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Resumen
Modelos computacionales para
sociedades en red

Esta tesis trata sobre el modelamiento computacional de algunas hipótesis relativas a mecanis-
mos de dinámicas sociales. La palabra computacional hace referencia al empleo de técnicas de
ciencia de datos, con el objetivo de estudiar modelos expresados en un marco de redes, lo cual
justifica la palabra clave sociedades en red, para referirse a los diversos fenómenos sociales rep-
resentables a través de redes. El primer trabajo es un método sencillo para aproximar ı́ndices
de centralidad de redes, llamado QuickCent, que está inspirado en heuŕısticas propuestas ini-
cialmente para modelar procesos humanos de decisión e inferencia. El ı́ndice de centralidad
que estimamos es la centralidad armónica, la cual es una medida basada en las distancias
de caminos más cortos, lo que la hace infactible de computar en redes grandes. QuickCent
es comparado con conocidos algoritmos de aprendizaje de máquinas en datos sintéticos, aśı
como en redes emṕıricas. Nuestros experimentos muestran que QuickCent es capaz de hacer
estimaciones que son competitivas en precisión con los mejores métodos alternativos testea-
dos, obteniendo estimaciones con baja varianza del error a un costo de tiempo intermedio
con una implementación sencilla, incluso con un conjunto de entrenamiento pequeño. Poste-
riormente discutimos sobre cómo QuickCent explota el hecho que en algunas redes, medidas
de densidad local, pueden ser un buen proxy del tamaño de la región de la red a la cual un
nodo tiene acceso. El segundo trabajo es un modelo de optimización de red inspirado por
una dinámica de compartir comida que puede recuperar algunos patrones emṕıricos de redes
sociales. Nos enfocamos en una formulación original de dos de los principales motivos discu-
tidos en la literatura: la reducción del riesgo de hambruna individual, y el bienestar grupal
o acceso igualitario al alimento, y mostramos que redes optimizando ambos criterios pueden
exhibir una estructura de comunidades cohesionadas alrededor de cazadores, aquellos nodos
que generan alimento. Adicionalmente, redes de bienestar óptimo se parecen a redes que
promueven distribuciones de ingreso más igualitarias en juegos de regalos, y se obtienen dis-
tribuciones de reciprocidad que pueden ser consistentes con cómo el compartir se distribuye
primero entre cazadores, y luego cazadores con sus familias. Estos resultados del modelo son
consistentes con la visión que redes adaptadas para un uso óptimo de recursos, pueden haber
creado el medio en el cual comportamientos prosociales evolucionaron, y en el que pueden
ser potencialmente inducidos. Finalmente, los resultados sugieren que enfoques evolucionar-
ios pueden beneficiarse de una perspectiva de distribución de recursos, la modelación de las
necesidades de sobrevivencia, y la inclusión del nivel de análisis grupal.
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Abstract

This thesis deals with the formal, computational modeling of some theories and hypotheses
regarding mechanisms of social dynamics. The term computational refers to the usage of data
science techniques, with the goal of studying models expressed in the framework of networks,
which justifies the keyword of network societies to refer to the diverse social phenomena that
may be represented through networks or graphs.

The first work is a simple and quick method to approximate network centrality indexes,
called QuickCent, that is inspired in heuristics initially proposed to model some human
decision and inference processes. The centrality index that we estimate is the harmonic
centrality, which is a measure based on shortest-path distances, so infeasible to compute
on large networks. We compare QuickCent with known machine learning algorithms on
synthetic data and some empirical networks. Our experiments show that QuickCent is able
to make estimates that are competitive in accuracy with the best alternative methods tested,
achieving low error variance at an intermediate time cost with a simple implementation, even
with a small training set. We discuss how QuickCent exploits the fact that in some networks,
local density measures, may be a proxy of the size of the network region to which a node
has access. These results show that simple heuristics are a promising line of research in the
context of network measure estimations.

The second presented work, is a simple network optimization model inspired by a food-
sharing dynamic that can recover some empirical patterns found in social networks. We focus
on an original formulation of two of the main food-sharing drivers discussed by the anthro-
pological literature: the reduction of individual starvation risk, and the care for the group
welfare or egalitarian access to food shares, and show that networks optimizing both criteria
may exhibit a community structure of highly-cohesive groups around special agents that we
call hunters, those who inject food into the system. We have additionally obtained that op-
timal welfare networks resemble networks promoting more egalitarian income distribution in
lab gift games, and also distinct distributions of reciprocity among hunters and non-hunters,
which may be consistent with some empirical reports on how sharing is distributed in waves,
first among hunters, and then hunters with their families. These model results are consis-
tent with the view that social networks functionally adaptive for optimal resource use, may
have created the environment in which prosocial behaviors evolved, and may also be poten-
tially elicited. On the other hand, the model results have implications regarding the usual
approaches adopted by evolutionary models. We claim that evolutionary approaches may
benefit from a wider repertoire of assumptions including a resource distribution perspective,
the modeling of survival needs, and the explicit inclusion of the group level of analysis.
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al mismo tiempo, de trabajo riguroso desarrollado por las personas del Departamento de
Ciencias de la Computación de la Universidad de Chile, incluyendo estudiantes, y todo el
equipo funcionario académico y no académico, todes hacen un gran trabajo para que esto
suceda. También es necesario agradecer la beca para estudios de doctorado nacional de
ANID (ex-CONICYT) [CONICYT-PCHA/Doctorado Nacional/2016-21161085] por susten-
tarme durante estos años, a la beca de doctorado de la Escuela de Postgrado y Educación
Continua de la Facultad de Ciencias F́ısicas y Matemáticas de la Universidad de Chile por
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Chapter 1

Introduction

1.1 Topic and contents of this thesis

This thesis deals with the formal, computational modeling of some theories and hypotheses
regarding mechanisms of social dynamics. The term computational is used in a wide sense,
referring to the use of modeling strategies coming from either physics, mathematics, statistics,
computer and social sciences like economics or sociology. The underlying meta-assumption
is that the approach of computational modeling is a powerful methodology to advance the
discussion of ideas that, otherwise, would be difficult to define more precisely or disentangle.
A common feature of the models of the thesis is the usage of networks as formal framework,
which justifies the keyword of network societies to refer to the diverse social phenomena that
may be represented through networks or graphs. The field of networks science is comprised
mainly of the studies of complex systems formalized as networks, which is the field known as
complex networks.

The two research lines can be methodologically described as the use of data science
techniques with the goal of studying optimization models inspired by social phenomena. The
data science techniques used along the thesis comprise the use of computational statistics [67],
clustering analysis [275, 10], machine learning [189, 48, 261] and meta-heuristics [69, 91]. The
use of these techniques corresponds to another meaning of the term computational models.
Now, while the food-sharing model is an explicit network optimization model, QuickCent
is a heuristic that attempts to minimize the approximation error, but this definition is not
given as a formal optimization problem, so we refer to it as an implicit minimization. Thus,
this thesis is directed to the interdisciplinary community at the intersection of quantitative
machine learning and network science.

Next, we give the motivation for the problems addressed in the thesis. In Chapter 3,
a simple heuristic is proposed to give quick estimates of harmonic centrality [193]. The
centrality measures are an attempt to quantify the intuitive notion of the importance of
an actor given by its location in a social network, and these indexes have a long history
of applications of graph theory in the social sciences [40, 285]. The harmonic centrality
is a centrality index expensive to compute, and sensitive to either the size of the actor’s
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group and the density of connections of its local neighborhood, according to one axiomatic
characterization of centrality [40]. Our heuristic is able, under certain conditions, to give
accurate and quick estimates of harmonic centrality using the, cheap to compute, local in-
degree centrality. To the best of our knowledge, our work is the first practical application
based on this axiomatic characterization.

On the other hand, the model of Chapter 4 is an attempt to recover the structural network
implications of human food-sharing, a phenomenon argued to be an important evolutionary
force shaping several social behaviors and features of the foraging niche [124, 163, 245].
The patterns of human food sharing stand out by its unique complexity, which extends
well beyond infancy lactation to the whole life and across adults and families [124]. These
patterns may have emerged as a response to a greater offspring dependence associated with
the development of a larger brain requiring a nutrient-rich diet, or more difficult feeding
strategies, in contrast to other wild primates having more predictable diets [145, 124, 154].
Our model provides a novel formulation of several motives for food-sharing proposed in the
evolutionary anthropology literature [151], and develops the hypothesis that the modular
character of food-sharing networks, a characteristic feature of social networks [212], may
be an optimal network feature when minimizing the objectives of individual and collective
starvation risks.

The chapters of the thesis correspond to the following texts or contributions.

• Chapter 2 is a non-exhaustive survey of the literature of complex networks, with an
orientation towards the study of network societies, or communities within complex
networks. This survey is written with the goal of providing the necessary context
for subsequent chapters, and is partially based on the survey document written as
a requirement for the Qualifying exam of the PhD program. Connections to later
sections of the document are: the estimation of power-law distribution parameters
(Section 2.3.3), the general preferential attachment growth model (Section 2.3.4), as
well as the insight that this mechanism is a better description for information networks
(Section 2.3.6) mentioned in the QuickCent model (Chapter 3). The other connection
to later chapters is the section on the distinct hypotheses for communities modeled as
networks (Section 2.4), since the Food-sharing model (Chapter 4) may be seen as a
new hypothesis of the origin of network societies, nearer to the risk-sharing theories
(Section 2.4.3). Annex A is also part of this chapter, and is a formal argument from
the literature given to highlight the importance of the behavior of the moments of the
power-law distribution.

• Chapter 3 is based on the following conference paper.

Plana, F., & Pérez, J. (2018, December). QuickCent: A Fast and Frugal Heuristic for
Centrality Estimation on Networks. In 2018 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI) (pp. 238-245). IEEE.

The paper describes a proof-of-concept heuristics designed to deliver fast and accurate
estimates of the harmonic centrality, which follows a power-law distribution on some
networks. The chapter is an updated version of the paper, presenting important changes
in relation to it. These changes comprise some implementation details of the heuristics
(computation of proportions vector, the use of the median of the lowest centrality values,
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in Section 3.3), the study of the general preferential attachment model (Sections B.2,
B.3, 3.4.1), and the assumptions of QuickCent (Section 3.4.3), as well as the experiments
on empirical networks (Section 3.4.4) and the discussion (Section 3.5). Annex B is also
part of this chapter, which gives details on the practical estimation of the power-
law parameters, and the experiments for checking the fulfillment of assumptions of
QuickCent by the distinct networks shown. For the time of this writing, we have
submitted this chapter to the journal Computing.

• Chapter 4 is based on the following journal paper.

Plana, F., Pérez, J., & Abeliuk, A. (2022). Modularity of food-sharing networks min-
imises the risk for individual and group starvation in hunter-gatherer societies. To
appear in PloS one.

The paper proposes a network optimization model designed to contrast the hypotheses
of minimization of individual versus group starvation risk in the context of hunter-
gatherers’ food-sharing, by exploring the optimal networks under each assumption,
and comparing their relative potential of recovering empirical network structures such
as the presence of modules or communities. The content of the chapter is practically
the same as the accepted paper. This research has a first publication as the following
conference poster available in the Annex C.

Pérez, J., & Plana, F. (2020). Food sharing gave birth to social networks. In CogSci.

Annex D includes implementation details of several components of the model such as the
estimate of the probability of eating, the structure of the simulations, the evolutionary
algorithms, clustering procedures and decision trees. Annex E displays a series of
analysis made later to the paper submission, with the goal of giving an initial answer
to the following question. Are the optimal networks from this food-sharing model able
to recover the scale-free property? It is an important question considering that this
property, together with the community structure, are the main themes of this thesis,
and this model was designed with the goal of studying only a hypothesis for community
structure in a specific type of social networks.

In the next sections, we give more context to each of these chapter contributions.

1.2 The complex network approach to network soci-

eties

Here we present the argument of Chapter 2, which provides a non-exhaustive survey on the
topic of modeling of social networks within the frame of complex networks, with tools and
concepts that are used in the later contributions of this thesis. In addition, the chapter also
discusses about the specific characteristics of social networks to pose a critical claim on the
motivations of some developments in the science of complex networks. Namely, we present
converging evidence [53, 148, 21, 243, 143, 277] suggesting that pure social networks would be
at most weakly scale-free (Section 2.3.6), which introduces a nuance to those modeling efforts
seeking to simultaneously reproduce several patterns of complex networks (Section 2.3.5), in
the sense that these patterns would have different importance and interplay depending on
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the specific type of network studied. This statement is a unifying theme of this thesis,
since the heuristic presented in Chapter 3 is particularly suited for networks generated by
preferential attachment, which would be a better descriptive mechanism for information or
knowledge networks [210], such as the web, citation or collaboration networks, rather than
pure social networks like friendships. For this reason, if the goal is to study social networks or
network societies, it is desirable to bear in mind the explicit social mechanism under study.
Section 2.4 reviews several mechanisms of social dynamics engendering communities, and the
contribution of Chapter 4 can be considered another work in this line. We next review in
more detail the arguments displayed by the survey.

The survey starts in Section 2.2 by defining the central features characterizing complex
networks, the scale-free property, or the power-law distribution of the degree or the num-
ber of connections by node, and the small-world property, which corresponds to the short
distances connecting nodes in a network, as well as the features defining network societies,
namely, the positive degree correlations or, equivalently, the presence of communities, or
densely connected groups. Then, Section 2.3 makes a brief review of the contemporary field
of networks science, starting with some of the first and most studied models of preferential
attachment (PA) and other equivalent mechanisms (Section 2.3.1), to show next the short-
comings of these models to simultaneously recover all the features of complex networks, as
well as other criticisms (Sections 2.3.2, 2.3.3). It follows with a bridge section (Section 2.3.4)
of the general PA growth, which motivated the study of important networks in the field like
citation, collaboration, and Internet. The survey then passes on later works (Section 2.3.5)
that, looking for unifying the complex networks traits that the first models are not able to
reproduce, propose mechanisms inspired on citation networks and the hierarchical network
structure. Section 2.3.6 introduces a nuance to these unifying aspirations, at least for the
study of social networks, in the sense that it reviews converging evidence from distinct works
pointing to the idea that social networks would have only a weak scale-free character. Fi-
nally, the chapter is ended by Section 2.4 where distinct kinds of models of communities in
networks are reviewed.

1.3 QuickCent model

In Chapter 3 it is reviewed the QuickCent model, which is a heuristics to approximate the
harmonic centrality from the knowledge of the in-degree, and in general, to approximate
any magnitude distributed according to a power-law, related via a monotonic function to
another variable from which the estimate is computed. The merits of the heuristics is that,
despite being very simple, its estimates are competitive in accuracy with some of the best
alternative machine learning methods tested, achieving low error variance and intermediate
time costs, with a naive implementation, even when trained with small training sets of 10%
of the total vertex set, of either synthetic or empirical networks of around 10000 nodes
(Sections B.3, 3.4.1, 3.4.2 and 3.4.4). There are antecedents in the literature of distinct
simple heuristics having a performance comparable or superior to more complex models, such
as medical decision making [13], predicting the outcomes of sport matches [253], geographic
profiling [259], or forecasting future purchase activity of customers [293]. There is also a
contest [292] of machine learning algorithms and simple estimation heuristics on 99 real
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world datasets from distinct sources, finding that a variant of QuickEst, the antecedent of
QuickCent (see the next paragraph), is one of the best performing methods. Our proposal
differs from previous works in that it requires only one predictor from which the estimates
are built, and it is a general method working when its stated assumptions hold.

QuickCent is a generalization of QuickEst [132], a heuristic proposed to represent the
processes underlying human quantitative estimation. QuickEst is a very simple heuristic that
relies on sequences of binary clues associated, in our context of centrality approximation, to
nodes in a network, where the value of a clue is an indicator of the presence or absence
of an attribute signal of greater centrality for a node. The method simply finds the first
clue with negative value (absence), and it outputs the mean of points with a negative value
on this clue. For this reason, QuickEst is part of the cognitive model of human inferences
and decision making named Fast-and-frugal heuristics [109], in the sense that they do not
search for all the available information, in contrast to traditional structural linear models
employed in social judgement theory [82], which are compensatory, that is, they integrate all
the information available by weighting the distinct components. On the other hand, QuickEst
has been argued to present a negative bias [132], in the sense that it is a negative clue (or
absent attribute) what stops this heuristic. Thus, a distribution such as the power-law where
most values are small (with mostly negative cues) and only few high values exist (with mostly
positive cues), would provide an optimal context for the performance of QuickEst. This is
an example of what has been called as ecological validity [132], which is the fit between the
cognitive model and the environment in which it operates, which would be one of the factors
explaining the success of these simple heuristics. The reasons explaining why and when these
simple heuristics work is an active research problem [49, 134].

Finally, there is an observation to make regarding the study case we address of approx-
imating an expensive index like the harmonic centrality, sensitive to either neighborhood
density and size of the belonging group [40], by cheap local density measures such as the
in-degree. As it is discussed in Section 3.5, the preferential attachment mechanism, which
is the model used to generate the synthetic networks to test QuickCent (Sections B.3, 3.4.1,
3.4.2), may be produced by processes guided by the local network structure such as meeting
friends of friends [143, 277], because higher degree nodes are more likely to be found since
more paths lead to them. That is, the local density could indeed reflect the access to bigger
parts of the network. In summary, it would be ecologically valid to estimate group size from
local density in preferential attachment networks (Section 2.3.4), which would explain the
high accuracy achieved by QuickCent on the tested synthetic datasets.

1.4 Food-sharing model

In Chapter 4 it is reviewed the Food-sharing model, where the optimal networks resulting
from distinct objective functions are contrasted, with the goal of determining their power
to recover social networks patterns such as the presence of communities or reciprocity. The
model is formulated as a global optimization, very much in line of the proposal by Ferrer i
Cancho and Solé (2003) [57], discussed in Section 2.3.1. However, the joint optimization of
two goals has been formulated in our model with the concept of Pareto optimality, see Section
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4.2.4, rather than taking the common approach of the convex combination of goals, since it
has been studied that this formulation may fail in obtaining the Pareto solutions located
in the concave region of the Pareto front [99]. Now, while it has been argued that either
the scale-free property or the clustering of empirical networks is more likely the product of
local optimization processes [277, 263, 74], see Section 2.3.5, our food-sharing model makes no
claim about the dynamics or trajectory leading to these optimal networks. It simply presents
what type of food pathways structures are likely arising under the assumption that these are
optimally organized according to one functional goal or another. With this, the model does
not look for neglecting the series of complex phenomena converging in food-sharing, as it
is discussed on Section 4.1. These exchanges ensuring the most elemental subsistence, have
been suggested to provide the material basis for inter-generational accumulation of cultural
innovations and collective memory [201].

The contributions of the Food-sharing model are the following. First, the ability to recover
some empirical social networks patterns. Networks optimizing both criteria may exhibit a
community structure of cohesive groups under stringent conditions of food supply, see Section
4.3.3. These networks are resemblant to the food-sharing networks observed by Dyble et al
(2016) [89], where there are cohesive groups corresponding to households provisioned by an
adult couple, and a set of households forms a cluster with a small number of inter-household
connections. We have additionally obtained that optimal welfare networks, where each hunter
is connected to one big, homogeneous and dense group of non-hunters, see Sections 4.3.1,
4.3.2, resemble social networks that promote more egalitarian income distribution in a lab gift
game reported by Chiang (2015) [64]. This model result is consistent with the view that social
networks structured originally according to ecological considerations, may have created the
environment in which prosocial tendencies and equity response elicitation evolved [144, 139].
On the other hand, distinct distributions of reciprocity are obtained for each optimization
regime, see Section 4.3.3, which may be consistent with the empirical finding [153] that often
the sharing occurs in waves: first among hunters, and then hunters with their families. This
model result gives a broader picture of the usual notion that reciprocity is driven by the
minimization of food production uncertainty [155].

In second place, the model results have implications regarding the usual approaches
adopted by evolutionary models. Typical evolutionary models of food-sharing [151] rely
on the assumption of maximization of a function of subjective preferences, usual in economic
models of network formation [156], which highlights an exclusive role of individual choice and
may impose high cognitive requirements, see Section 4.4. The goals that our model looks
for minimizing may in fact be interpreted as a reformulation of the usual motives given as
the causes of food-sharing, where the individual starvation risk would map to the reciprocal
altruism, or tolerated theft, while the group starvation risk would correspond to the need
motive, see Section 4.1. The problem with individualistic evolutionary accounts is that recip-
rocal altruism is evolutionarily adaptive, while need is not [257], see Section 4.1. The results
of our model show that the need motive is an equally important and powerful principle to
theoretically explain network structures observed in empirical food-sharing networks, such
as communities. We claim that evolutionary approaches may benefit from a wider repertoire
of assumptions including a resource distribution perspective, the modeling of survival needs,
and the explicit inclusion of the group level of analysis, see Section 4.4. Finally, our model
makes some methodological contributions. Our model is based on an original formulation
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of starvation risk relying upon the expected number of success runs of a certain length in a
sequence of trials to implement the hunger need over time, see Section 4.2.3. The clustering
stage of the pipeline of analysis of the optimal networks dataset, comprised of the application
of tSNE algorithm [275] followed by OPTICS [10], see Section 4.2.5, implemented in order to
to be flexible enough to accommodate clusters of arbitrary shapes and distribution of points,
may also be of interest.
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Chapter 2

The complex networks approach to
network societies
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Abstract

This chapter aims to give a consistent survey of those topics in the interdisciplinary literature
of networks science, that will serve as elements of context for the rest of the thesis work. A
central idea of the survey is that while complex networks posses, in general terms, several
common patterns, network societies or networks having communities display their own speci-
ficity of importance and interplay of these patterns. This idea is also a unifying theme of
the whole thesis document, since Chapter 3 discusses that the heuristics introduced therein
may be better suited for information networks such as citation networks or the World-Wide
Web, rather than pure social networks, and Chapter 4 is an explicit mechanism of a type
of social dynamics engendering communities. Thus, some key points of the survey are the
emphasis on modeling and fitting of power-law networks, basis for Chapter 3, and models of
communities, which are the defining feature of network societies, the representation of social
dynamics in terms of complex networks, providing the foundation for Chapter 4. The focus
of the chapter is oriented mainly to study different abstract mechanisms, simple hypothet-
ical principles of network generation proposed to recover regularities in empirical networks,
together with the study of social dynamics in terms of the complex networks formalism. The
field of network science is immense, and this chapter does not pretend to be exhaustive at all.
Topics covered include central features of complex networks, basic jargon about power-law
distributions, a brief review of the contemporary field of networks science comprising the
first models, criticisms in their merit to recover and fit empirical features, and later works
that address detected shortcomings in the first models. The chapter is ended by a section of
models of communities in network societies.
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2.1 Introduction

This chapter aims to give a consistent survey of those topics in the interdisciplinary liter-
ature of networks science, that will serve as elements of context for the rest of the thesis
work. A central idea of this survey is that while complex networks posses, in general terms,
several common patterns, network societies or networks having communities display their
own specificity of importance and interplay of these patterns. This idea is also a unifying
theme of the whole thesis document, since Chapter 3 discusses that the heuristics introduced
therein may be better suited for networks incorporating an information component (Section
3.5), rather than pure social networks, and Chapter 4 is an explicit mechanism of a type
of social dynamics engendering communities (Sections 4.3.3, 4.4). Thus, some key points of
the survey are the emphasis on modeling and fitting of power-law networks (Sections 2.3.3,
2.3.4), basis for Chapter 3, and models of communities in networks (Section 2.4), which are
the defining feature of network societies, providing the foundation for Chapter 4.

The focus of the chapter is oriented mainly to study different abstract mechanisms, simple
hypothetical principles of network generation proposed to recover regularities in empirical
networks, together with the study of social dynamics in terms of the complex networks
formalism. The field of network science is immense, and this chapter does not pretend to
be exhaustive at all. Therefore, omissions are made on important topics. Some of them
are: tractable models looking for appropriate null models to infer typical behavior on some
variable [65, 204, 194, 280, 55, 38], models looking explicitly for fitting or reconstructing
real-world networks [168, 181, 218], or motifs [147]. The review is not even exhaustive on
the generative mechanisms topic, since, for example, an important kind of models based on
geometrical considerations or lattices [172, 299, 249] are left out. The field of network science
is a mature one, and the interested reader may consult the books by Caldarelli (2007) [54],
Barabási (2016) [18], Newman (2018) [207] or Jackson (2010) [141].

Thus, the rest of the chapter goes as follows. The chapter starts in Section 2.2 by defining
the central features of complex networks, the traditional modeling approach of the random
network, and basic jargon about power-law distributions. It is followed by Section 2.3 where
a brief review of the contemporary field of networks science is presented. It reviews the first
and most studied models, criticisms to their merit in recovering and fitting empirical features,
and to other aspects. The review then passes on later works that, looking for unifying the
complex networks traits that the first models are not able to simultaneously reproduce,
propose mechanisms inspired on citation networks and hierarchical network structure. Next,
a nuance is presented to the unifying program, since evidence showing that social networks
would not display all of the complex networks patterns is reviewed. Finally, the chapter is
ended by Section 2.4 where distinct kinds of models of communities in networks are reviewed.

2.2 Basic Concepts

In this section we give an introductory background with the building blocks of what follows in
the chapter and the rest of the document. It starts with a brief introduction of the meaning
and properties of complex networks and network societies. Then, it continues with a brief
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review of the classical random network models, and how their limitations motivated the
arising of the power-law network models. The section closes with some basic concepts and
facts of the power-law probability distribution.

2.2.1 Features and relevance of complex networks

Complex networks are the representation, in terms of a network or graph of interacting
vertices or nodes, of complex systems coming from nature and society. They are the subject
of study of the interdisciplinary field of network science, which has experienced a large growth
in the last two decades. Examples of these complex systems studied range from distinct maps
from cell biology [4], the potential energy landscape of an atomic system [86], technological
systems such as the internet [96] or social networks such as scientific collaborations [21]. In
spite of the diversity of studied systems, most of these networks present common statistical
features that suggest the existence of common mechanisms of network generation. These
features are the scale-free or power-law topology [20], the fact that the degree or the number
of connections each vertex has follows a power-law distribution, and the small-world property
[5, 24, 286], which is the joint presence of high clustering, or the probability that vertices
connected to some vertex are in turn connected, and small diameter, a measure of the shortest
distance between any two vertices.

Another feature that may be measured is the assortativity, or the correlation between
connected vertices on some property like the degree. Thus, it has been reported that social
networks are assortative, that is, they have positive degree-degree correlations, and that
biological or technological networks are disassortative, that is, they have negative degree-
degree correlations [210]. These patterns have been explained by arguing that social networks
have communities, or groups of vertices more densely connected among them than with the
rest of the network, since this feature is able to account both for the high clustering and the
assortativity [212]. On the other hand, a principle of maximum entropy has been invoked to
show that, in the absence of additional knowledge about the generative mechanism, scale-free
networks are likely disassortative [150]. It is this distinctive feature of having communities
by which we will to refer to social networks as network societies.

These patterns found in complex networks confer them special properties when dynamical
processes are run over these structures. Scale-free networks provide a better environment for
the evolution of cooperation in public goods games than regular graphs [252], that is, graphs
with constant degree. Another relevant property of scale-free networks is the absence of an
epidemic threshold for the SIS model [221]. This threshold corresponds approximately to
the number of infections each infected produces, and imposes a limit on the evolution of the
epidemic, whether it turns out to be endemic, or it dies out. The absence of this threshold
means that any virus, whatever infection rate it has, can spread over the network. Scale-
free networks show also a high level of tolerance against random vertex removal, which is
reflected in a smooth increase of the diameter, but display a rapid increase in the diameter in
case of removal of the most connected nodes, sorted by their degree [7]. On the other hand,
networks with community structure promote the evolution of collective fairness in multiplayer
ultimatum games [251] and inhibit the spreading of opinions and hinder the effectiveness of
committed agents in a binary naming game [202]. Additionally, on epidemic processes, they
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may exhibit a global threshold which sets a critical value of the diffusion rate below which
the epidemic is not able to spread to a macroscopic fraction of subpopulations [72].

In the next subsections, we will review the first modeling attempts of complex networks,
and the basics of some of the most known current models.

2.2.2 Random network model

One of the first and main network models is the Erdös-Rényi graph [92]. It was proposed by
Solomonoff and Rapoport (1951) [260], and then independently rediscovered and rigorously
studied by Paul Erdös and Alfréd Rényi in a series of seminal works [92, 93, 94]. It is a very
simple model that, however, has been greatly influential to the study of networks due to the
intuitions it provided. In this model, we have a graph of n vertices, and each possible pair
of vertices is connected with probability p. This defines a set of undirected graphs we name
as Gn,p. The model by Erdös-Rényi is parametrized by the number of edges in the graph.
Here, we follow the equivalent formulation by Gilbert (1959) [110], which is parametrized by
the connection probability p. For these graphs, the expected number of edges is

E(|E|) = pn(n− 1)

2
,

and the average degree is

⟨deg⟩ = E(
∑n

i degi)

n
=

E(2|E|)
n

= p(n− 1) ≃ pn.

One of the aspects of real networks that can be reproduced by Erdös-Rényi random
graphs is the empirical observation that most vertices in a network are connected by short
paths. In this model, the mean number of nodes at distance d is given by ⟨deg⟩d. Then, the
maximum distance in the network dmax holds that

∑dmax

i ⟨deg⟩i ≃ n, from which, assuming
⟨deg⟩ ≫ 1, we solve that dmax ≃ logn

log⟨deg⟩ . This property was first studied in the context

of social networks by de Sola Pool and Kochen [78], and inspired the famous “six degrees
of separation” studies by Milgram [271, 272]. It has also been empirically tested on the
WWW [6, 51] and the Facebook social network [14]. However, the clustering coefficient in
the random model, is inversely proportional to network size, as can be seen below, which
underestimates the coefficient values for most real-world networks [22].

Ci =
2|{ejk : vj, vk ∈ N(i)}|

degi(degi −1)
≃ p ≃ ⟨deg⟩

n

To compute the degree distribution, we observe that for a vertex of degree k, each of its k
edges can be modeled as an independent event of connection to any of the remaining (n− 1)
vertices of the graph with probability p. Thus, the probability pk of getting a degree−k
vertex follows a Binomial distribution [41], which, for large values of n and small values of p,
conditions met by many empirical networks with sparse connectivity, can be approximated
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by the Poisson distribution [97],

pk =

(
n− 1

k

)
pk(1− p)n−1−k ≃ exp(−⟨deg⟩)⟨deg⟩

k

k!
.

The Poisson distribution, in turn, is a discrete probability distribution with a peak around
⌊⟨deg⟩⌋. However, an important flaw of this distribution is the fact that it underestimates the
presence of hubs, or highly connected nodes. This fact became more noticeable at late 90’s
with the availability and study of network data that revealed that the distribution of several
real world networks such as the scientific paper citations [242], the World Wide Web [6, 165],
the Internet [96] and metabolic networks [149], can be better approximated by power-law
distributions. This distribution is sometimes called heavy tailed or fat tailed [18], meaning
that the decay of its complementary cumulative distribution function (CCDF) at large values,
is slower than exponential. For heavy tailed distributions -such as the log-normal orWeibull -,
therefore, it is not rare to encounter very large values or outliers. The Poisson distribution,
in contrary, is a thin tailed distribution, meaning that its decay is exponential. Hence, the
outliers are rare, and most drawn values are near to the mean.

In the next subsections, we will present some definitions regarding the power-law distri-
bution.

2.2.3 Power-law distribution

A random variable follows a power-law when its probability density function is given by an
expression of the form p(x) = Kx−α where α is called the exponent of the power-law, and K
is a normalization constant depending on α. Few real-world distributions follow a power-law
on their whole range; many times the power-law behavior is observed only for higher values,
in whose case it is said that the distribution has a power-law tail. In analytic terms, since
this density function diverges when x goes to 0, there has to be a lower limit xmin from which
the power-law holds. That is, xmin is a value that satisfies∫ ∞

xmin

Kx−αdx = 1. (2.1)

Moreover, from (2.1) it is simple to solve an expression for K

K = (α− 1)(xmin)
α−1. (2.2)

If we take the logarithm in both sides of the expression defining the probability density of a
power-law distribution, we arrive at the expression

ln(p(x)) = −α lnx+ lnK,

which shows the reason that the prototypical representation of a power-law PDF (probability
density function) is a straight line on a log-log plot, with slope equal to −α. Another typical
representation is that given by the complementary empirical cumulative density function
(complementary ECDF or empirical CCDF), but in this case the exponent equals γ = α− 1,
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with α being the PDF exponent [206]. In spite of this simple computation, if we need to
estimate the exponent of a power-law from a set of observations, the intuitive idea of doing
a linear regression on a log-log plot has been reported to be biased and inaccurate [114].
This should be taken as a caution note for future works, since it is a common practice in the
literature to appeal to this method to estimate the exponent of the distribution.

2.2.4 Scale-free distribution

Frequently power-law distributions (networks) are also referred to as Scale-free distributions
(networks). The reason for this is because the power-law distribution is equivalent to a Scale-
free distribution. In what follows we will review an argument to give more precision to this
claim. Assume there is a probability distribution p(x) that satisfies the Scale-free property,
that is,

p(bx) = g(b)p(x), ∀b. (2.3)

This relation means that if the units or the scale in which x is measured, are increased by
a factor b, the shape of the distribution p(x) remains the same, except by a multiplicative
constant. The distribution is the same whatever scale we use to record the values. This
implies that there is not a typical value for this distribution, nor a proper scale to measure
the values of the distribution. These values can span several orders of magnitude, and show a
high heterogeneity. Small to moderate values may appear, but also high or even huge values.

Now, from Equation (2.3), we can set x = 1, from which we get that p(b)/p(1) = g(b).
Then, Equation (2.3) can be rewritten as

p(bx) =
p(b)

p(1)
p(x), ∀b. (2.4)

By deriving both sides with respect to b, (2.4) leads to

xp′(bx) =
p′(b)

p(1)
p(x),∀b, (2.5)

where p′ corresponds to the derivative of p with respect to its argument. Let us now set b = 1
in (2.5) and reorganize some terms to write

dp

p
=

p′(1)

p(1)

dx

x
.

This is a first order differential equation whose solution is given by

ln(p(x)) =
p′(1)

p(1)
ln(x) + ln(p(1)). (2.6)

Finally, taking the exponential at both sides we arrive to

p(x) = p(1)x−α,

where α = −p′(1)/p(1), and we verify that p(x) necessarily is a power-law distribution [206].
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We close this section with a note about the hypothetical physical origin of these distri-
butions in nature. According to Newman (2005) [206], among the miscellanea proposals of
generative mechanisms of scale-free distributions, the most important, in terms of providing
plausible and general mechanisms to account for many of the observed distributions, would
be the following two. The first is a model by Yule (1925) [295] inspired by statistics of bio-
logical taxa. This idea has been reformulated by many authors [255, 108, 235, 199], and it is
equivalent to the preferential attachment mechanism of the Barabási-Albert model reviewed
in Section 2.3.1. The second one corresponds to the so-called critical phenomena, or the
associated Self-organized criticality [16]. The mechanism in simple terms is the following.
Some systems have only a single macroscopic length or size-scale, which, under certain cir-
cumstances, or by simple evolution of the system without external perturbation, can diverge,
leading to a magnitude without a scale factor to set its size. That is, it is obtained a scale-free
or power-law magnitude.

2.2.5 Moments of the power-law

Let x be a power-law distributed variable, whose density is p(x) = Kx−α with lower limit
xmin. The ℓ−th moment of x is given by

⟨xℓ⟩ =
∫ ∞

xmin

yℓp(y)dy = K

∫ ∞

xmin

yℓ−αdy

=
K

ℓ− α + 1

(
yℓ−α+1

)∞
xmin

.

This expression is well defined for ℓ < α− 1, and in this case, by (2.2), its value is given
by

⟨xℓ⟩ = α− 1

α− 1− ℓ
xℓ
min.

In particular, the second moment ⟨x2⟩ diverges when the exponent α ≤ 3, and the first
moment, the mean, diverges for exponents α ≤ 2. The fact that, for instance, the mean is not
defined, implies that the mean of finite samples of the power-law variable can exhibit large
fluctuations [206]. This is not a purely theoretical consideration, since the exponent values
for many real-world distributions are comprised around these values, see Table 2.1. Networks
with exponent less than 2, for example, are networks where the number of links grows faster
than the number of nodes, a feature that is well represented by the network of software
packages [254]. This behavior of the moments of the distribution is essential to analytically
prove, for example, the empirical robustness of the Internet under random breakdown of its
nodes, or in other words, that a connected cluster survives even for arbitrarily large fractions
of crashed sites. This argument may be reviewed in the Annex A.
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Network Type n α
film actors undirected 449913 2.3

telephone call graph undirected 47000000 2.1
email messages directed 59912 1.5/2.0
WWW nd.edu directed 269504 2.1/2.4

WWW Altavista directed 203549046 2.1/2.7
word co-occurence undirected 460902 2.7

Internet undirected 10697 2.5
metabolic network undirected 765 2.2
protein interactions undirected 2115 2.4

Table 2.1: Size and exponents for a number of published networks. In/out-degree
exponents are given for directed graphs. The table is extracted from Newman (2003) [210],
where there is a column for the original references where the networks were published.

2.3 Contemporary network science models

This section makes a brief review of the contemporary field of networks science. It starts
with some of the first and most studied models of preferential attachment (PA) and other
mechanisms that, in some of its variants, turn out to be equivalent to PA. Next sections
deal with distinct criticisms to these models, ranging from models merit to recover empirical
features, conceptual formulation and fitting to real-world networks. It follows with a bridge
section of the general PA growth, which motivated the study of important networks in the field
like citation, collaboration, and Internet. The study of citation networks and the hierarchical
structure of networks, inspired the development of some later models reviewed in Section
2.3.5 which do simultaneously recover all of the complex networks patterns that the first
models do not. The final section introduces a nuance to these unifying aspirations, at least
for the study of social networks, in the sense that it reviews converging evidence from distinct
works pointing to the idea that social networks would have a weak scale-free character.

2.3.1 First models

Preferential Attachment. “Emergence of scaling in random networks” (1999) [20], writ-
ten by Albert-László Barabási and Réka Albert, proposed a simple model to explain the
power-law degree distribution observed in many real world systems modeled as networks.
The authors postulate a random network model based on two principles: growth and prefer-
ential attachment. The first refers to the intuition that most real networks are open, formed
by the continuous addition of new vertices. This idea is incorporated as follows: the model
starts with a small number of vertices m0, and at every discrete time step t a new vertex
is added to the network with m ≤ m0 edges connecting the new vertex to vertices already
present at time t. The second ingredient is the notion that popular elements of the network
are more likely to attract the incoming new elements. This is implemented assuming that
the probability that a new vertex v is connected to vertex i, is proportional to the degree
deg(i, t) of that vertex at time t, that is, if our network is the undirected graph G = (V,E),
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then

P (v points to i) =
deg(i, t)∑
j deg(j, t)

. (2.7)

The stationary distribution of the degree of this model is shown to be a power-law of
exponent equal to 3. In spite of being developed to capture only one of the patterns of large
complex networks, this model has been very influential and is considered one of the seminal
works in the contemporary science of complex networks [62]. It provided simple local random
rules that converge to a stationary distribution, showing that several complex systems can
self-organize to display global features. The idea postulated by this model is, however, not
new, and the Barabási-Albert (BA) graphs can be considered the updated network version of
this idea. The origin can be traced back to the aforementioned (Section 2.2.4) work by Yule
(1925) [295], which proposed an explanation for the distribution of the number of species in a
genus, family or other taxonomic group. In his model, the Yule process, the probability that
a new species is added to a particular genus i having ki species is proportional to ki. This
idea can be found also in later works with the names of Proportional growth [108], Cumulative
advantage [235], or the Matthew effect [199]. In particular, in Price (1976) [235] there is a
model for the number of citations received by scientific papers. In this model, new vertices
are added over time, and edges starting from these vertices connect to an existing vertex
with a probability given by

P (to connect new node to existing v) =
k(v) + k0∑
j(k(j) + k0)

, (2.8)

where k(j) is the current in-degree of node j, and k0 is a constant put to generate edges at
the beginning of the process when all the nodes have in-degree equal to 0. Later models have
generalized the preferential attachment model in several ways [84, 25, 85]. An interesting line
of models, searches for local mechanisms engendering preferential attachment or power-law
degree [277, 263, 83].

Copying models. The work by Kleinberg et al (1999) [165], proposed to conceptualize
the World-Wide Web as a directed graph. The authors start by reviewing some algorithms
that have been applied to the Web graph: the HITS method [164] and the enumeration of
certain bipartite cliques [174]. The first is a method to find relevant pages for a search query,
while the second is an algorithm to enumerate cyber-communities, represented as complete
bipartite cliques in the graph. Then, they report the power-law distributions of the in-
degree and out-degree, and the distributions of the above cyber-communities, observing that
usual random graph models cannot account for these measurements. Motivated by previous
considerations, the authors present a new random graph model based on the intuition that
most page creators will link to pages within some topic, by looking for a list of the topic of
interest, and including or copying many links from the list to their own page. The description
of this copying process is as follows:
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1. A node is created at every step.

2. To throw a coin with probability β of obtaining head. If head, it
points to a node chosen uniformly at random. Otherwise, it copies
a (uniform) randomly sampled edge.

(2.9)

The authors inform that simulations suggest that the stationary density function of the
degree is a power-law. Later works have studied this mechanism in more depth [173]. The
appeal of the Copying model is likely based in its intuitive abstraction of possibly several
forms of network evolution. Not just the “copy-and-paste” performed by web creators. A
similar mechanism of gene duplication has been proposed as a generative process for protein
interaction networks, that can account for the observed power-law degree distributions [278].
However, mathematically it is not so distinct from preferential attachment. We can write
the probability P(k) that the new node is connected to a node of degree k as follows [210].
Suppose we have an undirected graph G = (V,E) of size N = |V |. The probability of
choosing uniformly a node is 1/N . The sampling of an edge in step 2. is equivalent to pick a
node linked to a randomly selected link. Since there are k edges that lead to each vertex of
degree k, the probability of choosing a degree-k node is proportional to k. And since in an
undirected network it holds that

∑
i∈V deg(i) = 2 · |E|, it follows that

P(k) =
β

N
+

(1− β) · k · |{i ∈ V | deg(i) = k}|
2 · |E|

. (2.10)

Equation (2.10) shows that P(k) is proportional to k, analogously to the BA model.

Optimizing processes. The paper by Ferrer i Cancho and Solé (2003) [57], offers an
explanation about the origin of power-law networks as an outcome of a network global opti-
mization process. This model is motivated by, among others, the role of network optimization
in explaining allometric scaling [287] or the argument that metabolic pathways would have
been optimized [57]. The model starts on time t = 0 with a random graph in which two
nodes are connected with probability p. The number of nodes remain fixed along the process.
The objective function to minimize is a linear combination of the cost of physical links, and
the communication speed, or in other words,

E(λ,Gt) = λd(Gt) + (1− λ)ρ(Gt),

where Gt is the network at time t ≥ 0, 0 ≤ ρ(Gt) ≤ 1 is the normalized number of edges
of the network Gt, and 0 ≤ d(Gt) ≤ 1 is the normalized average vertex-vertex distance on
Gt. The minimization proceeds as follows: at time t > 0, each possible edge of Gt can be
switched with probability µ, that is, added if it is not present, or deleted if it is not. The
new network Gt+1 is accepted if E(λ,Gt+1) < E(λ,Gt). Otherwise, another set of changes
is performed. The algorithm stops when the changes are not accepted some M number of
times consecutively. The networks produced in this process can have very different structural
features. With λ near to 0, the networks have a random connectivity, while for greater λ,
hubs formation explains the transition to a power-law distribution. For still greater values
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of λ, hub competition precedes the emergence of a central vertex every vertex is connected
to. Finally, when λ approaches 1, a dense graph emerges, by means of a progressive increase
in the average degree of non-central vertices and a sudden loss of the central vertex.

Optimization principles have some history in explaining power-law distributions. One
of the first works in this line is Mandelbrot [192], in which the power-laws are the solution
for the word frequencies of languages that maximize the transmitted information. Highly
optimized tolerance (HOT) [58] is a more recent model that asserts that power-laws arise in
designed, highly structured systems due to trade-offs between yield, cost of resources, and
tolerance to uncertain risks. A later model inspired in the trade-offs idea from HOT model,
is the Heuristically optimized trade-offs [95]. This is a network growth model that shows that
power-law degree distributions can result from local optimization, or optimization performed
by each new arriving node, of both “last mile” connection costs, in that it is easier to connect
to a nearer node, and transmission delays, or the goal of connecting to central nodes. Finally,
Berger et al (2004) [31] shows that these growth processes with competing trade-offs forces
may be equivalent to a generalized form of preferential attachment.

2.3.2 Conceptual critiques to the first models

The field of complex networks has the appeal of showing, by means of simple models, that
many systems coming from diverse sources would have a sort of universal patterns, inde-
pendent of the subtleties of every domain. However, the “scale-free story” has not been
exempt from criticisms. Most of these are directed to the preferential attachment principle
in its original form, probably due to the fact it is the most studied in the field. We briefly
summarize here some of the main conceptual objections in the literature. Next subsection
addresses objections related to the difficulties in determining whether a real-world network
is scale-free.

Rigorous definition. Since the results in the BA model were derived with a continuous
approximation for the asymptotic limit of large network sizes, it has been argued that this
model lacks a precise mathematical definition. Motivated by this, Bollobás and collaborators
(2001) [43] have proposed a reformulation of the Barabási-Albert model, consisting in a
random graph process which is more suitable for mathematical treatment. The conclusions
drawn from this model [42] are similar to those from the conventional approaches. Another
recent proposal in this line is, for example, Ostroumova et al (2013) [216].

Recovered properties. First models reviewed in the last section are not able to recover
simultaneously the three properties of complex networks seen in Section 2.2.1, that is, power-
law degree distribution, high clustering and small diameter. The random network reviewed in
Section 2.2.2 only recovers the small diameter as shown therein. The preferential attachment
mechanism displays power-law degree and small diameter of order log n/ log log n [42], but
its clustering is of order (log n)2/n [44], that is, the clustering approaches 0 as the network
grows, in contrast to empirical networks. The famous model by Watts and Strogatz (1998)
[286], which departs from a regular lattice by randomly rewiring links with a probability
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p ≪ 1, is able to recover the high clustering and small diameter as long as the network is
large enough, but the degree distribution is centered around the mean value [23]. These
negative modeling results fueled many of the later modeling efforts reviewed in Section 2.3.5.

Characterization by means of the degree distribution. Li, Alderson, Doyle and
Willinger (2005) [184] claim that the scale-free condition of a network cannot be exclusively
given by its power-law degree, because of the enormous diversity of graphs associated to the
same degree sequence. As an indicative example of this, the authors show that two networks
with the same power-law degree sequence, one generated from the hierarchical model by
Ravasz et al (2002) [239], and the other with a HOTmodel [185], exhibit a completely different
behavior when extracting the highest-degree nodes. The first becomes disconnected, while
the second gets only a minor disruption. To account for this result, the authors introduce the
s measure, which quantifies the extent to which a graph has a hub-like core, and is maximized
when high-degree nodes are connected to other high-degree nodes. The authors then report
that the BA model generates graphs with high s values, the same as the hierarchical model,
and in contrast with the low values of the HOT model. These observations, together to other
results, make the authors claim that the conventional scale-free graphs represented with the
BA model, can be re-defined as graphs with a power-law degree sequence and a high value of
s, recovering thus the known properties of these models. Finally, the authors discuss that the
Internet router-level topology is qualitatively more similar to the HOT models, and that the
“robust, yet fragile” claims of the Internet are wrong and based mainly on ambiguous data.
A similar observation was made by Tanaka (2005) [269], stating that random models, as the
BA graph, are incompatible with the highly structured networks resulting from engineering
design or biological evolution, an outcome that would be better captured by HOT models
[58]. A later work [297] has made a similar argument to that by Li et al (2005) by proposing
a maximum entropy process to represent the typical properties of scale-free networks.

Another interesting proposal is due to Zhou et al (2020) [298], which proposes that a
new measure based on the links of a network, the degree-degree distance, would usually
exhibit a stronger power-law than the degree distribution of a finite-size network. This
measure, for each link, corresponds to the dimensionless ratio between the maximum and
the minimum between the two values of the degree at each link end-point. Comparison to
the degree distribution, and statistical fits in several empirical networks, are used by the
authors to conclude that this measure would provide a better characterization of a finite-size
network being scale-free than the degree distribution. This proposal is given in the context of
the recent controversies regarding the determination of the scale-free property on real-world
networks, a topic addressed in the next subsection.

2.3.3 Critiques in fitting real-world networks

Determining whether an empirical network is scale-free, is not an easy question. It has been
reported that for some scale-free networks the distribution of the entire network, and that
of randomly sampled sub-networks may differ [266], or that standard maximum-likelihood
approaches lead to false rejections of statistical laws in the presence of correlations in the
data [107]. But there is a deeper conceptual issue. The usual definition of the scale-free
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degree distribution relies on a continuous approximation valid in the asymptotic limit of
large networks. In real simple networks, the degree is always bounded by the number of
nodes in the network, which introduces finite-size effects such as the existence of a cutoff or
bound for the maximum degree, which may be due to several factors [39]. In terms of the
statistical fit, there is always the possibility of a better fit achieved by alternative models for
heavy-tailed distributions such as the log-normal [203]. In the next paragraph, it is described
the probably most accepted method for statistical inference of power-law distributions in the
last decade. The subsequent paragraph describes more recent questioning to the scale-free
character of empirical networks, which lead to the development of a recent method which is
arguably more suitable for inference on real-world datasets.

Power-Law parameter estimation. A simple and reliable way to estimate the exponent
α from a sample {xi}mi=1 of m observations from a power-law distribution is to employ the
maximum likelihood estimator (MLE) given by the formula [206],

α̂ = 1 +m

(
m∑
i=1

ln
xi

xmin

)−1

. (2.11)

As it is apparent from the previous formula, the quality of the estimate α̂ depends on the
estimate x̂min of the lower limit xmin of the distribution. A possible method to estimate this,
is the one proposed by Clauset et al (2007) [68, 67], which selects the x̂min that makes the
distributions of the empirical data and its fitted power-law model as similar as possible above
x̂min, that is, where the fit model is well defined. This similarity, or equivalently, distance be-
tween two probability distributions, could be implemented through the Kolmogorov-Smirnov
statistic (KS), whose expression in this case is the following

D(xmin) = max
x≥xmin

|S(x)− P (x)|, (2.12)

where S(x) is the CDF of the data for observations with value greater than xmin, and P (x)
is the CDF of the power-law model that best fits the data (for example, the MLE estimation
(2.11)) in the region x ≥ xmin. Thus, x̂min is chosen as the value xmin that minimizes D(xmin).

Recent controversy. Broido and Clauset (2019) [53] used the methodology in the last
paragraph to propose several criteria of being scale-free with increasing evidence strength, to
then analyze a big corpus of nearly 1000 empirical networks. The authors conclude that strong
scale-free structure is empirically rare, and that for most networks, log-normal distributions
fit the data as well or better than power laws. This work generated a lot of subsequent
discussion and new works [19, 298, 281]. For example, it has been argued that the same work
reported that more than half of the dataset is consistent with a power-law fit with cutoff,
or that the proposed tests do not work well with the controls given by some theoretical
models [19]. An important point was made by Voitalov et al (2019) [281], where a new
definition of power-law distribution is proposed, equivalent to regularly varying distributions
allowing deviations from pure power-laws arbitrarily, but without affecting the power-law
tail exponent. Thus, the method would be more suitable in dealing with real datasets, and
according to the article scale-free networks would not be rare since, for example, in a dataset
of 115 real-world networks, 49% of the considered undirected networks have degree sequences
that are power-law under this definition.
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2.3.4 Preferential attachment growth

In this section we review an early generalization of the preferential attachment hypothesis,
that will serve as a bridge to the next sections addressing posterior models of complex net-
works. The preferential attachment hypothesis states that the rate Π(k) in which a k−degree
node creates new links is an increasing linear function of k, and though Barabási and Albert
(1999) suggested this rate may follow a power-law, initial evidence from simulations showed
that the scale-free property emerged only in the linear case [20]. This intuition was confirmed
by Krapivsky et al (2000) [171], where the following was found. Suppose the rate Π(k) may
have the following general form,

Π(ki) =
kα
i∑
j k

α
j

= C(t)kα
i .

Krapivsky et al (2000) prove that for α = 1 this model reduces to the usual BA graph with
exponent 3. The original formulation by Krapivsky et al (2000) in fact is more general and
allows tuning the exponent of the power-law degree distribution to every value larger than
2. In the sublinear case, α < 1, the degree distribution follows a stretched exponential, that
is, the bias favoring more connected nodes is weaker, which produces an exponential cutoff
that limits the size of hubs. On the other hand, for a superlinear attachment α > 1, a single
node becomes central and connects to nearly all other nodes.

Posterior works have studied dynamical data on real evolving networks to test the ad-
equacy of this model. Jeong et al (2003) [148] found that Internet and citation networks
present linear attachment, while scientific collaboration and the Hollywood actor networks
are consistent with sublinear attachment. Pastor-Satorras et al (2001) [220] also finds linear
attachment in the Internet network, Newman (2001) [208] reports that scientific collabora-
tions are consistent with linear attachment, in contrast to Barabási et al (2002) [21], which
finds that these networks are best described by sublinear scaling. Redner (2004) [243] also
finds linear attachment in citation networks. The evolving networks studied in these works
are important for the development of better models in network science, hence, in the next
section we focus on later models inspired by intuitions of social dynamics coming mainly
from citation networks.

We do not address in this document the other types of networks that likely present linear
attachment and scale-free degree, the scientific collaboration and the Internet networks. The
former kind of networks comprise very complicated systems where there are at least two
distinct entities, the authors and their collaborations (papers), which is the reason for the
appearance of increasingly complex elements such as new links among existing nodes [21],
weighted arcs [186], affiliation bipartite graphs, where there are sets of paper nodes and
author nodes [182], or the fact that the betweenness centrality would be a better driver for
preferential attachment than the degree [1]. For simplicity we do not address them, though
some models for scientific collaboration have delivered interesting insights [161, 186]. In the
case of the Internet, we do not address it since other mechanisms that this survey do not
cover such as an underlying hyperbolic geometry [172, 37], have been proposed as generative
models.
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2.3.5 Posterior models of complex networks

We review now a sample of models proposed during the last two decades, that contributed
original mechanisms to simultaneously recover the properties that preferential attachment
does not: the scale-free and the small-world properties, as it is discussed in Section 2.3.2.
We group these models in two topics that are relevant for advancement in knowledge of
social dynamics: the citation networks, and the hierarchical structure of networks. Citation
networks have nodes representing documents, usually published papers, and the directed links
represent the citations received. These networks, as said in the last subsection, present linear
preferential attachment, and though they may be classified more generally as information
networks rather than strict social networks [210], their study has revealed interesting insights
related to the formation of triads and clustering. This idea is consistent with the empirical
finding that, in the formation of new links in information networks such as citation and the
web, local search through the current network has a more important weight than in more
purely social networks, where uniformly random meetings are more prevalent [143]. Citation
networks have an exponential out-degree distribution with a maximum at intermediate values
[276], and considering that the out-degree of a node does not change once created, it is
more interesting to study the in-degree distribution which follows a power-law [243]. These
networks also present complex interactions between age and citations, which have raised
questioning to the scale-free character of them [115].

The second topic consists in the study of the mesoscopic structure of networks, that is, an
intermediate level between the local and the global, which comprises the possible existence of
communities and their inter-connectivity. This structure may be key to explain, for example,
different cooperation levels in evolutionary games, that may not be understood only in terms
of global network properties [190]. The community structure is a hard problem in itself, from
its conceptual definition, detection and combinatorial enumeration [103], to the fact that
communities may overlap and display scaling properties [217]. In this subsection, we will
make a brief review on some foundamental insights relating this structure to some network
properties such as the clustering.

Citation networks

Holme and Kim (2002) [135] extend the standard BA network model to include a “triad
formation step”. That is, if an edge between the new node v and w was added in the
previous preferential attachment step, then with certain probability add one more edge from
v to a randomly chosen neighbor of w. This step is inspired by the sociological mechanism of
“sibling bias” [104], where after being acquainted with (linked to) w, an actor v is likely to be
acquainted to w’s acquaintances as well. Thus, this model possesses the same characteristics
as the standard scale-free networks like the power-law degree distribution and the small
average geodesic length, but with high-clustering at the same time. A later model [73] based
on this work is able to tune the values of the power-law exponent and the average local
clustering.

Klemm and Egúıluz (2002) [166] observe that there is a discrepancy between the BA model
and empirical networks, in the correlation between a node’s age and its rate of acquiring links.
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For the network of scientific citations this correlation is negative: the mean rate of citations
a paper receives decreases with increasing age. On the other hand, in the BA model the
attachment rate is proportional to the degree, being largest for the oldest nodes, producing
a positive correlation between the mean attachment rate and age. This modeling defect
motivates a new principle based on degree-dependent deactivation of nodes, the mechanism
being as follows. Each node of the network can be in two different states: a new node added
starts in active state, and later it randomly deactivates, and remains inactive. A node only
receives links from subsequent nodes in the active state, and the probability of deactivation
decreases with the in-degree of the node. The transition of a node from the active to the
inactive state can be interpreted as a collective “forgetting” of the node since new nodes
do not connect to it anymore. The model can recover the power-law distribution of degree,
linear preferential attachment of new links and a negative correlation between the age of a
node and its link attachment rate. Additionally, the clustering reaches an asymptotic value
larger than for regular lattices of the same average connectivity.

Leskovec et al (2005) [182], is a large empirical and analytical study about some patterns
that emerge along the evolution of networks on time. The paper takes snapshots of several
networks at regularly spaced time points, among which there are several citation graphs,
Internet routers, and affiliation graphs. The study reports that, on every of these datasets,
there is densification of graphs, with the number of edges growing super-linearly over time
in the number of nodes, or in other words,

e(t) ∝ n(t)a,

where e(t), n(t) are the edges and nodes of the graph at time t, and a is an exponent found
to have a value between 1 and 2. The other phenomenon reported is that of the shrinking
diameter, a decreasing trend of the diameter over time, seemingly converging to some asymp-
totic value, observed for all the graphs. These findings challenge the usual assumptions of the
constant average degree over time, and the diameter as a slowly growing function of network
size [182]. To account for these patterns, several generative network models with increas-
ing complexity are proposed, which exhibit as emergent properties the reported empirical
behaviors. In particular, the Forest Fire model displays power-law distributed in- and out-
degrees, densification and shrinking diameter. This model specifies a probabilistic dynamics
of a “burning” of nodes, which spreads to its neighbors and then recursively until it dies out.
The mechanism is inspired by the dynamics of creation of paper citations: an author of a new
paper consults a reference, follows some of its references, and then continues accumulating
references recursively. It may be considered a generalization of triad formation. In Ren et al
(2012) [244] this model is contrasted against empirical data to propose a new model where
triad formation to some node j’s neighbor is extended to all nodes in the clique where j
belongs to, in order to reproduce the number of triangles, the high clustering coefficient and
the size distribution of co-citation clusters in empirical networks.

Hierarchical structure

Ravasz and Barabási (2003) [238] present a deterministic network model having both power-
law degree distribution and average clustering coefficient approximately equal to 0.743. The
model follows an iterative process, generating a hierarchical organization in which small
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degree nodes belong to dense communities, and hence have high clustering coefficients, and
on the other hand, the hubs connect different communities, hence resulting in low clustering.
This hierarchical organization is expressed in the following expression, which is referred to
as the clustering hierarchy,

C(k) ∼ k−1, (2.13)

where k is the degree and C(k) is the average of local clustering among k−degree nodes. The
results show, by numerical simulations, that not only the deterministic model satisfy relation
(2.13), but it also holds on several empirical networks (actors, language, WWW, Internet
at the autonomous level). The authors report two real networks that do not follow (2.13),
the internet at the router level and the power grid, suggesting that their geographical nature
might impose strong restrictions to the hierarchical topology. Later works [264, 140] have
refined (2.13), for example, by arguing that the exponent is more general and depends on
the power-law of the degree distribution, and that for low values of k, C(k) has a flat region
[264].

Xuan et al (2006) [294] propose a model where there is a growing number of vertices, but
a fixed number of hierarchical, modular levels. The intuition is to capture social systems,
large-scale logistic systems, or intercontinental air transportation networks, for example,
where there are fixed hierarchical and modular structures mainly determined by geographic
factors, but the vertices of them increase very quickly. The model has a treelike structure:
at the lowest level there are several groups of vertices, forming modules of this level. Those
modules are in turn grouped to constitute higher-level modules and so on. There are two
stochastic events of network growth: in-module connection and between-module connection.
The creation of connections in each case obeys preferential attachment. The results show
that the degree distribution, the module size distribution, and the clustering function of the
model possess a power-law property which is similar to that in many real-world networks.

This idea of the influence of the mesoscopic structure to determine the local connections
is reinforced by Tomasello et al (2014) [270]. This work studies the growth of R&D networks
by proposing a network model where nodes are firms, and links their alliances. Nodes are
endowed with the attributes of activity and label. The activity is the propensity to be in-
volved in an R&D alliance event, which encodes the instantaneous network dynamics and
provides an explanation for the presence of hubs [228]. The label represents the belonging of
a firm to a group, and is propagated by alliance creation events. By fitting only three macro-
scopic properties of the network topology, this framework is able to reproduce a number of
micro-level measures, including the distributions of degree, local clustering, path length and
component size and the emergence of network clusters. By estimating the link probabilities
towards newcomers and established firms from the data, the authors find that endogenous
mechanisms (previous alliances and previous network structures) are predominant over the
exogenous ones (exploratory search of new partners) in the network formation, even consid-
ering that in this model the groups result from self-organizing processes, rather than being
imposed as in the previous reviewed work.

An important point was made by Colomer-de-Simón et al (2013) [74], where it is asked
whether triangles in real-world networks are nearer to maximally random graphs with pre-
scribed degree and clustering distributions [219], or to maximally ordered graphs where trian-
gles are forced into modules by specifying the joint degree-and-clique-size distribution [113].
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The approach was to study m-core or k-dense landscapes [119], where the m-core is the max-
imal subgraph with edges participating in at least m triangles. The intuition of this measure
is that each edge belonging to a clique of size n participates in (n − 2) distinct triangles,
whereas an edge connecting two cliques participates in 0 triangles. This property defines a
set of nested subgraphs that is able to distinguish between hierarchical, where m-cores do not
fragment, and modular architectures, where m-cores are always fragmented. The study finds
that the clustering organization in real networks is neither completely random nor ordered
although it is more random than modular, that is, there is a strong hierarchical structure,
where each layer of nodes with the same m-coreness is nested within the previous layer, which
is better reproduced by maximally random graphs. This suggests that the structure of real
networks may in fact be the outcome of self-organized processes based on local optimization
rules, in contrast to global optimization principles.

2.3.6 Social networks are only weakly scale-free

In contrast to the models reviewed in the last subsection, which are able to recover either the
scale-free and the small-world properties, we will now review evidence from distinct works
pointing to the idea that social networks would have a weak scale-free character. In this
way, this subsection introduces a nuance to those modeling efforts reviewed in the previous
subsection, in the sense that complex networks patterns would have different importance
and interplay depending on the specific type of network studied. For this reason, if the goal
is to study social networks or network societies, it is desirable to bear in mind the explicit
social mechanism under study, which is the subject of Section 2.4. The present section either
introduces new works, and summarizes some previously discussed studies.

We have already reviewed in Section 2.3.4 several papers which, by studying dynamical
data of empirical networks with timestamped node connection events, looked for measuring
the growth rate of preferential attachment. In general, these works find that Internet, or
citation networks present linear attachment or scale-free degree [220, 243, 148], while more
social networks like scientific collaborations or the Hollywood actors present sublinear at-
tachment or exponential degree distribution [148, 21]. The hypothesis of the weak scale-free
character of social networks is more formally tested by Jackson and Rogers (2007) [143],
where a dynamic model of network formation is proposed in which nodes find other nodes
to form links in two ways: some are found uniformly at random, while others are found by
searching locally through the current structure of the network, like meeting friends of friends.
The model is fitted to six network datasets, finding that the relative roles ratio of the random
versus network-based meetings is more than seven times greater in a co-authorship network
than in a World Wide Web or citation network, and that the formation process is almost
uniformly random in two networks where the links correspond to friendships. The result that
an effective preferential attachment is the outcome of growing network models based on local
rules such as, for example, a random walk that adds new links to neighbors of connected
nodes, was studied previously by Vázquez (2003) [277]. Finally, Broido and Clauset (2019)
[53], who put a test on the scale-free distribution in a wide corpus of diverse empirical network
datasets, show that half of the social networks studied lack any direct or indirect evidence
of scale-free structure, and that most of the networks, including scientific collaboration or
board of directors, fall into the weakest evidence categories.
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2.4 Models of communities in networks

This section reviews a series of diverse studies which, by means of proposing a model of some
specific social dynamics in networks, attain to recover as a result the presence of communities,
or cohesive groups. These works may be roughly classified in terms of the methodology they
employ. Models coming mostly from the physics literature work with stochastic processes
of network formation. On the other hand, models from the economics literature use game-
theoretic concepts to describe strategic processes of network formation.

However, since we are more interested in the hypotheses formalized, the kind of social
behaviors captured by each model, we will structure this section based upon this criterion.
Most of these ideas are inspired by theories of trust and social capital [71, 117] that claim
that closure, or the reinforcement of relationships by the presence of common friends, pro-
motes cooperation. Though these accounts have been supported by experiments and field
studies [112, 196, 274], they have only recently been formulated as formal models by some
of the studies surveyed in this section. This kind of approach allows testing whether precise
structural patterns of social networks are the outcome, or are optimally arranged for a given
behavior. Thus, the precise notion of community varies depending on the work. Main mech-
anisms modeled can be grouped into complementarity, social sanctioning, favor exchange or
risk-sharing, and homophily. We next briefly review each of these themes.

2.4.1 Complementarity

We say that a behavior presents high level of complementarity when an individual requires
that many of his or her friends adopt that behavior before being willing to do so. An
empirical example of this phenomenon is provided by Centola (2010) [59], which shows that
individual adoption of a health behavior is much more likely when participants received
social reinforcement from multiple neighbors in an Internet-based social network. A simple
model that recovers this intuition is that by Chwe (1999) [66], where each agent in a group
wants to participate in a collective action only if the total number taking part is at least her
idiosyncratic threshold value. An agent knows the thresholds and links of only the people
in her neighborhood in a network of social connections. One result of the model is that
low-threshold-agents are much more likely to participate if they are part of tightly knit,
high clustering groups of friends. These facts are consistent with another insight in network
science posing that small-world networks are highly efficient for information exchange [178].
Finally, a model of static games with linear best replies on networks by Bramoullé et al
(2014) [46] gives another consistent intuition for the converse case when the agents’ actions
are strategic substitutes, that is, situations where actions by other agents may inhibit an
agent’s own action. This situation comprises, for example, private provision of public goods
and oligopolies. The model results show that for a greater degree of substitutability, the
equilibrium agents’ contributions may be concentrated on some nodes in the network, while
for example, more dense local communities may lead to a better diffusion of agents’ actions.

27



2.4.2 Social sanctioning

This kind of studies [17, 126, 187] aim to formalize social mechanisms of misconduct deter-
rence to foster cooperation such as defecting as punishment on past defections, or ostracism,
by analyzing equilibrium outcomes in repeated games played in networks, where the network
may provide the structure of either local monitoring of histories of play, or game interactions.
For example, Lippert and Spagnolo (2011) [187] proposes an asymmetric Prisoner’s Dilemma
game where agents play repeatedly in pairs with those agents linked by a network structure.
After each game iteration they have the option of passing on observed or received private
information on the history of play, and whether to do it truthfully or lie. The analysis shows
that cooperating agents do have incentives to transmit information truthfully until the ini-
tial deviator is punished, making relations sustainable that would not be so bilaterally (ie,
without the network structure). On the other hand, network structures such as trees or
stars are never sustainable because agents with only an outgoing link cannot be sanctioned
if they defect, in contrary to networks having cycles which are sustainable by ensuring that
all defections can be met with punishment. This result provides an intuitive explanation for
the importance of closure and density of social networks in social capital theories.

As another example, Balmaceda and Escobar (2017) [17] studies a trust game where there
are N investors, and at each round one investor is randomly selected to play with a special
non-investor agent. In this game, the investor decides whether or not to participate, and in the
first case he chooses an investment level, where then the agent chooses whether to cooperate
or to defect. There is also a social network determining the information each investor has.
One of the main results is that when a defection is observed only by the victim’s connections,
cohesive networks (that is, with complete components) are Pareto efficient as they allow
players to coordinate their punishments to attain high equilibrium payoffs, decreasing the
agent’s temptation to defect.

2.4.3 Risk-sharing

This principle refers to the networks representing income transfers functioning as insurance
against income fluctuations. Several of these works are inspired by informal lending studied
in developing countries where many times these systems replace formal legal institutions of
credit [9, 156, 142, 36]. We review next, as a representative example, the idea proposed in the
work by Mobius and colleagues [9, 156], which aims to model local transfers between socially
close households that take the form of loans. Since the model assumes that agents derive
utility from the strength of their relationships with friends, when a borrower needs an asset
of a lender, the network connections between individuals are used as a social collateral to
secure informal borrowing. The mechanism is the loss of the borrower-lender relationship if
the promise of a transfer arrangement in case the borrower fails to return the asset, is broken
by the borrower. Thus, the model achieves to predict that dense networks (in terms of the
relation between number of paths and reachable nodes) generate bonding social capital that
allows transacting valuable assets, while loose networks create bridging social capital that
improves access to cheap favors such as information.

A more abstract model is the one by Vega-Redondo (2006) [279], where agents play repeat-
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edly an idiosyncratic Prisoner’s Dilemma with their neighbors. The social network specifies
not only the playing partners but also determines how new cooperation opportunities are
found. Search of new links plays a key role since the environment is subject to payoff volatil-
ity. One of the model’s results is that as volatility rises, the network endogenously increases
its cohesiveness (average neighbor distance) due to an enhanced deterrence of opportunistic
behavior by neighbors’ punishment. However, instead of several communities, there is a large
component including most of the connected individuals. This shows the particular relevance
of social sanctioning in risky environments.

2.4.4 Homophily

Homophily is the observed pervasive tendency [198] that similar individuals tend to interact at
a higher rate than dissimilar people. This pattern is the result both of individual preferences
for similarity, and the structure of meetings given by homogeneous group composition [77,
197]. It has been formally argued that preferences for similarity may be the result of limits on
the number of relationships an individual can mantain, and direct externalities of investments
on a link given, for example, by reciprocity of friendships [247, 45]. On the other hand,
homophily can have important effects both in enhancing or impeding information diffusion
[116], which may impact adoption of health behavior [60], mate selection [256] or employment
opportunities [27].

Regarding its role as a factor for community structure in formal models, it is usually
posed as an explanation for culturally homogeneous groups and global dissimilarity among
groups, which also requires the mechanism of social influence or induced homophily, that is,
the more people interact, the more similar they become [12, 61, 262]. For example, Starnini et
al (2016) [262] shows that agents provided with a mobility scheme reproducing empirical data
on human face-to-face interactions, plus homophily implemented as a confirmation bias in
opinions and social influence in terms of a local search for consensus, can yield the emergence
of a metapopulation structure, where there are physically segregated groups of individuals
sharing similar opinions. This kind of models have been used to explain the emergence of
polarized opinions [98, 26].

2.5 Concluding remarks

Complex networks have been an enormous advance to our understanding of many complex
systems and their common features. These comprise the power-law degree distribution, the
high clustering and the small network diameter. The first is related to the unbounded vari-
ability of the degree, which in turn explains some particular properties of the distribution,
as seen in Section 2.2.5. The next two attributes relate to the efficiency of diffusion pro-
cesses they provide, see Section 2.4.1, present in many diverse systems, particularly in social
networks [272]. Despite many important advancements have been produced with the goal
of integrating these properties, see Section 2.3.5, one must proceed with care when studying
a particular system. Distinct works reviewed in Section 2.3.6 provide converging evidence
that pure social networks, in contrast to some information networks such as citation or the
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web, would be weakly scale-free. This result is maybe due to the fact that link creation is
more uniformly random in social networks, than guided by the local network structure as in
information networks [143], where the latter makes that higher degree nodes are more likely
to be found since more paths lead to them, as random walk models show [277]. For this
reason, it is key to keep in mind the specific mechanisms driving network dynamics, as those
reviewed in Section 2.4 driving some network societies.
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Chapter 3

QuickCent: a fast and frugal heuristic
for harmonic centrality estimation on
scale-free graphs
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Abstract

We present a simple and quick method to approximate network centrality indexes. Our
approach, called QuickCent, is inspired by so-called fast and frugal heuristics, which are
heuristics initially proposed to model some human decision and inference processes. The
centrality index that we estimate is the harmonic centrality, which is a measure based on
shortest-path distances, so infeasible to compute on large networks. We compare QuickCent
with known machine learning algorithms on synthetic data generated with preferential at-
tachment, and some empirical networks. Our experiments show that QuickCent is able to
make estimates that are competitive in accuracy with the best alternative methods tested,
either on synthetic scale-free networks or empirical networks. QuickCent has the feature of
achieving low error variance estimates, even with a small training set. Moreover, QuickCent
is comparable in efficiency –accuracy and time cost– to more complex methods. We discuss
and provide some insight into how QuickCent exploits the fact that in some networks, such
as those generated by preferential attachment, local density measures such as the in-degree,
can be a proxy for the size of the network region to which a node has access, opening up the
possibility of approximating centrality indices based on size such as the harmonic central-
ity. Our initial results show that simple heuristics and biologically inspired computational
methods are a promising line of research in the context of network measure estimations.

3.1 Introduction

Heuristics are proposed as a model of cognitive processes. Some models based on
heuristics have been proposed to account for cognitive mechanisms [273], which assume that,
though these heuristics are used at a lesser computational cost, they sacrifice accuracy and
lead to systematic errors. This viewpoint has been challenged by the so-called Fast and frugal
heuristics [109], which are simple heuristics initially proposed to model some human decision
and inference processes. They have shown that very simple human-inspired methods, by
relying on statistical patterns of the data, can reach accurate results, in some cases even
better than methods based on more information or complex computations [159, 109]. Due to
these features, fast and frugal heuristics have been applied in problems different from their
original motivation, including medical decision-making [13], predicting the outcomes of sport
matches [253] and geographic profiling [259].
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The problem of centrality computation. In this chapter, we provide an example of the
usefulness of one of these simple heuristics for estimating the centrality index in a network.
Roughly speaking, the centrality index is a measure of the importance of a node in a network.
We chose to estimate the harmonic centrality index [193] since it satisfies a set of necessary
axioms that any centrality should meet [40], namely that nodes belonging to large groups are
important (size axiom); that nodes with a denser neighborhood, i.e. with more connections,
are more important (density axiom); and that the importance increases with the addition of
an arc (score-monotonicity axiom). Consider a directed graph G = (V,A), with V the set
of nodes and A the set of arcs or edges. Formally, let dG(y, x) be the length of the shortest
path from node y to x in the digraph G. The harmonic centrality of x is computed as

HG(x) =
∑

y∈V,y ̸=x

1

dG(y, x)
,

which has the nice property of managing unreachable nodes in a clean way.

Besides its good properties, to compute the harmonic centrality for all nodes in a network
we need first to solve the all-pairs shortest-path problem. Notice that by the total number of
pairs of nodes, there is an intrinsic lower bound of | V |2 for computing this centrality, and
O(| V |2) is already a huge constraint for modern networks. There has been a lot of work on
optimizing the computation of all-pairs shortest-paths for weighted networks [230, 229, 234]
but even under strict constraints on the structure of the networks [234] this computation
is unfeasible for networks with a large number of nodes, usually needing time O(| A | · |
V |). Thus, in order to use harmonic centrality in practice we need ways of estimating or
approximating it.

Though there are few centrality indexes satisfying the three axioms [40], some simple
measures can be built that do satisfy them. One way of doing this, is by taking the simple
product of a density measure, such as the in-degree, with a size measure, such as the number
of weakly reachable nodes [40]. While the in-degree is cheap to compute, many times stored
as an attribute so accessible in constant time, size measures have a higher time complexity.
For example, the number of reachable nodes, for each node, can be computed from the
condensation digraph of strongly connected components, which may give, in the worst case,
a total time complexity of O(| A | · | V | + | V |2). In this chapter, we explore whether
expensive indexes, sensitive to either density and size, such as the harmonic centrality, may
be approximated by cheap local density measures such as the in-degree.

Our proposal. Our proposed method, called QuickCent, is a modification of QuickEst
[132], a heuristic proposed to represent the processes underlying human quantitative estima-
tion. QuickCent can be considered as a generalization of QuickEst, in the sense that, albeit in
this work we focus on centrality approximation, it proposes a general procedure to regress a
variable on a predictor when some assumptions are met. QuickCent is a very simple heuristic
based on sequences of binary clues associated with nodes in a network; the value of a clue is
an indicator of the presence or absence of an attribute signal of greater centrality for a node.
The method simply finds the first clue with value 0 (absence), and it outputs an estimate
according to this clue. All the clues used in QuickCent are based on the in-degree of the
node, thus QuickCent can be seen as a method to regress a variable (harmonic centrality)
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that correlates with a predictor variable (in-degree) that is cheaper to compute. Another
key characteristic of QuickCent is that it is designed to estimate magnitudes distributed
according to a power-law [206], which can model a wide range of natural and human-made
phenomena. This chapter extends previous work by some of the authors, mainly by adding
the study of networks defying the heuristics assumptions and the performance over empir-
ical networks [232]. Besides that, some technical implementation details, together with the
examples and the insight of why harmonic centrality can be estimated with in-degree, are
new.

Results and future work. Our method is able to generate accurate estimates even if
trained with a small proportion –10%– of the dataset. We compare QuickCent with three
standard machine learning algorithms trained with the same predictor variable over synthetic
data and some empirical networks. Our results show that QuickCent is comparable in accu-
racy to the best-competing methods tested, and has the lowest error variance. Moreover, the
time cost of QuickCent is in the middle range compared to the other methods, even though
we developed a naive version of QuickCent. We also discuss how QuickCent exploits the
fact that in some networks, where higher degree nodes are more likely to be found because
more paths lead to them, local density measures such as in-degree can be a good proxy
for the size of the network region to which a node has access, opening up the possibility
of approximating centrality indices based on size, such as harmonic centrality. This insight
supports the conjecture that QuickCent may be better suited to information networks, such
as the Internet, citation, or scientific collaboration, which can be well approximated by the
preferential attachment growth mechanism [20, 148, 277], than to more purely social net-
works [143, 53], which is an interesting question for future work. Also, working in the future
with more general notions of local density [175, 29] may serve to extend the validity of the
heuristics for more general networks. The results of this chapter are a proof of concept to
illustrate the potential of using methods based on simple heuristics to estimate some network
measures. Whether or not these heuristics provide a realistic model of human cognition, is a
wide problem [52] which is out of the scope of this work.

Structure of the chapter. The rest of this chapter is structured as follows. We begin in
Section 3.2 by introducing the general mechanism of QuickCent, while Section 3.3 presents our
concrete implementation. In Section 3.4, we present the results of our proposal, including the
comparison with other machine learning methods on either synthetic or empirical networks.
Section 3.5 gives a final discussion of the results including directions for possible future work.

3.2 The QuickCent Heuristic

In this section, we give a general abstract overview of our proposal, which we call QuickCent.
The setting for QuickCent is as follows: the input is a network G = (V,A) and we want to
get an accurate estimate of the value of a centrality function fC : V −→ R. That is, for
every v ∈ V , we want to compute a value f̃v that is an estimation of fC(v). In our abstract
formulation, it does not matter which particular centrality function we are estimating, and
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the details of the implementation of the heuristic for the particular case of harmonic centrality
are given in the next section. We next explain the general abstract idea of the components
of QuickCent.

Analogously to QuickEst [132], our QuickCent method relies on vectors of n binary clues.
We associate to every node v ∈ V a vector x⃗v = (x1

v, x
2
v, . . . , x

n
v ) ∈ {0, 1}n. The intuition is

that the value of the i−th component (clue) xi
v is an indicator of the presence (xi

v = 1) or
absence (xi

v = 0) of an attribute signal of greater centrality for node v. Our method also
considers the following n+ 1 sets of nodes:

S1 = {v ∈ V | x1
v = 0}

Si = {v ∈ V | xi
v = 0 and xi−1

v = 1} (2 ≤ i ≤ n)
Sn+1 = {v ∈ V | xn

v = 1}

That is, Si corresponds to nodes that do not have the i−th attribute while having the
previous one. For each one of the sets Si, with 1 ≤ i ≤ n+1, our method needs a quantity f̄i
which is a summary statistic of the centrality distribution of the nodes in set Si. QuickCent
must ensure that successive clues are associated with higher centrality values, thus we will
have that

f̄1 < f̄2 < · · · < f̄n < f̄n+1. (3.1)

With the previous ingredients, the general estimation procedure corresponds to the following
simple rule.

General QuickCent heuristic: For node v, we iterate over the n clues, considering every
value xi

v. When we find the first i verifying that xi
v = 0, we stop and output the value f̄i. If

node v is such that xi
v = 1 for every i ∈ {1, . . . , n}, we output f̄n+1.

Example 3.2.1 This is only a very simple example to exhibit the working of QuickCent,
where we assume complete knowledge of the centrality values of all nodes. Let us consider the
following network in Figure 3.1 of size 25 obtained as a random instance of linear preferential
attachment, defined in Section 2.3.4 of the survey chapter. Table 3.1 displays only the
non-zero values of in-degree and harmonic centrality in this network. A reasonable way to
aggregate these values is to consider four sets Si, i = 1, 2, 3, 4, with the following binary clues,
xi
v = 1 (i = 1, 2, 3) if and only if degin(v) > di, with d1 = 0, d2 = 3 and d3 = 4. With this

choice, for simple centrality approximation it is natural to take, for example, the median of
harmonic centrality on every set Si as summary statistics, f̄1 = 0, f̄2 = 1, f̄3 = 4.666 and
f̄4 = 15.75.

QuickCent provides a simple stopping rule: for each node, the search is finalized when
the first clue with value 0 is found. Therefore, if our input is a network in which the vast
majority of nodes is having similar and small centrality values –as it would be the case if
the centrality were distributed according to a power law– the procedure is likely to stop the
search early and give an estimate quickly. In this sense, the heuristic is frugal, given that in
many cases it can output an estimate without passing over all the clues, or without using all
the available information.

Up to this point, QuickCent remains similar to QuickEst. The reader can review the
details of QuickEst in the book chapter by Hertwig et al (1999) [132]. The most critical
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Figure 3.1: A network randomly generated with linear preferential attachment.
Notice the formation of a central hub, and a vast majority of nodes with zero or low in-
degree.

Node 1 4 8 10 14 17 19 23

In-degree 9 4 4 1 3 1 1 1
Harmonic 15.750 4.833 4.500 1.000 3.500 1.500 1.000 1.000
QC100 13.429 2.973 2.973 1.309 1.309 1.309 1.309 1.309
QC70 6.531 2.197 2.197 1.214 1.214 1.214 1.214 1.214

Table 3.1: In-degree and harmonic centrality values for each node of the network
from Figure 3.1. Nodes that do not appear here have a zero in-degree and centrality. The
last two rows correspond to QuickCent models described in Example 3.3.2. The number of
decimal places is truncated to three with respect to the source.

aspects that distinguish QuickCent from QuickEst, as well as a specification of each part of
the heuristic, are presented in the next section.

3.3 A QuickCent implementation

In this section, we propose an instantiation of our general QuickCent method, including a
way to compute the clues xi

v for every node v based on its in-degree in Section 3.3.1, and
an efficient way to compute the summary statistic f̄i of the centrality for every set Si in
Section 3.3.3. Section 3.3.2 makes explicit the assumptions on the structure of graphs that
QuickCent requires to be a ecologically rational heuristic [132], i.e. the proper problem con-
ditions that ensure a successful application of the heuristic, including that the centrality has
a power-law distribution. Necessary concepts of the power-law distribution are introduced in
Sections 2.2.3 and 2.2.5 from the survey chapter. Sections 2.3.3, and B.1 in the supplemen-
tary information annex of this chapter, detail the practical procedure we use to estimate the
parameters of the power-law distribution from random samples.
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3.3.1 Using the in-degree for the clues

Our approach for computing the binary clues is to employ a proxy variable related to the
centrality by means of a monotonic function which ensures that Equation (3.1) holds. The
idea is to use a proxy which should be far cheaper to compute than computing the actual
centrality value. The proxy variable we chose is the in-degree of the node, that is, the number
of neighbors of the node given by incoming arcs of the network. The intuition for this proxy
is that greater in-degree will likely be associated with shorter distances, which likely increases
the harmonic centrality. The in-degree is one of the most elementary properties of a node,
and in many data structures it is stored as an attribute of the node (thus accessible in O(1)
time). The in-degree can itself be considered as a centrality measure [40]. For a node v we
denote by degin(v) its in-degree.

Now, starting from a set of proportions {pi}ni=1, where 0 ≤ · · · ≤ pi ≤ pi+1 ≤ · · · ≤ 1,
we can get the respective quantile degree values {di}ni=1. That is, if F is the cumulative
distribution function (CDF) for the in-degree, then di = F−1(pi) for each i = 1, . . . , n. Then,
we define the i−th clue for node v as

xi
v = 1 if and only if degin(v) > di. (3.2)

With this definition, the sets Si are

S1 = {v ∈ V | degin(v) ≤ d1},
Si = {v ∈ V | di−1 < degin(v) ≤ di} (2 ≤ i ≤ n),

Sn+1 = {v ∈ V | dn < degin(v)}.

Example 3.3.1 This type of clues was already used in Example 3.2.1. In fact, the quantile
degree values {0, 3, 4} used there can be obtained via the inverse of the in-degree CDF applied
to the set of proportions {0.68, 0.84, 0.96}.

The final piece to apply QuickCent is to show how to compute the summary statistic f̄i
for every set Si. We propose to compute f̄i analytically as the median of each Si based on
estimating the parameters of a power-law distribution. This idea is developed in the next
subsection.

3.3.2 Computing the summary statistic via a power-law distribu-
tion assumption

Our first assumption is the existence of a non-decreasing function g relating the in-degree
and the centrality1. If there exists a function g satisfying this condition, then the quantiles in
the centrality side are equivalent to the application of g on the same degree quantiles [138].
With this result, the quantile proportions can be specified according to characteristics of
the centrality distribution, as it is explained in Section 3.3.3. In practice, and even more
so considering that the in-degree is a discrete variable while the centrality is continuous,
the object g is a relation rather than a function. More formally, let {Ci}ni=1 be the set of

1It is required an additional assumption –left continuity– which can be consulted at Hosseini (2010) [138].
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quantile centrality values associated to the proportions {pi}ni=1 that were used to compute
the quantile degree values {di}ni=1 (see Equation (3.2)). Given the above assumption about
g, we can rewrite the sets Si as follows:

S1 = {v ∈ V | g(degin(v)) ≤ C1}
Si = {v ∈ V | Ci−1 < g(degin(v)) ≤ Ci} (2 ≤ i ≤ n)

Sn+1 = {v ∈ V | Cn < g(degin(v))}

Our second assumption is that the centrality index that we want to estimate follows a
power-law distribution. The introduction to this distribution is in Sections 2.2.3 and 2.2.5
from the survey chapter, while Sections 2.3.3, and B.1 in the supplementary information
annex of this chapter, detail the practical procedure we use to estimate the parameters
of the power-law distribution from random samples. We add this assumption motivated
by the argument that QuickEst would have a negative bias [132], in the sense that it is a
negative clue (or absent attribute) that stops this heuristic. Thus, a distribution such as
the power law where most values are small (with mostly negative clues) and only a few
high values exist (with mostly positive clues), would provide an optimal context for the
performance of QuickEst, which is consistent with the finding that this heuristic predicts
well the estimation behavior by some people on this kind of data [282]. Moreover, power-
laws have a pervasive presence in many natural phenomena and magnitudes produced by
humans too [206], although there has been some recent controversy on this topic [53, 19]. As
we next show, our assumption of power-law distribution will allow us to use some particular
properties to approximate the values {Ci}ni=1 used in the rewriting above, and then use
them to efficiently compute the statistics {f̄i}n+1

i=1 for every set Si. In Section 3.4.3, we show
some experiments to argue that these two assumptions of the heuristic are key to ensure its
competitive accuracy.

3.3.3 Putting all the pieces together

Let D = (V,A) be our input network, and recall that we are assuming that the centrality
that we want to estimate for D follows a power-law distribution. Let α̂ be the estimate of the
exponent parameter of the distribution (given by Equation (2.11) from Section 2.3.3 in the
survey chapter), and x̂min be the estimate of the lower limit of the distribution (given by the
minimization in Equation (2.12) from Section 2.3.3, estimated according to the method given
in Annex B.1), which have been computed by considering a set of m nodes in V and their
(real) centrality values. With all these pieces, we can compute the values {Ci}ni=1 associated
to the proportions {pi}ni=1 easily by using the equation∫ Ci

x̂min

Kx−α̂dx = pi

from which we get that

Ci = x̂min · (1− pi)
1

1−α̂ .

Now, in order to compute the summary statistics {f̄i}n+1
i=1 , we will use the median of every

set Si. This median can be computed as follows. Given that we rewrote Si as the set of
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centrality values x such that Ci−1 ≤ x ≤ Ci, then the median md i of Si must verify∫ Ci

mdi

Kx−α̂dx =
1

2

∫ Ci

Ci−1

Kx−α̂dx

from which we obtain that

md i =

(
(Ci−1)

1−α̂ + (Ci)
1−α̂

2

) 1
1−α̂

= f̄i (2 ≤ i ≤ n) (3.3)

Moreover, since the extreme points of the distribution are xmin (estimated as x̂min) and ∞,
the two remaining statistics f̄1 and f̄n+1 are computed as

f̄1 =

(
(C1)

1−α̂ + (x̂min)
1−α̂

2

) 1
1−α̂

(3.4)

and
f̄n+1 = 2

1
α̂−1 · Cn (3.5)

We stress that with these formulas we compute the summary statistic f̄i for each set Si just
by knowing the values {Ci}ni=1, which are computed by using only the values α̂, x̂min, and the
underlying vector of proportions {pi}ni=1. This last element was chosen as the quantile proba-
bility values that produced equidistant points on the range of {log(h(v)) | v ∈ V, h(v) ≥ x̂min},
that is, the set of vertices where the power-law is well defined for the harmonic centrality.
Logarithmic binning is chosen to gauge the tail of the power-law distribution with higher
frequency. The length n of the vector of proportions required to construct the clues (see
Equation (3.2)) was chosen after pilot testing on each type of distribution. See Annex B.3,
and Sections 3.4.3 and 3.4.4 for more details. The election of this vector is a way of adapting
QuickCent to distinct centrality distributions. Research on possible improvements achievable
by tuning this vector may be addressed in future work.

The last element we introduced in our procedure, is the use of an additional quantile
centrality value C0 = x̂min, with the goal of spanning the centrality values h(v) < x̂min

with greater accuracy. Since for this range of the vertex set the power-law distribution is
no longer valid, the representative statistic f̄0 we have used is simply the empirical median
of the harmonic centrality in the set of nodes v such that degin(v) ≤ g−1(x̂min). With this
element, it turns out that, if we use a proportions vector {pi}ni=1 of length n, the total number
of medians {f̄i}n+1

i=0 is (n + 2). In the code provided to produce the analyses of this paper
[231], this element is optional (and activated by setting rm=True or rms=True). All the
results in this paper were obtained with this centrality quantile and median.

Example 3.3.2 We continue revisiting Example 3.2.1. If we fix xmin = 1, the exponent α̂(1)
that fits the complete distribution of centrality values, by using Equation (2.11) from Section
2.3.3 in the survey chapter, is 2.067. The set of proportions shown in Example 3.3.1 comes
from evaluating the centrality CDF on the set of points {1, 2.506, 6.283}, which correspond
to xmin and two points (n = 2) that in logarithmic scale turn out to be equidistant to the
minimum and maximum of the set {log(h(v)) | v ∈ V, h(v) ≥ x̂min}, the (log) centrality
domain of the given network where the power law is valid. From these parameters and
the expressions shown in this section, one can get the medians required by QuickCent to
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make estimates. These can be examined in Table 3.1, corresponding to the model QC100,
which has a MAE (mean absolute error) over the whole digraph of 3.606e − 01. A more
interesting case may be computed when α̂(1) is derived from a random sample of the centrality
distribution. For example, by taking a sample without replacement of size 70% one may get
an exponent estimate of α̂(1) = 2.477, which has a MAE of 6.948e − 01 and QuickCent
estimates that can be examined in the model QC70 in Table 3.1.

This completes all the ingredients for our instantiation of QuickCent, as we have the
values for the clues (x1

v, x
2
v, . . . , x

n
v ) computed from the in-degree of the node v, plus the

values {di}ni=1 as shown in Equation (3.2), and also the summary statistics {f̄i}n+1
i=0 for each

set Si, which are the two pieces needed to apply the heuristic.

3.4 Results

In the present section, we show the results of applying QuickCent either on synthetic data
or on some empirical networks, and we compare it with alternative procedures for centrality
estimation. We first show the comparison of QuickCent with other methods when applied on
synthetic networks, considering accuracy and time measurements in Sections 3.4.1 and 3.4.2.
The synthetic network model corresponds to the preferential attachment (PA) growth model
introduced in Section 2.3.4 from the survey chapter. Section 3.4.3 reviews the output of
QuickCent on null network models where its accuracy is not as good relative to other methods,
with the aim of showing that the two assumptions of QuickCent (Section 3.3.2) are jointly
required as a necessary condition for the competitive performance of this heuristics. The
same benchmark presented for the synthetic case was applied to the empirical datasets, and
the results are shown in Section 3.4.4. The experiments to check the fulfillment of QuickCent
assumptions by the different networks are shown in Sections B.2, B.4, B.5 and B.6 from the
supplementary information annex. In all our experiments we consider harmonic centrality as
the target to estimate. The number of nodes chosen for the synthetic networks experiments is
10, 000 and 1000 for the null models, with the aim of accelerating the bootstrap computations
to check the assumptions of QuickCent on each network. Similar sizes were searched for when
choosing the tested empirical networks. These are not really big numbers compared with
modern networks. We select these numbers as we need to be able to compute the exact value
of the harmonic centrality for all nodes in the graph, in order to compare our estimations
with the real value, and regard it to be enough for a first assessment of the heuristic.

Experiments specifications

The norm that we employed to summarize the error committed on each node is the mean
absolute error (MAE). This measure is preferable to other error norms, such as the Root mean
squared error, because the units of the MAE are the same as the quantity under consideration,
in this case, the harmonic centrality. On the other hand, since the MAE can be understood
as the Minkowski loss with L1 norm for the regression of the variable of interest, and in this
case, it is known that the solution is given by the conditional median [35], it is reasonable to
use the MAE when the summary statistic chosen is the median of each centrality interval.
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Finally, all the experiments were performed on the R language [237] with igraph library [76]
for graph manipulation, and ggplot2 library [288] to produce the plots.

3.4.1 Comparison with other methods

In this section, we compare the performance of known existing regression methods with Quick-
Cent. This exercise allows us to evaluate the potential uses and applications of our proposal.
Specifically, whether it can deliver reasonable estimates, in relation to alternative solutions
for the same task. This is not a trivial matter, considering that QuickCent is designed to
do little computational work of parameter estimation and output production, possibly with
limited training data, while common alternative machine learning (ML) methods generally
perform more complex computations. For a fair comparison, all other methods use only the
in-degree as an explanatory variable. In rigor, QuickCent is able to produce the estimates
only from the binary clues, without using the in-degree.

The competing methods considered are linear regression (denoted by L in plots), a re-
gression tree (T) [236, 291] and a neural network (NN) [250], which are representatives of
some of the most known machine learning algorithms. We used Weka [291] and the RWeka
R interface [137] to implement T and NN using default parameters. In the literature, there is
previous work specifically tailored to centrality estimation using ML methods, but for other
centrality indices beyond harmonic centrality. In particular Brandes and Pich study specific
estimations for closeness and betweenness centrality [47]. It would be interesting to compare
our method with the one proposed by Brandes and Pich [47], but this would amount to
changing and adapting their method to harmonic centrality. We leave this adaptation and
further comparison as future work.

The results of this experiment are shown in Figure 3.2 with a training size of 10 % and
Figure 3.3 with a training size of 100 %, where the test set is always the entire digraph.
The two training sizes are studied with the goal of assessing the impact of scarce data on
the distinct estimation methods, by contrasting a full versus a scarce data scenario. In
the figures, it can be seen that QuickCent (QC) produces the lowest MAE errors of all the
methods, either in terms of the IQR length, or the mean and outliers, for PA exponents 1
and 0.5. As noted in the Annex B.2, these are the cases where the centrality distribution
has a better fit by a power-law model, but it is anyway a remarkable result considering the
error committed by fixing xmin = 1, see Annex B.3. Examining the MAE medians of these
simulations in Table 3.2, one sees that the QC median is at the level of the most competitive
ML methods in the simulations, NN and T, sometimes being the best of the three depending
on the experiment. However, for exponents 1 and 0.5, where the power-law is present, the
good thing about QC is that the upper quantiles and even the outliers remain low compared
to other methods (see Figure 3.2 and Figure 3.3).

Thus, the main takeaway is that QC, when its assumptions are fulfilled, is able to produce
estimates at the same level as much more complex ML methods, with likely lower variance.
This fact is consistent with the argument given by Brighton and Gigerenzer [49] claiming
that the benefits of simple heuristics are largely due to their low variance. The argument
relies on the decomposition of the (mean squared) error into bias, the difference between the
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Figure 3.2: Benchmark with other ML methods for different exponents of PA
digraph instances and 10 % of training size. For each regression method, there is a
boxplot showing the MAE distribution. Each boxplot goes from the 25−th percentile to the
75−th percentile, with a length known as the inter-quartile range (IQR). The line inside the
box indicates the median, and the rhombus indicates the mean. The whiskers start from
the edge of the box and cover until the furthest point within 1.5 times the IQR. Any data
point beyond the whisker ends is considered an outlier, and it is drawn as a dot. For display
purposes, the vertical limit of the plots has been set to 10, since the highest MAE outliers of
NN or L, depending on the PA exponent, blur the details of the model performance. Observe
that QuickCent is in general reliable (has low variance), and has the best accuracy for the PA
exponents (1 and 0.5) where the harmonic centrality is well approximated by a power-law.
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Figure 3.3: Benchmark with other ML methods for different exponents of PA
digraph instances and 100 % of training size. For each regression method there is a
boxplot showing the MAE distribution. Each boxplot goes from the 25−th percentile to the
75−th percentile, with a length known as the inter-quartile range (IQR). The line inside the
box indicates the median, and the rhombus indicates the mean. The whiskers start from
the edge of the box and cover until the furthest point within 1.5 times the IQR. Any data
point beyond the whisker ends is considered an outlier, and it is drawn as a dot. For display
reasons, the vertical limit of the two first plots was set to 10, since the highest MAE outliers
of NN or L, depending on the PA exponent, blur the details of the model performance.
Observe that QuickCent is in general reliable (has low variance), and has the best accuracy
for the PA exponents (1 and 0.5) where the harmonic centrality is well approximated by a
power-law.
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PA β L10 NN10 QC10 T10 L100 NN100 QC100 T100

1 2.341 1.194 1.040 1.422 5.711 1.242 1.009 1.560
0.5 3.249 1.699 1.576 1.561 4.704 3.300 1.578 1.571
1.5 0.079 0.991 0.996 1.009 0.006 0.018 0.997 1.986

Table 3.2: Medians of the MAE distribution across 1000 digraphs. These estimates
are computed from the same simulationes displayed in Figure 3.2 and Figure 3.3. The suffix
of each method abbreviation corresponds to the size of the training size used. The exponent
β corresponds to the exponent of the preferential attachment growth (Section 2.3.4 from the
survey chapter). The number of decimal places is truncated to three with respect to the
source.

average prediction over all data sets and the desired regression function, and variance, the
extent to which the estimates for individual datasets vary around their average [35]. Thus,
along the range of the bias-variance trade-off of models, simple heuristics are relatively rigid
models with high bias and low variance, avoiding the potential overfitting of more complex
models.

By examining the contrast of the outliers between Figure 3.2 and Figure 3.3, it can be
noticed that QC suffers the least impact from scarce data. In the case of L and NN, they show
a similar pattern for power-law centralities (PA exponents 1 and 0.5). They have medians
that are lower for the 10 % training size than those obtained with the whole network. Since
there are only a few large values in the entire graph, when the training sample gets smaller,
the sample values have a better linear fit, in comparison to larger samples. Therefore, a linear
model adjusted to some small sample provides a good fit to the small-to-moderate centrality
size nodes, which is the case for most of the nodes. This also explains the presence of higher
outliers in the 10 % training size. On the other hand, the behavior of the regression tree is
more similar to that of QuickCent.

3.4.2 Time measurements

Elapsed time was the other distinct aspect of the method’s performance. The time cost is
a critical feature of any approximation method because it measures the tradeoff between
accuracy and cost. Elapsed time measurements were taken in the experiments shown in
Section 3.4.1, and the results are displayed in Table 3.3. These times consider the training
and inference time for each method, without including any centrality computation. In the
case of QuickCent, the computation of the proportions vector is not considered for the elapsed
times. The reason is that this computation is not directly part of the heuristics, and there is
also the possibility of using a prototypical vector for a given type of centrality distribution.

From the table, we can see that the elapsed time of QC is in the middle range of the
compared methods. The linear regression has the lowest times, around one order of magnitude
faster than QuickCent and the regression tree, and the neural network has the highest elapsed
time. Note also that there is no significant time difference between the 10%-case and the
100%-case for QC. This can be explained by the fact that the differences in sample sizes only
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L10 QC10 T10 NN10 L100 QC100 T100 NN100

Mean 2 76 23 98 3.9 77.5 28.0 760.9
St. Dev. 0.25 2.95 2.98 2.16 0.35 3.27 4.66 9.88

Table 3.3: Mean and standard deviation of elapsed time in milliseconds over 1000
digraphs with PA exponent 1. The suffix of each method abbreviation corresponds to
the size of the training set used.

affect the number of terms in the sum in Equation (2.11) (Section 2.3.3 in the survey chapter)
when estimating the exponent α̂, and summing a list of values is an extremely simple and
quick procedure.

Based on these results, we conjecture that QuickCent has the lowest time complexity
among the tested methods. Among the computations that QuickCent performs, the most
expensive ones correspond to the selection problem of finding the median of the lowest cen-
trality values (Section 3.3.3), plus the quantile degree values (Section 3.3.1). The procedure
used to compute the proportions vector (Section 3.3.3), which is not considered in the elapsed
time measurements, also relies on solving the selection problem (of the maximum of the set
of centrality values) and sorting of the centrality values set (to find the proportions). These
problems may be solved in linear time [75] on the input size, that is, linear on the network
size O(| V |). In contrast to the highly optimized R implementations for L, T, and NN,
we considered only a naive implementation of QuickCent without, for example, architectural
considerations. With these improvements such as using more appropriate data structures,
these times could still be improved. We left as future work the construction of an optimized
implementation for QuickCent.

3.4.3 Networks defying QuickCent assumptions

Up to this point, we have mainly seen examples of networks where QuickCent exhibits quite
good performance compared to competing regression methods. In order to give a full account
of QuickCent capabilities and its ecological rationality [132], one should also have an idea
of the networks where its accuracy deteriorates. To accomplish this, we will look at the
two assumptions of QuickCent, namely, the power-law distribution of the centrality, and
its monotonic map with the in-degree, to show that they are jointly required as a necessary
condition for the competitive performance of the heuristic. Our approach here is to work with
two null network models, each acting as a negation of the conjunction of the two assumptions,
which provide strong evidence for this claim.

Response to the loss of the monotonic map

Our first null model is a scale-free network built by preferential attachment, just as in the
previous experiments, but after a degree-preserving randomization [194] of the initial network,
which is simply a random reshuffling of arcs that keeps the in- and out-degree of each node
constant. The aim is, on the one hand, to break the structure of degree correlations found
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in preferential attachment networks [185, 297], which may be a factor favoring a monotonic
relationship between in-degree and harmonic centrality, and on the other hand, to maintain
a power-law distribution for the harmonic centrality by preserving the degree sequence of
nodes in the network. This last feature does not ensure that the centrality distribution is
a power-law, since randomization also affects this property. Annex B.4 displays the results
of the experiments performed to check the assumptions of QuickCent on the randomized
networks, showing that these networks satisfy them. Finally, Figure 3.4 shows the impact of
randomization on each regression method. This is an experiment where 1000 PA networks
(exponent 1) of size 1000 were created, and the four ML methods used in Section 3.4.1 were
trained on each network with samples of size 30 % of the total node set, using only the in-
degree as the predictor variable for the harmonic centrality. The same procedure was run on
each network after applying degree-preserving randomization on 10000 pairs of arcs. The plot
shows that the randomization has a similar impact on the performance loss of each method,
which is an expected result due to the fact that the only source of information used by each
method, the in-degree, becomes less reliable due to the weaker association with harmonic
centrality thanks to the arc randomization. Since QuickCent was the most accurate of the
methods tested on the initial PA networks, it appears to be also one of the methods most
affected methods by the randomization.

Response to the loss of the power-law distribution of centrality

Our second null model is the directed Erdös-Rényi graph model [92, 41, 157], and is chosen
with the aim of gauging the impact of losing the power-law distribution of the centrality while
maintaining the monotonic map from in-degree to centrality. This model is known to have
a Poisson degree distribution [41], a behavior very different from a heavy-tailed distribution,
and according to our simulations (see Annex B.5), it turns out to be ideal for our purposes.
We choose connection probabilities that ensure a unimodal distribution for centrality and a
strong correlation with in-degree, i.e. with a mean in-degree greater than 1 [157]. In order
to get a fair control on the performance of QuickCent, we have taken two empirical digraphs
that satisfy the given condition of the mean in-degree, with node sets of size near 1000,
just to accelerate the bootstrap p-value computations. The networks are extracted from the
KONECT database [176]2, and their meta-data is shown in Table 3.4. The fields N and ¯degin

given in this table, are used to determine the network size and the connection probability
used to instantiate the respective ER digraphs from the identity ¯degin = p · (N − 1).

Finally, in Figure 3.5 we can see the results of an experiment analogous to the one with
the first null model, that is, there are 1000 iterations where the same four ML methods
were trained on each network, two ER graphs with the two connection probabilities and
sizes given by the two empirical/control networks, with random samples of size 30 % of the
total node set, using only the in-degree. Since the unimodal distribution of ER digraphs is
very different from a power-law, in this experiment we have taken the approach of using the
parameter x̂min estimated by the method reviewed in Annex B.1, as well as the search space
restriction explained there, instead of a fixed lower limit as in the previous experiments.
Now, by comparing the two plots in Figure 3.5, one can observe a noticeable difference in

2http://konect.cc/
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Figure 3.4: Effect of randomization on different ML methods using 30 % of the
training size. Each boxplot group is labeled with the name of the ML method, a dot, and
the type of network on which the estimates are made (‘PL’ for the initial PA network, ‘RPL’
for the network after randomization). QC8 corresponds to QuickCent with a proportion
vector of length 8, and analogously for QC1. For each regression method, there is a boxplot
representing the MAE distribution. Each boxplot goes from the 25−th percentile to the
75−th percentile, with a length known as the inter-quartile range (IQR). The line inside the
box indicates the median, and the rhombus indicates the mean. The whiskers start from the
edge of the box and extend to the furthest point within 1.5 times the IQR. Any data point
beyond the whisker ends is considered an outlier, and it is drawn as a dot. For display reasons,
the vertical limit of the plots was set at 10, since the highest MAE outliers of NN, make blur
the details of the model performance. The arc randomization impacts the monotonic map
from in-degree to harmonic centrality, having a detrimental performance effect on almost
every regression method.
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Name N ¯degin Corr Arc meaning Ref.

moreno blogs 990 19.21 0.872 Blog hyperlink [2]
subelj jung-j 2208 62.81 0.808 Software dependency [267]

Table 3.4: General description of the two empirical control networks. The fields
in the table are the dataset name, the number of nodes with positive in-degree (N), the

mean in-degree of nodes with positive in-degree ( ¯degin), the Spearman correlation between
the positive values of in-degree and harmonic centrality (Corr), the meaning of the arcs, and
the original reference. The name corresponds to the Internal namefield in the KONECT
database. To access the site to download the dataset, append the internal name to the link
http://konect.cc/networks/.

the behavior of QuickCent in the two cases. While QuickCent achieves an average accuracy
relative to other regression methods on the control networks with centrality distributions
that are more or less close to heavy-tailed, on ER digraphs with similar characteristics to
the controls, QuickCent consistently performs worse than other methods. The performance
of QuickCent in these plots corresponds to the best possible for each network as a function
of the length of the proportions vector, denoted by the number after ‘QC’. This output
is also consistent with the difference in p-values of the power-law fit between the control
networks and 1000 instances of the ER models, reported in Table B.5 from the supplementary
information annex. These results reveal the critical importance of the centrality distribution
of the data set for the proper functioning of QuickCent.

On the other hand, all of the methods exhibit better performance on the ER digraphs
than on the corresponding control network, probably due to less heterogeneity in the values
to be predicted on the former. Finally, as a side note for working on empirical network
datasets, for general networks it should be more accurate to use the fitted value of x̂min than
a fixed value, although this depends on the variability range existing on the values less than
x̂min, which may introduce potentially large contributions to the estimation error. Observe
that there is an additional computational overhead due to the calculation of x̂min.

3.4.4 Experiments with empirical networks

In this section, we present the performance of QuickCent on some real network datasets of
similar size to the synthetic networks already tested, also in comparison to other machine
learning methods. These results are only a first glimpse of the challenges this heuristics may
encounter when dealing with real datasets, and they should also be considered as a proof of
concept.

We selected five datasets, all of them extracted from the KONECT network database
[176]3, a public online database of more than a one thousand network datasets. The criteria
for selecting the networks were that, besides being similar in size to our synthetic networks
(10000 nodes), each network had a distinct meaning, i.e., networks representing distinct

3http://konect.cc/
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Figure 3.5: Effect of centrality distribution on different ML methods using 30 %
of training size. Each boxplot group is labeled with the name of the ML method, a dot,
and the type of network on which the estimates are made (‘mb’ for moreno blogs, ‘sj’ for
subelj jung-j, ‘ERmb’ for the ER digraph created with the parameters of moreno blogs, and
analogously for ‘ERsj’). The number after ‘QC’ is the length of the vector of proportions
used by that method, corresponding to the best accuracy for the respective network. For
each regression method, there is a boxplot representing the MAE distribution. Each boxplot
goes from the 25−th percentile to the 75−th percentile, with a length known as the inter-
quartile range (IQR). The line inside the box indicates the median, and the rhombus indicates
the mean. The whiskers start from the edge of the box and extend to the furthest point
within 1.5 times the IQR. Any data point beyond the whisker ends is considered an outlier,
and it is drawn as a dot. For display reasons, the vertical limit of the control network
plot has been set at 150, as the highest MAE outliers of NN blur the details of the model
performance. The comparison between the two plots, reveals the critical importance of the
centrality distribution for QuickCent performance. In the left plot QuickCent presents a
relative bad performance, while at the right it has a competitive average accuracy.
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Figure 3.6: Performance of QuickCent against known ML algorithms on each em-
pirical dataset. The competing algorithms are the same as in Section 3.4.1, that is, a linear
regression (L), a neural network (NN), and a regression tree (T), all with default parameters.
Each point from each boxplot is the MAE of the respective model trained with a random
sample of nodes of size 10 % of the total, and all the samples come from the same respective
network. The white rhombus in each boxplot is the mean of the distribution. Notice that
QuickCent has, in general, an acceptable accuracy compared to other methods, although not
as good as that obtained for synthetic datasets (see, for example, Figure 3.2).

50



Name Dir. N m Edge meaning Reference

moreno health Y 2539 12969 Friendship [205]
dimacs10-astro-ph N 16046 121251 Co-authorship [209]

dblp-cite Y 12590 49759 Citation [183]
p2p-Gnutella04 Y 10876 39994 Host Connection [246]
wiki talk gl Y 8097 63809 Message [268]

Table 3.5: General description of the five empirical network datasets. The fields
in the table are the dataset name, whether the network is directed, the number of nodes
(N), the number of edges (m), the meaning of the edges, and the original reference . The
name corresponds to the Internal name field in the KONECT database. To access the site
to download the dataset, append the internal name to the link http://konect.cc/networks/.

systems from different contexts. General descriptors of these datasets are displayed on Table
3.5. There, we can see that we have selected: a social network of friendships among students
created from a survey [205], a co-authorship network from the astrophysics section of arXiv
from 1995 to 1999 [209], a citation network of publications from DBLP [183], a network
of connected Gnutella hosts from 2002 [246], and the communication network of messages
among users from the Galician Wikipedia [268]. See Annex B.6 to review the experiments of
assumptions verification on these empirical datasets.

We end this section with several plots in Figure 3.6 showing the performance of QuickCent
compared to the same ML algorithms from Section 3.4.1, all of them trained with samples
of size equal to the 10 % of each dataset. The feature of QuickCent having the smallest
error dispersion observed in the synthetic datasets is also observed in this case. The QC
performance, although not as good as in the synthetic datasets, is competitive with the other
ML methods, and even better than an important number of instances of the neural network
for the dimacs10-astro-ph and wiki talk gl datasets. These results are obtained with a length
of the proportions vector equal to 2, which delivers the best performance found among several
vector lengths tested, in contrast to the larger length of 8 used in the synthetic case. These
two differences with the synthetic case, support the hypothesis that the overall goodness of
the power-law fit found by QC is better for the synthetic distributions than for the empirical
ones. Finally, it is noteworthy that in these two datasets either QC or T, and in general the
regression tree for all the datasets, obtain the best accuracy beating more flexible methods
such as NN, considering that these methods provide a limited number of distinct output
values.

3.5 Discussion and future work

In this section, we analyze the results presented in the last section. We start with a summary
of the results, and then the discussion is mainly centered on the type of network patterns on
which the performance of QuickCent is based. We end up with a series of ideas for future
work and concluding remarks.
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Summary of results. The results presented in Section 3.4 show that QuickCent can be
a competent alternative to perform a regression on a power-law centrality variable. The
method generates accurate and low variance estimates even when trained on a small -10%-
proportion of the dataset, comparable in precision to some more advanced machine learning
algorithms. Its accuracy is available at a time cost that is significantly better than one of the
machine learning methods tested, namely, the neural network. In this sense, QuickCent is
an example of a simple heuristic based on exploiting regularities present in the data, which
can be a competitive alternative to more computationally intensive methods.

The patterns on which QuickCent relies. An interesting question is why our initial
attempt to approximate an expensive centrality sensitive to size and density by a cheap
density measure is successful, at least for the network cases tested. The same question framed
in terms of the QuickCent method, would be why the two method assumptions, the power-law
of harmonic centrality, and the strong correlation between harmonic centrality and in-degree,
do hold for power-law, or more specifically for some preferential attachment networks. It was
already mentioned that while in-degree and PageRank centrality of a digraph obey a power-
law with the same exponent [188], we do not know results describing the distribution of
harmonic centrality on digraphs. A possible intuition for the scale-free behavior of harmonic
centrality observed on PA networks (Figure B.1 in the supplementary information annex),
may come from the motivation for the harmonic centrality given by Marchiori and Latora
[193, 178]. The reciprocal shortest-path distances are used to informally define the efficiency
of communication between nodes in a network. Therefore, it is reasonable to think that the
scale-free degree distribution induces an analogous distribution in the efficiency to receive
information sent.

The correlation and the monotonic relationship between harmonic centrality and in-
degree, is strongly favored by the network generation mechanism. There is converging ev-
idence showing that preferential attachment, which in its usual formulation requires global
information about the current degree distribution, can be the outcome of link-creation pro-
cesses guided by the local network structure, such as a random walk adding new links to
neighbors of connected nodes, or in simple words, meeting friends of friends [143, 277]. The
reason is that the mechanism of choosing a neighbor of a connected node makes those higher-
degree nodes more likely to be chosen by the random walk, which in turn makes more paths
lead to them. That is, the local density could indeed reflect the access to larger parts of the
network. See also Section 2.3.6 from the survey chapter. Of course, preferential attachment
is not the only mechanism capable of producing scale-free networks [172, 299, 86], and the
distinct generative mechanisms may engender or not, a stronger relationship between den-
sity and size in the resulting network. This insight may be the reason why the monotonic
relationship between harmonic centrality and in-degree is more apparent in the preferential
attachment model than in some of the empirical networks, as Figure 3.7 shows.

The reasons explaining why and when fast and frugal heuristics work is an active research
problem [49, 134]. This question is not addressed in this paper, but some related results are
mentioned next. It has been claimed and tested by simulations that the QuickEst estimation
mechanism works well on power-law distributed data, but poorly on uniform data [282].
In the case of QuickCent, this dependence on the power-law distribution is reinforced by
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Figure 3.7: Scatterplot of in-degree versus harmonic centrality for a synthetic and
an empirical network. The plot on the left is obtained with a PA exponent of 1, and the
plot on the right is that of the dimacs10-astro-ph dataset. The axes are in logarithmic (base
10) scale. Observe that the monotonic relation between in-degree and harmonic centrality, is
much more clear in the synthetic network (left) that in the empirical dataset (right), which
impacts the performance of QuickCent (see Figure 3.4).

the parameter construction of this method (see Section 3.3). Another fact given by the
definition of our clues that has been pointed out as a factor favoring simple strategies is the
correlated information [179], that is, information found early in the search is predictive of
information found later. In the case of QuickCent, this simply means that since all clues
are based on the in-degree, and this number can only belong to one of several disjoint real
intervals, information from additional clues will not provide contradictory evidence once the
heuristic has terminated its search. Other tasks where it is necessary to weigh the contribution
of many possibly contradicting variables may present a more challenging context for these
simple heuristics.

Future work. The insight described above about the monotonic map between the in-degree
and the harmonic centrality on networks generated by preferential attachment nurtures the
conjecture that QuickCent may be better suited to, for example, networks with an information
component such as the Internet or citations, which can be well approximated by this growth
mechanism [20, 148, 277], than to more pure social networks such as friendships [143, 53].
There is evidence that, if one assumes that some nodes to form links are found uniformly
at random, while others are found by searching locally through the current structure of the
network, it turns out that the more pure social networks appear to be governed largely
through random meetings, while others like the World Wide Web and citation networks
involve much more network-based link formation [143]. See also Sections 2.3.6 and 2.3.4
from the survey chapter. Testing this hypothesis on a large corpus of diverse empirical
network datasets is an interesting question for future work.
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Applying QuickCent to other types of networks or centrality measures is not a direct task,
since, depending on the type of network considered, degree and centrality may be strongly
or weakly related. We plan to address these extensions in future work, where one possible
line of research is to formulate the problem of finding the proportion quantiles as that of
obtaining an optimal quantizer [118]. There is some resemblance between our problem of
finding the quantiles minimizing the error with respect to some distribution and that of
finding the optimal thresholds of a piecewise constant function minimizing the distortion
error of reproducing a continuous signal by a discrete set of points. On the other hand,
QuickCent requires an explanatory variable that is correlated with the fitted variable to
construct the clues. Future work should deal with extensions and flexibility of the clues
employed, trying other clues or new ways to integrate different clues. The idea raised in our
work of using a local density measure to approximate expensive size-based centrality indices
could be generalized in order to be valid on more general networks, for example, by using a
more general notion of local density than the in-degree, such as a modified degree measure
to ensure minimum overlapping between spreading regions [175], or spreading indices based
on the degree and neighbors’ degree [29].

3.6 Conclusion

The results of this paper are a proof of concept to illustrate the potential of using methods
based on very simple heuristics to estimate some network centrality measures. Our results
show that QuickCent is comparable in accuracy to the best-competing methods tested, with
the lowest error variance, even when trained on a small proportion of the dataset, and all this
at intermediate time cost relative to the other methods using a naive implementation. We
give some insight into how QuickCent exploits the fact that in some networks, such as those
generated by preferential attachment, local density measures, such as the in-degree, can be
a good proxy for the size of the network region to which a node has access, opening up the
possibility of approximating centrality indices based on size such as the harmonic centrality.
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Chapter 4

Modularity of food-sharing networks
minimises the risk for individual and
group starvation in hunter-gatherer
societies
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Abstract

It has been argued that hunter-gatherers’ food-sharing may have provided the basis for a
whole range of social interactions, and hence its study may provide important insight into
the evolutionary origin of human sociality. Motivated by this observation, we propose a
simple network optimization model inspired by a food-sharing dynamic that can recover
some empirical patterns found in social networks. We focus on two of the main food-sharing
drivers discussed by the anthropological literature: the reduction of individual starvation risk
and the care for the group welfare or egalitarian access to food shares, and show that networks
optimizing both criteria may exhibit a community structure of highly-cohesive groups around
special agents that we call hunters, those who inject food into the system. These communities
appear under conditions of uncertainty and scarcity in the food supply, which suggests their
adaptive value in this context. We have additionally obtained that optimal welfare networks
resemble social networks found in lab experiments that promote more egalitarian income
distribution, and also distinct distributions of reciprocity among hunters and non-hunters,
which may be consistent with some empirical reports on how sharing is distributed in waves,
first among hunters, and then hunters with their families. These model results are consistent
with the view that social networks functionally adaptive for optimal resource use, may have
created the environment in which prosocial behaviors evolved. Finally, our model also relies
on an original formulation of starvation risk, and it may contribute to a formal framework
to proceed in this discussion regarding the principles guiding food-sharing networks.

4.1 Introduction

Food-sharing and its relevance for the evolution of human cooperation. Human
beings are social animals that have built many forms to organize their life in community due to
their remarkable ability to coordinate and jointly work to attain common goals. A fingerprint
of these behaviors can be tracked in the myriad types of social networks human beings
develop, such as family, friends, and communities of interest. Namely, it has been argued
that a distinctive attribute of social networks is that they have communities or modules, that
is, cohesive groups of agents more densely connected among them than with the rest of the
network. This feature may help to explain other special attributes of social networks [212].

One of the key factors for the successful adaptation of the human species to almost every
habitat on the planet along its evolutionary history [162], is the unique complexity of its
patterns of food sharing, which extends well beyond infancy lactation to the whole life and
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across adults and families [124]. These patterns may have emerged as a response to a greater
offspring dependency associated with the development of a larger brain requiring a nutrient-
rich diet, more difficult feeding strategies, and foraging skills that may not develop until
late in life, in contrast to other wild primates having more predictable diets [145, 124, 154].
The large human brains may have had a central role both to the formation of modular
social networks enabling adaptive collective computation, to the optimization of foraging
behaviors [129]. These behaviors ensuring the most elemental subsistence may have given
the material basis for inter-generational accumulation of cultural innovations [201], and the
whole range of social interactions carried out by hunter-gatherer bands, such as cooperative
breeding [170, 133], establishing political alliances and reinforcing social bonds [222, 163,
136, 241], labor sharing [245, 15] and costly signaling or show-off for mating purposes [258,
131]. Therefore, investigating the evolutionary formation of food-sharing networks may yield
important insights for the study of social dynamics. With this in mind, we aim to theoretically
contrast the hypothesis that the modular character of food-sharing networks, may be an
optimal response for avoiding the risk of individual and collective starvation.

Characteristics and drivers of food-sharing networks. It has been reported that
empirical food-sharing networks present the same traits of other general social networks such
as degree assortativity [11], or positive correlation on neighbors degree, transitivity or global
clustering [284], the fact that agent i is likely connected to k if i is connected to j and j
to k. These two network characteristics may be an indication of communities [212]. Other
such characteristics are reciprocity [169], which is a significant proportion of agent pairs with
bidirectional connections, and a multilevel structure [89] of cohesive groups hierarchically
organized. Among the few theories aiming to explain some of these network patterns, it has
been argued that the multilevel structure would be related to the efficiency of information flow
[200] which may in turn, facilitate the diffusion of cultural innovations [80]. We think that,
though the efficiency information flow may be an important force shaping social networks,
it does not fully serve as an explanation for the evolution of food-sharing networks. On the
one hand, it does not have a clear connection to the usual motives for food-sharing discussed
in the evolutionary anthropology literature [124]. On the other hand, the theory of cultural
innovation may impose high cognitive requirements [81] which do not explain, for example,
why these multilevel networks may be observed also in other social animals and non-mammals
[56]. Another work [89], though it is not a theory of multilevel structure, gives suggestive
evidence relating three nested network levels, the household, the cluster, and the camp, to
distinct social and economic cooperative functions: intersexual provisioning of a couple and
their dependent children in a household, kin provisioning, and risk reduction reciprocity,
respectively.

The motives for food-sharing most supported by empirical field studies are kinship, need,
reciprocity, and inter-household distance, where the latter is usually considered a proxy
of the tolerated theft motive [214, 169, 158, 155, 146, 128, 8, 257]. The costly signaling
hypothesis, which claims that food-sharing is made in order to gain status, has received
minor support in recent works as a factor for food transfers, though status is an important
driver of reproductive fitness [283, 121, 213]. Probably the most accepted causal interplay
between these motives is the following. Reciprocal altruism, or contingency on past transfers,
arises as an important, or the strongest, predictor in most studies, usually explained as a
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means of lowering the uncertainty of food generation [89, 257, 8, 128, 146, 155, 158, 214, 169,
222]. Kinship, or the preference for relatives, is another important driver of food transfers
[169, 214, 158, 146, 8, 89, 257, 222], which appears to be as a bias, or partner-selection
mechanism, interacting with reciprocity or need by increasing the associations to transfers
with respect to non-kin [8, 214, 169, 158]. Tolerated theft, or sharing when the benefits of
hoarding are outweighed by the cost of retaining the resource, is often a less important but
significant motive of transfers [146, 123], though it may be empirically difficult to disentangle
from the alternative explanations [123, 222, 146]. Some works have suggested that tolerated
theft may be an evolutionary precursor of reciprocal altruism, given that the former is more
common among other animals, and the latter has higher cognitive requirements that makes
it almost nonexistent in non-human animals [265, 145]. Finally, the motive of need, or giving
to those with a lower relative net energy production, often reflected in a positive correlation
of transfers with receiving household size, is also an important force guiding food transfers
[169, 158, 8, 257, 89].

The issue with need motive and a possible solution. The motive of need for food
transfers has a difference with the other reviewed motives: it is not evolutionary adaptative,
at least in the usual individual fitness models [151]. These models assert that cooperation
requires to be assortative to be stable, that is, directed to other cooperative individuals [33].
This prediction has only partial support in real-world food sharing, where it is common that
families or foragers in relative need like the elderly, tend to receive more resources [89, 8, 257]
or that free-riders, those who take shares, but do not reciprocate, are not excluded from
sharing [34]. A possible theoretical remedy that has been suggested [257] is to consider a
diminishing returns value function of the transfers, which may produce a long-term equilib-
rium in transfers. In a previous publication [120], it was argued that assuming reciprocal
altruism, sharing is an optimal individual strategy for values following a diminishing returns
function of the shares, rather than just the raw quantity of food.

We propose a distinct intuition guiding the abstraction of our model. We propose that
the argument for using diminishing returns comes from the fact that the essential problem
a hunter-gatherer community is solving when sharing food, is to satisfy the need given by
hunger. This is the intuition of the law of diminishing marginal utility given by Mill [106],
stating that if there is enough of a good to satisfy a basic level of need, then each additional
increment of the good satisfies the need less than the previous increment. The basic social
dilemma for the food-sharing network then comes from the conflict between the goal of
satisfying the own need and the need of other people. If the satisfaction of the hunger need
is defined as the goal of minimizing the risk of starvation, or the time without eating, then
the own need may be embedded in the tolerated theft or reciprocal altruism motives, while
the hunger of other people may be represented by the need motive. We do not explicitly
incorporate kinship in our model in order to keep it simple. It has been suggested that many
kinship configurations may be a product of sharing patterns [180, 136, 152], which suggests
that the basic social dilemma posed is enough to recover the basic dynamics of food-sharing
networks, such as cohesive groups given by nuclear families with a few interconnections that
comprise a cluster of akin families [89].
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Our proposed model for food-sharing networks, its assumptions, and contribu-
tions. In this work, we propose a normative model [195] for food-sharing networks, formu-
lated as a network optimization. That is, the model does not aim at fitting real networks, but
rather derives idealized results from a set of simplified assumptions. The optimizing goals
correspond to the minimization of starvation risk, either at the individual level or as a group.
These goals are named in the model as Reduction of Variability (RV) and Welfare (WEF).
The assumptions taken by the model are the following.

• An individual who has food eats only the amount required to survive, and shares all the
remaining food. This is inspired by the empirical finding that giving a high proportion
of food is a common practice [122].

• The structural imbalance between production and consumption leading to adult sharing
to provide infants and juveniles [124], is implemented by a special set of network nodes
called hunters, which are those who inject food into the network. The number of hunters
in a network of N agents corresponds to the parameter nh.

• Since large and unpredictable food items such as meat or honey are more widely shared
[122, 145, 34, 130], the model poses that at each time step, there is an amount F of
food able to feed several individuals that is produced with certain probability ph. These
quantities, F and ph, are parameters of the model.

• Any additional motives for sharing, like kinship, which would introduce, for example,
preferential sharing partners, are abstracted. Therefore, given a food-sharing network,
and an agent that receives food, this agent chooses randomly one of their neighbors
to share. Thus, the transfers of food in the model correspond to recurring exchanges
among stable connections, that may well reflect the food sharing in a small community
formed by a few akin families. This assumption is also consistent to the choice taken
for sampling the population size parameter used in the simulation. Technologies for
storing food are not considered in this model. These assumptions are taken to keep the
model simple.

The model aims to recover the constraints for optimal network organization derived from
material transfers of food under the stated assumptions. This emphasis in the material
dimension of food-sharing, does not look for neglecting that this behavior is a complex
sociocultural phenomenon [3]. Rather, the model shows that evolutionary models of social
dynamics may benefit from a resource distribution perspective and the explicit inclusion of
the group level of analysis, given that the typical small-world structure of social networks
given by the presence of communities, is recovered under the simultaneous optimization of the
two goals, that is, the individual but also the group survival. Specifically, the contributions
of our work are the following.

First, networks optimizing both criteria may exhibit a community structure of cohesive
groups under stringent conditions of food supply. These networks are resemblant to the
food-sharing networks observed by Dyble et al (2016) [89], where there are cohesive groups
corresponding to households provisioned by an adult couple, and a set of households forms a
cluster with a small number of inter-household connections. This model result suggests that
this organization of nuclear families may have been evolutionarily functional for resource
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distribution optimality, and can be considered a new mechanism for the emergence of com-
munities in networks, as those reviewed in Section 2.4 from the survey chapter. We have
additionally obtained that optimal welfare networks, where each hunter is connected to one
big, homogeneous and dense group of non-hunters, resemble social networks that promote
more egalitarian income distribution in a lab gift game reported by Chiang (2015) [64]. This
model result is consistent with the view that social networks structured originally according
to ecological considerations, may have created the environment in which prosocial tendencies
and equity response elicitation evolved [144, 139]. Finally, distinct distributions of reciprocity
are obtained for each optimization regime, which may be consistent with the empirical find-
ing [153] that often the sharing occurs in waves: first among hunters, and then hunters with
their families. This model result gives a broader picture of the usual notion that reciprocity
is driven by the minimization of food production uncertainty [155].

Chapter structure. The rest of the chapter is structured as follows. In the next section,
“Materials and methods” (Section 4.2), all the modeling assumptions and analysis techniques
are described at a high level. Several details are set aside for the Annex D of supporting
information. Then, in Section 4.3 the results of the analysis are shown, where a description
is given regarding the structural behaviors observed in the three types of optimal networks
analyzed, WEF, RV, and simultaneous optimization of both criteria. The interpretation of
these results is addressed next in Section 4.4. We end the article with the conclusions.

4.2 Materials and methods

This section aims to briefly explain the modeling, implementation and analysis approach
adopted in this work. Several details are left out to be consulted in the Annex D. The next
sections go as follows. In the first two sections we describe the abstract protocol of food-
sharing among agents, and the consequent model of probabilities of receiving food. Next
section describes how the optimizing goals, welfare, and reduction of risk, are designed as a
function of these probabilities. Next, Section 4.2.4 shows the solution concept of the opti-
mization model, and how this model is implemented by evolutionary algorithms. The section
is finalized by the pipeline of analysis, which describes how the output of the optimiza-
tion model is processed using the following data analysis techniques: description by network
features, clustering, and classification trees.

4.2.1 Food-sharing protocol and assumptions

We propose a network optimization model in which each agent is a node in a loop-free directed
network D = (V,E). There is a special set H ⊆ V of agents in D that we call hunters.
Agents in H are, intuitively, responsible for injecting food in the network by hunting preys.
We assume that there is a real number ph ∈ [0 , 1 ], a parameter of the model, that determines
the probability that an agent in H hunts at each time step. The prey obtained in every hunt
is enough to feed F agents (including the hunter). The value F is a fixed positive integer
that is also a parameter of the model. The food resulting from a hunt is shared from the
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hunters to the rest of the network, only through network edges e ∈ E, and is used to feed
the agents as we next explain. These assumptions implement the following two empirical
facts: food items more widely shared are those unpredictable and coming in large packages
[122, 145, 34, 130], and the fact that all agents require eating for survival, but only some of
them can produce food [124].

We assume that all the exchanges of food derived from one successful hunt, occur at the
same time step where the prey is caught. When an agent v ∈ V receives f units of food
from a neighbor, it consumes a single unit of food. After this, agent v chooses uniformly at
random one of its neighbors, say v′, and sends all the remaining food (f − 1 units) to v′.
This assumption is inspired by the empirical finding that giving a high proportion of food is
a common practice [122]. Notice that this sharing from v to v′ is possible only if v initially
received f > 1 units of food. Additional food received in the same time step, cannot be
mixed with other food packages, nor stored for later usage. For simplicity, we assume that a
hunt by a hunter is equivalent to receiving F units of food, though in this case the food is
not received from a neighbor but from the environment. Thus, after feeding itself, a hunter
sends F − 1 units of food to a random neighbor. These assumptions are taken to keep the
model simple and to abstract the possible motives for agents’ actions.

In our model, time is discrete, and at each time step, every hunter may or may not hunt
with the same probability ph. Due to previous assumptions, those agents at distance greater
than (F − 1) to every hunter, simply cannot receive food. Thus, every node v ∈ V in the
network at a distance at most (F − 1) to some hunter, may or may not eat depending on
whether v receives food, either by hunting or by sharing. In order to model the effect of
feeding an agent, we assume that agents have a life span of n ∈ N, and that there is a critical
time window k < n, in which, a run of k consecutive time steps without receiving food turns
out to be seriously detrimental for every agent, resulting in its death. Only non-dead agents
can hunt, eat, send or receive food. Therefore, the agents will try to eat as frequently as
possible, to avoid spending too many rounds without eating.

To sum up, the parameters of our model are the probability of hunting in a time step
(ph), the units of food produced by a prey (F ), the number of time steps of life span (n),
and the maximum number of time steps an agent can survive without eating (k). Moreover,
a network in our model is defined by D = (V,E) plus a set H ⊆ V of hunters. We note that,
even when fixing the parameters of the model, different networks behave in distinct ways
depending on their connectivity (and the presence of hunters).

4.2.2 Probability of eating

In this section, we give some intuition about how the probabilities of eating behave according
to the previously described protocol of food sharing. The interested reader may look at Annex
D.1 in order to see the analytical derivation of these probabilities. For now, let us see an
example. Figure 4.1 shows a network with 2 hunters, 0 and 4. Assume that ph = 0 .2 and
obtain the probabilities of eating according to (D.1) for distinct values of F , displayed in
Table 4.1. For F = 2, 5 is surely fed by 4 with the probability of hunting ph, while 1 and
3 get a distributed chance of receiving food. In the case of F = 3, now 6 is also fed with
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Figure 4.1: A network with 7 nodes and 2
(yellow) hunters.

Table 4.1: Probabilities of eating, distinct
F values.

F
pe(·)

0 1 2 3 4 5 6

2 0.2 0.1 0 0.1 0.2 0.2 0
3 0.2 0.2 0.1 0.1 0.2 0.2 0.2
4 0.2 0.36 0.2 0.2 0.2 0.2 0.2
5 0.2 0.36 0.36 0.2 0.2 0.2 0.2

probability 0.2, and there are two 2−walks from 0: {(0, 1), (1, 2)} and {(0, 3), (3, 1)}. Since
1 is fed by the 2 equiprobable walks, its probability of eating is 2 ∗ 0.1. When F = 4, 1
gets food by another walk, raising this probability to 0.36 = 0.2 + 0.2 − (0.2)2 thanks to
Inclusion-Exclusion. Finally, notice in F = 5 that, though node 3 is reached twice by one
walk, this does not increase the probability of eating since this probability does not measure
the quantity of food, but rather the distinct events of food supply.

4.2.3 Optimizing criteria

We have said our model may have two possible goals, welfare, the egalitarian group access
to food, and avoidance of individual starvation. Since our model implements food exchanges
as a probabilistic protocol, the access to food resources is expressed as the probability of
eating. Our model is framed as the minimization of an objective function, thus, we aim to
penalize the dispersion of this probability among agents. Next, we formalize the two goals
as minimization objectives.

Definition 1 (Welfare) Given fixed values for variables ph, F , n, k and nh = |H|, Welfare
(WEF) criterion for minimization is the standard deviation of probabilities of eating over
network nodes.

Now, the minimization of individual starvation risk is formalized as follows. We can think
of the time steps in our model, and the possibility of eating at each time as a sequence of
Bernouilli trials, where a success is given by the event of not receiving food, otherwise we
have a failure. That is, at each time step, node v obtains a success with probability 1−pe(v),
where pe(v) is computed as explained in the previous sections. Since network nodes attempt
to avoid k consecutive steps without food, or a success run of length k, in order to stay alive,
a possible formulation of reduction of starvation risk can be expressed as the minimization
of the number Gn,k of success runs of length greater than or equal to k in n trials. The
distribution and moments of this random variable can be computed exactly with a Markov
chain embedding technique [105], which allows defining this criterion as the minimization of
the sum of the expected value and standard deviation of Gn,k.

The random variable Gn,k defined above is expressed as an integer number of runs. One
can normalize this variable Gn,k by the total maximum number of runs of length k that may
be observed in n trials. In this way, this criterion could be interpreted as the probability
of dying within the life span -or observing a k−length (or greater) run with no food in n
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trials- as a function of the probability of receiving food at each trial. Since the number of
runs of length at least k within n trials is maximized when all the runs have the minimum
length k, the normalizing denominator may be estimated as the floor of n+1

k+1
, where the “+1”

appears to count the spaces necessary to split a new run from the previous one. With these
ingredients, we formally define the second minimization criterion.

Definition 2 (Reduction of variability function) Given fixed values for variables n, k, and
1−pe(v) for the probability of a success, let Gn,k be the random variable given by the number
of success runs of length greater than or equal to k in n trials. We will refer to the expected
value and the standard deviation of this variable as E(Gn,k(pe(v))) and σ(Gn,k(pe(v))). The
Reduction of Variability of food intake (RV) function of the probability of eating, is defined
as RV(·) = k+1

n+1
· (E(Gn,k(·)) + σ(Gn,k(·))).

Definition 3 (Individual starvation risk criterion) Given fixed values for variables ph, F , n,
k and nh = |H |, the Individual starvation risk criterion for minimization is the average over
network nodes of the RV function, evaluated at the respective probability of eating of each
node. For brevity, and without causing ambiguity (since the function is for nodes, and the
criterion for networks), we refer also to this criterion as RV.

We have taken the average to approximate the individual agent risk since this function
is not a robust statistic of central tendency [248], and may be extremely affected by the
presence of outliers. That is, the mean of RV over network nodes may be minimized by a
few number of agents with low RV, while a great number still experiment high starvation
risk. Now, in Figure 4.2 we can observe distinct instances of the RV function, for different
values of k and n = 1000. These RV curves have a maximum value corresponding to some
value pe∗ ∈ (0 , 0 .5 ), and the larger the length k of the run, the smaller the probability of
eating pe∗ at which this maximum is obtained, which makes intuitive sense. In the following,
we will continue working with the values k = 10 and n = 1000, since from inspection of this
plot, this function displays all relevant behaviors within a non-degenerate probability domain.
Therefore, the resting free variables, with which we will work are F , ph and nh = |H |.

4.2.4 Model solution

Definitions. We need to define the set of solutions for our minimization model. At first
sight, this set corresponds to the directed graphs of N nodes, if we have a population of
N agents. However, there is a huge number of non-isomorphic networks sharing the same
optimizing costs due to subgraphs in the network that do not contribute to the optimizing
criteria functions. We remedy this by defining the domain set of our optimization model as
the quotient set of the set of networks of size N , with respect to an equivalence relation given
by a suitable definition of isomorphism that accounts for this fact. This definition impacts
the evolutionary algorithms used to compute model optima, which are described in the next
section. The interested reader may review the isomorphism definition and examples in the
Annex D.4.

Finally, we give the solution concepts used in our minimization problems. For single cri-
terion minimization, a solution network is given by a Local Minimum, which is a network of
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Figure 4.2: Reduction of variability function of the probability of eating. The X-axis
is the probability of eating or receiving food, as defined in the last sections. The vertical axis
is the Reduction of variability (RV) function of this probability. Each curve corresponds to a
distinct instance of the variables n, the number of life span time steps, and k, the maximum
number of time steps an agent can survive without eating. Notice that, as the survival time
without eating (k) gets smaller, the probabilities of dying (RV) are greater for a wider range
of food availability (pe), which engenders more ‘fragile’ societies, with small or absence of
food availability for non-hunters (see Section 4.3.2).
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minimal value with respect to every possible change of network arc. In the case of simultane-
ously minimizing both criteria, we use the standard notion of Pareto Optimality [69], defined
next.

Definition 4 (Dominance) A vector u⃗ = (u1, u2) ∈ R2 is said to dominate vector v⃗ =
(v1, v2) ∈ R2, which is denoted by u⃗ ⪯ v⃗, if ∀i ∈ {1, 2}, ui ≤ vi, and ∃i ∈ {1, 2}, such that
ui < vi.

Definition 5 (Pareto Optimality) Let F (·) = (f1(·), f2(·)) be a set of objective real-valued
functions. A point x from the domain of F is said to be Pareto Optimal, if there is no x′ in
the domain of F , such that F (x′) dominates F (x).

Defined in this way, a point x⋆ is Pareto optimal for a given objective function F (·) =
(f1(·), f2(·)), if there is no feasible point x, such that f1(x) < f1(x

⋆) and simultaneously,
f2(x) < f2(x

⋆). The set of all Pareto optima is the Pareto optimal set, and its image via
function F is the Pareto front. Now, the computational time complexity of finding the Pareto
optimal set, from a total set of two-dimensional vectors of size N , is given by a number of
O(N · logN) comparisons [177]. Since our total set given by the food-sharing networks of
size 12 (see Annex D.2) has an intractable size, an approach alternative to the procedures by
Kung et al (1975) [177] must be taken. In the next paragraph, we describe the meta-heuristic
solution we have implemented for this problem.

Model Implementation. We have tackled our minimization problem with evolutionary
algorithms, due to their versatility to accommodate the model assumptions, and their ability
to manage several candidate solutions. We have used the known (µ, λ)−procedure, where
µ is the population size, at each generation every individual gives birth to λ offspring by
a feasible mutation, and from this set µ descendant are selected for the next generation
population. This procedure is recommended as a way to preserve the diversity of solutions
[91]. For single objective offspring selection, we have used tournament selection of size t = 12,
that is, t individuals are randomly selected from the offspring population, and the one with
the best function value is selected. This relatively high value of t is chosen to increase the
likelihood of selecting local optima, something usually referred to as exploitation or selective
pressure. In most cases, we have used µ = 1000 and λ/µ = 8 in order to increase the
selective pressure. The multi-objective case employs the NSGA-IIR algorithm [102] as an
offspring selection mechanism. This algorithm is an improved version of the well-known
NSGA-II [79], that takes advantage of its relatively low computing and storage complexity,
but that solves some instabilities that may appear when two or more solutions share the same
objective values [102]. On the other hand, for two optimization objectives and a population
size µ, the time complexity of this algorithm is O(µ · log µ) in the average case and O(µ2)
in the worst case, while its space complexity is O(µ) [101]. We have implemented these
algorithms on the DEAP library [100] for Python, a package devised for the modular design
of evolutionary algorithms. The networks are implemented with the module graph-tool [226],
a Python library for manipulation and statistical analysis of graphs. We have taken a series
of implementation decisions to obtain results more efficiently. The interested reader may
review them in the Annex D.4.
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4.2.5 Pipeline of analysis

The outcome of the evolutionary algorithms described previously is a set of networks, for
every sampled setting of parameters F , ph, and nh = |H |. In the Annex D.2, the structure
of the simulation carried out is explained, which comprises the choice of sampled parameters.
Now, to obtain a high-level description of the set of different optima networks, we processed
the data according to the following steps. For each network, a set of features is computed
to build a table of networks and features, for either single criteria or multiobjective case.
See Tables D.1, D.2 in the Annex D.3 to consult the sizes of these datasets. These networks
are then clustered by their feature similarity, where each group depicts a set of qualitatively
similar networks. Finally, a decision tree to discriminate distinct groups is computed, which
permits an objective split of groups in terms of the feature values. Next, we review in more
detail each of these steps.

Descriptive features. Here we explain the features used to describe the networks. These
features correspond mostly to simple metrics of network topology that can be efficiently
obtained. We next list them grouped by their reason to be included as potentially useful
descriptors. An important remark is that, though these descriptors are used in their original
scale to build the decision trees, they are standardized for the clustering stage since this
is recommendable for these methods. We used the generalized spatial sign technique to
accomplish this [240], with quadratic radial function and k−step least trimmed squares for
the location estimator, since it delivers robustness to estimators based on co-variances in the
presence of potential outliers.

• The minimization of WEF may reduce the dispersion in the number of walks from
hunters to every node, since the probabilities of eating depend on them. We aim to
detect this scenario with the proxy variables standard deviation of out-degree and in-
degree distributions.

• To identify potential community or group structure, we have added several variables. A
very simple measure of this is the number of strongly connected components. We added
the mean of local clustering [286], which estimates the probability that two neighbors
are connected, and the in-degree and out-degree correlation or assortativity, since they
have been associated with the presence of dense groups [212]. Assortativity has also
been associated to the presence of reciprocity [296], which we define as the proportion
of connected vertex pairs having bidirectional arcs. This is a prevalent pattern found
in social networks [285]. We have finally considered network modularity [211], an index
of network partitioning into dense groups with few inter-group connections. We obtain
candidate optimal partitions by running a Markov chain Monte Carlo method several
times [225].

• The minimization of RV may produce important variations in the overall connectivity
of the network, depending on the specific value of ph. We will measure network connec-
tivity with the mean of out-degree distribution, and the mean of in-degree of hunters.
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The latter variable may also diminish in some WEF minima.

• The 2 network costs to be minimized, RV and WEF.

The assortativity indexes have been used only for WEF analysis, since the other type of
optima sometimes presents indefinite values.

Feature-Similarity-based Clustering. The stage of clustering is performed by the suc-
cessive application of tSNE and OPTICS algorithms. The first of them, the t-Distributed
Stochastic Neighbor Embedding [275], was chosen by its formulation which finds a low-
dimensional map preserving the local similarity structure of the data. This implements
one of the goals of our analysis which is to group similar networks, where their similarity is
expressed in terms of their feature values. Another important reason to choose this technique
is its remarkable ability to produce reliable low-dimensional visualizations of big datasets,
which allows us to perform an intuitive assessment of the quality of the solution. The in-
terested reader may review in the Annex D.5 the election of hyperparameters of tSNE. The
second part of the clustering, OPTICS, or Ordering Points to Identify the Clustering Struc-
ture [10] is used as an unsupervised method to discriminate the distinct groups produced by
tSNE. OPTICS is a density-based clustering method where clusters are regions in which the
objects are dense and are separated by noise or regions of low object density, making these
approaches to be flexible enough to accommodate clusters of arbitrary shapes and distribu-
tion of points. We decided to use tSNE plus OPTICS, instead of only OPTICS, since we
empirically checked that the former methodology resulted in better identifiability of clusters
of similar networks. Now, the hyperparameters of OPTICS are usually dependent on the
dataset, so there is no direct way of setting them. Our approach was to devise heuristics to
choose these parameters. The classes produced by OPTICS with this selection of parameters
visually match the dense regions of tSNE with coarser separation. The interested reader may
review the Annex D.5 and Table D.3 for details on the heuristics.

Description of clusters by classification trees. After obtaining a robust clustering of
each dataset, we compute a series of decision trees (DT) to classify the networks into the
distinct groups produced by the clustering stage, trained with the same features employed
in the clustering, plus the model variables F , ph, nh, F ∗ nh, ph ∗ F ∗ nh and the mean
of the probability of eating for non-hunters. In the Annex D.6, the interested reader may
review an informal argument for the importance of these features. Now, the classification
tree model we use corresponds to that proposed by Loh (2009) [189], since it offers a robust
split selection strategy based on selecting the variable with the most significant chi-squared
main effect, which redounds in predictive accuracy and model parsimony. Since we look for
a robust characterization of the dataset clustering, we compute several trees, each trained
with a bootstrap sampling with replacement of size 70% of the dataset, thus it is expected
that each training set has approximately half of the set of unique points of the dataset [90].
These computed trees are examined to find the most reliable ones, which we define as those
trees that are Pareto optimal for maximization of balanced accuracy [125], which accounts
for possible imbalanced classes, and a measure for syntactic stability. We are interested in
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syntactic stability due to the fact we use the DT representation to draw conclusions about
the dataset. Several details regarding the validation of the decision trees may be consulted
in the Annex D.7. Decision trees hyperparameters used can be consulted in Table D.4.

4.3 Results

In this section, we report the analysis of model optimal networks, carried out through the
pipeline of analysis described in the last section. We review the typical structure of the three
types of optima, RV, WEF local optima, and Pareto optimal networks for both criteria, with
an emphasis on the behavior of some patterns found in social networks, namely, reciprocity
and community structure. In this sense, we have found WEF optima display high clustering
and low network segmentation, with no distinguishable modules. Local optima for RV present
more diversity, ranging from cooperation exclusive among hunters to networks similar to
WEF optima. They may present community structure, but with rather sparse connectivity.
Finally, Pareto optimal networks show even more diversity, including either networks similar
to the already described local optima, but also new configurations such as distinct cohesive
modules around hunters, or high reciprocity between a hunter and non-hunters.

4.3.1 Welfare optima

Summary of distinct types of WEF optima. It is instructive to start by inspecting
the following tree of WEF optima in Figure 4.3, belonging to the accuracy-stability-Pareto
optimal set, which has an average accuracy of 0.872 to discriminate the 7 clustering classes.
In these trees, the loss corresponds to the Gini coefficient of samples at that node, the
predicted class is the class with a maximum number of samples, and proportion is the relative
proportion of node samples with respect to the total in the root. This total and the other
statistics present in the tree are computed on the training set. The accuracy, on the other
hand, is computed on the test set, which is the complement of the training set with respect
to the whole WEF dataset of size 18686 (see Table D.1).

The first remark is the presence of the condition F ∗ nh ≤ 13 .5 at root, which turns out
to be very stable since in each of the 9 distinct trees found at the Pareto efficient tree set,
the structure formed by internal nodes of IDs 0, 1, 3 is present. The threshold 13.5 is an
artifact from averaging the two most proximal F ∗nh values, 12 and 15, and since F ∗nh is a
product of two integer variables, the condition F ∗nh ≤ 13 .5 can be equivalently replaced by
F ∗nh ≤ 12 = N . A possible topological marker of model variable F ∗nh, which reflects the
relative food abundance, is the mean in-degree of hunters, a variable with which there is a
significant Spearman correlation of 0.81. Another possible marker is the number of strongly
connected components (SCC), variable with which the correlation, in this case, is −0.574.
These relationships are due to the fact that optimal WEF networks tend to form a densely
connected group of non-hunters that is fed by hunters, except if there is enough food, in
whose case there is only 1 strongly connected component where hunters are also fed back.
An important exception to this trend in SCC is shown by networks in node 16, where there
are only networks with ph = 0 .6 and a mean of 3.796 SCC. That is, when there is enough
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Figure 4.3: An efficient tree (accuracy=0.872) to discriminate the clustering labels
of Welfare optima. Statistics in the tree are computed on the training set, while average
accuracy is computed in the test set. See Annex D.3 for the sizes of the datasets used,
and Paragraph Description of clusters by classification trees (Section 4.2.5) for the general
procedure of tree construction. See the first paragraph from Section 4.3.1 for an explanation
of the variables displayed in tree nodes. The left child subtree of the root corresponds to
WEF networks where the food supply does not suffice to feed all the agents (see Annex D.6),
while the right subtree represents networks with enough food, allowing more diversity in the
structure of WEF networks, such as those in Figure 4.4 (b), (c).
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Figure 4.4: Most central networks of nodes 2 (left), 13 (center) and 16 (right) from
tree in Figure 4.3. Hunters are filled in yellow. Each network specifies the values of model
parameters used as input, and for which the respective network is a local minimum. The
structure of WEF networks seen in (a) with a densely connected group of non-hunters that
is (externally) fed by hunters, appears to be necessary when the food supply is not enough
to feed all the agents.

food with a high probability of hunting, the network is segmented into distinct SCC’s that
provide an egalitarian probability of eating. These structures are shown in the representative
networks on Figure 4.4.

General statistics and modularity on WEF optima. WEF optima are networks of
high clustering, mean out-degree, moderate reciprocity, and low assortativity and modu-
larity, as shown in Table 4.2, which speaks of one large community with low segmenta-
tion. The WEF optimal networks with the largest modularity values, obtain this structure
from the special feature of minimizing the standard deviation of in-degree. An example of
these networks is in Figure 4.5 from node 8, having a modularity of 0.305 for the partition
{{0, 2, 6, 7, 9, 10}, {1, 3, 4, 5, 8, 11}}.

4.3.2 Reduction of variability optima

Relation between RV and WEF costs. We start this section by analyzing the structure
of the relation between costs RV andWEF, and derive from it a profile of the distinct networks
obtained as RV local optima. We have mentioned in the Annex D.2 the intuition regarding
the expected behavior of RV optima from RV function. That is, for values of ph smaller than
pe⋆, the probability producing the RV maximum, there is an every man for himself regime, or
free-riding situation where non-hunters just do not receive food and are isolated nodes. Now,
for ph > pe⋆, there is progressive cooperation, an increasing trend of feeding non-hunters,
particularly when RV reaches its range of flat values. On the other hand, depending on the
values of model variables, hunters often share food in order to decrease the RV mean. We
can visualize this pattern in Figure 4.6, where we graph the mean correlation values between
RV and WEF for randomly sampled networks and distinct ph values.
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Table 4.2: WEF optima general statistics.

Feature Mean St. dev.
Mean local clustering 0.481 0.167
Mean out-degree 4.763 1.173

Reciprocity 0.232 0.144
Out-assortativity −0.082 0.044

Modularity 0.042 0.053

  

Figure 4.5: A WEF optima minimizing
in-degree variability. Obtained under vari-
ables: F = 4, nh = 2 , ph = 0 .6 . Hunters filled
in yellow. WEF networks with not enough
food for every agent, and several hunters, may
have a modular structure with minimal in-
degree variability (see Figure 4.3).

In this graph, it can be seen that these mean correlation values start approximately at
−1 for low ph values, which corresponds to the free-riding regime, and in the extent ph
increases the correlation curves tend to stabilize around values near to perfect correlation.
Observe that most curves become increasing functions only for values of ph greater than
pe⋆ = 0 .0899 . The fact that greater values of the product F ·nh have a faster convergence to
cooperation may be explained, if one assumes a uniform feeding probability, from Equation
(D.3), where a greater (F ·nh) implies greater mean probability of eating, which makes these
probabilities closer to the flat RV region.

Distribution of arc types and representative RV optimal networks. This pattern
of costs behavior is reflected also in the distribution of distinct types of arcs. If we separate
arcs in three groups depending on whether they connect, without arc direction: two hunters,
a hunter and a non-hunter, and two non-hunters, we obtain the following distribution of the
number of arcs depicted in Figure 4.7. It can be seen in the figure that, in the two smallest
ph values, non-hunters are isolated in RV optima, which is part of the so-called every-man-
for-himself phase. If ph increases, the relative numbers of arcs gradually converge to the
same ordering displayed by WEF optima, which occurs for lower values of ph if F · nh > 12 .
This pattern is consistent to what is displayed in Figure 4.6.

The distinctive profiles of the number of arcs from these graphs may be used to identify
representative networks obtained as RV optima. In Figure 4.8, a decision tree that dis-
criminates the classes of RV optima with an accuracy of 0.907 is displayed, together with
representative networks from some of its leaves in Figure 4.9. In the left part of the tree,
there are the networks with a lesser number of strongly connected components, which are
networks with greater values of F · nh. The networks from Figure 4.9 (a), (b), (c), show
the prototypical behaviors shown in Figure 4.7 (c), which are, respectively, the absence of
connectivity for non-hunters if ph is low, a network with WEF-like topology of minimization
of in-degree variability if ph ≥ 0 .3 , and a transition between the two regimes similar to the
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Figure 4.6: Correlation of costs in function of the probability of hunting. Each
curve represents the mean of Spearman correlation between RV and WEF for a specific
configuration of F and nh, and a range of 25 equidistant ph values. Each point is the mean
of 100 correlation points, each one computed for a uniform random sample of 100 networks.
Each mean point is surrounded by the percentile confidence interval using the standard error
of the mean with error α = 0.05, that is, assuming the sample mean is normally distributed.
Observe that, for every curve, the average correlation starts to be increasing on ph from a
given point, because the probability of dying (in terms of the RV function, see Figure 4.2)
also starts to decrease with enough probability of eating, and this is valid for every agent.
Also, with greater food supply (F · nh, or greater probability of eating, see Annex D.6), for
any given ph sufficiently large there are greater chances of survival for all the agents, which
explains the distinct curve shapes.
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Figure 4.7: Distributions of arc type for distinct optima and food supply condition.
The three types of arc graphed (which do not consider arc direction) are: connecting two
hunters (intra h), connecting two non-hunters (intra nonh), and connecting a hunter with a
non-hunter (inter h nonh). Each number of arc type average is computed for every sampled
ph value, and surrounded by a percentile bootstrap confidence interval of error α = 0.05 and
1000 bootstrap samples of 70% of dataset. See the paragraph Summary of distinct types of
WEF optima from Section 4.3.1, for the result justifying the use of condition F · nh ≤ N
to aggregate datasets. The plots show that with greater values of ph, the RV networks tend
to look like WEF networks, and that this behavior appears for smaller ph values in the case
F · nh > 12 , in accordance with Figure 4.6.
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Figure 4.8: An efficient tree (accuracy=0.907) to discriminate the clustering labels
of RV optima. Statistics in the tree are computed on the training set, while average
accuracy is computed in the test set. See Annex D.3 for the sizes of the datasets used,
and Paragraph Description of clusters by classification trees (Section 4.2.5) for the general
procedure of tree construction. See the first paragraph from Section 4.3.1 for an explanation
of the variables displayed in tree nodes. The main splitting variable in this tree corresponds
to the number of strongly connected components. The left subtree has fewer components,
like the networks (a), (b), (c) or (f) in Figure 4.9. Larger number of components are typically
associated with more isolated agents.

last one, but where hunters have more intra-connectivity rather than inter-connectivity.

Now, some of the patterns from Figure 4.7 (a) are displayed in Figure 4.9 (d), (e), and (f).
In the first of them, there is a network from Leaf 15, where networks have arcs mainly among
hunters, and may present some few connections to non-hunters. The networks of this kind are
among those in RV optima having the greatest proportions of reciprocated arc pairs, usually
only between hunters. This is used as a strategy to lower the high RV values in this range of
ph values (ph = 0 .15 ). Then, in Figure 4.9 (e), there is more connectivity to non-hunters,
but it is still comparable to that between hunters. Finally, Figure 4.9 (f) displays a network
with the cooperative regime on ph = 0 .6 where intra-non-hunters connectivity surpasses the
number of connections to hunters, and these display a minimal intra-connectivity. The case
when ph = 0 .6 and there is just one hunter, as in Figure 4.9 (g), is special. These networks
present a one-way walk with no forks, since a fork lowers the probability of eating with respect
to the no-fork situation, increasing the RV cost. If there are isolated nodes, as is observed
in most optima obtained from an evolutionary optimization, there is a big difference in the
probability of eating between connected and isolated nodes, which increases WEF cost. This
affects the Spearman correlation between ph and WEF in the whole dataset, which is 0.313.
If we restrict to those data where nh > 3 , this correlation lowers to −0.319, and to −0.73 if
nh > 6 , consistent with Figure 4.6.

Modularity on RV optima. We close this section by remarking on the behavior of mod-
ularity on this type of optima. In general, RV optima are networks of low modularity, see
Table 4.3 for its general statistics, but in fact, high modularity may be observed. This
high modularity is a by-product of survival or network arrangements for enhancement of
probabilities of eating, as can be pointed from its correlation with F · nh which is −0.359.

74



  

Figure 4.9: Example networks from distinct DT leaves of the tree in Figure 4.8.
From left to right, and from top to bottom: (a) Leaf 3 (most central), (b) Leaf 4, (c) Leaf
4, (d) Leaf 15, (e) Leaf 17, (f) Leaf 7 (most central), (g) Leaf 19 (most central) and (h)
Leaf 17. Each subcaption displays values of the condition under which these optima were
obtained. Hunters filled in yellow. The networks show the diversity found on RV optima,
ranging from networks like (a) with homophilic hunter links (see Section 2.4.4), to networks
with an egalitarian (WEF) structure such as that in (f), or with modular structure such as
(g), (h).
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However, the relationship is stronger for higher ph values, since restricting to ph > 0 .2
gives a correlation of −0.474. This higher modularity is usually more related to a segmen-
tation in the network than to the presence of cohesive groups of nodes. An example of this
is the same network from Figure 4.9 (g), which has a modularity of 0.208 for the parti-
tion {{0, 1, 2, 3, 5, 7, 8, 11}, {4, 6, 9, 10}}. Another example is that of Figure 4.9 (h) having a
modularity of 0.32 for partition {{0, 6, 8, 9}, {1, 10, 11}, {2, 3, 4, 5, 7}}.

Table 4.3: Modularity general statistics on RV optima.

Percentile 0.5 Percentile 25 Median Percentile 75 Percentile 99.5
0 0.029 0.08 0.145 0.48

4.3.3 Multi-objective optima

Overview and scope of this analysis. In this section we show some of the key social
networks patterns that can be recovered in Pareto optimal networks from the simultaneous
optimization of RV and WEF criteria, which we will refer to as PF (due to their criteria
values being in the Pareto Front) optima. We start by showing graphs of average behaviors
displayed by the distinct type of optima, highlighting the most relevant differences among
them. We then illustrate these behaviors by depicting some representative Pareto optimal
networks and conclude with a brief analysis. Since there is a wide spectrum of Pareto optimal
networks, we restrict the study to the most interesting case of F ·nh ≤ N . See the paragraph
Summary of distinct types of WEF optima from Section 4.3.1, for the result justifying the
use of this last condition. Most types of optima networks from the context F ·nh > N appear
also as optima in the former case. The interested reader may review the trees of the case
F · nh > N and associated optimal networks, in the documentation for running the code
from the repository provided for this purpose [233].

Community structure on PF optimal networks. One of the main results is displayed
in Figure 4.10, where there are two measures of community structure, the already mentioned
network modularity, and a new measure called average intra-partition clustering. This mea-
sure corresponds to the average of local clustering over the subnetworks induced by each of
the modules of the partition maximizing modularity found by the Monte Carlo algorithm.
Thus, intra-partition clustering is a measure of the cohesiveness of the partition maximizing
modularity. A first remark to note is that, though maximum values of this measure are
obtained by WEF optima, this pattern is more a product of the high connectivity across the
whole network found in this type of optima, than to the presence of clear cohesive modules.
This observation is supported by the low values of modularity exhibited by WEF optima,
see Figure 4.10(c), and is coherent with the hypothesis that the partitioning found in this
optima obeys more to the random nature of the Monte Carlo algorithm.

Now, if one inspects the mean values of average intra-partition clustering (AIC) of PF
optima, one notes that they are not too distinct from those of RV (Figure 4.10(a)). As an
example, for the observed PF networks with ph ≤ 0 .15 , the mean is 0.148 and the median is
0.056, and one can find typical networks such as those in Figure 4.11 (a), (b), (c), with AIC
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Figure 4.10: Distributions of different measures of community structure for each
type of network optima. From left to right: Average intra-partition clustering (left),
percentile 90 of average intra-partition clustering. (center), and mean modularity (right),
for each type of network optima. Average intra-partition clustering (AIC) is the mean of
local clustering computed in each subnetwork induced by the modules of the partition max-
imizing modularity. These statistics are computed on each of the 500 bootstrap samples
with replacement of size 70% from dataset, used to compute percentile confidence intervals
with error α = 0.05 for each statistic. Considering that modularity measures the level of
segmentation into modules of the network, and that AIC measures the cohesiveness of these
modules, taken together, these plots say that the networks with the most cohesive modules
can be found among PF networks.

values of 0.083, 0.313 and 0.023, respectively. However, if one looks at the highest values of
this measure in Figure 4.10(b), it is noted PF gets higher values than RV, for ph ≤ 0 .15 .
This pattern is due to networks such as that of Figure 4.12 (a), where there are two modules
of connected nodes around distinct hunters, which is reflected in a value of 0.454 for intra-
partition clustering. On the other hand, if community structure is measured with modularity
index, it can be seen in Figure 4.10(c) that PF mean increases with ph, and it is higher than
that of single optima networks. This behavior is influenced mainly by networks that indeed
can exhibit relatively large modularity, but with weakly connected modules, similar to the
architecture of some RV optima. Figure 4.12 (b) displays an example of this type of PF
optima.

Reciprocity on PF optimal networks. The behavior of the other social network pattern
we study, reciprocity, can be appreciated in Figure 4.13. There it can be seen that, particu-
larly, the presence of reciprocated arcs between a hunter and non-hunters is very salient on
PF networks compared to the other optima. This pattern is observed in networks such as
that of Figure 4.12 (c). On the other hand, the presence of reciprocity among non-hunters
in Figure 4.13(b), is associated with networks similar to that of Figure 4.11 (b), which for
example has 5 reciprocated arcs among non-hunters. The intuition for the presence of re-
ciprocated arcs between a hunter and non-hunters, as well as other patterns found on PF
optima, is given by the notion of dominance, which defines the Pareto optimal set, and will
be explained next through the example of Figure 4.14.
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Figure 4.11: Representative PF networks of regime ph ≤ 0 .15 . Model variables
under which these Pareto optimal networks were obtained are displayed under each network.
Hunters are filled in yellow. To obtain representative networks, these were chosen as the most
central from leaves of efficient trees with a relative proportion higher than 8%. To see the
trees, consult the Annex D.8. These networks show that, even with tiny chances of hunting
(ph) as in (a), PF networks are able to organize into more cooperative schemes, going beyond
the hunter homophilic bonds of RV optima (see Section 2.4.4).

  

Figure 4.12: Representative PF networks with some social network pattern. Model
variables under which these Pareto optimal networks were obtained are displayed under each
network. Hunters are filled in yellow. Average intra-partition clustering (AIC) is the mean
of local clustering computed in each subnetwork induced by the modules of the partition
maximizing modularity. From left to right: network (a) has a modularity of 0.392 and AIC
of 0.454 (highly cohesive modules around hunters), network (b) has a modularity of 0.221
and AIC of 0 (non-cohesive modules), while network (c) has a modularity of 0 and AIC of
0.029 (no modules, and high hunter/non-hunter reciprocity). Additionally, this last network
has 7 reciprocated arc pairs between hunters and non-hunters.
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Figure 4.13: Distributions of different types of reciprocated arc pairs for each type
of network optima. From left to right: Mean number of reciprocated pairs between a hunter
and a non-hunter (left), mean number of reciprocated pairs between non-hunters (center), and
mean number of reciprocated pairs between only hunters (right). These means are computed
on each of the 500 bootstrap samples with replacement of size 70% from dataset, which
are used to compute percentile bootstrap confidence intervals with error α = 0.05 for each
statistic. The plots show that each type of reciprocated arc, inter-hunter-non-hunter in (a),
intra-non-hunter in (b), and intra-hunter in (c), achieves more prevalence in a distinct optima
type, respectively in PF, WEF, RV. This is consistent with what is shown in Figure 4.12,
Figure 4.4, Figure 4.9, and we interpret it as an impact of the social context on the social
organization, see Section 4.4.

  

Figure 4.14: Three networks with increasing number of reciprocated arcs between
hunter and non-hunters. We assume there is 1 hunter, node 0, ph = 0 .08 and F = 4.
NetworkD1 gets costs RV = 0.261 andWEF = 0.024, D2 obtains RV = 0.315,WEF = 0.02
and D3, RV = 0.332, WEF = 0.018. The deletion of each additional reciprocated arc cannot
simultaneously lower both costs, making networks D2 and D3 good candidates to be Pareto
optimal.
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Rationale of traits present on PF networks. Since ph = 0 .08 for every network in
Figure 4.14, in network D1 each non-hunter eats with equiprobability 0.02. If we add one
reciprocated arc pair on node 1, we obtain the network D2 in Figure 4.14. And since F = 4,
now each non-hunter in D2 eats directly from the hunter, and also from the food that first
went through node 1. Thus, node 1 eats with probability 0.02 while every other non-hunter
eats now with probability 0.035. This reduces the WEF cost, and since we are in this range
of low probabilities, the mean of RV costs increases. See the exact values in the Figure
description. If now we add a new reciprocated arc pair to node 3 we get the network D3

in Figure 4.14, where now node 1 eats additionally from the indirect route through 3. This
implies that every non-hunter in D3 eats with a probability of 0.035, which again increases
RV and lowers WEF. Thus, for this condition of model variables and these simple networks,
the presence of each of these reciprocated arc pairs delivers a non-dominated network, since
the deletion of this trait cannot simultaneously lower both costs, as we have seen.

Probability of eating. As a final observation, we look at the behavior of the probability
of eating in a network. The mean probability (over network nodes) is on Figure 4.15(a),
and it turns out that PF obtains lower means over dataset samples. This is due to the
high prevalence of networks with one hunter and reciprocated arcs between hunter and non-
hunters, which usually get low mean probabilities, due to low food availability. If now we look
at the median probability on Figure 4.15(b), it is observed that PF offers a greater probability
than RV on low ph values. This is because in PF there are networks similar to WEF minima
that deliver better probabilities of eating that do not leave isolated nodes as with the RV
optima. This is confirmed by Figure 4.15(c), which shows the greatest differences between
hunters and non-hunters are in the RV optima, and by the remarkable fact in Figure 4.15(b)
that WEF optima shows the greatest efficiency in the probability of eating in the whole range
of ph.

4.4 Discussion

In this section, we discuss the main contributions of our model in relation to previous works,
possible implications of our results, and avenues for future research.

Condition for community network structure. Communities given by cohesive net-
work modules appear in food sharing networks optimized to provide egalitarian access to
food resources jointly with reduced individual risk. This result is obtained under condi-
tions of uncertainty and scarcity in the food supply (see Figure 4.12, Figure 4.10(b)), which
suggests their adaptive value for this context, and can be considered a new mechanism for
the emergence of communities in networks, as those reviewed in Section 2.4 from the sur-
vey chapter. The simultaneous optimization of the two goals is necessary since RV optima
may present community structure but with rather sparse connectivity (see Figure 4.9), while
WEF may present communities under the special case of degree dispersion minimization (see
Figure 4.5). These PF networks are resemblant to the food-sharing networks observed by
Dyble et al (2016) [89], where there are cohesive groups corresponding to households pro-
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Figure 4.15: Display of three variables associated with the probability of eating
for each type of network optima. From left to right: mean probability of eating, median
probability of eating, and difference in means of the probability of eating between hunters
and non-hunters. In each graph, the mean of each statistic is drawn surrounded by percentile
bootstrap confidence intervals with error α = 0.05, computed on each of the 500 bootstrap
samples with replacement of size 70% from the dataset. Overall, PF networks for low ph
values are more resilient than RV, since may organize into more egalitarian (WEF-like)
structures. WEF networks deliver the greatest efficiency in most of the range of ph, either
in terms of the median pe, or the differences in p̄e between hunters and non-hutners.

visioned by an adult couple, and a set of households forms a cluster with a small number
of inter-household connections. In our model, the cohesive groups correspond to consumers,
or non-hunters, grouped around one or more hunters. This result suggests that not only
the camp level, which groups several clusters, is functionally associated with risk reduc-
tion reciprocity as argued by Dyble et al (2016), but also the hierarchically lower levels of
households and clusters may have been related evolutionarily to some resource distribution
optimality that includes the egalitarian access to resources. This idea is consistent with some
studies suggesting that many kinship configurations may be a product of sharing patterns
[180, 136, 152].

The claim that the two minimization criteria are required for the emergence of cohesive
communities is reinforced by the condition of uncertain food generation, not only because it is
under this regime where communities are obtained (Figure 4.12), but also because when food
supply is safer, the two criteria become indistinct to the dense optimal WEF networks with
low modularity (Figure 4.9(f)). The fact that sharing is directed mainly towards large and
uncertain packages of food is acknowledged by several empirical studies [122, 145, 34, 130].
The necessity of the confluence of both the individual and group interests has also been
pointed out in the simulation agent-based study by Briz i Godino et al (2014) [50] which
models the cooperative public calls through smoke signals of a hunter-fisher-gatherer society
conditional on the exceptional accumulation of fish. The model shows that a low weight on
social capital relative to individual consumption of meat in the agents’ fitness, is enough to
obtain most society cooperating as the most likely outcome, but this result may be reversed
when this weight is absent. This social capital component of reproductive fitness seems to
be a plausible mechanism according to Chaudhary et al (2016) [63], where it is reported that
relational wealth, or the cooperative relationships an individual has, provides advantages in
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buffering food risk, body mass index, fertility, and is partially heritable.

Finally, the result that a stringent resource availability would be necessary for the evo-
lution of cooperation is supported by another agent-based model named Cooperation under
resource pressure (CURP) by Pereda et al (2017) [227]. This work shows that under moderate
survival stress, populations of agents self-organize in an indirect reciprocity system consisting
in sharing the part of the resource that is not strictly necessary for survival, achieving to
collectively lowering the chances of starving. Additionally, a high-stress regime turns into
unstable behavior, where the population constantly searches for survival strategies, while
low-stress does not exert selection and strategies remain almost constant and randomly drift-
ing. Since the variables in our model may be understood as a form of resource-pressure,
and even a parallel may be established between the two models’ variables (prob-resource to
ph, and min-energy to F ), the results of our model roughly resemble those of CURP, taking
into account that CURP is not a social networks model, and that ours is not an agent-based
evolutionary model. This aclaration allows us to understand the fact that our model does not
produce a clear distinction between moderate and high-stress scenarios in the sense CURP
does. Our model does not incorporate a notion of dynamics like evolutionary models, but
rather gives a fixed optimal organization under certain conditions. On the other hand, CURP
does not make a distinction between hunters and non-hunters, and all agents can produce
food.

Network structures promoting egalitarian resource distribution. Welfare optimal
networks (WEF) display high connectivity but low network segmentation, where each hunter
is connected to one big, homogeneous and dense group of non-hunters, see Figure 4.4. On
the other hand, networks minimizing individual risk (RV) range from cooperation exclusive
among hunters, to networks more similar to welfare networks when the food supply is safer,
see Figure 4.9. These networks are very similar to those tested in the lab experiment by
Chiang (2015) [64], where it is found that network structures linking agents with discrepant
income levels promote more egalitarian distributions by motivating the rich agents to share
their incomes with the poor. Particularly, the network SF negative from the experiment
is very similar to the undirected version of WEF optima from our model. On the contrary,
networks where similar income agents are linked evolve to more unequal income distributions,
which is also consistent with the RV optima in stringent resource conditions where hunters
are only connected among themselves. This result is consistent with the view that social
networks structured originally according to ecological considerations, may have created the
environment in which prosocial tendencies and equity response elicitation as those explored
in the experiment, evolved along human history [144, 139].

Finally, the fact that many WEF optima minimize degree variance is consistent with
results of a previous simulation of need-based transfers evolution model showing that degree
variance is anti-correlated with survival rate [160]. The minimization of in-degree variance
is another pathway to cohesive communities found in our model, see Fig. 4.5. This scenario
may be the idealized case resultant of some other more realistic constraint as, for example,
an upper bound on the number of connections an agent may have. This last idea has been
proposed by the social brain hypothesis [191], which states that there are cognitive constraints
on the number of face-to-face social interactions a human may have, where these limits would
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be inversely related to the emotional closeness of the bond. Thus, for example, the number
of close friends one could maintain is limited to five. The evolutionary perspective suggests,
again, that these cognitive constraints on social relationships may have been related originally
to some kind of resource distribution optimality.

Distinct patterns of reciprocity. We have obtained distinct distributions of reciprocity
among hunters and non-hunters, in the three types of optimal networks we study, which
gives a broader picture to the usual notion that reciprocity is driven by the minimization
of food production uncertainty [155, 290]. We only got high reciprocity under the reduction
of variability criterion (RV) for reciprocal exchanges among hunters, see Figure 4.13(c). On
the other hand, Pareto optimal networks (PF) maximize mean reciprocity between hunters
and non-hunters, and Welfare (WEF) maximizes mean reciprocity among non-hunters, see
Figure 4.13. These distinct distributions may suggest that the relative importance of every
criterion guiding food transfers depends critically upon the context, which in turn may be a
result of population size and division of labor.

One possibility is that for large communities, where hunters are only a small fraction of
the whole population, there are hunters that reciprocally exchange food to minimize risk, and
after that, new exchanges take place within subcommunities fed by each of these hunters, that
may be driven to a greater or lesser extent by welfare considerations. This is not far from what
has been reported for some hunter-gatherer societies, where there are two systems or stages
of sharing: in the first, sharing occurs among participants in the cooperative effort of food
acquisition as a form of labor reward, and then, in the secondary distribution each individual
that received shares redistributes his or her share to families that did not participate [153].
This is consistent with the claim that exchanges motivated by need or welfare, would be
more common within a household [169, 127], and with more recent observations reporting
that Hadza men consumed a substantial amount of food while out of camp foraging [30],
and that returning to camp empty-handed is indicative that he failed to produce enough
surplus to share. This may suggest a greater relative weight of individual starvation risk
minimization over welfare motivation in the first stage of sharing.

Implications for evolutionary and economic models of social dynamics, and future
work. Though our model is not evolutionary in its formulation, its results suggest that
motives not usually modeled by these approaches, such as the egalitarian group access to
critical resources for survival, may be an important driver for social network formation.
Typical evolutionary models of food-sharing [151] rely on the assumption of maximization of a
function of subjective preferences, usual in economic models of network formation [156], which
highlights an exclusive role of individual choice and may impose high cognitive requirements.
We claim that evolutionary approaches may benefit from a wider repertoire of assumptions
including a resource distribution perspective, the modeling of survival needs, and the explicit
inclusion of the group level of analysis.

Our model looks for capturing the transfers of finite resources subject to uncertain and
scarce production, and their effect on optimal network organization. Therefore, its insights
may potentially be applied to other situations imposing an analog structure of restraints.
For example, since parents need to spend most of their time raising their offspring, maybe
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the behavior of cooperative breeding is dependent on the uncertain generation of scarce free
time available for the care of non-descendant children. On the other hand, some works have
argued [257, 120] about the usefulness of using a diminishing marginal returns function over
the exchanged quantities of food, which may be a symptom of the underlying phenomenon
of satisfaction of needs [106]. Our model is based on an original formulation of starvation
risk relying upon the expected number of success runs of a certain length in a sequence of
trials to implement the hunger need over time. Our model may contribute a formal frame-
work to proceed in this discussion. Finally, the explicit inclusion of group level of analysis
may be implemented through the multi-level selection model [289, 215] that incorporates
as evolutionary units the individuals, as well as the groups they form. A mapping from
individual fitness to starvation risk, and from group fitness to egalitarian group access to
resources may be studied in future work. A model like this may serve to shed light on the
complex interactions between developmental, biological, social, economic and cultural factors
influencing social networks formation. More direct extensions of our model would be, for ex-
ample, more complex protocols of food-sharing allowing for preferential exchanges according
to agent closeness, correlations in production of food [290], or others. The modular character
of the model would allow making changes at several levels.

4.5 Conclusion

We have presented and analyzed a formal network optimization model inspired by a food-
sharing dynamic, that can recover some typical patterns found in social networks. Specifically,
we have formalized two main drivers for food-sharing: the reduction of individual starvation
risk and the care for the general welfare of agents, and have shown using evolutionary algo-
rithms and data analysis techniques, three main findings, plus a methodological contribution.

• Communities of cohesive network modules appear in food sharing networks optimized
to provide egalitarian access jointly with reduced individual risk. This result is obtained
under conditions of uncertainty and scarcity in the food supply, which suggests their
adaptive value for this context. The simultaneous optimization of the two goals is
necessary for this outcome. These networks are resemblant to the food-sharing networks
observed by Dyble et al (2016) [89], where there are cohesive groups corresponding to
households provisioned by an adult couple, and a set of households forms a cluster
with a small number of inter-household connections. In our model, the cohesive groups
correspond to consumers, or non-hunters, grouped around one or more hunters. This
result suggests that the organization of nuclear families described by Dyble et al (2016)
[89] may have been evolutionarily functional for resource distribution optimality.

• Welfare optimal networks (WEF) display high connectivity, but low network segmen-
tation, where each hunter is connected to one big, homogeneous and dense group of
non-hunters. On the other hand, networks minimizing the individual risk (RV), which
range from cooperation exclusive among hunters to networks more similar to welfare
networks when food supply is safer, may present community structure but with rather
sparse connectivity. These networks are very similar to those tested in the lab exper-
iment by Chiang (2015) [64], where it is found that network structures linking agents
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with discrepant income levels promote more egalitarian distributions by motivating the
rich agents to share their incomes with the poor. Particularly, network SF negative
from the experiment is very similar to the undirected version of WEF optima from our
model. On the contrary, networks where similar income agents are linked evolve to
more unequal income distributions, which is also consistent with RV optima in strin-
gent resource conditions where hunters are only connected among themselves. This
result is consistent with the view that social networks structured originally according
to ecological considerations, may have created the environment in which prosocial ten-
dencies and equity response elicitation as those explored in the experiment, evolved
along human history [144, 139].

• We have obtained distinct distributions of reciprocity among hunters and non-hunters,
in the three types of optimal networks we study, which gives a broader picture of
the usual notion that reciprocity is driven by the minimization of food production
uncertainty [155], and that may be consistent with some empirical reports [153] on
how sharing is distributed in waves, first among hunters, and then hunters with their
families.

• As a final contribution regarding methodology, our model is based on an original for-
mulation of survival risk relying upon an estimate of the number of success runs of a
certain length, in a sequence of Bernoulli trials. We believe our model may contribute
a formal framework to proceed in this discussion regarding the principles guiding food-
sharing network formation. Additionally, we employ an original pipeline of state-of-art
clustering algorithms to analyze the multiple network optima of our model that may
be of interest.

Our model suggests that evolutionary accounts of food sharing may benefit from including
a resource distribution perspective, the modeling of survival needs, and the explicit inclu-
sion of the group level of analysis, for example, as a level where selection also operates,
autonomously from the individual level. Future work based on this model may contribute to
a better understanding of the complex interaction of factors affecting the formation of social
networks, and human natural history.
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Chapter 5

Conclusion

We end this document with a review of the distinct contributions and takeaway points of the
presented works.

QuickCent results. The results presented in Chapter 3 show that QuickCent can be a
competent alternative to make a regression on a power-law centrality variable. The method
generates accurate and low variance estimates even if trained with a small training set,
comparable in precision to some more advanced machine learning algorithms. Its accuracy
is available at a lower time cost than more complex machine learning methods. In this
sense, QuickCent is an example of simple heuristics based on the ecological validity, or
the exploitation of regularities of the data that makes the application of the heuristics be
sound or incorrect, that can be a competitive alternative to more computationally intensive
procedures. This ecological validity is a way to call the cost to pay, in terms of the bias-
variance tradeoff, when using rigid low-variance heuristics.

Approximation of size measures on some scale-free networks. The study case ad-
dressed in the paper corresponds to the approximation of expensive harmonic centrality by
cheap in-degree centrality, and more generally, in terms of the axioms of centrality by Boldi
and Vigna (2014) [40], the approximation of an expensive centrality sensitive to size and
density by a cheap density measure. The comparison between the performance on syn-
thetic networks produced with preferential attachment and some empirical networks, shows
that, since preferential attachment can be produced by link creation processes guided by
the local network structure such as meeting friends of friends, the local density could in-
deed reflect greater group size. We think that this insight may be of utility for other cases,
such as estimating other centrality measures, or to find footprints of the network generation
mechanism.

Food-sharing modeling results. We have found that communities of cohesive network
modules appear in food sharing networks optimized to provide egalitarian access jointly
with reduced individual risk. This result is obtained under conditions of uncertainty

86



and scarcity in the food supply, which suggests their adaptive value for this context. These
networks are resemblant to the food-sharing networks observed by Dyble et al (2016) [89],
where there are cohesive groups corresponding to households provisioned by an adult couple,
and a set of households forms a cluster with a small number of inter-household connections.
Now, welfare optimal networks (WEF) display high connectivity, but low network
segmentation, where each hunter is connected to one big, homogeneous and dense group
of non-hunters. On the other hand, networks minimizing the individual starvation
risk (RV), range from cooperation exclusive among hunters to networks more similar
to welfare networks when food supply is safer. These networks are very similar to those
tested in the lab experiment by Chiang (2015) [64], where it is found that network struc-
tures linking agents with discrepant income levels promote more egalitarian distributions by
motivating the rich agents to share their incomes with the poor. On the contrary, networks
where similar income agents are linked evolve to more unequal income distributions, which is
also consistent with RV optima in stringent resource conditions where hunters are only con-
nected among themselves. Finally, we have obtained distinct distributions of reciprocity
among hunters and non-hunters, in the three types of optimal networks we study, which
gives a broader picture of the usual notion that reciprocity is driven by the minimization of
food production uncertainty [155], and that may be consistent with some empirical reports
[153] on how sharing is distributed in waves, first among hunters, and then hunters with
their families.

Interpretation of food-sharing results. All the modeling results are consistent to the
argued relevance that food sharing would have for the evolution of different forms of human
cooperation. Social networks structured originally according to ecological considerations,
may have created the environment in which, prosocial tendencies and equity response
elicitation, may be potentially elicited and evolved along human history. On the other
hand, the model results have implications regarding the usual approaches adopted by evo-
lutionary models. We claim that evolutionary approaches may benefit from a wider
repertoire of assumptions including a resource distribution perspective, the modeling
of survival needs, and the explicit inclusion of the group level of analysis.

Food-sharing methodological contributions. Our model is based on an original for-
mulation of starvation risk relying upon an estimate of the number of success runs of
a certain length, in a sequence of Bernoulli trials. We believe our model may contribute a
formal framework to proceed in this discussion regarding the principles guiding food-sharing
network formation. Additionally, we employ an original pipeline of state-of-art cluster-
ing algorithms, that is, the application of tSNE algorithm [275] followed by OPTICS [10],
to analyze the multiple network optima of our model that may be of interest.
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[6] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the
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of complex networks. nature, 406(6794):378–382, 2000.

[8] Wesley Allen-Arave, Michael Gurven, and Kim Hill. Reciprocal altruism, rather than
kin selection, maintains nepotistic food transfers on an ache reservation. Evolution and
Human Behavior, 29(5):305–318, 2008.

[9] Attila Ambrus, Markus Mobius, and Adam Szeidl. Consumption risk-sharing in social
networks. American Economic Review, 104(1):149–82, 2014.

[10] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
Ordering points to identify the clustering structure. ACM Sigmod record, 28(2):49–60,
1999.

[11] Coren L Apicella, Frank W Marlowe, James H Fowler, and Nicholas A Christakis.
Social networks and cooperation in hunter-gatherers. Nature, 481(7382):497–501, 2012.

90



[12] Robert Axelrod. The dissemination of culture: A model with local convergence and
global polarization. Journal of conflict resolution, 41(2):203–226, 1997.

[13] Lars G Backlund, Johan Bring, Ylva Sk̊anér, Lars-Erik Strender, and Henry Mont-
gomery. Improving fast and frugal modeling in relation to regression analysis: Test of
3 models for medical decision making. Medical decision making, 29(1):140–148, 2009.

[14] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four
degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference,
pages 33–42. ACM, 2012.

[15] Robert Converse Bailey. The behavioral ecology of Efe Pygmy men in the Ituri Forest,
Zaire, volume 86. University of Michigan Museum, 1991.

[16] P. Bak. How Nature Works: The Science of Self-Organized Criticality. Copernicus,
New York, 1996.

[17] Felipe Balmaceda and Juan F Escobar. Trust in cohesive communities. Journal of
Economic Theory, 170:289–318, 2017.
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Annex A

Fragmentation threshold under
random removal

In a study [7] described at Section 2.2.1, it is reported that for scale-free networks, no
threshold for fragmentation is observed, that is, the size of the largest cluster slowly decreases
as the removed node proportion p increases. In contrary, for Erdös-Rényi graphs, under
random node removal of a fraction p of nodes, there is a critical proportion p = pc of nodes
at which the main cluster of nodes breaks into small pieces, and the relative size of the largest
cluster tends quickly to zero. This phenomenon was analytically studied in a work by Cohen
et al (2000) [70]. In this section we review their argument, to highlight the importance of
the moments of the power-law distribution in explaining some of its features.

The argument starts by stating that, for a giant component to exist -in an undirected
graph-, each node belonging to it must be connected to, at least, two other nodes on average.
Thus, denoting by P(ki|i ↔ j) the conditional probability that node i has degree ki, given that
it is connected to node j, we can write the condition for the existence of a giant component
as follows

⟨ki|i ↔ j⟩ =
∑
ki

kiP(ki|i ↔ j) = 2, (A.1)

where the angular brackets denote an ensemble average. Now, by Bayes theorem,

P(ki|i ↔ j) =
P(i ↔ j|ki)P(ki)

P(i ↔ j)
, (A.2)

and the terms in this expression, hold that P(i ↔ j|ki) = 1
n−1

· ki, and P(i ↔ j) = |E|
n(n−1)/2

=
⟨k⟩
n−1

, where n is the number of nodes of the graph, |E| is the number of edges, and ⟨k⟩ is the
average degree. Replacing these last expressions on (A.2) and on (A.1), it follows that the
criterion (A.1) is equivalent to

⟨k2⟩
⟨k⟩

= 2, (A.3)
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which is a criterion independent of the particular degree distribution. This argument is
valid if loops are neglected. The probability of an edge to form a loop is indeed negligible
[70].

Consider now a random removal of a fraction p of the nodes. This will alter the connectiv-
ity distribution of a node. Indeed, consider a node with initial connectivity k0, chosen from
an initial distribution P (k0). After a random breakdown of size p, this node has now k edges
left with probability

(
k0
k

)
(1− p)kpk0−k, since (k0 − k) edges are lost, each with probability p,

and k edges remain, each with probability (1−p). Therefore, the probability P ′(k) of having
a node of degree k in the new network is given by

P ′(k) =
∞∑

k0≥k

P (k0)

(
k0
k

)
(1− p)kpk0−k.

We want now to compute the moments ⟨k⟩′, ⟨k2⟩′ of this new distribution. Thus,

⟨k⟩′ =
∞∑
i=0

iP ′(i)

=
∞∑
i=0

∞∑
k0≥i

iP (k0)

(
k0
i

)
(1− p)ipk0−i

= (1− p)
∞∑

k0=0

k0P (k0)

k0∑
i=0

(
k0 − 1

i− 1

)
(1− p)i−1pk0−i

︸ ︷︷ ︸
=1

= (1− p)⟨k0⟩,

where ⟨k0⟩ is the mean of the initial distribution P , and we used that
(
k0−1
i−1

)
=
(
k0
i

)
−
(
k0−1

i

)
. In

order to compute the second moment, we will use the following equality ⟨k2⟩′ = ⟨k2−k+k⟩′ =
⟨k(k − 1)⟩′ + ⟨k⟩′. Thus, we must compute

⟨k(k − 1)⟩′ =
∞∑
i=0

i(i− 1)P ′(i)

=
∞∑
i=0

∞∑
k0≥i

i(i− 1)P (k0)

(
k0
i

)
(1− p)ipk0−i

= (1− p)2
∞∑

k0=0

k0(k0 − 1)P (k0)·

k0∑
i=0

(
k0 − 2

i− 2

)
(1− p)i−2pk0−i

︸ ︷︷ ︸
=1

= (1− p)2⟨k0(k0 − 1)⟩,
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which, in turn, allows us to compute

⟨k2⟩′ = ⟨k(k − 1)⟩′ + ⟨k⟩′

= (1− p)2⟨k0(k0 − 1)⟩+ (1− p)⟨k0⟩
= (1− p)2⟨k2

0⟩ − (1− p)2⟨k0⟩+ (1− p)⟨k0⟩
= (1− p)2⟨k2

0⟩+ p(1− p)⟨k0⟩.

With this in hand, the criterion (A.3) can be applied to the moments ⟨k⟩′, ⟨k2⟩′ -or in other
words, to the new distribution P ′(k) resulting from the removal of a fraction p of nodes-.
That is, the criterion (A.3) may be expressed as

⟨k2
0⟩

⟨k0⟩
(1− pc) + pc = 2, (A.4)

and solving the expression for pc, (A.4) gives

pc = 1− 1
⟨k20⟩
⟨k0⟩ − 1

.

This is an expression for the critical proportion of removed nodes up to which there is a
giant component, in function of the moments of the original distribution. This expression is
independent of the particular degree distribution, and so applicable to all randomly connected
networks.

In particular, for an Erdös-Rényi graph, with a Poisson degree distribution of mean ⟨k0⟩,
it holds that ⟨k2

0⟩ = ⟨k0⟩(1 + ⟨k0⟩) -since the variance of a Poisson distribution is equal
to its mean-, and hence, the critical proportion is given by pc = 1 − 1

⟨k0⟩ . This is a finite
value becoming greater if the network is denser. On the other hand, a Power-law degree
distribution of exponent α ∈ (2, 3], as most networks from Table 2.1, has a finite mean but a
divergent second moment, as seen at Section 2.2.5. In this case, pc ≈ 1, which is consistent
to the results reported at Albert, Jeong and Barabási (2000) [7].
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Abstract

This annex corresponds to the online supplementary material for the paper QuickCent: a
fast and frugal heuristic for harmonic centrality estimation on scale-free networks submitted
to Computing journal. It includes the practical procedure used to estimate the lower limit of
the power-law distribution, and the experiments for checking the fulfillment of assumptions
of QuickCent by the distinct networks shown in the Results section of Chapter 3.

B.1 Practical procedure to estimate the lower limit of

the power-law distribution

Required background of the power-law distribution is introduced on Sections 2.2.3, 2.2.5 and
2.3.3 from the survey chapter. Methods to estimate the parameters of the power-law are
shown in Section 2.3.3. In this section we explain the practical procedure used to estimate
the lower limit xmin of the distribution.

We estimated xmin with the bootstrap method implemented by the poweRlaw R package
[111], where several samples xmin are drawn and that minimizing D(xmin) is selected. We
noticed in our experiments that, with high frequency, this method selects xmin as a point
with a high value, that is, a xmin value that discards a high portion of the distribution. In
the case of empirical networks shown in Section 3.4.4, we have taken the heuristic approach
of limiting the search space by an upper bound given by the percentile 20 of the distribution
of positive centrality values1, since we have seen for many datasets this is enough to span the
point where the log-log plot of the complementary ECDF starts to behave like a straight line.
Other authors giving implementations of this method have also noticed the difficulties when
estimating xmin

2. This method has a statistical consistency that has been proved only for
some heavy-tailed models [87]. There are alternative methods to optimize the KS statistic
that perform, for example, a grid search over a predefined set of exponent values for each
possible xmin that, however, have been claimed to present many drawbacks [281].

1This is the domain where the power-law fit can be computed.
2The commented code from https://github.com/keflavich/plfit says: ...“The MLE for the power-law alpha

is very easy to derive given knowledge of the lowest value at which a power law holds, but that point is difficult
to derive and must be acquired iteratively.”

114



B.2 Synthetic networks setting and assumptions veri-

fication

The synthetic network model we chose for our simulations is the preferential attachment (PA)
growth reviewed in Section 2.3.4, including a small additive constant to the probability of
acquiring links that allow isolated nodes to attract arcs3 [171, 85, 20]. This is a very simple
model that reproduces the power-law degree distribution observed in real networks coming
from a wide range of fields [20], and provides a convenient setting for studying our heuristics
on several prototypical distributions. With the goal of illustrating these distinct patterns, we
have plotted in Figure B.1 the harmonic centrality and in-degree distributions for randomly
generated graphs of the model from Section 2.3.4 for exponents 0.5, 1, 1.5.

In Figure B.1 (d), (e) and (f), we can visualize the respective patterns for the in-degree
generated by PA described in Section 2.3.4. That is, a power-law distribution, a stretched
exponential reflected in the scale on the horizontal axis, and the gelation regime of a single
gel connected to every node reflected in a heavy-tailed distribution even on a log-log plot.
On the other hand, in Figure B.1 (a), (b) and (c) the respective patterns of the harmonic
centrality are depicted, where the gelation pattern is also obtained for exponent 1.5, and
the scale-free behavior is observed for both exponents 1, 0.5, which is noteworthy. There are
works in the literature showing that the in-degree and PageRank centrality of a digraph obey
a power-law with the same exponent [188], but we have no knowledge of results describing
the distribution of harmonic centrality on digraphs.

Before we can proceed with applying QuickCent, we need to ensure that its assumptions,
namely the power-law distribution of the centrality and the monotonic relation between the
degree and the centrality, are satisfied by the PA model. We checked the assumption of
the power-law distribution of the centrality by using the goodness-of-fit test proposed by
Clauset et al. [67]. This test is based on the KS distance d, see Equation (2.12), between the
distribution of the empirical data and the fitted power-law model, and produces a p-value
p, computed via a Monte Carlo procedure, which estimates the probability that the distance
for any random sample is larger than d. Therefore, if p is close to 1, the fit is acceptable
since the difference between the empirical data and the model fit can be explained by random
fluctuations; otherwise, if p is close to 0, the model is not an appropriate fit to the data [67].

The experiment executed to check the power-law assumption of harmonic centrality was
to instantiate a PA network and compute the following magnitudes: an estimate x̂min of
the distribution lower limit via minimization of Equation (2.12), the respective exponent
α̂ by using Equation (2.11), and the significance of this fit4. We also compute the value
α̂1 which is an estimation of the exponent α associated to value xmin = 1. The objective
of computing α̂1 was to verify the error obtained by working with a fixed value of xmin

(equal to 1 in this case), which may also tell about the goodness of the power-law fit. The
described calculations were repeated over 1, 000 networks. Some descriptive statistics for the
different magnitudes computed are shown in Table B.1 (Q25 and Q75 are the 25-th and 75-th

3This setting corresponds to the default parameters of the method sample pa() of package igraph [76] for
the R language.

4This test requires the values tested to be strictly positive, so the zero harmonic values present in the
sample were discarded for this test.
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Figure B.1: Complementary ECDF of harmonic centrality and in-degree for proto-
typical preferential attachment networks. Each plot shows with logarithmic (base 10)
axes the complementary empirical cumulative density function of the harmonic centrality,
and in-degree of randomly generated networks of each representative exponent of the PA
model. The distributions of in-degree are known from the literature [171], but the distri-
butions for harmonic centrality are a new result. For PA exponents 1 and 0.5, harmonic is
a power-law, and for the gelation in-degree (there is a super-hub) regime, harmonic has an
analogous behavior.
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x̂min α̂ p-value α̂− α̂1 Spearman Spearman p-value

Q25 6.333 2.135 0.333 -0.027 0.923 0
Median 7.333 2.167 0.582 0.003 0.925 0
Mean 8.343 2.171 0.555 0.008 0.925 0
Q75 9.166 2.203 0.808 0.041 0.928 0

Table B.1: Results of experiments testing QuickCent’s assumptions for PA with
exponent 1. Fields correspond to: fitted lower limit and exponent of the power-law, KS-
based p-value of this fit, difference between the fitted exponent and the exponent assuming
xmin = 1, the Spearman correlation between the logarithms of centrality and in-degree, and
its significance. The number of decimal places is truncated to three with respect to the
source.

x̂min α̂ p-value α̂− α̂1 Spearman Sp. p-value

Q25 2.500 1.429 0.056 -5.438 0.853 1.043e-82
Median 3.500 1.521 0.274 -4.518 0.882 1.645e-70
Mean 93.351 1.670 0.346 -4.610 0.876 5.647e-29
Q75 4.208 1.774 0.620 -3.650 0.903 3.977e-60

Table B.2: Results of experiments testing QuickCent’s assumptions for PA with
exponent 1.5. Fields correspond to: fitted lower limit and exponent of the power-law, KS-
based p-value of this fit, difference between the fitted exponent and the exponent assuming
xmin = 1, the Spearman correlation between the logarithms of centrality and in-degree, and
its significance. The number of decimal places is truncated to three with respect to the
source.

percentiles). Estimations were computed with the poweRlaw R package [111].

From this table, we can see that 75% of the 1, 000 repetitions have a p-value greater
than 0.333, which is greater than the rule-of-thumb threshold of 0.1 to rule out the power
law [67]. Hence, the fit given by x̂min and α̂ is considered acceptable and the first assumption
is satisfied. In the table, it can be appreciated that the estimated exponents α̂ are relatively
stable for different values of x̂min, and similar to α̂1, in the sense that their difference is
less than the critical amount of one integer which changes the behavior of the moments (see
Section 2.2.5 from the survey chapter). Given this observation, in the experiments of Sections
3.4.1, 3.4.2 and 3.4.3 (in the case of the loss of the monotonic map) of the main chapter where
QuickCent is applied to estimate centrality on synthetic PA networks, we consider a fixed
value of xmin = 1. This further simplifies QuickCent training without incurring a big error
in the parameter estimates.

To check the assumption of monotonic relationship, in the same simulations performed
before, we computed the Spearman correlation between the logarithm of the harmonic cen-
trality and the logarithm of the in-degree5. Some statistics for the distribution of correlation
values, and the distribution of significant p-values can be reviewed in Table B.1. Here, we
see that most of the correlations are almost perfect and significant. Since there is a linear

5Here we also removed the zero harmonic values since log(0) = −∞.
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x̂min α̂ p-value α̂− α̂1 Spearman Sp. p-value

Q25 6.358 2.228 0.317 0.188 0.923 0
Median 7.333 2.252 0.540 0.214 0.926 0
Mean 8.373 2.255 0.544 0.216 0.926 0
Q75 9.166 2.280 0.792 0.244 0.928 0

Table B.3: Results of experiments testing QuickCent’s assumptions for PA with
exponent 0.5. Fields correspond to: fitted lower limit and exponent of the power-law, KS-
based p-value of this fit, difference between the fitted exponent and the exponent assuming
xmin = 1, the Spearman correlation between the logarithms of centrality and in-degree, and
its significance. The number of decimal places is truncated to three with respect to the
source.

relation between the logarithms of the two variables, we can conclude that there is a good
exponential fit of the in-degree to the centrality, so the second assumption is satisfied.

As an example for comparison, in Table B.2 the same statistics are reported for the PA
model with exponent 1.5. In this case, we see that while the p-values are not low in the central
tendency, they are lower than those with exponent 1 and there is an important proportion of
them with values lower than the rule-of-thumb of 0.1. There is also an important difference
between the general fitted α and that obtained with xmin = 1, which may be associated
with the different slopes observed in the ECDF plot for lower and higher centrality values.
This may also explain the greater variability observed in the values of xmin, where the mean
shows the presence of higher values. A similar pattern can be seen regarding the correlation
between centrality and degree, in the sense of being lower than that of the previous case.
The statistics for the exponent 0.5 of PA growth can be reviewed in Table B.3, and are very
similar to those obtained with exponent 1. However, in this case, there are higher differences
between α̂, associated with x̂min, and α̂1, which in fact will have an effect on the robustness
experiments reviewed in Section B.3.

B.3 Robustness of estimates

We present here the results of the following robustness experiment. We consider an instance of
a PA graph of 10, 000 nodes and created distinct QuickCent models with varying information
amounts from the network. This information is extracted from uniform node samples and the
formula from (2.11) to estimate the α exponent, with sample sizes (value m in the formula)
ranging from 10% to 100% of the total vertex set. Note that in this formula, there will be
a number of nodes discarded from the sample depending on the value of xmin. From the
experiments shown in Section B.2, we chose to use xmin = 1 for the experiments in Sections
3.4.1, 3.4.2 and 3.4.3 (in the case of the loss of the monotonic map) of the main chapter
using synthetic PA networks, since there is not a big penalty for doing so, at least with the
exponents 0.5 and 1 with a centrality distribution nearer to a power-law. Then, for each
model, we compute a centrality estimate on every vertex and the difference between this
estimate and the real value. Finally, we computed from these differences the MAE on the
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Figure B.2: Robustness experiments for different exponents of PA digraph in-
stances. For each sample size there is a boxplot representing the MAE distribution. Each
boxplot goes from the 25−th percentile to the 75−th percentile, with a length known as the
inter-quartile range (IQR). The line inside the box indicates the median, and the rhombus
indicates the mean. The whiskers start from the edge of the box and extend to the furthest
point within 1.5 times the IQR. Any data point beyond the whisker ends is considered an
outlier, and it is drawn as a dot. QuickCent is likely accurate, and with a bound small
variance, for all the tested training sizes and PA exponents.
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entire digraph and examined the MAE distribution across 1, 000 different instances of PA
digraphs. The idea is to assess how the availability of information from the network enhances
or deteriorates the quality of the estimates.

Results are shown in Figure B.2. The plots show a performance that is quite accurate and
robust to the training size in the executed experiments. It is accurate because the central
tendency and most of the distribution contained in the IQR of the MAE errors (see the caption
in Figure B.2), does not exceed the two units of difference, taking the average over all network
nodes, from the real centrality value, at least for the exponents 1 and 1.5 of PA. Bigger MAE
errors appear for the exponent 0.5, however, the most extreme outliers even in this case do
not surpass the five units of error. This case reveals that the in-degree does not need to
have a scale-free distribution to be functional for QuickCent estimates. Actually, an implicit
requirement for the correct working of QuickCent is that this distribution has an injective
map from the proportion vector used to the degree quantile values, allowing to distinguish
the distinct centrality intervals. For this reason, the length of the proportion vector in
these experiments was fixed at 8, since while the accuracy increases with this parameter, for
lengthier proportion vectors repeated degree quantile values appear. Thus, the bigger MAE
errors for the PA exponent 0.5 come from the exponents α̂1 used in the simulations, which are
lower than those α̂ associated with the fitted x̂min, see Table B.3. Since they are lower, they
predict centrality values that are higher than the real ones, particularly among the highest
values.

On the other hand, the performance of QuickCent is robust to the training size in the
executed experiments. It is not highly deteriorated for the smaller training sizes of 10 %.
The case of exponent 1.5 is special since the performance seems to be quite independent
of the training size. This has to do with the fact that there is a structural bias given by
the maladjustment between the empirical centrality distribution and the assumed power-law
model. However, given that in these simulations xmin = 1, the fitted power-law covers the
bulk of the distribution composed of low centrality nodes, making the MAE error to be pretty
accurate since it is an average over the network. This shows how this measure of the error is
favored by low errors committed in a relevant mass of the distribution, as in the power-law
case for PA exponents 0.5 and 1.

The feature of making estimates with relatively stable errors could be an advantage in
relation to other regression methods, which can suffer potentially a greater impact from
scarce data. This issue is addressed in Section 3.4.1 of the main chapter.

B.4 Assumption verification experiments on random-

ized networks

Table B.4 shows some summary statistics of several variables testing the assumptions to
apply QuickCent, on a set of 1000 randomly generated PA networks (exponent 1), subject
to degree-preserving randomization of arcs. The p-values show that, even by fixing xmin =
1, which is the approximation used by QuickCent, the harmonic centrality distribution is
reasonably approximated by a power-law. The fitted parameters of the power-law distribution
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x̂min α̂ α̂1 p-value corr 1 corr 2

Q25 2.775 1.858 1.859 0.020 0.918 0.777
Median 3.833 1.960 1.894 0.120 0.927 0.797
Mean 7.636 2.183 1.896 0.269 0.926 0.796
Q75 7.500 2.203 1.932 0.470 0.935 0.817

Table B.4: Results of experiments testing the assumptions of QuickCent on 1000
PA networks (exponent 1) and degree-preserving randomization. Fields correspond
to: fitted lower limit (x̂min) and power-law exponent(α̂) of the harmonic centrality, power-
law exponent (α̂1) obtained by fixing xmin = 1 (the approximation used by QuickCent), the
KS-based p-value of this last fit, the Spearman correlation between the positive values of
harmonic centrality and in-degree, before (corr 1) and after randomization (corr 2). The
number of decimal places is truncated to three with respect to the source. All fields except
corr 1 are computed on the network obtained after randomization by swapping the start and
end of 10000 randomly selected arc pairs that do not change the in-degree network sequence.

of randomized networks are in fact similar to those shown in Table B.1 corresponding to PA
networks without randomization. The two columns with correlation values clearly show the
impact of randomization over the map between in-degree and harmonic centrality.

B.5 Sensitivity to connection probability and assump-

tions verification on Erdös-Rényi digraphs and con-

trol networks

Erdös-Rényi (ER) digraphs seem to have a unimodal distribution of harmonic centrality, and
an almost perfect correlation between this coefficient and the in-degree, at least for those
values of the connection probability p where the mean in-degree ∼ p ·N > 1, corresponding
to the values where it is very likely that there is a unique large strongly connected component
[157], see Figure B.3. For values of p near the transition point, sets of reachable (or co-
reachable) nodes from distinct nodes tend to be smaller, which produces greater variability
in the relation mapping in-degree values to harmonic centrality, which lowers the strength
of the correlation, see Figure B.3. Table B.5 shows the fitted lower limits and p-values of
the power-law fit either on the ER or control digraphs. Each one of the 1000 iterations of
fitting over each network is associated with a distinct random seed, impacting for example the
bootstrap computations of p-values. In spite of this, for the control networks, the parameters
are constant since we are working with the same network, in contrast to the ER digraphs
which are newly instanced for each iteration.
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Figure B.3: Distribution of harmonic centrality (left) and map from in-degree to
harmonic (right) on ER, and harmonic centrality in control digraphs. The plots are
generated from random instances of ER digraphs of size N = 1000. The top plots represent
networks where the probability of connection p = 0.7 induces a mean in-degree far greater
than 1, the critical value for the existence of a unique giant strong component. This is
reflected in a unimodal distribution of harmonic centrality, and a perfect correlation between
in-degree and harmonic centrality. The middle plots represent a connection probability p =
0.0018 near the transition point, where the correlation is now 0.799. The bottom plots
correspond to the harmonic centrality distribution of the two empirical networks used as
controls. Plots (a) to (d) show the distinct behaviors of ER digraphs depending on the
mean in-degree. Plots (e) and (f) show the harmonic centrality distribution of two empirical
networks, more or less near to a power-law.
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x̂mb
min pmb x̂sjmin psj x̂ERmb

min pERmb x̂ERsj
min pERsj

Q25 277.416 1 1 1 381.333 0.010 1060.000 0.020
Median 277.416 1 1 1 381.916 0.180 1060.667 0.380
Mean 277.416 1 1 1 381.915 0.347 1060.621 0.431
Q75 277.416 1 1 1 382.500 0.650 1061.167 0.820

Table B.5: Results of experiments testing the assumptions of QuickCent on ER
and control digraphs. Fields correspond to: fitted lower limit (x̂min) and p-value (p) of
this power-law fit to the harmonic centrality distribution of each network. The superscript of
each parameter denotes the respective network, ‘mb’ for moreno blogs, ‘sj’ for subelj jung-j,
‘ERmb’ for the ER digraph created with the parameters of moreno blogs, and analogously
for ‘ERsj’. The number of decimal places is truncated to three with respect to the source.

B.6 Assumptions verification on empirical networks

In Figure B.4 we can see the log-log plot of the complementary empirical cumulative density
function of the harmonic centrality in each of the datasets. We can see that all the plots
share the feature of having first a flat region of low centrality nodes with high probability,
and then there is a turning point starting a new region more similar to a power-law, that
however is restricted to a characteristic scale, excluding a possible scale-free behavior. This
observation does not exclude this behavior for general datasets, since the observed pattern
may well be a consequence of the size of the chosen datasets. In all the plotted datasets,
the turning point that would correspond to x̂min in terms of the power-law distribution, can
be visually placed around the percentile 10 to 20 of each distribution, which justifies the use
of the upper bound given by the percentile 20 for the search of x̂min explained in Section
B.1. The exception is the plot of the DBLP dataset which, in spite of being very similar to
the plots displayed, therein x̂min may be visually placed around the percentile 60. For this
reason, we excluded this dataset in the later analyses. The interested reader can anyway run
the provided code [231] to review this dataset analogously to the others.

We performed a similar experiment to that from Section B.2 to study whether the datasets
fulfill the assumptions of QuickCent. A p-value to quantify the goodness of fit was computed
with the bootstrap procedure from Section B.2. We also computed the Spearman correlation
between the logarithms of the in-degree and the centrality6. The results are displayed in
Table B.6. There we can see that, in general, the datasets present a reasonable fulfillment
of the assumptions, the only exception being perhaps the wiki talk gl dataset. These results
should be taken with care since, from our experimentation, the method for p-value estimation
is very sensitive to the value used to bound the search space. The overall exponents obtained
agree with the discussion regarding the complementary ECDF plots given in the previous
paragraph.

6As before, computed on non-zero in-degree and centrality.
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Figure B.4: Cumulative distribution function of the harmonic centrality on some
empirical networks. Each plot shows, with logarithmic (base 10) axes, the complementary
empirical cumulative distribution function of the harmonic centrality in each of the empir-
ical datasets analyzed later. Each plot shows a similar behavior for the studied empirical
networks, where the bulk of the distribution are small values, and after some point, starts a
power-law behavior with relatively high exponent.

Name Corr. p-val x̂min x̂min p-value α̂(x̂min)

moreno health 0.8 0 339.2662 1 5.519177
dimacs10-astro-ph 0.75 0 2719.642 1 5.199691
p2p-Gnutella04 0.73 0 582.6779 1 4.991946
wiki talk gl 0.22 3.5e-83 361.65 0 9.505685

Table B.6: Indicators of the fulfillment of the assumptions by empirical data sets.
Fields in the table are the network name, its Spearman correlation between the logarithm of
the in-degree and the logarithm of the harmonic centrality, the correlation p-value, the fitted
lower limit, its corresponding p-value, and the power-law exponent.
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Annex C

Food sharing gave birth to social
networks

Social networks present distinctive features when compared with other types of networks,
particularly the presence of communities, which are subsets of nodes much more densely
connected among themselves, than with the rest of the network. In this work, we propose an
explanation for this pattern based on the following: groups may be the community solution
of hunter-gatherer societies to the survival problem posed by the uncertainty of food. We
propose a multi-agent model inspired by a food-sharing dynamic, which combines and for-
malizes two main notions discussed by some anthropological literature: the reciprocity in the
exchanges of food, plus the care for the general welfare of agents. Our preliminary results
show that near-to-optimal food-sharing networks exhibit highly-connected groups around
special agents that we call hunters, those who inject food into the system. We show the
robustness of these results by computer simulations and also by analytical arguments for
these simulations.
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Contact: 
<franciscoplana@gmail.com>

Cohesive groups typically found in social networks 
may have arisen as a solution by hunter-gatherer 
societies to the survival problem posed by the 
uncertainty of food.

Model solution

Motivation

Two possible network indices to optimize

Results for one hunter

Description of the food-sharing “protocol”

Results for two hunters

Jorge Pérez
Francisco Plana
UChile & IMFD

Food sharing gave birth to social networks.

A distinctive attribute of social networks is that they have 
communities, or cohesive groups of agents more densely 
connected among them than with the rest of network.

A strand in anthropological literature argues about the central 
role of food transfers for the evolution of human foraging 
niche.

We aim to develop a simple multi-agent model where 
communities appear in food sharing networks optimized to 
provide egalitarian access to food resources under 
reciprocal exchanges

Each agent is a node in a loop-free undirected network. There 
is a special set of agents that we call hunters. Each hunter is able 
to hunt a prey with fixed probability ph.

We assume that the prey is enough to feed F agents (including 
the hunter), where F is a fixed positive integer. The food resulting 
from a hunt is shared from the hunters to the rest of the 
network, only through network edges.

When an agent receives f units of food, it consumes a single 
unit of food. After this, the agent a chooses uniformly at random 
one neighbor, say a0, and sends all the remaining food (f −1 
units) to a0.

If we call the amount of food sent from agent i to agent j as a 
flow

We define the reciprocity index rep(G) of a given network G 
as the average, over all edges (i,j) of G, of the following,

And also define the welfare index W(G) of network G as the 
standard deviation of the probability of receiving food, over all 
network nodes.

We assume that networks have N nodes. Then, given 
nonnegative integer values for F, and N, ph         ,             ,    and 
a number NH ≤ N of hunters, we define the following cost or 
energy function,

The problem to solve in our model is to find a network      with 
NH hunters of minimal cost          . The intuition is that we can 
find networks satisfying either, or both criteria.

Finally, we have used Simulated Annealing algorithm to find local 
optima networks for this optimization model. 

Different types of networks are optimal for each or both criteria. 

Example for N = 5, ph = 0.2 and F = 5.

Semiclique network, hunter in gray

Local optima include networks with well cohesive groups 
around hunters, and networks with layers of nodes of equal 
degree.

Example for N = 7, ph = 0.2 and F = 3.
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Annex D

Supplementary Information for
“Modularity of food-sharing networks
minimises the risk for individual and
group starvation in hunter-gatherer
societies”
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Abstract

This annex corresponds to the online appendices section for the paper Modularity of food-
sharing networks minimises the risk for individual and group starvation in hunter-gatherer
societies, accepted for publication by PLOS ONE journal. It includes the implementation de-
tails of several components of the model and employed methods shown in Chapter 4, namely,
the estimate of the probability of eating, the structure of the simulations, the evolutionary
algorithms, clustering procedures and decision trees.

D.1 Estimate of probability of eating

In this section, we obtain an estimate of the probability of eating for every node, according
to the model assumptions and food sharing protocol. With this goal in mind, we introduce
some basic graph notions. We can establish an equivalence between a digraph D = (V,E) of
N vertices and its adjacency matrix,

M(D)i,j =

{
1, (i, j) ∈ E
0, otherwise

and we can define a finite walk w in a digraph as a sequence of edges {ei}n−1
i=1 for which there

is a sequence of vertices {vi}ni=1, possibly repeated, such that ei = (vi, vi+1),∀i = 1, . . . , n−1.
If w is a walk with vertex sequence {vi}ni=1, we say that w is a walk from v1 to vn of length
n− 1, or a (n− 1)−walk. It is not difficult to prove that, coefficient M(D)ni,j from the n−th
power of M(D), is equal to the number of walks of length n from i to j in D. We will use this
property in what follows. For completeness, we can say that M(D)0 = IN×N , the identity
matrix, for every network D.

Now, in order to obtain an expression for pe(v), the probability of eating, at each time
step, by agent v, let us assume by now that there is just one hunter h to derive an expression
for the probability pe(v , h) of v getting feed from the only hunter h. It turns out that it
is simpler to write this probability as a function of the negation of the complement event,
which corresponds to v not being reached by a (F − 1)−walk W of nodes sharing a prey
from h, or also to the intersection of events Ei, i = 0, . . . , F − 1, where each Ei = {vi ̸=
v|vi is the end of the i − th sub-walk W i

h,vi
}. Thus, probability pe(v , h) may be written as
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follows,

pe(v , h) = ph ·

(
1 − P

(
F−1⋂
i=0

Ei

))

= ph ·

(
1 − P(E0 ) ·

F−1∏
i=1

P(∩i
k=0Ek)

P(∩i−1
j=0Ej )

)

= ph ·

(
1 − (1 − 1{v=h}) ·

F−1∏
i=1

∑
x∈{1 ,...,N}(Mi

(v))h,x∑
x∈{1 ,...,N}(M

i−1
(v) · M)h,x

)
,

where the second equality comes from repeated application of the definition of conditional
probability. The third equality comes from the definition of probability as the ratio of favor-
able outcomes and total cases. For both probabilities we can take the same number of total
cases as the number of i−walks, which cancel in the division and thus only the favorable
cases survive. In the first probability, the favorable cases are the number of i−walks from h
never getting v, which are estimated by the i−th power of matrix M(v), the adjacency matrix
of D where all ingoing and outgoing arcs of v are removed. Favorable cases at denominator
is just the number of i−walks from h never touching v except maybe in their last step. If
there are no i−walks from h in D, for consistency we define this ratio of probabilities to be
1. Now, when there are H ≥ 1 hunters {hi}Hi=1, the Inclusion-Exclusion Principle allows us
to generalize the probability of eating pe(v , hi) from hunter hi, to the probability of getting
food from some hunter pe(v),

pe(v) =
H∑

k=1

(−1 )k−1
∑

I⊆{1 ,...,H},|I |=k

∏
i∈I

pe(v , hi). (D.1)

This expression is valid since we have assumed that generation of food by every hunter
correspond to independent events.

D.2 Structure of simulation and sampling of model vari-

ables

The methodology we use to analyze our model is to sample a representative set of values
for the model variables, obtain for each combination of model variables the respective set
of optima via evolutionary algorithms, and then describe these optima with the pipeline of
analysis. We use as a study case a population size of N = 12, since it is one of the smallest
numbers allowing for exploring combinations of number of groups ng and group sizes gs,
where both may hold that ng, gs ≥ 3 and simultaneously one of them may be strictly greater
than 3. These magnitudes are enough to represent the network of food transfers of a typical
cluster of households, each formed by 3 to 4 families, and each family usually comprised by
an adult couple and their dependent children [89]. It is clear that using larger population
sizes may produce a wider diversity of structures that may qualify as optimal networks for
the model, and that it is not straightforward to define a similarity notion between classes of
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optimal networks from distinct population sizes in order to assess the scalability of results
obtained for a particular network size. However, the empirical fact that larger camps or
hunter-gatherer communities are comprised by larger numbers of clusters rather than by
larger clusters [89], is suggestive that there may be some kind of spatial constraints in play,
such as food productivity by land unit or land limits to household habitability, that shape
larger camps as an aggregation of typical-size-clusters. Exploring these spatial constraints is
out of the scope of our work, and our approach is to explore the possible network organization
with the typical size of a cluster of households.

Regarding a possible parameterization of a limited number of parameters, we have only
fixed the RV function by fixing the values of k and n -the critical time period and the life
span-. Since distinct RV curves have a similar behavior in general terms, see Figure 4.2,
we estimate that fixing this function does not impose a hard constraint to the analysis,
because it only affects the ranges of ph where distinct regimes are observed. We do not
have any a priori hypothesis on a potential dependence of model variables, and nor know
whether it may simplify the analysis. The previous evolutionary model CURP [227], which
models the emergence of food-sharing in function of resource pressure and has two variables
similar in functionality to ph and F (prob-resource to ph, and min-energy to F ), does not
give evidence that these two variables could be easily simplified into one variable. However,
on the Annex D.6 there is an approximation for the mean probability of eating for WEF
optima, ¯pe(v) ∼ ph

N
· (F ·nh), which we conjecture that may serve to establish some invariant

on WEF networks with different sizes and similar values of this mean probability. Based on
this expression, we have chosen the approach of separately sampling, on the one hand, ph,
and on the other hand, F and nh. The intuition to sample the first variable will come from
examining the RV function which we will work with. In the case of the last two variables, it
comes from the fact that the product (F ·nh) represents the maximum of times some food is
ever shared in the network. Hence, whether this amount is enough to feed the whole network,
that is, whether (F · nh) < N , is an important variable for network organization of WEF
optima.

The intuition to sample the ph values is the following. The reduction of variability func-
tion, which we work with has a maximum value at approximately pe⋆ = 0 .0899 . Since
non-hunter nodes usually eat with a probability smaller than ph, the simpler way of mini-
mizing RV for values of ph smaller than pe⋆, is that non-hunters just do not receive food and
are isolated nodes. This trend is progressively reversed if ph > pe⋆, since there is a cost in
increased RV mean by leaving behind non-hunters, which is accentuated for greater values
of ph where RV reaches its minimum values. Following this intuition, we have chosen the
values {0.02, 0.08, 0.15, 0.3, 0.6} of ph by choosing two smaller, two greater than pe⋆, and one
at the RV flat region. Now, for the other two variables, we have chosen a set of 10 value
pairs (F, nh), which is balanced with respect to condition F · nh < N = 12 . Since there
are more combinatorial network-walks possibilities when F > 2 and this makes these cases
more interesting, the specific value of F constrains nh to only certain possible values in the
case F · nh < N . This constraint for nh is not present if F · nh ≥ N . On the other hand,
we conjecture that for general networks of size N , the greatest variations in the probability
of eating are produced by the range F ∈ {2, . . . , N/2}, and that larger values of F produce
smaller variations. Guided by these assumptions, we have sampled the following 10 pairs of
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variables (F, nh).

{(12, 1), (4, 3), (3, 5), (3, 7), (4, 9), (4, 1), (4, 2), (5, 2), (3, 3), (2, 5)}

We have taken each possible combination of the 50 (ph,F , nh) values as initial condition for
the evolutionary network minimization of criteria combination.

D.3 Sizes of tables of networks and features

The single optima datasets, for RV and WEF, both were appropriately processed by tSNE
clustering method, by gathering the data of all conditions of model variables in a single
table. The table sizes are the following. The number of features are explained in the section
describing them.

Table D.1: Dimensions of single criteria optimal networks datasets.

Optima type Number of networks Number of features
RV 6047 10
WEF 18686 12

In the case of Pareto optimal networks, however, the set of networks is too diverse to be
properly handled in a single table. For this reason, the networks data was split according
to the value of ph and the condition whether F · nh ≤ N . See the paragraph Summary of
distinct types of WEF optima from Section 4.3.1, for the result justifying the use of this last
condition. Having said that, below are the sizes of tables used to cluster the datasets of
Pareto optimal networks. All these tables have the same feature set used in the clustering of
RV data. All datasets and code used to generate them may be consulted in the repository
provided for this purpose [233].

Table D.2: Dimensions of multicriteria optimal networks datasets.

ph F · nh ≤ N Number of networks
0.02 True 54503
0.02 False 13642
0.08 True 46522
0.08 False 14703
0.15 True 48910
0.15 False 1852
0.3 True 11082
0.3 False 611
0.6 True 3186
0.6 False 109
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Figure D.1: Two non-isomorphic networks with the same cost for F = 3. Networks
D1 (left) and D2 (right). Hunters {0, 3} are filled in yellow.

D.4 Domain of optimization model and evolutionary

algorithm implementation details

As an example of the situation of parts of a network that do not contribute to network cost,
consider the networks of size 6 in Figure D.1 with node hunters {0, 3}. Networks D1 and
D2 are clearly non-isomorphic. But if we work with F = 3, the probabilities of eating only
depend on the walks of length 2 starting from the hunters, which in D1 are {(0, 1), (1, 2)},
{(3, 2), (2, 4)}, while in D2 these are {(3, 2), (2, 1)}, and {(0, 1), (1, 4)}. These walks produce
the same probabilities of eating for every node under the map π : V1 → V2, π(0) = 3,
π(3) = 0, π(1) = 2, π(2) = 1, π(4) = 4 and π(5) = 5, and in this way, the two networks have
exactly the same value for the two criteria. Since the probabilities of eating depend on the
reachability from hunters by (F − 1)−walks, there will be a huge number of non-isomorphic
networks that have the same objective value, due to subgraphs that are not reachable via
(F − 1)−walks starting from hunter nodes, as we have seen in this example. We remedy this
by focusing on those regions of a network which indeed influence the probabilities of eating.
Specifically, we will work with the following notion of isomorphism.

Definition 6 (Isomorphism with hunters) Let D, G two digraphs of N nodes, and two
respective sets of hunters H(D) ⊆ V (D), and H(G) ⊆ V (G), of equal size, |H(G)| = |H(D)|.
Let F ∈ N with F ≥ 2. We say that D and G are F−isomorphic with hunters, if there is a
bijection π : V (D) → V (G), satisfying the following:

• The set of hunters is an invariant under the bijection, that is, π(H(D)) = H(G).

• For every u ∈ V (D) at distance at most (F − 2) to some h ∈ H(D), it holds that
(u, v) ∈ E(D) if and only if (π(u), π(v)) ∈ E(G).

It is not difficult to see that the isomorphism with hunters is an equivalence relation in
the set of directed graphs (ie, a binary reflexive, symmetric and transitive relation), and
hence the set of digraphs can be partitioned into equivalence classes of isomorphic networks
having the same costs, even though they may have distinct number of arcs, as seen in the
last example. Given these elements, we claim that the domain set for solution points of
our model corresponds to the set of representative digraphs of the isomorphism equivalence
classes. This definition aims to discard portions of the digraph that do not contribute to the
objective value.
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We next review some implementation decisions we have taken in order to execute the evo-
lutionary algorithms more efficiently, including the mutation procedure which leverages the
definition of the domain of the problem we just reviewed. The individuals in the evolutionary
algorithm, or in other words, the networks, are equipped with a data-structure that stores
one vector for each hunter, that keeps the updated distance of each network node from the
respective hunter. This data structure enables for implementing feasible mutations as those
random arc additions or deletions that produce networks belonging to the set of feasible solu-
tions, which reduces the exploration space in comparison to performing arbitrary random arc
changes. Distance updates are made by running BFS-like (breadth-first-search) algorithms
from the respective hunter when a relevant arc addition or deletion has been produced. The
reader interested in consulting the specifics of the evolutionary algorithms used may review
the code [233] written to perform the simulations.

Other important optimizations are those relative to the data-structure that stores the
optima candidates of the optimization, which we will refer to as the archive. At each gener-
ation, when a population is reviewed to update the archive, the population is filtered, and
only those individuals passing the filter are reviewed for possible addition to the archive. In
the case of single objective optimization, the filter is being a local optima for the respective
function. In the multi objective case, the offspring population is processed by NonDominat-
edSort, an efficient algorithm that performs a ranking according to Pareto domination [101],
thus only the set of individuals that most likely belong to the Pareto optimal set are tested
to be added to the archive. Now, it is straightforward to maintain in the archive the updated
set of non-dominated individuals processed. However, there is no direct way to determine
whether an individual belongs to the Pareto optimal set. Therefore, we have implemented
an adaptive heuristic to determine when to stop the generation process such that the archive
likely stores a high proportion of Pareto optimal networks. This heuristic is rooted on our
empirical observation on exhaustive optima search on networks of small size (N = 5), that
the number of dominated networks that are erased from the archive at each iteration, be-
comes negligible with respect to the size of the archive, when the latter converges to a high
proportion of Pareto optimal networks. Thus, our heuristic computes the ratio of the stan-
dard deviation of erased networks in the last and antepenultimate iteration windows of size
w = 10, and the current size of the archive. The evolution is stopped if these 2 ratios are
smaller than 0.005. On the other hand, single-objective minimization used 2000 generations.

D.5 Choice of tSNE hyperparameters and heuristics to

set OPTICS hyperparameters

The choice of parameters is critical to accomplish a good visualization with tSNE. Since we
work with relatively large datasets, we have used the following recommendations [167]: per-
plexity as 1% of the dataset size n -or the number of networks-, PCA initialization, high learn-
ing rate of n/EE, where EE is the early exaggeration, which is chosen usually as 4 or a small
number to speed the convergence to solution [28]. We found that this parameter instantiation
yielded robust results for distinct random seeds. We used the sci-kit learn implementation of
tSNE [224] together with the extension intelex (https://intel.github.io/scikit-learn-intelex/)
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to accelerate computations of this library.

Now, a cluster in OPTICS is the set of all density-reachable objects, or objects connected
by regions of similar density, from an arbitrary core object, which is a point with at least
MinPts points in a neighborhood of radius ε named as the reachability-distance. OPTICS
creates an ordering of the database, which enables producing cluster memberships in linear
time for any given ε ≥ 0. This parameter determines that objects with a reachability-distance
greater than ε, to their closest density-reachable core object, are considered to be noise. We
have chosen MinPts to be the 3% of the dataset size, a relatively large magnitude which
reduces the number of core points, and hence, the number of clusters. In order to choose ε,
we have implemented the following iterative heuristic, which looks for an epsilon producing
a minimun of intra-cluster dispersion in features, while keeping low: the size of noise, and its
heterogeneity. At each step, pick the greatest reachability distance in the dataset, compute ε
as the average of this distance and the greatest distance of last iteration, and obtain respective
clustering with this ε. Compute the average, over clustering classes, of the sum of intra-class
feature standard deviation, for 3 cases: all the labels (σ̄a), all the labels except noise (σ̄a′)
and only noise (σ̄n). Store the current ε if minimizes σ̄a and σ̄n < rst · σ̄a ′ , where rst stands
for ratio of standard deviation. Remove object with the greatest distance and go to next
iteration, up to removing a proportion mnp -for maximum noise permitted - of the original
dataset.

Now, the values of mnp, rst are usually around 0.02 and 1.5. These are the values used for
single optima datasets. However, in multicriteria optima datasets, due to greater diversity,
these values were checked and eventually reassigned by inspecting that the visual aspect of
OPTICS clusters of tSNE map, was not too raw, with a few overly large clusters. This is
usually accomplished with a value of σ̄a approximately between 25 and 35. The parameters
used for multicriteria optima are in the table below. All code implementing this heuristics
may be consulted in the repository provided for this purpose [233].

Table D.3: Parameters for OPTICS heuristics on multicriteria optima.

ph F · nh ≤ N mnp rst
0.02 True 0.02 4
0.02 False 0.02 3
0.08 True 0.02 3
0.08 False 0.03 4.5
0.15 True 0.03 3
0.15 False 0.07 4.5
0.3 True 0.02 4
0.3 False 0.11 3
0.6 True 0.03 7.5
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D.6 Analytical argument for the inclusion of additional

features in the construction of decision trees

The quantity F · nh, which intuitively represents the maximum of times some food is ever
shared in the network, approximately determines the mean of the probability of eating for
WEF optima, as we review next. If we start from (D.1) to write the mean probability of eating
for v non-hunters, and since pe(v , hi) ∈ (0 , 1 ),∀i , we can take a first order approximation
by neglecting products of pe(v , hi) for k > 1, leading to

¯pe(vnon-h) ∼
H∑
i=1

pe(v , hi) = nh · pe(v , h) ∼ nh · (F − 1 ) · ph
(N − nh)

, (D.2)

where the last approximation comes from the equidistribution, on WEF optima, of (F − 1)
events of food sharing with probability ph, over a total of (N − nh) non-hunters. Thus,
an expression for the mean probability of eating may be written by splitting the mean into
hunters and non-hunters, and replacing by (D.2)

¯pe(v) =
nh · ph

N
+

(N − nh)

N
· ¯pe(vnon-h) (D.3)

∼ ph

N
· (F · nh). (D.4)

Equation (D.3) justify our decision to add some model variables to the feature set employed
to train the classification trees.

D.7 Implementation details of decision trees

We implemented the model of decision trees we have used in Python, starting from an open-
source implementation of model-trees available on the following site.

https://github.com/cerlymarco/linear-tree

We measure syntactic stability of a tree following the approach by Dunne et al (2002) [88]
where stability is defined as the average of some similarity measure over the set of distinct
pairs of trees belonging to a set ofM tree instantiations. The DT similarity measure employed
is minus the tree-edit distance of the pair of trees, computed by the APTED algorithm [223]
and implemented by an open-source project that may be found in the site below.

https://pypi.org/project/apted/

In order to avoid a large number of similar trees with similar values of accuracy and stability,
we have grouped those trees that have the same structure and split variables into the same tree
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class, on which the average of stability and accuracy is computed. We have used M = 15 tree
instantiations to compute the accuracy and stability pair for each set of DT hyperparameters,
where each instantiation comes from a distinct seed of bootstrap sampling. The set of
HP = 1000 DT hyperparameters is obtained via a random uniform search [32] over the entire
set of hyperparameters, which is described in the following table. These ranges were chosen
by empirically checking whether they give rise to high accuracy values, usually superior to
0.7. Floating points for number of samples in this table are interpreted as proportions of the
dataset. All code implementing these classification trees may be consulted in the repository
provided for this purpose [233].

Table D.4: Ranges of decision tree hyperparameters.

Hyperparameter Lower limit Upper limit
minimum of samples to perform a split 3 ∗ 10−5 3 ∗ 10−5 + 10−3

minimum of samples per leaf 3 ∗ 10−5 3 ∗ 10−5 + 10−3

maximum depth 3 8
minimum impurity decrease 0 0.01

Finally, since we work with accuracy and stability sample averages that aim to approxi-
mate population parameters, we used the following procedure to determine statistical Pareto-
dominance. These sample averages follow approximately a normal distribution, which allows
for performing the usual t−tests for mean comparison. In order to determine if the pair
u⃗ = (au, su) Pareto-dominates v⃗ = (av, sv) (as a maximization), we compute a 2−sample
1−tail mean t−test for accuracy and stability. If the null hypothesis is rejected, that is, we
cannot reject that au < av or su < sv, we know that u⃗ does not Pareto-dominate v⃗. Otherwise,
compute a 2−sample 2−tail mean t−test for accuracy and stability. If the null is rejected,
that is, we cannot reject that au ̸= av or su ̸= sv, we conclude that u⃗ Pareto-dominates v⃗.

D.8 Decision trees for Pareto optimal networks

Networks on Figure 4.11 correspond to the most central networks on the following leaves.
Figure 4.11 (a) from leaf 22 on tree at Figure D.2. Figure 4.11 (b) from leaf 14 on tree at
Figure D.3. Figure 4.11 (c) from leaf 19 on tree at Figure D.4. The interested reader in exam-
ining these or other trees describing sets of optimal networks, may review the documentation
for running the code from the repository provided for this purpose [233].
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Figure D.2: An efficient tree (accuracy = 0.747) to discriminate the clustering
labels of PF optima on ph = 0 .02 . Statistics in the tree are computed on the training
set, while average accuracy is computed in the test set. See Annex D.3 for the sizes of the
datasets used, and Paragraph Description of clusters by classification trees (Section 4.2.5)
for the general procedure of tree construction. See the first paragraph from Section 4.3.1 for
an explanation of the variables displayed in tree nodes.

138



id_node:  3
loss :  0 .0674

class :  6
p ropor t ion :  0 .0511

id_node:  5
loss :  0 .0730

class :  7
p ropor t ion :  0 .0761

id_node:  7
loss :  0 .0013

c lass :  12
propor t ion :  0 .0227

id_node:  9
loss :  0 .2574

c lass :  10
propor t ion :  0 .0769

id_node:  10
loss :  0 .2416

c lass :  11
propor t ion :  0 .0613

id_node:  14
loss :  0 .0508

class :  3
p ropor t ion :  0 .0877

id_node:  15
loss :  0 .2379

class:  -1
p ropor t ion :  0 .0627

id_node:  18
loss :  0 .1876

class :  4
p ropor t ion :  0 .0711

id_node:  19
loss :  0 .2081

class :  5
p ropor t ion :  0 .0433

id_node:  21
loss :  0 .3193

class :  0
p ropor t ion :  0 .0741

id_node:  22
loss :  0 .3265

class :  9
p ropor t ion :  0 .1222

id_node:  24
loss :  0 .0000

class:  -1
p ropor t ion :  0 .0361

id_node:  25
loss :  0 .0764

class :  8
p ropor t ion :  0 .0900

id_node:  26
loss :  0 .0294

class :  2
p ropor t ion :  0 .1248

id_node:  0
n h  < =  4 . 0

loss :  0 .3972
s a m p l e s :  3 4 2 3 7

R

id_node:  1
n_conn_comp  <=  4 .5

loss :  0 .4183
propor t ion :  0 .8752

L

id_node:  2
n_conn_comp  <=  1 .5

loss :  0 .3111
propor t ion :  0 .2881

L

id_node:  11
n _ c o n n _ c o m p  < =  1 1 . 5

loss :  0 .3868
propor t ion :  0 .5871

R

L

id_node:  4
h_ in_deg  <=  2 .83

loss :  0 .2919
propor t ion :  0 .2371

R

L

id_node:  6
W E F _ c o s t  < =  0 . 0 4

loss :  0 .3195
propor t ion :  0 .1609

R

L

id_node:  8
n_conn_comp  <=  3 .5

loss :  0 .2504
propor t ion :  0 .1382

R

L R

id_node:  12
n_conn_comp  <=  5 .5

loss :  0 .3794
propor t ion :  0 .4610

L

id_node:  23
RV_cos t  <=  0 .24

loss :  0 .0545
propor t ion :  0 .1261

R

id_node:  13
h_ in_deg  <=  2 .42

loss :  0 .1288
propor t ion :  0 .1503

L

id_node:  16
n_conn_comp  <=  6 .5

loss :  0 .3646
propor t ion :  0 .3107

R

L R

id_node:  17
h_ in_deg  <=  2 .25

loss :  0 .1954
propor t ion :  0 .1143

L

id_node:  20
n_conn_comp  <=  7 .5

loss :  0 .3238
propor t ion :  0 .1963

R

L R L R

L R

Figure D.3: An efficient tree (accuracy = 0.734) to discriminate the clustering
labels of PF optima on ph = 0 .15 . Statistics in the tree are computed on the training
set, while average accuracy is computed in the test set. See Annex D.3 for the sizes of the
datasets used, and Paragraph Description of clusters by classification trees (Section 4.2.5)
for the general procedure of tree construction. See the first paragraph from Section 4.3.1 for
an explanation of the variables displayed in tree nodes.
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Figure D.4: An efficient tree (accuracy = 0.845) to discriminate the clustering
labels of PF optima on ph = 0 .08 . Statistics in the tree are computed on the training
set, while average accuracy is computed in the test set. See Annex D.3 for the sizes of the
datasets used, and Paragraph Description of clusters by classification trees (Section 4.2.5)
for the general procedure of tree construction. See the first paragraph from Section 4.3.1 for
an explanation of the variables displayed in tree nodes.
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Annex E

Are food-sharing networks scale-free?
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Abstract

This annex of the research shown in Chapter 4, displays a series of analysis made later to
the paper submission, with the goal of giving an initial answer to the following question. Are
the optimal networks from this food-sharing model able to recover the scale-free property?
It is an important question considering that this property, together with the community
structure, are the main themes of this thesis, and this model was designed with the goal of
studying only a hypothesis for community structure in a specific type of social networks. We
have used a simple method to fit the parameters of the discrete power-law distribution to the
in-degree and out-degree distributions of the optimal networks of the food-sharing model,
and despite all the limitations because of the network size, the analysis suggests that some
WEF and PF optimal networks, for larger sizes, may exhibit scale-free patterns. All the code
and datasets generated are available online, together with another set of analyses performed,
with negative results.

E.1 Introduction

The two main network patterns addressed in this thesis are, the power-law distribution, and
the community structure. Since the food-sharing model studied in Chapter 4 is a hypothetical
mechanism for the community structure, it is natural to ask whether this model also exhibits
a degree distribution with a power-law or similar distribution. This point finds support in the
fact that some empirical food-sharing networks have been found to present fatter in-degree
tails than randomly formed groups of the same size [11]. In this Annex we make an initial
exploration of this issue by analysing the optimal networks from our food-sharing model. The
results, in spite of being tentative, offer a reasonable perspective about which of the optimal
networks from our food-sharing model, may also qualify, for eventually larger network sizes,
as scale-free networks.

E.2 Methods

Each optimal network found by the evolutionary optimization of the food-sharing model is
analyzed with the following procedure. Either the in-degree and out-degree distribution of
each network, are fitted by the discrete power-law distribution. This distribution is defined
for a discrete set of integer values, and has an analytic expression for its density which
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is analog to the one reviewed in Section 2.2.3 for continuous power-law distributions. Its
normalizing constant is given by the reciprocal of the Hurwitz zeta function [67],

P(X = x) = x−α/ζ(α, xmin), ζ(α, xmin) =
∞∑
n=0

(n+ xmin)
−α.

For this distribution, there is not an explicit expression for the MLE estimator of the
exponent α, but instead this estimator can be found by numerical maximization of the
logarithm of the likelihood [67]. The parameter xmin may be estimated with the same method
reviewed in Section 2.3.3, and the p-value introduced in Section B.2 may be used as a measure
of goodness of the power-law fit. This p-value corresponds to the probability that any random
model gets a poorer fit, in terms of the distance to the empirical distribution, than that given
by the specific estimated x̂min and α̂(x̂min) values. This p-value is the main index we use in
this section to assess whether the estimated parameters offer an acceptable fit, corresponding
to a p-value nearer to 1, or a bad fit, corresponding to a p-value close to 0.

We used the R package poweRlaw [111] to obtain these parameter estimates, where both
xmin and its p-value are approximated by Monte Carlo bootstrap computations. We have
used the same heuristic constraint applied in Section B.1 of limiting the search space of xmin

to (1, q20), where q20 is the percentile 20 of the respective (in- or out-)degree distribution.

E.3 Limitations

The conclusions of this analysis should be taken as tentative, for a number of reasons. The
small size of the networks (N = 12) limits either the size of the samples, but also, since
the networks are simple, the possible values taken by the degree values, an aspect that is
important considering the properties of the power-law distribution. The fitting procedure we
use presents a consistency that has been theoretically proven only for some simple models
[87]. Other methods for estimating the power-law exponent have better consistency properties
[281], but under the asymptotic limit of the sample size. However, as the following section
shows, the results obtained are reasonable as a first approximation.

E.4 Results

Regarding WEF optimal networks, we use the same tree from Figure 4.3, to visualize which
type of networks are more likely to be well fitted by a power-law degree distribution. Table
E.1, show the only tree leaves where the variables p-value of out-degree (pout), exponent of
out-degree (αout), p-value of in-degree (pin), and exponent of in-degree (αin), get positive
values on the respective percentile statistics. From the leaf numbers, it is apparent that the
WEF networks whose degree distribution is better approximated by a power-law, are some
of those where (F ·nh) > N , that is, networks where there is enough supply of food for every
node, as such in Figs. E.1a, E.1b.
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Table E.1: General statistics of power-law fit on WEF optima. Leaves are from the
tree of Figure 4.3.

Feature Leaf Perc. 0.5 Perc. 25 Median Perc. 75 Perc. 99.5
pout 13 0.0 0.0 0.0 0.53 0.65
pout 15 0.0 0.0 0.0 0.53 0.65
αout 13 0.0 0.0 0.0 2.81 4.52
αout 15 0.0 0.0 0.0 2.36 3.69
pin 13 0.0 0.0 0.0 0.53 0.87
pin 15 0.0 0.0 0.0 0.48 0.56
αin 13 0.0 0.0 0.0 4.35 9.0
αin 15 0.0 0.0 0.0 2.41 3.43
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Figure E.1: Randomly sampled networks from the distinct tree leaves of single
optima. These networks are randomly sampled from the subset of networks of each leaf
where the p-value of the out-degree distribution is greater than 0.5. Hunters are filled in
yellow. Networks E.1a, E.1b are WEF optima from the tree from Figure 4.3. Network E.1c
is a RV optimum from tree from Figure 4.8.

These leaves are characterized by having the greatest values of standard deviation of out-
degree distribution among leaves, as can be seen in Table E.2, which may help explaining the
fact these were the only leaves with positive p-values for the power-law fit. This is because the
rather small values of the fitted out-degree exponents would be consistent with the theoretical
behavior of scale-free networks described in Section 2.2.5, where it is explained that one of
their key patterns is the divergence of the second moment when α ≤ 3. On the other hand,
the differences between leaf 13 and 15 are, besides the number of hunters (9 in leaf 13, and 5
to 7 in leaf 15), in the distribution of the standard deviation of in-degree (Table E.2), which
by the same argument given above, is consistent with the difference existent among these
leaves in the exponents of in-degree distribution. In the case of RV optima, by making the
same analysis and working with the tree of Figure 4.8, now leaf 4 is the only one with positive
p-values. This leaf, as explained in Section 4.3.2, includes networks with patterns similar to
WEF optima as such in Figure E.1c. The fact that several of these networks minimize in-
degree variability is consistent with the exponent of in-degree distribution obtained in Table
E.3.

Now, we review the PF optimal networks. In the tree shown in Figure D.2 for ph = 0 .02
and F ·nh ≤ N , the only leaves with positive p-values are the 11, 13, and 14. Representative

144



Table E.2: General statistics of standard deviation of degree distributions on WEF
optima. Leaves are from the tree of Figure 4.3. Features described are the standard deviation
of the out-degree distribution (σout), and of the in-degree distribution (σin). The symbol wh
means that the statistics are obtained on the whole dataset, not restricted to any leaf.

Feature Leaf Perc. 0.5 Perc. 25 Median Perc. 75 Perc. 99.5
σout 13 1.07 1.5 1.66 1.89 2.62
σout 15 1.07 1.48 1.65 1.82 2.29
σout wh 0.64 1.23 1.49 1.74 2.84
σin 13 0.62 0.96 1.04 1.14 1.44
σin 15 1.6 2.06 2.33 2.62 3.22
σin wh 0.86 1.64 1.93 2.5 3.22

Table E.3: General statistics of power-law fit on RV optima. Leaves are from the tree
of Figure 4.8.

Feature Leaf Perc. 0.5 Perc. 25 Median Perc. 75 Perc. 99.5
pout 4 0.0 0.0 0.0 0.0 0.63
αout 4 0.0 0.0 0.0 0.0 1.96
pin 4 0.0 0.0 0.0 0.0 0.97
αin 4 0.0 0.0 0.0 0.0 7.75

networks from these tree leaves are plotted in Figure E.2. The statistics of power-law fit
are presented in Table E.4. In the first network, the power-law behavior may be intuitively
explained by the differences in the out, and in-degree between the hunter at the center, and
the peripheral non-hunters. The magnitudes of exponents for leaf 14 may be related to the
fact that this leaf is the one minimizing the standard deviation of out-degree, see Table E.5.
The case of networks in leaf 13 is difficult to explain, in part because these are outliers of the
p-value distribution, see Table E.4. The networks in leaf 13 minimize the mean out-degree,
at least in the median and upper percentiles, see Table E.5, which seems contradictory with
the power-law exponents α < 2 in this leaf. Since additionally the p-values on this leaf are
not high, all these elements support the hypothesis that these p-values are likely a fitting
artifact.

Networks with positive p-values in the trees where ph = 0 .08 , 0 .15 (Figures D.4,D.3)
are the same kind of networks from leaves 11 and 14 in Figure E.2. Multiobjective networks
obtained for ph = 0 .6 do not obtain positive p-values.

E.5 Conclusions

Despite all the limitations of our datasets because of the network size, the simple method we
have used allows suggesting potential networks of our food-sharing model that, for larger sizes,
may exhibit the scale-free patterns typical of the power-law distribution for α ≤ 3. These
networks are mainly some WEF optima like those in Figure E.1b, and some PF optima like
those in Figure E.2a. We do not have intuition regarding the correlation between p-values
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Figure E.2: Randomly sampled networks from the distinct tree leaves of multiob-
jective optima. These networks are randomly sampled from the subset of networks of each
leaf where the p-value of the out-degree distribution is greater than 0.5. Hunters are filled in
yellow. Networks E.2a, E.2b and E.2c are, respectively, from tree nodes 11, 13 and 14 from
the tree in Figure D.2.

Table E.4: General statistics of power-law fit on PF optima. Leaves are from the tree
of Figure D.2.

Feature Leaf Perc. 0.5 Perc. 25 Median Perc. 75 Perc. 99.5 Perc. 100
pout 11 0.0 0.0 0.0 0.0 0.76 0.81
pout 13 0.0 0.0 0.0 0.0 0.0 0.51
pout 14 0.0 0.0 0.0 0.0 0.64 0.81
αout 11 0.0 0.0 0.0 0.0 2.62 2.62
αout 13 0.0 0.0 0.0 0.0 0.0 1.96
αout 14 0.0 0.0 0.0 0.0 3.82 8.52
pin 11 0.0 0.0 0.0 0.0 0.73 0.8
pin 13 0.0 0.0 0.0 0.0 0.0 0.51
pin 14 0.0 0.0 0.0 0.0 0.95 1.0
αin 11 0.0 0.0 0.0 0.0 2.47 2.62
αin 13 0.0 0.0 0.0 0.0 0.0 1.99
αin 14 0.0 0.0 0.0 0.0 10.13 11.28

Table E.5: General statistics of degree distributions on PF optima. Leaves are
from the tree of Figure D.2. Features described are the standard deviation of the out-
degree distribution (σout), and the mean out-degree ( ¯degout). The symbol wh means that
the statistics are obtained on the whole dataset, not restricted to any leaf.

Feature Leaf Perc. 0.5 Perc. 25 Median Perc. 75 Perc. 99.5 Perc. 100
σout 14 0.76 1.83 2.17 2.6 3.56 3.79
σout wh 0.76 2.06 2.47 2.81 3.64 4.15
¯degout 13 1.5 1.75 1.92 2.08 2.33 2.33
¯degout wh 0.25 1.67 2.08 2.92 6.5 6.75

of in-degrees and out-degrees. They may be related to finite-size effects, but testing this
hypothesis would require contrasting with larger networks.
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E.6 Other analyses

We have analysed these datasets with at least two other methods, with negative results.
The first is the use, instead of the degree distribution, of the degree-degree distance [298]
of the underlying undirected graph, which is an intrinsic measure defined for each network
arc, and that has been suggested to present a more prevalent and smooth power-law than
the degree distribution. The p-values of fitting a power-law over the distribution of this
measure gives almost no differences between tree leaves among the distinct type of optima,
which suggests that the fitting does not accomplish to associate any network pattern to the
power-law behavior, and may be considered as noise. The second method we have used is
that of computing the estimators of the tail exponent of regularly varying distributions [281],
which, rather than delivering a p-value, are distinct estimators of the exponent of the tail of
the power-law distribution based on order statistics, that present statistical consistency for
the limit of asymptotic sample sizes. We computed the three estimators used by Voitalov et
al (2019) [281] for either the in-degree and out-degree distributions, but we did not obtain
a consistent behavior among them, probably due to the small samples (network sizes) used.
The datasets and methods produced for these analyses are available, together with the main
analyses, in the link shared below.

E.7 Data availability

All the code, datasets, as well as the documentation for running the methods to get the
results presented in this section, are available in the following link.

https://github.com/PanchoTonho/Scale_free_food_sharing
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