
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

SCHC-OVER-SIGFOX: PERFORMANCE MODELING AND EVALUATION OF
FRAGMENT DELIVERY

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA
INGENIERÍA, MENCIÓN ELÉCTRICA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO

DIEGO SEBASTIÁN WISTUBA LA TORRE

PROFESORA GUÍA:
SANDRA CÉSPEDES UMAÑA

PROFESOR COGUÍA:
JAVIER BUSTOS JIMÉNEZ

MIEMBROS DE LA COMISIÓN:
JORGE SILVA SÁNCHEZ

DIEGO DUJOVNE HELMAN

This thesis has been financially supported in part by ANID Fondecyt Regular 1201893 and
ANID Basal Project FB0008.

SANTIAGO DE CHILE
2023

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA
Y MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL ELÉCTRICO
POR: DIEGO SEBASTIÁN WISTUBA LA TORRE
FECHA: 2023
PROF. GUÍA: DRA. SANDRA CÉSPEDES

SCHC-OVER-SIGFOX: MODELAMIENTO Y EVALUACIÓN DE DESEMPEÑO
EN LA ENTREGA DE FRAGMENTOS

El protocolo Static Context Header Compression and Fragmentation (SCHC) facilita la
comunicación mediante IPv6 en redes de alto alcance y bajo consumo energético (Low-Power
Wide-Area Networks, LPWANs). Estas redes proveen bajo consumo de batería y un alcance
inalámbrico amplio a cambio de tasas de datos bajas y tamaños reducidos de sus datagramas.
SCHC comprime y fragmenta paquetes grandes y define el mecanismo de entrega confiable
ACK-on-Error para confirmar la recepción de fragmentos y hacer posible su reensamblaje.
El mecanismo ACK-on-Error puede usar recursos adicionales de la red, los cuales no siempre
están disponibles en redes restringidas como la LPWAN Sigfox.

Muchas veces en despliegues LPWAN, malas condiciones de canal, tales como una alta
tasa de pérdida de paquetes, pueden llevar a abortar la comunicación y malgastar recursos de
la red. Estos factores son decisivos al determinar si usar SCHC en alguna aplicación o no. Sin
embargo, ya que SCHC es un estándar reciente, hay una falta de conocimiento respecto del
impacto de la tasa de pérdida de paquetes sobre el número de transmisiones uplink requeridas
y sobre la tasa de éxito de las transmisiones SCHC.

Esta tesis propone la definición y análisis de las siguientes métricas de desempeño para
SCHC: el número promedio de mensajes uplink enviados por transmisión SCHC y la tasa de
éxito de las transmisiones. Se definen además modelos semiempíricos para ambas métricas.
Se demuestra que los modelos proveen una buena aproximación para las métricas, y que
dichas métricas son útiles para evaluar el uso de SCHC ACK-on-Error sobre aplicaciones de
Sigfox, un análisis que puede extenderse a otras tecnologías LPWAN.

ii

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA
Y MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL ELÉCTRICO
POR: DIEGO SEBASTIÁN WISTUBA LA TORRE
FECHA: 2023
PROF. GUÍA: DRA. SANDRA CÉSPEDES

SCHC-OVER-SIGFOX: PERFORMANCE MODELING AND EVALUATION
OF FRAGMENT DELIVERY

The Static Context Header Compression and Fragmentation (SCHC) framework enables
IPv6 communication over Low-Power Wide-Area Networks (LPWANs), which provide low
power consumption and wide area coverage in exchange for low data rates and small packet
sizes. SCHC compresses and fragments large packets and defines the ACK-on-Error reli-
able delivery algorithm to confirm the reception of fragments and make reassembly possible.
The ACK-on-Error mechanism may use additional network resources, which are not always
available in constrained networks such as the Sigfox LPWAN.

Often times in LPWAN deplyoments, poor connectivity conditions, such as high packet
loss rates (PLRs), may lead to aborted communications and wasted resources—decisive fac-
tors when determining whether to use SCHC in an application. However, since SCHC is a
recent standard, there is a lack of knowledge about the impact of the PLR on the required
number of uplink messages and the rate of successful SCHC transmissions.

This thesis proposes the definition and analysis of the following performance metrics for
SCHC: the average number of uplink messages sent per SCHC transmission, and the rate of
successful SCHC transmissions. Semi-empirical models are provided for both metrics. It is
demonstrated the models provide a good approximation to the metrics, and that these perfor-
mance metrics are useful for evaluating SCHC ACK-on-Error usage over Sigfox applications,
an analysis that can also be extended to other LPWANs.

iii

A todxs quienes han llorado en los pasillos y patios de la U,
y a todxs quienes me han visto llorar en los pasillos y patios de la U.

iv

Agradecimientos

Quiero partir agradeciéndole a Sandra por su infinita paciencia y fe en mi trabajo, por su
apoyo económico que fue crucial en los tiempos más agitados de mi carrera, y por todas las
veces que me dio ese empujoncito que necesitaba para enfrentar mis inseguridades académicas.
A Javier y a Niclabs por respaldar mi trabajo desde el 2019 y entregarme un puesto (y un
server) en el cual pude desarrollar todo este trabajo. A les profes con vocación a quienes
tuve la suerte de conocer en la facultad, y a les auxiliares motivades que tantas (pero tantas)
veces se tuvieron que poner la capa para hacer la materia entendible.

A quienes colaboraron de alguna forma en esta tesis. A mis padres, Giuliana y Omar, por
entenderme y siempre brindarme todo su apoyo, aun cuando tuve que pasar días sin verlos
o llegando a mi casa pasadas las 00:00. Al Ian por darme los primeros hints de proba que
pavimentarían el camino inicial de esta tesis. A Roy por matraquear conmigo. Al Coba por
ayudarme con las sutilezas matemáticas de los golazos cometidos en esta tesis (es broma). A
la Flo por ayudarme a usar screen y a optimizar algunos gráficos de esta tesis. A Cisneros
y al Pipe por compartirme sus memorias para yo aprender cómo se describe un software.
Al Blaz por prestarme su VPN. Al Dmitri por haber hecho un push en el PC que dejé
prendido lejos de mi alcance. Al Eric por presentarme la distribución Beta. A la Ivana por el
apoyo moral durante mis inseguridades tesistas. A Pablo por ayudarme a escoger funciones
candidatas (y por soportar mis ranteos y desilusiones académicas).

No hubiera podido llegar hasta aquí, bajo ningún criterio, de no ser por la gente que
estuvo a mi lado y con quienes pude compartir algún chiste, algún almuerzo, algún jueguito
de mesa u online, algunos carretes. Agradezco a los grupos de amigues de los que fui parte, no
limitándose a: Les Wituniens, las Crêmès, el Electroteam, Sumaria2, Comfeli (de quienes no
soy parte), Yogis, la Ofisalita, ApendiCC/Los Cullen, Bellakeo++ y tantos otros. A aquelles
con quien he tenido el agrado de tocar algún temita en la U, ya sea frente a un público o de
cara a nosotres mismes. A quienes alguna vez me prestaron un sillón para yo poder dormir
ahí habiéndome quedado en la U hasta horas absurdas haciendo tareas absurdas. A la gente
que ya no está aquí en cuerpo, pero sí en alma. Y a las personitas que me brindaron en su
momento un colchoncito emocional que atesoro todos los días.

Y ahora un poema: He visto a las mentes más brillantes de mi generación destruidas
por la locura (locura que grita el corazón cuando es víctima de la razón), histéricxs famélicxs
desnudxs arrastrándonos entre las terrazas, que pobres y harapientxs y ojerosxs pasamos la
noche en la oscuridad sobrenatural de los departamentos de disciplina fría. Mucho se nos
habla de que estamos parados en hombros de gigantes, cuando en realidad los gigantes somos
nosotres mismes.

v

Table of content

Acronyms xiv

1 Introduction 1
1.1 Motivation and background . 2

1.1.1 Definition of the problem . 3
1.1.2 Proposed solution . 3

1.2 Hypotheses . 4
1.3 Objectives . 5

1.3.1 General objectives . 5
1.3.2 Specific objectives . 5

1.4 Thesis outline . 6

2 Theoretical framework 7
2.1 Technical Concepts . 7

2.1.1 Low Power Wide-Area Networks . 7
2.1.2 Sigfox . 9
2.1.3 Static Context Header Compression and Fragmentation 10

2.2 Related Work . 16
2.2.1 Network performance studies . 16
2.2.2 Fragmentation in LPWAN . 17
2.2.3 SCHC definition . 17
2.2.4 SCHC performance studies . 18
2.2.5 SCHC implementations . 20

3 Methodology 21
3.1 Software development process . 21
3.2 Performance metrics . 23

3.2.1 Justification . 23
3.2.2 Modeling process . 24

3.3 Data collection and analysis . 24
3.3.1 Experimental design . 24
3.3.2 Experimental setup . 26
3.3.3 Data analysis . 27

4 SCHC-over-Sigfox implementation 29
4.1 Module description . 29
4.2 Simulation . 31
4.3 Real deployment . 32

5 Performance metrics 34

vi

5.1 SCHC F/R process overview . 34
5.2 Average number of uplink messages per SCHC transmission 37

5.2.1 Justification . 37
5.2.2 Theoretical model . 38
5.2.3 Validation . 39
5.2.4 Empirical adjustment . 40

5.3 Rate of successful SCHC transmissions . 42
5.3.1 Justification . 42
5.3.2 Theoretical model . 43
5.3.3 Validation . 43
5.3.4 Empirical adjustment . 45

6 Results 47
6.1 Average number of uplink messages sent per SCHC transmission 47

6.1.1 Simulation results (non-aborting scenario) 47
6.1.2 Simulation results (base scenario) . 50
6.1.3 Real deployment results . 52

6.2 Rate of successful SCHC transmissions . 55
6.2.1 Simulation results . 55
6.2.2 Simulation results with different timeouts 58
6.2.3 Real deployment results . 58

7 Analysis 61
7.1 Average number of uplink messages per SCHC transmission 61

7.1.1 Semi-empirical model and non-aborting scenario 61
7.1.2 Base scenario . 62
7.1.3 Real deployment . 63
7.1.4 Interpretation . 64

7.2 Rate of successful SCHC transmissions . 64
7.2.1 Semi-empirical model and simulation results 64
7.2.2 Results with different timeouts . 65
7.2.3 Real deployment . 65
7.2.4 Interpretation . 65

7.3 General observations . 66

8 Conclusions and Future Work 67
8.1 Conclusions . 67
8.2 Limitations and future work . 69

Bibliography 74

Annexes 74

A Publications derived from this thesis 75

B Implementation UML diagrams 76

C Validation of NUT
(p) 79

D Validation of NU(p) over the non-aborting scenario 84

E Validation of NU(p) over the base scenario 93

F Real deployment results of NU 97

vii

G Validation of rST
(p) 102

H Validation of rS(p) 107

I Real deployment results of rS 116

viii

List of Tables

2.1 Terminology comparison between LPWAN technologies and the general terms
used by the IETF. Adapted from [1]. 9

2.2 Specific Sigfox parameters for RC4. Adapted from [2]. 9
2.3 Sigfox SCHC Profile parameters for the ACK-on-Error F/R mode. If a field

has size 0, it is not present in the message. Adapted from [3]. 14
2.4 Notable SCHC performance studies to the date of writing. 20

3.1 Configuration of the SCHC Packet size and FLR values for each experiment
in the simulation environment. 26

3.2 Configuration of the SCHC Packet size for each experiment in the real deploy-
ment environment. 26

3.3 Specifications of the server in which the simulation experiments were carried
out. 27

3.4 Specifications of the LoPy4 device and its Sigfox modem performance. Adapted
from [4]. 27

5.1 Variable names in alphabetical order. 36
5.2 Values of F , W and U for different values for L, calculated for the 1-byte

header configuration of SCHC/Sigfox. 36
5.3 Maximum difference between NUT

(p) and NU for each value of F , along with
the value of p where the maximum was found. 41

5.4 Values for a obtained by using LSM. The final adjustment by inspection is
shown in the last row. 41

5.5 Maximum difference between rST
(p) and rS for each value of F , along with

the value of p where the maximum was found. 45
5.6 Adjusted values for α, β, γ and δ. 46

6.1 Values of NU calculated by performing n = 10, 000 transmissions per combina-
tion of F and p in the simulation scenario. Each row is coded with a green–red
color gradient ranging from its minimum value to its maximum value. 50

6.2 Standard deviation values of NU calculated by performing n = 10, 000 trans-
missions per combination of F and p in the simulation scenario. Each row is
coded with a green–red color gradient ranging from its minimum value to its
maximum value. 50

6.3 Maximum difference between NU(p) and NU for each value of F , along with
the value of p where the maximum was found. 50

ix

6.4 Calculated PLR values in the uplink and the downlink direction for each run
of experiments in the real deployment scenario. 54

6.5 Values of NU and σN obtained in the real deployment scenario by performing
n = 100 transmissions per number of SCHC Fragments. 54

6.6 Maximum difference between NU(p) and NU found in the real deployment
scenario for each value of F , along with the value of p where the maximum
was found. 54

6.7 Values of rS calculated by performing n = 10, 000 transmissions per combina-
tion of F and p in the simulation scenario. Values close to 1, 0.5 and 0 are
coded with a green–white–red color gradient. 57

6.8 Standard deviation values of rS calculated by performing n = 10.000 trans-
missions per combination of F and p in the simulation scenario. Values close
to 0 and 0.5 are coded with a green–red color gradient. 57

6.9 Maximum difference between rS(p) and rS for each value of F , along with the
value of p where the maximum was found. 57

6.10 Maximum difference between NU calculated for timers of 0.1 s and of 1 s for
each value of F , along with the value of p where the maximum was found. . 58

6.11 Values of rS and σS obtained in the real deployment scenario by performing
n = 100 transmissions per number of SCHC Fragments. 60

6.12 Maximum difference between rS(p) and rS found in the real deployment sce-
nario for each value of F , along with the value of p where the maximum was
found. 60

G.1 Values for α, β, γ and δ obtained by using LSM. The mean and standard
deviation of these values are shown. The final adjustment, done by inspection,
is shown in the last row. 103

x

List of Figures

2.1 Typical LPWAN architecture. Devices communicate wirelessly with radio
gateways, which are connected to the Internet via the network gateway. The
arrows show the direction of the transmissions. 8

2.2 Sigfox uplink and downlink message format. Their fields and the size in bits
of the fields are shown. The layers the fields belong to, according to the Open
Systems Interconnection (OSI) model, are also shown. Adapted from [1]. . . 10

2.3 SCHC Fragment, SCHC ACK and SCHC Compound ACK message format.
Their fields and the name of the variable that denotes their size in bits are
shown. Adapted from [5] and [6]. 12

3.1 Development procedure of the SCHC/Sigfox implementation. When valida-
tions are successful, the changes are adapted into the next environment. If
validation fails, development falls back to where the failure occurred and the
process is carried out again. 22

4.1 Module diagram of the SCHC-over-Sigfox implementation. Python scripts are
listed along with the environment they employed in. If not present, they are
employed in all environments. 30

4.2 Overview of the simulation system. 32
4.3 Overview of the real deployment system. 33

5.1 Simulation environment results compared to the theoretical component NUT
(p).

L = 1 B, F = 1, W = 1 . 40
5.2 Simulation environment results compared to the theoretical component NUT

(p).
L = 176 B, F = 17, W = 3 . 40

5.3 Simulation environment results compared to the theoretical component rST
(p).

L = 1 B, F = 1, W = 1 . 44
5.4 Simulation environment results compared to the theoretical component rST

(p).
L = 176 B, F = 17, W = 3 . 44

6.1 Simulation environment results for NU and NU(p), L = 1 B, F = 1, W = 1. . 48
6.2 Simulation environment results for NU and NU(p), L = 176 B, F = 17, W = 3. 49
6.3 Simulation environment results over the base scenario for NU and NU(p). L =

1 B, F = 1, W = 1. 51
6.4 Simulation environment results over the base scenario for NU and NU(p). L =

176 B, F = 17, W = 3. 51

xi

6.5 Ratio between the calculations of NU over the base scenario and over the
non-aborting scenario . 52

6.6 Real deployment results for NU and NU(p), L = 1 B, F = 1, W = 1. 52
6.7 Real deployment results for NU and NU(p), L = 176 B, F = 17, W = 3. . . . 53
6.8 Simulation environment results for rS and rS(p), L = 1 B, F = 1, W = 1. . . 55
6.9 Simulation environment results for rS and rS(p), L = 176 B, F = 17, W = 3. 56
6.10 Real deployment results, L = 1 B, F = 1, W = 1. 59
6.11 Real deployment results, L = 176 B, F = 17, W = 3. 59

B.1 UML class diagram for the DB module. 76
B.2 UML class diagram for the Entities module. 77
B.3 UML class diagram for the Sockets module. 78
B.4 UML class diagram for the Messages module. 78

C.1 Simulation results for NU and NUT
(p). L = 1 B, F = 1, W = 1. 79

C.2 Simulation results for NU and NUT
(p). L = 45 B, F = 5, W = 1. 80

C.3 Simulation results for NU and NUT
(p). L = 88 B, F = 9, W = 2. 80

C.4 Simulation results for NU and NUT
(p). L = 132 B, F = 13, W = 2. 81

C.5 Simulation results for NU and NUT
(p). L = 176 B, F = 17, W = 3. 81

C.6 Simulation results for NU and NUT
(p). L = 220 B, F = 21, W = 3. 82

C.7 Simulation results for NU and NUT
(p). L = 263 B, F = 24, W = 4. 82

C.8 Simulation results for NU and NUT
(p). L = 307 B, F = 28, W = 4. 83

D.1 Simulation results for NU and NU(p) in a non-aborting scenario. L = 1 B,
F = 1, W = 1. 85

D.2 Simulation results for NU and NU(p) in a non-aborting scenario. L = 45 B,
F = 5, W = 1. 86

D.3 Simulation results for NU and NU(p) in a non-aborting scenario. L = 88 B,
F = 9, W = 2. 87

D.4 Simulation results for NU and NU(p) in a non-aborting scenario. L = 132 B,
F = 13, W = 2. 88

D.5 Simulation results for NU and NU(p) in a non-aborting scenario. L = 176 B,
F = 17, W = 3. 89

D.6 Simulation results for NU and NU(p) in a non-aborting scenario. L = 220 B,
F = 21, W = 3. 90

D.7 Simulation results for NU and NU(p) in a non-aborting scenario. L = 263 B,
F = 24, W = 4. 91

D.8 Simulation results for NU and NU(p) in a non-aborting scenario. L = 307 B,
F = 28, W = 4. 92

E.1 Simulation environment results over the base scenario for NU and NU(p). L =
1 B, F = 1, W = 1. 93

E.2 Simulation environment results over the base scenario for NU and NU(p). L =
45 B, F = 5, W = 1. 94

E.3 Simulation environment results over the base scenario for NU and NU(p). L =
88 B, F = 9, W = 2. 94

E.4 Simulation environment results over the base scenario for NU and NU(p). L =
132 B, F = 13, W = 2. 94

xii

E.5 Simulation environment results over the base scenario for NU and NU(p). L =
176 B, F = 17, W = 3. 95

E.6 Simulation environment results over the base scenario for NU and NU(p). L =
220 B, F = 21, W = 3. 95

E.7 Simulation environment results over the base scenario for NU and NU(p). L =
263 B, F = 24, W = 4. 95

E.8 Simulation environment results over the base scenario for NU and NU(p). L =
307 B, F = 28, W = 4. 96

F.1 Real deployment results for NU and NU(p). L = 1 B, F = 1, W = 1. 97
F.2 Real deployment results for NU and NU(p). L = 45 B, F = 5, W = 1. 98
F.3 Real deployment results for NU and NU(p). L = 88 B, F = 9, W = 2. 98
F.4 Real deployment results for NU and NU(p). L = 132 B, F = 13, W = 2. . . . 99
F.5 Real deployment results for NU and NU(p). L = 176 B, F = 17, W = 3. . . . 99
F.6 Real deployment results for NU and NU(p). L = 220 B, F = 21, W = 3. . . . 100
F.7 Real deployment results for NU and NU(p). L = 263 B, F = 24, W = 4. . . . 100
F.8 Real deployment results for NU and NU(p). L = 307 B, F = 28, W = 4. . . . 101

G.1 Simulation results for rS and rST (p). L = 1 B, F = 1, W = 1. 102
G.2 Simulation results for rS and rST (p). L = 45 B, F = 5, W = 1. 103
G.3 Simulation results for rS and rST (p). L = 88 B, F = 9, W = 2. 104
G.4 Simulation results for rS and rST (p). L = 132 B, F = 13, W = 2. 104
G.5 Simulation results for rS and rST (p). L = 176 B, F = 17, W = 3. 105
G.6 Simulation results for rS and rST (p). L = 220 B, F = 21, W = 3. 105
G.7 Simulation results for rS and rST (p). L = 263 B, F = 24, W = 4. 106
G.8 Simulation results for rS and rST (p). L = 307 B, F = 28, W = 4. 106

H.1 Simulation results for rS and rS(p). L = 1 B, F = 1, W = 1. 108
H.2 Simulation results for rS and rS(p). L = 45 B, F = 5, W = 1. 109
H.3 Simulation results for rS and rS(p). L = 88 B, F = 9, W = 2. 110
H.4 Simulation results for rS and rS(p). L = 132 B, F = 13, W = 2. 111
H.5 Simulation results for rS and rS(p). L = 176 B, F = 17, W = 3. 112
H.6 Simulation results for rS and rS(p). L = 220 B, F = 21, W = 3. 113
H.7 Simulation results for rS and rS(p). L = 263 B, F = 24, W = 4. 114
H.8 Simulation results for rS and rS(p). L = 307 B, F = 28, W = 4. 115

I.1 Real deployment results for rS and rS(p). L = 1 B, F = 1, W = 1. 116
I.2 Real deployment results for rS and rS(p). L = 45 B, F = 5, W = 1. 117
I.3 Real deployment results for rS and rS(p). L = 88 B, F = 9, W = 2. 117
I.4 Real deployment results for rS and rS(p). L = 132 B, F = 13, W = 2. 118
I.5 Real deployment results for rS and rS(p). L = 176 B, F = 17, W = 3. 118
I.6 Real deployment results for rS and rS(p). L = 220 B, F = 21, W = 3. 119
I.7 Real deployment results for rS and rS(p). L = 263 B, F = 24, W = 4. 119
I.8 Real deployment results for rS and rS(p). L = 307 B, F = 28, W = 4. 120

xiii

Acronyms

3GPP Third Generation Partnership Project.

5G Fifth Generation.

ACK Acknowledgement.

ACK REQ ACK Request.

ALOHA Advocates of Linux Open-source Hawaii Association, or Additive Links On-line
Hawaii Area.

API Application Programming Interface.

ARQ Automatic Repeat Request, or Automatic Repeat Query.

BLE Bluetooth Low Energy.

C/D Compression/Decompression.

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

CRC Cycling Redundancy Check.

CSS Chirp Spread Spectrum.

DASH7 Developers’ Alliance for Standards Harmonization of ISO 18000-7.

DL Downlink.

DTag Datagram Tag.

ECC Error-Correcting Code.

eNodeB Evolved Node B.

F/R Fragmentation/Reassembly.

xiv

FCN Fragment Compressed Number.

FCS Frame Check Sequence.

FLR Fragment Loss Rate.

GCP Google Cloud Platform.

HTTP Hyper-Text Transfer Protocol.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

iid Independent and Identically Distributed.

IoT Internet of Things.

IP Internet Protocol.

IPv6 Internet Protocol, version 6.

ISM Industrial, Scientific, and Medical.

ISO International Organization for Standardization.

JSON JavaScript Object Notation.

L2 Layer 2.

LoRa Long-Range.

LoRaWAN Long-Range Wide Area Network.

LOS Line of Sight.

LPWAN Low-Power Wide-Area Network.

LPWAN-AAA LPWAN Authentication, Authorization, and Accounting.

LR-WPAN Low-Rate Personal-Area Network.

LSM Least Squares Method.

LTE Long Term Evolution.

LTE-M LTE Machine Type Communication.

MAC Media Access Control.

MTU Maximum Transmission Unit.

NACK Negative Acknowledgement.

xv

NB-IoT Narrowband IoT.

OSI Open Systems Interconnection.

PDN Packet Delivery Network.

PHY Physical Layer.

PLR Packet Loss Rate.

RAM Random Access Memory.

RC Radio Configuration.

RCS Reassembly Check Sequence.

REST Representational State Transfer.

RFC Request for Comments.

RFT Receiver-Feedback Technique.

RX Reception.

SCHC Static Context Header Compression and Fragmentation.

SNR Signal-to-Noise Ratio.

TDD Test-driven Development.

ToA Time on Air.

TX Transmission.

UDP User Datagram Protocol.

UL Uplink.

UML Unified Modeling Language.

UNB Ultra-Narrow Band.

URI Uniform Resource Identifier.

Wi-SUN Wireless Smart Ubiquitous Network.

WPAN Wireless Personal-Area Network.

xvi

Chapter 1

Introduction

The Internet of Things (IoT) is a technology term that describes network systems composed
of devices—or things—embedded with sensors or actuators and able to exchange data with
other devices using a network infrastructure, such as (but not limited to) the Internet. This
technology paradigm enables devices to send information either to other devices or to a data
processing server. This allows operators to remotely control the devices and to immediately
collect and process their data. As the Internet is the most highly distributed network used
by data servers, communication using the Internet protocol (IP), and other protocols of the
IP protocol suite, is desired in IoT deployments.

However, the available infrastructure and resources to handle such a massive amount of
data transmissions are highly constrained. Depending on the distribution of the devices, the
available network technology needs to provide the adequate coverage, which is often satisfied
by wireless networks. This network technology should also constrain the amount of data sent
over time, since large and frequent data transmissions are prone to collisions and interference.
Moreover, as the devices are meant to operate remotely and with little human intervention,
the power consumption of the communication should also be minimized to extend battery life.
Although Wireless Personal-Area networks (WPANs) are useful in small scale IoT systems, if
the distribution of the devices expands geographically, personal-area networks are no longer
suited to supply the network coverage requirements.

Low-Power Wide-Area Network (LPWAN) technologies satisfy the wide coverage require-
ments and are the primary type of networks used in large scale IoT systems deployment [1].
LPWANs are characterized by their small power consumption during wireless transmission
and reception of data, which leads to a battery life of many years. These networks also
constrain the amount of data transmitted over time —the throughput—, to reduce power
consumption and interference. LPWANs are wireless, and use modulation mechanisms that
maximize their coverage to many kilometers. Many LPWAN technologies exist and are de-
ployed in urban environments, the most remarkable being LoRaWAN, Sigfox, and NB-IoT.

The remaining challenge for LPWANs to satisfy the IoT industry requirements is enabling
IP communication, which is not trivial since the size of LPWAN packets is limited. IPv6 and
UDP headers, which are needed to process IP packets, highly surpass the maximum packet
size of most LPWANs [7], leaving little to no space for payload data. Sigfox, in particular,

1

is the most constrained network of the above-mentioned in terms of packet length, having a
maximum transmission unit (MTU) of 12 bytes, not enough to carry these headers.

Static Context Header Compression and Fragmentation (SCHC) is a framework designed
to compress IPv6 or UDP headers and to fragment the result of this compression if it still
exceeds the MTU of the network where SCHC is applied [5]. It is provided as an adaptation
layer between the LPWAN link layer and the IP network layer, and can be extended to
support other network protocols or applications with similar overhead. Its fragmentation
mechanism is also applicable when no header compression is performed and when the desired
payload size exceeds the network MTU. SCHC is defined as a general standard with the
parameters and algorithms necessary to perform compression, fragmentation, reassembly,
and decompression, but the specific values and behaviors vary among different LPWAN. The
set of specific values and behaviors is called a SCHC Profile, and are left for each LPWAN
to propose and configure.

As the fragmentation procedure generates many LPWAN packets to be sent over the
network, reliable delivery mechanisms are defined to guarantee fragment delivery over a lossy
wireless channel. To achieve this, the SCHC receiver sends acknowledgement (ACK) messages
back to the sender that inform about the reception or loss of SCHC Fragments. The SCHC
Profile of a network defines the header fields of SCHC Fragments and ACKs, and the timeout
values to optimize this bidirectional communication. Upon reception of an error-reporting
ACK, the device automatically retransmits all lost data accordingly. This behavior follows
the automatic repeat request (ARQ) paradigm for reliable delivery.

1.1 Motivation and background

The SCHC framework was standardized by the Internet Engineering Task Force (IETF) LP-
WAN Working Group in April 2020. At the time of this writing, academic studies regarding
the performance of SCHC in different networks are scarce. The implementations of this
framework are also few, and have been in constant development. LoRaWAN is the only
LPWAN to have its SCHC Profile standardized by the IETF [8], whilst the SCHC Profiles
of Sigfox and NB-IoT are still undergoing standardization [3, 9].

The Sigfox SCHC Profile—or SCHC/Sigfox1—is still a work in progress, published as
an Internet-Draft since April 2019. Sigfox does not use SCHC compression, focusing in-
stead on the fragmentation and reassembly procedures. Sigfox uses the ACK-on-Error ARQ
mechanism of SCHC fragmentation since it minimizes downlink channel use, which is also
highly constrained in terms of maximum uplink packet size [10]. Sigfox proposes minimal
changes to the ACK-on-Error algorithm to optimize network resources usage, which are ad-
dressed later in this document. A recent implementation of SCHC over Sigfox allows it to be
tested from different approaches regarding the performance of the fragmentation and ARQ
mechanisms [11, 12].

Performance evaluations help introduce the SCHC framework to the IoT industry, giving
1For brevity, in the remainder of this document, “SCHC/Sigfox” refers to the Sigfox SCHC Profile and its

ACK-on-Error implementation.

2

quantitative analyses that make it easier to compare the behavior of SCHC ARQ algorithms
used by the different LPWAN technologies. These analyses highlight the benefits and re-
markable features of SCHC, facilitate the adoption of (and interest in) the framework, and
make SCHC ACK-on-Error comparable to other ARQ mechanisms.

Useful performance metrics for ARQ implementations are the additional transmission
delay, the queue length, and the throughput of the whole system. The channel usage and
data overhead are also considered, specially in wireless networks. These metrics have been
widely studied for classic ARQ techniques such as Go-Back-N or Selective Repeat. Although
the main concept of using ACK messages is present in the reliable delivery mechanisms of
SCHC, they have peculiarities that make them different from the mentioned protocols.

1.1.1 Definition of the problem

Given insufficient network conditions, the ARQ mechanisms of SCHC may fail. Due to
excessive use of bandwidth, number of messages sent or received, energy, or other scarce
resources of the network, either side of the communication can decide that the transmission
should not continue. In doing so, the ARQ algorithm is finished and a SCHC Abort message
is sent, thereby letting the other side of the communication know about this decision. In this
way, a SCHC transmission is aborted.

When a SCHC transmission is aborted, it is most likely the case that not all SCHC
Fragments have been delivered to the receiver. As aborting the transmission finalizes the
ARQ mechanism, the remaining fragments are discarded, making reassembly impossible.
The receiver may discard every SCHC Fragment received so far, since it is no longer possible
to retrieve the information of the original SCHC Packet.

The abort mechanisms are useful in avoiding using too many resources in challenging
network conditions. However, at the time of writing there has not been an analysis on how
many resources are saved by aborting a SCHC transmission under different SCHC Profile
configurations. Moreover, the probability of aborting a SCHC transmission has also not
been studied. These metrics are inherently determined by the PLR of the network. As
the theoretical and empirical analyses of the resource usages of SCHC are few, not much
can be concluded regarding these performance metrics, which are important in highly con-
strained networks such as Sigfox, and crucial in deciding whether to incorporate SCHC in an
application when challenging network conditions are present.

1.1.2 Proposed solution

This thesis defines two performance metrics under the SCHC-over-Sigfox ACK-on-Error
mechanism:

• The average number of uplink messages sent in a SCHC/Sigfox transmission, NU .

• The rate of successful SCHC/Sigfox transmission, rS.

3

These metrics are non-standard for ARQ mechanisms and, in this thesis, they are proposed
for the study of SCHC/Sigfox and its implementations or different configurations. These
metrics can also be measured over SCHC deployments over other LPWAN technologies that
use the ACK-on-Error mode.

NU is useful to quantify the impact of aborting SCHC transmissions on the resource usage
of the protocol. If measured over a scenario where SCHC transmissions are configured not
to be aborted (a non-aborting scenario), it can be compared to a measurement of NU over
normal SCHC operating conditions, i.e., a scenario where transmissions can be aborted as
per SCHC Profile specifications. The difference or ratio between both measurements provides
a quantification of the number of uplink messages whose transmission was avoided, and it
can be extended to either time or energy quantifications.

On the other hand, rS signals the likeliness and uncertainty of a SCHC transmission to be
completed under stable channel conditions, which is a performance metric useful for SCHC
deployment considerations. If rS is too low, or if its associated standard deviation is too high,
it may be recommended not to perform a SCHC transmission. Depending on the network
scenario, it may be better to wait for better network conditions or to consider another reliable
delivery mechanism.

Both performance metrics, especially NU over a non-aborting scenario, require many
uplink transmissions to be performed and measured. This often takes too much time to
make these measurements over the network. To avoid spending large amounts of time in
gathering the data and calculating these metrics, a semi-empirical model for NU over a non-
aborting scenario and rS are provided. These models fundamentally assume that the PLR
of the network is fixed, and that the event of losing a Sigfox packet (and consequentially
a SCHC Fragment) is modeled by an independent and identically distributed (iid) random
variable. The parameters of the Sigfox SCHC Profile are used as variables, which helps in
making these models extensible to other network configurations.

A SCHC/Sigfox implementation was developed over the course of this investigation and
the Sigfox SCHC Profile standardization process, which has been useful to obtain insights
and new considerations that have been incorporated into the SCHC Profile. The implemen-
tation provides a simulation of SCHC/Sigfox transmissions, as well as the software needed
to enable SCHC communication over the Sigfox network architecture. This implementation
was employed to measure the proposed performance metrics. The simulation environment
allows data to be gathered in less time than in a real deployment. Data was also collected
from a real deployment, although the sample size obtained is less than what the simulation
could provide, given time and bandwidth constraints of the Sigfox technology.

1.2 Hypotheses

The following hypotheses are held for the performance metrics NU and rS:

• The average number of uplink messages per completed SCHC transmission is always
finite, for every PLR unequal to 100 %. In other words, infinite SCHC transmissions

4

are impossible, since the algorithm is robust enough to always end and does not contain
absorbing loops.

• The success rate is independent of the total number of fragments to transmit. This is
based on the fact that the only event that aborts a SCHC transmission is the loss of
the last SCHC Fragment multiple times, which is thought not to depend on the total
number of fragments that are generated from a SCHC Packet.

These hypotheses will be tested by measuring both performance metrics under various
conditions. SCHC Packets of different sizes will be transmitted over different induced PLR
values. The experiments will be repeated multiple times, gathering data of all SCHC trans-
missions, which allow both performance metrics and their associated standard deviations to
be calculated.

1.3 Objectives

1.3.1 General objectives

The general objective is to define PLR-based performance metrics for SCHC over Sigfox: the
average number of uplink messages per SCHC transmission and the success rate of SCHC
transmissions, both under the ACK-on-Error configuration of the Sigfox SCHC Profile. Also,
this thesis provides semi-empirical models for them. These performance metrics are measured
in a simulation of SCHC over the Sigfox network using different packet sizes, and the models
are validated by the same procedure. The metrics are also measured in a real deployment of
the protocol.

1.3.2 Specific objectives

1. Performance metrics:

(a) Define the average number of uplink transmissions in a SCHC transmission as a
performance metric, which quantifies the impact of allowing SCHC transmissions
under poor network conditions to be aborted.

(b) Define the rate of successful SCHC transmissions as a performance metric, which
quantifies the likeliness and uncertainty of a SCHC transmission to be complete
over known channel conditions, information useful when deciding whether to use
SCHC in a particular application.

2. Model definition:

(a) Propose a mathematical model for the expected number of SCHC fragments trans-
mitted, for a single fragmented packet, depending on the PLR of the network and
the SCHC Profile parameters.

5

(b) Propose a mathematical model for the success rate of SCHC fragmented packet
transmissions, depending on the PLR of the network and the SCHC Profile pa-
rameters.

3. Validation:

(a) Define and execute a set of experiments using the Sigfox SCHC Profile that will
provide the data to analyze.

(b) Compare the empirical results to the performance of the mathematical models to
validate their applicability.

4. Profile definition:

(a) Provide a software implementation of SCHC-over-Sigfox, able to execute simula-
tion experiments as well as transmissions over the Sigfox network using the SCHC
framework.

(b) Contribute to the definition of the SCHC-over-Sigfox Profile with insights based
on the implementation process, clarifying specifications and adding more useful
information needed for implementing and deploying the framework.

1.4 Thesis outline

The remainder of this document is organized as follows:

• Chapter 2 introduces technical concepts such as LPWAN, Sigfox, and SCHC; and pro-
vides an overview of related works on SCHC performance measurement and implemen-
tations.

• Chapter 3 explains how are the performance metrics defined and modeled, how was the
implementation developed and how are the subsequent experiments performed.

• Chapter 4 describes the SCHC-over-Sigfox implementation developed over the course
of this investigation.

• Chapter 5 define the performance metrics NU and rS, while also providing their respec-
tive semi-empirical models.

• Chapter 6 lays out the results obtained from the experiments carried out to calculate
the performance metrics and validate their models.

• Chapter 7 analyses the results, evaluating the hypotheses presented in this section and
providing guides on how to interpret the performance metrics while adopting SCHC in
an application.

• Finally, Chapter 8 concludes this document by summarizing the work and highlighting
the most important results and considerations, while also discussing future research on
the field.

6

Chapter 2

Theoretical framework

This chapter addresses the definitions and properties of technical concepts regarding LP-
WANs, the Sigfox network, and SCHC. Additionally, a review of related articles and projects
on SCHC performance evaluation is presented, which gives an overview of the context in
which this work is developed.

2.1 Technical Concepts

2.1.1 Low Power Wide-Area Networks

Low-power wide-area networks (LPWAN) are network architectures characterized by their
low energy consumption on the transmitter device and the wide coverage they provide, in
exchange for constraints in the data rate of the transmission. These types of wireless net-
works, reviewed in IETF Request for Comments (RFC) 8376 [1], have achieved great interest
regarding the development of IoT applications, which deploy transmitting devices in large
geographic zones and thus require wide coverage and little human intervention. Low power
wireless networks of reduced coverage such as Bluetooth Low Energy (BLE) or ZigBee are
also useful for other IoT use cases where coverage is not an issue. These personal-area net-
works are labeled as wireless personal-area networks (WPAN) and are standardized by the
IEEE 802.15 Working Group [13].

Many LPWANs exist and are currently operative, such as LoRaWAN, NB-IoT, Sigfox,
Wi-SUN, LTE-M, DASH7, MIoTy, Weightless, and others. The IETF LPWAN Working
Group categorizes and describes the first four in RFC 8376 [14] as follows:

• LoRaWAN is an LPWAN techology based on the Long-Range (LoRa) physical layer
(PHY) modulation scheme, patented by Semtech, which applies chirp spread spectrum
(CSS) modulation [15]. LoRa describes the PHY protocol, while LoRaWAN describes
the medium access control (MAC) layer and the interconnection protocol to work with
Internet [16]. This technology operates in industrial, scientific, and medical (ISM)

7

Figure 2.1: Typical LPWAN architecture. Devices communicate wirelessly with radio gate-
ways, which are connected to the Internet via the network gateway. The arrows show the
direction of the transmissions.

radio bands of 433 MHz, 868 MHz and 915 MHz, depending on the restrictions of every
country.

• Narrowband IoT (NB-IoT), standardized by the Third Generation Partnership
Project (3GPP), is another LPWAN technology that provides less device design com-
plexity, low cost, control over battery usage and coverage optimization, inheriting the
network architecture of the Long-Term Evolution (LTE) cellular networks. It is pro-
moted by the 3GPP as an integral component of the deployment and development of
the fifth generation of mobile communication technologies (5G) [17].

• Sigfox is an LPWAN technology owned by the company UnaBiz, and based on ultra-
narrow band (UNB) modulation systems. Its low modulation rate achieves wider cov-
erage, and it’s ideal for applications that transmit messages comprised of few bytes
and with low frequency. Nevertheless, this noticeably limits the data rate of the net-
work [18]. Additionally, this technology possesses different operating bands depending
on the geographical zone: Chile is part of the radio configuration (RC) zone 4, where
Sigfox transmissions are centered around 920 MHz [2].

• Wi-SUN Alliance Field Area Networks (FANs) are defined as IPv6 wireless mesh
networks with strong security, robustness, reliability, scalability, and resilience [19].
These networks provide 2–3 km line of sight (LOS) coverage, extendable by means of
multi-hop networking; bandwidth of up to 300 kb/s and latency of 0.02 s, supporting
LPWAN IoT applications; low power consumption, using less than 2 uA when resting
and 8 mA when listening; and scalability, deploying tens of millions of devices in urban,
suburban, and rural environments.

These technologies present similar tree or “star-of-stars” topology, as shown in Figure 2.1.
The transmitter devices are located at the user end of the network and generally are sensors
or actuators capable of transmitting and receiving data. The messages sent by a device are

8

called “uplink” (UL) messages, whilst messages received by devices are called “downlink” (DL)
messages. UL messages are received by the radio gateways, antennas designed to capture
transmissions performed in specific bandwidths. This data is forwarded via IP towards the
final application, which receives and processes the information accordingly. LPWANs also
have authentication, authorization, and accounting (LPWAN-AAA) servers, which manage
every LPWAN transmission. A DL message is sent back to the device if the application
requires it, and it follows the opposite direction. Although the functions of these components
are similar, they receive different names in every technology. Table 2.1 details the specific
names of LPWAN components.

Function IETF LoRaWAN NB-IoT Sigfox

Sensor or actuator Device End Device User Equipment End Point
Transceiver antenna Radio Gateway Gateway Evolved Node B (eNodeB) Base Station

Server Network Gateway Network Server Packet Delivery Network (PDN) Gateway Service Center
Authentication server LPWAN-AAA Server Join Server Home Subscriber Server Registration Authority

Application Application Application Server Application Server Network Application

Table 2.1: Terminology comparison between LPWAN technologies and the general terms
used by the IETF. Adapted from [1].

The four previously defined networks are in the scope of the IETF LPWAN working group
and have an interest in supporting logical communication with the Internet protocol. The
study presented in this thesis focuses on the Sigfox network, which will be described below.

2.1.2 Sigfox

Sigfox is an LPWAN technology highlighted by the wide coverage it provides in exchange
for strong restrictions on the data rate of every transmission. Its UNB-based modulation
scheme is responsible for this, which can be configured to achieve data transmission rates
of 100 bps or 600 bps, depending on the geographical zone. Its MAC mechanism is based
on random selection of frequencies and time, which is inspired by ALOHA [20]. The Sigfox
radio configurations (RCs) are sets of parameters that control modulation and transmission,
such as data rates and central frequencies, which differ according to geographical zones. The
southern zone of Latin America and oceanic regions use RC4, and the specific parameters of
this zone are shown in Table 2.2.

Parameter RC4 value

Uplink central frequency 920.8 MHz
Downlink central frequency 922.3 MHz

Uplink data rate 600 bps
Downlink data rate 600 bps

Table 2.2: Specific Sigfox parameters for RC4. Adapted from [2].

The Sigfox network is restricted to at most 140 UL and 4 DL messages per day, which
makes its bandwidth a scarce resource that should be considered when deploying the network.
UL messages may contain up to 12 B, and DL messages always contain 8 B. A device can

9

request a DL message by means of an UL message with a specific flag, opening a reception
window and waiting for the DL message to arrive. This is the only way a DL message is
generated in the network.

UL messages are composed of a preamble, a frame synchronization field, a device identifier,
the payload, an authentication code, and an error-detecting frame check sequence (FCS), the
latter being verified by a cycling redundancy check (CRC) algorithm. DL messages have a
similar structure, although the device identifier is replaced by an error-correcting code (ECC)
field. These messages and the size of their sections are shown in Figure 2.2.

Figure 2.2: Sigfox uplink and downlink message format. Their fields and the size in bits
of the fields are shown. The layers the fields belong to, according to the Open Systems
Interconnection (OSI) model, are also shown. Adapted from [1].

The information received by the Sigfox network is stored in its backend, a cloud server
equivalent to the network gateway of LPWAN architecture, also called service center. Every
Sigfox user can configure the behavior of the backend regarding a group of devices. The
messages received by the backend can be forwarded towards web applications using two
application programming interfaces (APIs): the callback API, which forwards the messages
to the application server using the hypertext transfer protocol (HTTP) as soon as they are
received; and the representational state transfer (REST) API, which performs queries directly
to the database associated with each device.

2.1.3 Static Context Header Compression and Fragmentation

SCHC (pronounced “sheek ” [21]) is a standard presented in IETF RFC 8724 [5] which de-
scribes compression and fragmentation mechanisms for LPWAN packets larger than the maxi-
mum packet size allowed by LPWAN technologies. This protocol provides an adaptation layer
between upper-layer protocols with large headers and the underlying LPWAN technology. To
do so, SCHC compresses the headers of the upper-layer message and fragments it into smaller
datagrams if the result of the compression still exceeds the MTU of the network.

The compression and decompression (C/D) mechanism uses a static set of parameters—a
static context—in the transmitter device and in the network infrastructure. The result of
the compression mechanism is called a SCHC Packet. When received, the SCHC Packet is
decompressed to recover the original packet.

The fragmentation and reassembly (F/R) mechanism acts only if, after compression,
the SCHC Packet still exceeds the maximum LPWAN packet size. The information is then

10

sectioned into tiles of a specified size and sent over various messages, called SCHC Fragments.
Each of these fragments contains at least one tile. When all SCHC Fragments are received,
they are reassembled into the original SCHC Packet.

F/R mechanism

The fragments generated in the fragmentation process are grouped in windows and are iden-
tified by both the number of the window they belong to and their fragment compressed
number (FCN), a sequence number. Both values are represented as bits and are assigned in
descending order. The last message of every non-final window has an FCN comprised only of
zeroes and is called an All-0 fragment. To identify the last fragment of a transmission (the
last fragment of the last window), its FCN is overwritten with only ones, and is called an
All-1 fragment. A “regular” SCHC Fragment is a fragment that is not an All-1.

Since the F/R mechanism requires sending many LPWAN messages, SCHC also defines
operating modes to guarantee the delivery of these packets to the network, using acknowl-
edgement (ACK) messages, like those used by automatic repeat request (ARQ) mechanisms.
These modes are:

• ACK-Always Mode: Window numbers and FCNs are added to each fragment, which
lets the receiver identify the received fragments and send a DL ACK every time the
transmission reaches a fragment located at the end of a window. The ACK contains
information regarding received packets. Upon reception of the ACK, the transmitting
device can read its information and determine if fragments were lost, retransmitting
them afterwards if needed. The All-1 is always responded with an ACK from the
receiver side.

• ACK-on-Error Mode: Similarly to the ACK-Always mode, the receiver identifies
the fragments using their headers, but it also has the ability to detect losses. After
sending a certain number of fragments, the transmitter sends a message requesting a
SCHC ACK (called SCHC ACK REQ messages), after which the receiver responds only
if it has detected lost fragments. Otherwise, the transmission can continue normally.
Again, the All-1 is always responded with an ACK from the receiver.

• No-ACK Mode: This mode does not guarantee the delivery of packets, but minimizes
the header overhead introduced by the fragmentation sublayer, since it does not carry
sequence numbers larger than one bit.

SCHC ACKs carry the information of received and lost fragments of a particular window.
This information often uses little space in a DL frame, saving network resources in networks
with variable DL message sizes. However, in networks where the DL message size is fixed
(such as Sigfox), a single SCHC ACK can leave large amounts of unused space. To take
advantage of the unused space of DL messages, the SCHC Compound ACK was defined as
an extension of the regular SCHC ACK that can carry the information of received and lost
fragments of many windows if needed [6].

11

SCHC Fragments and SCHC ACKs possess headers composed of the following fields,
which are shown in Figure 2.3:

• Rule ID: The identifier of a Rule, a set of parameters pertaining to a SCHC transmis-
sion which specify the F/R mode to use, the reassembly mechanism algorithm, and if
the fragment contains additional fields. Its size is denoted by RULE_ID_SIZE.

• Datagram Tag (DTag): An identifier for fragments that are part of different SCHC
Packets that are sent using the same Rule ID. This enables interleaving in SCHC
transmissions. Its size is denoted by T .

• Window (W): If windows are used, the W field carries the bit representation of the
number of the window that the fragment belongs to. Its size is denoted by M . The
maximum number of windows allowed is 2M .

• Fragment Compressed Number (FCN) (only in fragments): The sequence number
of every fragment relative to the window they belong to. The FCN comprised only by
zeroes and only by ones are reserved, called All-0 and All-1 respectively. Its size is
denoted by N . The maximum number of fragments in a window is 2N − 1, since the
All-1 is only used for the very last fragment.

• Reassembly Check Sequence (RCS) (only in fragments): Redundancy bits added
to detect errors, sent only in the All-1 fragment. Its size is denoted by U .

• Integrity Check (C) (only in ACKs): A one-bit field that indicates if an integrity
check was performed over the reassembled SCHC Packet. It is 1 if the check was
performed and successful, and it is 0 if it was failed or not performed.

• Compressed Bitmap (only in ACKs): A bit string used to identify received tiles. A
1 in position i of the bitmap indicates that the i-th tile was received, and a 0 indicates
that it wasn’t received or that it was dropped. Its size is denoted by WINDOW_SIZE and
equals the maximum number of tiles that can be carried in a single window, which can
be equal to or less than 2N − 1.

Figure 2.3: SCHC Fragment, SCHC ACK and SCHC Compound ACK message format.
Their fields and the name of the variable that denotes their size in bits are shown. Adapted
from [5] and [6].

Timers and timeout values are incorporated in SCHC, making it possible to decide
whether a message is lost or not. The Inactivity Timer keeps track of the time that the

12

receiver has waited for a new SCHC Fragment since the last received fragment of a particular
SCHC transmission. If no SCHC Fragment is received after its timeout value, the receiver
automatically aborts the transmission by means of sending a SCHC Receiver-Abort message
to the device whenever possible. On the other hand, the Retransmission Timer keeps track
of the time that the sender device has waited for an ACK since requesting one by sending
a SCHC ACK REQ or an All-1 fragment. If no ACK is received after its timeout value,
the sender requests the ACK again. This process can be repeated until reaching a maxi-
mum of attempts in a row, noted MAX_ACK_REQUESTS or Rmax. If this limit is reached, the
sender automatically aborts the communication by means of sending a SCHC Sender-Abort
message.

SCHC over Sigfox

To use SCHC, an LPWAN technology must define its own SCHC Profile, a set of config-
urations and parameters used by SCHC to perform the F/R procedures. Since the C/D
procedure always has static context, it is independent of the SCHC Profile. At the time of
writing, SCHC/Sigfox is proposed as an Internet-Draft of the IETF [3], and specifies the
functioning of the F/R mechanism. Here, it is considered that one SCHC Fragment carries
only one tile. Moreover, a single SCHC Fragment is sent in a single Sigfox packet. Therefore,
the rate at which SCHC Fragments are lost (fragment loss rate, FLR) and the rate at which
Sigfox packets are lost (packet loss rate, PLR) are equivalent terms. Since the Sigfox net-
work has a fixed DL message size, the SCHC Compound ACKs are favored instead of regular
SCHC ACKs. Furthermore, Sigfox considers no SCHC C/D procedure.

Considering DL restrictions in Sigfox, this SCHC Profile favors the ACK-on-Error F/R
mode, thereby using DL resources only when necessary. It is also specified that All-0 frag-
ments are processed similarly to SCHC ACK REQs: at the end of every window, an ACK is
requested to be sent only if errors were detected; however, if this ACK is not received by the
sender device, it continues sending the next window of fragments instead of retransmitting
the All-0.

After receiving an All-1 fragment, the receiver must always respond with an ACK. If the
All-1 or the ACK are lost or delayed, the sender device sends the All-1 again. If the ACK
reports missing fragments, the sender retransmits them and sends the All-1 again, repeating
the process. Finally, if the ACK does not report losses, the transmission is completed.

The sender device must maintain a counter of the number of times it has sent an ACK
REQ. This is called an “attempts counter” [5], and it increases monotonically until reaching
Rmax, when a SCHC Sender-Abort must be sent. The Sigfox SCHC Profile extends this
part of the sending algorithm, stating that the SCHC Sender-Abort is sent if the number
of repeated All-1 fragments sent in sequence reaches Rmax. This requires that the attempts
counter be reset every time an ACK is received1.

1At the time of writing, this is specified in Section 3.5.1.1 of the Sigfox SCHC Profile specifications [3].
The original behavior is specified in Section 8.4.3.1, paragraph 17.1, of RFC 8724 [5] and does not specify
resetting the attempts counter.

13

Operational modes

Sigfox defines three sets of SCHC parameters for UL ACK-on-Error fragmentation, which
are thought for different SCHC Packet sizes. These operational modes vary in the size of the
header fields of regular SCHC Fragments and the All-1 fragment: SCHC Fragments must
have a header large enough to carry the Rule ID, DTag, Window and FCN fields, whilst
the All-1 must have a header large enough to carry the Rule ID, DTag, Window, FCN and
RCS field. In All-1s, if the resulting header length is not a multiple of the L2 Word Size (1
B), zero-padding is added as needed. The specific parameters for each operational mode are
shown in Table 2.3.

Parameter Meaning Value (1-byte header) Value (2-byte header op.1) Value (2-byte header op.2)

Maximum SCHC Packet size Maximum size of a
processable SCHC Packet 300 B 480 B 2400 B

L2 Word Size Minimum information unit 8 b 8 b 8 b

Rule ID Size Rule ID field size 3 b 6 b 8 b

T DTag field size 0 b 0 b 0 b

M Window field size 2 b 2 b 3 b

N FCN field size 3 b 4 b 5 b

U RCS field size 3 b 4 b 5 b

MAX_ACK_REQUESTS
Maximum number of times

that an ACK can be
requested in a row

5 5 5

WINDOW_SIZE
Maximum number of

tiles per window 7 12 31

Regular header size Maximum size of the header
of a regular SCHC Fragment 1 B 2 B 2 B

All-1 header size Maximum size of the header
of an All-1 SCHC Fragment 2 B 2 B 3 B

Regular tile size Maximum size of each tile 11 B 10 B 10 B

All-1 tile size Size of the last tile 0 to 10 B 1 to 10 B 0 to 9 B

Retransmission Timeout Maximum time the sender
can wait for an ACK 12 h (recommended) 12 h (recommended) 12 h (recommended)

Inactivity Timeout Maximum time that the receiver
can wait for a new fragment 12 h (recommended) 12 h (recommended) 12 h (recommended)

Table 2.3: Sigfox SCHC Profile parameters for the ACK-on-Error F/R mode. If a field has
size 0, it is not present in the message. Adapted from [3].

At the time of writing, these operational modes are presented in Section 3.6 of the Sigfox
SCHC Profile specifications [3], and are summarized as follows:

• The Single-byte SCHC Header mode enables transmissions of SCHC Packets of up
to 300 B. Regular SCHC fragments have a header size of 1 B (with no padding bits)
whilst the All-1 fragment has a header size of 2 B (with 5 zero-padding bits).

• The Two-byte SCHC Header Option 1 mode enables transmissions of SCHC Pack-
ets of up to 480 B. Regular SCHC fragments have a header size of 2 B (with 4 zero-
padding bits) and the All-1 fragment also has a header size of 2 B (with no padding
bits).

• The Two-byte SCHC Header Option 2 mode enables transmissions of SCHC Pack-
ets of up to 2400 B. Regular SCHC fragments have a header size of 2 B (with no padding

14

bits) whilst the All-1 fragment has a header size of 3 B (with 3 zero-padding bits). This
operational mode satisfies the IPv6 minimum MTU requirement.

In the Single-byte SCHC Header and Two-byte SCHC Header Option 2 modes, the size
of the All-1 header is greater than the size of the header of a regular fragment, which entails
a smaller payload field for the All-1 fragment. Since the All-1 cannot carry a payload of the
size of a regular tile, if the SCHC Packet to be processed has a size that is multiple of the
regular tile size, the All-1 produced by the fragmentation process of these modes carries no
payload.

Sender and receiver algorithms

This section summarizes the algorithms followed by both the sender and receiver part of a
SCHC transmission. These algorithms do not fully describe the actual SCHC algorithms
described in [5], but are sufficient to understand the protocol.

The algorithm followed by the sender part of a SCHC transmission using the Sigfox SCHC
Profile can be summarized as the following sequence of steps:

1. Divide a SCHC Packet into F fragments, and group them into W windows of maximum
size S. Set the current window counter to w = 1 and the attempts counter to R = 0.

2. Transmit the w-th window and wait for a Compound ACK.

3. If w < W ,

(a) If a Compound ACK is not received after a certain amount of time, update w =
w + 1 and continue transmitting the next window.

(b) If a Compound ACK is received, retransmit the missing fragments reported in
the Compound ACK, then update w = w + 1 and continue transmitting the next
window.

4. If w = W ,

(a) Increase the attempts counter by 1, updating R = R + 1.

(b) If R = Rmax, send a SCHC Sender-Abort and exit the SCHC transmission with
an error condition.

(c) If a Compound ACK is not received after a certain amount of time, send the last
fragment again to wait for a Compound ACK and repeat step 4.

(d) If a Compound ACK is received,

i. Reset the attempts counter, setting R = 0.

ii. If losses are reported, retransmit the missing fragments and send the last
fragment again to wait for a Compound ACK and repeat step 4.

iii. If no losses are reported, exit the SCHC transmission.

15

On the other hand, the algorithm of the receiver part of the algorithm can be summarized
in the following steps:

1. Upon reception of a new fragment, check if the inactivity timer has expired. If it has,
respond with a SCHC Receiver-Abort whenever possible, exiting the SCHC transmis-
sion.

2. Store the fragment in memory.

3. If the fragment was previously requested for retransmission, wait for a new fragment.

4. If it was not,

(a) If the fragment is not located at the end of a window, wait for a new fragment.

(b) If the fragment is located at the end of any window, check for lost fragments.

i. If losses are detected, respond with a Compound ACK reporting all lost frag-
ments and then wait for a new fragment.

ii. If no losses are detected,

A. If the fragment is located at the end of the last window, respond with a
Compound ACK that reports no losses, and then reassemble the SCHC
Packet using the fragments in memory, exiting the SCHC transmission.

B. If the fragment is not at the end of the last window, continue waiting for
a new fragment.

The Sigfox ACK-on-Error sending algorithm is modeled as a system that consist of trans-
mission cycles, intermediate retransmission cycles, and final retransmission cycles [22]. The
sender starts in a transmission cycle, sending every fragment of the first window. If an ACK
is received at the end of the window, the lost fragments reported in the ACK are sent in an
intermediate retransmission cycle. This process is repeated for every window until reaching
the last one. After sending the last fragment—the All-1 fragment—, if an error-reporting
ACK is received then the sender retransmits lost fragments in a final retransmission cycle,
which ends by sending the All-1 fragment once more. The final retransmission cycle is re-
peated each time an error-reporting ACK is received, and finalizes when an ACK that doesn’t
report losses is received.

2.2 Related Work

2.2.1 Network performance studies

The intellectual property restrictions of technologies such as Sigfox or LoRa make it difficult
to directly model network performance metrics. These studies often gather performance data
experimentally. An experimental study performed in Germany is presented in [23], which
compares the LoRaWAN, MIoTy, Sigfox and NB-IoT networks in terms of average signal-
to-noise ratio (SNR), received signal strength, packet loss rate (PLR), packet size flexibility

16

and delay in the communication. The PLR is measured only in the uplink direction with
a fixed packet size, where Sigfox shows the most resistance to signal deterioration due to
distance. However, the packet size flexibility of Sigfox is limited and widely surpassed by
that of LoRaWAN.

Although the low power consumption requirement demands low data rates in LPWANs,
the use of ISM bands is subject to legal regulations that may vary between geographical
zones. The impact of such limitations is reviewed in [24], addressing technologies such as
LoRaWAN, Sigfox, IEEE 802.15.4 and DASH7. It is noted that these regulations vary on
various levels, since multiple institutions are responsible for defining them. This study is
focused on European Union regulations, which rely on duty cycle and maximum transmission
power.

2.2.2 Fragmentation in LPWAN

Fragmentation mechanisms have been of interest in LPWANs since the packet size restrictions
of most LPWANs impedes large amounts of data from being sent, which is of interest in IoT
applications. Packet fragmentation, however, comes at the expense of increased energy con-
sumption, communication overhead, and access attempts in the network. These drawbacks
are studied in [25], where it is found that packet fragmentation increases communication
reliability, an important network parameter for dense networks.

An aggressive fragmentation scheme using group NACKs for constrained LPWANs is
proposed in [26], which provides increased goodput and energy efficiency. In this scheme,
a packet is fragmented even if its length is less than the network MTU. Different strategies
according to the network density are provided, showing that no fragmentation is preferable in
small networks and IoT applications that require sending packets smaller than the proposed
fragment sizes. This fragmentation scheme was developed using the NS3 simulator and is
based on the buffered ALOHA framework.

2.2.3 SCHC definition

The SCHC standard has been drafted since September 2016, and was standardized by the
IETF in April 2020 as RFC 8724 [5]. The definitions of the SCHC Profiles for LPWAN
technologies start being developed as Internet-Drafts, preliminary documents of standards in
process, which after being formalized and reviewed are published as RFCs. This is the case
of the SCHC Profile of LoRaWAN, published as the RFC 9011 [8]. CoAP is an application
protocol oriented to microcontrollers of constrained memory which uses the REST software
architecture [27], and its specifications to make SCHC applicable over it have also been
published [28]. At the time of writing, the SCHC Profile of Sigfox is in its final stages to
become a Proposed Standard and is available as an Internet-Draft in [3].

Acklio is a company dedicated to the development of IoT applications, has been the main
driving force behind the development of SCHC as a standard [21]. It its web page dedi-
cated to SCHC, they mention the challenges of using the Internet protocol over LPWANs,

17

which arise from the fact that the minimum amount of information needed to enable IPv6
communication—the IPv6 minimum MTU requirement—is larger than the amount of infor-
mation that most LPWANs can carry in a single packet. They emphasize that the principle of
SCHC is to allow full compatibility with IP for LPWAN technologies, making these networks
interoperable.

SCHC is presented as a protocol with potential in the development of IoT thanks to the
C/D and F/R mechanisms, and several challenges in the adoption of this standard have been
discussed. The difficulty of optimizing the parameters of SCHC Profiles is addressed in [29],
which arises since every network has its own configurations and limitations regarding data
rates and energy consumption. Therefore, SCHC was defined as a generic framework, able
to be implemented in many technologies such as LoRaWAN, Sigfox, NB-IoT and low-rate
wireless personal-area networks (LR-WPAN), the latter being defined in the IEEE 802.15.4
standard. Furthermore, it is mentioned that the compression mechanism was designed with
IPv6, Used Datagram Protocol (UDP) and CoAP in mind, but is extendable to other proto-
cols, including those employed in non-IP-based traffic [12, 9].

Regarding the fragmentation and reliable delivery of fragments, in [29] it is mentioned
that, in an ideal case, the reception of many fragments could be confirmed in only one
downlink message, but the restrictions in packet size of LPWANs make this task difficult.
Therefore, F/R modes are defined to detect fragment losses, and it is also addressed that
every SCHC Profile must specify its preferred F/R mode. Finally, security aspects and
vulnerabilities of the protocol are addressed and detailed in the RFC.

2.2.4 SCHC performance studies

The definition of SCHC has been studied in few articles from a theoretical point of view
with mathematical models that involve the parameters of the protocol, which quantify its
performance. In [30], a study regarding the optimization of the ACK-on-Error F/R mode
parameters in LoRaWAN and Sigfox is presented. The optimal maximum sizes of fragments,
window number fields and sequence number fields are also discussed.

Performance metrics such as the channel occupancy, goodput and time overhead for dif-
ferent F/R modes of SCHC over LoRaWAN are studied in [31]. It is found that No-ACK
is the F/R mode with the lowest channel occupancy, highest goodput and lowest time over-
head, although it does not provide reliable delivery of SCHC Fragments. It is also found that
ACK-on-Error provides the most goodput, whilst ACK-Always has the same total delay and
similar channel occupancy as ACK-on-Error.

The study in [32] evaluates an implementation of the C/D mechanism over LoRaWAN. It
addresses the compression rate for different parameters of the SCHC Profile of said technol-
ogy. A similar analysis is presented in [33], which addresses the F/R mechanism transmission
times and proposes modifications in the receiver behavior.

The impact of header compression, data rate configuration and fragment size of SCHC
over LoRaWAN is addressed in [34]. An improvement in LPWAN reliability for low data
rates is highlighted. However, it is noted that fragmentation imposes an additional overhead

18

that limits the overall performance gain. Therefore, it is necessary to consider a trade-off
between energy consumption, channel reliability, bandwidth usage and fragment sizes when
using SCHC Fragmentation in IoT applications.

A model for channel occupation efficiency for SCHC over LoRaWAN is presented in [35].
The model proves that, for all LoRaWAN spreading factors, the channel efficiency decreases
as the probability of losing a SCHC Fragment increases. It is also shown that the efficiency
is directly linked to the transmission time used for each SCHC Fragment. Defining the
efficiency of the transmission as the ratio between the effective transmission rate and the
channel transmission rate, this study finds that the efficiency of SCHC is not linearly affected
by the LoRaWAN spreading factor.

The performance of the SCHC ACK-on-Error mode over the Sigfox network is evaluated
in [12] in terms of transfer time and messages exchanged. This article presents an analytical
approach to the transfer time of a SCHC Packet and provides empirical evaluations of the
time and number of messages exchanged for SCHC Packets of different lengths. This study
shows that small changes in packet sizes may have a significant impact in the transmission
time of a whole SCHC Packet. It is also shown that an increase in the fragment loss rate
may reduce the transmission time, since retransmissions can be performed in less time than
the time used to wait for an ACK when there are no errors.

A model for the energy consumption of SCHC transmissions over the Sigfox network is
presented in [36]. The model is based on hardware measurements and determines the impact
of different parameter and algorithm configurations on the energy consumption of SCHC over
Sigfox, providing a relation between the different parameters of SCHC/Sigfox and the device
lifetime. This study finds that average current consumption of transferring a SCHC Packet
decreases as the size of the SCHC Packet increases.

SCHC uses a compressed bitmap that contains the information of lost fragments in its
ACKs, which is an example of a receiver-feedback technique (RFT). The study in [37] eval-
uates different RFTs for SCHC, such as a list of lost fragments, a list of deltas and an
uncompressed bitmap. These RFTs are tested over LoRaWAN in terms of ACK payload
size, number of L2 frames per ACK, and the time on air (ToA) of each ACK. It is concluded
that RFTs that are different from a compressed bitmap offer performance improvement in
many scenarios.

The studies presented in this section help in understanding the different configurations of
SCHC and provide useful insights on the efficiency of the compression algorithms and the time
spent in SCHC transmissions. However, at the time of writing there is no study regarding
the rate of completed SCHC transmissions nor the total number of fragments sent per SCHC
transmission for a certain PLR, metrics that would be directly related to the applicability
of SCHC in constrained networks. A state machine for the Sigfox implementation of ACK-
on-Error is presented in [22] and is proposed to carry a probabilistic analysis over these
performance metrics.

The studies presented in this section are categorized in Table 2.4, indicating the LPWAN
technology that they employed, whether the study is theoretical or empirical, whether packet
losses are considered in the model definitions, and which performance metrics are addressed.

19

Reference Year LPWAN Technology Type of study Packet losses? Performance metric

[31] 2019 LoRaWAN Empirical (Simulated) No
Channel occupancy

Goodput
Total delay

[32] 2019 LoRaWAN Empirical No Compression rate

[33] 2019 LoRaWAN Empirical No SCHC Fragment transmission times

[30] 2020 Sigfox, LoRaWAN Theoretical, Empirical Yes Number of ACKs required

[34] 2020 LoRaWAN Empirical Yes
Delivery ratio
Time overhead

Payload overhead

[12] 2021 Sigfox Theoretical, Empirical No
SCHC Packet transfer time

Number of total uplink messages
Number of total downlink messages

[35] 2022 LoRaWAN Theoretical Yes Channel efficiency

[36] 2022 Sigfox Theoretical No Energy consumption

[37] 2022 LoRaWAN Empirical (Simulated) No
ACK payload size

L2 frames per ACK
ACK ToA

This study 2023 Sigfox Theoretical, Empirical Yes Uplink messages per completed SCHC transmission
Rate of completed SCHC transmissions

Table 2.4: Notable SCHC performance studies to the date of writing.

2.2.5 SCHC implementations

OpenSCHC is an open-source project written in the Python programming language, which
aims to implement SCHC in a stable way. It is developed by contributions in the GitHub
platform [38]. This code has not been fully adapted to other LPWAN technologies aside from
LoRaWAN. There also exists a complete implementation for LoRaWAN [39, 35], PySCHC,
which was used to evaluate the performance of SCHC over LoRaWAN theoretically and
experimentally.

Inspired by the implementation presented in [39, 35], an implementation of the F/R
mechanism for Sigfox was devised [11, 40]. This Python implementation aims to provide
an interface between SCHC and Sigfox [40]. It encapsulates every component of a SCHC
transmission as a set of parameters and methods. Furthermore, it provides scripts that
use the Flask framework to simulate SCHC/Sigfox transmissions. The sender side of this
implementation is deployable over Pycom LoPy4 devices, whilst the receiver side is deployable
over Google Cloud Platform (GCP). The analysis of SCHC presented in this thesis uses this
code for carrying experiments out. This implementation was developed over the course of
this study and the definition of SCHC/Sigfox, and is described in detail in Chapter 4.

The implementation and simulation of SCHC/Sigfox developed over the course of this
investigation has been used to contribute in the Sigfox SCHC Profile and the SCHC Com-
pound ACK standards. It has also been employed to perform performance evaluation studies
and theoretical modeling. Publications derived from this work are laid out in Appendix A.

20

Chapter 3

Methodology

This section provides an overview on the methods used in developing the SCHC-over-Sigfox
implementation, defining the performance metrics, and validating the semiempirical models.

3.1 Software development process

Over the course of both the standardization of SCHC/Sigfox and this investigation, an imple-
mentation was devised. This implementation has been developed with close guidance from
SCHC/Sigfox coauthors. It was first presented in [11], was employed in [12], and is publicly
available at [40]. This implementation provides code for the sender side of the communi-
cation, the receiver side of the communication, and a local simulation of the whole system.
The sender code is executable in Pycom LoPy4 devices, the receiver code is deployable over
GCP Cloud Functions and Firebase Realtime Database, and the simulation is executable in
a Python 3.9 environment. The Python language was chosen to develop the implementa-
tion since the LoPy4 is programmable in a Python implementation, Micropython, and GCP
allows Python code to be executed in Cloud Functions.

The code was developed by following a class-based approach, where most of the sending
and receiving logic is encapsulated into objects consisting of parameters and methods. The
constant modifications of the SCHC/Sigfox standardization process required stability and
resilience throughout the code development, and constant validation of all changes incorpo-
rated in each modification. Therefore, a test-driven development (TDD) scheme was carried
out, in which methods and algorithms are formulated as test cases before being implemented
and deployed.

Since the receiver side of the project is meant to be run over Cloud Functions and Firebase
Realtime Database, the receiver side of the simulation was developed in a way that emulates
how both platforms work: A local Flask server is run, which executes memory-less HTTP
functions every time a message is received. A nested JSON object is used as storage, which
emulates how Firebase Realtime Database works. On the other hand, the sender side of the
project uses Pycom libraries for Sigfox communication. Its functioning is emulated in the

21

simulation environment by objects that encapsulate the functions of a Python library for
HTTP communication, requests, which directly communicates with the HTTP endpoint of
the receiver side.

The project is composed of four different environments: the simulation environment, a
partial Realtime Database integration environment, the GCP (receiver) environment, and the
LoPy4 (sender) environment. When the project requires modifications, these environments
are developed in sequence, as shown in Figure 3.1. The simulation was the first environment
to be developed, and all changes are first implemented and tested there. After the implemen-
tation of new features or changes, these are validated by running unit tests: individual tests
of all methods and modules present in the code. After unit test validation, the simulation
can be run as a local client-server application. Special tests for known corner cases are run
to verify the functioning of the sender and receiver algorithms.

Figure 3.1: Development procedure of the SCHC/Sigfox implementation. When validations
are successful, the changes are adapted into the next environment. If validation fails, devel-
opment falls back to where the failure occurred and the process is carried out again.

If the simulation validation is satisfactory, its changes are then applied to a partial inte-
gration with Firebase Realtime Database, which is a Google platform used by the receiver
side as storage. The code is validated again by means of unit testing and corner tests cases
verification, to correct potential errors that were introduced in the integration process. If
this validation is successful, the changes of the receiver side of the simulation are applied to
the receiver environment.

The receiver environment integrates Cloud Functions with Firebase Realtime Database.
After applying the necessary changes, the code is deployed into Cloud Functions and a
uniform resource identifier (URI) of its HTTP endpoint is obtained. To communicate with
the receiver, an HTTP POST request must be sent towards that URI. The sender side of
the simulation is modified to send an HTTP POST request to the receiver endpoint. Again,
tests are carried out to verify the functioning of the receiver side deployment.

Finally, the sender side of the simulation is adapted into Micropython. Micropython is a
Python-based programming language for microcontrollers, used by the Pycom LoPy4 device
as a programming interface [41, 42]. The LoPy4 board is enabled to send messages over the
Sigfox network using the Sigfox wireless modulation. A Sigfox HTTP callback is configured
to forward the messages received by the Sigfox base stations to the receiver endpoint as an
HTTP request. A final verification of the code is done by performing SCHC transmissions
over the Sigfox network and observing the behavior of all algorithms. If this validation is
satisfactory, the code is publicly updated in the GitHub repository.

22

3.2 Performance metrics

Two performance metrics are proposed in this work: the average number of uplink messages
per SCHC transmission, NU , and the rate of successfully finished SCHC/Sigfox transmissions,
rS. Both performance metrics are to be measured empirically, and a semi-empirical approach
is performed to provide a mathematical approximation for their values. NU is calculated
performing n SCHC transmissions, counting the number of uplink messages sent until the
transmission is either completed or aborted, and then calculating the average over the n
samples. The success rate rS is calculated by performing n SCHC transmissions, counting
the number of completed (not aborted) transmissions and dividing it by n. Both metrics
depend on the rate at which SCHC Fragments are lost—the FLR—, the size L of the SCHC
Packet, and other network parameters. Since SCHC/Sigfox specifies that a single SCHC
Fragment is always carried in a single Sigfox packet, the FLR is equivalent to the uplink
PLR of the Sigfox network.

3.2.1 Justification

NU is proposed as a performance metric that quantifies the impact of the maximum number
of ACK requests sent in a row, MAX_ACK_REQUESTS or Rmax, over network resources usage.
This requires NU to be calculated in two scenarios: a scenario where aborting a transmission
is not possible (a non-aborting scenario), and the scenario where transmissions are aborted
if Rmax is reached (the base scenario).

The calculation of NU over a non-aborting scenario requires that the Rmax limit be by-
passed: Instead of sending a SCHC Sender-Abort message after the attempts counter reaches
Rmax, the SCHC transmission is continued normally until SCHC Packet reassembly is pos-
sible at the receiver end. This requires excessive use of network resources for high FLR
values, which is why, in this study, it is only calculated over a simulation environment and
not the actual network. Its comparison respect to NU when calculated over the base scenario
indicates the amount of uplink messages whose transmission was avoided.

The calculation of NU over the base scenario, aside from being used for comparison with
the non-aborting scenario, is a metric of interest in comparing the ACK-on-Error F/R mode
to other reliable delivery methods. Reliable delivery methods use control messages and
retransmissions that inevitably add additional message and time overhead. Particularly, the
ACK-on-Error F/R mode retransmits every lost fragment until it is received, which requires
sending an additional uplink message each time. Furthermore, the last SCHC Fragment
generated from a SCHC Packet requests an ACK after every final retransmission cycle, which
adds additional overhead.

On the other hand, the success rate rS is a metric of interest since, when calculated
with a large enough sample size, it signals the likeliness of a SCHC transmission to be
completed in stable channel conditions. Its calculation is only performed over the base
scenario. When network conditions are insufficient for SCHC transmission completion, the
transmission is aborted by means of the SCHC Abort messages, which make the transmissions
end prematurely and trigger the deletion of all SCHC Fragments processed up to that point.

23

This potentially rules out the possibility of recovering the information received in incomplete
SCHC transmissions. Given the constraints of the Sigfox network in terms of bandwidth
usage, knowing the success rate of SCHC transmissions given certain channel conditions is a
crucial metric for determining whether incorporating SCHC in a Sigfox application is worth
its bandwidth usage.

3.2.2 Modeling process

Both metrics are modeled in Chapter 5 in a similar way. The model for NU is defined for
the non-aborting scenario, whilst the model for rS is defined for the base scenario. First,
a mathematical justification for these metrics to be used as predictions of their theoretical
counterparts is provided. Random variables that correspond to a single sample of these
metrics are defined. Then, a sequence of n realizations of these variables is defined, and by
applying the strong law of large numbers it is concluded that as n increases, these performance
metrics converge almost surely to their theoretical values: the expected number of uplink
messages in a SCHC transmission and the success probability, respectively.

Second, a probabilistic analysis is carried out. NU over a non-aborting scenario requires
that all fragments be correctly delivered to the receiver side, and rS requires that the All-
1 fragment attempts counter does not exceed Rmax. This analysis provides the theoretical
component of both metrics, NUT

(p) and rST
(p) respectively.

Third, the theoretical components are compared with preliminary results obtained in
the simulation of SCHC/Sigfox, where a fixed FLR is induced. The shape of the absolute
difference curves is analyzed, and candidate functions are proposed as empirical adjustments.
These functions are shaped by various parameters, which are optimized using the least squares
method (LSM) and then adjusted by inspection not to exceed theoretical limits. This analysis
provides the empirical component of both metrics, NUE

(p) and rSE(p) respectively.

Finally, the semi-empirical models for both performance metrics are defined as the sum
of their theoretical parts and their empirical parts. These models are later validated by
comparing them to experimental results in terms of the absolute difference between the
models and the empirical calculations of the metrics.

3.3 Data collection and analysis

3.3.1 Experimental design

A SCHC transmission consists of sending and retransmitting SCHC Fragments pertaining
to the same SCHC Packet until all fragments are correctly delivered to the receiver or until
the transmission is aborted by the algorithm. To obtain data for the proposed performance
metrics, several repetitions of SCHC transmissions for different values of SCHC Packet size
and FLR are performed.

24

Experiments were performed in the simulation environment and over the Sigfox network.
Due to the simulation environment being a local client-server application, the transmission
times are much faster than in the real deployment. This makes it possible to configure ACK
timeout values to minimal values, which provides faster results. On the other hand, the real
deployment has longer transmission times and timeout values, which makes it difficult to
perform the same amount of SCHC transmissions in both environments within the same time.
In the simulation, both SIGFOX_DL_TIMEOUT and RETRANSMISSION_TIMEOUT were configured
to 0.1 s, whilst in the real deployment both timeout values are set to 60 s. The change in the
timeout value over the simulation environment is not thought to impact these performance
metrics. An additional set of experiments with a timeout of 1 s was performed to calculate
rS to support this claim.

This work employs the 1-byte header operational mode of SCHC/Sigfox. This opera-
tional mode is able to perform SCHC transmissions from 1 fragment up to 28 fragments.
Eight evenly-spaced SCHC Packet sizes are selected in the range of those admitted by this
operational mode. Other operational modes of SCHC/Sigfox were not tested since a larger
number of SCHC Fragments implies larger transmission time of SCHC Packets, both in the
simulation environment and in the real deployment.

In the simulation environment, SCHC transmissions are performed for ten evenly-spaced
values of the FLR, ranging from 0% to 90%. An FLR value of 100% was not tested since it
trivially produces infinite SCHC transmissions while measuring NU and also produces a null
rS. A number of 10,000 SCHC transmissions were performed for each combination of SCHC
Packet size and FLR value. Such a large number of experiments was chosen to obtain stability
of average values and standard deviations, achieving statistical significance and validating
the use of the law of large numbers in the reasoning behind the semi-empirical models. These
benefits are obtained by taking advantage of the reduced amount of time needed for each
experiment in the simulation.

On the other hand, as the FLR is not directly controllable in the real deployment, SCHC
transmissions were performed with the device located in three different positions inside the
laboratory the experiments were carried out in. Spatial distribution of the transmitter de-
vice and the surrounding environment impacts channel conditions and the FLR, which is
calculated after obtaining the results. In this configuration, 100 SCHC transmissions were
performed for each combination of SCHC Packet size and device location. Although this
number of experiments is far smaller than the number of experiments carried out in the
simulation (and may not achieve statistical significance), it was chosen since SCHC trans-
missions in the real deployment are restricted in bandwidth usage and take significantly larger
amounts of time. Moreover, results from experiments over a real deployment of SCHC/Sigfox
are needed to make a comparison with the results of the simulation.

The selected values of the SCHC Packet sizes and number of repetitions performed to
calculate NU and rS are reported in Table 3.1 for the simulation environment, and in Ta-
ble 3.2 for the deployment over the Sigfox network. Experiments add up to 800,000 SCHC
transmissions in the simulation environment, and up to 2,400 SCHC transmissions in the real
deployment.

Although the input of the SCHC implementation is a SCHC Packet, the results are

25

SCHC Packet size [B] Fragments Windows Repetitions Total SCHC transmissions

1 1 1

10,000 per FLR value
in [0%, 10%, · · · , 90%]

800,000

45 5 1
88 9 2
132 13 2
176 17 3
220 21 3
263 24 4
307 28 4

Table 3.1: Configuration of the SCHC Packet size and FLR values for each experiment in
the simulation environment.

SCHC Packet size [B] Fragments Windows Repetitions Total SCHC transmissions

1 1 1

100 per run 2400

45 5 1
88 9 2
132 13 2
176 17 3
220 21 3
263 24 4
307 28 4

Table 3.2: Configuration of the SCHC Packet size for each experiment in the real deployment
environment.

shown in relation to the number of fragments. This is because each number of fragments
comprehends a range of SCHC Packet sizes. Moreover, the SCHC sending and receiving
algorithms only interact with fragments. Additionally, although a SCHC Packet size of 307 B
was tested (which is greater than the maximum packet size recommended in this configuration
of SCHC/Sigfox), it generates the same number of fragments as a SCHC Packet of size 300 B.
This change in SCHC Packet size is not thought to generate any implications on the results.

NU was measured over a non-aborting scenario and over the base scenario. By using the
same results of the base scenario, rS is measured. Both performance metrics are calculated
over the real deployment, although experiments were not performed in the non-aborting
scenario. This is due to the longer transmission times and the excessive use of network
resources required in this configuration.

3.3.2 Experimental setup

As previously stated, the experiments of this work are carried out both in a simulation setup
and in a real deployment setup. All experiments of the simulation environment were executed
in a remote server. The specifications of the operating system, architecture, CPU and others
were obtained with the lscpu Linux command and are reported in Table 3.3.

Experiments carried out over the real deployment were run at the Faculty of Physical

26

Parameter Value

Operating system Debian GNU/Linux 10 (buster)
Architecture x86_64

Number of CPU cores 36
Threads per core 2

Model name Intel(R) Xeon(R) Gold 5220 @ 2.20 GHz
Maximum Hz 3900 Hz

Memory (RAM + swap) 213 GiB
Disk space 1.5 TiB

Table 3.3: Specifications of the server in which the simulation experiments were carried out.

and Mathematical Sciences, Universidad de Chile. The LoPy4 device was indoors, near a
window facing west, approximately 250 m to the west of the nearest Sigfox base station. The
distance between the device and the nearest window impacts channel conditions and FLR;
therefore, the device was located in three different positions inside the laboratory, according
to spatial availability of the room. Experiments were performed at roughly 20 cm, 230 cm
and 470 cm from the nearest window. The specifications of the LoPy4 device are shown in
Table 3.4.

Parameter Value

CPU Xtensa(R) LX6 microprocessor(s)
Architecture 32-bit

Number of CPU cores 2
Memory (RAM) 4 MB
Flash memory 8 MB

Sigfox node range Up to 50 km
Sigfox maximum TX power (RC4) +20 dBm

Sigfox data rate (RC4) 600 bps
Sigfox RX sensitivity −126 dBm

Sigfox current draw (RC4) 125 mA (TX), 11.2 mA (RX)

Table 3.4: Specifications of the LoPy4 device and its Sigfox modem performance. Adapted
from [4].

3.3.3 Data analysis

During each SCHC transmission, the sender program records data in an internal dictionary
object, which is updated every time a SCHC Fragment is sent and every time a SCHC ACK
is received. After finishing each transmission, be it successful or not, the sender exports the
dictionary object into the file storage of the platform in which the code is being run. The
stored files are JSON-formatted and contain information regarding the SCHC Packet size,
the number of SCHC Fragments generated, the induced FLR, the total number of uplink

27

transmissions performed, whether the SCHC transmission was ended successfully, and other
data.

The data was processed with NumPy and Matplotlib, Python libraries for numerical data
analysis. Empirical calculations of NU and rS were required aggregating data for the same F
and FLR value pair, calculating the mean and the associated standard deviation. For each
value of F , data for NU and rS respect to the FLR value was plotted. The empirical data was
plotted along the models proposed in Chapter 5, as well as the absolute difference between
both curves. The evolution of the standard deviation of the calculations of NU and rS for
multiple FLR values was also plotted.

28

Chapter 4

SCHC-over-Sigfox implementation

This chapter describes the implementation of SCHC/Sigfox, detailing both the simulation
environment and the real deployment environment. The simulation environment is the first
system to be modified when changes are needed and is developed in a way that emulates
the functionality of the real deployment, which makes it easier to integrate the modifications
into the deployment. Both architectures are developed primarily in the Python programming
language.

4.1 Module description

The simulation and the real deployment environments share the same model and class struc-
ture, although the implementation of some classes and methods differ. This is because the
simulation is developed to emulate how LoPy4, Cloud Functions, and Firebase Realtime
Database work. The real deployment uses the actual libraries and frameworks implemented
in those technologies. The modules present in the SCHC/Sigfox implementation are shown
in Figure 4.1 and are described in the following paragraphs.

The config module contains configuration modules, schc.py and gcp.py, which control
the functioning of SCHC and GCP respectively. schc.py contains application-specific con-
figurations such as the timeout values, the time to wait between two consecutive fragment
transmissions, and global constants. On the other hand, gcp.py contains information used
by GCP to perform the deployment and operate the Cloud Functions, such as the endpoints
and the authentication credentials.

The db module contains classes that manage data storage in different environments. It
contains the classes FileStorage and CommonFileStorage, which are used by the sender and
manage local file systems; and the classes JSONStorage, LocalStorage, and FirebaseRTDB,
which are used by the receiver and are programmed to read and save from a JSON-formatted
database. Particularly, LocalStorage emulates the functioning of FirebaseRTDB by creating
a locally stored JSON object that is updated when the receiver otains a new SCHC Fragment
or when it replies with a Compound ACK. FirebaseRTDB uses the firebase_admin Python

29

Figure 4.1: Module diagram of the SCHC-over-Sigfox implementation. Python scripts are
listed along with the environment they employed in. If not present, they are employed in all
environments.

library, which allows the code to modify the online storage object.

The Entities module contains classes that contain data pertaining to a particular SCHC
transmission and perform the F/R procedure. exceptions.py contains custom exceptions
of the project, raised under certain circumstances to control the flow of the F/R algorithms.
Rule and SigfoxProfile are data classes that are instantiated at the start of every SCHC
transmission and configure the values and parameters of the SCHC Profile. Logger is an
object that displays messages into the console and stores statistics of SCHC transmissions,
which can be exported for data analysis. The Fragmenter class performs the fragmentation
procedure, with a SCHC Packet as input and a list of SCHC Fragments as outputs; the
Reassembler class performs the opposite operation. SCHCSender is a class that executes the
SCHC sender algorithm by means of its start_session() method, which iterates over the
list of generated fragments. Finally, SCHCReceiver is responsible for executing the SCHC
receiver algorithm. The schc_recv() method is to be called every time the receiver side of
the implementation obtains a new SCHC Fragment.

The Messages module is composed of classes that encapsulate the information and func-

30

tions of all types of messages of SCHC/Sigfox. The Header class contains common informa-
tion for SCHC Headers, and is extended into the FragmentHeader and ACKHeader classes,
which contain specific information of SCHC Fragments and SCHC ACKs. These classes are
used in the Fragment and ACK classes, respectively. The Fragment class represents a SCHC
Fragment and is extended into the SenderAbort class, which has the same field structure. On
the other hand, the ACK class represents a SCHC ACK and is extended into the CompoundACK
class and the ReceiverAbort class. The CompoundACK class is the one instantiated by the
SCHCReceiver when a Compound ACK is generated, and contains more information than
the ACK class.

The Sockets module contains different implementations of the communication procedure
between each component of the system. Socket is an abstract class that declares the send(),
recv(), set_reception() and set_timeout() methods, but does not implement them.
Instead, they are implemented in the SigfoxHTTPSocket and the SigfoxSocket classes.
The SigfoxHTTPSocket class emulates the functioning of the LoPy4 Sigfox sockets and the
message forwarding of the Sigfox HTTP Callbacks by creating an HTTP request that is
directly sent to the receiver endpoint. On the other hand, SigfoxSocket encapsulates the
actual LoPy4 Sigfox sockets, and is only responsible for sending and receiving messages over
the network. The HTTP callbacks are performed by the Sigfox backend itself.

Finally, the utils module contains functions used throughout the project. The casting
module contains functions used to transform information between different data types used
in the project, such as binary, byte, hexadecimal, integer, and string representations. The
misc module contains miscellaneous functions used in the project. The nested_dict module
contains functions that perform read and write operations in an arbitrarily nested dictionary,
used by the JSONStorage class and its subclasses.

Unified Modeling Language (UML) diagrams of the db, Entities, Messages and Sockets
modules are provided in Appendix B, Figures B.1, B.2, B.4 and B.3, respectively.

4.2 Simulation

The simulation environment can be run entirely within a single computer. It is an HTTP
client-server application that uses Flask, a minimal Python framework for web services,
also used by GCP to instantiate Cloud Functions [43]. Since the system is self-hosted,
transmission times are multiple times faster than in the real deployment, which allows timers
to be configured with minimal values, performing SCHC transmissions faster. This advantage
is particularly useful when developing new changes or refactoring the code, since the changes
can be tested quickly.

An overview of the local simulation system is provided in Figure 4.2. Within the same
computer, a SCHC Packet is generated and processed by the Fragmenter, which generates a
list of SCHC Fragments. These fragments are processed by the SCHCSender and sent using a
SigfoxHTTPSocket object, which communicates with the receiver using HTTP. The HTTP
message is received at the HTTP receiver endpoint, and is passed to the SCHCReceiver. When
all fragments are received, the Reassembler object produces the original SCHC Packet. If

31

Compound ACKs are to be sent back to the sender side, the communication is done in the
opposite direction. Both the sender and the receiver side share the same storage but use
different interfaces to read from and write into it.

Figure 4.2: Overview of the simulation system.

4.3 Real deployment

The real deployment environment uses a LoPy4 as the sender side of the system, and an
integration with Cloud Functions and Firebase Realtime Database as the receiver side of the
system. The LoPy4 is programmed in Micropython, a Python implementation for micro-
controllers [41]. An HTTP Callback must be configured in the Sigfox backend to forward
the messages received by the network into the GCP environment, which communicates using
HTTP.

An overview of the local simulation system is provided in Figure 4.3. The sender side
of the code is deployed into a LoPy4 device, which has its own local file system and uses
the CommonFileStorage class to interact with it. A SCHC Packet is generated and frag-
mented, and the resulting SCHC Fragments are sent using the SigfoxSocket object, which
uses Pycom-specific methods to send messages using the Sigfox wireless modulation. These
messages are received by a Sigfox base station, which forwards them using IP into the Sigfox
backend. Here, the messages are formatted as a JSON object and forwarded into the end-
point of the receiver Cloud Function using HTTP. When Compound ACKs are to be sent
back to the receiver, the communication is done in the opposite direction. The receiver uses
the FirebaseRTDB class to communicate with the storage at Firebase, and produces a SCHC

32

Packet when all fragments are received.

Figure 4.3: Overview of the real deployment system.

33

Chapter 5

Performance metrics

A SCHC transmission is defined as the transmission of a single SCHC Packet, which may be
fragmented, and is finished when the packet is received in its entirety at the receiver end or
when the transmission is aborted. The SCHC transmission of a fragmented SCHC Packet
considers the transmissions of all the SCHC Fragments generated and all the SCHC ACKs
sent by the receiver, either until completion or failure to deliver the entire packet.

This chapter defines the two performance metrics proposed in this work: the average
number of uplink messages per SCHC transmission and the rate of completed SCHC trans-
missions. Both models consist of a theoretical part and an empirical part, the latter being
approximated by comparing partial results with the theoretical part, defining a candidate
function, and adjusting its parameters using LSM and manual inspection.

5.1 SCHC F/R process overview

This section introduces the variables that will be used in the models by describing the frag-
mentation process. The following constants are defined:

• Let LMTU be the MTU of the network in bytes.

• Let HR be the length in bytes of the header of a regular SCHC Fragment

• Let HA be the length in bits of the header of an All-1 fragment.

• Let N be the length in bits of the FCN header field.

• Let M be the length in bits of the window header field.

• Let Rmax be equal to MAX_ACK_REQUESTS.

With the previous definitions, the following variables are calculated:

34

• The maximum number of fragments that can be grouped in a single window is calculated
as S = 2N − 1.

• The maximum window number is Wmax = 2M .

• The maximum number of fragments that can be generated with this configuration is
Fmax = WmaxS.

The different operational modes of SCHC/Sigfox, presented in Section 2.1.3, may specify
different header and payload sizes for regular SCHC Fragments and the All-1 fragment.
The length in bytes of the payload of regular fragments is PR = LMTU − HR, whilst the
maximum length in bytes of the payload of the All-1 fragment is PA = LMTU − HA. Note
that if HR = HA, PR = PA. Since a SCHC fragmentation process always generates an All-1
fragment, the maximum SCHC Packet size in bytes can be calculated as

Lmax = P0(Fmax − 1) + PA. (5.1)

Note that Lmax may not be equal to the maximum SCHC Packet size defined in [3] and
reported in Table 2.3.

In header configurations where HR < HA, such as in the Single-byte SCHC Header and
the Two-byte SCHC Header Option 2 modes, the All-1 fragment carries no payload if the
size of the SCHC Packet is a multiple of P0. Therefore, the number of fragments generated
from a SCHC Packet of size L is calculated as

F =

⌈

L
P0

⌉
+ 1 if HR = HA ∧ L mod P0 = 0

⌈
L
P0

⌉
otherwise

· (5.2)

Subsequently, the number of windows obtained by grouping the F fragments into windows
of size S is calculated as

W =

⌈
F

S

⌉
. (5.3)

Every window but the last one contains exactly S fragments. The number of fragments
in the last window is not directly calculated as the remainder of dividing F by S, since all
windows contain at least one fragment and in cases where F is a multiple of S, the remainder
is 0. Instead, one fragment is taken from F and is added back after calculating the reminder.
Therefore, the number of fragments in the last window is calculated as

U = [(F − 1) mod S] + 1. (5.4)

Finally, let X denote a random variable that represents whether a single fragment is lost,
with a discrete space ΩX = {0, 1}. The decimal representation of the FLR is assumed as the
probability of this happening and is labeled p. More specifically,

P(X = 1) = p (The fragment is lost) (5.5)
P(X = 0) = 1− p (The fragment is delivered). (5.6)

35

Note that X ∼ B(1, p), because each attempt of sending a particular fragment is a
binomial trial. Also note that p quantifies losses of Sigfox messages in the uplink stream;
losses in the downlink stream do not necessarily follow the same rate and are not considered
in this study.

The variable names and meanings are summarized in Table 5.1. A set of examples for L,
F , W and U are shown in Table 5.2, considering the values of the 1-byte header configuration
of SCHC/Sigfox. These examples were selected by taking eight evenly-spaced integer values
for L ranging from the smallest SCHC Packet size, 1 B, to the largest practical SCHC Packet
size, 307 B.

Variable name Type Unit Meaning

F Function 1 Number of fragments generated
Fmax Function 1 Maximum number of fragments
HA Constant Byte All-1 fragment header size
HR Constant Byte Regular fragment header size
L Constant Byte Length of a particular SCHC Packet

Lmax Function Byte Practical maximum SCHC Packet size
LMTU Constant Byte MTU of the network
M Constant Bit Length of the window header field
N Constant Bit Length of the FCN header field
PA Function Byte All-1 fragment payload size
PR Function Byte Regular fragment payload size
Rmax Constant 1 Maximum number of ACK requests in a row (MAX_ACK_REQUESTS)
S Function 1 Maximum number of fragments per window
U Function 1 Number of fragments in the last window
W Function 1 Number of windows obtained

Wmax Function 1 Maximum number of windows

Table 5.1: Variable names in alphabetical order.

L [B] F W U

1 1 1 1
45 5 1 5
88 9 2 2
132 13 2 6
176 17 3 3
220 21 3 7
263 24 4 3
307 28 4 7

Table 5.2: Values of F , W and U for different values for L, calculated for the 1-byte header
configuration of SCHC/Sigfox.

The performance metrics are defined under the following assumptions:

• X is independent and identically distributed

• All Compound ACKs are correctly delivered to the sender

36

• The retransmission timer does not expire.

Although these assumptions are not necessarily true, they make the models mathematically
tractable and provide room for improvement. Further implications are discussed later in the
document.

5.2 Average number of uplink messages per SCHC trans-
mission

The average number NU of uplink messages per completed SCHC transmission is proposed
as a performance metric that quantifies the uplink message overhead of SCHC fragmentation
under lossy channels. It is defined as the average number of messages sent over many SCHC
transmissions, either until they finish successfully or until they are aborted. It can also
be measured in a scenario where the Rmax limit is bypassed, which avoids aborting the
transmissions (a non-aborting scenario).

The measurement over the non-aborting scenario, if compared to a measurement over
the base scenario, quantifies the impact of aborting SCHC transmissions in terms of uplink
messages whose transmission was avoided, since network conditions were too harsh. With this
modification, it is expected, theoretically and for p < 1, that every SCHC transmission would
eventually be successful. This modification prevents the SCHC algorithm from reaching
step 4b of the sender algorithm shown in Section 2.1.3.

This model is composed of a theoretical part NUT
(p) and an empirical part NUE

(p).
NUT

(p) is obtained by performing a probabilistic analysis over the expected number of times
a particular SCHC Fragment needs to be sent until it is received. On the other hand, NUE

(p)
is estimated by comparing NUT

(p) to preliminary empirical results. The semiempirical model
for NU is then defined as

NU(p) = NUT
(p) +NUE

(p). (5.7)

5.2.1 Justification

This section lays out the importance of this metric to quantify SCHC Fragmentation per-
formance. The sender algorithm of SCHC/Sigfox, after transmitting the last fragment—the
All-1 fragment—, starts a retransmission phase for every lost fragment in the corresponding
Compound ACK, repeating this process until all fragments are delivered correctly to the
receiver or until the All-1 is sent Rmax times in a row. On its own, this performance metric
quantifies the average message overhead in a SCHC transmission per FLR value. By compar-
ing the two measurements of NU (over a non-aborting scenario and over the base scenario),
this metric is a way to quantify the number of UL messages that are saved, i.e., not sent
over harsh network conditions, avoiding excessive use of network resources and aborting the
transmission instead.

37

Depending on the FLR, the number of messages needed to do so is expected to increase,
but for p < 1 this number should not be infinite unless the SCHC algorithm contains loops.
Its calculation is also useful to find absorbing loops or errors in the SCHC algorithm.

A measurement of NU over a non-aborting scenario cannot be used to predict the ac-
tual number of fragments that would be sent in a real deployment of SCHC/Sigfox, since
ignoring the Rmax limit drastically changes the functioning of the algorithm. Therefore, this
scenario provides an upper bound to the actual average number of messages sent per SCHC
transmission.

If calculated over the base scenario with a sample size large enough, NU can be used as a
prediction of its theoretical counterpart, the expected number of uplink messages per SCHC
transmission. Let NUn denote the average number of uplink messages per SCHC transmission
measured by performing n transmissions. Let Y be a random variable that quantifies the
number of uplink messages sent in a single SCHC transmission, with a discrete sample space
ΩY ⊆ N\{0} and with expected value E(Y) = µ ∈ R. Let (Yk)

n
k=1 = (Y1, Y2, · · · , Yn) be

a random process consisting of a sequence of iid random variables with the same expected
value E(N1) = E(N2) = · · · = µ. According to the strong law of large numbers, the average of
(Yk)

n
k=1, Yn, converges almost surely to the expected value, µ, as n increases towards infinity.

Note that Yn is a calculation of the average uplink message count for n SCHC transmissions,
this is, Yn = NUn . With this,

P
(
lim

n−→∞
NUn = µ

)
= 1. (5.8)

Equation 5.8 implies that, as the sample size used to calculate NUn increases, its value
approaches the expected value for the distribution of Y . This makes it possible to compare
probabilistic calculations with empirical results for a large sample size.

5.2.2 Theoretical model

A model for NU when calculated over a non-aborting scenario is provided in the following
paragraphs. Let Z be a random variable that quantifies the number of times a particular
SCHC Fragment needs to be sent until it is successfully delivered to the receiver, with a
discrete space ΩZ ⊆ N\{0}. Since Z includes the successful attempt, Z ≥ 1. Note that each
attempt to send a fragment is a realization of X, a binomial trial of success probability 1−p,
and that the count stops as soon as X = 0 according to Equation 5.6. Therefore, Z follows
a geometric probability distribution of associated probability 1− p, i.e., Z ∼ Geo(1− p). It
follows that

E(Z) =
1

1− p
. (5.9)

Equation 5.9 implies that for a single SCHC Fragment and for a value of p, the expected
number of times that the SCHC Fragment is transmitted until reception is 1

1−p
. As per

assumption 5.1, the retransmission attempts could be performed at every Compound ACK
reception, but the moment in which they are performed does not affect the values that Z can
take. Therefore, Z is independent of the number of received Compound ACKs and, therefore,
of the number of windows.

38

In a SCHC transmission of F fragments, the random variable Z is realized for each
separate fragment. Let (Zk)

F
k=1 = (Z1, Z2, · · · , ZF) be a sequence of realizations of Z for every

fragment of a SCHC Transmission, iid random geometric variables of associated probability
1− p. Each fragment is sent independently of other fragments, thus, these realizations of Z
are independent. Note that the sum of these realizations,

∑F
k=1 Zk, is random variable that

quantifies the total number of uplink transmissions until reception of the F fragments By
the linearity of expectation, it follows that

E

(
F∑

k=1

Zk

)
=

F∑
k=1

E (Zk) =
F∑

k=1

1

1− p
= F

(
1

1− p

)
. (5.10)

With this, it is proposed that

NUT
(p) = F

(
1

1− p

)
. (5.11)

5.2.3 Validation

The theoretical component of NU(p), NUT
(p), was compared with measurements of NU per-

formed in the SCHC/Sigfox simulation. The experiments consisted of repeating 10,000 SCHC
transmissions for every combination of number of SCHC Fragments (F) and induced FLR
value (p), as stated in Table 3.1. For each combination of F and p, the mean and the standard
deviation of the data is calculated and displayed. This section displays the results for F = 1
and F = 17 B in Figure 5.1 and Figure 5.2, respectively. Other packet sizes behave similarly
as the case for F = 17 B but differ from the case for F = 1, and are reported in Appendix C.

As shown in Figure 5.1a, NUT
(p) closely follows empirical results for F = 1, with a peak

difference of 0.051 found at p = 0.9, as shown in Table 5.3. However, a clear difference appears
in the cases where F > 1, as seen in Figure 5.2a. Experimental curves show a rapid increase
and separate from the theoretical curve, the difference being higher as F increases. The
shape of the difference curves is analyzed to propose a candidate function that compensates
the differences.

39

(a) Comparison between NUT
(p) and NU . (b) Difference between simulations and the theo-

retical model.

Figure 5.1: Simulation environment results compared to the theoretical component NUT
(p).

L = 1 B, F = 1, W = 1

(a) Comparison between NUT
(p) and NU . (b) Difference between simulations and the theo-

retical model.

Figure 5.2: Simulation environment results compared to the theoretical component NUT
(p).

L = 176 B, F = 17, W = 3

5.2.4 Empirical adjustment

For F = 1, the difference is negligible; however, for F > 1, the difference curves reach up to
364.445. As shown in and Table 5.3, the maximum difference increases noticeably as both L
and consequently F increase. A candidate function should follow this behavior: negligible or
null for F = 1 and increasing for F > 1.

All difference curves for F > 1 show a similar shape, which only differs slightly between
the curves as F increases. The shape of the curves is found to be similar to that of curves of

40

F Max. difference p
1 0.051 0.6
5 194.024 0.9
9 251.376 0.9
13 292.191 0.9
17 313.431 0.9
21 334.390 0.9
24 350.586 0.9
28 364.445 0.9

Table 5.3: Maximum difference between NUT
(p) and NU for each value of F , along with the

value of p where the maximum was found.

the form y(x) = x
1−x

. More specifically, the following function is proposed:

NUE
(p) = fN(F)

(
p

(1− p)a

)
, (5.12)

where a is constant and fN(F) is a function that is non-zero for F > 1 and that increases as
F increases. The parameter a controls the exponential increment of the curve.

It is proposed that
fN(F) = F − 1. (5.13)

Note that if F = 0, fr(F) = 0. The optimal value of a is obtained by means of the LSM
for every value of F . A single value of a was selected from this set of optimum a, which
makes NU(p) not exceed the values of NU , was selected. a = 1.14 is chosen. The values of
the optimal a for every F are reported in Table 5.4.

Criteria a

F = 5 1.732
F = 9 1.545
F = 13 1.428
F = 17 1.330
F = 21 1.246
F = 24 1.200
F = 28 1.145

Mean 1.375
Std. dev. 0.193

Adjusted value 1.140

Table 5.4: Values for a obtained by using LSM. The final adjustment by inspection is shown
in the last row.

With the previous decisions, NUE
(p) becomes

NUE
(p) = (F − 1)

(
p

(1− p)1.14

)
. (5.14)

41

Combining Equation 5.11 and Equation 5.14 into Equation 5.7 yields the proposed semiem-
pirical model for NU when calculated over a non-aborting scenario:

NU(p) = F

(
1

1− p

)
+ (F − 1)

(
p

(1− p)1.14

)
(5.15)

5.3 Rate of successful SCHC transmissions

The rate of completed SCHC transmissions, or success rate rS, is defined as the ratio between
the amount of successful SCHC transmissions and the total amount of SCHC transmissions
performed for a fixed value of L and p. A successful SCHC transmission is defined as a
SCHC transmission where the sender has received the finalizing ACK from the receiver. This
requires that all fragments get from the sender end to the receiver end without errors, and
that the transmission is not aborted, i.e., the sender and the receiver should reach steps 4(d)iii
and 4(b)iiA of the algorithms shown in Section 2.1.3, respectively.

Similarly to the model for NU , this model is composed of a theoretical part and an
empirical part, rST

(p) and rSE
(p) respectively. rST

(p) is proposed in the following definition
section by means of a probabilistic analysis and rSE

(p) is estimated by comparing rST
(p) to

preliminary empirical results. The semiempirical model for the success rate is then composed
as a function of p,

rS(p) = rST
(p) + rSE

(p). (5.16)

5.3.1 Justification

The importance of the success rate as a performance metric is laid out in the following
paragraphs. Let rSn denote the success rate measured by performing n SCHC transmissions.
A SCHC transmission can be either successful or aborted. Therefore, the event of a SCHC
transmission being successful is a binomial trial with a certain associated success probability,
pS. Let V be a random binomial variable that quantifies whether a single SCHC transmission
is successful or not, with a discrete space ΩV = {0, 1}. It follows that V ∼ B(1, pS).

Let (Vk)
n
k=1 = (V1, V2, · · · , Vn) be a sequence of iid random variables, where Vk ∼ B(1, pS)

for k ∈ [1, n]. Each Vk corresponds to a particular realization of V . According to the strong
law of large numbers, the average of (Vk)

n
k=1, Vn, converges almost surely to the expected

value, pS, as n tends to infinity. Note that Vn is a calculation of the success rate with n
SCHC transmissions, this is, Vn = rSn . With this,

P
(
lim

n−→∞
rSn = pS

)
= 1. (5.17)

Equation 5.17 implies that, as the sample size used to calculate the rS increases, rS ap-
proximates the success probability pS. This makes it possible to use an empirically calculated
success rate as a prediction of the probability of a SCHC transmission to be complete, under

42

the same conditions in which rS was measured. The success rate of certain SCHC config-
urations can then be taken into consideration before deploying a SCHC application if the
channel conditions are known and stable, providing information that can potentially save
network resources in scenarios where the success rate is low or when its variance is high.

5.3.2 Theoretical model

Since retransmission timer expiration is not considered in this analysis, the only way for
a SCHC transmission to be aborted is by means of a SCHC Sender-Abort message, which
is sent after reaching the maximum number of times that an ACK can be requested in a
row, Rmax. The Sigfox SCHC Profile states that the attempts counter is reset every time an
ACK is received by the device, and is only updated after sending an All-1. The limit for the
attempts counter can be exceeded by any combination of losing the All-1 or the ACKs that
make the attempts counter reach Rmax. As per assumption 5.1, this analysis is centered in
the event of losing the All-1 Rmax times in a row.

The Sigfox SCHC Profile states that the SCHC Sender-Abort is sent only when the num-
ber of repeated All-1 transmissions in sequence reaches Rmax without receiving a Compound
ACK. This requires one All-1 fragment to be lost Rmax in a row. The probability of any frag-
ment to be lost r times in a row is simply pr, and the probability of the opposite event—not
losing the fragment r times in a row—is 1−pr. This is true for any fragment, particularly the
All-1 fragment. The event of losing an All-1 fragment Rmax times in sequence is necessary
for a SCHC transmission to be aborted, thus, this event should not happen for a SCHC
transmission to be successful. It is proposed that

rST
= 1− pRmax . (5.18)

5.3.3 Validation

The theoretical component of the success rate was compared with several measurements of rS
in the SCHC/Sigfox simulation. The experiments performed in the simulation environment
consisted of repeating 10,000 SCHC transmissions for every combination of number of SCHC
Fragments (F) and induced FLR value (p), as stated in Table 3.2. The mean and the standard
deviation of the data obtained from the experiments is calculated and displayed. This section
displays the results for SCHC Packet sizes of F = 1 and F = 17 B in Figures 5.3 and 5.4.
Other packet sizes behave similarly as the F = 17 case but differ from the F = 1 case, and
are reported in Appendix G.

43

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure 5.3: Simulation environment results compared to the theoretical component rST
(p).

L = 1 B, F = 1, W = 1

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure 5.4: Simulation environment results compared to the theoretical component rST
(p).

L = 176 B, F = 17, W = 3

As shown in Figure 5.3a, rST
(p) closely follows empirical results for F = 1, with a peak

difference of 0.003 found at p = 0.7, as shown in Table 5.5. However, a clear difference
appears in the cases where F > 1, as seen in Figure 5.4a. The curves show a steep decrease
starting around p = 0.4 and present an inflection point. The shape of the difference curves
is analyzed to propose a candidate function that compensates the differences.

44

F Max. difference p
1 0.003 0.7
5 0.602 0.8
9 0.646 0.8
13 0.658 0.8
17 0.663 0.8
21 0.665 0.8
24 0.667 0.8
28 0.676 0.7

Table 5.5: Maximum difference between rST
(p) and rS for each value of F , along with the

value of p where the maximum was found.

5.3.4 Empirical adjustment

For F = 1, the difference is negligible; however, for every F > 1, the difference curves reach
up to 0.676. As shown in Table 5.5, the maximum difference increases slightly as both L and
consequently F increase. A candidate function should follow this behavior: negligible or null
for F = 1 and slightly increasing for F > 1.

All difference curves for F > 1 show a similar shape, which only differs slightly between
the curves as F increases. The shape of the curves is found to be similar to that of curves
such as y(x) = x(1− x). More specifically, the following function is proposed:

rSE
(p) = −fr(F)

[
γpα(1− p)β

]δ
, (5.19)

where α, β, γ and δ are constants, and fr(F) is a function that is non-zero for F > 1 and
that increases slowly as F increases. The negative sign is added since rST

(p) was found to
be always greater than the empirical results. α controls the aperture to the left of the curve,
β controls the aperture to the right of the curve, γ controls the rate at which the function
increases and decreases and δ is a scaling factor.

It is proposed that

fr(F) =
F − 1

5F
. (5.20)

Note that if F = 0, f(F) = 0. The optimal values of α, β, γ, δ and ε were obtained by
means of LSM for every value of F , and the mean for each constant was selected. Then,
they were adjusted by inspection to avoid obtaining negative results for rS(p). The adjusted
values differ from the ones found by LSM but provide a more realistic fit for the curve. The
values of these constants are reported in Table 5.6, whilst the results of LSM are reported in
Table G.1.

With the previous decisions, rSE
(p) becomes

rSE
(p) = −F − 1

5F

[
4.8p2.00(1− p)0.49

]3.20
. (5.21)

Combining Equation 5.18 and Equation 5.21 into Equation 5.16 yields the proposed

45

Constant Value

α 2.00
β 0.49
γ 4.80
δ 3.20

Table 5.6: Adjusted values for α, β, γ and δ.

semiempirical model for the success probability of a SCHC transmission:

rS(p) = 1− pRmax − F − 1

5F

[
4.80p2.00(1− p)0.49

]3.20
. (5.22)

46

Chapter 6

Results

This chapter provides the data obtained from the experiments, which show a comparison
of the measured values of performance metrics NU and rS respect to their semi-empirical
models, NU(p) and rS(p). Useful performance data of SCHC/Sigfox is also obtained.

6.1 Average number of uplink messages sent per SCHC
transmission

This section provides the results of the experiments performed to calculate the average num-
ber of uplink messages sent per SCHC transmissions, NU , as described in Section 3.3.1. The
results of the semi-empirical model NU(p), described in Section 5.2, are also provided.

6.1.1 Simulation results (non-aborting scenario)

These results were obtained by disabling the Rmax limit check when the attempts counter
increases. Representative results are shown in Figures 6.1 and 6.2 for F = 1 and F = 17.
Other numbers of SCHC Fragments show similar behavior to that of F = 17, and are shown
in Appendix D.

Figure 6.1a shows both curves for F = 1. The curve of NU has error bars of ±σN ,
where σN is the standard deviation obtained for this calculation. Figure 6.1b shows the
difference between the two curves, which peaks at 0.051 for p = 0.6. On the other hand,
Figure 6.2a shows both curves for F = 17, and Figure 6.2b presents the difference, which
peaks at 114.656 for p = 0.9. The evolution of σN as the sample size n increases is shown in
Figures 6.1c and 6.2c.

The values of NU obtained in the simulation environment for different number of fragments
are shown in Table 6.1. The values for the standard deviation obtained for each combination
of L and p are shown in Table 6.2. The maximum differences between the curves for each
value of L are shown in Table 6.3.

47

(a) Comparison between NU and NU (p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure 6.1: Simulation environment results for NU and NU(p), L = 1 B, F = 1, W = 1.

48

(a) Comparison between NU and NU (p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure 6.2: Simulation environment results for NU and NU(p), L = 176 B, F = 17, W = 3.

49

p
NU 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

1 1.000 1.114 1.248 1.422 1.661 2.002 2.449 3.350 5.022 9.986
5 5.000 5.973 7.217 8.836 11.235 15.051 21.435 34.543 69.304 244.024
9 9.000 10.280 12.086 14.681 18.420 23.978 33.702 53.001 102.515 341.376
13 13.000 15.070 17.690 21.148 26.057 33.519 46.049 70.111 131.625 422.191
17 17.000 19.307 22.353 26.632 32.612 41.660 56.516 85.507 156.990 483.431
21 21.000 24.086 27.887 32.823 40.060 50.583 67.988 101.127 182.028 544.390
24 24.000 27.119 31.251 36.747 44.612 56.201 75.443 111.808 198.620 590.586
28 28.000 31.861 36.574 43.009 51.921 65.007 86.473 126.850 223.748 644.445

Table 6.1: Values of NU calculated by performing n = 10, 000 transmissions per combination
of F and p in the simulation scenario. Each row is coded with a green–red color gradient
ranging from its minimum value to its maximum value.

p
σN 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L

1 0.000 0.353 0.556 0.773 1.040 1.414 1.894 2.819 4.414 9.512
5 0.000 1.373 2.170 3.184 4.497 6.711 10.344 17.686 37.590 137.585
9 0.000 1.485 2.516 3.803 5.465 7.828 12.041 20.122 41.618 146.696
13 0.000 1.860 2.921 4.209 5.958 8.620 13.031 21.443 43.748 154.848
17 0.000 1.903 3.143 4.595 6.491 9.276 13.902 22.713 46.299 157.176
21 0.000 2.146 3.413 4.903 6.948 9.804 14.575 24.126 47.954 160.739
24 0.000 2.161 3.546 5.180 7.213 10.201 15.144 24.768 48.662 161.792
28 0.000 2.468 3.690 5.386 7.592 10.743 15.579 25.584 49.748 167.911

Table 6.2: Standard deviation values of NU calculated by performing n = 10, 000 trans-
missions per combination of F and p in the simulation scenario. Each row is coded with a
green–red color gradient ranging from its minimum value to its maximum value.

F Max. difference p
1 0.051 0.6
5 144.330 0.9
9 151.988 0.9
13 143.110 0.9
17 114.656 0.9
21 85.921 0.9
24 64.847 0.9
28 51.546 0.8

Table 6.3: Maximum difference between NU(p) and NU for each value of F , along with the
value of p where the maximum was found.

6.1.2 Simulation results (base scenario)

In this section, results were obtained in the base scenario, where the Rmax limit is not by-
passed. Completed SCHC transmissions are reported as well as the total number of trans-

50

missions, the latter including completed and aborted transmissions. Representative results
are shown in Figures 6.3 and 6.4 for F = 1 and F = 17. Other SCHC Packet sizes show
similar behavior to that of F = 17, and are shown in Appendix E.

Figure 6.3: Simulation environment results over the base scenario for NU and NU(p). L = 1
B, F = 1, W = 1.

Figure 6.4: Simulation environment results over the base scenario for NU and NU(p). L = 176
B, F = 17, W = 3.

Figures 6.3 and 6.4 show NU calculated both considering all SCHC transmissions and
considering only completed SCHC transmissions. Note that for high values of p and for F = 1,
the total average surpasses the average calculated in successful SCHC transmissions, whilst
for F = 17 and other values, the average calculated in successful transmission surpasses the
total average of uplink transmissions. The ratios between the calculations of NU over the base
scenario and over the non-aborting scenario are shown in Figure 6.5. This ratio considers the
average number of uplink transmissions performed in all experiments, considering completed
and aborted SCHC transmissions.

51

Figure 6.5: Ratio between the calculations of NU over the base scenario and over the non-
aborting scenario

6.1.3 Real deployment results

Representative results are shown in Figures 6.6 and 6.7, which display a comparison between
NU and NU(p) for F = 1 and F = 17. Results for other SCHC Packet sizes are shown in
Appendix F.

The uplink and downlink PLR were calculated by counting the number of sent and re-
ceived uplink and downlink messages at both ends of the communication, respectively. The
uplink PLR was calculated as the ratio between the UL count at the receiver and the UL count
at the sender, whilst the downlink PLR was calculated as the ratio between the DL count
at the sender and the DL count at the receiver. These calculations are shown in Table 6.4,
and the value of p shown in the subsequent results is chosen as the decimal representation of
these percentages.

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure 6.6: Real deployment results for NU and NU(p), L = 1 B, F = 1, W = 1.

52

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure 6.7: Real deployment results for NU and NU(p), L = 176 B, F = 17, W = 3.

Figures 6.6 and 6.7 show the curve of rS(t), simulation results as a reference, and the data
obtained from the experiments as singular dots for F = 1 and F = 17, respectively. Both the
simulation results and the real deployment results count data of all (completed and aborted)
SCHC transmissions. Figures 6.6b and 6.7b show the respective differences between NU and
NU(p). The precise values for NU and its associated standard deviation σN calculated in
this scenario are shown in Table 6.5. As shown in Table 6.6, the difference for F = 1 peaks
at 1.366, found at p = 0.493, whilst the difference for F = 17 B peaks at 20.586, found
at p = 0.493.

53

Run First Second Third
UL count (receiver) 12,151 10,464 12,287
UL count (sender) 12,790 20,658 20,042

UL PLR (%) 4.996 49.347 38.695
DL count (sender) 1,278 1,898 2,359
DL count (receiver) 1,281 1,900 2,369

DL PLR (%) 0.234 0.105 0.422

Table 6.4: Calculated PLR values in the uplink and the downlink direction for each run of
experiments in the real deployment scenario.

p
NU ;σN 0.050 0.387 0.493

F

1 1.020; 0.140 2.470; 2.012 3.340; 2.273
5 5.530; 0.943 10.040; 3.197 11.940; 5.455
9 9.550; 0.942 16.390; 5.234 17.300; 6.409
13 13.870; 1.815 23.380; 7.731 29.970; 10.446
17 18.370; 1.869 28.390; 8.103 30.120; 13.059
21 22.870; 4.095 35.360; 9.101 35.490; 13.687
24 26.320; 6.854 39.020; 10.842 39.420; 14.008
28 30.370; 3.466 45.370; 12.194 45.000; 16.749

Table 6.5: Values of NU and σN obtained in the real deployment scenario by performing
n = 100 transmissions per number of SCHC Fragments.

F Max. difference p
1 1.366 0.493
5 2.217 0.493
9 9.040 0.493
13 8.553 0.493
17 20.586 0.493
21 27.399 0.493
24 32.607 0.493
28 39.210 0.493

Table 6.6: Maximum difference between NU(p) and NU found in the real deployment scenario
for each value of F , along with the value of p where the maximum was found.

54

6.2 Rate of successful SCHC transmissions

This section provides the results of the experiments performed to calculate the rate of success-
ful SCHC transmissions, rS, as described in Section 3.3.1. The results of the semi-empirical
model rS(t), described in Section 5.3, are also provided.

6.2.1 Simulation results

Representative results are shown in Figures 6.8 and 6.9, which display a comparison between
rS and rS(t) for F = 1 and F = 17. Other SCHC Packet sizes show similar behavior to that
of F = 17, and are shown in Appendix H.

(a) Comparison between rS and rS(p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure 6.8: Simulation environment results for rS and rS(p), L = 1 B, F = 1, W = 1.

55

(a) Comparison between rS and rS(p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure 6.9: Simulation environment results for rS and rS(p), L = 176 B, F = 17, W = 3.

Figure 6.8a shows both curves for F = 1. The curve of rS has error bars that correspond
to a single standard deviation, ±σS, which are capped not to exceed the [0, 1] interval.
Figure 6.8b shows the difference between the two curves, which peaks at 0.003 for p = 0.7.
On the other hand, Figure 6.9a shows both curves for F = 17 B, and Figure 6.9b presents
the difference, which peaks at 0.192 for p = 0.7. The evolution of the standard deviation of
rS, σS, as the sample size n increases is shown in Figures 6.8c and 6.9c.

The values of rS obtained in these experiments are shown in Table 6.7. The values for the
standard deviation obtained for each combination of F and p are shown in Table 6.8. The
maximum differences between the curves for each value of F are shown in Table 6.9.

56

p
rS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

1 1.000 1.000 0.999 0.999 0.990 0.968 0.921 0.829 0.672 0.408
5 1.000 1.000 1.000 0.993 0.973 0.898 0.698 0.355 0.070 0.001
9 1.000 1.000 1.000 0.993 0.972 0.887 0.650 0.274 0.027 0.000
13 1.000 1.000 0.999 0.994 0.965 0.864 0.607 0.228 0.015 0.000
17 1.000 1.000 0.999 0.994 0.964 0.860 0.599 0.200 0.009 0.000
21 1.000 1.000 0.999 0.994 0.962 0.844 0.574 0.177 0.008 0.000
24 1.000 1.000 1.000 0.992 0.964 0.849 0.570 0.169 0.006 0.000
38 1.000 1.000 0.999 0.992 0.956 0.841 0.547 0.156 0.003 0.000

Table 6.7: Values of rS calculated by performing n = 10, 000 transmissions per combination
of F and p in the simulation scenario. Values close to 1, 0.5 and 0 are coded with a green–
white–red color gradient.

p
σS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

1 0.000 0.000 0.024 0.036 0.097 0.175 0.270 0.377 0.470 0.491
5 0.000 0.000 0.022 0.081 0.163 0.302 0.459 0.478 0.255 0.033
9 0.000 0.000 0.022 0.081 0.165 0.316 0.477 0.446 0.161 0.000
13 0.000 0.000 0.035 0.076 0.183 0.343 0.488 0.420 0.120 0.000
17 0.000 0.010 0.024 0.077 0.187 0.347 0.490 0.400 0.095 0.000
21 0.000 0.000 0.024 0.079 0.192 0.363 0.494 0.382 0.088 0.000
24 0.000 0.000 0.017 0.087 0.186 0.358 0.495 0.375 0.075 0.000
28 0.000 0.000 0.030 0.091 0.204 0.365 0.498 0.363 0.056 0.000

Table 6.8: Standard deviation values of rS calculated by performing n = 10.000 transmissions
per combination of F and p in the simulation scenario. Values close to 0 and 0.5 are coded
with a green–red color gradient.

F Max. difference p
1 0.003 0.7
5 0.137 0.8
9 0.142 0.7
13 0.172 0.7
17 0.192 0.7
21 0.210 0.7
24 0.215 0.7
28 0.225 0.7

Table 6.9: Maximum difference between rS(p) and rS for each value of F , along with the
value of p where the maximum was found.

57

6.2.2 Simulation results with different timeouts

Additional experiments were performed to calculate rS with timer values set to 1 s instead of
0.1 s. The maximum differences between both calculations found for different configurations
of F and p are shown in Table 6.10.

F Max. difference p
1 0.014 0.7
5 0.015 0.5
9 0.025 0.5
13 0.022 0.6
17 0.010 0.6
21 0.007 0.4
24 0.023 0.5
28 0.015 0.5

Table 6.10: Maximum difference between NU calculated for timers of 0.1 s and of 1 s for each
value of F , along with the value of p where the maximum was found.

6.2.3 Real deployment results

Representative results are shown in Figures 6.10 and 6.11, which display a comparison be-
tween rS and rS(p) for F = 1 and F = 17, as well as displaying rS calculated over the
simulation environment as a reference. Results for other SCHC Packet sizes are shown in
Appendix I.

The uplink and downlink PLR are the same as those reported in Table 6.4. Figures 6.10
and 6.11 show the curve of rS(t) and the data obtained from the experiments as singular dots
for F = 1 and F = 17, respectively. Figures 6.10b and 6.11b show the respective differences
between rS and rS(p). The precise values for rS and its associated standard deviation σS

calculated in this scenario are shown in Table 6.11. As shown in Table 6.12, the difference
for F = 1 peaks at 0.371, found at p = 0.493, whilst the difference for F = 17 peaks at 0.344,
found at 0.493.

58

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure 6.10: Real deployment results, L = 1 B, F = 1, W = 1.

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure 6.11: Real deployment results, L = 176 B, F = 17, W = 3.

59

p
rS; σS 0.050 0.387 0.493

F

1 1.000; 0.000 0.600; 0.421 0.770; 0.490
5 1.000; 0.000 0.560; 0.427 0.760; 0.496
9 1.000; 0.000 0.540; 0.421 0.770; 0.498
13 1.000; 0.000 0.500; 0.421 0.770; 0.500
17 1.000; 0.000 0.520; 0.427 0.760; 0.499
21 1.000; 0.000 0.500; 0.444 0.730; 0.500
24 1.000; 0.000 0.470; 0.454 0.710; 0.499
28 1.000; 0.000 0.440; 0.466 0.680; 0.496

Table 6.11: Values of rS and σS obtained in the real deployment scenario by performing
n = 100 transmissions per number of SCHC Fragments.

F Max. difference p
1 0.371 0.493
5 0.320 0.493
9 0.330 0.493
13 0.366 0.493
17 0.344 0.493
21 0.363 0.493
24 0.392 0.493
28 0.421 0.493

Table 6.12: Maximum difference between rS(p) and rS found in the real deployment scenario
for each value of F , along with the value of p where the maximum was found.

60

Chapter 7

Analysis

This section provides an analysis of the results obtained in Chapter 6, validating the semi-
empirical models defined in Chapter 5 and the hypotheses proposed in Chapter 1.

7.1 Average number of uplink messages per SCHC trans-
mission

7.1.1 Semi-empirical model and non-aborting scenario

In Section 1.2, it was hypothesized that the number of messages needed to complete a SCHC
transmission was always finite, for every PLR unequal to 100 %. A theoretical proof for
this hypothesis could not be provided, since it requires defining a purely theoretical model
for NU . However, the empirical evidence obtained in the results laid out in Section 6.1
supports this claim, as no infinite SCHC transmissions were detected for p ̸= 1 during the
experiments. Moreover, the evolution of the standard deviation of NU regarding sample size
reached stabilization in all experiments. As will be discussed in the following paragraphs, this
implies that the measurements of NU do not signal irregular loops neither in the SCHC/Sigfox
algorithm nor its implementation.

Every experiment performed for calculating NU over the non-aborting scenario (bypassing
the Rmax limit), for every combination of p and F , finished successfully. This shows that the
SCHC/Sigfox algorithm does not contain conditions that would require sending an infinite
number of SCHC Fragments, as long as p ̸= 1. The case for p = 1 was not executed, since
it would trivially lead to infinite SCHC transmissions; however, infinite SCHC transmissions
were not detected for other values of p.

The difficulty in providing a theoretical proof resides in determining the difference between
NUT

(p) and NU . As explained in Section 5.2, NUT
(p) considers all the transmissions of

SCHC Fragments until they are correctly delivered. However, the All-1 fragment needs to
be sent every time a final retransmission cycle is performed, even if it was correctly received

61

previously. The event of sending the All-1 until it is received is repeated each time a final
retransmission cycle is performed and adds additional uplink message overhead. This study
did not address the number of final retransmission cycles for a value of p, which is directly
related to this event.

NUT
(p) closely resembles the calculated NU over the non-aborting scenario for F = 1 with

a minimal difference, as shown in Figure 6.1. However, other values of F show a significant
difference. This difference is thought to arise from the final retransmission cycles, partic-
ularly from the additional retransmissions of the All-1 fragment. Note that the difference
is negligible for F = 1 since there are no retransmission cycles in a single-fragment SCHC
transmission.

The difference was compensated by proposing NUE
(p) and defining the semi-empirical

model as NU(p) = NUT
(p) + NUE

(p). Although there is still a difference between NU and
NU(p), the empirical adjustment reduces it from a global maximum of 364.445 (L = 307
B, p = 0.9) to a global maximum of 151.988 (L = 88 B, p = 0.9), as shown in Tables 5.3
and 6.3. As the variables of NUE

were chosen not to exceed the results, the curves for L = 307
B show the most similarity, as shown in Figure D.8. Globally, the model NU(p) shows the
most similarity to NU for p ∈ [0.0, 0.8]. NU(p) is therefore concluded to provide a good
approximation for NU , especially for p ∈ [0.0, 0.8].

As the FLR increases, the associated standard deviation also increases. Such high stan-
dard deviation values for FLR greater than 80% impede using NU as an empirical prediction
for high values of FLR. The standard deviation plots of Figures 6.1c and 6.2c, and those
found in Appendix D show a stabilization roughly around n = 2, 000 samples, with minimal
variations after that threshold. The final values of σN were reported in Table 6.2. High values
of p show the largest standard deviations for every L. Although the standard deviation can
be large for high values of p and L, the stabilization of these curves signals that the results
always appear within the same range, and do not show trends that could signal unwanted
absorbing loops in the algorithm.

7.1.2 Base scenario

The values of NU are lower when calculated over the base scenario (where the Rmax limit is
considered), as shown in Figures 6.3, 6.4 and Appendix E. This is a direct consequence of
SCHC/Sigfox aborting the transmissions when network conditions are insufficient: Transmis-
sions that would have taken a large number of uplink messages to be completed—consuming
large amounts of time and energy—are not executed. Aborting SCHC transmissions after
exceeding the limit consumes, on average, less resources.

In the base scenario, NU is calculated in two ways: considering all SCHC transmissions
and considering only completed SCHC transmissions. As will be discussed in the analysis of
rS, as both p and F increase, the number of completed SCHC transmissions decreases. This
leads to calculations of NU that are significantly lower than the semi-empirical model NU(p),
a consequence of the Rmax limit impeding the delivery of large numbers of uplink messages.
Moreover, since the channel is closed when an excessive number of uplink transmissions is to
be avoided, successful SCHC transmissions are fewer. Note that for F ≥ 13 and p = 0.9 no

62

completed SCHC transmission was recorded, which is reinforced by the rS calculations being
close to 0.

In Figures 6.3, 6.4 and Appendix E, a particular behavior of the calculations of NU is
noted: For F = 1, the calculation of NU considering completed and aborted transmissions
is greater than the calculation considering only completed transmissions; on the other hand,
for F > 1, both calculations show the opposite relation.

The behavior of NU for F = 1 arises from successful transmissions consisting only of
transmissions and retransmissions of the first and only fragment, while aborted transmissions
spend more messages before finishing since the fragment needs to be retransmitted (and lost)
multiple times. Calculating NU while considering the larger number of uplink messages sent
in aborted transmissions increases its average value.

On the other hand, for F > 1, NU for completed transmissions is greater than for all
transmissions. This is attributed to final retransmission cycles. These cycles imply a consid-
erably larger number of uplink retransmissions in completed SCHC transmissions. However,
aborted SCHC transmissions are more likely to happen at high values of p, and often take
less messages to close the channel. Calculating NU while considering this low number of
uplink messages in aborted SCHC transmissions increases its average value.

The ratio between the calculations of NU over the non-aborting scenario and the base
scenario is often 1 or less, as shown in Figure 6.5. For F = 1, there were cases where the
ratio was greater than 1 (p = 0.2 and p = 0.3), meaning that the messages sent over the
base scenario were slightly more than the messages sent over the non-aborting scenario. This
difference, however, is not thought to have an important significance. In all other cases,
the ratio signals that NU , when calculated over the non-aborting scenario, acts as an upper
bound of NU over the base scenario.

7.1.3 Real deployment

The results of the real deployment scenario, shown in Appendix F, fail to resemble the results
of the model. Although the results of the simulation scenario have a smaller difference with
the results of the real deployment, it is still considerable for large SCHC Packet sizes. This
is attributed to the sample size, n = 100, being too small to provide reliable results, since it
is significantly lower than the sample size of the simulation results, n = 10, 000. Moreover,
this challenges the assumption that the loss of a SCHC Fragment is modeled by an iid
random variable. Downlink losses were found, as shown in Table 6.4, which also challenges
the assumption that all Compound ACKs are correctly delivered to the sender; however, the
low PLR calculated on the downlink is not considered to have a significant influence in these
results.

63

7.1.4 Interpretation

The behavior of the ratio between the calculations of NU over the non-aborting scenario
and over the base scenario signals that aborting SCHC transmissions under harsh network
conditions can reduce the average number of uplink messages sent down to 50% for F = 1
and down to around 10% for F > 1. Furthermore, since the transmission of uplink messages
entails usage of network resources such as device battery, channel occupancy, transmission
delay, processing power, and others, it is concluded that aborting SCHC transmissions con-
sumes a significantly lower amount of network resources than waiting for SCHC transmissions
to finish successfully.

7.2 Rate of successful SCHC transmissions

7.2.1 Semi-empirical model and simulation results

As previously stated, the shape of the curves changes with F . The curve for F = 1 shows
a significantly different behavior to that of other values of F . Moreover, as F increases,
the curves slightly change their values. This led to including F in the proposed model
rS(p), and refutes the hypothesis proposed for this metric, that is, that the rate of successful
SCHC/Sigfox transmissions is independent of the number of fragments generated.

Figures 5.3a and 6.8a show that the theoretical part of rS(p) closely resembles the calcu-
lated rS when F = 1, showing a minimal difference. The theoretical part rST

(p) accurately
models the behavior of a SCHC/Sigfox transmission of a single SCHC Fragment, the All-1,
whose only success condition is not being lost Rmax times in a row. A difference still appears,
however, as more fragments are considered in the model.

Although the results for other fragment sizes still show a difference between rS and the
model, the empirical adjustment reduces it from a global maximum of 0.676 (F = 28, p = 0.7)
to 0.225 (F = 28 B, p = 0.7), shown in Tables 5.5 and 6.9. The model rS(p) shows the
most similarity to the results for p ∈ [0.0, 0.5] ∪ [0.9, 0.0]. The range p ∈ [0.6, 0.8] shows
the most difference, which could not be satisfied without further complicating the semi-
empirical model. rS(p) is concluded to be a good model for rS, especially in the ranges
p ∈ [0.0, 0.5] ∪ [0.9, 0.0] but still valid for p ∈ [0.6, 0.8].

The results show different curve shapes for F = 1 and for F > 1. This abrupt change
in the curves is thought to stem from final retransmission cycles, similarly to the analysis of
NU(p). Although it is true that a SCHC/Sigfox transmission is aborted when the All-1 is
lost Rmax times, every final retransmission cycle presents an additional opportunity for this
event to happen. This is only possible if F > 1, since by definition there are no possible
retransmission cycles for F = 1. Therefore, the higher the number of retransmission cycles,
the more trials of sending the All-1 are executed, and the more likely it is for a SCHC
transmission to be aborted. This study did not address the number of final retransmission
cycles for a value of p. Further theoretical studies require to address the number of final
retransmission cycles in a SCHC/Sigfox transmission as a function of p, which is thought to

64

lead the way to a purely theoretical model for rS.

The standard deviation associated to rS, σS, peaks when rS = 0.5 and signals complete
uncertainty over SCHC transmission completion, therefore impeding using rS as a prediction
when the FLR is associated with a high σS. The standard deviation plots of Figures 6.8c,
6.9c, and those found in Appendix H show a stabilization roughly around n = 2, 000 samples,
with minimal variations after that threshold. The final values of σS were reported in Table 6.8,
and closely approximate the values of the standard deviation of a binomial distribution of
associated probability rS. Note that for values of rS close to 0 or to 1, σS approaches 0,
which further implies that the vast majority (if not all) of the experiments performed for
that combination of p and F resulted either in success or failure. This relation between
rS and σS arises from the success (or failure) of a single SCHC/Sigfox transmission being
modeled by a binomial random variable. This reinforces the statement of Equation 5.17, that
is, rS approximates the success probability pS as the sample size increases.

7.2.2 Results with different timeouts

The maximum differences between rS calculated for timeout values of 0.1 s and of 1 s peak
at 0.025 (L = 88 B, p = 0.5), as reported in Table 6.10. These differences are not significant,
therefore, this performance metric is concluded not to depend on the timeout values. No
clear dependency of rS neither on the number of windows W nor on the number of fragments
of the last window U was found.

7.2.3 Real deployment

Similarly to the results of the real deployment scenario for NU , the results for rS, shown in
Appendix I, fail to resemble the results of the simulation scenario. This is again attributed
to the sample size being far smaller than the sample size of the simulation results.

Since the success of a single SCHC transmission is modeled by a binomial distribution,
as rS reaches 0.5, its variability increases up to 0.5. If network conditions are estimated
to provide a low rS or a high σS, it is recommended either to use another reliable delivery
mechanism or to wait for better channel conditions to perform the transmission. For example,
if 0.4 ≤ rS ≤ 0.6, σS ≥

√
0.4× 0.6 = 0.489, which is a standard deviation close enough to

0.5 to consider the success or failure of a SCHC transmission highly uncertain.

7.2.4 Interpretation

The following guides are proposed to interpret this performance metric:

• If 1 ≥ rS ≥ 0.9, then σS ≤ 0.3. SCHC transmissions are likely to be completed with
low uncertainty.

65

• If 0.9 > rS ≥ 0.7, then 0.3 > σS ≤ 0.458. SCHC transmissions are likely to be
completed; however, care must be taken not to overly use network resources.

• If 0.7 > rS ≥ 0.5, then 0.458 > σS ≤ 0.5. Although a SCHC transmission can be
completed, it is recommended to wait for better channel conditions.

• If 0.5 > rS, SCHC transmissions are unlikely to be completed successfully. It is recom-
mended to use another reliable delivery method or to wait for better conditions.

7.3 General observations

The models for both performance metrics consist of a theoretical component and an empirical
adjustment. The empirical adjustment was needed because the theoretical approaches do not
represent the behavior of the empirical results. This difference is thought to stem from the
final retransmission cycles of a SCHC transmission, which add additional message overhead
that was not considered in the formulation of the theoretical approach. A purely theoretical
model for NU should consider the additional retransmissions of the All-1 fragment, whilst a
purely theoretical model for rS should consider the expected number of final retransmission
cycles.

The variables and models presented in Chapter 5 consider that a single tile is carried in
a single SCHC Fragment, as per SCHC/Sigfox specifications. This is not always the case for
other LPWANs, since the generic definition of SCHC states that a SCHC Fragment carries
at least one tile. When employing a similar analysis in other networks such as LoRaWAN or
NB-IoT, care must be taken with the definition of variables such as the number of fragments
and windows generated.

The TDD approach used in the development of the SCHC/Sigfox implementation pro-
vided stability and robustness for the software. Constant testing before and during the
developing process allowed most errors to be found before migrating development to the next
phases. Not doing so would often imply difficult debugging during long periods of time. The
separation of the development process into different phases have also contributed to this.

The simulation provides faster results than the real implementation. It is also indepen-
dent of the real network channel conditions, allowing SCHC transmissions to be tested in a
controlled environment. It has proven to be a useful tool which facilitates developing and
testing, specially in zones where Sigfox coverage is unstable or insufficient.

66

Chapter 8

Conclusions and Future Work

This chapter provides conclusions on the work presented in this thesis by summarizing the
analyses of the results obtained from the SCHC/Sigfox implementation developed in the
course of this investigation. The limitations of the experiments and the software are ad-
dressed, and future work is proposed for following studies on SCHC/Sigfox.

8.1 Conclusions

This thesis proposed performance metrics for SCHC/Sigfox: the average number of uplink
messages sent per SCHC transmission, NU , and the rate at which SCHC/Sigfox transmissions
are completed successfully, rS. When calculated with a sample size large enough, estimated
around n = 2, 000, these performance metrics converge to their theoretical counterparts:
the expected number of uplink messages per SCHC/Sigfox transmission and the success
probability of a SCHC/Sigfox transmission.

The average number of uplink messages per SCHC transmission, NU , is useful in quanti-
fying the impact of placing a limit in ARQ retransmissions that aborts the communication
instead of spending large amounts of network resources trying to deliver a packet over a
channel with insufficient network conditions. It also provides a way to calculate the effi-
ciency of an ARQ protocol in terms of uplink message overhead, and can be used to compare
SCHC/Sigfox ACK-on-Error with other ARQ protocols.

The rate of successful SCHC transmissions, rS, is a useful performance metric for SCHC
deployments. It signals the probability of a SCHC transmission to be complete. If rS is
estimated to be under 0.7, it is recommended not to perform a SCHC transmission or to
wait for better channel conditions. If a reliable transmission is desired under those channel
conditions, other ARQ mechanisms with better rS could be chosen.

Both performance metrics are justified as predictions of their theoretical counterparts, the
expected number of uplink messages per SCHC transmission and the probability of a SCHC
transmission to be completed successfully. The values obtained for these metrics can be used
to predict the outcome of a SCHC transmission only if the associated standard deviation is

67

not large enough to signal high uncertainty, which is the case for NU when FLR increases
over 80% and for rS when rS is near 0.5.

Semi-empirical models are provided for both performance metrics. The theoretical com-
ponents of both models are calculated analytically by means of a probabilistic analysis.
Empirical adjustments are performed by proposing a candidate function that compensates
the difference between the theoretical model and the measured values.

The model NU(p) is concluded to provide a good approximation for NU when calculated
in a scenario where SCHC transmissions are configured not to be aborted, especially for
p ∈ [0.0, 0.8]. As the measurement of NU in this scenario takes a large number of SCHC
transmissions, the model NU(p) is provided to save network resources instead. Aborting
SCHC transmissions in harsh network conditions was found to reduce the average number
of uplink messages sent down to 50% for single-fragment SCHC transmissions and down to
around 10% for other numbers of SCHC Fragments. Since transmitting uplink messages
consumes network resources such as device battery, channel occupancy, transmission delay,
processing power, and others, it is concluded that network resources usage is significantly
lower when aborting difficult SCHC transmissions.

The model rS(p) is concluded to provide a good approximation for rS, especially in the
ranges p ∈ [0.0, 0.5] ∪ [0.9, 0.0] but still valid for p ∈ [0.6, 0.8]. It is proposed that the results
obtained for rS and rS(t) be taken into consideration when deploying SCHC applications if
channel conditions are known. The definition of this model to calculate this performance
metric also save network resource usages instead of performing a large number of SCHC
transmissions.

The implementation developed over the course of SCHC/Sigfox standardization and this
study has proven to be a useful tool which facilitates testing new changes in the SCHC Profile
definition and their impact on the whole protocol, as well as studying the performance of
the SCHC fragmentation mechanism. Thanks to this implementation, a number of contribu-
tions on SCHC/Sigfox were made in collaboration with the co-authors of the Profile, which
led the way into its current standardization process. This implementation also made pos-
sible executing other empirical studies on SCHC/Sigfox [12], and has recently incorporated
the architecture proposed in [22]. The new additions to SCHC/Sigfox were discussed with
other members of the IETF LPWAN Working Group to obtain feedback, which has been
quickly integrated into SCHC/Sigfox thanks to the simulation environment, a key part of the
implementation.

The software implementation led to contribute to the Sigfox SCHC Profile definition. The
performance metrics NU and rS were defined, justified and measured. Moreover, the impact of
aborting SCHC transmissions over NU was addressed. Semi-empirical models were proposed
for both performance metrics, which provide a good approximation to their measured values.
In summary, the objectives proposed in Section 1.3 were fulfilled.

The following list summarizes the contributions of this thesis in the fields of novel ARQ
protocols over constrained networks, ARQ performance modeling and evaluation, IoT de-
ployments over LPWANs, and SCHC standardization:

68

• Proposed two performance metrics for the ACK-on-Error mode of SCHC over the Sigfox
network: The average number of uplink messages sent per SCHC transmission, NU , and
the rate at which transmissions of fragmented SCHC Packets are performed successfully
over the Sigfox network, rS.

• Provided NU as a means to calculate the efficiency of the ACK-on-Error ARQ protocol
regarding channel usage overhead.

• Provided a guide to interpret rS, which can be used by network operators with access
to rS measurements to decide whether to incorporate SCHC ACK-on-Error into a
particular Sigfox application.

• Defined semi-empirical models for both performance metrics, which can be used as
approximations over stable channel conditions.

• Developed a publicly available implementation of SCHC/Sigfox, which is deployable
over Sigfox-enabled transmitter devices and over the Sigfox backend.

• Developed a simulator of SCHC/Sigfox, which can be used to perform experiments over
a controlled local network link in a significantly lower amount of time than over the
actual Sigfox network.

• Co-authored two specifications for the Sigfox SCHC Profile, both of them on the track
to become a Proposed Standard at the IETF.

8.2 Limitations and future work

This study did not address the number of final retransmission cycles for different SCHC
Packet sizes and FLR values. This is thought to have a fundamental impact on the differ-
ence between the measured performance metrics and their theoretical models. This led to
the definition of empirical adjustments by proposing a candidate function and adjusting its
parameters using LSM and inspection. A further analysis on the number of retransmission
cycles as a function of the SCHC Packet size and the FLR is proposed for further studies,
which is thought to lead to a purely theoretical model for NU and rS. Moreover, a purely
theoretical model for the performance metrics proposed in this work would also be applicable
to other operational modes of SCHC/Sigfox.

The MAX_ACK_REQUESTS limit, Rmax, is set to 5 as per SCHC/Sigfox specifications [3].
The impact of different values of Rmax on rS is out of the scope of this thesis and was not
addressed. However, it is thought that if Rmax is raised, rS would be higher for high values
of FLR, although it would use more network resources. It is also thought that if a purely
theoretical model for rS is developed, that relation will be clear.

The sample size of the experiments over the real deployment scenario was too small
to resemble the results of the simulation scenario, which is attributed to the sample size,
n = 100, being far lower than the proposed stability threshold, n = 2000. It is thought
that under stable channel conditions, performing more experiments in the real deployment
would make the results resemble the ones obtained for the simulation scenario. This also

69

highlights the importance of the simulation in testing the protocol, since more experiments
can be performed in less time.

Further development is required for the SCHC/Sigfox implementation to be usable as
a library. Although it can be used for real SCHC/Sigfox applications, it requires manual
configuration of certain variables. This is undesirable in a public library, where all the
internal variables are configured not by the user but by the software itself.

Further works on Sigfox quality of service should challenge the assumption that the FLR
can be modeled as an independent and identically distributed random variable. Given the in-
tellectual property rights of the Sigfox modulation scheme, the impact of the error-correcting
mechanisms of Sigfox over the PLR is not known and has not been studied. In this work, it
is assumed that the PLR is independent of the packet size; therefore, the results are provided
in relation to the number of SCHC Fragments instead of the size of the SCHC Packet. How-
ever, the relation between the PLR and the Sigfox packet size has also not been studied. If
a model is proposed for the Sigfox PLR, an extension of this study that supports a variable
PLR can be performed.

70

Bibliography

[1] S. Farrell, “IETF RFC8376: Low-Power Wide Area Network (LPWAN) Overview,”
2018. [Online]. Available: https://datatracker.ietf.org/doc/rfc8376/

[2] Sigfox, “Radio Configurations | Sigfox build.” [Online]. Available: https://build.sigfox.
com/sigfox-radio-configurations-rc

[3] J. C. Zúñiga, C. Gomez, S. Aguilar, L. Toutain, S. Céspedes, D. Wistuba, and
J. Boite, “SCHC over Sigfox LPWAN (IETF Internet-Draft),” 2022. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-over-sigfox/

[4] Pycom, “Lopy4 datasheet version 1.1,” 2020. [Online]. Available: https://docs.pycom.
io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf

[5] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J. C. Zúñiga, “IETF
RFC8724: SCHC: Generic Framework for Static Context Header Compression and
Fragmentation,” 2020. [Online]. Available: https://datatracker.ietf.org/doc/rfc8724/

[6] J. C. Zúñiga, C. Gomez, S. Aguilar, L. Toutain, S. Céspedes, and D. Wistuba,
“SCHC Compound ACK (IETF Internet-Draft),” 2022. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-lpwan-schc-compound-ack/

[7] S. Deering and R. Hinden, “Ietf rfc8200: Internet protocol, version 6 (ipv6)
specification,” 2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8200.html

[8] O. Gimenez and I. Petrov, “IETF RFC9011: Static Context Header Compression and
Fragmentation (SCHC) over LoRaWAN.” [Online]. Available: https://datatracker.ietf.
org/doc/rfc9011/

[9] E. Ramos and A. Minaburo, “SCHC over NB-IoT (IETF Internet-Draft),” 2022.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-over-nbiot/

[10] Sigfox, “Qualification | Sigfox build.” [Online]. Available: https://build.sigfox.com/study

[11] D. Wistuba, S. Céspedes, J. C. Zúñiga, R. Muñoz, S. Aguilar, C. Gomez, and R. Vidal,
“An Implementation of IoT LPWAN SCHC Message Fragmentation and Reassembly,”
CEUR Workshop Proceedings, vol. 2988, 2021.

[12] S. Aguilar, D. Wistuba, A. Platis, R. Vidal, C. Gomez, S. Céspedes, and J. C. Zúñiga,
“Packet Fragmentation Over Sigfox: Implementation and Performance Evaluation of
SCHC ACK-on-Error,” IEEE Internet of Things Journal, vol. 9, 2021.

71

https://datatracker.ietf.org/doc/rfc8376/
https://build.sigfox.com/sigfox-radio-configurations-rc
https://build.sigfox.com/sigfox-radio-configurations-rc
https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-over-sigfox/
https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf
https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf
https://datatracker.ietf.org/doc/rfc8724/
https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-compound-ack/
https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-compound-ack/
https://www.rfc-editor.org/rfc/rfc8200.html
https://datatracker.ietf.org/doc/rfc9011/
https://datatracker.ietf.org/doc/rfc9011/
https://datatracker.ietf.org/doc/draft-ietf-lpwan-schc-over-nbiot/
https://build.sigfox.com/study

[13] Institute of Electrical and Electronics Engineers, “IEEE 802.15 Working Group
for Wireless Personal Area Networks (WPANs).” [Online]. Available: https:
//ieee802.org/15/index.html

[14] IETF LPWAN Working Group, “IPv6 over Low Power Wide-Area Networks
(LPWAN),” 2016. [Online]. Available: https://datatracker.ietf.org/wg/lpwan/about/

[15] Semtech, “LoRa® and LoRaWAN®: A Technical Overview,” 2019. [Online].
Available: https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_
LoRaWAN-A_Tech_Overview-Downloadable.pdf

[16] L. Alliance®, “What is LoRaWAN®,” 2015. [Online]. Available: https://lora-alliance.
org/resource_hub/what-is-lorawan/

[17] S. A. Gbadamosi, G. P. Hancke, and A. M. Abu-Mahfouz, “Building upon NB-IoT
Networks: A Roadmap towards 5G New Radio Networks,” IEEE Access, vol. 8, 2020.

[18] Sigfox, “Sigfox - The Global Communications Service Provider for the Internet of
Things (IoT).” [Online]. Available: https://www.sigfox.com/

[19] Wi-SUN Alliance, “Wi-SUN Alliance.” [Online]. Available: https://wi-sun.org/

[20] N. Ahmed, D. De, F. A. Barbhuiya, and M. I. Hussain, “MAC Protocols for IEEE
802.11ah-Based Internet of Things: A Survey,” IEEE Internet of Things Journal, vol. 9,
2022.

[21] Acklio, “Acklio - SCHC IETF 8724.” [Online]. Available: https://www.ackl.io/
technology/schc

[22] D. Wistuba, S. Céspedes, and J. Bustos-Jiménez, “Modeling SCHC ACK-on-Error Frag-
ment Delivery over Sigfox,” Proceedings of the 18th ACM International Symposium on
QoS and Security for Wireless and Mobile Networks, pp. 115–119, 10 2022.

[23] E. J. Sebastian, A. Sikora, M. Schappacher, and Z. Amjad, “Test and Measurement of
LPWAN and Cellular IoT Networks in a Unified Testbed,” IEEE International Confer-
ence on Industrial Informatics (INDIN), vol. 2019-July, 2019.

[24] M. Saelens, J. Hoebeke, A. Shahid, and E. D. Poorter, “Impact of EU Duty Cycle
and Transmission Power Limitations for sub-GHz LPWAN SRDs: An Overview and
Future Challenges,” EURASIP Journal on Wireless Communications and Networking,
vol. 2019, p. 219, 12 2019.

[25] I. Suciu, X. Vilajosana, and F. Adelantado, “An Analysis of Packet Fragmentation
Impact in LPWAN,” 2018 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6, 4 2018.

[26] ——, “Aggressive Fragmentation Strategy for Enhanced Network Performance in Dense
LPWANs,” 2018 IEEE 29th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), pp. 1833–1838, 9 2018.

72

https://ieee802.org/15/index.html
https://ieee802.org/15/index.html
https://datatracker.ietf.org/wg/lpwan/about/
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-alliance.org/resource_hub/what-is-lorawan/
https://lora-alliance.org/resource_hub/what-is-lorawan/
https://www.sigfox.com/
https://wi-sun.org/
https://www.ackl.io/technology/schc
https://www.ackl.io/technology/schc

[27] Z. Shelby, K. Hartke, and C. Bormann, “IETF RFC7252: The Constrained Application
Protocol (CoAP),” 2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7252.
html

[28] A. Minaburo, L. Toutain, and R. Andreasen, “IETF RFC8824: Static Context
Header Compression (SCHC) for the Constrained Application Protocol (CoAP),” 2021.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8824.html

[29] C. Gomez, A. Minaburo, L. Toutain, D. Barthel, and J. C. Zúñiga, “IPv6 over LPWANs:
Connecting Low Power Wide Area Networks to the Internet (of Things),” IEEE Wireless
Communications, vol. 27, 2020.

[30] S. Aguilar, P. Maille, L. Toutain, C. Gomez, R. Vidal, N. Montavont, and G. Z. Pa-
padopoulos, “Performance Analysis and Optimal Tuning of IETF LPWAN SCHC ACK-
on-Error Mode,” IEEE Sensors Journal, vol. 20, 2020.

[31] S. Aguilar, A. Marquet, L. Toutain, C. Gomez, R. Vidal, N. Montavont, and G. Z.
Papadopoulos, “LoRaWAN SCHC Fragmentation Demystified,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 11803 LNCS, 2019.

[32] N. Maturana, “Implementation and Evaluation of Static Context Header Compression
for IPv6 Packets within a LoRaWAN Network,” 2019. [Online]. Available:
https://repositorio.uchile.cl/handle/2250/170134

[33] J. J. Millán, “Implementación y Evaluación de Fragmentación de Paquetes IPv6 para
un Enlace LORAWAN,” 2019. [Online]. Available: https://repositorio.uchile.cl/handle/
2250/173779

[34] J. Sanchez-Gomez, J. Gallego-Madrid, R. Sanchez-Iborra, J. Santa, and A. Skarmeta,
“Impact of SCHC Compression and Fragmentation in LPWAN: A Case Study with
LoRaWAN,” Sensors, vol. 20, p. 280, 1 2020.

[35] R. Muñoz, J. S. Hidalgo, F. Canales, D. Dujovne, and S. Céspedes, “SCHC over Lo-
RaWAN Efficiency: Evaluation and Experimental Performance of Packet Fragmenta-
tion,” Sensors, vol. 22, 2022.

[36] S. Aguilar, A. Platis, R. Vidal, and C. Gomez, “Energy Consumption Model of SCHC
Packet Fragmentation over Sigfox LPWAN,” Sensors, vol. 22, p. 2120, 3 2022.

[37] S. Aguilar, R. Vidal, and C. Gomez, “Evaluation of Receiver-Feedback Techniques for
Fragmentation Over LPWANs,” IEEE Internet of Things Journal, vol. 9, pp. 6866–6878,
5 2022.

[38] OpenSCHC, “OpenSCHC.” [Online]. Available: https://github.com/openschc/openschc

[39] R. Muñoz, “Modelado y Evaluación de la Eficiencia del Estándar SCHC para
el Transporte de Paquetes IP sobre LoRaWAN,” 2020. [Online]. Available:
https://repositorio.uchile.cl/handle/2250/177977

[40] SCHC-over-Sigfox, “SCHC-over-Sigfox.” [Online]. Available: https://github.com/
schc-over-sigfox/schc-over-sigfox

73

https://www.rfc-editor.org/rfc/rfc7252.html
https://www.rfc-editor.org/rfc/rfc7252.html
https://www.rfc-editor.org/rfc/rfc8824.html
https://repositorio.uchile.cl/handle/2250/170134
https://repositorio.uchile.cl/handle/2250/173779
https://repositorio.uchile.cl/handle/2250/173779
https://github.com/openschc/openschc
https://repositorio.uchile.cl/handle/2250/177977
https://github.com/schc-over-sigfox/schc-over-sigfox
https://github.com/schc-over-sigfox/schc-over-sigfox

[41] MicroPython, “MicroPython - Python for microcontrollers.” [Online]. Available:
https://micropython.org/

[42] Pycom, “LoPy4 - Pycom - Quadruple Bearer MicroPython enabled Dev Board.”
[Online]. Available: https://pycom.io/product/lopy4/

[43] Google Cloud Platform, “Quickstart: Create and deploy an HTTP function by using
Python | Cloud Functions Documentation | Google Cloud,” 12 2022. [Online]. Available:
https://cloud.google.com/functions/docs/create-deploy-http-python

74

https://micropython.org/
https://pycom.io/product/lopy4/
https://cloud.google.com/functions/docs/create-deploy-http-python

Annex A

Publications derived from this thesis

• Software:

– [40] “SCHC-over-Sigfox”: Implementation and simulation of SCHC-over-Sigfox,
deployable over Pycom LoPy4 devices (sender) and Google Cloud Platform (re-
ceiver).

• Conference papers:

– [11] D. Wistuba, S. Céspedes, J. C. Zúñiga, R. Muñoz, S. Aguilar, C. Gomez, and
R. Vidal, “An Implementation of IoT LPWAN SCHC Message Fragmentation and
Reassembly,” CEUR Workshop Proceedings, vol. 2988, 2021.

– [22] D. Wistuba, S. Céspedes, and J. Bustos-Jiménez, “Modeling SCHC ACK-on-
Error Fragment Delivery over Sigfox,” Proceedings of the 18th ACM International
Symposium on QoS and Security for Wireless and Mobile Networks, pp. 115–119,
10–2022.

• Journal papers:

– [12] S. Aguilar, D. Wistuba, A. Platis, R. Vidal, C. Gomez, S. Cespedes, and J.
C. Zúñiga, “Packet Fragmentation Over Sigfox: Implementation and Performance
Evaluation of SCHC ACK-on-Error,” IEEE Internet of Things Journal, vol. 9,
2021.

• Standards:

– [3] J. C. Zúñiga, C. Gomez, S. Aguilar, L. Toutain, S. Céspedes, D. Wistuba, and
J. Boite, “SCHC over Sigfox LPWAN (IETF Internet-Draft),” 2022.

– [6] J. C. Zúñiga, C. Gomez, S. Aguilar, L. Toutain, S. Céspedes, and D. Wistuba,
“SCHC Compound ACK (IETF Internet-Draft),” 2022.

75

Annex B

Implementation UML diagrams

Figure B.1: UML class diagram for the DB module.

76

Figure B.2: UML class diagram for the Entities module.

77

Figure B.3: UML class diagram for the Sockets module.

Figure B.4: UML class diagram for the Messages module.

78

Annex C

Validation of NUT
(p)

This appendix provides a comparison between NUT
(p) and empirical results for NU with

10,000 samples per combination of F and p. Vertical error bars of Figures C.1, C.2, C.3, C.4,
C.5, C.6, C.7, and C.8 correspond to a single standard deviation ±σN .

(a) L = 1 B (b) Difference between simulations and the theo-
retical model.

Figure C.1: Simulation results for NU and NUT
(p). L = 1 B, F = 1, W = 1.

79

(a) L = 45 B (b) Difference between simulations and the theo-
retical model.

Figure C.2: Simulation results for NU and NUT
(p). L = 45 B, F = 5, W = 1.

(a) L = 88 B (b) Difference between simulations and the theo-
retical model.

Figure C.3: Simulation results for NU and NUT
(p). L = 88 B, F = 9, W = 2.

80

(a) L = 132 B (b) Difference between simulations and the theo-
retical model.

Figure C.4: Simulation results for NU and NUT
(p). L = 132 B, F = 13, W = 2.

(a) L = 176 B (b) Difference between simulations and the theo-
retical model.

Figure C.5: Simulation results for NU and NUT
(p). L = 176 B, F = 17, W = 3.

81

(a) L = 220 B (b) Difference between simulations and the theo-
retical model.

Figure C.6: Simulation results for NU and NUT
(p). L = 220 B, F = 21, W = 3.

(a) L = 263 B (b) Difference between simulations and the theo-
retical model.

Figure C.7: Simulation results for NU and NUT
(p). L = 263 B, F = 24, W = 4.

82

(a) L = 307 B (b) Difference between simulations and the theo-
retical model.

Figure C.8: Simulation results for NU and NUT
(p). L = 307 B, F = 28, W = 4.

83

Annex D

Validation of NU (p) over the
non-aborting scenario

This appendix provides a comparison between NU(p) and empirical results for NU by by-
passing the MAX_ACK_REQUESTS limit (the non-aborting scenario) with 10,000 samples per
combination of F and p. Vertical error bars of Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7,
and D.8 correspond to a single standard deviation ±σN .

84

(a) Comparison between NU and NU (p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.1: Simulation results for NU and NU(p) in a non-aborting scenario. L = 1 B, F = 1,
W = 1.

85

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.2: Simulation results for NU and NU(p) in a non-aborting scenario. L = 45 B,
F = 5, W = 1.

86

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.3: Simulation results for NU and NU(p) in a non-aborting scenario. L = 88 B,
F = 9, W = 2.

87

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.4: Simulation results for NU and NU(p) in a non-aborting scenario. L = 132 B,
F = 13, W = 2.

88

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.5: Simulation results for NU and NU(p) in a non-aborting scenario. L = 176 B,
F = 17, W = 3.

89

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.6: Simulation results for NU and NU(p) in a non-aborting scenario. L = 220 B,
F = 21, W = 3.

90

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.7: Simulation results for NU and NU(p) in a non-aborting scenario. L = 263 B,
F = 24, W = 4.

91

(a) Comparison between NU and NU (p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure D.8: Simulation results for NU and NU(p) in a non-aborting scenario. L = 307 B,
F = 28, W = 4.

92

Annex E

Validation of NU (p) over the base
scenario

This appendix provides a comparison between NU(p) and empirical results for NU by consid-
ering the MAX_ACK_REQUESTS limit (the base scenario), with 10,000 samples per combination
of F and p. Vertical error bars of Figures E.1, E.2, E.3, E.4, E.5, E.6, E.7, and E.8 correspond
to a single standard deviation ±σN .

Figure E.1: Simulation environment results over the base scenario for NU and NU(p). L = 1
B, F = 1, W = 1.

93

Figure E.2: Simulation environment results over the base scenario for NU and NU(p). L = 45
B, F = 5, W = 1.

Figure E.3: Simulation environment results over the base scenario for NU and NU(p). L = 88
B, F = 9, W = 2.

Figure E.4: Simulation environment results over the base scenario for NU and NU(p). L = 132
B, F = 13, W = 2.

94

Figure E.5: Simulation environment results over the base scenario for NU and NU(p). L = 176
B, F = 17, W = 3.

Figure E.6: Simulation environment results over the base scenario for NU and NU(p). L = 220
B, F = 21, W = 3.

Figure E.7: Simulation environment results over the base scenario for NU and NU(p). L = 263
B, F = 24, W = 4.

95

Figure E.8: Simulation environment results over the base scenario for NU and NU(p). L = 307
B, F = 28, W = 4.

96

Annex F

Real deployment results of NU

This appendix provides a comparison between NU(p) and the results for NU obtained in the
real deployment scenario by performing 100 SCHC/Sigfox transmissions per value of F in
three separate runs. Vertical error bars of Figures F.1, F.2, F.3, F.4, F.5, F.6, F.7, and F.8
correspond to ±σN .

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.1: Real deployment results for NU and NU(p). L = 1 B, F = 1, W = 1.

97

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.2: Real deployment results for NU and NU(p). L = 45 B, F = 5, W = 1.

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.3: Real deployment results for NU and NU(p). L = 88 B, F = 9, W = 2.

98

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.4: Real deployment results for NU and NU(p). L = 132 B, F = 13, W = 2.

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.5: Real deployment results for NU and NU(p). L = 176 B, F = 17, W = 3.

99

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.6: Real deployment results for NU and NU(p). L = 220 B, F = 21, W = 3.

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.7: Real deployment results for NU and NU(p). L = 263 B, F = 24, W = 4.

100

(a) Comparison between NU (p) and NU . (b) Difference between real deployment and semi-
empirical model.

Figure F.8: Real deployment results for NU and NU(p). L = 307 B, F = 28, W = 4.

101

Annex G

Validation of rST (p)

This appendix provides a comparison between rST
(p) and empirical results for rS with 10,000

samples per combination of F and p. Vertical error bars of Figures G.1, G.2, G.3, G.4, G.5,
G.6, G.7, and G.8 correspond to a single standard deviation ±σS, capped not to exceed the
[0, 1] interval.

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.1: Simulation results for rS and rST (p). L = 1 B, F = 1, W = 1.

102

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.2: Simulation results for rS and rST (p). L = 45 B, F = 5, W = 1.

Configuration α β γ δ
F = 5 2.601 0.633 3.171 7.568
F = 9 2.687 0.700 3.051 8.670
F = 13 2.130 0.580 3.626 5.873
F = 17 2.025 0.561 3.836 5.453
F = 21 2.616 0.742 2.863 9.343
F = 24 2.223 0.633 3.406 6.679
F = 28 2.164 0.627 3.407 6.519
Mean 2.350 0.640 3.337 7.158

Std. dev. 0.254 0.059 0.311 1.332
Adjusted value 2.000 0.490 4.800 3.200

Table G.1: Values for α, β, γ and δ obtained by using LSM. The mean and standard deviation
of these values are shown. The final adjustment, done by inspection, is shown in the last
row.

103

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.3: Simulation results for rS and rST (p). L = 88 B, F = 9, W = 2.

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.4: Simulation results for rS and rST (p). L = 132 B, F = 13, W = 2.

104

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.5: Simulation results for rS and rST (p). L = 176 B, F = 17, W = 3.

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.6: Simulation results for rS and rST (p). L = 220 B, F = 21, W = 3.

105

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.7: Simulation results for rS and rST (p). L = 263 B, F = 24, W = 4.

(a) Comparison between rST
(p) and rS . (b) Difference between simulations and the theo-

retical model.

Figure G.8: Simulation results for rS and rST (p). L = 307 B, F = 28, W = 4.

106

Annex H

Validation of rS(p)

This appendix provides a comparison between rS(p) and empirical results for rS, with 10,000
samples per combination of F and p. Vertical error bars of Figures H.1, H.2, H.3, H.4, H.5,
H.6, H.7, and H.8 correspond to ±σS, capped not to exceed the [0, 1] interval.

107

(a) Comparison between rS and rS(p). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.1: Simulation results for rS and rS(p). L = 1 B, F = 1, W = 1.

108

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.2: Simulation results for rS and rS(p). L = 45 B, F = 5, W = 1.

109

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.3: Simulation results for rS and rS(p). L = 88 B, F = 9, W = 2.

110

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.4: Simulation results for rS and rS(p). L = 132 B, F = 13, W = 2.

111

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.5: Simulation results for rS and rS(p). L = 176 B, F = 17, W = 3.

112

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.6: Simulation results for rS and rS(p). L = 220 B, F = 21, W = 3.

113

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.7: Simulation results for rS and rS(p). L = 263 B, F = 24, W = 4.

114

(a) Comparison between rS and rS(p)). (b) Difference between simulations and the semi-
empirical model.

(c) Standard deviation evolution per value of p.

Figure H.8: Simulation results for rS and rS(p). L = 307 B, F = 28, W = 4.

115

Annex I

Real deployment results of rS

This appendix provides a comparison between rS(p) and the results for rS obtained in the real
deployment scenario by performing 100 SCHC/Sigfox transmissions per value of F in three
separate runs. Vertical error bars of Figures I.1, I.2, I.3, I.4, I.5, I.6, I.7, and I.8 correspond
to ±σS, capped not to exceed the [0, 1] interval.

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.1: Real deployment results for rS and rS(p). L = 1 B, F = 1, W = 1.

116

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.2: Real deployment results for rS and rS(p). L = 45 B, F = 5, W = 1.

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.3: Real deployment results for rS and rS(p). L = 88 B, F = 9, W = 2.

117

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.4: Real deployment results for rS and rS(p). L = 132 B, F = 13, W = 2.

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.5: Real deployment results for rS and rS(p). L = 176 B, F = 17, W = 3.

118

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.6: Real deployment results for rS and rS(p). L = 220 B, F = 21, W = 3.

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.7: Real deployment results for rS and rS(p). L = 263 B, F = 24, W = 4.

119

(a) Comparison between rS(p) and rS . (b) Difference between real deployment and semi-
empirical model.

Figure I.8: Real deployment results for rS and rS(p). L = 307 B, F = 28, W = 4.

120

	Acronyms
	Introduction
	Motivation and background
	Definition of the problem
	Proposed solution

	Hypotheses
	Objectives
	General objectives
	Specific objectives

	Thesis outline

	Theoretical framework
	Technical Concepts
	Low Power Wide-Area Networks
	Sigfox
	Static Context Header Compression and Fragmentation

	Related Work
	Network performance studies
	Fragmentation in LPWAN
	SCHC definition
	SCHC performance studies
	SCHC implementations

	Methodology
	Software development process
	Performance metrics
	Justification
	Modeling process

	Data collection and analysis
	Experimental design
	Experimental setup
	Data analysis

	SCHC-over-Sigfox implementation
	Module description
	Simulation
	Real deployment

	Performance metrics
	SCHC F/R process overview
	Average number of uplink messages per SCHC transmission
	Justification
	Theoretical model
	Validation
	Empirical adjustment

	Rate of successful SCHC transmissions
	Justification
	Theoretical model
	Validation
	Empirical adjustment

	Results
	Average number of uplink messages sent per SCHC transmission
	Simulation results (non-aborting scenario)
	Simulation results (base scenario)
	Real deployment results

	Rate of successful SCHC transmissions
	Simulation results
	Simulation results with different timeouts
	Real deployment results

	Analysis
	Average number of uplink messages per SCHC transmission
	Semi-empirical model and non-aborting scenario
	Base scenario
	Real deployment
	Interpretation

	Rate of successful SCHC transmissions
	Semi-empirical model and simulation results
	Results with different timeouts
	Real deployment
	Interpretation

	General observations

	Conclusions and Future Work
	Conclusions
	Limitations and future work

	Bibliography
	Annexes
	Publications derived from this thesis
	Implementation UML diagrams
	Validation of NUT(p)
	Validation of NU(p) over the non-aborting scenario
	Validation of NU(p) over the base scenario
	Real deployment results of NU
	Validation of rST(p)
	Validation of rS(p)
	Real deployment results of rS

