Outer Race

Inner Race

(a) Train Split Mean

0 25 50 75 100 125 150 175

Sample

−0.6

−0.4

−0.2

0.0

0.2

0.4

M
ea

n

Test Split Mean
Healthy

Outer Race

Inner Race

(b) Test Split Mean

Figure 4.1.2: MFPT Dataset Mean Plot

0 100 200 300 400 500 600 700

Sample

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
ar

ia
n

ce

Train Split Variance
Healthy

Outer Race

Inner Race

(a) Train Split Variance

0 25 50 75 100 125 150 175

Sample

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
V

ar
ia

n
ce

Test Split Variance
Healthy

Outer Race

Inner Race

(b) Test Split Variance

Figure 4.1.3: MFPT Dataset Variance Plot

0 100 200 300 400 500 600 700

Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S

Train Split RMS
Healthy

Outer Race

Inner Race

(a) Train Split RMS

0 25 50 75 100 125 150 175

Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S

Test Split RMS
Healthy

Outer Race

Inner Race

(b) Test Split RMS

Figure 4.1.4: MFPT Dataset RMS Plot

Another important result during the data processing process, this time of the C-

71

MAPSS FD001 data, is the correlation matrix of features in Figure 4.1.5.

u
n

it
cy

cl
es

al
ti

tu
d

e
ai

r
sp

ee
d

th
ro

tt
le

an
gl

e
fa

n
in

le
t

te
m

p
lp

c
ou

tl
et

te
m

p
h

p
c

ou
tl

et
te

m
p

lp
t

ou
tl

et
te

m
p

fa
n

in
le

t
p

re
ss

u
re

b
y
p

as
s

d
u

ct
p

re
ss

u
re

h
p

c
ou

tl
et

p
re

ss
u

re
p

h
y
si

ca
l

fa
n

sp
ee

d
p

h
y
si

ca
l

co
re

sp
ee

d
en

gi
n

e
p

re
ss

u
re

ra
ti

o
h

p
c

ou
tl

et
st

at
ic

p
re

ss
u

re
fu

el
fl

ow
ra

ti
o

co
rr

ec
te

d
fa

n
sp

ee
d

co
rr

ec
te

d
co

re
sp

ee
d

b
y
p

as
s

ra
ti

o
b

u
rn

er
fu

el
ai

r
ra

ti
o

b
le

ed
en

th
al

p
y

d
em

an
d

ed
fa

n
sp

ee
d

d
em

an
d

ed
fa

n
co

n
ve

rs
io

n
sp

ee
d

h
p

t
co

ol
an

t
b

le
ed

lp
t

co
o
la

n
t

b
le

ed
R

U
L

unit
cycles

altitude
air speed

throttle angle
fan inlet temp

lpc outlet temp
hpc outlet temp
lpt outlet temp

fan inlet pressure
bypass duct pressure

hpc outlet pressure
physical fan speed

physical core speed
engine pressure ratio

hpc outlet static pressure
fuel flow ratio

corrected fan speed
corrected core speed

bypass ratio
burner fuel air ratio

bleed enthalpy
demanded fan speed

demanded fan conversion speed
hpt coolant bleed
lpt coolant bleed

RUL
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.1.5: C-MAPSS Aircraft Correlation Matrix Between Fea-
tures

Subsequently, in Figures 4.1.6 and 4.1.7 are some of the feature plots calculated for
the C-MAPSS FD001 dataset by cycles of each unit, the plots of the totality of the
calculated features are in Annex A.

72

0 20 40 60 80 100

Sample

642.4

642.5

642.6

642.7

642.8

642.9

643.0

M
ea

n

LPC Outlet Temperature Mean, Train Split
Degraded

Healthy

(a) Mean

0 20 40 60 80 100

Sample

0.40

0.45

0.50

0.55

S
T

D

LPC Outlet Temperature STD, Train Split
Degraded

Healthy

(b) Standard Deviation

Figure 4.1.6: C-MAPSS FD001 Train Dataset LPC Outlet Tempera-
ture Plots

0 20 40 60 80 100

Sample

38.75

38.80

38.85

38.90

38.95

39.00

39.05

M
ea

n

HPT Coolant Bleed Mean, Test Split
Degraded

Healthy

(a) Mean

0 20 40 60 80 100

Sample

0.10

0.12

0.14

0.16

0.18

S
T

D

HPT Coolant Bleed STD, Test Split
Degraded

Healthy

(b) Standard Deviation

Figure 4.1.7: C-MAPSS FD001 Test Dataset HPT Coolant Bleed
Plots

4.1.1. Dimensionality reduction

The results of the variances of the three datasets at the time when each one is
subjected to feature reduction with PCA are shown in the table 4.1.

Table 4.1: Datasets PCA Reduction Results

Dataset
PCA

Features
Quantity

Variance
Reached

MFPT 8 99.99%
C-MAPSS

Sensor Features 4 98.36%

C-MAPSS
Statistical Features 5 95.88%

73

4.2. Classical Support Vector Classifier Results

The confusion matrices and evaluation metrics for each of the case studies using
Classical Support Vector Classifier are presented below.

4.2.1. MFPT Fault Dataset Manipulation

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

222 21 0

76 161 6

5 35 203

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

56 4 0

32 28 0

1 9 50

0

10

20

30

40

50

(b) Test split

Figure 4.2.1: Confussion Matrixes for Classical SVC applied to MFPT

4.2.2. C-MAPSS Aircraft Engine Simulator

4.2.2.1. FD001 Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

23 47

10

20

30

40

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

12 18

12 58
20

30

40

50

(b) Test split

Figure 4.2.2: Confussion Matrixes for Classical SVC applied to C-
MAPSS FD001 with Statistics Features

74

4.2.2.2. FD001 Sensors Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

612 2454

322 6927

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

324 1236

169 3428

500

1000

1500

2000

2500

3000

(b) Test split

Figure 4.2.3: Confussion Matrixes for Classical SVC applied to C-
MAPSS FD001 with Statistics Features

The results of the model applied to the datasets are shown in table 4.2.

Table 4.2: Classical Predictions Results
Classical SVC Results

Dataset Accuracy Precision Recall Specificity NPV Training Time

Train Test Train Test Train Test Train Test Train Test
Jupyter Notebook
Intel i7 2.20GHz

8 GB RAM

IBM Quantum Lab
Intel Xeon 2.60GHz

31 GB RAM

Google Colab
Intel Xeon 2.20 Ghz

13 GB RAM
MFPT

Statistical Features 0.80 0.74 - - - - - - - - 0.017 seconds 0.012 seconds 0.009 seconds

C-MAPSS FD001
Statistical Features 0.70 0.70 0.77 0.40 0.50 0.50 0.87 0.76 0.67 0.83 0.001 seconds 0.002 seconds 0.002 seconds

C-MAPSS FD001
Sensor Features 0.73 0.73 0.20 0.21 0.66 0.66 0.74 0.73 0.96 0.95 2.966 seconds 3.987 seconds 4.171 seconds

4.3. Variational Quantum Classifier Results

Some of the confusion matrices and evaluation metrics for each of the case studies
using Variational Quantum Classifier are presented below. The full set of confusion
matrices can be found in the Annex B.

75

4.3.1. MFPT Fault Dataset Manipulation

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

209 34 0

110 118 15

57 97 89

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

54 2 4

40 12 8

23 20 17 10

20

30

40

50

(b) Test split

Figure 4.3.1: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and COBYLA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

205 38 0

107 132 4

66 116 61

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

20 38 2

9 50 1

13 34 13 10

20

30

40

50

(b) Test split

Figure 4.3.2: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and COBYLA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

222 21 0

85 126 32

83 82 78

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

55 4 1

25 20 15

26 16 18 10

20

30

40

50

(b) Test split

Figure 4.3.3: Confussion Matrixes for VQC with RawFeatures, Effi-
cientSU2 and COBYLA applied to MFPT

76

Table 4.3 shows the results of the model applied for this dataset.

Table 4.3: VQC for MPFT Dataset Results

VQC for MFPT Dataset. Executed on IBM Quantum Lab, 31 GB RAM

Feature Map Ansatz Optimizer Accuracy Training TimeTrain Test
ZZFeatureMap RealAmplitudes COBYLA 0.55 0.46 7384 seconds
ZZFeatureMap EfficientSU2 COBYLA 0.57 0.46 8340 seconds
ZFeatureMap RealAmplitudes COBYLA 0.56 0.47 5417 seconds
ZFeatureMap EfficientSU2 COBYLA 0.59 0.47 6118 seconds
RawFeatures RealAmplitudes COBYLA 0.55 0.48 6296 seconds
RawFeatures EfficientSU2 COBYLA 0.58 0.42 7112 seconds

ZZFeatureMap RealAmplitudes SLSQP 0.55 0.47 18892 seconds
ZZFeatureMap EfficientSU2 SLSQP 0.56 0.46 21337 seconds
ZFeatureMap RealAmplitudes SLSQP 0.56 0.45 13859 seconds
ZFeatureMap EfficientSU2 SLSQP 0.60 0.46 15652 seconds
RawFeatures RealAmplitudes SLSQP 0.56 0.48 16109 seconds
RawFeatures EfficientSU2 SLSQP 0.58 0.53 18195 seconds

ZZFeatureMap RealAmplitudes SPSA 0.64 0.54 17242 seconds
ZZFeatureMap EfficientSU2 SPSA 0.67 0.54 22418 seconds
ZFeatureMap RealAmplitudes SPSA 0.66 0.56 14561 seconds
ZFeatureMap EfficientSU2 SPSA 0.68 0.55 15572 seconds
RawFeatures RealAmplitudes SPSA 0.61 0.54 17004 seconds
RawFeatures EfficientSU2 SPSA 0.65 0.59 19205 seconds

4.3.2. C-MAPSS Aircraft Engine Simulator

4.3.2.1. FD001 Statistics Features

Predicted label

T
ru

e
la

b
el

15 15

11 59
20

30

40

50

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

12 18

17 53
20

30

40

50

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure 4.3.4: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Statistics
Features

77

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

613 2453

1054 6195

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

706 1827

924 3094

1000

1500

2000

2500

3000

(b) Test split

Figure 4.3.5: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and COBYLA applied to C-MAPSS FD001 with Sen-
sor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1227 1839

1255 5994

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

955 1578

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure 4.3.6: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and SLSQP applied to C-MAPSS FD001 with Sensor Fea-
tures

Table 4.4 shows the results of the model applied for this dataset.

Table 4.4: VQC for C-MAPSS FD001 with Statistics Features Results
VQC for C-MAPSS FD001 Statistical Features Dataset. Executed on IBM Quantum Lab, 31 GB RAM

Feature Map Ansatz Optimizer Accuracy Precision Recall Specificity NPV Training TimeTrain Test Train Test Train Test Train Test Train Test
ZZFeatureMap EfficientSU2 COBYLA 0.74 0.65 0.50 0.40 0.58 0.41 0.80 0.75 0.84 0.76 1219 seconds
ZZFeatureMap RealAmplitudes COBYLA 0.76 0.67 0.70 0.57 0.58 0.47 0.86 0.80 0.79 0.73 1079 seconds
ZFeatureMap EfficientSU2 COBYLA 0.75 0.66 0.80 0.43 0.56 0.43 0.89 0.76 0.73 0.76 1152 seconds
ZFeatureMap RealAmplitudes COBYLA 0.73 0.62 0.77 0.43 0.53 0.38 0.88 0.74 0.71 0.70 1035 seconds

EfficientSU2 COBYLA 0.76 0.65 0.70 0.33 0.58 0.40 0.86 0.73 0.79 0.79 1253 seconds
RealAmplitudes COBYLA 0.78 0.61 0.97 0.33 0.58 0.34 0.98 0.72 0.70 0.73 1128 seconds

ZZFeatureMap EfficientSU2 SLSQP 0.75 0.61 0.80 0.33 0.56 0.34 0.89 0.72 0.73 0.73 3522 seconds
ZZFeatureMap RealAmplitudes SLSQP 0.74 0.65 0.67 0.33 0.56 0.40 0.84 0.73 0.77 0.79 3118 seconds
ZFeatureMap EfficientSU2 SLSQP 0.79 0.61 0.90 0.33 0.60 0.34 0.95 0.72 0.74 0.73 2584 seconds
ZFeatureMap RealAmplitudes SLSQP 0.75 0.60 0.80 0.17 0.56 0.25 0.89 0.69 0.73 0.79 2287 seconds

EfficientSU2 SLSQP 0.76 0.71 0.70 0.77 0.58 0.51 0.86 0.87 0.79 0.69 2996 seconds
RealAmplitudes SLSQP 0.75 0.61 0.80 0.77 0.56 0.51 0.89 0.87 0.73 0.69 2659 seconds

ZZFeatureMap EfficientSU2 SPSA 0.83 0.77 0.97 0.87 0.64 0.58 0.98 0.93 0.77 0.73 3513 seconds
ZZFeatureMap RealAmplitudes SPSA 0.80 0.77 0.80 0.90 0.63 0.57 0.90 0.94 0.80 0.71 3015 seconds
ZFeatureMap EfficientSU2 SPSA 0.83 0.76 0.97 0.70 0.64 0.58 0.98 0.86 0.77 0.79 2463 seconds
ZFeatureMap RealAmplitudes SPSA 0.80 0.72 0.80 0.70 0.63 0.53 0.90 0.85 0.80 0.73 2379 seconds

EfficientSU2 SPSA 0.81 0.75 0.77 0.80 0.66 0.56 0.89 0.89 0.83 0.73 2835 seconds
RealAmplitudes SPSA 0.77 0.71 0.87 0.57 0.58 0.52 0.93 0.81 0.73 0.77 2782 seconds

78

RawFeatureVector
RawFeatureVector

RawFeatureVector
RawFeatureVector

RawFeatureVector
RawFeatureVector

4.3.2.2. FD001 Sensors Features

Predicted label

T
ru

e
la

b
el

769 2297

1004 6245

1000

2000

3000

4000

5000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

809 1724

895 3123

1000

1500

2000

2500

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure 4.3.7: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Sensor
Features

Predicted label

T
ru

e
la

b
el

28 3038

57 7192 2000

4000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

8 2525

29 3986 1000

2000

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure 4.3.8: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Sensor
Features

79

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1633 1433

1455 5794

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1445 1088

1074 2944 1500

2000

2500

(b) Test split

Figure 4.3.9: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and SPSA applied to C-MAPSS FD001 with Sensor
Features

Table 4.5 shows the results of the model applied for this dataset.

Table 4.5: VQC for C-MAPSS FD001 with Sensor Features Results
VQC for C-MAPSS FD001 Sensor Features Dataset. Executed on Jupyter Notebook, Intel i7 2.20GHz, 8 GB RAM

Feature Map Ansatz Optimizer Accuracy Precision Recall Specificity NPV Training TimeTrain Test Train Test Train Test Train Test Train Test
ZZFeatureMap EfficientSU2 COBYLA 0.68 0.60 0.25 0.32 0.43 0.47 0.73 0.64 0.86 0.78 98085 seconds
ZZFeatureMap RealAmplitudes COBYLA 0.68 0.67 0.16 0.54 0.40 0.58 0.72 0.72 0.90 0.75 91022 seconds
ZFeatureMap EfficientSU2 COBYLA 0.70 0.61 0.01 0.00 0.33 0.22 0.70 0.61 0.99 0.99 71961 seconds
ZFeatureMap RealAmplitudes COBYLA 0.70 0.61 0.00 0.00 0.18 0.14 0.70 0.61 1.00 0.99 78659 seconds

RawFeatureVector RealAmplitudes COBYLA 0.66 0.58 0.20 0.28 0.37 0.43 0.72 0.63 0.85 0.77 40453 seconds
RawFeatureVector EfficientSU2 COBYLA 0.69 0.62 0.33 0.44 0.47 0.51 0.75 0.68 0.84 0.73 42536 seconds

ZZFeatureMap EfficientSU2 SLSQP 0.70 0.61 0.40 0.38 0.49 0.49 0.77 0.66 0.83 0.76 283392 seconds
ZZFeatureMap RealAmplitudes SLSQP 0.69 0.62 0.37 0.44 0.47 0.51 0.76 0.68 0.82 0.73 250885 seconds
ZFeatureMap EfficientSU2 SLSQP 0.70 0.61 0.38 0.38 0.49 0.49 0.76 0.66 0.83 0.76 207917 seconds
ZFeatureMap RealAmplitudes SLSQP 0.70 0.61 0.37 0.38 0.49. 0.49 0.76 0.66 0.84 0.76 184030 seconds

EfficientSU2 SLSQP 0.67 0.57 0.29 0.31 0.42 0.42 0.74 0.63 0.83 0.73 241068 seconds
RealAmplitudes SLSQP 0.66 0.54 0.19 0.21 0.37 0.35 0.72 0.60 0.86 0.75 213952 seconds

ZZFeatureMap EfficientSU2 SPSA 0.76 0.71 0.69 0.64 0.58 0.62 0.86 0.77 0.79 0.76 282668 seconds
ZZFeatureMap RealAmplitudes SPSA 0.73 0.70 0.54 0.56 0.55 0.62 0.81 0.74 0.81 0.79 242597 seconds
ZFeatureMap EfficientSU2 SPSA 0.75 0.71 0.65 0.64 0.57 0.62 0.84 0.77 0.79 0.76 198181 seconds
ZFeatureMap RealAmplitudes SPSA 0.73 0.59 0.54 0.26 0.55 0.45 0.81 0.63 0.81 0.80 191422 seconds

EfficientSU2 SPSA 0.75 0.69 0.65 0.65 0.57 0.59 0.84 0.77 0.79 0.71 228114 seconds
RealAmplitudes SPSA 0.72 0.67 0.53 0.57 0.53 0.57 0.80 0.73 0.80 0.73 223849 seconds

4.4. Quantum Neural Network Classifier Results

Some of the confusion matrices and evaluation metrics for each of the case studies
using Quantum Neural Network Classifier are presented below. The full set of confusion
matrices can be found in the Annex B.

4.4.1. C-MAPSS Aircraft Engine Simulator

80

RawFeatureVector
RawFeatureVector

RawFeatureVector
RawFeatureVector

4.4.1.1. FD001 Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

5 25

10 60

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

15 55

10

20

30

40

50

(b) Test split

Figure 4.4.1: Confussion Matrixes for QNN with ZZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

5 25

11 59

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

6 24

14 56

10

20

30

40

50

(b) Test split

Figure 4.4.2: Confussion Matrixes for QNN with ZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Statistics Features

Table 4.6 shows the results of the model applied to this dataset.

Table 4.6: QNN for C-MAPSS FD001 with Statistics Features Results
QNN for C-MAPSS FD001 Statistics Features Dataset. Executed on Jupyter Notebook, Intel i7 2.20GHz, 8 GB RAM

Feature Map Ansatz Accuracy Precision Recall Specificity NPV Training TimeTrain Test Train Test Train Test Train Test Train Test
ZZFeatureMap RealAmplitudes 0.65 0.63 0.17 0.33 0.33 0.40 0.71 0.73 0.86 0.79 967 seconds
ZFeatureMap RealAmplitudes 0.64 0.62 0.17 0.20 0.31 0.30 0.70 0.70 0.84 0.80 835 seconds

RawFeatureVector RealAmplitudes 0.65 0.57 0.33 0.20 0.40 0.24 0.73 0.68 0.79 0.73 982 seconds
ZZFeatureMap EfficientSU2 0.67 0.63 0.60 0.63 0.46 0.42 0.80 0.80 0.70 0.63 864 seconds
ZFeatureMap EfficientSU2 0.68 0.62 0.57 0.43 0.47 0.38 0.80 0.74 0.73 0.70 829 seconds

RawFeatureVector EfficientSU2 0.68 0.61 0.50 0.33 0.47 0.34 0.78 0.72 0.76 0.73 994 seconds

81

4.4.1.2. FD001 Sensors Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

288 2778

935 6314

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1526 1004

1550 2468

1250

1500

1750

2000

2250

(b) Test split

Figure 4.4.3: Confussion Matrixes for QNN with ZZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Sensor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

239 2827

900 6259

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1481 1049

1505 2513

1250

1500

1750

2000

2250

2500

(b) Test split

Figure 4.4.4: Confussion Matrixes for QNN with ZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Sensor Features

Table 4.7 shows the results of the model applied for this dataset.

Table 4.7: QNN for C-MAPSS FD001 with Sensors Features Results
QNN for C-MAPSS FD001 Sensors Features Dataset. Executed on Jupyter Notebook, Intel i7 2.20GHz, 8 GB RAM

Feature Map Ansatz Accuracy Precision Recall Specificity NPV Training TimeTrain Test Train Test Train Test Train Test Train Test
ZZFeatureMap RealAmplitudes 0.64 0.61 0.09 0.60 0.24 0.50 0.69 0.71 0.87 0.61 61886 seconds
ZFeatureMap RealAmplitudes 0.63 0.61 0.08 0.59 0.21 0.50 0.69 0.71 0.87 0.63 53438 seconds

RawFeatureVector RealAmplitudes 0.63 0.56 0.21 0.34 0.31 0.41 0.71 0.63 0.81 0.70 62845 seconds
ZZFeatureMap EfficientSU2 0.64 0.61 0.12 0.41 0.27 0.49 0.70 0.67 0.86 0.73 55294 seconds
ZFeatureMap EfficientSU2 0.67 0.60 0.06 0.31 0.25 0.47 0.70 0.64 0.93 0.78 53054 seconds

RawFeatureVector EfficientSU2 0.68 0.60 0.28 0.35 0.44 0.48 0.74 0.65 0.85 0.76 63613 seconds

82

4.5. Quantum Neural Network with Pytorch Clas-
sifier Results

Some of the confusion matrices and evaluation metrics for each of the case studies
using Quantum Neural Network with Pytorch Classifier are presented below. The full
set of matrices can be found in the Annex B.

4.5.1. C-MAPSS Aircraft Engine Simulator

4.5.1.1. FD001 Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

17 13

9 61

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal
T

ru
e

la
b

el

18 12

12 58
20

30

40

50

(b) Test split

Figure 4.5.1: Confussion Matrixes for Pytorch + OpflowQNN with
ZZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to
C-MAPSS FD001 with Statistical Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

14 16

36 34

15

20

25

30

35

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

6 24

31 30

10

15

20

25

30

(b) Test split

Figure 4.5.2: Confussion Matrixes for Pytorch + CircuitQNN with
ZZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to
C-MAPSS FD001 with Statistical Features

The results of the model applied to this dataset are shown in table 4.8.

83

Table 4.8: Pytorch + QNN for C-MAPSS FD001 with Statistics Fea-
tures Results

Pytorch + QNN for C-MAPSS FD001 Statistical Features Dataset. Executed on Google Colab Pro, Tesla T4, 16 GB RAM
Quantum

Neural Network Feature Map Ansatz Optimizer Accuracy Precision Recall Specificity NPV Training TimeTrain Test Train Test Train Test Train Test Train Test
OpflowQNN ZZFeatureMap RealAmplitudes LBFGS 0.78 0.76 0.57 0.60 0.65 0.60 0.82 0.83 0.87 0.83 1620 seconds
CircuitQNN ZZFeatureMap RealAmplitudes LBFGS 0.48 0.45 0.47 0.20 0.28 0.16 0.68 0.56 0.49 0.49 540 seconds
OpflowQNN ZFeatureMap RealAmplitudes LBFGS 0.77 0.75 0.33 0.77 0.77 0.56 0.77 0.88 0.96 0.74 1398 seconds
CircuitQNN ZFeatureMap RealAmplitudes LBFGS 0.49 0.47 0.37 0.33 0.26 0.23 0.67 0.65 0.54 0.53 467 seconds
OpflowQNN RawFeatureVector RealAmplitudes LBFGS 0.78 0.75 0.33 0.60 0.83 0.58 0.77 0.83 0.97 0.81 1754 seconds
CircuitQNN RawFeatureVector RealAmplitudes LBFGS 0.50 0.48 0.30 0.63 0.24 0.32 0.66 0.72 0.59 0.41 548 seconds

4.6. Quantum Support Vector Classifier Results

Some of the confusion matrices and evaluation metrics for each of the case studies
using Quantum Support Vector Classifier are presented below.

4.6.1. C-MAPSS Aircraft Engine Simulator

4.6.1.1. FD001 Sensors Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

621 2445

676 6573

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

325 2205

365 3653

500

1000

1500

2000

2500

3000

3500

(b) Test split

Figure 4.6.1: Confussion Matrixes for Quantum SVC with ZFea-
tureMap applied to C-MAPSS FD001 with Sensors Features

84

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

269 2797

91 7158 2000

4000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

43 2487

54 3964 1000

2000

3000

(b) Test split

Figure 4.6.2: Confussion Matrixes for Quantum SVC with ZZFea-
tureMap applied to C-MAPSS FD001 with Sensors Features

Table 4.9 shows the model results applied for this dataset. The FeatureMap RawFea-
tureVector is not supported due to its unbound parameters.

Table 4.9: QVSC for C-MAPSS FD001 with Sensors Features Results
QSVC for C-MAPSS FD001 Sensors Features Dataset. Executed on Jupyter Notebook, Intel i7 2.20GHz, 8 GB RAM

Feature Map Accuracy Precision Recall Specificity NPV Training
Time

Testing
TimeTrain Test Train Test Train Test Train Test Train Test

ZFeatureMap 0.70 0.61 0.20 0.13 0.48 0.47 0.73 0.62 0.91 0.91 7 seconds 889 seconds
ZZFeatureMap 0.72 0.60 0.09 0.02 0.74 0.44 0.72 0.61 0.99 0.99 16 seconds 2043 seconds

4.7. Unused Quantum Scructures

The following table shows the features maps, ansatz and optimizers that could not
be implemented in the models and their respective reasons.

85

Table 4.10: Unused Structures

Structure Reason
Feature Maps

State
Preparation They don’t perform a proper data

coding because the large amount of data
used and the parameters of the maps.Pauli

FeatureMap
Ansatzs

Pauli Two Design Ansatz

Does not get good training
performances with the used

Feature Maps and the big amount
of used data.

Optimizers
ADAM

The loss function does not converge
at allowed training times

due the big dimensionality of the data

NFT
POWELL

Gradien Descent
Nelder Mead

LBFGSB Each training step took very
long times, so it’s not possible

to complete de training
AQGD

CG
GSLS No class prediction is achieved

when used. Too low accuracies
are obtained

TNC
UMDA

86

5 | Discussions

Before going deeper into the results, it is important to mention that the accuracy on
the test set is the most important result to analyze. This is the performance of the
model on data that it has not seen before and is a good indicator of the model’s ability
to generalize to new data. In addition, attention should also be paid to the training
time, which is important to consider the computational cost and resources needed to
train the model. The results per model are discussed below for an overall comparison.

5.1. Variational Quantum Classifier for MFPT Dataset

Initially, in this research, combinations of FeatureMaps, Ansatz and optimizers were
investigated in a Variational Quantum Classifier (VQC) of Qiskit with the objective
of classifying bearing faults in the MFPT dataset. In general, the VQC is a hybrid
algorithm that uses a combination of quantum and classical techniques to classify data
into two or more categories. The results obtained from this research are summarized
in Table 4.3.

Firstly, it can be observed that the choice of feature map, ansatz and optimizer
plays a critical role in determining the classification accuracy of the variational quantum
classifier. Secondly, it can be observed that the SPSA optimizer generally outperformed
the COBYLA and SLSQP optimizers in terms of classification accuracy. Thirdly, the
EfficientSU2 ansatz performed better than the RealAmplitudes ansatz across all feature
maps and optimizers in terms of classification train accuracy.

Regarding the choice of feature map, the results indicate that the ZZFeatureMap
performed slightly worse than the ZFeatureMap and RawFeatures in terms of test ac-
curacy. However, it is interesting to note that the ZZFeatureMap achieved the highest
training accuracy with the SPSA optimizer and the EfficientSU2 ansatz. This could
suggest that the ZZFeatureMap might be more effective in capturing complex interac-
tions between qubits, which could be useful for more challenging classification tasks.

In terms of the choice of ansatz, the EfficientSU2 ansatz had better train accuracies
than the RealAmplitudes ansatz in all cases. This is consistent with previous studies
that have shown that the EfficientSU2 ansatz is more expressive than the RealAmpli-
tudes ansatz and can better capture complex quantum correlations.

87

With respect to the choice of optimizer, the SPSA optimizer consistently outper-
formed the COBYLA and SLSQP optimizers in terms of classification accuracy. This
could be due to the fact that the SPSA optimizer is less sensitive to noise and can
better handle optimization in the presence of noise.

It is important to note that the training time varied significantly depending on the
choice of feature map, ansatz and optimizer. In general, the SLSQP optimizer had the
longest training time, followed by SPSA and COBYLA. However, the training time also
depended on the complexity of the feature map and ansatz. For example, using a same
optimizer, the ZZFeatureMap and EfficientSU2 ansatz had the longest training times.

Overall, the results suggest that the choice of feature map, ansatz and optimizer
can significantly impact the performance of the variational quantum classifier. The
RawFeatures feature map with EfficientSU2 ansatz and SPSA optimizer appear to be
the most effective choices for achieving high classification accuracy. However, it is im-
portant to consider the trade-off between accuracy and training time when selecting the
optimal combination of feature map, ansatz and optimizer for a particular classification
task.

5.2. Variational Quantum Classifier for CMAPSS
Statistics Features Dataset

Based on the results, it can be observed that the ZZFeatureMap combined with
EfficientSU2 and SPSA optimizer achieved the highest train accuracy of 0.83, while the
combination of ZFeatureMap with RealAmplitudes and COBYLA optimizer yielded the
lowest train accuracy of 0.73. On the other hand, also the combination of ZZFeatureMap
with EfficientSU2 and SPSA optimizer achieved the highest test accuracy of 0.77, while
the combination of ZFeatureMap with RealAmplitudes and SLSQP optimizer yielded
the lowest test accuracy of 0.60.

It is worth noting that the highest train accuracy does not necessarily guarantee the
highest test accuracy. For instance, the combination of RawFeatures with RealAmpli-
tudes and COBYLA optimizer achieved a high train accuracy of 0.78 but a relatively
low test accuracy of 0.61. This observation indicates the importance of evaluating both
the train and test accuracy of a model when selecting the best combination of feature
maps, ansatz, and optimizer.

Furthermore, the combination of EfficientSU2 ansatz with SPSA optimizer achieved
higher accuracy results in most cases, including train accuracy, test accuracy, train
recall, test recall, train specificity, test specificity, and train negative predictive value
(NPV). This combination appears to be more effective in optimizing the quantum circuit
parameters than the other combinations tested.

The choice of feature maps and ansatz also had an impact on the performance of the
classifier. For instance, the combination of ZZFeatureMap with RealAmplitudes and

88

COBYLA optimizer achieved a higher train precision of 0.70, while the combination
of ZFeatureMap with EfficientSU2 and COBYLA optimizer achieved a higher train
precision of 0.80. This indicates that different feature maps and ansatz may be more
suitable for different datasets and classification tasks.

It is also interesting to note that the training time varies significantly among the
combinations tested. For example, the combination of ZZFeatureMap with EfficientSU2
and SPSA optimizer took the longest training time of 3513 seconds, while the combina-
tion of ZFeatureMap with RealAmplitudes and COBYLA optimizer took the shortest
training time of 1035 seconds. Therefore, the choice of optimizer should not only be
based on accuracy but also on the computational resources available.

In conclusion, the choice of feature maps, ansatz, and optimizer can significantly
impact the performance of a variational quantum classifier. It is important to care-
fully evaluate the train and test accuracy, as well as other metrics such as precision,
recall, specificity, and NPV when selecting the best combination. The combination of
EfficientSU2 ansatz with SPSA optimizer appears to be more effective in optimizing
the quantum circuit parameters and achieving higher accuracy results in most cases.
However, different feature maps and ansatz may be more suitable for different datasets
and classification tasks. The training time should also be taken into consideration when
selecting the best combination.

5.3. Variational Quantum Classifier for CMAPSS
Sensors Features Dataset

The table 4.5 contains the results of several combinations of feature maps, ansatz,
and optimizers on a NASA CMAPSS dataset using a Variational Quantum Classifier
of Qiskit. The dataset contains health state information, and the performance of the
models was evaluated based on train and test accuracy, precision, recall, specificity, and
negative predictive value. Additionally, the training time for each combination was also
recorded.

One of the first observations from the results is that the ZZFeatureMap and ZFea-
tureMap feature maps have similar performance in terms of accuracy and other metrics.
However, the use of EfficientSU2 ansatz generally results in similar performance than
RealAmplitudes ansatz. This trend is consistent across all feature maps and optimiz-
ers. For instance, using the ZFeatureMap feature map with the EfficientSU2 ansatz
and SLSQP optimizer resulted in a train accuracy of 0.70 and a test accuracy of 0.61,
while using RealAmplitudes ansatz with the same feature map and optimizer resulted
in a test accuracy of 0.61.

In general, COBYLA optimizer performed worse than SLSQP and SPSA optimizers.
The use of SPSA optimizer consistently yielded the highest test accuracy for all fea-
ture maps and ansatz. For example, when using the ZZFeatureMap feature map with
EfficientSU2 ansatz and SPSA optimizer, a train accuracy of 0.76 and test accuracy of

89

0.71 were obtained.

The results also showed that the RawFeatureVector feature map performed worse
than the ZZFeatureMap and ZFeatureMap feature maps, regardless of the ansatz and
optimizer used. However, the performance of the RawFeatureVector feature map can
be improved by using the EfficientSU2 ansatz. For instance, when using the RawFea-
tureVector feature map with EfficientSU2 ansatz and SPSA optimizer, a train accuracy
of 0.75 and test accuracy of 0.69 were obtained.

In terms of the performance metrics, the models generally performed better in terms
of recall and specificity, compared to precision and negative predictive value. For exam-
ple, when using the ZFeatureMap feature map with EfficientSU2 ansatz and COBYLA
optimizer, a train precision of 0.01 and test precision of 0.00 were obtained, while train
recall of 0.33 and test recall of 0.22 were obtained.

Finally, the training time varied significantly across the combinations, with some
combinations taking significantly longer than others. For instance, using the ZZFea-
tureMap feature map with EfficientSU2 ansatz and SLSQP optimizer took 283392 sec-
onds to train, while using the RawFeatureVector feature map with RealAmplitudes
ansatz and COBYLA optimizer took only 40453 seconds. Therefore, the choice of
feature map, ansatz, and optimizer should also consider the computational resources
available.

5.4. Quantum Neural Network Classifier for CMAPSS
Statistics Features Dataset

Based on the results, the models using the EfficientSU2 ansatz perform better than
those using the RealAmplitudes ansatz, regardless of the feature map used. Specif-
ically, the ZZFeatureMap and ZFeatureMap with EfficientSU2 both achieved higher
accuracy, precision, recall, specificity, and negative predictive value compared to their
counterparts using RealAmplitudes.

For instance, the ZZFeatureMap with EfficientSU2 achieved a train accuracy of
0.67, while the same feature map with RealAmplitudes only achieved 0.65. Similarly,
the ZFeatureMap with EfficientSU2 had a higher test accuracy (0.68) than the same
feature map with RealAmplitudes (0.64). These results suggest that the EfficientSU2
ansatz is more suitable for the given dataset.

In terms of feature maps, the models using the RawFeatureVector feature map per-
formed worse compared to those using the ZZFeatureMap or ZFeatureMap, regardless
of the ansatz used. For example, the RawFeatureVector with RealAmplitudes achieved
the lowest test accuracy among all the models (0.57). Meanwhile, the ZZFeatureMap
with EfficientSU2 achieved the highest test accuracy (0.63). This suggests that the
RawFeatureVector feature map might not be well-suited for the given dataset, and a
more sophisticated feature map might be required to improve the model’s performance.

90

Regarding the optimizers, we can’t infer a clear trend from the provided results. The
models using the same feature map and ansatz combination with different optimizers
achieved similar results. For instance, the ZZFeatureMap with EfficientSU2 achieved
similar test accuracy regardless of whether it used the default optimizer or the SPSA
optimizer. This indicates that the choice of optimizer might not significantly impact
the model’s performance on the given dataset.

In terms of individual performance metrics, we can observe that the models achieved
high specificity and negative predictive value, indicating a low false positive rate and low
false negative rate, respectively. For example, the ZZFeatureMap with RealAmplitudes
achieved a high test specificity (0.73) and test negative predictive value (0.79). However,
the models’ precision and recall were generally lower, indicating that the models might
have difficulty correctly identifying all instances of the minority class in the dataset.

Overall, the results suggest that the use of a more sophisticated feature map and Ef-
ficientSU2 ansatz can improve the model’s performance on the given dataset. However,
the performance of the model might still be limited by the choice of features avail-
able in the dataset. Therefore, exploring more advanced feature engineering techniques
might be necessary to improve the model’s performance further. Additionally, we note
that the models’ training times are relatively low, indicating that quantum neural net-
works might be a viable alternative to classical machine learning models for this type
of dataset.

5.5. Quantum Neural Network Classifier for CMAPSS
Sensors Features Dataset

Based on the obtained results, the ZZFeatureMap and ZFeatureMap feature maps
with RealAmplitudes and EfficientSU2 ansatzs have very similar performances in terms
of test accuracy, precision, recall, specificity, and NPV. However, the ZZFeatureMap
with RealAmplitudes has a slightly higher train accuracy and train precision compared
to the ZFeatureMap with RealAmplitudes. This may suggest that the ZZFeatureMap
is more effective in capturing the underlying relationships in the dataset, leading to a
better fitting of the model to the training data. Nonetheless, the difference in perfor-
mance between the two feature maps is minimal, and thus the choice between them may
come down to other factors such as computational efficiency or personal preference.

On the other hand, the RawFeatureVector feature map does not perform as well
on the test datasets as the ZZFeatureMap and ZFeatureMap feature maps. This may
suggest that the quantum neural network is not able to effectively capture the relevant
features from the dataset in their raw form, and that the additional structure provided
by the feature maps is necessary for the model to perform well.

Regarding the choice of ansatz, we can observe that the EfficientSU2 ansatz con-
sistently outperforms the RealAmplitudes ansatz in terms of test accuracy and other
metrics, except for train precision in the case of ZZFeatureMap. This may suggest that

91

the EfficientSU2 ansatz is better at capturing the underlying relationships between the
features in the dataset, leading to better generalization to unseen data. However, we
cannot conclude with certainty that the EfficientSU2 ansatz is always better than the
RealAmplitudes ansatz, as the choice of ansatz may also depend on the specific dataset
and task.

Finally, it is worth noting that the training times for the different combinations of
feature maps and ansatzs vary considerably. The RawFeatureVector with EfficientSU2
combination took the longest time to train, whereas the ZZFeatureMap with Effi-
cientSU2 combination took the shortest time. However, the training time alone should
not be the sole criterion for selecting the best combination, as other factors such as
accuracy, precision, recall, specificity, and NPV should also be taken into account.

In summary, based on the results provided, we can conclude that the ZZFeatureMap
and ZFeatureMap feature maps with EfficientSU2 ansatzs are the most effective com-
binations for this task. However, the choice between the two feature maps may depend
on other factors such as computational efficiency or personal preference. Addition-
ally, it is important to note that training time can vary considerably between different
combinations of feature maps and ansatz.

5.6. Quantum Neural Network with Pytorch Clas-
sifier for CMAPSS Sensors Features Dataset

Based on the obtained results, we can see that OpflowQNN with ZZFeatureMap and
RealAmplitudes Ansatz performed better than other models with the highest test accu-
racy of 0.76. This indicates that using the OpflowQNN model with the ZZFeatureMap
and RealAmplitudes Ansatz can provide good results for health state classification in
the CMAPSS dataset.

However, it is interesting to note that CircuitQNN models did not perform as well
as OpflowQNN models. For instance, CircuitQNN with ZZFeatureMap and RealAm-
plitudes Ansatz had a test accuracy of only 0.45, which is significantly lower than the
best-performing model.

Another interesting observation is that using the RawFeatureVector as Feature Map
instead of ZZFeatureMap or ZFeatureMap did not significantly improve the performance
of the models. The OpflowQNN and CircuitQNN models with RawFeatureVector Fea-
ture Map had a slightly lower test accuracy compared to models with ZZFeatureMap
or ZFeatureMap. This indicates that using the raw feature vector may not provide any
additional benefit in this context.

In terms of evaluation metrics, we can see that the models generally had higher
precision and specificity scores than recall and sensitivity scores. This suggests that
the models are better at correctly identifying negative instances (healthy states) than
positive instances (faulty states).

92

Finally, we can see that the training time varied significantly between models, with
OpflowQNN models generally taking longer to train than CircuitQNN models. For
instance, OpflowQNN with RawFeatureVector Feature Map, RealAmplitudes Ansatz,
and LBFGS optimizer had the longest training time of 1754 seconds, while CircuitQNN
with ZFeatureMap, RealAmplitudes Ansatz, and LBFGS optimizer had the shortest
training time of 467 seconds. This suggests that the OpflowQNN models may be more
computationally expensive and time-consuming to train than CircuitQNN models.

5.7. Quantum Support Vector Classifier for CMAPSS
Sensors Features Dataset

Based on the results, two different feature maps where tested: ZFeatureMap and
ZZFeatureMap with a Quantum Support Vector Classifier implemented in Qiskit. For
each feature map, the performance of the classifier has been evaluated on a health state
dataset from NASA’s CMAPSS. Specifically, the training and test accuracy, precision,
recall, specificity, and negative predictive value (NPV) has been evaluated, as well as
the training time.

Starting with the accuracy metric, both feature maps achieved similar training accu-
racies: 0.70 for ZFeatureMap and 0.72 for ZZFeatureMap. However, the test accuracy
was lower for both feature maps, with ZFeatureMap achieving 0.61 and ZZFeatureMap
achieving 0.60. This suggests that the model is overfitting to the training data and
not generalizing well to new data. Moving on to the precision metric, we see that
the results are quite low for both feature maps, with ZFeatureMap achieving 0.20 and
ZZFeatureMap achieving 0.09 on the training set. These values suggest that the classi-
fier is not doing a good job of identifying true positives, and is instead predicting more
false positives. The test precision values are even lower, with ZFeatureMap achieving
0.13 and ZZFeatureMap achieving 0.02. This further reinforces the overfitting problem
mentioned earlier.

The recall metric tells us how well the classifier is able to identify true positives out
of all positive instances. For both feature maps, the training recall values are higher
than the test recall values, which is consistent with overfitting. ZFeatureMap achieved a
training recall of 0.48 and a test recall of 0.47, while ZZFeatureMap achieved a training
recall of 0.74 and a test recall of 0.44. These results suggest that the classifier is not
doing well at identifying true positives in general, and is particularly poor at doing so
on new data.

The specificity metric tells us how well the classifier is able to identify true negatives
out of all negative instances. In general, we want high specificity values, as this indicates
that the classifier is doing a good job of correctly identifying negative instances. For
both feature maps, the training specificity values are higher than the test specificity
values. ZFeatureMap achieved a training specificity of 0.73 and a test specificity of
0.62, while ZZFeatureMap achieved a training specificity of 0.72 and a test specificity
of 0.61. These results indicate that the classifier is not doing a great job of identifying

93

true negatives, particularly on new data.

Finally, the negative predictive value (NPV) tells us how well the classifier is able
to correctly identify negative instances out of all instances it predicts as negative. For
both feature maps, the training NPV values are higher than the test NPV values. ZFea-
tureMap achieved a training NPV of 0.91 and a test NPV of 0.91, while ZZFeatureMap
achieved a training NPV of 0.99 and a test NPV of 0.99. These results suggest that the
classifier is better at identifying true negatives than true positives, which is consistent
with the low precision values discussed earlier.

In terms of training time, ZFeatureMap took only 7 seconds to train and 889 to
evaluate, while ZZFeatureMap took 16 seconds and 2043 to evaluate. However, it’s
worth noting that the training time can vary based on factors such as the size of the
dataset, the number of features, and the complexity of the feature map, so this difference
on evaluation time may not be solely due to the feature map used.

Overall, the results suggest that the classifier is not performing well on this dataset,
and is particularly struggling with identifying true positives, as evidenced by the low
precision values. The overfitting problem is also evident from the higher training per-
formance compared to the test performance, which suggests that the model is not
generalizing well to new data. The differences in performance between the two feature
maps are not very large, with ZZFeatureMap generally performing slightly worse than
ZFeatureMap on most metrics. However, ZZFeatureMap did achieve a higher training
recall, which suggests that it may be better at identifying true positives on the training
set.

It’s worth noting that the performance of the classifier may be improved by tuning
hyperparameters such as the regularization parameter and kernel type, or by using
a different feature map or preprocessing method. Additionally, it’s possible that the
dataset itself may not be well-suited to this type of classifier, or that more data is
needed to improve performance.

5.8. Classical Results vs Quantum Results

The first two classification models being compared are a classical support vector
classifier and a variational quantum classifier over MFPT dataset. The classical support
vector classifier achieves a train accuracy of 0.8 and a test accuracy of 0.74. It has a
very short training time of less than 0.02 seconds. On the other hand, the variational
quantum classifier has a train accuracy of 0.65 and a test accuracy of 0.59. It uses the
RawFeatures feature map, EfficientSU2 ansatz, and SPSA optimizer, which appear to
be the most effective choices for achieving high classification accuracy. However, the
model has a significantly longer training time of 19205 seconds. Another variant of the
model was trained at 5417 seconds, which is still significantly longer than the classical
support vector classifier.

Overall, the classical support vector classifier for MFPT dataset outperforms the

94

variational quantum classifier in terms of accuracy and training time. However, it’s
worth noting that the trade-off between accuracy and training time needs to be con-
sidered when selecting the optimal model for a particular classification task. If high
accuracy is a priority and training time is not a concern, then the variational quantum
classifier with the RawFeatures feature map, EfficientSU2 ansatz, and SPSA optimizer
could be a good choice, although it is still very deficient in comparison to the classic
model.

In the case of the CMAPSS dataset with the statistics features, the classical support
vector classifier achieved a train accuracy and test accuracy of 0.7, which is lower than
the variational quantum classifier’s accuracy of 0.83 for train accuracy and 0.77 for
test accuracy. Therefore, the variational quantum classifier outperforms the classical
support vector classifier in terms of accuracy. However, it is important to note that the
choice of feature map, ansatz, and optimizer significantly impacted the performance
of the variational quantum classifier, and it took significantly longer to train (3513
seconds) compared to the classical support vector classifier (less than 0.02 seconds).
The higher accuracy of the variational quantum classifier could be beneficial for certain
applications where accuracy is crucial, but the long training time could be a significant
drawback, particularly in time-sensitive applications. In contrast, the classical support
vector classifier’s short training time could be beneficial in applications where real-time
classification is required, despite its lower accuracy.

Continuing with the classification of the CMAPSS dataset with the statistics fea-
tures, there are the results of the QNN Classifier, which only reaches a test accuracy of
0.63, which makes it inferior to both classical SVC and VQC, however, it presents short
training times of less than 1000 seconds compared to the VQC times. Therefore, the
choice between the classifiers depends on the specific requirements of the application,
considering the trade-off between accuracy and training time, because on the other
hand, there are the results of the QNN Classifier using Torch connector from Pytorch,
which reaches train accuracies of 0.78 and test accuracies of 0.76, with training times
up to 1800 seconds depending on the Quantum Neural Network used.

Finally, based on the results from model trained with CMAPSS with Sensor Features
dataset, the classical support vector classifier has a train and test accuracy of 0.73, with
a training time lower than 4.2 seconds. The variational quantum classifier achieved a
higher train accuracy of 0.75 and the same test accuracy of 0.73. However, it took a
much longer time to train, at 228114 seconds, compared to the classical support vector
classifier. The quantum neural network classifier had lower train and test accuracies, at
0.68 and 0.60, respectively, but still took a significant amount of time to train at 63613
seconds. The quantum support vector classifier achieved a train accuracy of 0.72 and
a test accuracy of 0.60. It took a shorter time to train compared to the other quantum
models, at 2043 seconds, but there is a concern that the model may be overfitted since
its test accuracy is significantly lower than its train accuracy.

Overall, on this last dataset, the classical support vector classifier performed rea-
sonably well with a shorter training time, while the quantum models required much
longer training times but achieved comparable or slightly higher accuracies. The choice

95

of feature map, ansatz, and optimizer significantly impacted the performance of the
quantum models, indicating the importance of careful selection of these parameters for
achieving high classification accuracy.

96

6 | Conclusions

In conclusion, this research explored the possibilities of Quantum Machine Learning for
Predictive Maintenance, using various classification models and datasets. The objective
of the work was to compare classical and quantum machine learning algorithms and
evaluate their performance in terms of accuracy and training time.

Due to the limited availability of quantum hardware, all the quantum models were
executed on Qiskit simulators, as IBM Quantum labs only provides access to real quan-
tum hardware with limited qubits and memory. As a result, the large datasets used
in this research were not feasible to train on real hardware. It is worth noting that
the IBM Qiskit library is constantly changing, and it is necessary to be updating the
codes and models to test new capabilities of quantum machine learning before the work
becomes obsolete.

The analysis of the results revealed that classical computation is still a better option
for predictive maintenance due to the short training times and the high accuracies
obtained with few resources. However, the trade-off between accuracy and training time
needs to be considered when selecting the optimal model for a particular classification
task.

In general, the classical support vector classifier performed well with a shorter train-
ing time, while the quantum models required much longer training times but achieved
comparable or slightly higher accuracies. The choice of feature map, ansatz, and op-
timizer significantly impacted the performance of the quantum models, indicating the
importance of careful selection of these parameters for achieving high classification
accuracy.

Although the results obtained in this research are limited by the availability of quan-
tum resources, it is expected that on the next years the quantum resources with better
performance will be more accessible for researchers and better results will be achieved.
The field of predictive maintenance could benefit greatly from the development of quan-
tum machine learning algorithms that can accurately predict failures before they occur,
leading to significant cost savings and increased productivity taking advantage of the
physical nature that quantum computing offers, allowing to perform tasks in more
efficient and simultaneous ways thanks to the quantum principles on which it is based.

In summary, this research contributes to the ongoing exploration of quantum ma-

97

chine learning algorithms for predictive maintenance, and highlights the importance of
careful selection of parameters for achieving high accuracy in quantum classification
models.

98

7 | Proposed work

Generally speaking, to continue the current work on quantum machine learning models,
different combinations of architectures for the models used should be further explored.

First, it is important to continue experimenting with different Featuremaps to trans-
form the input data into quantum state vectors. As in classical machine learning, the
way the model receives the data can be crucial for good classification results. Therefore,
it is necessary to be aware of new options to implement them and compare their results.

Another important aspect to consider is the Ansatz used in quantum machine learn-
ing models. As we have seen, the ansatz, together with the featuremap, is the set of
quantum operations performed on the qubits to process the information. It is essential
to find an Ansatz that is complex enough to process all the necessary information, but
at the same time simple to implement. The search for a suitable Ansatz is an opti-
mization problem that can be solved using machine learning or quantum optimization
techniques.

It is also essential to test different and new classical or quantum optimizers to find
the one that best suits the classification task at hand. Remembering that optimizers are
algorithms that seek to minimize a cost function, which is the measure of the difference
between the results obtained and the expected results, it is important to compare and
evaluate different optimizers to find the one that generates the best results.

To further improve the research path, it is necessary to run quantum machine learn-
ing models on real quantum hardware, as these become increasingly available with more
and more qubits to use, rather than using simulators. Simulators are a useful tool for
testing models, but they are not fully representative of reality as real quantum devices
have limitations, such as read and write errors, decoherence and noise. It is necessary
to adapt the models to these limitations to obtain results that are more accurate and
representative of reality.

In addition, it is important to keep in mind that quantum technology is constantly
evolving. Quantum programming libraries, such as Qiskit, are continually being up-
dated and improved. It is critical to keep up with changes and updates to ensure that
the code is always current and optimized for the latest technologies. This is especially
important for quantum machine learning models, as the complexity of the algorithms
and hardware architecture can change rapidly, rendering those used in the present work

99

obsolete. It is also important to implement other quantum programming development
libraries such as Pennylane or TensorflowQuantum.

In summary, further research in quantum machine learning models involves continu-
ing to experiment with different featuremaps, ansatz and optimizers, as well as running
the models on real quantum hardware rather than on simulators and using other li-
braries for even more comparisons. It is also essential to keep up to date with the latest
technologies and updates in the field of quantum computing.

100

Bibliography

[1] M. Alloghani, D. Al-Jumeily Obe, J. Mustafina, A. Hussain, and A. Aljaaf, A
Systematic Review on Supervised and Unsupervised Machine Learning Algorithms
for Data Science. Springer, 2020.

[2] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics: Con-
ference Series, vol. 1168, feb 2019.

[3] F. Zickert, Hands-On Quantum Machine Learning With Python: Volume 1: Get
Started. Independently published, 2021.

[4] D. Zwillinger and S. Kokoska, CRC Standard Probability and Statistics Tables and
Formulae. Chapman Hall, 2000.

[5] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal component
analyzers,” Neural computation, vol. 11, no. 2, pp. 443–482, 1999.

[6] B. e. a. Schölkopf, Kernel Methods in Computational Biology. The MIT Press,
2004.

[7] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,”
vol. 2, may 2011.

[8] G. S. Martín and E. L. Droguett, “Quantum machine learning for health state
diagnosis and prognostics,” 2021.

[9] R. Shankar, Principles of Quantum Mechanics, pp. 115–122. New York: Plenum
Press, 1994.

[10] IBM Quantum Composer. https://quantum-computing.ibm.com/, 2021.
[11] G. Aleksandrowicz et al., “Qiskit: An open-source framework for quantum com-

puting,” 2021.
[12] D. A. B. Miller, Quantum Mechanics for Scientists and Engineers, pp. 426–435.

California: Stanford University, 2008.
[13] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow,

and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,”
Nature, vol. 567, pp. 209–212, mar 2019.

[14] R. Xia and S. Kais, “Hybrid quantum-classical neural network for calculating
ground state energies of molecules,” Entropy, vol. 22, p. 828, jul 2020.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,

101

2017.
[16] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal estimated sub-

gradient solver for svm,” in Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, (New York, NY, USA), p. 807–814, Association for
Computing Machinery, 2007.

[17] MFPT, Condition Based Maintenance Fault Database for Testing of Diagnostic
and Prognostics Algorithms. https://www.mfpt.org/fault-data-sets/.

[18] NASA, C-MAPSS Aircraft Engine Simulator Data.
https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data/xaut-
bemq.

102

ANNEXES

Annex A | Datasets Features Plots

In this Annex, the graphs of the statistical features calculated in the preprocessing of
the datasets of each case study are shown.

A.1. MFPT Features plots

0 100 200 300 400 500 600 700

Sample

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

M
ea

n

Train Split Mean
Healthy

Outer Race

Inner Race

(a) Train Split Mean

0 25 50 75 100 125 150 175

Sample

−0.6

−0.4

−0.2

0.0

0.2

0.4

M
ea

n

Test Split Mean
Healthy

Outer Race

Inner Race

(b) Test Split Mean

Figure A.1.1: MFPT Dataset Mean Plot

0 100 200 300 400 500 600 700

Sample

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
ar

ia
n

ce

Train Split Variance
Healthy

Outer Race

Inner Race

(a) Train Split Variance

0 25 50 75 100 125 150 175

Sample

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
ar

ia
n

ce

Test Split Variance
Healthy

Outer Race

Inner Race

(b) Test Split Variance

Figure A.1.2: MFPT Dataset Variance Plot

103

0 100 200 300 400 500 600 700

Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S

Train Split RMS
Healthy

Outer Race

Inner Race

(a) Train Split RMS

0 25 50 75 100 125 150 175

Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S

Test Split RMS
Healthy

Outer Race

Inner Race

(b) Test Split RMS

Figure A.1.3: MFPT Dataset RMS Plot

0 100 200 300 400 500 600 700

Sample

0

5

10

15

20

25

P
ea

k

Train Split Peak
Healthy

Outer Race

Inner Race

(a) Train Split Peak

0 25 50 75 100 125 150 175

Sample

5

10

15

20

25

P
ea

k

Test Split Peak
Healthy

Outer Race

Inner Race

(b) Test Split Peak

Figure A.1.4: MFPT Dataset Peak Plot

0 100 200 300 400 500 600 700

Sample

−30

−25

−20

−15

−10

−5

0

V
al

le
y

Train Split Valley

Healthy

Outer Race

Inner Race

(a) Train Split Valley

0 25 50 75 100 125 150 175

Sample

−20

−15

−10

−5

V
al

le
y

Test Split Valley

Healthy

Outer Race

Inner Race

(b) Test Split Valley

Figure A.5: MFPT Dataset Valley Plot

104

0 100 200 300 400 500 600 700

Sample

10

20

30

40

P
ea

k
to

P
ea

k

Train Split Peak to Peak
Healthy

Outer Race

Inner Race

(a) Train Split Peak to Peak

0 25 50 75 100 125 150 175

Sample

10

20

30

40

50

P
ea

k
to

P
ea

k

Test Split Peak to Peak
Healthy

Outer Race

Inner Race

(b) Test Split Peak to Peak

Figure A.6: MFPT Dataset Peak to Peak Plot

0 100 200 300 400 500 600 700

Sample

1

2

3

4

5

6

7

C
re

st
F

ac
to

r

Train Split Crest Factor
Healthy

Outer Race

Inner Race

(a) Train Split Crest Factor

0 25 50 75 100 125 150 175

Sample

2

3

4

5

6

7

8

C
re

st
F

ac
to

r

Test Split Crest Factor
Healthy

Outer Race

Inner Race

(b) Test Split Crest Factor

Figure A.7: MFPT Dataset Crest Factor Plot

0 100 200 300 400 500 600 700

Sample

0

10

20

30

40

K
u

rt
os

is

Train Split Kurtosis
Healthy

Outer Race

Inner Race

(a) Train Split Kurtosis

0 25 50 75 100 125 150 175

Sample

0

5

10

15

20

25

30

35

K
u

rt
os

is

Test Split Kurtosis
Healthy

Outer Race

Inner Race

(b) Test Split Kurtosis

Figure A.8: MFPT Dataset Kurtosis Plot

105

0 100 200 300 400 500 600 700

Sample

−6

−4

−2

0

2

4

S
ke

w
n

es
s

Train Split Skewness
Healthy

Outer Race

Inner Race

(a) Train Split Skewness

0 25 50 75 100 125 150 175

Sample

−4

−2

0

2

4

S
ke

w
n

es
s

Test Split Skewness
Healthy

Outer Race

Inner Race

(b) Test Split Peak to Skewness

Figure A.9: MFPT Dataset Skewness Plot

A.2. C-MAPSS FD001 Features plots

0 20 40 60 80 100

Sample

642.4

642.5

642.6

642.7

642.8

642.9

643.0

M
ea

n

LPC Outlet Temperature Mean, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

642.0

642.2

642.4

642.6

642.8

M
ea

n
LPC Outlet Temperature Mean, Test Split

Degraded

Healthy

(b) Test Split

Figure A.2.1: C-MAPSS FD001 Dataset LPC Outlet Temperature
Mean Plot

0 20 40 60 80 100

Sample

0.40

0.45

0.50

0.55

S
T

D

LPC Outlet Temperature STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.20

0.25

0.30

0.35

0.40

0.45

S
T

D

LPC Outlet Temperature STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.2: C-MAPSS FD001 Dataset LPC Outlet Temperature
Standard Deviation Plot

106

0 20 40 60 80 100

Sample

1588

1589

1590

1591

1592

1593

1594

M
ea

n

HPC Outlet Temperature Mean, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

1584

1586

1588

1590

1592

M
ea

n

HPC Outlet Temperature Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.3: C-MAPSS FD001 Dataset HPC Outlet Temperature
Mean Plot

0 20 40 60 80 100

Sample

4.5

5.0

5.5

6.0

6.5

7.0

S
T

D

HPC Outlet Temperature STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

3.5

4.0

4.5

5.0

5.5

S
T

D

HPC Outlet Temperature STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.4: C-MAPSS FD001 Dataset HPC Outlet Temperature
Standard Deviation Plot

0 20 40 60 80 100

Sample

1404

1406

1408

1410

1412

1414

1416

M
ea

n

LPT Outlet Temperature Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

1397.5

1400.0

1402.5

1405.0

1407.5

1410.0

1412.5

M
ea

n

LPT Outlet Temperature Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.5: C-MAPSS FD001 Dataset LPT Outlet Temperature
Mean Plot

107

0 20 40 60 80 100

Sample

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

S
T

D

LPT Outlet Temperature STD, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

3

4

5

6

7

8

9

S
T

D

LPT Outlet Temperature STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.6: C-MAPSS FD001 Dataset LPT Outlet Temperature
Standard Deviation Plot

0 20 40 60 80 100

Sample

0.0002

0.0004

0.0006

0.0008

0.0010

M
ea

n

+2.1609× 101Bypass Duct Pressure Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.00800

0.00825

0.00850

0.00875

0.00900

0.00925

0.00950

0.00975

0.01000

M
ea

n

+2.16× 101Bypass Duct Pressure Mean, Test Split

Degraded

Healthy

(b) Test Split

Figure A.2.7: C-MAPSS FD001 Dataset Bypass Duct Pressure Mean
Plot

0 20 40 60 80 100

Sample

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

S
T

D

Bypass Duct Pressure STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

S
T

D

Bypass Duct Pressure STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.8: C-MAPSS FD001 Dataset Bypass Duct Pressure Stan-
dard Deviation Plot

108

0 20 40 60 80 100

Sample

552.6

552.8

553.0

553.2

553.4

553.6

553.8

554.0

M
ea

n

HPC Outlet Pressure Mean, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

552.75

553.00

553.25

553.50

553.75

554.00

554.25

554.50

M
ea

n

HPC Outlet Pressure Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.9: C-MAPSS FD001 Dataset HPC Outlet Pressure Mean
Plot

0 20 40 60 80 100

Sample

0.6

0.7

0.8

0.9

1.0

S
T

D

HPC Outlet Pressure STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
T

D

HPC Outlet Pressure STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.10: C-MAPSS FD001 Dataset HPC Outlet Pressure Stan-
dard Deviation Plot

0 20 40 60 80 100

Sample

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ea

n

+2.388× 103Corrected Fan Speed Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ea

n

+2.388× 103Corrected Fan Speed Mean, Test Split

Degraded

Healthy

(b) Test Split

Figure A.2.11: C-MAPSS FD001 Dataset Corrected Fan Speed Mean
Plot

109

0 20 40 60 80 100

Sample

0.03

0.04

0.05

0.06

0.07

0.08

0.09

S
T

D

Corrected Fan Speed STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.03

0.04

0.05

0.06

0.07

0.08

S
T

D

Corrected Fan Speed STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.12: C-MAPSS FD001 Dataset Corrected Fan Speed Stan-
dard Deviation Plot

0 20 40 60 80 100

Sample

8.42

8.43

8.44

8.45

8.46

8.47

M
ea

n

Bypass Ratio Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

8.39

8.40

8.41

8.42

8.43

8.44

8.45

8.46

M
ea

n

Bypass Ratio Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.13: C-MAPSS FD001 Dataset Bypass Ratio Mean Plot

0 20 40 60 80 100

Sample

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

S
T

D

Bypass Ratio STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

S
T

D

Bypass Ratio STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.14: C-MAPSS FD001 Dataset Bypass Ratio Standard De-
viation Plot

110

0 20 40 60 80 100

Sample

392.50

392.75

393.00

393.25

393.50

393.75

394.00

394.25

M
ea

n

Bleed Enthalpy Mean, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

391.5

392.0

392.5

393.0

393.5

M
ea

n

Bleed Enthalpy Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.15: C-MAPSS FD001 Dataset Bleed Enthalpy Mean Plot

0 20 40 60 80 100

Sample

1.2

1.3

1.4

1.5

1.6

1.7

S
T

D

Bleed Enthalpy STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
T

D

Bleed Enthalpy STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.16: C-MAPSS FD001 Dataset Bleed Enthalpy Standard
Deviation Plot

0 20 40 60 80 100

Sample

38.70

38.75

38.80

38.85

38.90

M
ea

n

HPT Coolant Bleed Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

38.75

38.80

38.85

38.90

38.95

39.00

39.05

M
ea

n

HPT Coolant Bleed Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.17: C-MAPSS FD001 Dataset HPT Coolant Bleed Mean
Plot

111

0 20 40 60 80 100

Sample

0.14

0.15

0.16

0.17

0.18

0.19

0.20

S
T

D

HPT Coolant Bleed STD, Train Split
Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.10

0.12

0.14

0.16

0.18

S
T

D

HPT Coolant Bleed STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.18: C-MAPSS FD001 Dataset HPT Coolant Bleed Stan-
dard Deviation Plot

0 20 40 60 80 100

Sample

23.22

23.24

23.26

23.28

23.30

23.32

23.34

23.36

M
ea

n

LPT Coolant Bleed Mean, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

23.250

23.275

23.300

23.325

23.350

23.375

23.400

23.425

23.450

M
ea

n

LPT Coolant Bleed Mean, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.19: C-MAPSS FD001 Dataset HPT Coolant Bleed Mean
Plot

0 20 40 60 80 100

Sample

0.08

0.09

0.10

0.11

0.12

S
T

D

LPT Coolant Bleed STD, Train Split

Degraded

Healthy

(a) Train Split

0 20 40 60 80 100

Sample

0.04

0.05

0.06

0.07

0.08

0.09

0.10

S
T

D

LPT Coolant Bleed STD, Test Split
Degraded

Healthy

(b) Test Split

Figure A.2.20: C-MAPSS FD001 Dataset HPT Coolant Bleed Stan-
dard Deviation Plot

112

Annex B | Models Confusion Matri-
ces

In this Annex, the confusion matrices of all the models evaluated with the datasets of
each case study are shown.

B.1. Variational Quantum Classifier
B.1.1. MFPT Fault Dataset

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

209 34 0

110 118 15

57 97 89

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

54 2 4

40 12 8

23 20 17 10

20

30

40

50

(b) Test split

Figure B.1.1: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and COBYLA applied to MFPT

113

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

205 38 0

107 132 4

66 116 61

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

20 38 2

9 50 1

13 34 13 10

20

30

40

50

(b) Test split

Figure B.1.2: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and COBYLA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

222 21 0

85 126 32

83 82 78

0

50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

55 4 1

25 20 15

26 16 18 10

20

30

40

50

(b) Test split

Figure B.1.3: Confussion Matrixes for VQC with RawFeatures, Effi-
cientSU2 and COBYLA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

203 20 20

70 123 21

99 91 82 50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

44 3 13

30 22 8

31 10 19 10

20

30

40

(b) Test split

Figure B.1.4: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and COBYLA applied to MFPT

114

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

218 10 15

90 99 51

81 81 84 50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

30 10 19

9 42 9

32 12 13

10

15

20

25

30

35

40

(b) Test split

Figure B.1.5: Confussion Matrixes for VQC with RawFeatures, Re-
alAmplitudes and COBYLA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

203 19 21

74 119 21

95 91 86 50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

29 15 16

18 39 3

31 12 14 10

20

30

(b) Test split

Figure B.1.6: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and SLSQP applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

210 18 15

86 103 51

85 73 88 50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

45 6 11

21 26 13

22 10 29
10

20

30

40

(b) Test split

Figure B.1.7: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and SLSQP applied to MFPT

115

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

227 10 6

74 119 21

99 71 101 50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

23 11 19

3 48 9

32 10 11 10

20

30

40

(b) Test split

Figure B.1.8: Confussion Matrixes for VQC with RawFeatures, Re-
alAmplitudes and SLSQP applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

223 19 1

74 119 21

95 71 106
50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

29 20 11

20 37 3

38 7 15

5

10

15

20

25

30

35

(b) Test split

Figure B.1.9: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and SLSQP applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

214 20 9

59 157 1

99 60 113
50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

19 11 30

4 54 2

27 9 24 10

20

30

40

50

(b) Test split

Figure B.1.10: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and SPSA applied to MFPT

116

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

202 20 21

47 169 1

89 70 113
50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

27 11 22

2 58 2

43 3 14 10

20

30

40

50

(b) Test split

Figure B.1.11: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and SPSA applied to MFPT

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

214 25 4

59 157 1

109 60 103
50

100

150

200

(a) Train split

Healthy Outer
Race

Inner
Race

Predicted label

Healthy

Outer
Race

Inner
Race

T
ru

e
la

b
el

55 6 1

21 35 4

22 19 20 10

20

30

40

50

(b) Test split

Figure B.1.12: Confussion Matrixes for VQC with RawFeatures, Ef-
ficientSU2 and SPSA applied to MFPT

B.1.1.1. FD001 Statistics Features

Predicted label

T
ru

e
la

b
el

15 15

11 59
20

30

40

50

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

12 18

17 53
20

30

40

50

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure B.1.13: Confussion Matrixes for VQC with ZZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Statistics
Features

117

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

21 9

15 55

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

17 13

19 51
20

30

40

50

(b) Test split

Figure B.1.14: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and COBYLA applied to C-MAPSS FD001 with Statis-
tics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

19 51

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

13 17

17 53
20

30

40

50

(b) Test split

Figure B.1.15: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Statistics
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

20 50

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

13 17

21 49
20

30

40

(b) Test split

Figure B.1.16: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and COBYLA applied to C-MAPSS FD001 with Statis-
tics Features

118

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

21 9

15 55

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

15 55

10

20

30

40

50

(b) Test split

Figure B.1.17: Confussion Matrixes for VQC with RawFeatureVector,
EfficientSU2 and COBYLA applied to C-MAPSS FD001 with Statis-
tics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

29 1

21 49
10

20

30

40

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

19 51

10

20

30

40

50

(b) Test split

Figure B.1.18: Confussion Matrixes for VQC with RawFeatureVec-
tor, RealAmplitudes and COBYLA applied to C-MAPSS FD001 with
Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

19 51

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

19 51

10

20

30

40

50

(b) Test split

Figure B.1.19: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and SLSQP applied to C-MAPSS FD001 with Statistics
Features

119

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

20 10

16 54

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

15 55

10

20

30

40

50

(b) Test split

Figure B.1.20: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and SLSQP applied to C-MAPSS FD001 with Statistics
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

27 3

18 52

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

19 51

10

20

30

40

50

(b) Test split

Figure B.1.21: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and SLSQP applied to C-MAPSS FD001 with Statistics
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

19 51

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

5 25

15 55

10

20

30

40

50

(b) Test split

Figure B.1.22: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and SLSQP applied to C-MAPSS FD001 with Statistics
Features

120

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

21 9

15 55

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

22 48

10

20

30

40

(b) Test split

Figure B.1.23: Confussion Matrixes for VQC with RawFeatureVector,
EfficientSU2 and SLSQP applied to C-MAPSS FD001 with Statistics
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

19 51

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

22 48

10

20

30

40

(b) Test split

Figure B.1.24: Confussion Matrixes for VQC with RawFeatureVec-
tor, RealAmplitudes and SLSQP applied to C-MAPSS FD001 with
Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

29 1

16 54

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

26 4

19 51

10

20

30

40

50

(b) Test split

Figure B.1.25: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and SPSA applied to C-MAPSS FD001 with Statistics
Features

121

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

14 56

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

27 3

20 50

10

20

30

40

50

(b) Test split

Figure B.1.26: Confussion Matrixes for VQC with ZZFeatureMap,
RealAmplitudes and SPSA applied to C-MAPSS FD001 with Statis-
tics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

29 1

16 54

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

21 9

15 55

10

20

30

40

50

(b) Test split

Figure B.1.27: Confussion Matrixes for VQC with ZFeatureMap, Effi-
cientSU2 and SPSA applied to C-MAPSS FD001 with Statistics Fea-
tures

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

14 56

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

21 9

19 51

10

20

30

40

50

(b) Test split

Figure B.1.28: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and SPSA applied to C-MAPSS FD001 with Statistics
Features

122

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

12 58

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

24 6

19 51

10

20

30

40

50

(b) Test split

Figure B.1.29: Confussion Matrixes for VQC with RawFeatureVector,
EfficientSU2 and SPSA applied to C-MAPSS FD001 with Statistics
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

26 4

19 51

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

17 13

16 54

20

30

40

50

(b) Test split

Figure B.1.30: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and SPSA applied to C-MAPSS FD001 with Statis-
tics Features

123

B.1.1.2. FD001 Sensors Features

Predicted label

T
ru

e
la

b
el

769 2297

1004 6245

1000

2000

3000

4000

5000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

809 1724

895 3123

1000

1500

2000

2500

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure B.1.31: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and COBYLA applied to C-MAPSS FD001 with Sensor
Features

Predicted label

T
ru

e
la

b
el

493 2573

728 6521

1000

2000

3000

4000

5000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

1375 1158

1003 3012 1500

2000

2500

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure B.1.32: Confussion Matrixes for VQC with ZZFeatureMap, Re-
alAmplitudes and COBYLA applied to C-MAPSS FD001 with Sensor
Features

124

Predicted label

T
ru

e
la

b
el

28 3038

57 7192 2000

4000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

8 2525

29 3986 1000

2000

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure B.1.33: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and COBYLA applied to C-MAPSS FD001 with Sensor
Features

Predicted label

T
ru

e
la

b
el

8 3058

36 7213 2000

4000

6000

Degraded Nominal

Degraded

Nominal

(a) Train split
Predicted label

T
ru

e
la

b
el

4 2529

24 3991 1000

2000

3000

Degraded Nominal

Degraded

Nominal

(b) Test split

Figure B.1.34: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and COBYLA applied to C-MAPSS FD001 with Sensor
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1024 2042

1155 6094
2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1118 1415

1074 2944 1500

2000

2500

(b) Test split

Figure B.1.35: Confussion Matrixes for VQC with RawFeatureVector,
EfficientSU2 and COBYLA applied to C-MAPSS FD001 with Sensor
Features

125

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

613 2453

1054 6195

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

706 1827

924 3094

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.36: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and COBYLA applied to C-MAPSS FD001 with Sen-
sor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1227 1839

1255 5994

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

955 1578

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.37: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and SLSQP applied to C-MAPSS FD001 with Sensor
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1140 1925

1272 5977
2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1118 1415

1074 2944 1500

2000

2500

(b) Test split

Figure B.1.38: Confussion Matrixes for VQC with ZZFeatureMap,
RealAmplitudes and SLSQP applied to C-MAPSS FD001 with Sensor
Features

126

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1174 1892

1202 6047

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

955 1578

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.39: Confussion Matrixes for VQC with ZFeatureMap, Ef-
ficientSU2 and SLSQP applied to C-MAPSS FD001 with Sensor Fea-
tures

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1147 1919

1176 6073
2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

955 1578

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.40: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and SLSQP applied to C-MAPSS FD001 with Sensor
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

901 2165

1239 6010

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

793 1740

1077 2941

1000

1500

2000

2500

(b) Test split

Figure B.1.41: Confussion Matrixes for VQC with RawFeatureVector,
EfficientSU2 and SLSQP applied to C-MAPSS FD001 with Sensor
Features

127

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

597 2469

1038 6211

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

544 1989

1024 2994
1000

1500

2000

2500

(b) Test split

Figure B.1.42: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and SLSQP applied to C-MAPSS FD001 with Sensor
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

2123 943

1533 5716

1000

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1610 923

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.43: Confussion Matrixes for VQC with ZZFeatureMap,
EfficientSU2 and SPSA applied to C-MAPSS FD001 with Sensor Fea-
tures

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1665 1401

1385 5864

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1420 1112

853 3165

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.44: Confussion Matrixes for VQC with ZZFeatureMap,
RealAmplitudes and SPSA applied to C-MAPSS FD001 with Sensor
Features

128

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1994 1072

1507 5742
2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1610 923

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.45: Confussion Matrixes for VQC with ZFeatureMap, Effi-
cientSU2 and SPSA applied to C-MAPSS FD001 with Sensor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1665 1401

1385 5864

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

650 1882

803 3215

1000

1500

2000

2500

3000

(b) Test split

Figure B.1.46: Confussion Matrixes for VQC with ZFeatureMap, Re-
alAmplitudes and SPSA applied to C-MAPSS FD001 with Sensor
Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1994 1072

1507 5742
2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1656 877

1154 2864

1000

1500

2000

2500

(b) Test split

Figure B.1.47: Confussion Matrixes for VQC with RawFeatureVec-
tor, EfficientSU2 and SPSA applied to C-MAPSS FD001 with Sensor
Features

129

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1633 1433

1455 5794

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1445 1088

1074 2944 1500

2000

2500

(b) Test split

Figure B.1.48: Confussion Matrixes for VQC with RawFeatureVector,
RealAmplitudes and SPSA applied to C-MAPSS FD001 with Sensor
Features

B.2. Quantum Neural Network Classifier
B.2.0.1. FD001 Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

5 25

10 60

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

15 55

10

20

30

40

50

(b) Test split

Figure B.2.1: Confussion Matrixes for QNN with ZZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Statistics Features

130

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

5 25

11 59

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

6 24

14 56

10

20

30

40

50

(b) Test split

Figure B.2.2: Confussion Matrixes for QNN with ZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

18 12

21 49
20

30

40

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

19 11

26 44

15

20

25

30

35

40

(b) Test split

Figure B.2.3: Confussion Matrixes for QNN with ZZFeatureMap, Ef-
ficientSU2 to C-MAPSS FD001 with Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

17 13

19 51
20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

13 17

21 49
20

30

40

(b) Test split

Figure B.2.4: Confussion Matrixes for QNN with ZFeatureMap, Effi-
cientSU2 to C-MAPSS FD001 with Statistics Features

131

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

15 15

17 53

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

19 51

10

20

30

40

50

(b) Test split

Figure B.2.5: Confussion Matrixes for QNN with RawFeatureVector,
EfficientSU2 to C-MAPSS FD001 with Statistics Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

15 55

10

20

30

40

50

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

6 24

19 51

10

20

30

40

50

(b) Test split

Figure B.2.6: Confussion Matrixes for QNN with RawFeatureVector,
RealAmplitudes to C-MAPSS FD001 with Statistics Features

B.2.0.2. FD001 Sensors Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

288 2778

935 6314

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1526 1004

1550 2468

1250

1500

1750

2000

2250

(b) Test split

Figure B.2.7: Confussion Matrixes for QNN with ZZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Sensor Features

132

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

239 2827

900 6259

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1481 1049

1505 2513

1250

1500

1750

2000

2250

2500

(b) Test split

Figure B.2.8: Confussion Matrixes for QNN with ZFeatureMap, Re-
alAmplitudes to C-MAPSS FD001 with Sensor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

371 2695

1018 6231

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

1049 1480

1073 2945 1500

2000

2500

(b) Test split

Figure B.2.9: Confussion Matrixes for QNN with ZZFeatureMap, Ef-
ficientSU2 to C-MAPSS FD001 with Sensor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

169 2897

507 6742

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

789 1746

873 3145

1000

1500

2000

2500

3000

(b) Test split

Figure B.2.10: Confussion Matrixes for QNN with ZFeatureMap, Ef-
ficientSU2 to C-MAPSS FD001 with Sensor Features

133

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

869 2197

1104 6145

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

887 1643

977 3041

1000

1500

2000

2500

3000

(b) Test split

Figure B.2.11: Confussion Matrixes for QNN with RawFeatureVector,
EfficientSU2 to C-MAPSS FD001 with Sensor Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

639 2427

1390 5859

1000

2000

3000

4000

5000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

853 1677

1204 2814

1000

1500

2000

2500

(b) Test split

Figure B.2.12: Confussion Matrixes for QNN with RawFeatureVector,
RealAmplitudes to C-MAPSS FD001 with Sensor Features

134

B.3. Pytorch + Quantum Neural Network Classi-
fier

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

17 13

9 61

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

18 12

12 58
20

30

40

50

(b) Test split

Figure B.3.1: Confussion Matrixes for Pytorch + OpflowQNN with
ZZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to C-
MAPSS FD001 with Statistical Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

14 16

36 34

15

20

25

30

35

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

6 24

31 30

10

15

20

25

30

(b) Test split

Figure B.3.2: Confussion Matrixes for Pytorch + CircuitQNN with
ZZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to C-
MAPSS FD001 with Statistical Features

135

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

3 67

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

23 7

18 52

10

20

30

40

50

(b) Test split

Figure B.3.3: Confussion Matrixes for Pytorch + OpflowQNN with
ZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to C-
MAPSS FD001 with Statistical Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

11 19

32 38

15

20

25

30

35

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

33 37

10

15

20

25

30

35

(b) Test split

Figure B.3.4: Confussion Matrixes for Pytorch + CircuitQNN with
ZFeatureMap, RealAmplitudes and LBFGS Optimizer applied to C-
MAPSS FD001 with Statistical Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

10 20

2 68

10

20

30

40

50

60

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

18 12

13 57
20

30

40

50

(b) Test split

Figure B.3.5: Confussion Matrixes for Pytorch + OpflowQNN with
RawFeatureVector, RealAmplitudes and LBFGS Optimizer applied to
C-MAPSS FD001 with Statistical Features

136

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

9 21

29 41

10

15

20

25

30

35

40

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

19 11

41 29

15

20

25

30

35

40

(b) Test split

Figure B.3.6: Confussion Matrixes for Pytorch + CircuitQNN with
RawFeatureVector, RealAmplitudes and LBFGS Optimizer applied to
C-MAPSS FD001 with Statistical Features

B.4. Quantum Support Vector Classifier

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

621 2445

676 6573

1000

2000

3000

4000

5000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

325 2205

365 3653

500

1000

1500

2000

2500

3000

3500

(b) Test split

Figure B.4.1: Confussion Matrixes for Quantum SVC with ZFea-
tureMap applied to C-MAPSS FD001 with Sensors Features

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

269 2797

91 7158 2000

4000

6000

(a) Train split

Degraded Nominal

Predicted label

Degraded

Nominal

T
ru

e
la

b
el

43 2487

54 3964 1000

2000

3000

(b) Test split

Figure B.4.2: Confussion Matrixes for Quantum SVC with ZZFea-
tureMap applied to C-MAPSS FD001 with Sensors Features

137

Annex C | Codes

This annex shows the Python code structure of the models used, only one case per
model is shown. The rest of the codes, including the dataset processing, can be found
at GitHub.

C.1. Classical SVC

Code C.1: SVC Code Example.
1 from sklearn.svm import SVC
2 import time
3 #...
4 # Execute Model
5 svc = SVC()
6 start = time.time()
7 _ = svc.fit(X_train, Y_train)
8 elapsed = time.time() - start
9 train_score_c4 = svc.score(X_train, Y_train)

10 test_score_c4 = svc.score(X_test, Y_test)
11

12 print(f"Training time: {round(elapsed,3)} seconds")
13 print(f"Classical SVC on the training dataset: {train_score_c4:.2f}")
14 print(f"Classical SVC on the test dataset: {test_score_c4:.2f}")
15 #...

C.2. Variational Quantum Classifier

Code C.2: VQC Code Example.
1 import time
2 from qiskit_machine_learning.algorithms.classifiers import VQC
3 from qiskit.circuit.library import ZZFeatureMap, RealAmplitudes
4 from qiskit.algorithms.optimizers import COBYLA
5 from qiskit_aer import AerSimulator
6 from qiskit.utils import QuantumInstance
7 from matplotlib import pyplot as plt
8 from IPython.display import clear_output
9

10 #...

138

https://github.com/cistermack/PredictiveMaintenanceWithQML

11

12 # Defining Model Structures
13 num_features = X_train.shape[1]
14 feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1)
15 ansatz = RealAmplitudes(num_qubits=num_features, reps=3)
16 optimizer = COBYLA(maxiter=100)
17

18 objective_func_vals = []
19 plt.rcParams["figure.figsize"] = (12, 6)
20 def callback_graph(weights, obj_func_eval):
21 clear_output(wait=True)
22 objective_func_vals.append(obj_func_eval)
23 plt.title("Objective function value against iteration")
24 plt.xlabel("Iteration")
25 plt.ylabel("Objective function value")
26 plt.plot(range(len(objective_func_vals)), objective_func_vals)
27 plt.show()
28

29 # Initialize Simulator
30 quantum_instance = QuantumInstance(
31 AerSimulator(),
32 shots=1024,
33 seed_simulator=algorithm_globals.random_seed,
34 seed_transpiler=algorithm_globals.random_seed,
35)
36

37 # Initialize Model
38 vqc = VQC(
39 feature_map=feature_map,
40 ansatz=ansatz,
41 optimizer=optimizer,
42 quantum_instance=quantum_instance,
43 callback=callback_graph,
44)
45

46 # Start Training
47 objective_func_vals = []
48

49 start = time.time()
50 vqc.fit(X_train, Y_train)
51 elapsed = time.time() - start
52

53 print(f"Training time: {round(elapsed)} seconds")
54

55 # Evaluate Results
56 train_score_q4 = vqc.score(X_train, Y_train)
57 test_score_q4 = vqc.score(X_test, Y_test)
58

59 print(f"Quantum VQC on the training dataset: {train_score_q4:.2f}")
60 print(f"Quantum VQC on the test dataset: {test_score_q4:.2f}")
61

62 #...

139

C.3. Quantum Neural Network Classifier

Code C.3: QNNC Code Example.
1 import time
2 from qiskit_machine_learning.neural_networks import EstimatorQNN
3 from qiskit.circuit.library import ZZFeatureMap, RealAmplitudes
4 from qiskit_aer import AerSimulator
5 from qiskit.utils import QuantumInstance
6 from matplotlib import pyplot as plt
7 from IPython.display import clear_output
8

9 #...
10

11 # Defining Model Structures
12 num_features = X_train.shape[1]
13 qc = QuantumCircuit(num_features)
14 feature_map = ZZFeatureMap(feature_dimension=num_features)
15 ansatz = RealAmplitudes(num_qubits=num_features)
16

17 objective_func_vals = []
18 plt.rcParams["figure.figsize"] = (12, 6)
19 def callback_graph(weights, obj_func_eval):
20 clear_output(wait=True)
21 objective_func_vals.append(obj_func_eval)
22 plt.title("Objective function value against iteration")
23 plt.xlabel("Iteration")
24 plt.ylabel("Objective function value")
25 plt.plot(range(len(objective_func_vals)), objective_func_vals)
26 plt.show()
27

28 # Construct QNN
29

30 estimator_qnn = EstimatorQNN(
31 circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.

↪→ parameters
32)
33 estimator_qnn.forward(X_train[0, :], algorithm_globals.random.random(estimator_qnn

↪→ .num_weights))
34

35 # Construct Neural Network classifier
36 estimator_classifier = NeuralNetworkClassifier(
37 estimator_qnn, optimizer=COBYLA(maxiter=200), callback=callback_graph
38)
39

40

41 # Start Training
42 objective_func_vals = []
43

44 start = time.time()
45 estimator_classifier.fit(X_train, Y_train)

140

46 elapsed = time.time() - start
47

48 print(f"Training time: {round(elapsed)} seconds")
49

50 # Evaluate Results
51 train_score = estimator_classifier.score(X_train, Y_train)
52 test_score = estimator_classifier.score(X_test, Y_test)
53

54 print(f"QNNC on the training dataset: {train_score:.2f}")
55 print(f"NNC on the test dataset: {test_score:.2f}")
56

57 #...

C.4. Quantum Neural Network with Pytorch Clas-
sifier

Code C.4: QNN Pytorch Classifier Code Example.
1 import time
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from torch import Tensor
5 from torch.nn import Linear, CrossEntropyLoss, MSELoss
6 from torch.optim import LBFGS
7 from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN
8 from qiskit_machine_learning.connectors import TorchConnector
9 from matplotlib import pyplot as plt

10 from IPython.display import clear_output
11

12 #...
13

14 # Convert Data to torch Tensors
15 X_ = Tensor(X)
16 y01_ = Tensor(y01).reshape(len(y)).long()
17 y_ = Tensor(y).reshape(len(y), 1)
18 X_test_ = Tensor(X_test)
19 y01_test_ = Tensor(y01_test).reshape(len(y_test)).long()
20 y_test_ = Tensor(y_test).reshape(len(y_test), 1)
21

22 # Set up QNN
23 num_features = X_train.shape[1]
24 feature_map = ZZFeatureMap(feature_dimension=num_features)
25 ansatz = RealAmplitudes(num_qubits=num_features)
26 qnn = TwoLayerQNN(num_qubits=nnum_features, feature_map, ansatz,

↪→ quantum_instance=qi)
27

28 # Set up PyTorch module
29 initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn1.num_weights) - 1)
30 model1 = TorchConnector(qnn, initial_weights=initial_weights)
31

141

32 # Define optimizer and loss
33 optimizer = LBFGS(model1.parameters())
34 f_loss = MSELoss(reduction="sum")
35

36 # Start training
37 model1.train()
38

39 def closure():
40 optimizer.zero_grad()
41 loss = f_loss(model1(X_), y_)
42 loss.backward()
43 print(loss.item())
44 return loss
45

46 # Run optimizer
47 optimizer.step(closure)
48

49 # Evaluate model and compute accuracy
50 y_predict = []
51 for x, y_target in zip(X, y):
52 output = model1(Tensor(x))
53 y_predict += [np.sign(output.detach().numpy())[0]]
54

55 print("Accuracy:", sum(y_predict == y) / len(y))
56

57 #...

C.5. Quantum Support Vector Classifier

Code C.5: QSVC Code Example.
1 import numpy as np
2 from sklearn.model_selection import train_test_split
3 from sklearn.preprocessing import MinMaxScaler
4 from qiskit import BasicAer
5 from qiskit.circuit.library import ZFeatureMap
6 from qiskit.utils import algorithm_globals
7 from qiskit_machine_learning.kernels import FidelityQuantumKernel
8 from qiskit_machine_learning.algorithms import PegasosQSVC
9 import time

10

11 #...
12

13 train_features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(train_features
↪→)

14 test_features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(test_features)
15

16 # Define parameters
17 num_qubits = 4
18 tau = 100
19 C = 1000

142

20

21 # Set the Kernel from a FeatureMap
22 algorithm_globals.random_seed = 12345
23 feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1)
24 qkernel = FidelityQuantumKernel(feature_map=feature_map)
25

26 # Initialize Model
27 pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau)
28

29 # Training Model
30 start = time.time()
31 pegasos_qsvc.fit(train_features, train_labels)
32 elapsed = time.time() - start
33 print(f"Training time: {round(elapsed)} seconds")
34

35 # Evaluation
36 start = time.time()
37 pegasos_score = pegasos_qsvc.score(test_features, test_labels)
38 elapsed = time.time() - start
39

40 print(f"Testing time: {round(elapsed)} seconds")
41 print(f"PegasosQSVC classification test score: {pegasos_score}")
42

43 #...

143

	Resumen
	Abstract
	Acknowledgments
	Table of content
	List of Tables
	List of Figures

	1 Introduction
	1.1 Objectives
	1.2 Scopes

	2 Background
	2.1 Machine Learning General Concepts
	2.1.1 Supervised learning
	2.1.2 Unsupervised learning
	2.1.3 Overfitting
	2.1.4 Evaluation metrics
	2.1.5 Obtaining time parameters
	2.1.5.1 Time windows
	2.1.5.2 Overlap
	2.1.5.3 Temporal parameters

	2.1.6 Dimensionality reduction
	2.1.7 One hot encoding
	2.1.8 Support Vector Classifier
	2.1.9 Neural Networks

	2.2 Classical computing
	2.3 Quantum computing
	2.3.1 Background
	2.3.1.1 Quantum Bits
	2.3.1.2 Quantum superposition
	2.3.1.3 Observer effect
	2.3.1.4 Quantum interference
	2.3.1.5 Quantum entanglement
	2.3.1.6 Quantum Circuits
	2.3.1.7 Quantum Gates
	2.3.1.7.1. Bit Flip Pauli Gate (X-Gate)
	2.3.1.7.2. Hadamard Gate (H-Gate)
	2.3.1.7.3. Rotation Gates
	2.3.1.7.4. Unitary Gate (U-Gate)
	2.3.1.7.5. Phase (P-Gate)
	2.3.1.7.6. C-NOT Gate

	2.3.1.8 Qubits Measurements

	2.3.2 Quantum computers
	2.3.3 Simulators
	2.3.4 IBM Qiskit
	2.3.4.1 Backends

	2.4 Programming Resources
	2.5 Quantum Machine Learning
	2.5.1 General Concepts
	2.5.1.1 Features Maps
	2.5.1.2 Ansatz
	2.5.1.3 Optimizer
	2.5.1.4 Quantum Neural Network

	2.5.2 Models used
	2.5.2.1 Variatonal Quantum Classifier
	2.5.2.2 Quantum Neural Network Classifier
	2.5.2.3 Quantum Neural Network with Pytorch Classifier
	2.5.2.4 Quantum Support Vector Classifier

	2.6 Used cases of study
	2.6.1 MFPT
	2.6.2 C-MAPSS

	3 Methodology
	3.1 Selection of case studies and data exploration
	3.2 Initial data preparation
	3.2.1 Assembling datasets
	3.2.1.1 MFPT
	3.2.1.2 C-MAPSS
	3.2.1.3 Sensor selection

	3.3 Selection of used models
	3.4 Implement classical model to cases of study
	3.5 Implement quantum models to cases of study.
	3.5.1 Variational Quantum Classifier
	3.5.2 Quantum Neural Network Classifier
	3.5.3 Quantum Neural Network with Pytorch Classifier
	3.5.4 Quantum Support Vector Classifier

	4 Results
	4.1 Data processing results
	4.1.1 Dimensionality reduction

	4.2 Classical Support Vector Classifier Results
	4.2.1 MFPT Fault Dataset Manipulation
	4.2.2 C-MAPSS Aircraft Engine Simulator
	4.2.2.1 FD001 Statistics Features
	4.2.2.2 FD001 Sensors Features

	4.3 Variational Quantum Classifier Results
	4.3.1 MFPT Fault Dataset Manipulation
	4.3.2 C-MAPSS Aircraft Engine Simulator
	4.3.2.1 FD001 Statistics Features
	4.3.2.2 FD001 Sensors Features

	4.4 Quantum Neural Network Classifier Results
	4.4.1 C-MAPSS Aircraft Engine Simulator
	4.4.1.1 FD001 Statistics Features
	4.4.1.2 FD001 Sensors Features

	4.5 Quantum Neural Network with Pytorch Classifier Results
	4.5.1 C-MAPSS Aircraft Engine Simulator
	4.5.1.1 FD001 Statistics Features

	4.6 Quantum Support Vector Classifier Results
	4.6.1 C-MAPSS Aircraft Engine Simulator
	4.6.1.1 FD001 Sensors Features

	4.7 Unused Quantum Scructures

	5 Discussions
	5.1 Variational Quantum Classifier for MFPT Dataset
	5.2 Variational Quantum Classifier for CMAPSS Statistics Features Dataset
	5.3 Variational Quantum Classifier for CMAPSS Sensors Features Dataset
	5.4 Quantum Neural Network Classifier for CMAPSS Statistics Features Dataset
	5.5 Quantum Neural Network Classifier for CMAPSS Sensors Features Dataset
	5.6 Quantum Neural Network with Pytorch Classifier for CMAPSS Sensors Features Dataset
	5.7 Quantum Support Vector Classifier for CMAPSS Sensors Features Dataset
	5.8 Classical Results vs Quantum Results

	6 Conclusions
	7 Proposed work
	Bibliography
	Annexes
	Annex A Datasets Features Plots
	A.1 MFPT Features plots
	A.2 C-MAPSS FD001 Features plots

	Annex B Models Confusion Matrices
	B.1 Variational Quantum Classifier
	B.1.1 MFPT Fault Dataset
	B.1.1.1 FD001 Statistics Features
	B.1.1.2 FD001 Sensors Features

	B.2 Quantum Neural Network Classifier
	B.2.0.1 FD001 Statistics Features
	B.2.0.2 FD001 Sensors Features

	B.3 Pytorch + Quantum Neural Network Classifier
	B.4 Quantum Support Vector Classifier

	Annex C Codes
	C.1 Classical SVC
	C.2 Variational Quantum Classifier
	C.3 Quantum Neural Network Classifier
	C.4 Quantum Neural Network with Pytorch Classifier
	C.5 Quantum Support Vector Classifier

