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Abstract: In addition to their use in human medicine, antimicrobials are also used in food animals
and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use
of antimicrobials in aquaculture may involve a broad environmental application that affects a wide
variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins,
antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully
tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have
beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain,
without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible
alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture
in the animal protein production sector, as well as the present and future challenges generated
by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and
bacteriocins to address these challenges. In addition, we conducted data analysis using a simple
linear regression model to determine whether a linear relationship exists between probiotic dose
added to feed and three variables of interest selected, including specific growth rate, feed conversion
ratio, and lysozyme activity.

Keywords: probiotic; bacteriocin; antibiotic; aquaculture; biotechnology

1. Introduction

There has been a growing global demand for animal protein, with fish representing a
particularly important source. However, systematic and unbalanced human exploitation
has led to an 80% reduction of the wild fish populations in the oceans. In parallel, the strong
expansion of fish farming and aquaculture production has created a set of new challenges
far beyond those involving the growth of the sector and its food supply chains [1]. To
continue to grow, the aquaculture sector must focus on resolving difficulties through the
demarcation of new breeding areas, accessing highly nutritious feed, developing new
technologies and technical support, addressing logistic management limitations, and, very
importantly, optimizing the ability to predict, avoid, and contain infections and diseases [2].

Fish consumption has grown in recent decades. It is estimated that a 3.2% increase
occurred between 1961 and 2016, a figure that surpassed the corresponding rises in ter-
restrial animal protein production (2.8%). The estimated annual consumption per person
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has also increased significantly; for example, in 1961, average global consumption was
less than 9 kilograms (kg), but by 2015, it had increased to 20.2 kg, with an additional
growth from 20.3–20.5 kg estimated from 2016–2017 [3]. Most of production derived from
aquaculture is intended for human consumption. By 2030, aquaculture is expected to be
responsible for producing about 109 million tonnes for human consumption, compared
with a predicted 74 million tonnes from exploratory fishing [3], a level of growth that is
supported by low taxation levels [4,5]. However, many obstacles may hamper the predicted
growth of aquaculture. Of these, the failure to predict and contain infections, diseases, and
antibiotic resistance is the most perturbing [6].

As a strategy to minimize production losses due to infectious bacterial outbreaks, the
use of antibiotics has been widely employed in recent decades [7]. However, their use is
not sustainable and other options must be examined.

The objective of this review is to provide recent information relating to the importance
of aquaculture in the animal protein production sector and its global economic impacts
and growth prospects, as well as its present and future challenges generated by outbreaks
and antimicrobial resistance, while highlighting the potential merits of employing pro-
biotics and bacteriocins within this industry. Beneficial microorganisms (probiotics) and
bacteriocins are novel solutions that could help reduce the use of antibiotics in aquaculture.

2. Antibiotics and Fish Infection Control

Along with their therapeutic applications to treat and control the spread of bacterial
disease in juvenile and adult fish, antibiotics could be used as tools to avoid and prevent
future infections beginning from the first days of fish development, when used as growth
factors in feeding formulations [7]. This is sustained by farmers’ perception that the
continuous presence of small doses of antibiotics in the fish growth environment helps
to significantly reduce production costs. Due to the perception established between the
decreased proliferation of pathogenic microorganisms with lower production losses and
decreased time required to attain market weights, the abusive and unregulated use of these
important therapeutic agents has expanded worldwide [7,8]

This is particularly worrying since, according to data reported by the World Health
Organization (WHO) [9], a significant proportion of these antibiotics are also used as es-
sential therapeutic agents for the treatment of bacterial diseases in humans. Therefore,
the uncontrolled application of these antibiotics in animal protein production presents
an enormous risk to human health [10]. Antibiotics can kill beneficial microorganisms,
cause disturbances in the microbiota [11], affect nutrition and immunity [12], and their use
can lead to the selection of resistant bacteria and the zoonotic transmission of resistance
genes to the human microbiota [13]. Due to concerns relating to the global emergence of
antibiotic resistance, global authorities and several developed countries, such as Canada,
Japan, the United States, and members of the European Union, have implemented strict
rules on the use of antibiotics in fish breeding [14]. Restrictions were officially approved,
selecting a limited and smaller group of antibiotics that can be used in fish breeding, such
as erythromycin, amoxicillin, florfenicol, oxytetracycline, oxolinic acid, flumequine, and
combinations of sulphonamides [15]. Notably, a number of these antibiotics are considered
essential for disease control in humans [9]. Even more importantly, these restrictions may
have little impact globally as the majority of fish production is located in countries that
have not adopted similar laws to regulate the use of antibiotics in animals. Thus, one can
have extremes whereby, for example, Chile uses approximately 900 g of antibiotics for each
tonne of fish while Norway uses only 0.17 g [14,16]. Furthermore, in Brazil, one of the
top 25 aquaculture producers, many producers have increased the size of their produc-
tion areas without following international standards of good environmental management
practices. As a result, negative environmental effects and antibiotic-contaminated fish are
common [17].

Ultimately, the continued extensive use of antibiotics by some countries is not sus-
tainable, and as the number of bacterial disease outbreaks associated with the artificial
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environmental conditions of aquaculture increases and restrictive antibiotic use poli-
cies are implemented at an international level, new infectious control and prevention
protocols are needed [7]. These new protocols are required to control the most com-
mon cause of fish diseases, i.e., bacterial infections. These include infections caused by
Aeromonas salmonicida [15], Vibrio anguillarum [18], Streptococcus agalactiae [19], Flexibacter
columnaris [20], Aeromonas hydrophila [21], Aeromonas caviae [22], Pseudomonas aeruginosa [23],
Enterococcus spp. [24], Francisella noatunensis [25], and Flavobacterium psychrophilum [26].

Naturally, producers of non-antibiotic antimicrobials have received great attention as
an alternative to the use of antibiotics [27]. In particular, probiotic microorganisms have
been increasingly investigated as a means of improving fish defenses, especially as they
are considered safe and are also frequently producers of antimicrobial peptides, such as
bacteriocins [7].

3. Probiotic Use in Aquaculture

Probiotics are defined as live microorganisms that, when administered in adequate
amounts, have the ability to confer health benefits on their host [28]. However, there is no
consensus as to the value of applying probiotics to aquaculture. According to Wang et al.
(2019), the way these animals relate to and are influenced by the environment is different
from other animals, and so strains specifically tailored for aquaculture use need to be
evaluated. Verschuere et al. (2000) proposed a new concept when defining probiotics for
aquacultural use. Their concept differs from the standard definition of probiotics in that it
suggests that probiotics for aquaculture use must have a beneficial action on both the host
microbiota and the environment where the fish is located, optimizing the effect of food,
animal health, and weight gain [29]. It is also important to note that chemical and physical
factors, such as water quality (level of oxygen and carbon dioxide, temperature, pH, and
presence of organic matter), fish density, or physical injury during handling, can lead to
physiological reactions that culminate in the development of disease [30]. Furthermore,
environmental changes or stress exposure can negatively affect fish development via im-
munosuppression. Thus, probiotic administration may also be targeted towards providing
a protective response against these external stimuli [1].

Water and other living organisms might spread microorganisms from the gut micro-
biota of fish and probiotics. After reaching the host’s intestinal mucosa, these microorgan-
isms perform vital functions. Several anatomical structures of aquatic animals are sites for
the growth of microorganisms, such as the skin, gills, and especially the gastrointestinal
tract [1,31]. Feces and intestinal mucus of fish are the main sources of microorganisms with
probiotic potential. After isolation, these microorganisms are tested and can be used as a
supplement in the feeding of aquatic animals [32]. The larval stage of growth is optimal
with respect to probiotic use in aquaculture, and the consequences of early colonization of
these microorganisms can be amplified throughout a fish’s life stages [33,34].

The probiotic microorganisms used in aquaculture have included specific strains of
yeasts, algae, and especially bacteria, including representatives of Bacillus sp., Lactococcus sp.,
Micrococcus sp., Carnobacterium sp., Enterococcus sp., Lactobacillus sp., Streptococcus, and
Weissella sp. [35]. Bacteria belonging to the group of LAB are considered GRAS, i.e.,
generally reported as safe [36] and can produce natural compounds with antimicrobial
potential and also stimulate the immune system; thus, most probiotic studies are conducted
with strains of LAB [37].

The use of probiotic microorganisms in experiments with aquatic animals has achieved
promising results (Table 1), and feed supplementation effectiveness can be optimized if
different approaches for the use of probiotics are tested (Figure 1) [38], including the use
of mixtures of probiotics where complementary effects can be obtained. Supplementation
with prebiotics, which are nondigestible food components that benefit colonization by
providing nutrients and protection to probiotic and other desirable strains, or synbiotics,
which are combinations of probiotics and prebiotics in the same product, can also have
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value [38–40]. Finally, postbiotics, which are the products of probiotic growth, including
bacteriocins, can also have a key role [41].

Microorganisms 2022, 10, x FOR PEER REVIEW 4 of 21 
 

 

potential and also stimulate the immune system; thus, most probiotic studies are 
conducted with strains of LAB [37]. 

The use of probiotic microorganisms in experiments with aquatic animals has 
achieved promising results (Table 1), and feed supplementation effectiveness can be 
optimized if different approaches for the use of probiotics are tested (Figure 1) [38], 
including the use of mixtures of probiotics where complementary effects can be obtained. 
Supplementation with prebiotics, which are nondigestible food components that benefit 
colonization by providing nutrients and protection to probiotic and other desirable 
strains, or synbiotics, which are combinations of probiotics and prebiotics in the same 
product, can also have value [38–40]. Finally, postbiotics, which are the products of 
probiotic growth, including bacteriocins, can also have a key role [41]. 

 
Figure 1. Probiotics development processes for feed and techniques to improve probiotic 
supplementation effects. (A) The different stages before probiotic bacteria use in aquaculture. From 
a sample, tests to identify genus and species are performed. Then, tests with and without the use of 
living organisms evaluate its properties and use as a food additive in animal feed. (B) In order to 
optimize aquaculture production processes, different techniques have been used. Probiotic 
microorganisms are those that confer benefits to the host; prebiotics are nondigestible food 
components that benefit the colonization of certain bacteria, such as probiotics; synbiotics are the 
combination of probiotics and prebiotics in the same product; mixtures of probiotics are prepared 
from the combination of more than one probiotic microorganism to potentiate their action; and 
postbiotics, dead probiotics or byproducts, are commonly associated with safety [38–40,42]. 

Table 1. Overview of probiotic effects on fish health or against aquaculture pathogenic bacteria. 

Aquatic Specie Probiotic 
Pathogen or 
Challenge Clinical Impact Reference 

Oreochromis niloticus Mixture of LAB Trichodina sp. 
Improved growth rate and antiparasitic 

activity 
[43] 

Cyprinus carpio Pediococcus pentosaceus Aeromonas hydrophila 

Probiotic increases digestive enzyme 
activity; enhancement of growth rate and 

immune response; resistance against 
bacterial infection 

[44] 

Litopenaeus vannamei 

Mix of commercial 
probiotics (e.g., 

Bacillus spp., 
Lactobacillus spp., 

Saccharomyces spp.) 

Not evaluated 
The probiotics did not change water 
quality or growth parameters when 

compared with control group 
[45] 

Salmonids Vibrio alginolyticus 
A. salmonicida,  
V. anguillariim,  

V. ordalii  
Pathogen inhibition [46] 

Salmo salar Tetraselmis suecica 
A. salmonicida, 
S. liquefaciens,  
V. anguillariim,  

Suppress pathogen growth [47] 

Figure 1. Probiotics development processes for feed and techniques to improve probiotic supplemen-
tation effects. (A) The different stages before probiotic bacteria use in aquaculture. From a sample,
tests to identify genus and species are performed. Then, tests with and without the use of living
organisms evaluate its properties and use as a food additive in animal feed. (B) In order to optimize
aquaculture production processes, different techniques have been used. Probiotic microorganisms
are those that confer benefits to the host; prebiotics are nondigestible food components that benefit
the colonization of certain bacteria, such as probiotics; synbiotics are the combination of probiotics
and prebiotics in the same product; mixtures of probiotics are prepared from the combination of
more than one probiotic microorganism to potentiate their action; and postbiotics, dead probiotics or
byproducts, are commonly associated with safety [38–40,42].

Table 1. Overview of probiotic effects on fish health or against aquaculture pathogenic bacteria.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Oreochromis niloticus Mixture of LAB Trichodina sp. Improved growth rate and
antiparasitic activity [43]

Cyprinus carpio Pediococcus pentosaceus Aeromonas hydrophila

Probiotic increases digestive
enzyme activity;

enhancement of growth rate
and immune response;

resistance against
bacterial infection

[44]

Litopenaeus vannamei

Mix of commercial
probiotics (e.g.,

Bacillus spp.,
Lactobacillus spp.,

Saccharomyces spp.)

Not evaluated

The probiotics did not
change water quality or

growth parameters when
compared with control group

[45]

Salmonids Vibrio alginolyticus
A. salmonicida,
V. anguillariim,

V. ordalii
Pathogen inhibition [46]

Salmo salar Tetraselmis suecica

A. salmonicida,
S. liquefaciens,
V. anguillariim,
V. salmonicida,

Y. ruckeri

Suppress pathogen growth [47]

Salmo tutta Lactococcus lactis,
Leuconostoc mesenteroides Aeromonas salmonicida Higher survival rate [48]
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Table 1. Cont.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Mystus cavasius Saccharomyces cerevisiae Pseudomonas fluorescens
Better weight gain, low

mortality; resistance against
tested pathogen

[49,50]

Labeo rohita

Probiotic mixture
(Bacillus subtilis,

Pediococcus acidilactici,
yeast Saccharomyces

cerevisiae) and symbiotics
(Bifidobacterium,

Lactobacilli, Saccharomyces
cerevisiae, microalgae
Spirulina sp., phytase)

Not evaluated

Better survival and growth
rate; probiotic action is best if
administered to developing

fish in their first days

[50]

Litopenaeus vannamei Bacillus subtilis Not evaluated

Significant secretion of
hepatopancreatic

metabolites; expression of
genes linked to

antioxidant enzymes

[51]

Oreochromis niloticus Aspergillus oryzae Aeromonas hydrophila Improvement of immune
response and growth rate [52]

Oreochromis niloticus Lactobacillus plantarum
L-137

Exposition to
deltamethrin toxicity Reduction of the toxicity [52]

Pagrus major Pediococcus pentosaceus Not evaluated

Increased weight gain,
mucus secretion, growth rate,

bacterial resistance, and
blood parameters

[53]

Pagrus major Lactobacillus plantarum Not evaluated Immunostimulant property
(innate defenses) [54]

Pagrus major Lactobacillus rhamnosus
and Lactococcus lactis Not evaluated

Better growth, feed
utilization, serum lysozyme
activity, bactericidal property,

and lower triglycerides
and cholesterol

[55]

Oreochromis niloticus Bacillus subtilis and
Bacillus licheniformis Not evaluated

Enhanced immunological
parameters (hematocrit, total
leukocytes count, monocytes,

and globulin), improved
growth and feed utilization

[56]

Oreochromis niloticus

Lactobacillus sp.,
Bacillus sp.,

Bifidobacterium sp.
(probiotic mixture)

Not evaluated Antimicrobial activity, better
growth rate [57]

Oreochromis niloticus Lactobacillus plantarum Enterococcus faecalis

Modulation of gut
microbiota, immune

response, and resistance
against pathogenic bacteria

[58]

Atlantic salmon Candida utilis Chlorella vulgaris Counteracts intestinal
inflammation [59]

Salmon salar Lactic acid bacteria Aeromonas salmonicida Higher mortality [60]

Gadus morhua
(Atlantic cod), Carnobacterium divergens V. anguillarum Disease resistance [61]
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Table 1. Cont.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Cyprinus carpio Pseudomonas aeruginosa Aeromonas hydrophila

Antioxidant and immune
action; better infection

control with
probiotic treatment

[62]

Oreochromis
mossambicus

Bacillus licheniformis
Dahb1 (105 and 107) Aeromonas hydrophilain

Weight and specific growth
rate improvement; high

mucosal activity of enzymes;
resistance to the infection

[63]

Pangasius
hypophthalmus Bacillus licheniformis Vibrio parahaemolyticus

Increased immune,
antioxidant and growth
parameters; protected

against infection

[64]

Ctenopharynodon idellus Bacillus subtilis

Aeromonas hydrophila,
Aeromonas punctata,
Edwardsiella ictaluri,
Aeromonas punctate,
Vibrio flurialis and

Streptococcus agalactiae

Inhibitory activity against all
pathogenic bacteria tested [65]

Cyprinus carpio Paenibacillus polymyxa Aeromonas hydrophila

Improved survival rate and
immune response; disease

resistance against pathogenic
bacteria tested

[66]

Litopenaeus vannamei

Bacillus subtilis,
Bacillus pumilus,

Bacillus tequilensis,
Enterococcus faecalis

Not evaluated
Significant difference in

growth rate, weight gain,
and survival

[67]

Acipenser baerii

Lactobacillus spp.
Bacillus subtilis,

Bifidobacterium bifidum
(probiotics mixture)

Not evaluated Immunity and
growth improvement [68]

Oreochromis niloticus Bacillus licheniformis Streptococcus iniae Better survival rate [69]

Heteropnuestes fossilis Bacillus subtilis
Aeromonas

hydrophila and
Aphanomyces invadans

Bacterial treatment leads to a
health improvement; fungi

treatment does not
[70]

Oncorhynchus mykiss Lactobacillus rhamnosus Yersinia ruckeri

Improved growth rate,
immune response, and

antioxidant activity;
pathogen inhibition

[71]

Litopenaeus vannamei

Lactobacillus
plantarum and

galactooligosaccharide
(symbiotic)

Vibrio harveyi and
Photobacterium damselae

Improvement in growth and
health parameters; infection
control; significant changes

in intestinal microbiota
of shrimp

[72]

Salmonids Carnobacterium Inhibens
K1

Vibrio anguillarum,
Aeromonas salmonicida Suppress pathogen growth [73]

Oreochromis niloticus
and Cyprinus carpio

Lactococcus lactis
subsp. lactis,

Lactobacillus plantarum,
Lactobacillus brevi

Vibrio sp.,
Staphylococcus sp.,

Pseudomonas aeruginosa,
Salmonella enterica,

Listeria monocytogenes

Antimicrobial action [74]
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Table 1. Cont.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Cyclopterus lumpus Aliivibrio sp. Moritella viscosa
(contamination)

Resistance against infection
caused by M. viscosa; low

incidence of mortality
and ulcers

[75]

Oreochromis niloticus
Bacillus velezensis,

Bacillus subtilis,
Bacillus amyloliquefaciens

Aeromonas hydrophila
Improvement of

immune response;
antimicrobial activity

[76]

Paralichthys olivaceus Bacillus sp. and
β-glucan (symbiotic) Edwardsiella tarda

Strain has significant
antimicrobial activity;

symbiotic effect improved
growth performance;

resistance against
tested pathogen

(antibiotic replacement)

[77]

Apostichopus japonicus Metschnikowia sp. Not evaluated
High activity of lysozyme,
total nitric oxide synthase,

trypsin, and phenoloxidase
[78]

Lates calcarifer

Lactobacillus casei,
Lactobacillus plantarum,
Lactobacillus pentosus,

Lactobacillus fermentum,
Enterococcus faecium,
Bacillus subtilis, and

Saccharomyces cerevisiae

Aeromonas hydrophila
The probiotic mixture

improved growth and health
status of Asian Seabass

[79]

Oplegnathus fasciatus Bacillus subtilis E20 Vibrio alginolyticus
Better growth rate and

immune response;
pathogen resistance

[80]

Salmon salar Pediococcus acidilactici IPN virus Antiviral response [81]

Pangasius bocourti Bacillus aerius B81 Aeromonas hydrophila,
Streptococcus agalactiae

Antimicrobial effect against
tested pathogens, high

immune response
[82]

Oreochromis niloticus Lactobacillus plantarum Environmental
challenges

High mucosal
immune response [83]

Oncorhynchus mykiss Lactobacillus acidophilus Lactococcus garvieae

Better growth rate, digestive
enzyme production,

resistance against
tested pathogen

[84]

Cyprinus carpio

Lactobacillus casei,
β-glucan and mannan

oligosaccharide
(symbiotic)

Aeromonas hydrophila

Symbiotic improves the
digestibility; elevation in

important enzymes (lipase,
amylase, trypsin, and

protease); low mortality

[85]

Haliotis midae Vibrio midae Not evaluated
Increase in growth
performance and

survival rate
[86]

Labeo rohita Bacillus sp. Aeromonas hydrophila
Improved hematological

serum an
immunological parameter

[87]

Oncorhynchus mykiss Gordonia bronchialis Not evaluated Enhanced
growth performance [88]
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Table 1. Cont.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Penaeus indicus Bacillus subtilis

Bacillus sp.,
Pseudomonas sp.,

Vibrio sp.,
Micrococcus sp.

High bacteriocin production;
diet with bacteriocin

enhances shrimp growth;
antibiotic potentials (well

diffusion method)

[89]

Salmon salar Carnobacterium divergens Aeromonas salmonicida,
Vibrio anguillarum

Prevent
pathogen-induced damage [90]

Salmon salar Methylococcus capsulatus Not evaluated No inflammation with
soybean meal [91]

Oncorhynchus mykiss Enterococcus casseliflavus Streptococcus iniae

Elevated digestive enzyme
activity, humoral immunity
(IgM), total serum protein,
and albumin production

[92]

Salmon salar Lactobacillus delbruckii Aeromonas salmonicida Prevent pathogen damage [93]

Oreochromis niloticus Bacillus sp.

Aeromonas hydrophila,
Micrococcus luteus,

Pseudomonas fuorescence,
Enterococcus faecalis,

and Streptococcus
agalactiae

Probiotic potential
(resistance to adverse

stomach condition,
production of

important enzymes)

[94]

Etroplus suratensis and
Oreochromis
Mossambicus

Bacillus sp.,
Micrococcus sp. Not evaluated Better growth performance

and nutritional efficiency [95]

Danio rerio Bacillus subtilis
(transgenic probiotic) Not evaluated

The transgenic probiotic
(phytase) can improve

fish nutrition
[96]

Dicentrarchus labrax Vibrio lentus Not evaluated

Immunomodulation and
activation of genes

associated to
cell proliferation

[97]

Oreochromis niloticus Bacillus amyloliquefaciens Yersinia ruckeri,
Clostridium perfringens

Improved immune status
(IL-1 and TNF-α mRNA) and

disease resistance
[98]

Litopenaeus vannamei Enterococcus faecium and
Lactobacillus pentosus

Vibrio harveyi, Vibrio
parahaemolyticus

High antibacterial activity
and survival rate; improved
humoral immune response

[99]

Oncorhynchus mykiss Lactobacillus plantarum Yersinia ruckeri

High activity of lysozyme
and alkaline phosphatase; no

interference in the
production of

immunological proteins

[100]

Oreochromis niloticus Enterococcus faecium Aeromonas hydrophila Better growth rate and
immune defenses [101]

Oreochromis niloticus Bacillus sp. Streptococcosis
(Streptococcus agalactiae)

Controlled the
Streptococcosis caused by
pathogenic bacteria tested

[102]

Rutilus caspicus Enterococcus faecium Aeromonas hydrophila,
Yersinia ruckeri

Better growth rate, immune
response, and

pathogen resistance
[103]
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Table 1. Cont.

Aquatic Specie Probiotic Pathogen
or Challenge Clinical Impact Reference

Ictalurus punctatus Bacillus velezensis Not evaluated
Induction of growth in

fingerling and water
quality improvement

[104]

Litopenaeus vannamei Bacillus subtilis Not evaluated Better growth performance
and feed utilization [105]

Carassius auratus Enterococcus faecium Aeromonas hydrophila

High survival rate as a result
of E. faecium probiotic
proprieties; quorum

sense potential

[106]

Atlantic salmon Pediococcus acidilactici Improvements in the
gut health [107]

Oncorhynchus mykiss

Lactobacillus fermentum,
Lactobacillus buchneri,

Saccharomyces cerevisiae
(probiotics mixture)

Not evaluated Immunity improvement [108]

Danio rerio Pseudomonas aeruginosa Vibrio parahaemolyticus

Reduced mortality, inhibited
biofilm, high level of

phagocytic cells, superoxide
dismutase activity, and

lysozyme

[109]

Oreochromis niloticus Bacillus cereus,
Alcaligenes faecalis

Environmental
challenges

High production of immune
proteins and decrease

of phosphorus
water concentration

[110]

Ctenopharyngodon
idellus

Shewanella xiamenensis
and Aeromonas veronii Aeromonas hydrophila

Enhancement of phagocytic,
lysozyme activity, and

expression of immune genes
[111]

Rhamdia quelen Lactococcus lactis Aeromonas hydrophila,
Streptococcus agalactiae

Antimicrobial activity
against tested pathogens [112]

Carassius auratus Bacillus velezensis Aeromonas hydrophila Improved survival rate and
immune response [113]

Nile tilapia Probiotic mixture Aluminum exposition
Probiotics regulated gut

microbiota structure
and function

[114]

Oreochromis niloticus Lactobacillus plantarum Aluminum intoxication

Enhanced feed utilization
and growth; decreased

deaths caused by aluminum
and its accumulation

[115]

Ctenopharyngodon
idellus Bacillus paralicheniformis Not evaluated High adhesion and

colonization capacity [116]

4. Mode of Action and Benefits of Probiotic

Among the studies that have demonstrated the benefits of probiotic use, different
mechanisms of action have been noted, differing by species specificities and environmental
conditions that the microorganism encounters [37,117]. Probiotics have been shown to be
able to decrease lactose intolerance and infant diarrhea in humans, and many promising
studies have shown that they can stimulate the immune system and prevent numerous
diseases, including mucosal inflammation, obesity, diabetes, heart and neurological dis-
eases, and certain types of cancer. In this current review, the focus will be placed on the
prevention of pathogenic microorganisms in aquacultural settings. Beneficial strains can
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function by blocking pathogenic microorganisms due to competition for space on host cell
surfaces (Figure 2) [118]. Probiotic use in feed improves the health of aquatic animals and
no negative effects have been observed after consumption [14]. Strains of Lactobacillus are
commonly recommended for aquaculture, and dietary supplementation results in better
enzyme activity, immune response, development, weight gain, and even water quality
improvement [32,119]. The stimulation of digestive enzyme production, such as amylase,
protease, lipase, and lysozyme, can be an important consequence of probiotic use [118]. In
healthy animals, these enzymes are intrinsically associated with improved digestibility,
nutritional intake, and weight gain [120]. Improving the digestibility of certain compounds
may reduce blood lipid rates and even address problems arising from the intolerance to
certain compounds [32].
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Figure 2. Probiotics and bacteriocins mode of action. Probiotics beneficial effects come from several
mechanisms. They secrete digestive enzymes that contribute to macronutrients breakdown, increasing
absorption by the host. They can act by blocking pathogens due to competition for space and nutrients,
by stimulating the immune system (without the presence of disease) and via the production of
antimicrobial substances (such as lactic acid and bacteriocins). Bacteriocins mode of action may vary
according to their characteristics. They can lead to death via pore formation, preventing the action of
peptidoglycan transporters and, consequently, cell wall synthesis, and via damage to genetic material
and protein synthesis. Probiotics, bacteriocins, and the host nutritional improvement contribute to
pathogens elimination and diseases control [121,122].

The benefits of probiotics in aquaculture extend beyond animal health and can also be
used to improve water quality. The accelerated fish production process creates a stressful
environment favorable to pathogenic microorganisms and diseases. However, probiotic use
in fish farm systems can modify the aquatic environment and, by reducing the populations
of undesirable microorganisms, reduce the chances of disease development [123].

In this review, we conducted data analysis using a simple linear regression model
(GraphPad Prism version 9.0, GraphPad Software, San Diego, CA, USA) to determine
whether a linear relationship between probiotic dose added to feed and three variables of
interest selected, including specific growth rate (SGR; 38 studies), feed conversion ratio
(FCR; 32 studies), and lysozyme activity (8 studies), exists. For analysis purposes, we have
only taken into account the presence or absence of probiotics without considering the type
of probiotic as well as whether they were used as single or multiprobiotic treatment.

Probiotic dose added to feed was transformed to log10 for graphic representation
purposes. Data analysis revealed no significant correlation (p = 0.085) between probiotic
dose in feed and SGR in fish (R2 = 0.0182; Figure 3). However, we detected a significant



Microorganisms 2022, 10, 1705 11 of 22

correlation (p = 0.014; p = 0.017) between probiotic dose in feed and FCR as well as lysozyme
activity (R2 = 0.048; R2 = 0.163, respectively; Figures 4 and 5) in fish. These results suggest
adding probiotics to the diet improves the utilization efficiency of feed in fish and thus
contributes to improving the economy and well-being of fish farming. This is especially
true since feed is considered to be the highest cost in aquaculture facilities, particularly in
intensive culture systems where feed costs represent close to 50% of the variable production
cost [124].
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The improvement in fish feed utilization could be a consequence of probiotic microbes
contributing directly or indirectly, via induced changes in gut microbiota composition, to
metabolize undigested nutrients via microbial enzyme activity. However, an enhancement
of nutrient absorption surface/capacity due to a stimulatory effect of probiotic microbes on
gut epithelium development and gut health might contribute to this outcome as well. For
example, short chain fatty acids (SCF) derived from probiotic metabolism influence epithe-
lial cell metabolism, helping with busting diverse energy-demanding cellular processes
in enterocytes, such as producing mucin and tight junction enterocyte proteins, which
contribute to the integrity of the intestinal barrier [125].

For its part, our analysis revealed that SGR was not affected by adding probiotics to
the diet of fish. A possible explanation of this lack of significance is due to the exponential
function of SGR, showing some imprecision when determining fish growth efficiency using
either long-term data or data over different life stages. Thus, SGR should be used when
fish are exactly of the same age, since the growth performance of fish during different
life stages introduces a bias into the calculation. Because the studies included in our
analysis covered different life stages and trial periods, SGR may have been an unsuitable
mathematical model for comparing growth performed in these heterogenous data analysis
environments [126].

Finally, the significant positive correlation between lysozyme activity and probiotic
dose added to feed found across the studies included in the analysis supports the idea that
probiotics provide health benefits to fish (Figure 5). Lysozyme is a hydrolytic glycosidase
[(β-) glycoside hydrolase that exerts several important functions related to innate immunity,
including the lyse of Gram-positive and Gram-negative bacterial cell membranes (acting
as an antimicrobial agent) and activation of the complement system and phagocytes. It
is ubiquitously distributed in several tissues, mucus, lymphoid tissue, plasma, and other
body fluids [127]. Hence, increasing lysozyme activity by adding probiotics to feed might
play an important role in enhancing fish disease resistance in intensive culture systems.
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5. Bacteriocin Use in Aquaculture

In recent years, bacteriocins have received substantial attention as antimicrobial com-
pounds. Although bacteriocins have been predominantly used as food preservatives,
they are now receiving better attention as potential clinical antimicrobials and as possible
immune-modulating agents. Hence, bacteriocin use is another important strategy to control
antibiotic-resistant bacteria and improve health [121]. Bacteriocins are a heterogeneous
group of small, ribosomally-synthesized antimicrobial peptides. They can have a wide
variety of producers, spectrums of action (Figure 2), and biochemical properties [121,128].

Since 1925, with the discovery of colicin, research on bacteriocins has received consid-
erable attention [129], and by 1995, more than a hundred different types of bacteriocins had
been identified [130]. Bacteriocins can provide an important competitive advantage for the
species that produce them [131]. Probiotics of interest can produce bacteriocins at their site
of action [132].

Several classes of bacteriocins have been evaluated [133]. Many of the bacteriocins
tested for food-related applications are isolated from LAB [131]. These include nisin, which
is produced by L. lactis and has been widely used as a food preservative for more than fifty
years [134,135]. Others, such as pediocin PA-1, produced by Pediococcus acidilactici have
been extensively studied due to their activity against Listeria monocytogenes in meat and
dairy products [131]. Bacteriocins have also been investigated for their pharmaceutical
application [129] because they could serve as a possible alternative to antibiotics to combat
pathogenic microorganisms in live organisms [121]. As production losses in aquaculture
due to bacterial diseases and bacterial resistance to antibiotics have increased [7,121],
bacteriocins have been applied in aquaculture production systems due to their antimicrobial
proprieties (including Gram-positive/Gram-negative inhibition) (Table 2). However, the
application of probiotics and bacteriocins in fish feed supplementation requires rigorous
testing to avoid any unexpected effects. Safety is essential to current research progress [136].

Table 2. Overview of bacteriocin effects in fish health or against aquaculture pathogenic bacteria.

Aquatic Specie Bacteriocin Pathogen or
Challenge Clinical Impact Reference

Epinephelus areolatus CAMT2 Listeria monocytogenes,
Staphylococcus aureus

Antimicrobial activity
against tested pathogens [137]

Labeo rohita Bacteriocin produced by
Bacillus subtilis LR1

Aeromonas hydrophila,
Aeromonas salmonicida,

Bacillus mycoides,
Pseudomonas fluorescens

In vitro antimicrobial activity
against tested pathogens [138]

Oncorhynchus
tshawytscha Enterocina AS-48 Lactococcus garvieae

Antimicrobial activity
against tested pathogen

(in vitro and in vivo)
[139]

Penaeus monodon
Bacteriocin 99%

homologous to that
produced by Bacillus sp.

Vibrio alginolyticus,
Aeromonas hydrophila,
Pseudomonas stutzeri

In vitro inhibitory activity
against tested pathogens [140]

Pseudosciaena croce Coagulina L1208
Escherichia coli,

Shewanella putrefaciens,
Staphylococcus aureus

Bacteriostatic antimicrobial
activity against

tested pathogens
[141]

Litopenaeus vannamei
Bacteriocin produced by
Lactobacillus plantarum

FGC-12
Vibrio parahaemolyticus Pathogen inhibition [142]

Perca sp., Tuna sp.,
Platax sp. PSY2 Listeria monocytogenes

In vitro pathogen inhibition;
possible biopreservative

against degradation
[143]
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Table 2. Cont.

Aquatic Specie Bacteriocin Pathogen or
Challenge Clinical Impact Reference

Odontesthes platensis Mundticin KS Pseudomonas aeruginosa,
S. putrefaciens

In vitro antimicrobial activity
against tested pathogen and

Gram-positive bacteria
[144]

Odontesthes platensis Nisin Z Lactococcus garvieae Pathogen growth inhibition [145]

Fermented fish roe Bacteriocin produced by
Enterococcus faecium CN-25 Listeria monocytogenes In vitro pathogen inhibition [146]

Tilapia sp., Catla catla,
Cyprinus carpio

Bacteriocin isolated from
Pediococcus acidilactici Listeria monocytogenes In vitro antimicrobial activity

against tested pathogen [147]

Acipenseridae,
Oncorhynchus clarkii Plantaricin LPL-1 Listeria monocytogenes

In vitro antimicrobial activity
against tested pathogen and

Gram-positive bacteria
[148]

Pangasius bocourti 7293

Listeria monocytogenes,
Staphylococcus aureus,
Aeromonas hydrophila,

Escherichia coli,
Pseudomonas aeruginosa,

Salmonella
Typhimurium

Gram-positive and
Gram-negative

growth inhibition
[149]

Oxyeleotris lineolata L49 Streptococcus iniae In vitro antimicrobial activity
against tested pathogen [150]

Mimachlamys nobilis PE-ZYB1 Listeria monocytogenes

In vitro antimicrobial activity
against Gram-positive and

Gram-negative bacteria;
pathogen inhibition

[151]

Litopenaeus vannamei Nisin Listeria monocytogenes
Antimicrobial activity

against tested pathogen
(in vitro and in vivo)

[135]

6. Safety

It is important that probiotics be properly developed and that new products be verified
using validated scientific research. In some countries, probiotics have been approved for
use based only on initial tests that generally attest to their antimicrobial and immunos-
timulatory activity. Furthermore, in 2017, during inspections by the US FDA (Food and
Drug Administration, Silver Spring, MD, USA), more than 50% of the establishments
visited in the probiotic industry had serious violations, all related to failures during the
development process, including misidentification and even contamination of supplements,
which compromises product efficacy and safety [136].

The transfer of resistance genes to the host microbiota is another growing concern that
could result in a loss of commercial interest. In an in vitro experiment, it was observed that
Lactobacillus plantarum M345 was able to transfer a resistance gene to Listeria monocy-
togenes [152]. In 2005, it was reported that a probiotic product that was approved by the
FDA contained a strain with resistance to an important clinical antibiotic (tetracycline) and
that the gene could be transmitted [136]. The presence of resistance genes in probiotics
has already been described in the literature and has been studied. As one of the main
advantages of using probiotics is their safety, it is necessary to pay more attention to this
problem. If not controlled, it can represent a loss of consumer interest and economic losses
to the sector [120].

However, it is important to emphasize that health problems resulting from the use
of probiotics are very rare, both for animals and for humans. These microorganisms are
already part of the host’s microbiota and any problems related to the use of probiotics
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are generally related to host immunity and other pre-existing diseases [153]. In addition,
many countries already have very strict laws that ensure that the development and sale of
probiotic products takes place safely [4,154].

7. Conclusions and Future Perspectives

Bacterial disease outbreaks in aquaculture systems have increased in the last few
decades, and policies that restrict antibiotic use have been implemented. To avoid pro-
duction losses, new therapeutic fish farming technologies and new infectious control and
prevention protocols are required. The benefits of specific probiotics and bacteriocins
which trigger directly or enhance the immune structure of aquatic species with respect to
fish health and controlling pathogenic bacteria in aquaculture are clear. Further advance-
ments in this area have the potential to cause a paradigm shift in aquaculture, resulting
in higher quality foods, improved consumer health, increased sustainability (including
environmental sustainability), and increased economic value.
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