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CONTRIBUCIONES AL ESTUDIO DEL NEURAL TANGENT KERNEL
REGIME DESDE UNA PERSPECTIVA DE CAMPO MEDIO

El Aprendizaje de Máquinas, y en particular las redes neuronales, han existido en la comu-
nidad científica desde la década de 1980. Sin embargo, han sido adoptadas como una práctica
común sólo en la última década, con la nueva disponibilidad de capacidad computacional. En
la última década, el aprendizaje de máquinas y especialmente el aprendizaje profundo han
visto muchos avances, alcanzando grandes hitos en tareas particularmente difíciles en visión
computacional, generación de audio, clasificación, salud, bioinformática y muchos otros cam-
pos.

Pese a que ha habido grandes logros en los últimos años por el uso de redes neuronales,
el por qué estas funcionan, y en particular, por qué generalizan bien pese a estar altamente
sobre parametrizadas, aún no es comprendido completamente (por ejemplo, Alexa-net de
Google’s tiene alrededor de 108 parámetros). En este contexto, motivado por las aplica-
ciones de la Teoría de Probabilidad en Mecánica Estadística, una línea de investigación ha
propuesto estudiar el objeto matemático que surge cuándo el ancho de la red tiende a infinito.

Dado que las redes neuronales clásicas son claramente inestables en el límite cuando la
cantidad de neuronas tiene a infinito, se necesitan otras parametrizaciones para poder estu-
diar estos objetos matemáticos. Dos parametrizaciones han ganado especial popularidad: La
parametrización del NTK,y al parametrización de Campo Medio.

Ambas parametrizaciones han sido ampliamente estudiadas, pero en el caso del NTK, no
se han encontrado límites en términos de Ecuaciones en Derivadas Parciales (EDPs), que si
es el caso en las parametrizaciones de Campo Medio. Además, un fenómeno llamado Lazy
Training, que consiste en la distribución de los parámetros siendo muy similar a la distribu-
ción inicial, fue reportado por Chizat and Bach en 2018 para la parametrización del NTK.

En este trabajo, estudiamos el límite de la parametrización del NTK para redes poco pro-
fundas (con una capa escondida) entrenadas con descenso de gradiente estocástico usando
medidas empíricas. Con esto, encontramos EDPs límite que no han sido parte de la literatura.

Por otra parte, también se estudia el límite de la red cuando la cantidad de neuronas
tiende a infinito, para lo que se ocupan herramientas de transporte óptimo. También se
estudia el límite cuando el tiempo de entrenamiento es largo en este setting.
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CONTRIBUTIONS TO THE STUDY OF THE NEURAL TANGENT
KERNEL REGIME FROM A MEAN FIELD PERSPECTIVE

Machine Learning and neural networks have been around in the scientific and engineering
disciplines since the 1980’s. Nevertheless, they were adopted as a common practice only in
the last decade as a consequence of the new availability of computing power. In the last
decade, machine learning and specially deep learning have seen lots of advances, achieving
great success in incredibly difficult tasks in computer vision, audio generation, classification,
healthcare, bio-informatics and a lot of other fields.

Even though there’s been great achievements by using neural networks, we still don’t fully
understand why they work, and particularly, why do they generalize well in spite of the fact
of being heavily over-parameterized (e.g Google’s Alexa-net had around 108 parameters). In
this context, motivated by applications of probability theory to statistical mechanics, a line
of research has studied what happens if we study the mathematical object that arises when
the wide of the networks go to infinity.

Since the classical neural network parametrization is unstable in the limit as the number of
neurons go to infinity, other parametrizations are needed. Two parametrizations have gained
special popularity in this line of research: The NTK parametrization and the Mean Field
parametrization.

Both the NTK and the Mean Field parametrization have been extensively studied, but in
the last one,limits for the quantity of neurons going to infinity have been found in the form of
Partial Differential Equations, which is not the case in the former. Also a phenomena called
Lazy Training, consisting on the distribution of parameters moving only slightly form the pa-
rameter’s initialization, has been found to occur in a recent paper by Chizat and Bach in 2018.

We study the NTK limit for shallow neural networks (one hidden layer) from an empirical
measure perspective when the training is done by Stochastic Gradient Descent or by Langevin
Dynamics. With this, we find novel PDE limits, which have different solutions depending
on the training. By doing this, we gain insights on what makes Lazy Training occur in the
NTK regime for shallow neural networks, and how Langevin Dynamics differs from SGD in
this parametrization. On the other hand, we also study the limit as the amount of neurons
go to infinity for the neural network process itself. We study this limit by using tools from
optimal transport theory. We also study the limit as the training time goes to infinity in this
setting.
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Chapter 1

Preliminaries

1.1. Introduction
In the last decade, the research areas of machine learning and artificial intelligence have
witnessed major advances and breakthroughs, being guided specially by major advances in
terms of hardware, but also in terms of different techniques of great complexity. Most of
these breakthroughs are related to what today is called Deep Learning, which is the sub-area
of machine learning concerned with what we call neural networks.

Neural networks were introduced in the year 1943 by Warren McCulloch and Walter Pitts,
in [1], but it’s only in the last decade that they gained special popularity, by achieving great
success in areas such as healthcare, computer vision, physics, bio-informatics and numerical
methods, among a lot of others, see for example [2].

Despite the major advances in the use and applications of deep learning techniques, the
nowadays available theory still can’t completely explain the success of neural networks. In
particular, the fact that neural networks can generalize on the test set very well
while being heavily over-parametrized remains a major challenge in the theoretical
study of neural networks, specially considering the fact that most of the time they achieve
zero training error (see, e.g [3]). As a matter of fact, the most widely used architectures
for computer vision and natural language processing have approximately 108 parameters, a
number that has only been growing in the last years.

In this context, different lines of research have emerged in the quest of explaining the
good generalization properties of neural networks. In this work, we study a very recent
one, which consist in studying the mathematical object that arises when the quantity of
neurons in a neural networks goes to infinity. Even though this line of research has studied
both shallow (one hidden layer) and deep neural networks, we’ll focus only on the former case.

In this chapter, we’ll study the basic ideas behind neural networks and how they are
trained. We’ll start by defining neural networks, explaining the classical parametrizations
and after that we’ll study gradient descent, and his stochastic equivalent, stochastic gradient
descent. We’ll also discuss connections with two algorithms commonly used to train neu-
ral networks. We’ll end by introducing Reproducing Kernel Hilbert Spaces and give some
intuitions about them.

1



1.2. Neural Networks (NNs)
This section is based on the Chapter of Bengio et al [2].

If we are going to study modern neural networks, we must begin by saying what are they.
In the context of machine learning, we’ll think of neural networks ad mathematical functions
mapping some input to some outputs. This functions are formed by composing many simpler
functions, which we call neurons. When we stack different neurons not connected between
them, but connected to other groups of this kind, we obtain a layer of neurons.

Being functions, one might think that there must be a reason behind the success of neu-
ral networks. In 1981, Kurt Hornik proved, in [4], that neural networks have very good
approximation capabilities. As a matter of fact, Hornik proved that neural networks can ap-
proximate arbitrarily good any continuous function. Yet, as almost always in mathematical
analysis, we still don’t know which is the right way to approximate any function, we can only
rely on the fact that this special way exists.

The way we connect different neurons and layers inside a neural network is called the NN’s
architecture. A lot innovations in this field have ocurred by introducing new architectures.
Since different architectures work very differently, both in their training and in the appli-
cations they are used for, we must introduce some background on these different architectures.

Over the years, many architectures have been widely used in the machine learning com-
munity, so the definition of a neural networks depends highly on which type of architecture
are we talking about. To tackle this problem, we’ll start by defining the most simple type
of neural network: The feedforward neural networks. After that, we’ll talk briefly about to
other architectures: Convolutional Neural Networks and Recurrent Neural Networks.

1.2.1. Feedforward Neural Networks
Feedforward neural networks, also called multilayer perceptrons, are machine learning mod-
els. Their goal is to approximate a function f ∗(x), in order to do a classification or regression
tasks, among others. They are called feedforward because information flows from the input
x, through intermediate computations, and finally to an output y.

They are called networks, because the final computation is a product of the composition
and weighting of other function, meaning at the end the neural networks f can usually be
written as an iterated composition:

f = f (k)(f (k−1)(. . . (f (1)(x)) . . . )).

The function f (i) is called the i-th layer of the neural network. The length of this chain is
called the depth of the model.

Each layer has a basic element, called a neuron, which is essentially the evaluation of
an activation function on a given input. In feedforward neural networks, this input is the
output of the last layer weighted by the neuron’s weights assigned to each of them. The
quantity of neurons in a given layer is called it’s width.
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Layers between the first and last layers are called hidden layers. Graphically, a neural
network with one hidden layer can be seen in Figure 1.1.

... ... ...
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I3
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H1
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O1
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Input
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Hidden
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Ouput
layer

Figure 1.1: Shallow neural networks. The input go through the first layer,
and after intermediate computations and output is given in the last layer.

Typically, a shallow neural network f , with m neurons and activation function σ has the
form:

f(x) =
m∑

i=1
ciσ(wi, x).

the vectors (ci)m
i=1 and , (wi)m

i=1 are called weights, and for each wi, ci ∈ R.

Remark The parametrization given above is not convergent when m goes to infinity, so it
would need a normalization term if we were trying to study this limit.

1.2.2. Other Architectures for Neural Networks
Sometimes, fully-connected NNs have simply too many connections. There are cases were
having less (or better) connections can have an important effect on the accuracy
of the neural network. This is the case of convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs). Although we’ll not be studying this type of architectures, we’ll
define them and explain their uses for completeness.

There are also architectures that we will not discuss, but are also widely used. This is the
case, for example, for transformers and other models that have been used only for the last
couple of years.

1.2.2.1. Convolutional NNs (CNNs)

Convolutional neural networks (CNNs) have less connections than classical feedforward neu-
ral networks. They are specially used for processing data with grid-like topologies, like audio,
images and video.

The operation that has special role in this kind of architectures is, as it’s name says, the
convolution operation. The convolution operation between two functions is essentially a type
of weighted average. In a more rigorous way, the convolution of two function x(t) and w(t),
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denoted by x ∗ w(t) is given by

x ∗ w(t) :=
∫

x(s)w(t − s)ds,

where t ∈ R. If x and w only take integer values as inputs, we can also define a discrete
convolution:

x ∗ w(t) :=
∞∑

i=−∞
x(i)w(t − i)ds.

We can also define convolution for multi dimensional input using kernels. For example,
given an image I and a kernel K, we can define:

S(i, j) = (I ∗ K) :=
∑
m

∑
n

I(m, n)K(i − m, j − n).

By using Kernels that only use part of the images, we can give different importance weights
to different parts of an image, which allows us to get more information for a neighborhood
of the picture, multiple times. This allows the neural networks to be better at learning in-
variances in data. This is the reason behind the huge success of CNNs in computer vision.

Now, if we a feedforward NN where we add layers that act as convolution kernels (and
hence, are not necessarily fully connected we the previous layer), what we obtain is called a
convolutional neural network.

1.2.2.2. Recurrent Neural Networks

Just like CNNs are better for data that has grid-like topologies, Recurrent Neural Networks
(RNNs) are made for sequentially ordered data, e.g time series. The main improvement of
RNNs over classical feedforward neural networks is that there are parameters shared by dif-
ferent parts of the model.

This last fact is essential for generalizing ad level t the learning to variable length inputs.
The idea is that the output h(t) of the neural network is allowed to depend on x(t), an input
observed just before the current level. This can be seen in mathematical language in the
following equation:

h(t) = f(h(t−1), x(t), θ).

The parameter θ can be shared by multiple computations in the model, and the current
computation of a hidden state h(t) is allowed to use the last one, h(t−1).

1.3. Training Neural Networks and Machine Learning
Models

The architecture of neural networks is definitely important for the problem one is trying to
solve. But once the model is set, it has to be trained with data in order to succeed at a given
task.

Learning in this context means optimizing a functional (in particular, minimizing a risk
function) using training data (or a training set) and being able to generalize this knowledge
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to previously unseen data.

In a mathematical way, neural networks f : Θ × X → Y are trained to minimize a
functional L(θ). This means, we try to solve the following optimization problem:

min
θ∈Θ

L(θ).

We recall that θ stand for all the parameters of the NN. Classical choices for L are the
quadratic loss, L(θ) = EX,Y ∼π[(Y − f(θ, X))2], were π is the distribution of our training set,
or categorical loss for classification tasks. Also, sometimes L has incorporated some type
of regularization so it minimizes the chances of overfitting. Overfitting refers to the case
when a machine learning model has been over-adjusted to it’s training set, which causes an
under-perfomance in it’s generalization capabilities.

The main obstacle in this optimization problem is that usually, L is not convex ad a func-
tion of the parameters. Therefore, conditions for attaining global minima can be very difficult
to grant, so a minimum must be found, usually, using algorithms and numerical methods.
Also, finding the global minima of this functional can be of little use if we can’t generalize
well to unseen data, which means that our model is not just trained for it’s training set,
but also for data that was not part of this process (which is what we aim for when training
machine learning models).

In this section we will explain the optimization algorithms that neural networks and most
of the machine learning models use for minimizing the functional L.

Most algorithms for training machine learning models are gradient-based algorithms. This
means the gradient at the current point has to be computed. In most machine learning
models, neural networks included, the gradient or an approximation of it can be computed
efficiently. The process in neural networks by which gradient are computed in practice in a
very efficient and elegant way is called automatic differentiation.

Next, We present the two main optimization algorithms for machine learning models, and
variations for one of them. Both algorithms require the user to initialize the parameters.
Different initializations can have very different results in the different optimiza-
tion algorithms. Normally, this initialization is performed by sampling the parameters out
of a distribution, and without necessarily requiring them to be independent at initialization.

1.3.1. Gradient Descent
The most simple and widely used algorithm for optimization is gradient descent. The idea
behind it is to repeatedly go in the direction of descent of the gradient of the function. This
means, for a function L(θ), if our parameter at the n-th iteration is denoted by θn, then the
next iteration is found by calculating:

θn+1 = θn − γn∇L(θn),

were γn > 0 is a parameter which is typically constant. The choice of the negative gradient
as a descent direction makes sense, since this is the direction of steepest descent of the object
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function f . For more details, a good reference is [5].

A big obstacle in training by gradient descent is the fact that since the optimization prob-
lem is usually non convex and high-dimensional, gradient descent is very ineffective and it
usually gets trapped in saddle points or local minima instead of reaching a global minima.

It’s also very important to note that if L is not differentiable, then it’s gradient can’t be
calculated and only approximations or sub-gradients can be used.

1.3.2. Stochastic Gradient Descent and Variations
In stochastic gradient descent (SGD), we don’t require the direction updated to be based
exactly on the gradient. Instead, we allow the update to be a random vector whose ex-
pected value is the gradient (See, e.g [6]).

More precisely, for an instance θn, we sample (Xn, Yn) ∼ π, with π the distribution of the
training set, and we update according to:

θn+1 = θn − γnL̂(Xn, Yn, θn),

where E[L̂(X, Y, θ)] = L(θ) for all θ ∈ Θ and (X, Y ) random with law π. The fact that
stochastic gradient descent incorporates noise to the process makes it easier for the algorithm
to get out of local minima. Even more, it’s common for SGD to achieve better generalization
out of the training set than GD. In this case γn must typically go to 0 slowly when n → ∞,
see [7].

Sometimes, using only one sample can be too noisy. To achieve a more stable convergence
to a global or local minima, practitioners use what is called mini-batches. A mini-batch of
size k is a sample

{
(Xnk, Ynk), (Xnk+1, Ynk+1)..., (X(n+1)k−1, Y(n+1)k−1)

}
. It is incorporated in

the algorithm by redefining the updates as:

θn+1 = θk − γk
1
k

(n+1)k−1∑
l=nk

L̂(Xi, Yi, θn).

Note that in this case, we still have for all θ:

E(X,Y )

1
k

(n+1)k−1∑
l=nk

L̂(Xi, Yi, θ)
 = L(θ).

Another way to modify these algorithm is by adding noise. This is called Stochastic
Gradient Langevin Dynamics. The updates are given by:

θn+1 = θn − γnL̂(X, Y, θn) + ληn,

where, for example, ηn ∼ N (⃗0, Σ) are i.i.d.

6



1.4. Reproducing Kernel Hilbert Spaces
One last thing we should study before our main problem, are Reproducing Kernel Hilbert
Spaces (RKHS). The reader should notice the fact that Kernels are well studied mathematical
objects, and Kernel Regression in particular is very well understood. This is why searching
for connections between Kernels and neural networks is a good starting point for understand-
ing better neural networks. We’ll follow the approach presented in [8]. We refer the reader
to the book [9] for the proof of the results presented in this section.

We’ll begin by defining what is a kernel, to later define what are the so-called Reproducing
Kernel Hilbert Spaces or RKHS.

The definition below is the most general definition of a Kernel one could use.

Definition 1.1 (Kernel) A function K : X × X → R is called a kernel over X .

Under certain conditions, one can grant that K is such that given x, x′ ∈ X

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩,

for a function ϕ : X → H, with (H, ⟨·, ·⟩ a Hilbert Space called the features space. In this
regard, the next theorem is very important.

Theorem 1.1 (Mercer’s Condition) Let X ⊆ RN be a compact set and K : X × X → R a
continuous symmetric function such that:∫

X ×X
K(x, x′)dxdx′ < ∞.

Then K admits a uniformly convergent expansion in the following form:

K(x, x′) =
∑
n≥0

an⟨ϕn(x), ϕn(x′)⟩,

where (ϕn)n are a base of H, and with an > 0 if and only f the kernel is positive semi-definite
.

But, what does positive semi-definite means in this context ?

Definition 1.2 (Positive Semi-definite Kernel) A K is called positive semi-definite (PSD)
if it’s Gramm matrix, that is, the matrix (K(xi, xj))D

i,j=1 is always positive semi-definite.

Lemma 1.1 (Cauchy Schwarz for Kernels) Let K be a PSD kernel. Then:

∀x, x′ ∈ X , K(x, x′)2 ≤ K(x, x)K(x′x′).

Theorem 1.2 (Reproducing Kernel Hilbert Space (RKHS)) Let K : X ×X be a PSD kernel.
Then there exists a Hilbert Space H and a function ϕ : X → H such that:

∀x, x′ ∈ X , K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.
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Even more, H satisfies the reproducibility property, mainly:

∀h ∈ H, ∀x ∈ X , h(x) = ⟨h, K(x, ·)⟩.

H is called the Reproducing Kernel Hilbert Space associated to K.

Remark The space L2 is not a function space and therefore it is not a RKHS.
It is possible to give an alternative (and equivalent) definition of RKHS:

Definition 1.3 A RKHS H is a Hilbert space of real functions into X such that for all x ∈ X
the operator

Ex : H → R

f → f(x),

is bounded.

1.4.1. Building a RKHS
Let K : X × X → R be a kernel, and define for all x ∈ X

ϕ(x) = K(x, ·).

Consider the set B := {ϕ(x) : x ∈ X }, and consider:

HK := span(B),

where the span of a set is the set of all linear combinations of the elements of the set. Consider
the following operation on HK : Given f = ∑

i aiK(xi, ·) and g = ∑
j bjK(xj, ·), we define

⟨f, g⟩Hk
=
∑
i,j

aibjK(xi, xj).

Proposition 1.1 The operation ⟨·, ·⟩Hk
defines an inner product in HK. With this inner

product, HK is a Reproducing Kernel Hilbert Space.

1.4.2. Interpolation and Adjustment
Let’s suppose we have n samples of a function f ∗ : X → R. Two questions arise naturally:

1. For a fixed space F , does there exist a function f ∈ F such that f(xi) = yi, ∀i ∈ [n] ?

2. If so, of all the functions in F such that f(xi) = yi for all i, which one is the best?

Both questions can be answered by the following approach: Given and RKHS, of all functions
that adjust to data, we choose the one with the least norm in the RKHS. This can be
formulated mathematically by:

(P) min
f∈H

∥f∥H

s.a f(xi) = yi ∀i ∈ [n]

This method is known ad minimum - norm interpolation.
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Lemma 1.2 Let K ∈ Rn×n be a matrix with entrances

Kij = K(xi, xj)
n

.

Then (P) is feasible if and only if y ∈ rang(K). In this case, the solution is given by:

f̂(·) = 1√
n

n∑
i=1

α̂iK(·, xi),

where Kα̂ = y√
n

.

In a statistical framework, is unrealistic to assume that we can interpolate our data in
an exact way, specially considering our data might be subject to noise. For this reason, it’s
more realistic to assume a noisy observation process. In this case, we have:

yi = f(xi) + wi,

for i = 1, ..n. The vector (wi)n
i=1 models the noise in our observations. In this context, a

more realistic model might search to solve:

min
f∈H

∥f∥H, s.t
1

2n

n∑
i=1

(yi − f(xi))2 ≤ δ2,

where δ is a tolerance parameter. Alternatively, we might minimize the following problem:

min
f∈H

1
2n

n∑
i=1

(yi − f(xi))2 + ∥f∥H, s.t∥f∥H ≤ R,

for an appropriately chosen radius R > 0. Since both minimization problems are convex,
their sum is also convex. Hence, it can be obtained (by a Lagrangian duality argument) that
this is equivalent to solve the following problem:

min
f∈H

1
2n

n∑
i=1

(yi − f(xi))2 + λn∥f∥2
H,

where the regularization parameter λn ≥ 0 is a function of the tolerance δ and the radius R.

Lemma 1.3 Let K ∈ Rn×n be a matrix with entrances

Kij = K(xi, xj)
n

.

then (P) is feasible if and only if y ∈ rang(K). In this case, ∀ λn > 0 the solution is given
by

f̂(·) = 1√
n

n∑
i=1

α̂iK(·, xi),

where (K + λnIn)α̂ = y√
n

.
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1.5. Functional Gradient Descent
Let K be a PSD symmetric kernel. Consider the evaluation functional Ex : HK → R, given
by Ex[f ] = f(x). Then by the reproducing property:

Ex[f ] = ⟨f, K(x, ·)⟩.

This way, the differential of Ex[f ] is given by:

∇Ex[f ] = K(x, ·).

Now, consider the loss function L : HK → R

L[f ] = 1
2EX,Y [(Y − f(X))2],

where (X, Y ) are random vectors in X × R. Then, we’d like to ask who’s the differential of
L at a function f . We obtain, by the chain rule:

∇L[f ] = EX,Y [(Y − f(X))∇EX [f ]],

and by replacing the differential of ∇EX [f ]:

∇L[f ] = EX,Y [(Y − f(X))K(X, ·)].

Definition 1.4 Let f(t) : R → HK be a function such that for all t ≥ 0

d

dt
f = EX,Y [(Y − ft(X))K(X, ·)].

We say that ft(·) satisfies functional gradient descent, or Kernel Gradient Descent.
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Chapter 2

Different Parametrizations of Shallow
Neural Networks

Neural Networks have achieved great success in a number of tasks that a decade ago seemed
impossible or very difficult. Different challenges in computer vision, finance, simulation,
among others, have been solved by the use of deep neural networks. Also, the practical use
of neural networks has witnessed lots of improvements and innovations, most of them guided
by empirical tests in data. Despite this last fact, theory has failed to catch up to this pace.
It’s for this reason that in the last years different theories have tried to explain why and how
neural networks work.

One big question in the Theory of Deep Learning has been: Why do Neural Networks
have good generalization properties, even though they are heavily over-parametrized? Since
the very first models in Statistical Inference, it’s been widely known that over-parametrized
models only cause overfitting to training data, and it has bad generalization properties. Yet
deep neural networks, having millions or hundreds of millions of parameters, seem to be an
exception to this statement.

A natural approach to study neural networks would be to study the mathematical object
that arises when the number of neurons diverges to infinity. Even though this might sound
weird in a first thought, the truth is this idea has been central in the field of Statistical
Mechanics for a number of decades. By taking the number of neurons to infinity, the results
can be studied as a Law of Large Numbers for a particle system, with the neurons being it’s
particles and the training being it’s interactions.

The main goal of studying this object is to find a structure that can be identified as a reg-
ularization for the parameters of the neural network, without it being explicit in the training
scheme. This is called implicit over-parametrization.

Two main regimes (and parametrizations) have been studied by the community, achieving
different results. In Section 2 we’ll study the first one: the Mean Field Regime. In this
regime, the variance of the initialization of the parameters are smaller, and the dynamics can
be written as a gradient flow. Next, we’ll study the second one: The Neural Tangent Kernel
(NTK) Regime. The relation between both will be studied in Section 3. We’ll end by study-
ing what is now called Lazy Training, and important property that arises in the NTK regime.
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2.1. Mean Field Regime
In this section, we’ll discuss the results exposed in [10], [11], [12] and [13]. This works consider
the mean-field scaling of shallow neural networks, and study convergence and approxima-
tion results by studying the mean field limit. Mean Field limits consist in studying a high
dimensional system by approximating it by infinite-dimensional systems. They have lots of
applications, such as in physics or economics (see for example, [14] or [15]. In this context, a
major concept is the one of Propagation of Chaos, which refers to the property of asymptotic
Independence of the different variables when the dimension of the system grows. For the
reader interested in Propagation of Chaos, we refer them to [16]. In the context of NNs,
there also exists studies about propagation of chaos, such as [17] which contributed to the
theory by proving propagation of chaos in the mean field regime, and by studying different
scaling for the SGD step-sizes.

Let fm
θ be a shallow neural network, given by:

fm
θ (x) = 1

m

m∑
i=1

ciσ(wix),

where for each i ∈ {1, ..., N}, ci ∈ R y x ∈ X and wi ∈ Rp. The network has parameters
θ = (c1, ..., cm, w1, ..., wm) ∈ R(1+p)N , which are estimated from the data by minimizing a
certain loss function.

The function σ : R → R is non-linear, such as the sigmoid function or the ReLu func-
tion, ReLu(x) = max {0, x}. The quantity σ(wix) is called the i-th hidden unit. and
(σ(w1x), ..., σ(wmx)) is called the network’s hidden layer.

The loss function is given by:

Lm(θ) = 1
2EX,Y [(Y − gm

θ (X))2],

where X, Y ∼ π(dx, dy). The parameters are trained by stochastic gradient descent on each
step, that is

W i
n+1 = W i

n − ∇l(X, Y, Wn),

where EX,Y [∇l(X, Y, Wn)] = ∇L(Wn). At the n-th iteration, the empirical measure of the
parameters is denoted by

µN
k := 1

N

N∑
i=1

δ(wk
i ,ck

i ).

Even though each group in this area has worked with different hypothesis on the data, on
the activation function and on the parameter’s initial distribution, all of them are based on
the fact that we can define:

f(µ, x) =
∫

cσ(w, x)µ(dc, dw),

12



and this way fm
θ (x) = f(µm, x). Then, by noting that:

LN(θ) = L# + 2
m

m∑
i=1

V (θi) + 1
m2

m∑
i,j=1

U(θi, θj),

where:

• V (θ) = −E {yciσ(wix)},

• U(θ1, θ2) = E {c1σ(w1x)c2σ(w2x)},

• L# = E {y2}, is the risk of fm ≡ 0;

we can generalize L to general probability measures, because:

LN(θk) = R# +
∫

V (θ)µN
k (dθ) +

∫
U(θ1, θ2)µN

k (dθ1)µN
k (dθ1).

This way:
L(µ) = R# +

∫
V (θ)µ(dθ) +

∫
U(θ1, θ2)µ(dθ1)µ(dθ1),

for µ a probability measure over the parameters. The different works study the limiting dy-
namic of µ in continuous time, for example in [11] they obtain the convergence in distribution
of µm to the solution of the PDE

⟨f, ν̄t⟩ = ⟨f, ν̄0⟩ +
∫ t

0

(∫
X×Y

α(y − ⟨cσ(wx), ν̄s⟩)⟨∇(cσ(wx))∇f, ν̄s⟩π(dx, dy)
)

ds.

Note that by assuming that µ has a density, we could derive the classical form of a non-linear
partial differential equation called ’McKean-Vlasov’ (see [18]), which is what [10], [12] and
[13] do.

2.2. Neural Tangent Kernel Regime
In 2018, Arhur Jacot, Franck Gabriel y Clement Hongler published [19], where they studied
a different parametrization, who’s limit could be studied using Kernels, and in particular
the Neural Tangent Kernel (NTK). The parametrization studied in [19], called the NTK
parametrization, for shallow neural networks was the following:

fm(W, x) 1√
m

m∑
k=1

ck∇σ(W k, x).

The training is done by minimizing, through standard gradient descent, the loss:

L(w) = 1
2

n∑
i=1

(yi − f(w, xi))2.

If we consider the gradient descent algorithm to have very small stepsizes, then it’s dy-
namics can be written as:

dw(t)
dt

= −∇l(w).
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But, what about the dynamics of the predictions of the neural network? The work presented
in [19] gives the following Lemma:

Lemma 2.1 Let u(t) = (f(w(t), xi))n
i=1 be the network’s outputs at time t for the inputs in

the training set. Then u(t) follows the dynamics:

du(t)
dt

= H(t) · (u(t) − y),

where H(t) is a semi definite positive matrix in Rn×n such that

Hij =
〈

∂f(w(t), xi)
∂w

,
∂f(w(t), xj)

∂w

〉
.

Proof. In the first place, we know that the parameters evolve by following the dynamic:

dw(t)
dt

= −∇l(w) = −
n∑

i=1
(f(w(t), xi) − yi)

∂f(w(t), xi)
∂w

.

Then:

df(w(t), xi)
dt

=
〈

∂f(w(t), xi)
∂w

,
dw(t
dt

〉
= −

n∑
j=1

(f(w(t), xj) − yj)
〈

∂f(w(t), xi)
∂w

,
∂f(w(t), xj)

∂w

〉

Note that the right-hand side corresponds to the product of (u(t) − y) and the i-th roe of
H(t). Then, we can write the dynamic u(t) as:

du(t)
dt

= H(t)(u(t) − y).

■

The main idea behind this theory is that by allowing the quantity of neurons m go to
infinity H will become constant during training, i.e equal to H(0). Even more, H(0) will
converge in probability to H∗, which will be the NTK k(·, ·) evaluated in the training set.
Note that in this case, formally:

du(t)
dt

= H∗(u(t) − y).

This dynamic corresponds to the dynamics that appear when training an RKHS regression
using Kernel Gradient Descent. Note that:

• In this study, contrasting to the one for the mean field regime, there is no characterization
in function of the empirical measure. The paper [11] is a technical note that studies this
by considering centered initializations.

• [19] and [11] do not study what happens for different scaling of step sizes in SGD training,
and in particular [19] does not study SGD training.

• [20] studies the NTK regime for SGD training, but they don’t do it directly: They use
the results for the mean field regime and re-scale the dynamics appropriately.
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It’s also important to recall that the NTK regime is also valid for other types or NNs
architectures, such as CNNs. For this, we refer the reader to [21]. As a matter of fact,
research points that provably all types of architectures can enter de NTK regime.

2.2.1. Lazy Training in Neural Networks
In [22], it was proved that models like the NTK regime of NN have a very particular prop-
erty: When highly overparametrized, as in the case of neural networks, the parameters of
this models barely move away from their initialization. Formally, let F : Rp → R be an
objective function, and let w0 be the initial parameters of the model.

Let h : Rp → F be our model. We define the linearized model:

h̄(w) = h(w0) + Df(w0)(w − w0).

Chizat et al. proved in [22] that as the quantity of parameters grows and the model becomes
heavily over-parametrized, then the parameters of the model converge to the parameters
of the linearized model. They also make a detailed study of when do models enter to the
different regimes. Even tough the study is for models and parameters itself, the study of how
does this can be interpreted in terms of the evolution of empirical measures is missing in the
literature.
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Chapter 3

Main Results

There’s been two big approaches on a mathematical theory of Deep Learning in the recent
years. On of them , the Neural Tangent Kernel (see [19]), describes the limiting dynamics
of a neural network initialized with Xavier’s initialization. The other approach, the one of
mean field analysis of neural networks (see [10]), have described the limit of neural networks
when they are initialized with a much smaller variance. In this work, we study how do both
techniques are related.

With this objective in mind, we study the Neural Tangent Kernel setting by using tools
from mean field analysis: empirical measures and limiting theorems. We use the technique
described in [17] to study everything in a continuous setting. We find a limiting PDE for the
dynamics of the limiting empirical measure of the parameters, and we also study the limiting
object, which is a function in L2(X ), where X is the input space.

We’ll also study if there’s any way by which we can see how Lazy Training (see [22]) works
in terms of the empirical measure of the parameters.

3.1. The limiting dynamics of the empirical measure
We consider a shallow neural network with m neurons in it’s hidden layer, inputs in X and
outputs in Y ⊆ R, and activation function σ ∈ C2

b as a function fm : X → Y given by:

fm(x) = 1√
m

m∑
k=1

ckσ(W k,m, X),

where x ∈ X , ck ∈ R and W k,m ∈ Rp, with p ∈ N. At first, we make the following
assumptions:

• The activation function σ(w, x) is bounded, with bounded-in-norm gradient ∇σ(w, x)
and bounded-in-norm hessian Hwσ(w, x).

• The coefficients ck are initialized with it’s first four moments being bounded and they
are not trained after initialization. We make more comments on this in the follow-
ing.
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• Let m ∈ N. The parameters W k,m, for k ∈ {1, . . . , m}, are initialized with a distribution
with density and with it’s first eight moments being finite.

• All parameters are initialized independently.

Remark If the parameters are initialized with Gaussian distributions, all the hypothesis
above are satisfied. Also, note the assumptions above are more general than what we defined
as Xavier initialization in section 3, i.e the distributions are not required to be centered
gaussians at first. Nevertheless, we will study this specific setting.

We consider that the hidden layer is trained by stochastic gradient descent (SGD) with
the loss:

EX,Y [(Y − fm(X))].

On the other hand, we consider the last layer, ck to be left untrained. This setting is de-
scribed in [10] and is named fixed-coefficients setting.

We’d like to use all the tools of stochastic calculus and limit theorems for continuous
processes. For this, we apply the approach described in [17]. In continuous time, we consider
the process (W k,m

s )s∈[0,T ] of parameters to be guided by the dynamics in the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s , (3.1)

where, for λ, τ ≥ 0,

hk,m(W m
n ) := −λW k,m

n + EX,Y

[
(Y − fm(W m

n , X)) ck√
m

∇wσ(W k,m
n , X)

]
,

ξk,m(w) := (Y − fm(Wn, X)) ck√
m

∇wσ(W k,m
n , X) − hk,m(w),

and
Σk,m(w) = EX,Y [ξk,m(w)ξT

k,m(w)] ∈ Rp×p.

The heuristic by which we obtain the dynamics in equation (4.18) are described in the
following chapter, and it’s details are fully described in [23]. We also study the different
regimes that arise when we vary the parameter α. Our first result is the following

Theorem 3.1 Let m ∈ N, (ck)m
k=1 and σ with the assumptions considered above. Then,

equation (4.18)

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s ,

has strong solutions, subject to the fixed coefficients (ck)m
k=1.

In order to prove the convergence of the empirical measure as the number of neurons go
to infinity, we use limit theorems. In particular, we prove the tightness of the empirical
measures process in C([0, T ],P(R × Rp)). More specifically, we prove the following

Proposition 3.1 Let σ : Rp × X → R be a bounded, Lipschitz, with bounded-in-norm
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hessian activation function for a one hidden layer neural network fm(c, w), whose parameters
are initialized such that W k,m are i.i.d and have their first four moments finite, and ck are
initialized i.i.d with it’s first four moments bounded. Let (µm

t )t be the empirical measure of
the process the process (ck, W m

t )t when trained in continuous time by the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s .

Then the laws of the process given by the empirical measures of the process (W m
t )t, with

m ∈ N, are tight.
This proposition is a cornerstone in order to prove convergence to a limit in some sense. In

particular, by using this results and techniques described in Snitzman’s book [16], we prove
our main result, which is stated in the following Theorem.

Theorem 3.2 Let α > 0, λ ∈ [0, 1) , γ ≥ 0, and µm
t denote the empirical measure process

that represents the weights of a shallow neural network, who’s parameters are trained in
continuous time by the dynamics:

dW k,m
t = hk,m(W m

t )dt + γ
1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s ,

where W k,m
t denotes one neuron in the hidden layer. Let µ0 denote the initialization distri-

bution for the pair (C, W ). Then, in the limit as m goes to infinity, the empirical measure
converges in Law to the unique solution of the non-linear Focker Planck Equation:

• If α = 0:

⟨φ, µt − µ0⟩ = −λ
∫ t

0
∇φ(W̃ )T W̃µs(dc̃, dW̃ )ds +

∫ t

0
EX,Y [(⟨cσ, µt⟩) ⟨c∇σ(·, X)∇φ, µs⟩] ds

+ γ
∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(·)

)
, µs⟩ds +

√
2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

(3.2)

• If α > 0:

⟨φ, µt−µ0⟩ = −λ
∫ t

0
∇φ(W̃ )T W̃µs(dc̃, dW̃ )ds+

√
2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

(3.3)

This results is similar to the ones described in Sirignano and Spiliopoulos’ technical note
[11], yet there’s a couple of differences:

• While our work is mainly based in continuous time arguments, their work is based
mainly in a discrete time setting.

• The initialization distribution of the parameters is more general in our setting, yet is
also allows the study made in Sirignano and Spiliopoulos’ work. In particular, the work
in [11] only studies centered distributions, which described Xavier initialization.

The results described in Sirignano and Spiliopoulos’ technical note [11] can be seen in the
following:
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Corolary 3.1 If λ = τ = 0 and E[c] = 0, then equation 4.5 becomes:

⟨φ, µt⟩ = ⟨φ, µ0⟩. (3.4)

This result has a very interesting interpretation: When the number of neurons go to infin-
ity, the parameters will tend to stay close to it’s initial distribution. This is another way to
prove the results found in [22], which state that the Neural Tangent Kernel Regime exhibit
Lazy Training. Lazy training is defined as the phenomena where parameters tend to stay
close ti it’s initialization.

With this result, we can also define the Neural Tangent Kernel in our setting: If we
consider φ = σ, then we get that given x1, x2 ∈ X , the following convergence is satisfied in
law:

⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µm
s ⟩ m→∞−→ ⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µ0⟩.

Considering this, we define the continuous version of the Neural Tangent Kernel, first
defined in [19], associated to our neural network as the kernel K : X × X → R, such that

K(x1, x2) = ⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µ0⟩. (3.5)

3.2. The Limit of the Neural Network
In the last section, we stated our results on how does the empirical measure process behaves
when the number of neurons go to infinity. Nevertheless, this does not end the study in
our setting: Since the neural network’s corresponding scaling does not integrate directly the
empirical measure, we have to study it’s dynamic separately, but dependent on the empirical
measure process.

We only study the case of centered initializations and α > 1
2 , since the more general set-

ting we studied for the empirical measure becomes quite harder. Nevertheless, we do make
conjectures about the different results that are possible in the different cases.

To study the limit of the neural network, we define a white noise in the space L2(R) with
covariance µ0. The details of this construction can be seen in chapter 5. By using this white
noise and optimal transport arguments from [24] and [25], we prove a convergence result for

fm(x) = 1√
m

m∑
k=1

ckσ(W k,m, X),

which is stated in the following

Theorem 3.3 Let η0 be a white noise with covariance µ0, and let ft be a solution of the
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equation in L2(X ):

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds., (3.6)

with f0 = ⟨σ, η0⟩. Then, for every t ≥ 0:

lim
m→∞

∥fm
t − ft∥ = 0.

If we state the results in terms of the value of α, we know that when α = 1
2 the limiting

dynamic of f will be:

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds,

and when α > 1
2 :

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds,

where the initial condition for both equations is f0 = ⟨σ, η0⟩.

We the result in Theorem 5.1 states the convergence of the neural network process. Know-
ing this, it becomes natural to ask ourselves if there’s something we can say about the limit
of ft when t become large. The answer to this questions require the introduction of a new
Loss Function, which is defined in terms of the continuous NTK, which we recall is given by

K(x1, x2) = ⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µ0⟩.

We consider the case when α > 1
2 . With this, we can re-write ft’s dynamics in the following

way:
ft(x) = f0(x) +

∫ t

0
EX,Y [(Y − fs(X))K(X, ·)]ds.

By considering the RKHS definition we gave in the background section, we obtain ft

follows Kernel Gradient Descent on the Reproducing Kernel Hilbert Space, with the Kernel
equal to the Neural Tangent Kernel. That is, ft follows gradient descent on the RKHS
associated to the NTK with respect to the loss:

LK : HK → R

LK [f ] = ∥Y − f(X))∥2
HK

.

We prove the following theorem, which was already proved in [11] and [19]. Nevertheless, we
state the theorem and prove it in a different way.
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Theorem 3.4 Let L be the loss we defined above, and consider ft such that

ft(x) = f0(x) +
∫ t

0
EX,Y [(Y − fs(X))K(X, ·)]ds.

Then, if K is a positive definite kernel,

lim
t→∞

L[ft] = L∗.

It’s important for the reader to notice that this theorem does not guarantee convergence
to 0, unless the minimum of LK is actually 0. Another interpretation of the Theorem above is
the following: In the limit, the neural network will always be overfitted to the data in which
it was trained, which can be seen from the fact that, in the limit, it will always minimize a
loss that is directly constructed by the training data.
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Chapter 4

The NTK Regime through the lens of
mean field models

Let’s consider a a shallow neural network fm (i.e with one hidden layer) with m neurons
trained by stochastic gradient descent. We parametrize the network with weights wi ∈ (Rp)m,
ci ∈ R, i ∈ {1, . . . m}. Let X denote our input space, with X ⊆ Rd and Y our output space,
which we’ll consider one-dimensional, i.e Y ⊆ R. We can write:

fm(w, x) = 1√
m

m∑
i=1

ciσ(wi, x).

The function σ(·, ·) : Rp × X → R will be an activation function, which we’ll consider
bounded, Lipschitz and with bounded second derivative. We’ll also assume that our input
and outputs X, Y have finite second moment.

Let ν be the distribution of our data (X, Y ). Then, our neural network fm will be trained
by minimizing the population risk,

L(w) = 1
2E(X,Y )∼ν

[
(Y − fm(c, w, X))2

]
.

and performing stochastic gradient descent. We consider the parameters to be initialized as
Wi ∼ pw and ci ∼ pc, where Wi are i.i.d. Just for simplicity, we will not train the last layer
of the network. This can be seen in the fact that we do not show the dependence of L on c,
since c is considered to be fixed. This model is known as ’fixed coefficients’ in [10].

Starting from W0, we train our network by stochastic gradient descent, which can be
written in the following way:

Wn+1 = (1 − λγ

mα
)Wn − γ

2mα
∇wlm(Wn, Xn, Yn) +

√
2τγ

mα
Zn, (4.1)

where we defined lm(w, x, y) = (y − fm(c, w, x))2, λ, τ ≥ 0 and Zn is a multivariate standard
Gaussian. As the reader may note, this setting is the one of Stochastic Gradient Langevin
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dynamics, which we introduced in Chapter 1. Note that:

∂wk
l(w, x, y) = −2 ck√

m
(y − fm(c, w, x))∇σ(W k,m, x), (4.2)

where W k,m are the p weights of the k − th neuron. By re-writing (4.1) focusing on each
neuron, and replacing (4.2) into it, we get:

W k,m
n+1 = (1 − λγ

mα
)W k,m

n + γck

mα+ 1
2
(Y − fm(Wn, X))∇wσ(W k,m

n , X) +
√

2τγ

mα
Zn. (4.3)

With the aim of using the tools that stochastic calculus can offer to us, we’ll study a dynamic
that approximates (4.3). This approach was first in [17] and then applied in [23]. Following
[17], let γ̃(m) = γ

mα and ˜W k,m
t denote the interpolation of W k,m

n , i.e for t in [nγ̃, (n + 1)γ̃],
we have:

˜
W k,m

t = (t − nγ̃)W k,m
n+1 + ((n + 1)γ̃ − t)W k,m

n

γ̃
.

the heuristics for finding an approximation for our discrete dynamics in continuous time is
the following: In the first place, we can simply write:

W̃ k,m
(n+1)γ̃ − W̃ k,m

nγ̃ ≈ W k,m
n+1 − W k,m

n

= λγ̃W k,m
n + γ̃(Y − fm(Wn, X)) ck√

m
∇wσ(W k,m

n , X) +
√

2τ γ̃
1
2 Zn.

By considering that this random variable depending on X and Y is approximately Gaussian,
we can rewrite the last expression in the following form:

≈ γ̃

(
−λW k,m

m + EX,Y

[
(Y − fm(Wn, X)) ck√

m
∇wσ(W k,m

n , X)
])

+γ̃Σ 1
2 (W̃ k,m

nγ̃ )Gn+1+
√

2τ γ̃
1
2 Zn,

where Σ we’ll be a covariance matrix that we will specify in a moment, Σ 1
2 is it’s unique

squared root, and Gn+1 is a standard Gaussian random variable. Finally, by rewriting as
integrals, we get:

≈
∫ (n+1)γ̃

nγ̃

(
−λW k,m

n + EX,Y

[
(Y − fm(Wn, X)) ck√

m
∇wσ(W k,m

n , X)
])

ds

+
√

γ̃
∫ (n+1)γ̃

nγ̃
Σ

1
2
k,m(W̃ k,m

s )dBs +
∫ (n+1)γ̃

nγ̃

√
2τdB̃s.

where Bs and B̃s denote p-dimensional Brownian Motions. Let

hk,m(W m
n ) := −λW k,m

n + EX,Y

[
(Y − fm(W m

n , X)) ck√
m

∇wσ(W k,m
n , X)

]
,

and
ξk,m(w) := (Y − fm(Wn, X)) ck√

m
∇wσ(W k,m

n , X) − hk,m(w).

Remember that in all this setting, we are considering the different ck’s to be fixed. For the
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k − th neuron, we define the covariance matrix Σk,m

Σk,m(w) = EX,Y [ξk,m(w)ξT
k,m(w)] ∈ Rp×p

In summary, we’ll approximate the SGD dynamics in continuous time for the k-th neuron by

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s , (4.4)

where (Bk,m
t ) and (B̃k,m

t ) are p-dimensional Brownian Motions. We remind the reader to
check [17] for a rigorous derivation of this SDE.

4.1. Training Dynamics
Let µm

t ∈ M(R × Rp) be the empirical measure associated with the vectors (c⃗m, (W m
t )t), i.e

µm
t = 1

m

m∑
k=1

δ(ck,W k,m
t ). (4.5)

. We’d like to study the dynamics of the empirical measure µm
t when m diverges to infinity.

Why would it be interesting to study the dynamics of µm
t in the limit? Because, given the

results presented by Jacot et al. in [19], we hope that if the initialization of the parameters
are independent centered Gaussians, then the limit of the empirical measure will be the ini-
tial measure, i.e we hope that in this case µm

t
m→∞−−−→ µ0 in some way since the NTK regime

tells us that in the limit, the NTK stays frozen through training. We hope to generalize this
results and check the limits in other settings and different training dynamics than the ones
studied in [19].

To follow this study rigorously, we have to solve three previous steps:

1. Prove that the process (µm
t )m is tight in some good space (Which will turn out to be the

space of continuous path in the space of probability measures).

2. Prove the existence, and identify the limiting point as m diverges to infinity.

3. Prove the uniqueness of the limit.

We will extensively use

Lemma 4.1 (Itô’s Lemma) Let Xt ∈ Rp be a stochastic process and let Bt ∈ Rp a Brownian
motion, with Xt adapted w.r.t the Brownian filtration. Assume Xt follows the Stochastic
Differential Equation:

dXt = b(t, Xt)dt + σ(t, Xt)dBt,

with initial condition X0 independent of Bs for all s ≥ 0. For a function f ∈ C2(Rp), we
have:

f(Xt) = f(X0) +
∫ t

0
(∇Xf(Xs))T b(s, Xs)ds + 1

2

∫ t

0
Tr
(
σ(s, Xs)T HXf(Xs)σ(s, Xs)

)
ds

+
∫ t

0
(∇Xf(Xs))T σ(s, Xs)dBs.
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Considering the dynamics for W k,m
t , k ∈ [m], given a function φ(·) ∈ C2(Rp) we can apply

Itô’s lemma, which gives us:

φ(W k,m
t ) = φ(W k,m

0 ) +
∫ t

0
∇φ(W k,m

s )T hk,m(W m
s )ds + γ

1
2

m
α
2

∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

+
∫ t

0

√
2τ∇φ(W k,m

s )T dB̃k,m
s + γ

2mα

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

+
∫ t

0
2τ Tr

(
Hwφ(W k,m

s )
)

ds. (4.6)

Hence, given φ ∈ C0,2(R × Rp), we can test µm
t = 1

m

∑m
k=1 δ(ck,W k,m

t ) with φ, obtaining:

⟨φ, µm
t ⟩ = 1

m

m∑
k=1

φ(ck, W k,m
t )

and by replacing equation (5.1) in this formula, and considering that we are not training c
and hence they are constant in time, we get (4.23).

⟨φ, µm
t − µm

0 ⟩ = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds + γ

1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

+ γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

+ 1
m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s + 1

m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds.

(4.7)

4.1.1. Technical Lemmas
In order to prove tightness, we need some bounds and controls on Σk,m, for all k ∈ {1, . . . , },
and on L(W m), with W m ∈ (Rp)m. Let’s start by the latter.

Let L(w) = EX,Y [(Y − fm(W m, X))]. Then we have the following:

Lemma 4.2 Let m ∈ N and t ≥ 0. Then, for any W ∈ (Rp)m,∣∣∣∣∣L(W )
m

∣∣∣∣∣ ≤ C
( 1

m
+ am

)
,

with am = ∑m
i=1

c2
i

m
.

Proof. We’ll use the fact that σ(·, ·) is bounded. In the first place, using the inequality
(a + b)2 ≤ 2(a2 + b2) we get:∣∣∣∣∣L(W )

m

∣∣∣∣∣ ≤ 1
m

(
2EX,Y [Y 2] + 2EX,Y [fm

t (W, X)2]
)

,
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where the expectation on the second term Recalling that we assume that Y has a finite
second moment and σ is bounded, by using the definition of fm

t we get:
∣∣∣∣∣L(W )

m

∣∣∣∣∣ ≤ 1
m

C + 1
m

m∑
i,j=1

|ci||cj||EX,Y [σ(W, X)σ(W, X)]|


≤ C

m
+ C

m2

(
m∑

i=1
|ci|
)2

, because σ is bounded.

Bounding (∑m
i=1 |ci|)2 ≤ m

∑m
i=1 c2

i by Cauchy-Schwarz inequality, and defining the quantity
am = 1

m

∑m
i=1 c2

i , we conclude:

∣∣∣∣∣L(W )
m

∣∣∣∣∣ ≤ C
( 1

m
+ am

)
.

For Σ, we’ll need a control over it’s norm.

Lemma 4.3 Let m ∈ N, k ∈ {1, . . . , m} and s ≥ 0. Then; with ∥ · ∥F rob denoting the
Frobenius norm of matrices, we have:

∥∥∥Σ(W k,m
s )

∥∥∥
Frob

≤ C
c2

k

m
L(W m

s ),

with C being a positive constant .

Recall that am := ∑m
i=1

c2
i

m
.

Proof. Before we start, it’s important to notice that given m ∈ N, k ∈ {1, . . . , m}, w ∈ Rp

and Σk,m has the following structure:

Σk,m(W m,k) = EX,Y

[
(Y − fm(W m, X))2 c2

k

m
∇σ̃(W k,m

s , X)∇σ̃(W k,m
s , X)T

]

− EX,Y

[
(Y − fm(W m, X)) ck√

m
∇σ(W k,m

s , X)
]
EX,Y

[
(Y − fm(W m, X)) ck√

m
∇σ(W k,m

s , X)
]T

,

and for i, j ∈ {1, . . . , p}:

Σk,m(w)i,j = c2
k

m
EX,Y

[
(Y − fm(W m, X))2∂iσ̃(W k,m

s , X)∂jσ̃(W k,m
s , X)

]
− c2

k

m
EX,Y

[
(Y − fm(W m, X))∂iσ̃(W k,m

s , X)
]
EX,Y

[
(Y − fm(W m, X))∂jσ̃(W k,m

s , X)
]

,

Now, for the proof, let um
t (x, y) = y − fm(W m

t , x). By definition∥∥∥Σ(W k,m
s )

∥∥∥2

Frob
=
∑
i,j

|Σk,m(W k,m
s )i,j|2.
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Using the inequality (a + b)2 ≤ 2(a2 + b2), and the fact that σ is a Lipschitz function and
therefore it’s derivative is bounded:

|Σk,m(W k,m
s )i,j|2 ≤ C

c4
k

m2 (EX,Y [um
s (X, Y )2] + EX,Y [um

s (X, Y )]2)2. (4.8)

By applying Jensen’s inequality in the second term of the right-hand side, we get:

|Σk,m(W k,m
s )i,j|2 ≤ C

c4
k

m2 L(W m
s )2,

and this way:
∥∥∥Σk,m(W k,m

s )
∥∥∥2

Frob
=
∑
i,j

|Σk,m(W k,m
s )i,j|2 ≤ Cp2 c4

k

m2 L(W m
s )2,

where C remains the same constant as the last equation. By applying the square root on
both sides, we conclude:

∥∥∥Σk,m(W k,m
s )

∥∥∥
Frob

=
√∑

i,j

|Σk,m(W k,m
s )i,j|2 ≤ C

c2
k

m
L(W m

s ).

Lemma 4.3 tells us that if we have a control over the expectation of L(W m
s ), then we

can also control Σ(W m
s )’s norm. That’ll be useful in the future to prove the tightness of the

process (µm
t )m.

Even though we already said that c’s are fixed, we’ll specify how are the initialized: From
now on we consider

Assumption: The distribution that initializes all these coefficients is such that E[c] is
finite and E[c4] is finite.

A direct consequence of the uniform bound from Lemma 4.2 is the following:

Lemma 4.4 For m ∈ N, t ≥ 0,

E[L(W m
t )]

m
≤ E

[
C( 1

m
+ am)

]
≤ C(1 + E [am]︸ ︷︷ ︸

≤C

) ≤ C.

Since we are controlling the expectation of L(W m
S ), we might as well think about doing

the same with f(W m
s ). We’ll do this in the following:

In order to prove the next Lemma, we present a special type of Gronwall’s inequality in
the following:

Lemma 4.5 (A version of Gronwall’s Lemma) Let x : [0, +∞) → R be a locally absolutely
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continuous function, let a, b ∈ L1
loc([0, +∞)) be given functions satisfying, for λ ∈ R,

d

dt
x2(t) + 2λx2(t) ≤ a(t) + 2b(t)x(t), for L1a.e.t > 0.

Then for every T > 0 we have

eλT |x(T )| ≤
(

x2(0) + sup
t∈[0,T ]

∫ t

0
e2λsa(s)ds

) 1
2

+ 2
∫ T

0
eλtb(t)dt.

Lemma 4.6 Given m, and k ∈ {1, .., m}:

E[∥W k,m
t ∥2] 1

2 ≤
(

p + Cγt

mα

) 1
2

+ Ct.

Proof. Let m ∈ N, and let g : Rp → R, given by g(w) = ∥w∥2, for all w ∈ Rp. Note that

∇g(w) = 2w and Hwg(w) = 2I. (4.9)

Recall that for each k ∈ {1, .., m}, we know that when τ = 0, (W k,m
s )s≥0 follows the SDE:

dW k,m
s = hk,m(W k,m

s )ds + γ
1
2

m
α
2

Σ
1
2
k,m(W k,m

s )dBk,m
s .

Then, by applying Itô’s Lemma to g, for W k,m
s , for t > 0 we get:

g(W k,m
t ) = g(W k,m

0 ) +
∫ t

0
∇g(W k,m)

s )hk,m(W k,m
s )ds + γ

1
2

m
α
2

∫ t

0
∇g(W k,m)

s )Σ
1
2
k,m(W k,m

s )dBk,m
s

+ γ

2mα

∫ t

0
Tr
(
Σk,m(W k,m

s )Hwg(W k,m
s )

)
ds.

By replacing (4.9) in this equation, we get:

∥W k,m
t ∥2 = ∥W k,m

0 ∥2 + 2
∫ t

0
(W k,m)

s )T hk,m(W k,m
s )ds + γ

1
2

m
α
2

∫ t

0
∇φf(W k,m)

s )T Σ
1
2
k,m(W k,m

s )dBk,m
s

+ γ

mα

∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds.

Now, if we apply expectation on both sides the local martingale term will be transformed to
0. This way :

E[∥W k,m
t ∥2] = E[∥W k,m

0 ∥2]+2E
[∫ t

0
(W k,m)

s )T hk,m(W k,m
s )ds

]
+ γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

.

(4.10)
Remember that, in the common SGD setting, hk,m(Wsk, m) = −EX,Y [(Y −fm

s (W m
s )) ck√

m
∇σ(W k,m

s )].
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We use this to bound (4.10):

E[∥W k,m
t ∥2] = E[∥W k,m

0 ∥2] + 2E
[∫ t

0
(W k,m)

s )T hk,m(W k,m
s )ds

]
+ γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

= E[∥W k,m
0 ∥2] − 2E

[∫ t

0
(W k,m)

s )TEX,Y [(Y − fm
s (W m

s )) ck√
m

∇σ(W k,m
s )]ds

]

+ γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

C−S
≤ E[∥W k,m

0 ∥2] + 2
∫ t

0
E
[
∥W k,m)

s ∥EX,Y [|Y − fm
s (W m

s )| |ck|√
m

∥∇σ(W k,m
s )∥]

]
ds

+ γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

.

Recall that ∥∇σ∥ ≤ C. By applying this:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E
[
∥W k,m)

s ∥L(W k,m
s ) 1

2
|ck|√

m

]
ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

C−S
≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2E[L(W k,m

s )c2
k

m
] 1

2 ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

≤ E[∥W k,m
0 ∥2] + C

∫ t

0
E[∥W k,m)

s ∥2] 1
2E[L(W k,m

s )2] 1
4E[ c4

k

m2 ] 1
4 ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

.

Recall we assume that all ck have finite 4th moment. Then, we can bound the expectation
in our equation and get:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2
E[L(W k,m

s )2] 1
4

√
m

ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

≤ E[∥W k,m
0 ∥2] + C

∫ t

0
E[∥W k,m)

s ∥2] 1
2
E[L(W k,m

s )2] 1
4

√
m

ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

.

(4.11)

By Lemma 4.2,
L(W m

s )
m

≤ C( 1
m

+ am),

where am = 1
m

∑m
k=1 ck. Then:

L(W m
s )2

m2 ≤ C( 1
m2 + a2

m),

and by applying expectation:

E[L(W m
s )2

m2 ] ≤ C( 1
m2 + E[a2

m]).

Recall we assumed that all ck’s where independent and centered. This way E[a2
m] < ∞. By

replacing this:
E[L(W m

s )2

m2 ] ≤ C. (4.12)
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By replacing (4.12) on (4.11), we get:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + γ

mα
E
[∫ t

0
Tr
(
Σk,m(W k,m

s )
)
ds
]

. (4.13)

Now let’s bound the other term. By Lemma 4.3, we know that:

|Σk,m(W k,m
s )i,i| ≤ C

c2
k

m
L(W m

s ).

Then:
Tr
(
Σk,m(W k,m

s )
)

≤ C
c2

k

m
L(W m

s ). (4.14)

By replacing 4.14 in 4.13 and applying Fubini, we get:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + Cγ

mα

∫ t

0
E[c

2
k

m
L(W m

s )]ds

C−S
≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + Cγ

mα

∫ t

0
E[c4

k] 1
2E[L(W m

s )2

m2 ] 1
2 ds.

By replacing (4.12), and using that the ck’s have finite 4th moment:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + Cγ

mα

∫ t

0
E[c

2
k

m
L(W m

s )]ds

C−S
≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + Cγ

mα

∫ t

0
ds

≤ E[∥W k,m
0 ∥2] + C

∫ t

0
E[∥W k,m)

s ∥2] 1
2 ds + Cγt

mα
.

Since both sides are equal at t = 0, we apply the Radon-Nikodym derivative on both sides
and obtain:

d

dt
E[∥W k,m

t ∥2] ≤ CE[∥W
k,m)
t ∥2] 1

2 + Cγ

mα
. (4.15)

Next, we apply Lemma 4.5 with λ = 0, a(t) = Cγ

mα
and b(t) = C. Then, for every t ≥ 0

E[∥W k,m
t ∥2] 1

2 ≤
(
E[∥W

k,m)
0 ∥2] + Cγt

mα

) 1
2

+ Ct. (4.16)

Recall that each element of W k,m
0 has a finite expectation by our assumptions, and that

W k,m ∈ Rp. Therefore:
E[∥W k,m

0 ∥] = p.

With this, we conclude:

E[∥W k,m
t ∥2] 1

2 ≤
(

p + Cγt

mα

) 1
2

+ Ct. (4.17)

Having all of these technical results we continue to the next section, where we’ll prove
the ex of solutions for the Stochastic Differential Equations we have. Next, we’ll prove the

30



tension of the laws of the empirical measure process.

4.2. Existence of Solutions for the SDE
Let m ∈ N be the quantity of neurons we have in our neural network, whose parameters are
initialized such that W k,m

0 has finite expectation for k ∈ {1, .., m} i.i.d, and ck i.i.d such that
it’s first four moments are finite. For each k ∈ {1, .., m} and t ≥ 0 we have:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s , (4.18)

where (Bk,m
t ) and (B̃k,m

t ) are p-dimensional Brownian Motions,

hk,m(W m
n ) := −λW k,m

n + EX,Y

[
(Y − fm(W m

n , X)) ck√
m

∇wσ(W k,m
n , X)

]
,

and for
ξk,m(w) := (Y − fm(Wn, X)) ck√

m
∇wσ(W k,m

n , X) − hk,m(w),

we defined:
Σk,m(w) = EX,Y [ξk,m(w)ξT

k,m(w)] ∈ Rp×p.

Theorem 4.1 Let m ∈ N and (ck)m
k=1 with the properties considered above. Let σ a bounded

function, whose gradient and hessian have a bounded norm. Then, equation (4.18) has strong
solutions, subject to the fixed coefficients (ck)m

k=1.
This Theorem will allow us to make our study without being uncertain on the existence

of solutions to our Stochastic Differential Equation. It’s proof will go back to proving that
both coefficients are Lipschitz. For the existence and uniqueness Theorem of solutions for
Stochastic Differential Equations, we refer the reader to Karatzas and Shreve’s book [26].

The reader may also note the fact that we are proving existence of solutions given the
parameters (ck)m

k=1. This means that, even though they are initialized randomly, by being
independent on the rest of the parameters, we can assure the existence of solutions. Note,
however, that this doesn’t mean that the coefficients are not random variables.

Proof. let m ∈ N. We must prove that for all k ∈ {1, ..., m}, the equation

dW k,m
t = hk,m(W k,m

t )dt + γ
1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s ,

has strong solutions. The reader may note that each coefficient depends both on the particle
itself, but also on the other particles in the system (i.e the rest of the parameters. To surpass
this difficulty, we’ll prove that for each k ∈ {1, ..., m}, given w1, w2 ∈ Rp, we have

∥hk,m(w1) − hk,m(w2)∥ + ∥ γ
1
2

m
α
2

Σ
1
2
k,m(w1) − γ

1
2

m
α
2

Σ
1
2
k,m(w2)∥ ≤ C∥W1 − W2∥,

i.e that both coefficients are Lipschitz in W , which is the matrix of weights that contains w
in it’s k-th row. Having this, we can make sure that the same can be concluded for the SDE
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that rule W m ∈ (Rp)m because it will be a vectored version of the dynamics for each k.
Let w1, w2 ∈ Rp and k ∈ {1, ..., m}. We begin by proving that hk,m is Lipschitz for W . We
have:

∥hk,m(w1) − hk,m(w2)∥ =
∥∥∥∥∥λ(w1 − w2) + EX,Y

[
(Y − fm(W1, X)) ck√

m
∇wσ(w1, X)

]

−EX,Y

[
(Y − fm(W2, X)) ck√

m
∇wσ(w2, X)

]∥∥∥∥∥
∥λ(w1 − w2)∥ +

∥∥∥∥∥EX,Y

[
(Y − fm(W1, X)) ck√

m
∇wσ(w1, X)

]

−EX,Y

[
(Y − fm(W2, X)) ck√

m
∇wσ(w2, X)

]∥∥∥∥∥ .

The first term is already Lipschitz. Hence, we focus on the case λ = 0. By adding and

subtracting EX,Y

[
(Y − fm(W1, X)) ck√

m
∇wσ(w2, X)

]
:

∥hk,m(w1) − hk,m(w2)∥ ≤
∥∥∥∥∥EX,Y

[
(fm(W1, X) − fm(W2, X)) ck√

m
∇wσ(w2, X)

]∥∥∥∥∥
+
∥∥∥∥∥EX,Y

[
(Y − fm(W1, X)) ck√

m
(∇wσ(w2, X) − ∇wσ(w1, X))

]∥∥∥∥∥
≤ EX,Y

[
|fm(W1, X) − fm(W2, X)| |ck|√

m
∥∇wσ(w2, X)∥

]

+ EX,Y

[
|Y − fm(W1, X)| |ck|√

m
∥∇wσ(w2, X) − ∇wσ(w1, X)∥

]

≤ EX,Y

[
| 1
m

m∑
i=1

ci(σ(W i
1, X) − σ(W k

i , X)||ck|∥∇wσ(w2, X)∥
]

+ EX,Y

[
|Y − fm(W1, X)| |ck|√

m
∥∇wσ(w2, X) − ∇wσ(w1, X)∥

]
.
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Recall that in our hypothesis, σ is Lipschitz and bounded, with bounded gradient. Therefore

∥hk,m(w1) − hk,m(w2)∥ ≤ CEX,Y

[
1
m

m∑
i=1

|ci||σ(W i
1, X) − σ(W i

2, X)||ck|
]

+ EX,Y

[
|Y − fm(W1, X)| |ck|√

m
∥∇wσ(w2, X) − ∇wσ(w1, X)∥

]

≤ CEX,Y

[
1
m

m∑
i=1

|ci|∥W i
1 − W i

2∥|ck|
]

+ CEX,Y

[
| Y√

m
− 1

m

m∑
i=1

ciσ(W i
1, X)||ck|∥w2 − w1∥

]

≤ C
1
m

m∑
i=1

|ci|∥W i
1 − W i

2∥|ck|

+ CEX,Y

[(
|Y |√

m
+ 1

m

m∑
i=1

|ci||σ(W i
1, X)|

)
|ck|∥w2 − w1∥

]
.

Note that ∥W i
1 − W i

2∥ ≤ max
1≤i≤m

∥W i
1 − W i

2∥ ≤ C∥W1 − W2∥, because all norms in a finite
space are equivalent. On the other hand, by using that the activation function is bounded,
we obtain:

∥hk,m(w1) − hk,m(w2)∥ ≤ C

(
1
m

m∑
i=1

|ci||ck|
)

∥W1 − W2∥ + CEX,Y [
(

|Y |√
m

+ 1
m

m∑
i=1

|ci|
)

|ck|∥W2 − W1∥].

Since in our setting, Y has finite second moment, we obtain that:

∥hk,m(w1) − hk,m(w2)∥ ≤ C

(
1
m

m∑
i=1

|ci||ck| + C

(
C + 1

m

m∑
i=1

|ci|
)

|ck|
)

∥W2 − W1∥. (4.19)

With this, we conclude that hk,m is Lipschitz for fixed coefficients (ck)m
k=1. The full proof that

Σ
1
2
k,m(W k,m

s ) can be derived from the arguments used in the existence and uniqueness results
for the Mean Field SDE, and it uses results from Stroock and Varadhan’s book, [27]. With
this, we conclude the existence of solutions for the SDE for fixed coefficients (ck)m

k=1.

Having proved this results, we can now be relaxed about the existence of the objects we
are studying, which is not trivial. Being sure of this, we can proceed to prove the tightness
of our process.

4.3. Tightness of the laws of the empirical measure
process

To prove tightness, there are two big steps. We’ll separate them in two different sections,
each concerning one of the steps.

4.3.1. First Part of the Proof
To prove tightness of the laws of the process µm

t in some good space, we’ll start by proving
tightness of a different -but related- object.

33



Lemma 4.7 Given φ ∈ C0(R × Rp), the process (⟨φ, µm
t ⟩)t is tight.

The demonstration of Lemma 4.7, relies on Aldous Criterion, which can be found in [28].

Lemma 4.8 (Aldous’ Criterion) For every n ∈ N, let (Xn
t )t be a cadlag process on a filtered

probability space (Σ, F , (Ft)t,P). We suppose that the process satisfies:

1. For every N ∈ N and for all ε > 0 there exists n0 ∈ N and K > 0 such that

n ≥ n0 =⇒ P
(

sup
t≤N

|Xn
t | > K

)
≤ ε.

2. For every N ∈ N and for all ε > 0

lim
θ↓0

lim sup
n

sup
S,T ∈TN :S≤T ≤S+θ

P(|Xn
T − Xn

S | ≥ ε) = 0, (4.20)

where TN are all the stopping times in (Ft)t that are bounded by N .

Then the process’ probability laws are tight.

Remark For the first condition, by Markov’s Inequality it is sufficient to bound the expec-
tation of the random variable at time N .

We’ll prove part of Lemma 4.10 using this remark.

Another important criterion will be the Aldous - Rebolledo Criterion, which works better
for semi-martingales. For a full proof and statement we refer the reader to [29], and for a
discussion about it, to [30]. We present it’s statement in the following:

Lemma 4.9 (Aldous - Rebolledo Criterion). Let (Xn
t )t≥0,n≥0 be a sequence of càdlàg square

integrable semi-martingales. Let us write the decomposition Xn
t = An

t +Mn
t , where (Mn

t )t≥0 is
a local square integrable martingale and (An

t )t≥0 is an adapted finite variation paths process. If
the two following conditions are fulfilled, then the sequences of processes (Mn

t )t≥0, (⟨Mn⟩t)t≥0
and (Xn

t )t are tight.

1. For every t within a dense subset of R+, (Mn
t )t≥0 and (An

t )t≥0 are tight sequences.

2. Both processes (⟨Mn⟩t)t≥0 and (An
t )t≥0 satisfy Aldous’ Criterion.

Remark When Xn
t is a continuous semi-martingale, (2) implies (1).

With both tightness criterions in our minds, we are ready to state the following:

Lemma 4.10 Given φ ∈ C∞
0 (R), the finite variation and the quadratic variation of the

martingale parts of the process ⟨φ, µm
t ⟩ satisfy the first condition of Aldous Criterion.

Let’s recall the dynamics we found for the empirical measure in Equation in equation
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(4.23):

⟨φ, µm
t − µm

0 ⟩ = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds︸ ︷︷ ︸

(1)

− γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s︸ ︷︷ ︸

(2)

+ γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds.︸ ︷︷ ︸
(3)

+ 1
m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s︸ ︷︷ ︸

(4)

+ 1
m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds︸ ︷︷ ︸
(5)

The finite variation part of ⟨φ, µm
t ⟩ corresponds to:

An
t = (1) + (3) + (5).

On the other hand, the local martingale part corresponds to:

Mn
t = (2) + (4).

With these definitions, we go for the proof of tightness.

Proof.
Let’s begin with An

t . Recall we want to prove the first condition of Aldous’ criterion,
that is, we want to prove that E[sup

t≤N
An

t ] is finite. For this, it’s sufficient to show that the

expectation of the modules of each term, (1), (3) and (5) are finite.

Let’s start with (1). We begin by bounding the norm of φ, ∇φ and ∇σ, since we are
assuming they are all bounded. Also, we use some classical inequalities for the module and
the expectation. We have:

E[sup
t≤N

|(1)|] = E
[
sup
t≤N

∣∣∣∣∣ 1
m

m∑
k=1

∫ t

0
∇φ(W k,m

s )T hk,m(W m
s )ds

∣∣∣∣∣
]

≤ E
[
sup
t≤N

1
m

m∑
k=1

∫ t

0
∥∇φ(W k,m

s )∥∥hk,m(W m
s )∥ds

]

≤ CE
[
sup
t≤N

1
m

m∑
k=1

∫ t

0

∥∥∥∥∥EX,Y

[
(Y − fm(W m

s , X)) ck√
m

∇wσ(W k,m
n , X)

]∥∥∥∥∥ ds

+ 1
m

m∑
k=1

∫ t

0
∥W k,m

s ∥ds

]

≤ CE
[
sup
t≤N

1
m

m∑
k=1

∫ t

0
EX,Y

[
|Y − fm(W m

s , X)| |ck|√
m

∥∇wσ(W k,m
n , X)∥

]
ds

+ λ

m

m∑
k=1

∫ t

0
∥W k,m

s ∥ds

]
.
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Now, we separate the expectation and obtain:

E[sup
t≤N

|(1)|] ≤ CE
[
sup
t≤N

1
m

m∑
k=1

∫ t

0
EX,Y

[
|Y − fm(W m

s , X)| |ck|√
m

∥∇wσ(W k,m
n , X)∥

]
ds

]

+ E
[
sup
t≤N

λ

m

m∑
k=1

∫ t

0
∥W k,m

s ∥ds

]

≤ CE
[
sup
t≤N

1
m

m∑
k=1

∫ t

0
EX,Y

[
|Y − fm(W m

s , X)| |ck|√
m

∥∇wσ(W k,m
n , X)∥

]
ds

]

+ λ

m

m∑
k=1

sup
t≤N

∫ t

0
E
[
∥W k,m

s ∥
]

ds

By using Cauchy-Schwarz inequality plus the fact that the gradient of σ has bounded norm
(since σ is a Lipschitz function) we obtain:

EX,Y

[
|Y − fm(W m

s , X)| |ck|√
m

∇w∥σ(W k,m
n , X)∥

]
≤ C|ck|√

m
EX,Y [|Y − fm(W m

s , X)|]

≤ C|ck|√
m

EX,Y

[
(Y − fm(W m

s , X))2
] 1

2 By Jensen’s

≤ C|ck|√
m

L(W m
s ) 1

2 .

On the other hand, by Lemma 4.6, we know that:

λ

m

m∑
k=1

sup
t≤N

∫ t

0
E
[
∥W k,m

s ∥
]

ds ≤ λ

m

m∑
k=1

sup
t≤N

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2 ds

≤ λ

m

m∑
k=1

sup
t≤N

∫ t

0

(p + Cγt

mα

) 1
2

+ Ct

 dt

≤ λ

m

m∑
k=1

∫ N

0

(p + Cγt

mα

) 1
2

+ Ct

 1
2

dt

≤ λ

m

m∑
k=1

N

(p + CγN

mα

) 1
2

+ CN


≤ λN

(
p + CγN

mα

) 1
2

+ CλN2

Replacing this in the last inequality:

E[sup
t≤N

|(1)|] ≤ CE
[
sup
t≤N

1
m

m∑
k=1

∫ t

0

C|ck|√
m

L(W m
s ) 1

2 ds

]
+ λN

(
p + CγN

mα

) 1
2

+ CλN2,

and since the inside of the integral is positive, we can erase the dependence on the supreme
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and obtain:

E[sup
t≤N

|(1)|] ≤ CE
[

1
m

m∑
k=1

∫ N

0

C|ck|√
m

L(W m
s ) 1

2 ds

]
+ λN

(
p + CγN

mα

) 1
2

+ CλN2,

≤ CE
[∫ N

0

C|ck|√
m

L(W m
s ) 1

2 ds

]
+ λN

(
p + CγN

mα

) 1
2

+ CλN2, .

By using Fubini and Cauchy-Schwarz:

E[sup
t≤N

|(1)|] ≤ CE
[

1
m

m∑
k=1

∫ N

0

C|ck|√
m

L(W m
s ) 1

2 ds

]
+ λN

(
p + CγN

mα

) 1
2

+ CλN2,

≤ CE[|ck|2] 1
2

∫ N

0

E
[
L(W m

s ) 1
2
]2

m
1
2

ds + λN
(

p + CγN

mα

) 1
2

+ CλN2.

We are assuming that E[c2
k] < ∞, so we get:

E[sup
t≤N

|(1)|] ≤ C
∫ N

0

E
[
L(W m

s ) 1
2
]2

m
1
2

ds + λN
(

p + CγN

mα

) 1
2

+ CλN2.

By using Lemma 4.4, which gives us a bound over E[L(W m
s )]

m
we can take the square root and

obtain the following inequality for all α ≥ 0:

E
[
sup
t≤N

∣∣∣∣∣ 1
m

m∑
k=1

∫ t

0
∇φ(W k,m

s )T hk,m(W m
s )ds

∣∣∣∣∣
]

≤ C.

Thus, the expectation of the term (1) is finite. Next, let’s see that (3) is finite. We need to
bound:

E
[
sup
t≤N

|(3)|
]

= E
[
sup
t≤N

∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

∣∣∣∣∣
]

.

(4.21)
Given the fact that both Hwφ and Σ

1
2
k,m(W k,m

s are symmetric matrices, the trace of (4.21)
satisfies:

Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

= Tr
(
Σk,m(W k,m

s )Hwφ(W k,m
s )

)
,

and by applying the Cauchy-Schwarz type inequality for the trace:∣∣∣∣Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)∣∣∣∣ ≤ ∥Σk,m(W k,m

s )∥F rob∥Hwφ(W k,m
s )∥F rob,

and since the second derivative of the test function φ is bounded, we get:∣∣∣∣Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)∣∣∣∣ ≤ C∥Σk,m(W k,m

s )∥F rob.
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Replacing this in the right hand side of equation (4.21):

E
[
sup
t≤N

|(3)|
]

≤ CE
[
sup
t≤N

∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ t

0
∥Σk,m(W k,m

s )∥Frob ds

∣∣∣∣∣
]

≤ CE
[
sup
t≤N

∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ t

0

c2
k

m
L(W m

s )ds

∣∣∣∣∣
]

by Lemma 4.3

Finally, by applying Fubini, we get:

E
[
sup
t≤N

|(3)|
]

≤ C
γ

2m1+α

∫ N

0

m∑
k=1

E
[

c2
k

m
L(W m

s )
]

ds

By Cauchy-Schwarz’s inequality, and because we assume that ci has a bounded second mo-
ment, we have that:

E
[

c2
k

m
L(W m

s )
]

≤ C

m
E
[
L(W m

s )2
] 1

2 .

Then:

E
[
sup
t≤N

|(3)|
]

≤ C
γ

2m1+α

∫ N

0
E
[
L(W m

s )2
] 1

2 ds

≤ C
γ

2mα

∫ N

0

E [L(W m
s )2]

1
2

m
ds

≤ C
γN

2mα
by Lemma 4.4,

which is bounded for every α ≥ 0. For (5), we do just what we did with (3), that is, we bound
the norm of the Hessian matrix that appears in the matrix. With this, we conclude that the
finite variation part of the semi-martingale An

t satisfies the first condition of Aldous’ Criterion.

For the local martingale term, Rebolledo’s Criterion (Lemma 4.8) tells us we must prove
the first part of Aldous Criterion for the quadratic variation for Mn

t .

We begin by calculating the quadratic variation of (2). We get:

⟨(2)⟩ =
〈

γ
1
2

m1+ α
2

m∑
k=1

∫ N

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
.

By using the independence of each Brownian motion and the symmetry of the matrices Σ
1
2
k,m

for each k, we get:〈
m∑

k=1

∫ N

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
=
∫ N

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds.

(4.22)
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Hence, We must prove:

E

sup
t≤N

∫ N

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds

 < ∞.

Now, by replacing and bounding the derivatives of the function φ:

E[sup
t≤N

⟨(2)⟩] = γ
1
2

m1+ α
2
E

∫ N

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds


≤ C

γ
1
2

m1+ α
2
E

∫ N

0

m∑
k=1

p∑
i1,i2=1

|Σk,m(W k,m
s )i1,i2 |ds


≤ Cp

1
2 C

γ
1
2

m1+ α
2
E
[∫ N

0

m∑
k=1

∥Σk,m(W k,m
s )∥Frobds

]

where we used Cauchy- Schwarz in the last inequality. By applying Lemma 4.3, which tells
us that

∥Σk,m(W k,m
s )∥Frob ≤ c2

k

m
L(W m

s ),

we get:

E[sup
t≤N

⟨(2)⟩] ≤ Cp
1
2

γ
1
2

m1+ α
2
E
[∫ N

0

m∑
k=1

c2
k

m
L(W m

s )ds

]

≤ Cp
1
2

γ
1
2

m1+ α
2
E
[∫ N

0

m∑
k=1

c2
k

m
L(W m

s )ds

]
By Jensen’s

≤ Cp
1
2

γ
1
2

m1+ α
2

∫ N

0
E
[

m∑
k=1

c2
k

m
L(W m

s )
]

ds.

Now, by considering our assumptions on ck, we have
m∑

k=1
E
[

c2
k

m
L(W m

s )
]

≤
m∑

k=1

1
m
E[c4

k] 1
2E[L(W m

s )2] 1
2 by C-S

≤ C

m

m∑
k=1

E[L(W m
s )2] 1

2 because E[c2
k] is bounded

= CE[L(W m
s )2] 1

2 .

Replacing:

E[sup
t≤N

⟨(2)⟩] ≤ Cp
1
2

γ
1
2

m1+ α
2

∫ N

0
CE[L(W m

s )2] 1
2 ds

≤ Cp
1
2

γ
1
2

m
1+α

2

∫ N

0

(
E[L(W m

s )2]
m

) 1
2

ds

≤ CNp
1
2

γ
1
2

m
1+α

2
by Lemma 4.4.
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Therefore, we conclude that (2) is finite. to prove the same for (4), it’s enough to use a direct
extension of this argument.

To finish this section, we’ll prove the following Lemma, which will get us one step closer
to prove tightness of the laws of the process.

Lemma 4.11 Given φ ∈ C∞
0 (R × Rp), the random variables An

t and ⟨Mn
t ⟩, i.e the finite

variation and the quadratic variation of the martingale term of the process ⟨φ, µm
t ⟩ satisfy

the second condition in Aldous Criterion for all m ∈ N.
Before the proof, let’s recall the dynamics we found for the empirical measure in Equation

in equation (4.23):

⟨φ, µm
t − µm

0 ⟩ = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds︸ ︷︷ ︸

(1)

− γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s︸ ︷︷ ︸

(2)

+ γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds︸ ︷︷ ︸
(3)

+ 1
m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s︸ ︷︷ ︸

(4)

+ 1
m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds︸ ︷︷ ︸
(5)

(4.23)

The finite variation part of ⟨φ, µm
t ⟩ corresponds to:

An
t = 1

m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds + γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

+ 1
m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds

On the other hand, the martingale part corresponds to:

Mn
t = − γ

1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s + 1

m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s .

Proof. Let θ > 0, n ∈ N, and let S, T ∈ TN such that S ≤ T ≤ S + θ. Then by Markov’s
inequality, for any process Xm

t :

P(|X m
t | ≥ ε) ≤ 1

ε
E [|Xm

t |] . (4.24)
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We must prove this for Am
t and for ⟨Mm⟩t. For An

t :

sup
S,T ∈T :S≤T ≤S+θ

E [An
t ] ≤ sup

S,T ∈T :S≤T ≤S+θ
E
[∣∣∣∣∣ 1

m

m∑
k=1

∫ T

S
∇φ(ck, W k,m

s )T hk,m(W m
s )ds

∣∣∣∣∣
]

︸ ︷︷ ︸
(1)

+ E
[∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ T

S
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

∣∣∣∣∣
]

︸ ︷︷ ︸
(2)

+ E
[∣∣∣∣∣ 1

m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds

∣∣∣∣∣
]

.︸ ︷︷ ︸
(3)

Hence, we must prove that (1), (2) and (3) are finite. On the other hand, for ⟨Mn
t ⟩, we must

prove:

sup
S,T ∈T :S≤T ≤S+θ

E [⟨Mn
t ⟩] ≤ sup

S,T ∈T :S≤T ≤S+θ
E

∫ N

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds


︸ ︷︷ ︸

(4)

+ E

∫ N

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )ds

 .

︸ ︷︷ ︸
(5)

Therefore, we must also prove that (4) and (5) are finite.

The idea behind proving all these terms are finite, will be to find bounds which can allow
us to remove the supremum, but keeping θ on each term, allowing us to take θ → 0 afterwards.

We’ll begin with (1). We start by taking the module of the integral and bounding by the
norm of ∇φ:

(1) = sup
S,T ∈T :S≤T ≤S+θ

E
[∣∣∣∣∣ 1

m

m∑
k=1

∫ T

S
∇φ(ck, W k,m

s )T hk,m(W m
s )ds

∣∣∣∣∣
]

≤ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m1+ 1

2

m∑
k=1

∫ T

S
EX,Y

[
|Y − fm(W m, X)||ck|∥∇σ(W k,m, X)∥

]
ds

]

+ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m

m∑
k=1

∫ T

S
∥W k,m

s ∥ds

]
. (4.25)
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On the other hand, by Lemma 4.6, we know that:

1
m

m∑
k=1

∫ T

S
E
[
∥W k,m

s ∥
]
ds ≤ 1

m

m∑
k=1

∫ T

S
E
[
∥W k,m

s ∥2
] 1

2 ds

≤ 1
m

m∑
k=1

∫ T

S

(p + Cγt

mα

) 1
2

+ Ct


≤ 1

m

m∑
k=1

∫ T

S

(p + Cγt

mα

) 1
2

+ Ct

 dt

≤
m

m∑
k=1

(T − S)
(p + CγN

mα

) 1
2

+ CN


≤ (T − S)

(
p + CγN

mα

) 1
2

+ CN2(T − S),

therefore,

1
m

m∑
k=1

∫ T

S
E
[
∥W k,m

s ∥
]
ds ≤ (T − S)

(
p + CγN

mα

) 1
2

+ CN2(T − S). (4.26)

By replacing (4.26) in (4.25):

(1) ≤ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m1+ 1

2

m∑
k=1

∫ T

S
EX,Y

[
|Y − fm(W m, X)||ck|∥∇σ(W k,m, X)∥

]
ds

]

+ C sup
S,T ∈T :S≤T ≤S+θ

(T − S)
(

p + CγN

mα

) 1
2

+ CN2(T − S)

≤ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m1+ 1

2

m∑
k=1

∫ T

S
EX,Y

[
|Y − fm(W m, X)||ck|∥∇σ(W k,m, X)∥

]
ds

]

+ θ
(

p + CγN

mα

) 1
2

+ CN2θ
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Now, with the other term, by using that ∥∇σ∥ is bounded, we have:

(1) ≤ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m1+ 1

2

m∑
k=1

∫ T

S
EX,Y [|ck||Y − fm(W m, X)|] ds

]
+ Cθ

≤ C sup
S,T ∈T :S≤T ≤S+θ

E
[

1
m1+ 1

2

m∑
k=1

∫ T

S
|ck|L(W m

s ) 1
2 ds

]
+ Cθ by C-S

≤ C sup
S,T ∈T :S≤T ≤S+θ

∫ T

S

m∑
k=1

1
m1+ 1

2
E
[
|ck|L(W m

s ) 1
2
]

ds + Cθ

≤ C sup
S,T ∈T :S≤T ≤S+θ

∫ T

S

m∑
k=1

E [c2
k]

1
2

m

E[L(W m
s )] 1

2

m
1
2

ds + Cθ By C-S

≤ C sup
S,T ∈T :S≤T ≤S+θ

∫ T

S

m∑
k=1

E [c2
k]

1
2

m
ds + Cθ by Lemma 4.2

≤ Cθ Because c′
ks moments are bounded.

With this, we can deduce:

lim sup
m→∞

(1) ≤ Cθ,

and therefore, by remembering (1)’s definition, we obtain:

lim
θ↓0

lim sup
m→∞

sup
S,T ∈T :S≤T ≤S+θ

E
[∣∣∣∣∣ 1

m

m∑
k=1

∫ T

S
∇φ(W k,m

s )T hk,m(W m
s )ds

∣∣∣∣∣
]

= 0. (4.27)

Next, we have (2). Let’s remember it’s definition.

(2) = sup
S,T ∈TN :S≤T ≤S+θ

E
[∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ T

S
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

∣∣∣∣∣
]

.

By repeating a previous calculation:

Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

≤ C∥Σk,m(W k,m
s )∥F rob.

With this, we get:

(2) ≤ C̃ sup
S,T ∈TN :S≤T ≤S+θ

E
[∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ T

S
∥Σk,m(W k,m

s )∥Frobds

∣∣∣∣∣
]

.
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Now we use Lemma 4.3 and conclude:

(2) ≤ C̃ sup
S,T ∈TN :S≤T ≤S+θ

E
[

γ

2m1+α

m∑
k=1

∫ T

S

c2
k

m
L(W m

s )ds

]

≤ C̃γ

2m1+α
sup

S,T ∈TN :S≤T ≤S+θ

m∑
k=1

∫ T

S

1
m
E
[
c2

kL(W m
s )
]
ds

≤ C̃γ

2mα
sup

S,T ∈TN :S≤T ≤S+θ

∫ T

S

E [L(W m
s )2]

m2

1
2

ds by C-S

≤ C̃γ

2mα
sup

S,T ∈TN :S≤T ≤S+θ

∫ T

S
ds by Lemma 4.4

≤ C̃γ

2mα
θ by Lemma 4.4

With this last inequality, we conclude:

lim
θ↓0

lim sup
m→∞

sup
S,T ∈TN :S≤T ≤S+θ

E
[∣∣∣∣∣ γ

2m1+α

m∑
k=1

∫ T

S
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

∣∣∣∣∣
]

= 0.

By following what we did in terms (1) and (2), the prove for term (3) is direct. Having all of
these inequalities, we can conclude that:

lim
θ↓0

lim sup
m→∞

sup
S,T ∈T :S≤T ≤S+θ

E [An
t ] = 0. (4.28)

Let’s continue with the martingale term Mm
t . For (4), we have

(4) = sup
S,T ∈TN :S≤T ≤S+θ

E

∫ T

S

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds

 .

By repeating a previous calculation, we get:
∫ T

S

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds ≤ C

∫ N

0

m∑
k=1

p∑
i1,i2=1

|Σk,m(W k,m
s )i1,i2 |1[S,T ](s)ds,

and now, by using Cauchy-Schwarz’s inequality, we can deduce:
∫ T

S

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds ≤ Cp

m∑
k=1

∫ N

0
∥Σk,m(W k,m

s )∥1[S,T ](s)ds.

In order to bound the right hand side, we apply Lemma 4.3, which gives us bound over the
Frobenius norm of Σk,m(W k,m

s ):
∫ T

S

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds ≤ Cp

m∑
k=1

∫ N

0

c2
k

m
L(W m

s )1[S,T ](s)ds.
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Replacing, we obtain:

(4) ≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m1+ α
2
E

( m∑
k=1

∫ N

0

c2
k

m
L(W m

s )1[S,T ](s)ds

) 1
2
 .

Now, we apply Jensen’s inequality,and continue bounding the expression by using classical
inequalities:

(2) ≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m1+ α
2
E
[

m∑
k=1

∫ N

0

c2
k

m
L(W m

s )1[S,T ](s)ds

] 1
2

≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m1+ α
2

(∫ N

0

m∑
k=1

E
[

c2
k

m
L(W m

s )
]
1[S,T ](s)ds

) 1
2

by Fubini

≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m1+ α
2

(∫ N

0
E
[
L(W m

s )2
] 1

2
1[S,T ](s)ds

) 1
2

by C-S.

Now, by reordering the terms inside the integral:

(2) ≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m
1+α

2

∫ N

0

E [L(W m
s )2]

1
2

m
1[S,T ](s)ds


1
2

≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m
1+α

2

(∫ N

0
1[S,T ](s)ds

) 1
2

by Lemma 4.4

≤ C
√

p sup
S,T ∈TN :S≤T ≤S+θ

γ
1
2

m
1+α

2

√
T − S

≤
C

√
p
√

θγ
1
2

m
1+α

2

At last, following the same steps we applied for (1), we obtain:

lim
θ↓0

lim sup
m→∞

sup
S,T ∈TN :S≤T ≤S+θ

E

∣∣∣∣∣∣ γ
1
2

m1+ α
2

m∑
i=1

∫ T

S
φ′(W i

s)
m∑

j=1
Σ

1
2
i,j(W m

s )dBj
t

∣∣∣∣∣∣
 = 0 (4.29)

Having this, the prove of the fact that the desired expectation of (5) is bounded is straight-
forward. Hence, we conclude the proof of Lemma 4.11.

Having the two previous Lemmas, we can finally prove the lemma at the beginning of this
section:

Lemma 4.12 Let σ : Rp × X → R be a bounded, Lipschitz, with bounded-in-norm hessian
activation function for a one hidden layer neural network fm(c, w), whose parameters are
initialized such that W k,m ∼ N (0, 1) i.i.d and ck are initialized i.i.d with it’s first four mo-
ments bounded. Let (µm

t )t be the empirical measure of the process the process (ck, W m
t )t when
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trained in continuous time by the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s .

. Then, given φ ∈ C0(R × Rp), the process ⟨φ, µm
t ⟩ is tight.

Proof. Lemmas 4.10 and 4.11 combined correspond to the second condition of Aldous-
Rebolledo Criterion, which is enough to conclude that for φ ∈ C0(R) the process ⟨φ, µm

t ⟩
is tight.

4.3.2. Second Part of the Proof
In order to finish proving tightness, we must prove the following Lemma.

Lemma 4.13 Let σ : Rp × X → R be a bounded, Lipschitz, with bounded-in-norm hessian
activation function for a one hidden layer neural network fm(c, w), whose parameters are
initialized such that W k,m are i.i.d and have their first four moments finite and ck are ini-
tialized i.i.d with it’s first four moments bounded. Let (µm

t )t be the empirical measure of the
process the process (ck, W m

t )t when trained in continuous time by the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s .

Then, for every ε > 0, there exists a compact set Kε such that

∀m, t ∈ [0, T ], sup
m∈N

sup
t∈[0,T ]

P(µm
t /∈ Kε) ≤ ε.

.

Proof.
Let φ(x) = 1 + ∥x∥2 for x ∈ R × Rp. Note that φ(x) → ∞ when ∥x∥ → ∞. Also, both

∇φ(x) and HXφ(x) are continuous and HXφ(x) is bounded in norm.

By the dynamics of the empirical measure (4.23) we have:

⟨φ, µm
t − µm

0 ⟩ = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T ∇hk,m(W m
s )ds + γ

1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

+ γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds.

+ 1
m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s + 1

m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds.

46



By taking expectation we get:

E [⟨φ, µm
t ⟩] = E [⟨φ, µm

0 ⟩]︸ ︷︷ ︸
(1)

+E
[

1
m

m∑
k=1

∫ t

0
∇φ(W k,m

s )T hk,m(W m
s )ds

]
︸ ︷︷ ︸

(2)

+ E

 γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s


︸ ︷︷ ︸

(3)

+ E
[

γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

]
︸ ︷︷ ︸

(4)

+ E
[

1
m

m∑
k=1

∫ t

0

√
2τ∇φ(W k,m

s )T dB̃k,m
s

]
︸ ︷︷ ︸

(5)

+E
[

1
m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(W k,m

s )
)

ds

]
︸ ︷︷ ︸

(6)

.

We’d like to prove that the modules of (1), (2), (3), (4), (5) and (6) are finite. Let’s begin
with term (1), which by definition corresponds to

|(1)| = E [⟨φ, µm
0 ⟩] = ⟨φ, µm

0 ⟩ = 1
m

m∑
i=1

(1 + c2
k) + 1

m

m∑
i=1

(1 + ∥W k,m
0 ∥2).

Since both terms are convergent in m by the Law of Large Numbers, they are finite.
Having that |(1)| is finite, we can now analyze term (2). For this term, we recall that
∇φ(c, w) = 2(c, w). Then:

|(2)| =
∣∣∣∣∣E
[

1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds

]∣∣∣∣∣
≤ E

[
1
m

m∑
k=1

∫ t

0
∥∇φ(W k,m

s )∥∥hk,m(W m
s )∥ds

]

≤ CE
[

1
m

m∑
k=1

∫ t

0
|ck|∥hk,m(W m

s )∥ds +
∫ t

0
∥W k,m

s ∥∥hk,m(W m
s )∥ds

]

≤ C
1
m

m∑
k=1

∫ t

0
E
[
|ck|∥hk,m(W m

s )∥
]

ds + C
1
m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥∥hk,m(W m
s )∥

]
ds

C−S
≤ C

1
m

m∑
k=1

∫ t

0
E
[
c2

k

] 1
2 E

[
∥hk,m(W m

s )∥2
] 1

2 ds + C
1
m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2 E
[
∥hk,m(W m

s )∥2
] 1

2 ds.

(4.30)

By Cauchy Schwartz and by Lemma 4.6:

∥hk,m(W m
s )∥ ≤ λ∥W k,m

s ∥ + |ck|
m

1
2
L(W m

s ) 1
2 .
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Then:

E[∥hk,m(W m
s )∥2] 1

2 ≤ 2E[λ∥W k,m
s ∥2] 1

2 + 2
m

1
2
E[c2

kL(W m
s )] 1

2

≤ 2
(p + Cγs

mα

) 1
2

+ Cs

+ 2
m

1
2
E[c2

kL(W m
s )] 1

2 By Lemma 4.6

C−S
≤ 2

(p + Cγs

mα

) 1
2

+ Cs

+ 2
m

1
2
E[c4

k] 1
4E[L(W m

s )2] 1
4

≤ 2
(p + Cγs

mα

) 1
2

+ Cs

+ 2
m

1
2
E[L(W m

s )2] 1
4 Because E[c4

k] ≤ C.

(4.31)

Recall that by Lemma 4.2:
L(Ws)

m
≤ C

( 1
m

+ am

)
.

Then, by using that (a + b)2 ≤ 2a2 + 2b2:

L(Ws)2

m2 ≤ 2C
( 1

m2 + a2
m

)
,

and since ck’s are centered and i.i.d:

E
[

L(Ws)2

m2

]
≤ C.

Replacing in (4.31):

E[∥hk,m(W m
s )∥2] 1

2 ≤ 2
(p + Cγs

mα

) 1
2

+ Cs

+ C ≤ C + Cs
1
2 + Cs, (4.32)

From 4.30, we can bound the second moment of ck, and then replace 4.32:

|(2)| ≤ C
1
m

m∑
k=1

∫ t

0
E
[
c2

k

] 1
2 E

[
∥hk,m(W m

s )∥2
] 1

2 ds + C
1
m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2 E
[
∥hk,m(W m

s )∥2
] 1

2 ds

≤ C

m

m∑
k=1

∫ t

0
E
[
∥hk,m(W m

s )∥2
] 1

2 ds + C
1
m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2 E
[
∥hk,m(W m

s )∥2
] 1

2 ds

≤ C

m

m∑
k=1

∫ t

0

(
C + Cs

1
4 + Cs

1
2
)

ds + C

m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2
(
C + Cs

1
2 + Cs

)
ds

≤
(
C + Ct

3
2 + Ct2

)
+ C

m

m∑
k=1

∫ t

0
E
[
∥W k,m

s ∥2
] 1

2
(
C + Cs

1
2 + Cs

)
ds.

On the other hand, by Lemma 4.6, we know that:

E
[
∥W k,m

s ∥2
] 1

2 ≤

(p + Cγs

mα

) 1
2

+ Cs

 ,
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and replacing:

|(2)| ≤
(
C + Ct

3
2 + Ct2

)
+ C

m

m∑
k=1

∫ t

0

(p + Cγs

mα

) 1
2

+ Cs

(C + Cs
1
2 + Cs

)
ds

≤
(
C + Ct

3
2 + Ct2

)
+ C

m

m∑
k=1

(
C + Ct

1
2 + Ct

)2
t

≤
(
C + Ct

3
2 + Ct2

)
+
(
C + Ct

1
2 + Ct

)2
t

≤
(
C + CT

3
2 + CT 2

)
+
(
C + CT

1
2 + CT

)2
t.

With this, we conclude that |(2)| is bounded. Let’s continue with (3). We use Burkholder-
Davis-Gundy’s inequality to bound |(3)|:

|(3)| = E

 γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s


= γ

1
2

m1+ α
2

m∑
k=1

E
[∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

]
. (4.33)

By applying Burkholder-David-Gundy, we have:

E
[∣∣∣∣∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣∣∣∣∣] ≤ E
[
sup
u≤t

∣∣∣∣∫ u

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣
]

C−S
≤ CE

〈∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉 1
2

 . (4.34)

As we already calculated in Lemma 4.10:
〈∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
=
∫ t

0

m∑
k=1

p∑
i1,i2=1

∂i1φ(W k,m
s )∂i2φ(W k,m

s )Σk,m(W k,m
s )i1,i2ds,

which in this context corresponds to:〈∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
=
∫ t

0

m∑
k=1

∇φ(W k,m
s )T Σk,m(W k,m

s )∇φ(W k,m
s )ds.

By bounding:〈∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
≤
∫ t

0
|∇φ(W k,m

s )T Σk,m(W k,m
s )∇φ(W k,m

s )|ds

≤
∫ t

0
∥∇φ(W k,m

s )∥2∥Σk,m(W k,m
s )∥ds

≤
∫ t

0
∥W k,m

s ∥2∥Σk,m(W k,m
s )∥ds, (4.35)

where we used that ∇φ(W k,m
s ) = 2W k,m

s . By taking expectation in (4.35) and replacing at
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(4.34):

E
[∣∣∣∣∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣∣∣∣∣] ≤ CE

〈∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉 1
2


≤ CE

(2
∫ t

0
∥W k,m

s ∥2∥Σk,m(W k,m
s )∥ds

) 1
2


≤ CE

[∫ t

0
∥W k,m

s ∥2∥Σk,m(W k,m
s )∥ds

] 1
2

≤ C
(∫ t

0
E
[
∥W k,m

s ∥2∥Σk,m(W k,m
s )∥

]
ds
) 1

2
. (4.36)

We used Jensen’s inequality and the linearity of the expectation in the last lines. By Lemma
4.3:

∥Σk,m(W k,m
s )∥ ≤ C

c2
k

m
L(W m

s ).

By replacing this in (4.36):

E
[∣∣∣∣∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣∣∣∣∣] ≤ C

(∫ t

0
E
[
∥W k,m

s )∥2 c2
k

m
L(W m

s )
]

ds

) 1
2

.

By Cauchy-Schwarz, we obtain:

E
[∣∣∣∣∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣∣∣∣∣] ≤ C

(∫ t

0
E[∥W k,m

s )∥4] 1
4E[c4

k] 1
4E[L(W m

s )2

m2 ]ds

) 1
2

.

Now, by the Lemma in the appendix, the fact that ck’s 4th moment is bounded, and the fact
that, as we previously calculated, E[L(W m

s )2

m2 ] ≤ C, we get:

E
[∣∣∣∣∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

∣∣∣∣∣∣∣∣] ≤ C.

Replacing in (4.33):

|(3)| = E

 γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s


≤ Cγ

1
2

m
α
2

≤ C.
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With this, the only thing left is that |(4)| is finite. As a matter of fact, we have

|(4)| =
∣∣∣∣∣E
[

γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds

]∣∣∣∣∣
≤ γ

2m1+α

m∑
k=1

E
[∫ t

0
| Tr

(
Σ

1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)

|ds
]

.

Now, by repeating previous calculations, we have that:∣∣∣∣Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(W k,m
s )Σ

1
2
k,m(W k,m

s )
)∣∣∣∣ ≤ C∥Σk,m(W k,m

s )∥

Then, by replacing this in our last inequality:

|(4)| ≤ Cγ

2m1+α

m∑
k=1

E
[∫ t

0
∥Σk,m(W k,m

s )∥F robds
]

Now, just as before, we bound using classical inequalities:

|(4)| ≤ Cγ

2m1+α

m∑
k=1

∫ t

0
E
[
∥Σk,m(W k,m

s )∥F rob

]
ds by Fubini

= Cγ

2m1+α

m∑
k=1

∫ t

0
E
[

c2
k

m
L(W m

s )
]

ds by Lemma 4.3

≤ Cγ

2m1+α

m∑
k=1

∫ t

0
E
[
c4

k

] 1
2 E [L(W m

s )2]
1
2

m
1
2

ds By C-S.

By using our assumption that c has a bounded fourth moment, and Lemma 4.4’s uniform
bound, we have:

|(4)| ≤ Cγ

2m1+α

m∑
k=1

∫ t

0

E [L(W m
s )2]

1
2

m
1
2

ds

≤ Cγ

2m1+α

m∑
k=1

∫ t

0
ds

≤ Cγt

2mα
.

By noting again that the right hand side has a limit when m goes to infinity for all α ≥ 0,
we conclude that (4) is bounded and therefore finite.
For |(5)|, the proof is analogous to (3), and at last, for (6) we do the same as in the last
section, i.e we treat them as an analogue (4).

Then (1),(2),(3), (4), (5) and (6) are finite and hence, there exists a constant C⋆ such that

E[⟨φ, µm
t ⟩] ≤ C⋆,
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with φ(x) = (1 + ∥x∥2). Now, let KR be the set defined by:

KR := {µ ∈ P(R) | ⟨φ, µ⟩ ≤ R} .

It’s possible to prove that KR is a compact for all R > 0. Given ε > 0, we consider R = C⋆

ε
,

and obtain that for all t ∈ [0, T ], m ∈ N:

P(µm
t /∈ KR)

Markov
≤ 1

R
E[⟨φ, µm

t ⟩] ≤ C⋆

R
≤ ε.

In particular, by taking the supremum over m ∈ N:

sup
m∈N

sup
t∈[0,T ]

P(µm
t /∈ KR)

Markov
≤ 1

R
E[⟨φ, µm

t ⟩] ≤ C⋆

R
≤ ε,

with which we can finish our proof.

In the following, we state the Theorem that will allow us to finish this section. For a
proof, we refer the reader to [31].

Theorem 4.2 Given a collection of random measures(µm
t )t, with m ∈ N, the laws of this

process are thigh if they satisfy the following conditions:

1. Given φ ∈ C0(R), the process⟨φ, µm
t ⟩ is tense.

2. For all ε > 0, there exists a compact set Kε such that

∀m, t ∈ [0, T ], sup
m∈N

sup
t∈[0,T ]

P(µm
t /∈ Kε) ≤ ε.

A straightforward application of this Theorem is the following Proposition, which will be
our starting point to prove the convergence of the process of empirical measures on a suitable
space.

Proposition 4.1 Let σ : Rp × X → R be a bounded, Lipschitz, with bounded-in-norm
hessian activation function for a one hidden layer neural network fm(c, w), whose parameters
are initialized such that W k,m are i.i.d and have their first four moments finite, and ck are
initialized i.i.d with it’s first four moments bounded. Let (µm

t )t be the empirical measure of
the process the process (ck, W m

t )t when trained in continuous time by the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s .

Then the laws of the process given by the empirical measures of the process (W m
t )t, with

m ∈ N, are tight.

Proof. It’s a consequence of Theorem 4.2, and of Lemmas 4.10 and 4.11.
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4.4. The PDE limit
Let σ : Rp × X → R be a bounded, Lipschitz, with bounded-in-norm hessian activation
function for a one hidden layer neural network fm(c, w), whose parameters are initialized such
that W k,m ∼ N (0, 1) i.i.d and ck are initialized i.i.d with it’s first four moments bounded.
Let (µm

t )t be the empirical measure of the process the process (ck, W m
t )t when trained in

continuous time by the SDE:

dW k,m
t = hk,m(w)dt + γ

1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s .

In the last section we proved that under this hypothesis the laws of the process of empirical
measures are tight. This is only the first part of our study, since it gives us a hint on how to
prove convergence (if the convergence exists) to some kind of limit. We devote this section
to the study of this convergence, which will be represented as a Partial Differential Equation
(PDE) in the distributional sense. We begin by identifying the limiting PDE, and next, we
prove the convergence to this equation.

4.4.1. Identification of the Limit
Let’s remember the dynamics of the empirical measure (4.23):

⟨φ, µm
t − µm

0 ⟩ =
∫ t

0

〈
∇φ(w)T hk,m(w)ds, µm

s

〉
ds − λ

∫ t

0

〈
∇φ(c, w)T w, µm

s

〉
ds

γ
1
2

m
α
2

∫ t

0

〈
∇φ(w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s

+ γ

2mα

∫ t

0

〈
Tr
(

Σ
1
2
k,m(w)T Hwφ(w)Σ

1
2
k,m(w)

)
, µm

s

〉
ds

+
∫ t

0

〈√
2τ∇φ(w)T , µm

s

〉
dB̃k,m

s +
∫ t

0

〈
2τ Tr

(
Hwφ(W k,m

s )
)

, µm
s

〉
ds.

We already know about the tightness of the laws of the empirical measure process, but we’d
also like to prove convergence to a given equation. The central question in this part we’ll be:
Who’s that limit equation? In the first place, it’ll be help full to count with the following
Lemma.

Lemma 4.14 The limit in law of the the empirical measures µm
0 when m → ∞ is µ0, the

initialization distribution.

Proof. Since the parameters are initialized independently, it’s a straightforward consequence
of the Law of Large numbers.

Recall that µ0 is the law of the neural network’s parameters at initialization. On the first
place, it’s natural to expect that:

−λ
∫ t

0

∫
R×Rp

∇φ(c, W̃ )T W̃µm
s (dc̃, dW̃ )ds −→

m→∞
−λ

∫ t

0

∫
R×Rp

∇φ(c, W̃ )T W̃µm
s (dc̃, dW̃ )ds.
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Now, let’s study the other terms. For simplicity in our notation, we define the terms

Am(t) = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T ∇hk,m(W m
s )ds; Bm(t) = γ

1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s ;

Cm(t) = γ

2m1+α

m∑
k=1

∫ t

0
Tr
(

Σ
1
2
k,m(W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(W k,m

s )
)

ds;

Dm(t) = 1
m

m∑
k=1

∫ t

0

√
2τ∇φ(ck, W k,m

s )T dB̃k,m
s and Em(t) = 1

m

m∑
k=1

∫ t

0
2τ Tr

(
Hwφ(ck, W k,m

s )
)

ds.

In order to identify the limit in an easier way, we’ll re-write the terms. For Am(t) we have:

Am(t) = 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T ∇hk,m(W m
s )ds

= 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )TEX,Y

[
(Y − fm(W m, X)) ck√

m
∇σ(W k,m

s , X)
]

ds

+ λ

m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T W k,m
s ds

= 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )TEX,Y

[
( Y√

m
− ⟨cσ, µm

s ⟩)ck∇σ(W k,m
s , X)

]
ds

+ λ

m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T W k,m
s ds

= 1
m

m∑
k=1

∫ t

0
EX,Y

[
( Y√

m
− ⟨cσ, µm

s ⟩)ck∇φ(ck, W k,m
s )T ∇σ(W k,m

s , X)
]

ds

+ λ

m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )T W k,m
s ds.

We can re-write this last expression so its dependence on the empirical measure is clearer.
We get:

Am(t) =
∫ t

0

∫
R×Rp

EX,Y

[
( Y√

m
− ⟨cσ(w, x), µm

s ⟩)c̃∇φ(W̃ )T ∇σ(W̃ , X)
]

µm
s (dc̃, dw̃)ds

+λ
∫ t

0
⟨∇φ(c, W̃ )T W̃ , µm

s ⟩ds

(4.37)

Hence, we expect that if a limiting measure process µ ∈ C([0, T ], P(R × Rp)) exists (in law),
then:

Am(t) L−→
n→∞

−
∫ t

0

∫
R×Rp

EX,Y

[
⟨cσ, µs⟩)c̃∇φ(W̃ )T ∇σ(W̃ , X)

]
µs(dc̃, dW̃ )ds+λ

∫ t

0
⟨∇φ(W̃ )T W̃ , µs⟩ds

Before we continue with Bm(t) and Cm(t), we’ll define the following function, which will
act as a limit to Σk,m(W k,m

s ). Let S(µ, w, c) be the function

S(µ, w, c) : P(Rp) × Rp × R → Mp,p(R),
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given by

S(µ, w, c) = c2
(
EX

[
⟨cσ, µ⟩2∂iσ(w, X)∂jσ(w, X)

]
− EX [(⟨cσ, µ⟩∂iσ(w, X)]EX [(⟨cσ, µ⟩∂jσ(w, X)]

)
i,j∈[p]

(4.38)
By doing something similar to what we did with Am(t), we expect that for the term

Cm(t) = γ

2mα

∫ t

0

〈
Tr
(

Σ
1
2
k,m(w)T Hwφ(c, w)Σ

1
2
k,m(w)

)
, µm

s

〉
ds,

we’ll obtain
Cm(t) L−→

n→∞
0,

in the case where α > 0, and

Cm(t) L−→
n→∞

γ
∫ t

0
⟨Tr

(
S(µ, W̃ , c̃)T Hwφ(c̃, W̃ )

)
, µs⟩ds

in the case where α = 0. For Em(t), we expect:

Em(t) L−→
n→∞

√
2τ
∫ t

0
⟨Tr

(
Hwφ(c̃, W̃ )

)
, µs⟩ds.

Next, Lemma 4.15 tells us that the martingale terms Bm(t) and Dm(t) will go to 0 in L1.

Lemma 4.15 Given t ≥ 0, we have:

lim
m→∞

E [|Bm(t)|] = 0,

and
lim

m→∞
E [|Dm(t)|] = 0.

Proof. Let t ≥ 0. By definition, we know that

Bm(t) = − γ
1
2

m1+ α
2

m∑
k=1

∫ t

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s .

By repeating a previous calculation

⟨Bm(t)⟩ =
〈

γ

m2+α

m∑
k=1

∫ N

0
∇φ(W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s

〉
≤ C

γ
1
2

m1+ α
2

∫ N

0

m∑
k=1

p∑
i1,i2=1

|Σk,m(W k,m
s )i1,i2 |ds.

(4.39)
Let B∗

m(t) := sup
s≤t

|Bm(t)|. By Burkholder-Davis-Gundy (BDG) inequality:

E[B∗
m(t)] ≤ CE

[
⟨Bm(t)⟩ 1

2
]

. (4.40)

55



Replacing equation (4.39) in (4.40), and then bounding φ’s gradient norm:

E[B∗
m(t)] ≤ C

γ
1
2

m1+ α
2
E


∫ t

0

m∑
k=1

p∑
i1,i2=1

|Σk,m(W k,m
s )i1,i2|ds

 1
2


≤ C
γ

1
2

m1+ α
2

E
∫ t

0

m∑
k=1

p∑
i1,i2=1

|Σk,m(W k,m
s )i1,i2 |ds

 1
2

By Jensen’s inequality.

Now, by Cauchy-Schwarz:

E[B∗
m(t)] ≤ C

γ
1
2

m1+ α
2

(
E
[∫ t

0

m∑
k=1

p∥Σk,m(W k,m
s )∥ds

]) 1
2

By rewriting this last expression, we get:

E[B∗
m(t)] ≤ C

γ
1
2
√

p

m1+ α
2

(
E
[∫ N

0

m∑
k=1

∥Σk,m(W k,m
s )∥ds

]) 1
2

≤ C
γ

1
2
√

p

m1+ α
2

(
E
[∫ N

0

m∑
k=1

c2
k

m
L(W m

s )ds

]) 1
2

By Lemma 4.3

≤ C
γ

1
2
√

p

m1+ α
2

(∫ N

0

m∑
k=1

E [c2
kL(W m

s )]
m

ds

) 1
2

By Fubini

By applying Cauchy-Schwarz inequality, we obtain:

E [c2
kL(W m

s )]
m

≤ CE[c4
k] 1

4
E[L(W m

s )2] 1
2

m

≤ C

(
E
[

L(W m
s )2

m2

]) 1
2

Because ck’s 4th moment are bounded.

≤ C By Lemma 4.2.

Replacing this in our last inequality for E[B∗
m(t)]:

E[B∗
m(t)] ≤ C

γ
1
2
√

p

m1+ α
2

(∫ N

0

m∑
k=1

ds

) 1
2

≤ C
γ

1
2

√
N√

p

m
1+α

2
.

Finally, we take the limit as m → ∞, we get:

lim
m→∞

E[B∗
m(t)] = 0.

At last, since |Bm(t)| ≤ B∗
m(t), we conclude:

lim
m→∞

E[|Bm(t)|] = 0,
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which is exactly what we wanted to prove. Note that the proof for Dm(t) is analogous, since
instead of Σ we have the identity. Having this, we conclude the demonstration.

Before concluding this section, we’ll introduce the notation:

⟨cσ(w, X), µm
s ⟩ :=

∫
R×Rp

cσ(w, X)µm
s (dc, dw).

By taking into account Lemma 4.15, it’s natural to expect that, if the limit exists in some
sense, then it will be given by:

• If α = 0:

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(c̃, W̃ )T W̃µs(dc̃, dW̃ )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
⟨cσ(w, X), µs⟩)c̃∇φ(W̃ )T ∇σ(W̃ , X)

]
µs(dc̃, dW̃ )ds

+ γ
∫ t

0

∫
R×Rp

Tr
(
S(µ, W̃ , c̃)T Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds

+
√

2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

• If α > 0:

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(c̃, W̃ )T W̃µs(dc̃, dW̃ )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
⟨cσ, µs⟩)c̃∇φ(W̃ )T ∇σ(W̃ , X)

]
dµs(dc̃, dW̃ )ds

+
√

2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

4.4.2. Convergence to the Limit
Having identified our limit candidate, we’ll can now proceed to prove convergence to this
candidate in some sense. We’ll only study the case when α = 0. The case when α > 0 will
be a straightforward extension of this other case. We define F : P(Rp) → R such that, for
µ ∈ C([0, T ], P(R2)),

F (µ) =
∣∣∣∣⟨φ, µt − µ0⟩ + λ

∫ t

0

∫
R×Rp

∇φ(W̃ )T W̃dµs(dc̃, dW̃ )ds (4.41)

−
∫ t

0

∫
R×Rp

EX,Y

[
⟨cσ, µs⟩)c̃∇φ(W̃ )T ∇σ(W̃ , X)

]
dµs(dc̃, dW̃ )ds (4.42)

+ γ
∫ t

0

∫
R×Rp

Tr
(
S(µ, W̃ , c̃)T Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds (4.43)

+
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds

∣∣∣∣ . (4.44)

The idea will be to use this function F to prove the convergence in the PDEs on the
last subsection, when m goes to infinity. We’ll prove that F (µm) goes to 0 as m goes to
infinity. Since F is positive, this will help us prove that the limit µ satisfies the PDE inside
the module of (4.82). Having done this analysis, a direct corollary will be the fact that the
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PDE has a solution. Then a natural question will be: Is this solution unique? We’d like the
solution to be unique, since in that case we could prove that the convergence is not only for
a sub-sequence of the process of empirical measures, but of the whole sequence. The next
section will be devoted to this study.

In order to make our proof clear, we’ll define the following function, which is given by
the difference that arises when we try to approximate the matrices Σk,m by the mean-field
operator S(w, µ), for m ∈ N. The difference between both operator will be summed up in a
reminder, which will be called Rk,m. More precisely, we define for k ∈ {1 . . . m}, the function
Rk,m : P(Rp) × R → Rp×p by:

(Rk,m(µ, w))i,j = c2
kEX,Y

[(
Y 2

m
− 2Y fµm(X)

m

)
∂iσ(W k,m

s , X)∂jσ(W k,m
s , X)

]

−c2
kEX,Y

[
Y√
m

∂iσ(W k,m
s , X)

]
EX,Y

[
Y√
m

∂jσ(W k,m
s , X)

]
,

(4.45)

where we introduced the notation for the neural network:

fµ(X) := 1√
m

m∑
k=1

ckσ(W k,m, X). (4.46)

In the following, we proceed to state a Lemma that will allow us to control the norm of
Rk,m(µ, w) for µ ∈ P(Rp), w ∈ R.

Lemma 4.16 For every ε > 0, there exists m̃ such that ∀m ≥ m̃,

∥R(µm, W k,m
s )∥F rob ≤ ε,

for each k ∈ {1, . . . , m}, almost surely.

Proof. Let ε > 0. Given m ∈ N, k ∈ {1, . . . , m}, and i, j ∈ {1, . . . , p}. Recall that we note
the neural network by

fµ(X) := 1√
m

m∑
k=1

ckσ(W k,m, X). (4.47)

With this notation in mind, we have

|Rk,m(µm, W k,m
s )i,j| =

∣∣∣∣∣c2
kEX,Y

[(
Y 2

m
− 2Y fµ(X)

m

)
∂iσ(W k,m

s , X)∂jσ(W k,m
s , X)

]
(4.48)

−c2
kEX,Y

[
Y√
m

∂iσ(W k,m
s , X)

]
EX,Y

[
Y√
m

∂jσ(W k,m
s , X)

]∣∣∣∣∣ . (4.49)

≤ c2
kEX,Y

[(
Y 2

m
+ 2Y |fµ(X)|

m

)
|∂iσ(W k,m

s , X)||∂jσ(W k,m
s , X)|

]
(4.50)

+ c2
kEX,Y

[
|Y |√

m
|∂iσ(W k,m

s , X)|
]
EX,Y

[
|Y |√

m
|∂jσ(W k,m

s , X)|
]

(4.51)

≤ Cc2
kEX,Y

[
Y 2

m
+ 2|Y ||fµ(X)|

m

]
+ Cc2

kEX,Y

[
|Y |√

m

]
EX,Y

[
|Y |√

m

]
. (4.52)
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Now, since σ is a bounded function by our assumptions, for x ∈ X we have that for some
C > 0 ∣∣∣∣∣fµ(x)√

m

∣∣∣∣∣ ≤ C
1
m

m∑
i=1

|ci|.

Replacing this in equation (4.52):

|Rk,m(µm, W k,m
s )i,j| ≤ Cc2

kEX,Y

[
Y 2

m
+

2|Y | 1
m

∑m
i=1 |ci|√

m

]
+ Cc2

kEX,Y

[
|Y |√

m

]
EX,Y

[
|Y |√

m

]

≤ Cc2
k

C

m
+ Cc2

k

C

m
3
2

m∑
i=1

|ci| + C√
m

c2
kEX,Y

[
|Y |√

m

]

By taking expectation and Cauchy Schwarz, since ck’s have finite second moment, we get:

E[|Rk,m(µm, W k,m
s )i,j|] ≤ CE[c2

k]
m

+ C

m
3
2
E[c4

k] 1
2E

( m∑
i=1

|ci|
)2
 1

2

+ C√
m
E[c2

k] (4.53)

≤ C

m
+ C

m
3
2
E

( m∑
i=1

|ci|
)2
 1

2

+ C√
m

(4.54)

By Cauchy Schwarz on the sum, we know that:(
m∑

i=1
|ci|
)2

≤ m
m∑

i=1
c2

i .

Replacing this in equation (4.54):

E[|Rk,m(µm, W k,m
s )i,j|] ≤ C

m
+ C

m

(
m∑

i=1
E
[
c2

i

]) 1
2

+ C√
m

(4.55)

≤ C

m
+ C

m
1
2

+ C√
m

. (4.56)

Finally, by taking m as big as necessary, we get:

E[|Rk,m(µm, W k,m
s )i,j|] ≤ ε a.s,

which is what we wanted to conclude.

The previous Lemma will be useful to prove that the limit of E[F (µm)] when m goes to
infinity is in fact 0. We state this in the following Lemma.

Lemma 4.17 For fixed φ and t, and given µm ∈ C([0, T ], P(R × Rp), we have that:

lim
m→∞

E[F (µm)] = 0.

Proof. We begin by recalling the dynamics of the empirical measure we wrote in equation
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(4.23):

⟨φ, µm
t − µm

0 ⟩ =
∫ t

0

〈
∇φ(c, w)T hk,m(w)ds, µm

s

〉
ds − λ

∫ t

0

〈
∇φ(c, w)T w, µm

s

〉
ds

γ
1
2

m
α
2

∫ t

0

〈
∇φ(c, w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s

+ γ

2mα

∫ t

0

〈
Tr
(
Σk,m(w)T Hwφ(c, w)

)
, µm

s

〉
ds

+
∫ t

0

〈√
2τ∇φ(c, w)T , µm

s

〉
dB̃k,m

s +
∫ t

0

〈
2τ Tr

(
Hwφ(ck, W k,m

s )
)

, µm
s

〉
ds.

By expanding the first term in the right hand side, and summing it on the left side, we obtain:

⟨φ, µm
t − µm

0 ⟩ +
∫ t

0

〈
∇φ(c, w)TEX,Y

[
fµm

s (X)√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

+ λ
∫ t

0

〈
∇φ(c, w)T w, µm

s

〉
ds =

∫ t

0

〈
∇φ(c, w)TEX,Y

[
Y√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

γ
1
2

m
α
2

∫ t

0

〈
∇φ(c, w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s

+ γ

2mα

∫ t

0

〈
Tr
(
Σk,m(w)T Hwφ(c, w)

)
, µm

s

〉
ds

+
∫ t

0

〈√
2τ∇φ(c, w)T , µm

s

〉
dB̃k,m

s +
∫ t

0

〈
2τ Tr

(
Hwφ(ck, W k,m

s )
)

, µm
s

〉
ds.

Next, note that by adding and subtracting the integral of the mean field operator we defined
in equation (4.38):

γ

2mα

∫ t

0

〈
Tr
(
S(c, w, µm

s )T Hwφ(c, w)
)

, µm
s

〉
ds,

and mixing it with the matrix Rk,m(µm, W k,m
s we defined in equation (4.45) to obtain:

⟨φ, µm
t − µm

0 ⟩ +
∫ t

0

〈
∇φ(c, w)TEX,Y

[
fµm

s (X)√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

+ λ
∫ t

0

〈
∇φ(c, w)T w, µm

s

〉
ds − γ

2mα

∫ t

0
⟨Tr (S(c, w, µm

s )Hwφ(c, w)) , µm
s ⟩ ds

−
∫ t

0

〈
2τ Tr

(
Hwφ(ck, W k,m

s )
)

, µm
s

〉
ds =

∫ t

0

〈
∇φ(c, w)TEX,Y

[
Y√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

γ
1
2

m
α
2

∫ t

0

〈
∇φ(c, w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s + γ

2mα

∫ t

0

〈
Tr
(
R(c, w, µm

s )T Hwφ(c, w)
)

, µm
s

〉
ds

+
∫ t

0

〈√
2τ∇φ(c, w)T , µm

s

〉
dB̃k,m

s .
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Next, by taking module of both sides we get:∣∣∣∣∣⟨φ, µm
t − µm

0 ⟩ +
∫ t

0

〈
∇φ(c, w)TEX,Y

[
fµm

s (X)√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

+ λ
∫ t

0

〈
∇φ(c, w)T w, µm

s

〉
ds − γ

2mα

∫ t

0
⟨Tr (S(c, w, µm

s )Hwφ(c, w)) , µm
s ⟩ ds

−
∫ t

0

〈
2τ Tr

(
Hwφ(ck, W k,m

s )
)

, µm
s

〉
ds
∣∣∣∣ =

∣∣∣∣∣
∫ t

0

〈
∇φ(c, w)TEX,Y

[
Y√
m

∇σ(w, X)
]

ds, µm
s

〉
ds

γ
1
2

m
α
2

∫ t

0

〈
∇φ(c, w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s + γ

2mα

∫ t

0

〈
Tr
(
R(c, w, µm

s )T Hwφ(c, w)
)

, µm
s

〉
ds

+
∫ t

0

〈√
2τ∇φ(c, w)T , µm

s

〉
dB̃k,m

s

∣∣∣∣ .
Note that the left side of this equation corresponds exactly to the definition of F (µm) in
equation (4.82). We’ll note

Bm(t) := γ
1
2

m
α
2

∫ t

0

〈
∇φ(c, w)T Σ

1
2
k,m(w), µm

s

〉
dBk

s and Em(t) :=
∫ t

0

〈√
2τ∇φ(c, w)T , µm

s

〉
dB̃k,m

s .

Whit this, we can write the following equality:

F (µm) =

∣∣∣∣∣∣∣∣∣∣∣
1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )TEX,Y

[
Y√
m

ck∇σ(W k,m
s , X)

]
ds︸ ︷︷ ︸

(1)

+ Bm(t)︸ ︷︷ ︸
(2)

+ γ

2m

∫ t

0

m∑
k=1

Tr
(
R(µm

s , W k,m
s , ck)T Hwφ(ck, W k,m

s )
)

ds︸ ︷︷ ︸
(3)

+ Em(t)︸ ︷︷ ︸
(4)

∣∣∣∣∣∣∣∣∣∣∣

By applying the expectation w.r.t the Brownian filtration on the left side, we can apply the
triangular inequality in the right one and obtain:

E[F (µm)] ≤ E[|(1)|] + E[|(2)|] + E[|(3)|].

Let’s see that the limit of each of these terms when m goes to infinity is 0. Let0s begin with
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(1). We have:

|(1)| =
∣∣∣∣∣ 1
m

m∑
k=1

∫ t

0
∇φ(ck, W k,m

s )TEX,Y

[
Y√
m

ck∇σ(W k,m
s , X)

]
ds

∣∣∣∣∣ By definition

≤ 1
m

m∑
k=1

∫ t

0
∥∇φ(ck, W k,m

s )∥EX,Y

[
|Y |√

m
|ck|∥∇σ(W k,m

s , X)∥
]

ds By bounding with the module

≤ C

m

m∑
k=1

∫ t

0

|ck|√
m
EX,Y [|Y |] ds Bounding |σ| and |φ|

≤ C

m

m∑
k=1

∫ t

0

|ck|√
m
EX,Y

[
Y 2
] 1

2 ds por C-S

≤ C

m
1
2 +1

∫ t

0

m∑
k=1

|ck|ds becauseE[Y 2] < ∞.

Now, we can use Cauchy Schwarz on the sum and use that we are considering c to have a
bounded second momentum. This way:

E[|(1)|] ≤ Ct√
m

. (4.57)

Now, by taking m → ∞ we conclude

lim
m→∞

E[|(1)|] = 0. (4.58)

We bound (2) and (4) by using Lemma 4.15, which tells us that the limit when m goes to
infinity of this term was equal to 0. At last, we have (3). We have:

|(3)| =
∣∣∣∣∣ γ

2m

∫ t

0

m∑
k=1

Tr
(
R(µm

s , W k,m
s , ck)T Hwφ(ck, W k,m

s )
)

ds

∣∣∣∣∣ By definition

≤ γ

2m

∫ t

0

m∑
k=1

∣∣∣Tr
(
R(µm

s , W k,m
s , ck)T Hwφ(ck, W k,m

s )
)∣∣∣ ds bounding by the module

≤ γ

2m

∫ t

0

m∑
k=1

∥R(µm
s , W k,m

s , ck)∥∥Hwφ(ck, W k,m
s )∥ds because Tr(AB) ≤ Tr

(
AAT

) 1
2 Tr

(
BBT

) 1
2

≤ Cγ

2m

∫ t

0

m∑
k=1

∥R(µm
s , W k,m

s , ck)∥ds because Hwφ has bounded norm.

Now, by taking expectation, we can apply Lemma 4.16, which tells us that E[∥R(µm
s , W k,m

s , ck)∥]
goes to 0 when m goes to infinity, we can bound this last term, and get:

E[|(3)|] ≤ Ctγε

2 .

By taking the right ε we conclude:

lim
m→∞

E[|(3)|] = 0. (4.59)
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This way:

lim
m→∞

E[F (µm)] ≤ lim
m→∞

E[|(1)|] + lim
m→∞

γ

2E[|(2)|] + lim
m→∞

E[|(3)|] + lim
m→∞

E[|(4)|] = 0,

with which we conclude:
lim

m→∞
E[F (µm)] = 0,

which is exactly what we wanted to prove.

Having Lemma 4.16, we must prove that F (µm) converges to F (µ), with µ being a limit.
Nevertheless, we have two problems:

1. We don’t know of the existence of such µ.

2. The function for the pair (c, w) given by cσ(w, x) is not bounded, and hence in the
case where the convergence existed, we couldn’t directly use the definition of weak
convergence of probability measures.

In the following Lemma we attempt to solve both problems to prove our desired conver-
gence. For simplicity, by an abuse of notation we’ll denote any sub-sequence of (µm)m as
(µm)m.

Lemma 4.18 Let φ and t ≥ 0 fixed. Then, given a convergent-in-law sub-sequence of µm to
a measure µ in the space of continuous paths over measures, we have:

lim
m→∞

E[F (µm)] = E[F (µ)]

Proof. For simplicity, we’ll prove the case when λ = 0. The extension to the case when
λ > 0 is straightforward. In the first place, it’s important to recall that by Proposition 4.1,
the laws of the process of empirical measures are tight in C([0, T ], M(R×Rp)). Hence, there
exists a sub-sequence of empirical measures such that their laws are convergent to a fixed
distribution, which we’ll denote byπ. Let µ ∼ π be a probability measure. Then µm

t → µt in
law for all t ≥ 0. We’ll denote the sub-sequence equally by µm.

Now, let ε > 0 an let M be a positive constant. We define a modification of F (µ) :
C([0, T ], M(R × Rp)) → R defined in equation (4.82), which we’ll denote by FM(µ) :
C([0, T ], M(R × Rp)) → R, which cuts the module of last layer coefficients of the neural
network, which the reader may recall are denoted by c, at M :

FM(µ) =
∣∣∣∣⟨φ, µt − µ0⟩ −

∫ t

0

∫
R×Rp

EX,Y

[
fµ

M(X)((c ∧ M) ∨ (−M))∇φ(c, W )T ∇σ(W, X)
]
µs(dc, dW )ds

(4.60)

+ γ
∫ t

0

∫
R×Rp

Tr
(
SM(µ, W, c)T Hwφ(c, W )

)
µs(dc, dW )ds (4.61)

+
∫ t

0

∫
R×Rp

Tr (Hwφ(c, W )) µs(dc, dW )ds
∣∣∣∣ , (4.62)
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where
fµ

M(X) :=
∫

((c ∧ M) ∨ (−M))σ(W, X)µs(dc, dW ),

and

SM(µ, W, c)i,j = ((c ∧ M) ∨ (−M))2
(
EX

[
fµ

M(X)2∂iσ(W, X)∂jσ(W, X)
]

−EX [(fµ
M(X)∂iσ(W, X)]EX [(fµ

M(X)∂jσ(W, X)]) .

The definition at (4.62) allows FM(µ) to be a continuous function of µ, since it’s bounded.
For simplicity, we’ll also denote:

cM := ((c ∧ M) ∨ (−M)) and fµ(X) :=
∫

cσ(W, X)µs(dc, dW ).

Now, to begin our study, note that by the triangular inequality we get

|E[F (µm)] − E[F (µ)]| ≤ |E[F (µm) − FM(µm)]| + |E[FM(µm)] − FM(µ)]| + |E[FM(µ) − F (µ)]|.
(4.63)

We must prove that the three terms in the right-hand-side converge to 0 as m diverges to
infinity to conclude the proof of the Lemma. We begin with the first term. By the inverse
triangular inequality, we have:

E[F (µm) − FM(µm)]| = E
[∣∣∣∣∫ t

0

∫
R×Rp

EX,Y

[
(fµm

s
M (X)cM − fµ(X)c)∇φ(c, W )T ∇σ(W, X)

]
µm

s (dc, dW )ds

+γ
∫ t

0

∫
R×Rp

Tr
(
(S(µm, W, c) − SM(µm, W, c))T Hwφ(c, W )

)
µm

s (dc, dW )ds

∣∣∣∣]
≤ E

[∫ t

0

∫
R×Rp

EX,Y

[
|fµm

s
M (X)cM − fµm

s (X)c|∥∇φ(c, W )∥∥∇σ(W, X)∥
]
µm

s (dc, dW )ds

+γ
∫ t

0

∫
R×Rp

∥S(µm, W, c) − SM(µm, W, c)∥∥Hwφ(c, W )∥µm
s (dc, dW )ds

]
.

Recall that, by our hypothesis, the norm of the gradient and the Hessian of both σ and φ
are bounded. Hence,

|E[F (µm) − FM(µm)]| ≤ E
[
C
∫ t

0

∫
R×Rp

EX,Y

[
|fµm

s
M (X)cM − fµm

s (X)c|
]
µm

s (dc, dW )ds

(4.64)

+Cγ
∫ t

0

∫
R×Rp

∥S(µm
s , W, c) − SM(µm

s , W, c)∥µm
s (dc, dW )ds

]
. (4.65)

Let’s study the first term of equation (4.65). Now, by triangular inequality, for X ∈ X

|fµm
s

M (X)cM − fµm
s (X)c| ≤ |fµm

s
M (X)cM − f

µm
s

M (X)c| + |fµm
s

M (X)c − fµm
s (X)c| (4.66)

≤ |fµm
s

M (X)||cM − c| + |c||fµm
s

M (X) − fµm
s (X)|. (4.67)
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Hence:∫
R×Rp

EX,Y

[
|fµm

s
M (X)cM − fµm

s (X)c|
]

µm
s (dc, dW ) ≤

∫
R×Rp

EX,Y

[
|fµm

s
M (X)||cM − c|

]
µm

s (dc, dW )

+
∫
R×Rp

EX,Y

[
|c||fµm

s
M (X) − fµm

s (X)|
]

µm
s (dc, dW ),

Now, by Cauchy-Schwarz inequality:
∫
EX,Y

[
|fµm

M (X)||cM − c|
]

µm
s (dc, dW ) ≤

(∫
|cM − c|2µm

s (dc)
) 1

2
(∫

EX,Y

[
|fµm

s
M (X)|

]2
µm

s (dc, dW )
) 1

2
.

(4.68)
Since cM − c ≤ |c|1|c|>M , and |fµm

M (X)| ≤
∫

|c|µm
s (dc) since σ is bounded, we get

∫
EX,Y

[
|fµm

s
M (X)||cM − c|

]
µm

s (dc, dW ) ≤
(∫

|c|21|c|>Mµm
s (dc)

) 1
2
(∫ (∫

|c|µm
s (dc)

)2
µm

s (dc, dW )
) 1

2

(4.69)

≤ C
(∫

|c|21|c|>Mµm
s (dc)

) 1
2

, (4.70)

because c’s second moment is bounded. Since c ∈ L1(R, µs(dc)), if M is big enough we can
conclude: ∫

EX,Y

[
|fµm

s
M (X)||cM − c|

]
µm

s (dc, dW ) ≤ ε. (4.71)

On the other hand, by using Cauchy-Schwarz and the hypothesis that c’s second moment is
bounded:∫
EX,Y

[
|c||fµm

s
M (X) − fµm(X)|

]
µm

s (dc, dW ) ≤ C
(∫

EX,Y

[
|fµm

s
M (X) − fµm

s (X)|
]2

µm
s (dc, dW )

) 1
2

≤ C
(∫

|cM − c|2µm
s (dc, dW )

) 1
2

,

and again, since c ∈ L1(R, µs(dc)), if M is big enough we can conclude:∫
EX,Y

[
|c||fµm

s
M (X) − fµm

s (X)|
]

µm
s (dc, dW ) ≤ ε. (4.72)

By putting together equations (4.71) and (4.72), we can conclude that for if M is big enough

C
∫ t

0

∫
R×Rp

EX,Y

[
|fµm

M (X)cM − fµm
s (X)c|

]
µm

s (dc, dW )ds ≤ ε. (4.73)

Now, for the second term of equation (4.65) we do the same procedure, and obtain that for
M big enough,

Cγ
∫ t

0

∫
R×Rp

∥S(µm, W, c) − SM(µm, W, c)∥µm
s (dc, dW )ds ≤ ε. (4.74)
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Then, with equations (4.73) and (4.74), we conclude there exists m̃ such that for all m ≥ m̃:

|E[F (µm)] − FM(µm)]| ≤ ε

3 (4.75)

The second term we want to bound,

|E[FM(µm)] − FM(µ)]|,

also converges to 0, since µm is weakly convergent to µ, and therefore by being evaluated
w.r.t continuous bounded functions, we obtain our desired convergence. Then, there exists
˜̃m such that for every m ≥ max

{
m̃, ˜̃m

}
, we have:

|E[F (µm)] − FM(µm)]| ≤ ε

3 and also |E[FM(µm)] − FM(µ)]| ≤ ε

3 (4.76)

At last, let’s study what happens with the third term. It’s not difficult to note that by inverse
triangular inequality:

|E[FM(µ) − F (µ)]| ≤
∣∣∣∣∫ t

0
⟨EX,Y

[(
fµs

M (X)cM − fµs(X)c
)

φ(c, W )T ∇σ(W, X)
]

, µs(dc, dW )⟩ds

∣∣∣∣
+
∣∣∣∣γ ∫ t

0

∫
R×Rp

Tr
(
(S(µs, W, c) − SM(µs, W, c))T Hwφ(c, W )

)
dµs(dc, dW )ds

∣∣∣∣ .
Now, we enter the module to the inside of the integrals and bounding the gradients of φ and
σ. With this, we eliminate the dependence on X, Y and t, and therefore of the expectation.
We obtain:

|E[FM(µ) − F (µ)]| ≤ C
∫ t

0

∫ (
|fµs

M (X)||cM | − |fµs(X)||c|
)

µs(dc, dW )ds

+ C
∫ t

0

∫
⟨
(
fµs

M (X)2|cM |2 − fµs(X)2|c|2
)

µs(dc, dW )ds

+ C
∫ t

0

∫
⟨
(
fµs

M (X)2|cM |2 − fµs(X)2|c|2
)

µs(dc, dW )ds.

By noting that the two last terms are the same:

|E[FM(µ) − F (µ)]| ≤ C
∫ t

0

∫ (
|fµs

M (X)||cM | − |fµs(X)||c|
)

µs(dc, dW )ds

+ C
∫ t

0

∫
⟨
(
fµs

M (X)2|cM |2 − fµs(X)2|c|2
)

µs(dc, dW )ds.

By adding and subtracting the same quantities as we did for the first term in equation (4.63),
we can see that the next steps are exactly the same as the ones we took for the former, except
for the fact that we are now working with µs instead of µm

s . We conclude, then that for large
enough M , the inequality below is satisfied:

|E[FM(µ) − F (µ)]| ≤ ε

3 . (4.77)

Hence, by putting together (4.75), (4.76) and (4.77), we deduce that there exists taking M̄ ,
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such that if we take M ≥ M̄ , there exists m̃ such that for all m ≥ m̃:

|E[F (µm)]−E[F (µ)]| ≤ |E[F (µm)−FM(µm)]|+|E[FM(µm)]−FM(µ)]|+|E[FM(µ)−F (µ)]| ≤ ε,

which can also be written as
lim

m→∞
E[F (µm)] = E[F (µ)],

which corresponds exactly to what we wanted to prove.

Having proved Lemmas 4.17 and 4.18, we can conclude that any sub-sequence µmk of µm,
convergent in law to µ, will satisfy:

E[F (µ)] = 0. (4.78)

Recall that we defined F as F : P(Rp) → R such that, for µ ∈ C([0, T ], P(R2)),

F (µ) =
∣∣∣∣⟨φ, µt − µ0⟩ + λ

∫ t

0

∫
R×Rp

∇φ(W )T Wdµs(dc, dW )ds (4.79)

−
∫ t

0

∫
R×Rp

EX,Y

[
fµs(X)c∇φ(W )T ∇σ(W, X)

]
dµs(dc, dW )ds (4.80)

+ γ
∫ t

0

∫
R×Rp

Tr
(
S(µs, W, c)T Hwφ(W )

)
dµs(dc, dW )ds (4.81)

+
∫ t

0

∫
R×Rp

Tr (Hwφ(W )) dµs(dc, dW )ds
∣∣∣∣ . (4.82)

From (4.82) it’s straightforward to note that F is positive. Then, by the result in equation
(4.78), we can conclude:

F (µ) = 0 c.s..

This means that, when α > 0, the limiting path in the space of measure for the law of the
parameters of the neural network satisfies the limiting PDE given by:

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(W )T Wdµs(dc, dW )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
fµs(X)c∇φ(W )T ∇σ(W, X)

]
dµs(dc, dW )ds

+ λ
∫ t

0

∫
R×Rp

∇φ(c, W )T Wµs(dc, dW )ds

− γ
∫ t

0

∫
R×Rp

Tr
(
S(µs, W, c)T Hwφ(W )

)
dµs(dc, dW )ds

−
∫ t

0

∫
R×Rp

Tr (Hwφ(W )) dµs(dc, dW )ds,

where we defined fµ(X) :=
∫
R×Rp cσ(W, X)µ(dc, dW ).

4.5. Uniqueness of solutions for the PDE limit
Let fµ(X) denote fµ(X) :=

∫
R×Rp cσ(W, X)µ(dc, dW ). In the last section found that the

limit in law of the process of paths over the space of empirical measures (µm
s )m∈N

t∈[0,T ] satisfies
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the equation (4.83):

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(W )T Wdµs(dc, dW )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
fµs(X)c∇φ(W )T ∇σ(W, X)

]
dµs(dc, dW )ds

+ λ
∫ t

0

∫
R×Rp

∇φ(c, W )T Wµs(dc, dW )ds

− γ
∫ t

0

∫
R×Rp

Tr
(
S(µs, W, c)T Hwφ(W )

)
dµs(dc, dW )ds

−
∫ t

0

∫
R×Rp

Tr (Hwφ(W )) dµs(dc, dW )ds, (4.83)

A direct consequence of the previous section is the fact that the limiting PDE has a so-
lution, which is given by the limit of the process of empirical measures. For this reason, we
devote this section to the proof that the PDE has, in fact, a unique solution.

The PDE found in equation (4.83) corresponds to a Non-Linear McKean - Vlasov equa-
tion. This equations where first studied by Henry McKean in 1963 in his seminal paper A
class of Markov processes associated with nonlinear parabolic equations ([18]) and have been
subject to deep studies ever since.

Even though the previous result is part of what we were looking for, it’s not the end of
our quest. This is because, even though it proves convergence of the empirical measure pro-
cesses to a measure that solves a PDE, nothing is assuring us that such a limiting measure
is unique. But, if we could prove that such PDE has a unique solution, then we could prove
that this limit is unique. Note that the since the limiting equation is non-linear, proving the
uniqueness of solutions is not trivial.

Let’s start by remembering the limiting PDE. We proved that if α = 0, then

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(W )T Wdµs(dc, dW )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
fµs(X)c∇φ(W )T ∇σ(W, X)

]
dµs(dc, dW )ds

+ λ
∫ t

0

∫
R×Rp

∇φ(c, W )T Wµs(dc, dW )ds

− γ
∫ t

0

∫
R×Rp

Tr
(
S(µs, W, c)T Hwφ(W )

)
dµs(dc, dW )ds

−
∫ t

0

∫
R×Rp

Tr (Hwφ(W )) dµs(dc, dW )ds, (4.84)
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and if α > 0, then

⟨φ, µt − µ0⟩ = −λ
∫ t

0

∫
R×Rp

∇φ(W )T Wdµs(dc, dW )ds

+
∫ t

0

∫
R×Rp

EX,Y

[
fµs(X)c∇φ(W )T ∇σ(W, X)

]
dµs(dc, dW )ds

+ λ
∫ t

0

∫
R×Rp

∇φ(c, W )T Wµs(dc, dW )ds

−
∫ t

0

∫
R×Rp

Tr (Hwφ(W )) dµs(dc, dW )ds (4.85)

Once again, we’ll only have to deal with the case when α = 0, the case α > 0 will be a
direct consequence, since it just suffices to put γ = 0 in (4.84). In order to prove uniqueness
of equation, we must first prove that the limiting equation’s terms have the needed regularity
for the analogue linear McKean-Vlasov equation to have a unique solution. This is presented
in the following:

Lemma 4.19 For fixed c ∈ R, consider the function S(µ, c, W ) : P(Rp)×R×Rp → Mp,p(R)
given by

S(µ, w, c) = c2
(
EX

[
⟨cσ, µ⟩2∂iσ(w, X)∂jσ(w, X)

]
− EX [(⟨cσ, µ⟩∂iσ(w, X)]EX [(⟨cσ, µ⟩∂jσ(w, X)]

)
i,j∈[p]

Then, the function S
1
2 (µ, c, W ), which corresponds to taking the square root of the diagonal

matrix in the diagonal matrix decomposition of S(µ, c, W ), is Lipschitz in the pair (W, µ),
where S

1
2 (µ, c, W ) corresponds to the square-root matrix of S(µ, c, W ).

Proof. Our proof is based on the arguments in de Bortoli et al. [17] and Stroock and Varad-
han [27].

Let µ1, µ2 ∈ P(R × Rp) with the same marginal on c, and

φS(t) = S(tµ1 + (1 − t)µ2, c, t21 + (1 − t)w2, c),

for fixed c ∈ R. We denote µt := tµ1 + (1 − t)µ2 and wt := tw1 + (1 − t)w2. This proof will
be divided in two parts. In the first one, we’ll prove:

|φ′′
S| ≤ C

(
|w2 − w1|2 + W(µ1, µ2)2

)
, (4.86)

and in the second one we’ll conclude.
·First Part: Since we aim to bound φS’s second derivative, we must begin by showing that
φS is a C2([0, 1],R) function. For this, we’ll use the Dominated Convergence Theorem.

Following [17], we define:

g(t, x) = fµt(x)c∇σ(wt, x) and g̃(t, x) = Ex[g(t, x)] − g(t, x).

Note that
|g(t, x)| ≤ ⟨|c̃||σ(w̃, x)|, µt⟩|c|∥|∇σ(wt, x)∥|,
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and using the fact that both σ and the norm of ∇σ(wt, x) are bounded, we obtain:

|g(t, x)| ≤ C⟨|c̃|, µt⟩|c| ≤ CEc̃[c̃2]|c| ≤ C|c|. (4.87)

Additionally,

∥∂tg(t, x)∥ = |c∇σ(wt, x) (⟨c̃σ(w̃, X), µ1⟩ − ⟨c̃σ(w̃, X), µ2⟩) + ⟨c̃σ(w̃, X), µt⟩cHwσ(wt, x)(w2 − w1)|
≤ C|c| |⟨c̃σ(w̃, X), µ1⟩ − ⟨c̃σ(w̃, X), µ2⟩| + C∥w2 − w1∥. (4.88)

Now, let ν denote an optimal coupling between µ1 and µ2 (See [32]). We get:

|⟨c̃σ(w̃, X), µ1⟩ − ⟨cσ(w, X), µ2⟩| ≤
∫

|cσ(w, X) − c′σ(w′, X)|ν(dc, dw, dc′, dw′),

and using the fact that given x, w → cσ(w, x) is Lipschitz:

|⟨c̃σ(w̃, X), µ1⟩ − ⟨cσ(w, X), µ2⟩| ≤ C
∫

|(c, w) − (c′, w′)|ν(dc, dw, dc′, dw′).

Now we apply Jensen’s inequality and obtain:

|⟨c̃σ(w̃, X), µ1⟩ − ⟨cσ(w, X), µ2⟩| ≤ CW2(µ1, µ2).

Replacing this in equation (4.88):

∥∂tg(t, x)∥ ≤ C|c| (W2(µ1, µ2) + ∥w2 − w1∥) . (4.89)

Now, for |∂2
t g(t, x)|, we use the previous result inequality for ∥∂tg(t, x)∥:

∥∂2
t g(t, x)∥ ≤ ∥cHwσ(wt, x)(w2 − w1) (⟨c̃σ(w̃, X), µ1 − µ2⟩)

+⟨c̃σ(w̃, X), µ1 − µ2⟩cHwσ(wt, x)(w2 − w1)
+⟨c̃σ(w̃, X), µt⟩c∂tHwσ(wt, x)(w2 − w1)∥
≤ |2⟨c̃σ(w̃, X), µ1 − µ2⟩cHσ(wt, x)(w2 − w1) + ⟨c̃σ(w̃, X), µt⟩c⟨c̃σ(w̃, X), µt⟩c∂tHwσ(wt, x)(w2 − w1)|
≤ C|c|2W2(µ1, µ2)∥w2 − w1∥ + C|c|∥w2 − w1∥2,

and using the classical inequality 2ab ≤ a2 + b2:

|∂2
t g(t, x)| ≤ C|c|

(
W2

2 (µ1, µ2) + ∥w2 − w1∥2
)

. (4.90)

With this, by the Theorem of Dominated Convergence, we conclude that f̃(t, x) ∈ C2([0, 1],R),
and with that, given that

φS(t) = EX,Y [g̃(t, x)T g̃(t, x)],

we can conclude that φS(t) ∈ C2([0, 1],R) (applying once again the Theorem of Dominated
Convergence). At last, we note that:

∥φ
′′

S(t)∥ = ∥∂tEX [g̃(t, x)T g̃(t, x)]∥
= ∥EX [(∂tg̃(t, x))T g̃(t, x) + g(t, x)T (∂2

t g(t, x))]∥
≤ C|c|

(
∥w2 − w1∥2 + W2

2 (µ1, µ2)
)

.
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·Second Part: Now let’s prove, using the first part, that S
1
2 (c, w, µ) is Lipschitz.

Note that:

∥φ′′(t)∥ = sup
x∈Rp

⟨x, φ′′(t)x⟩ ≤ C
(
∥w2 − w1∥2 + W2

2 (µ1, µ2)
)

.

By using a direct modification of Theorem 5.2.3 and Lemma 3.2.3 of [27], as done in [17], we
conclude than S

1
2 is Lipschitz.

Remark By similar arguments, it’s clear to prove that Σm(W k,m) is Lipschitz for W m for
all m ∈ N. This allows us to prove that the SDE in the core of this work has a solution.

Note that in the associated McKean-Vlasov equation, it won’t be S
1
2 but S

1
2 + I that

will be on the stochastic process’s diffusion coefficient, but since I 1
2 = I, and the identity is

trivially Lispchitz, a direct consequence is the following Lemma.

Lemma 4.20 For fixed c ∈ R, the function S
1
2 (µ, c, W ) + I is Lipschitz in the pair (W, µ),

where S
1
2 (µ, c, W ) corresponds to the square-root matrix of S(µ, c, W ).

We already have our desired conditions for the diffusion term. Now, let’s prove the desired
conditions for the drift.

Lemma 4.21 Given c ∈ R, the function

b(c, W, µ) = −λW + EX,Y [⟨cσ(·, X), µt⟩c∇σ(W, X)] ∇φ(W )

is Lipschitz in the pair (W, µ).

Proof. Note that the first term is linear on W , so it’s enough to prove that the second term is
Lipschitz. For this, let w1, w2 ∈ $, µ1, µ2 ∈ P(R2). Since c is fixes, we’ll omit b’s dependence
on our notation. We have:

∥b(w1, µ1) − b(w2, µ2) | ≤ ∥EX,Y [⟨cσ(·, X), µ1⟩c∇σ(w1, X)∇φ(w1)
−⟨cσ(·, X), µ2⟩c∇σ(w2, X)∇φ(w2)] ∥
≤ ∥EX,Y [⟨cσ(·, X), µ1⟩ (c∇σ(w1, X)∇φ(w1) − c∇σ(w2, X)∇φ(w2))] ∥︸ ︷︷ ︸

A

+ ∥EX,Y [(⟨cσ(·, X), µ1⟩ − ⟨cσ(·, X), µ2⟩) c∇σ(w2, X)∇φ(w2)] ∥.︸ ︷︷ ︸
B

Let’s see that A y B have bounds such that b(c, W, µ) is Lipschitz.

Given that Hwσ has a bounded norm, we obtain

|c∇σ(w1, x) − c∇σ(w2, x)| ≤ L|c|∥w1 − w2∥.

This way, we get:
A ≤ C|c|∥w1 − w2∥. (4.91)
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On the other hand,

B ≤ C|c|EX,Y [|⟨cσ(·, X), µ1⟩ − ⟨cσ(·, X), µ2⟩|]. (4.92)

Now, let Π be an optimal coupling between µ1 y µ2. Then:

B ≤ C|c|EX,Y

[∫
cσ(w, X) − c′σ(w′, X)dΠ(dc, dw, dc′, dw′)

]
≤ C|c|EX,Y

[∫
∥(c, w) − (c′, w′)∥dΠ(dc, dw, dc′, dw′)

]
because cσ is uniformly Lipschitz

≤ C|c|
(∫

∥(c, w) − (c′, w′)∥2dΠ(dc, dw, dc′, dw′)
) 1

2
by Cauchy-Schwarz

≤ C|c|W2(µ1, µ2). (4.93)

By putting together (4.91) y (4.93):

|b(c, w1, µ1) − b(c, w2, µ2)| ≤ C|c| (∥w1 − w2∥ + W2(µ1, µ2)) ,

which is exactly what we wanted to prove.

With the two Lemmas we just proved, we already know that the coefficients b(c, w, µ)
and S

1
2 (c, w, µ) are Lipschitz in (w, µ). Now, given (µt)t∈[0,T ], a continuous path in measure

space, consider the linear equation (4.94):

⟨φ, νt − ν0⟩ = −
∫ t

0

∫
R×Rp

b(x, µs)∇φ(c, W )νs(dc, dW )ds

+
∫ t

0

∫
R×Rp

Tr
(
S(x, µs)T Hwφ(c, W )

)
νs(dc, dW )ds

+
√

2τ
∫ t

0

∫
R×Rp

Tr (Hwφ(c, W )) dνs(dc, dW )ds.

(4.94)

This equation is different from our non-linear McKean-Vlasov equation in (4.83) because
the first term is linear, hence it’s a linear McKean Vlasov equation, or a Focker Planck
equation. By proving that this equation has a solution in our context, we’ll be able to extend
this results to the non-linear case. For this, we’ll need following Theorem, which gives us an
existence and uniqueness results for the linear PDE (4.94).

Lemma 4.22 If the coefficients b and S
1
2 are Lipschitz in (w, µ), then the linear Focker-

Planck equation has a unique solution.

Proof. See [33], Theorem 1.1, or [16] Theorem 2.2.

A direct consequence 4.22 is the following proposition.

Proposition 4.2 The linear Focker-Planck equation associated to our problem,

⟨φ, νt − ν0⟩ = −
∫ t

0
⟨b(x, µs)∇φ(·), νs⟩ds +

∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(W, x)

)
, νs⟩ds

+
√

2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dνs(dc̃, dW̃ )ds.
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has a unique solution.

Proof. It suffices to use Lemmas 4.20 and 4.21, which prove that both coefficients b and S 1
2

are Lipschitz. We conclude by applying the results in Lemma 4.22.

We finish this section with our uniqueness result. For this, we’ll need the following Lemma,
which gives us uniqueness of solutions (in Law) of the corresponding SDE of our non-linear
McKean Vlasov Equation.

Proposition 4.3 Let σ : Rp × X → R be a bounded function with the norm of it’s gradient
and it’s Hessian bounded. Let fµ denote the shallow neural network given by:

fµ(X) :=
∫
R×Rp

cσ(W, X)µ(dc, dW ).

Let c ∈ R be normal coefficients that are not trained, but initialized as in the assumptions.
Then, the solution of the stochastic differential equation:

Wt = W0 +
∫ t

0

∫
Rp

EX,Y [(⟨cσ, µt⟩) c∇σ(·, X)∇φ(Ws)] µs(dc, dw)ds

+
∫ t

0
S

1
2 (c, Ws, µs)dBs +

√
2τ
∫ t

0
dB̃s,

(4.95)

which correspond to Stochastic Gradient Descent in the Mean Field setting in continuous
time, is unique in Law.

Proof. This proof is based on the arguments presented in Theorem 1.1 and Lemma 1.3 in
Snitzman’s book [16], and also in [34]. We denote

b̃(Ws, c, w, µ) = EX,Y [(⟨cσ, µt⟩) c∇σ(·, X)∇φ(Ws)] .

Note that as a consequence of the gradient of φ being Lipschitz, b̃(Ws, c, w, µ) is also Lipschitz
in Ws. Also, by Lemma 4.21 we know that it’s also Lipschitz in the par (w, µ). Now,
let (µ1

t )t∈[0,T ], (µ2
t )t∈[0,T ] ∈ C([0, T ], P(R × Rd), such that their first marginal (i.e the one

corresponding to c) is the same. We define:

W 1
t = W0 +

∫ t

0

∫
Rp

b(W 1
s , c, w, µ1

s)µ1
s(dc, dw)ds +

∫ t

0
S

1
2 (c, W 1

s , µ1
s)dBs +

√
2τ
∫ t

0
dB̃s,

and

W 2
t = W0 +

∫ t

0

∫
Rp

b(W 2
s , c, w, µ1

s)µ2
s(dc, dw)ds +

∫ t

0
S

1
2 (c, W 2

s , µ2
s)dBs +

√
2τ
∫ t

0
dB̃s.

We’ll add a supremum in the interior of the Wasserstein’s metric, which also results in a
well-defined complete metric in P2(C([0, T ], P(R × Rd)). This metric is called Kantorovich -
Rubinstein’s metric. In this case:

W(µ1
s, µ2

s) ≤ W(µ1
t , µ2

t )
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if s ≤ t. We begin with the following straightforward calculation:

E
[
sup
t≤T

∥W 1
t − W 2

t ∥|2
]

≤ C
∫ T

0
E
[∣∣∣∣∫

Rp
b(W 1

s , c, w, µ1
s)µ1

s(dc, dw) −
∫
Rp

b(W 2
s , c, w, µ2

s)µ2
s(dc, dw)

∣∣∣∣2
]

ds︸ ︷︷ ︸
(1)

+ CE
[
sup
t≤T

(∫ t

0
(S 1

2 (c, W 1
s , µ1

s) − S
1
2 (c, W 2

s , µ2
s))dBs

)2]
︸ ︷︷ ︸

(2)

.

Let’s study (1) and (2) separately, beginning with (1). We have:∫ t

0

∣∣∣∣∫
Rp

b(W 1
s , c, w, µ1

s)µ1
s(dc, dw) −

∫
Rp

b(W 2
s , c, w, µ2

s)µ2
s)
∣∣∣∣ ds

≤
∫ t

0

∣∣∣∣∫
Rp

b(W 1
s , c, w, µ1

s)µ1
s(dc, dw) −

∫
Rp

b(W 1
s , c, w, µ2

s)µ1
s(dc, dw)

∣∣∣∣ ds

+
∫ t

0

∣∣∣∣∫
Rp

b(W 1
s , c, w, µ2

s)µ1
s(dc, dw) −

∫
Rp

b(W 2
s , c, w, µ2

s)µ2
s)
∣∣∣∣ ds. (4.96)

Let µ̃s be any coupling between µ1
s and µ2

s. Then, for the first term in (4.96), note that:∫
Rp

b(W 1
s , c, w, µ1

s)µ1
s(dc, dw) −

∫
Rp

b(W 1
s , c, w, µ2

s)µ1
s(dc, dw)

=
∫
Rp

|b(W 1
s , c, w1, µ1

s) − b(W 1
s , c, w2, µ2

s)|µ̃s(dc, dw1, dw2)

≤ K
∫
Rp

|c|(∥w1 − w2∥ + W2(µ1
s, µ2

s))µ̃s(dc, dw1, dw2)

≤ K
(∫

Rp
(∥w1 − w2∥ + W2(µ1

s, µ2
s))2µ̃s(dc, dw1, dw2)

) 1
2

,

by Lemma 4.21 and then using Cauchy-Schwarz. By remembering that (a + b)2 ≤ 2(a2 + b2),
we obtain:∫

Rp
b(W 1

s , c, w, µ1
s)µ1

s(dc, dw) −
∫
Rp

b(W 1
s , c, w, µ2

s)µ1
s(dc, dw)

≤ K
(∫

Rp
∥w1 − w2∥2µ̃s(dc, dw1, dw2)

) 1
2

+ KW2(µ1
s, µ2

s)

≤ KW2(µ1
s, µ2

s).
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On the other hand, for the second term in (4.96):∣∣∣∣∫
Rp

b(W 1
s , c, w, µ2

s)µ1
s(dc, dw) −

∫
Rp

b(W 2
s , c, w, µ2

s)µ2
s(dc, dw)

∣∣∣∣
≤
∫
Rp

|b(W 1
s , c, w1, µ2

s) − b(W 2
s , c, w2, µ2

s)|µ̃s(dc, dw,
1dw2)ds

≤
∫
Rp

|b(W 1
s , c, w1, µ2

s) − b(W 1
s , c, w2, µ2

s)|µ̃s(dc, dw,
1dw2)ds

+
∫
Rp

|b(W 1
s , c, w2, µ2

s) − b(W 2
s , c, w2, µ2

s)|µ̃s(dc, dw,
1dw2)ds

≤ KW(µ1
s, µ2

s) + Ksup
u≤s

∥W 1
u − W 2

u ∥2,

by using the same techniques we use for the first term. Going back to (1), we conclude:
∫ T

0
E
[∣∣∣∣∫

Rp
b(W 1

s , c, w, µ2
s)µ1

s(dc, dw) −
∫
Rp

b(W 2
s , c, w, µ2

s)µ2
s(dc, dw)

∣∣∣∣2
]

ds

≤ C
∫ T

0
E
[
KW(µ1

s, µ2
s)2 + Ksup

s≤t
|W 1

s − W 2
s |2
]

ds

≤ C
∫ T

0
E
[
KW(µ1

s, µ2
s)2
]

+ KC
∫ T

0
E
[
sup
u≤s

∥W 1
u − W 2

u ∥2
]

ds.

Having this estimate, we’ll now study (2). We have:

(2) = CE
[
sup
t≤T

(∫ t

0
(S 1

2 (c, W 1
s , µ1

s) − S
1
2 (c, W 2

s , µ2
s))dBs

)2]
,

and by using BDG’s inequality, and then using that by Lemma 4.21, S
1
2 is Lipschitz:

(2) = CE
[∫ t

0
(S 1

2 (c, W 1
s , µ1

s) − S
1
2 (c, W 2

s , µ2
s))2

]
ds

≤ KE
[∫ t

0
(∥W 1

s − W 2
s ∥2 + W(µ1

s, µ2
s)2)

]
ds Because S

1
2 is Lipschitz.

≤ KE
[∫ t

0
∥W 1

s − W 2
s ∥2

]
ds + KE

[∫ t

0
W(µ1

s, µ2
s)2
]

ds

≤ K
∫ t

0
E
[
sup
u≤s

∥W 1
u − W 2

u ∥2
]

+ K
∫ t

0
E
[
W(µ1

s, µ2
s)2
]

ds By Fubini’s theorem.

≤ K
∫ t

0
E
[
sup
u≤s

∥W 1
u − W 2

u ∥2
]

+ K
∫ t

0
E
[
W(µ1

s, µ2
s)2
]

ds

By putting all together, we obtain:

E
[
sup
s≤t

∥W 1
t − W 2

t ∥|2
]

≤ K
∫ t

0
E
[
sup
u≤s

∥W 1
u − W 2

u ∥2
]

ds + K
∫ t

0
E
[
W(µ1

s, µ2
s)2
]

ds. (4.97)

Now, by applying Gronwall’s Lemma:

E
[
sup
s≤t

∥W 1
t − W 2

t ∥|2
]

≤ KeT
(∫ t

0
E
[
W(µ1

s, µ2
s)2
]

ds
)

. (4.98)
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Now, let Φ : C([0, T ], P(R×Rd) → C([0, T ], P(R×Rd), such that for (mt) ∈ C([0, T ], P(R×
Rd), Φ(m) corresponds to the law of the process:

Xt = X0 +
∫ t

0

∫
Rp

b(Xs, c, w, ms)µs(dc, dw)ds +
∫ t

0
S

1
2 (c, Xs, ms)dBs +

√
2τ
∫ t

0
dB̃s.

Note that if Xt is a solution of 4.95, then it’s law it’s a fixed point for Φ. Using this definition,
then the result in equation 4.98 allows us to conclude:

E
[
W(Φ(µ1

t ), Φ(µ2
t ))2

]
≤ KeT

(∫ t

0
E
[
W(µ1

s, µ2
s)2
]

ds
)

. (4.99)

Since a solution is also a fixed point, we can iterate and obtain:

E
[
W(Φk(µ1

t ), Φk(µ2
t ))2

]
≤ CeT k

k!
(
E
[
W(µ1

t , µ2
t )2
]

ds
)

, (4.100)

and hence conclude, by making k sufficiently big, that in fact µ1 = µ2, i.e that the solutions
for the SDE are unique in Law.

Theorem 4.3 The Focker-Planck equation

⟨φ, µt − µ0⟩ = −λ
∫ t

0
∇φT W̃µs(dc̃, dW̃ )ds +

∫ t

0
EX,Y [(⟨cσ, µt⟩) ⟨c∇σ(·, X)∇φ, µs⟩] ds

+ γ
∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(·)

)
, µs⟩ds +

√
2τ
∫ T

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds

with µ0 as the initial condition, has a unique solution.

Proof. Let µ be a solution of the non-linear PDE equation, which we know that exists as a
consequence of the previous section.

On the other hand, let ν be a solution to the unique linear PDE equation, which we know
that exists as a consequence of Lemma 4.2. That is, ν is the unique solution of

⟨φ, νt − ν0⟩ = −λ
∫ t

0
∇φ(W̃ )T W̃ν(dc̃, dW̃ )ds +

∫ t

0
⟨b(x, µs)∇φ(·), νs⟩ds

+
∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(·)

)
, νs⟩ds +

√
2τ
∫ t

0
⟨Tr (Hwφ(·)) , νs⟩ds.

(4.101)

Since the linear equation (4.5) has a unique solution, and we know µt is a solution to the
nonlinear equation, then µt has to be the only solution to the equation , therefore there exists
a unique stochastic process Xt such that L(Xt) = νt = µt.

Then (L(Xt))t∈[0,T ] is a fixed point, and hence Xt solves the corresponding non-linear
Stochastic Differential Equation. Since the solutions of our SDE are unique in Law, by
Proposition 4.3, (L(Xt))t∈[0,T ] = (µt)t∈[0,T ] has to be the unique solution to the associated
non-linear PDE, which concludes our theorem.

Having proved uniqueness of solutions, we can state the following Theorem, which is one
of our main results.
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Theorem 4.4 Let α > 0, λ ∈ [0, 1) , γ ≥ 0, and µm
t denote the empirical measure process

that represents the weights of a shallow neural network, who’s parameters are trained in
continuous time by the dynamics:

dW k,m
t = hk,m(W m

t )dt + γ
1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s ,

where W k,m
t denotes one neuron in the hidden layer. Let µ0 denote the initialization distri-

bution for the pair (C, W ). Then, in the limit as m goes to infinity, the empirical measure
converges in Law to the unique solution of the non-linear Focker Planck Equation:

• If α = 0:

⟨φ, µt − µ0⟩ = −λ
∫ t

0
∇φ(W̃ )T W̃µs(dc̃, dW̃ )ds +

∫ t

0
EX,Y [(⟨cσ, µt⟩) ⟨c∇σ(·, X)∇φ, µs⟩] ds

+ γ
∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(·)

)
, µs⟩ds +

√
2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

(4.102)

• If α > 0:

⟨φ, µt−µ0⟩ = −λ
∫ t

0
∇φ(W̃ )T W̃µs(dc̃, dW̃ )ds+

√
2τ
∫ t

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

(4.103)

Perhaps the most surprising result of this equation is the fact that it states that the em-
pirical measure does not see training data in this scale, which is reflected by the absence of
Y in the equation. Note that this is what one would expect from the results in [22]. Yet, in
order to precisely arrive to this results, one has to put special parameters in this equation.

Another remarkable property is the fact that, in the general case, an analytic solution
is not straightforward: the fact that Langevin Dynamics add an extra regularization on
the parameters makes the analysis harder. Another important fact is that by the result
in equation (4.103), we conclude that in this setting the limiting measure does not "see"
Stochastic Gradient Descent, but only a regularized version of Gradient Descent.

4.6. The solution with Xavier Initialization and a Con-
struction of the NTK

Having proved our main result in the last section, in this section we study the different
solutions in different cases. We’ll study the special case of Xavier Initialization, Xavier ini-
tialization is one of the most widely used initializations for neural networks. It consists in
initializing parameters (c, w) independently, and the last layer as centered gaussians.

Through this section, we’ll only consider the case when λ = τ = 0. This means we
are training the neural network with the classic stochastic gradient descent method. The
extension to Langevin Dynamics will be a direct extension.
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Note that in this cases, Theorem 4.4 states that the limiting measure follows the dynamics:

⟨φ, µt − µ0⟩ =
∫ t

0
EX,Y [(⟨cσ, µt⟩) ⟨c∇σ(·, X)∇φ, µs⟩] ds

+ γ
∫ t

0
⟨Tr

(
S(x, µs)T Hwφ(·)

)
, µs⟩ds +

√
2τ
∫ T

0

∫
R×Rp

Tr
(
Hwφ(W̃ )

)
dµs(dc̃, dW̃ )ds.

(4.104)

In our setting, Xavier initialization is equivalent to considering the initialization:

c ∼ N (0, 1),

and W independent to c, as a centered distribution with it’s four first moments being finite.
We get the following result, which also appears in [11] and in [35]. Note that it’s statement
cna be directly linked to the results in [22], which state that in the Nerual Tangent Kernel
Regime, the parameters tend to stay close to it’s initialization distribution. This proves this
fact in a different way.

Corolary 4.1 If λ = τ = 0 and E[c] = 0, then equation 4.5 becomes:

⟨φ, µt⟩ = ⟨φ, µ0⟩. (4.105)

Proof. Note that if E[c] = 0, then all terms are 0: Since at initialization the parameters
are independent, if we replace µs by µ0, then all terms integrated by µ0 are split into two
terms, one of them being 0, and by multiplying all the parameters are also 0. Hence µ0 solves
the PDE. To conclude this is the unique solution, we apply Theorem 4.3, which states the
uniqueness of solutions.

This result confirms what we were expecting: as m grows, the parameters enter the Lazy
Regime, as described in [22]. The authors of the technical note [11] and of [35] also arrive to
this result, yet they use different techniques: They pass from discrete to continuous time us-
ing Taylor approximations (which, in fact, corresponds to applying Itô’s Lemma in a discrete
setting), and they go through another setting first in [35]. On the other hand, they don’t get
the general PDE for the empirical measure.

Now, one can ask: So, what is the NTK? The answer to this question lies in Corollary . If
we consider φ = σ, then we get that given x1, x2 ∈ X , the following convergence is satisfied
in law:

⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µm
s ⟩ m→∞−→ ⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µ0⟩.

Considering this, we define the continuous version of the Neural Tangent Kernel, first
defined in [19], associated to our neural network as the kernel K : X × X → R, such that

K(x1, x2) = ⟨c2∇σ(W̃ , x1)T ∇σ(W̃ , x2), µ0⟩. (4.106)

Another important remark is that, as it can be seen in Sirignano and Spiliopoulos’ work
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in [11], the analysis proves that only α ≥ 1
2 allows one to study the limiting dynamic. This

is true in the general case, because the regularization terms does not allow us to study the
equation when the step size is bigger.
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Chapter 5

The Neural Network with Xavier
Initialization and SGD training

In the last section we gave a complete study of the dynamic of the empirical measure in
the Lazy Regime of Neural Networks trained by Stochastic Gradient Descent. In the present
chapter, our aim will be to study the dynamic of the neural network itself. Nevertheless,
as the reader may note, the study of empirical measures is not sufficient for this objective:
Since in our parametrization of fm does not depend exactly on the empirical measure but
on a scaling of it, it could potentially be non-convergent.

As it can be seen in the results in the last section, the case of non- centered initializations
of c and α < 1

2 is not tractable: The non linear terms of the Focker Planck Equation are
non-convergent in this scale. For this reason, through this section we consider the case of
α ≥ 1

2 . We’ll also consider τ = λ = 0, i.e the usual stochastic gradient descent setting.

As in the final part of Chapter 4, we’ll consider the Xavier initialization setting, which
was first studied in [36]. In our setting is equivalent to considering

c ∼ N (0, 1),

and W independent to c, as a centered distribution with it’s four first moments being finite.
As we said before, this particular setting was studied before in [11], yet our techniques
are different from their, since we based our analysis in the continuous time equivalents of
stochastic gradient descent.
In section 1, we’ll remember the dynamics we found in the last chapter, and we’ll give special
attention to a a non-linear term of our resulting dynamic, which will determine if there exists
(or not) a convergence of the evaluations of against test functions when m, i.e the number
of neurons, goes to infinity. After this, in section 2 we’ll study the limiting dynamic and
convergence to it. Then, in section 3 we’ll study the convergence of ft (the limiting process
of the neural network) to a certain type of minimum of the loss. We’ll also discuss the
consequences of this fact from different perspectives.
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5.1. Identifying the limit

Let α ≥ 1
2 and φ ∈ C2

b (Rp). As we saw in Chapter 4, if the step-size of our SGD is γ

mα
, then

by Itô’s Lemma, for m ∈ N, k ∈ {1, . . . , m}:

φ(ck, W k,m
t ) = φ(ck, W k,m

0 ) +
∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds

+ γ
1
2

m
α
2

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(ck, W k,m

s )dBk
s

+ γ

2mα

∫ t

0
Tr
(

Σ
1
2
k,m(ck, W k,m

s )T Hwφ(ck, W k,m
s )Σ

1
2
k,m(ck, W k,m

s )
)

ds.

(5.1)

Remember we are not considering the case of Langevin Dynamics. Let fm
t (x) denote:

fm
t (x) = 1√

m

m∑
k=1

ckσ(W k,m
t , x).

Then, with this notation, we know that:

fm
t − fm

0 = 1√
m

m∑
k=1

ck

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds︸ ︷︷ ︸

(A)

+ γ
1
2

m
1+α

2

m∑
k=1

ck

∫ t

0
∇φ(ck, W k,m

s )T Σ
1
2
k,m(W k,m

s )dBk
s︸ ︷︷ ︸

(B)

+ γ

2mα+ 1
2

m∑
k=1

ck

∫ t

0
Tr
(
Σk,m(W k,m

s )T Hwφ(ck, W k,m
s )

)
ds︸ ︷︷ ︸

(C)

. (5.2)

Let’s analyze each term so that we can propose a a limiting equation. We’ll begin with (A).
We have:

(A) = 1√
m

m∑
k=1

ck

∫ t

0
∇φ(ck, W k,m

s )T hk,m(W m
s )ds

= 1√
m

m∑
k=1

c2
k√
m

∫ t

0
∇φ(ck, W k,m

s )TEX,Y [(Y − fm
s (X))∇σ(W k,m

s )]ds

= 1
m

m∑
k=1

∫ t

0
EX,Y [(Y − fm

s (X))c2
k∇φ(ck, W k,m

s )T ∇σ(W k,m
s , X)]ds

= ⟨
∫ t

0
EX,Y [(Y − fm

s (X))c2
k∇φ(ck, W k,m

s )T ∇σ(W k,m
s , X)]ds, µm

s ⟩,
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where µm
s is the empirical measure process we studied in Chapter 4. By using Fubini (which

is possible, since all measures are finite and the function is integrable), we get:

(A) =
∫ t

0
EX,Y [(Y − fm

s (X))
∫
R×Rp

c2∇φ(w)T ∇σ(w, X)µm
s (dc, dw)]ds. (5.3)

Before continuing with (B), let’s study (C). Note that:

(C) = γ

2mα+ 1
2

m∑
k=1

ck

∫ t

0
Tr
(
Σk,m(W k,m

s )T Hwφ(W k,m
s )

)
ds

= 1
mα− 1

2

γ

2m

m∑
k=1

ck

∫ t

0
Tr
(
Σk,m(W k,m

s )T Hwφ(W k,m
s )

)
ds,

and by the last chapter, we know that γ

2m

∑m
k=1 ck

∫ t
0 Tr

(
Σk,m(W k,m

s )T Hwφ(W k,m
s )

)
ds con-

verges as m → ∞. Hence, we expect the limit of (C) to exist if α ≥ 1
2 . If not, the study

seems to be quite harder, and it may even result in this term being divergent when m goes
to infinity. Thus, we’ll only consider the case when α ≥ 1

2 from now on. Note that according
to our analysis in Chapter 4, if α = 1

2 ,

(C) m→∞−→ γ
∫ t

0

∫
R×Rp

c Tr
(
S(µs, W, c)T Hwφ(W )

)
dµs(dc, dW )ds, (5.4)

and if α > 1
2 , then

(C) m→∞−→ 0. (5.5)

At last, if we consider the case when α ≥ 1
2, then by the analysis we did in Chapter 4, we

expect:
(B) → 0. (5.6)

Remark It would be interesting to know what happens to this term when α ≥ 0. If it has
a limit, we conjecture to be a white noise -driven martingale. We left this as a study for the
future.

By combining equations (5.3), (5.4), (5.5) and (5.6), and replacing φ by σ, we expect the
following dynamic for the limiting neural network:

• If α = 1
2 :

ft − f0 =
∫ t

0

∫
Rp

EX,Y [(Y − fs(X))c2∇σ(w)T ∇σ(w, X)]µs(dc, dw)ds

+ γ
∫ t

0

∫
R×Rp

c Tr
(
S(µ, W̃ , c̃)T Hwσ(W̃ )

)
dµs(dc̃, dW̃ )ds. (5.7)

• If α > 1
2 :

ft − f0 =
∫ t

0
EX,Y [(Y − fs(X))

∫
Rp

c2∇σ(w)T ∇σ(w, X)µs(dc, dw)]ds. (5.8)

In both cases, the empirical measure’s dynamic will be, because of the results in chapter 4,
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for every φ ∈ C2
b (Rp):

⟨φ, µt − µ0⟩ =
∫ t

0

∫
R×Rp

EX,Y

[
⟨cσ, µs⟩)c̃2∇φ(W̃ )T ∇σ(W̃ , X)

]
dµ0(dc̃, dW̃ )ds = 0,

since c’s distribution is assumed to be centered in Xavier’s initialization. This way, we can
re-write the dynamics in equations (5.9) and (5.10) as

• If α = 1
2 :

ft − f0 =
∫ t

0

∫
Rp

EX,Y [(Y − fs(X))c2∇σ(w)T ∇σ(w, X)]µ0(dc, dw)ds

+ γ
∫ t

0

∫
R×Rp

c Tr
(
S(µ, W, c)T Hwσ(W )

)
dµ0(dc, dW )ds. (5.9)

• If α > 1
2 :

ft − f0 =
∫ t

0
EX,Y [(Y − fs(X))

∫
Rp

c2∇σ(w)T ∇σ(w, X)µ0(dc, dw)]ds. (5.10)

We’ll analyze only the case when α = 1
2 , and the case when α > 1

2 will be a direct
consequence. To prove convergence, well begin by defining η0 to be a white noise in L2(Rp),
such that it’s covariance is given by the limiting measure µ0. This means, by definition, that
η0 is a Gaussian Process indexed by f ∈ L2(Rp), and such that given f, g test functions:

E[⟨f, η0⟩⟨g, η0⟩] =
∫

f(w)g(w)µ0(dw).

Now, let T m
0 define the optimal transport from µ0 to µm

0 , which exists because the former
measure has a density. We define ηm

0 by:

⟨φ, ηm
0 ⟩ := ⟨φ ◦ T m

0 , η0⟩. (5.11)

Then, conditionally on the initialization, ηm
0 is a white noise of covariance µm

0 . We’ll see this
in the following

Lemma 5.1 Let η0 be a white noise of covariance µ0, and let T m
0 be the optimal transport

map between µ0 and µm
0 . Then the process defined by

⟨φ, ηm
0 ⟩ := ⟨φ ◦ T m

0 , η0⟩

corresponds to a white noise of covariance µm
0 .

Proof. By definition of T m
0 , for every g ∈ L2(µm

0 ), goT m
0 ∈ L2(µm

0 ), we have that

⟨g, ηm
0 ⟩g∈L(µm

0 ) = ⟨goT m
0 , η0⟩g∈L(µm

0 )

is a sub-Gaussian vector of ⟨g, η0⟩g∈L(µ0). Hence, ηm
0 is a Gaussian Process. Now, let fm

0
denote the neural network at initialization. Since η0’s mean is 0, we obtain:

E(⟨g, ηm
0 ⟩|fm

0 ) = E(⟨goT m
0 , η0⟩|fm

0 ) = 0.
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On the other hand:

E(⟨g, ηm
0 ⟩2|fm

0 ) = E(⟨goT m
0 , η0⟩2|fm

0 ) =
∫

g2(T m
0 (w))µ0(dw) =

∫
g2(w)µm

0 (dw).

Then, ηm
0 ’s covariance is µm

0 .

Now, for each s ∈ R we define T m
s as the optimal transport from µ0 and µm

s . Note that
T m

0 exists because µ0 has a density. Then, we can write equation (5.2) using T m
s , obtaining:

fm
t − fm

0 =
∫ t

0

∫
R×Rp

EX,Y [(Y − fm
s (X))c2∇(σ ◦ T m

s )(w)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(T m

s (c), T m
s (w), µ0)T Hw(σ ◦ T m

s )(w) µ0(dc, dw)ds + Rm
t ,

(5.12)

where fm
0 = ⟨σ, ηm

0 ⟩, and we defined:

Rm
t = γ

2

∫ t

0

∫
R×Rp

c3
{

Tr
(
EX,Y [ Y√

m
∇σ(w)∇σ(w)T ]T Hw(σ ◦ T m

s )(w)
)

− Tr
EX,Y

[
Y√
m

∇(σ ◦ T m
s (w))

]
EX,Y

[
Y√
m

∇(σ ◦ T m
s )(w)T

]T

Hw(σ ◦ T m
s )(w)


+ Tr

EX,Y [(⟨(σ ◦ T m
s ), µ0⟩) ∇(σ ◦ T m

s (w))]EX,Y

[
Y√
m

∇(σ ◦ T m
s )(w)T

]T

Hw(σ ◦ T m
s )(w)


+ Tr

(
EX,Y

[
Y√
m

∇(σ ◦ T m
s (w))

]
EX,Y

[
⟨(σ ◦ T m

s ), µ0⟩∇(σ ◦ T m
s )(w)T

]T
Hw(σ ◦ T m

s )(w)
)}

µ0(dc, dw)ds

γ

m

m∑
k=1

∫ t

0
Σ 1

2 (W k,m
s )dBk,m

s .

But, why does it make sense to say that fm
0 = ⟨σ, ηm

0 ⟩ models the problem correctly ? We
can see this in the following way. Let ηm

0 by defined by the following signed measure:

ηm
0 := 1√

m

m∑
k=1

ckδW k,m .

Then, we can state the following

Lemma 5.2 Let ηm
0 be defined by

ηm
0 := 1√

m

m∑
k=1

ckδW k,m .

Then, conditionally on the initialization, ηm
0 is a white noise with covariance µ0.

If the lemma is true, then modeling the problem as we did in equation 5.12 makes sense.

Proof. In the first place, note that since all ck’s are Gaussian, ηm
0 is a Gaussian process. On
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the other hand, given g ∈ L2, note that:

E[⟨g, f⟩|fm
0 ] = 0,

because the ck’s are centered, and at last:

E[⟨g, f⟩2|fm
0 ] = 1

m

m∑
k=1

E[c2
k|fm

0 ]︸ ︷︷ ︸
=1

g(W k,m) = ⟨g, µm
0 ⟩2,

which concludes that ηm
0 ’s covariance is indeed µm

0 .

Knowing this, we can model the initial condition as we did in (5.12), knowing that it makes
sense mathematically. We begin our path to prove convergence by showing that E[|Rm

t |] goes
to 0 as m goes to infinity.

Lemma 5.3 Rm
t satisfies:

lim
m→∞

E[|Rm
t |] = 0.

Proof. The expectation of the last term of Rm
t converges to 0 by 4.15. Let’s study the other

terms.

We begin by bounding the module of Rm
t using Cauchy-Schwartz’ inequality on each term.

|Rm
t | ≤ γ

2

∫ t

0

∫
R×Rp

{
|c|3

∥∥∥∥∥EX,Y [ Y√
m

∇σ(w)∇σ(w)T ∥F rob∥Hw(σ ◦ T m
s )(w)∥F rob

+ |c|3
∥∥∥∥∥EX,Y

[
Y√
m

∇|(σ ◦ T m
s (w))|

]
EX,Y

[
Y√
m

∇|(σ ◦ T m
s )(w)|T

]∥∥∥∥∥
F rob

∥Hw(σ ◦ T m
s )(w)∥F rob

+ |c|3
∥∥∥∥∥EX,Y

[
Y√
m

⟨|(σ ◦ T m
s )|, µ0⟩∇(σ ◦ T m

s (w))
]
EX,Y

[
Y√
m

∇(σ ◦ T m
s )(w)T

]∥∥∥∥∥
F rob

∥Hw(σ ◦ T m
s )(w)∥F rob +|c|3

∥∥∥∥∥(EX,Y

[
Y√
m

∇(σ ◦ T m
s (w))

]
E
[
⟨|(σ ◦ T m

s )|, µ0⟩∇(σ ◦ T m
s )(w)T

]∥∥∥∥∥
F rob

∥Hw(σ ◦ T m
s )(w)∥

}
µ0(dc, dw)ds.

Now, by using that the norm of σ’s hessian is bounded, and bounding each norm of the
expectation by the integral of the norm:

|Rm
t | ≤ Cγ

2

∫ t

0

∫
R×Rp

{
|c|3EX,Y [ |Y |√

m

∥∥∥∇σ(w)∥∥∇σ(w)T ∥]

+ |c|3EX,Y

[
|Y |√

m
∥∇(σ ◦ T m

s (w))∥
]
EX,Y

[
|Y |√

m
∥∇(σ ◦ T m

s )(w)∥
]

+ |c|3EX,Y

[
|Y |√

m
⟨(σ ◦ T m

s ), µ0⟩∥∇(σ ◦ T m
s (w))∥

]
E
[

|Y |√
m

∥∇(σ ◦ T m
s )(w)∥

]

+|c|3(EX,Y

[
|Y |√

m
∥∇(σ ◦ T m

s (w))∥
]
EX,Y [⟨(σ ◦ T m

s ), µ0⟩∥∇(σ ◦ T m
s )(w)∥]

}
µ0(dc, dw)ds.

We can now bound the module of σ and the norm of σ’s gradient and bound each expectation
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of Y by using the fact that it has bounded second moment. This way:

|Rm
t | ≤ Cγ

2

∫ t

0

∫
R×Rp

{
|c|3 C√

m
+ |c|3 C

m
+ |c|3 C

m
+ |c|3 C

m

}
µ0(dc, dw)ds

≤ Cγ

2

{
1√
m

+ 1
m

+ 1
m

+ 1
m

}
t,

with which we can conclude.
lim

m→∞
E[|Rm

t |] = 0.

Now, let f0 = ⟨σ, η0⟩, where η0 is a white noise with covariance µ0, and let ft be a solution
in L2(Rp,P) of the equation with initial condition f0:

ft − f0 =
∫ t

0

∫
R×Rp

EX,Y [(Y − ⟨σ, ηs⟩)c2∇σ(w)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c3
(
Tr
(
EX [(⟨σ, µ0⟩) ∇σ(w)σ(w)T ]T Hwσ(w)

− EX [⟨σ, µ0⟩∇σ]EX

[
⟨σ, µ0⟩∇σT

]T
Hwσ(w)

))
µ0(dc, dw)ds.

We’d like to prove that in some sense (hopefully in L2(Rp,P)) fm
t converges to ft. We’ll

see that this is true, for which the transport T m
s we previously defined will prove to be very

useful. This technique was first used in [24] and [25], where the measurably of T m
s with

respect to the filtration was also proved. We believe this technique can be used in more
general settings, as the ones where a white noise may appear in the limiting equations.

Theorem 5.1 Let η0 be a white noise with covariance µ0, and let ft be a solution of the
equation in L2(X ):

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds., (5.13)

with f0 = ⟨σ, η0⟩. Then, for every t ≥ 0:

lim
m→∞

∥fm
t − ft∥ = 0.

Proof. Let’s remember both dynamics, for fm
t and ft. We define fm

t as the solution of the
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problem:

fm
t (x) = fm

0 (x) +
∫ t

0

∫
R×Rp

EX,Y [(Y − fm
s (X))c2∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, T m

s (w), µm
s )T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds + Rm
t ,

with initial condition fm
0 = ⟨σ, ηm

0 ⟩, where ηm
0 is white noise in L2(X ) with covariance µm

0 .
On the other hand, ft is the solution of :

ft(x) = f0(x) +
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds,

with initial condition f0 = ⟨σ, η0⟩, where η0 is a White Noise in L2(X ) with covariance µ0.
Then, by subtracting the equations for ft and fm

t :

ft(x) − fm
t (x) = f0(x) − fm

0 (x)

+
(∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

−
∫ t

0

∫
R×Rp

EX,Y [(Y − fm
s (X))c∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

)
−
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, T m

s (w), µm
s )T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
)

.

By adding and subtracting
∫ t

0
∫
R×Rp EX,Y [(Y −fs(X))c∇(σ◦T m

s )(w, x)T ∇(σ◦T m
s )(w, X)]µ0(dc, dw)ds

inside the second term:

ft(x) − fm
t (x) = f0(x) − fm

0 (x)

+
(∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

−
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X)]µ0(dc, dw)ds
)

+
(∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X)]µ0(dc, dw)ds

−
∫ t

0

∫
R×Rp

EX,Y [(Y − fm
s (X))c2∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

)
−
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, T m

s (w), µm
s )T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
)

.

and now by adding and subtracting γ

2
∫ t

0
∫
R×Rp c

(
Tr
(
S(c, w, µ0)T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
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in the last term:

ft(x) − fm
t (x) = (f0(x) − fm

0 (x))

+
(∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

−
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X)]µ0(dc, dw)ds
)

+
(∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X)]µ0(dc, dw)ds

−
∫ t

0

∫
R×Rp

EX,Y [(Y − fm
s (X))c2∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

)
−
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds

−γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
)

+
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, T m

s (w), µm
s )T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
)

.

By manipulating the different terms we obtain:

ft(x) − fm
t (x) = f0(x) − fm

0 (x)︸ ︷︷ ︸
(1)

+
(∫ t

0
⟨EX,Y [(Y − fs(X))c2(∇σ(w, x)T ∇σ(w, X) − ∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X))], µ0⟩ds

)
︸ ︷︷ ︸

(2)

+
(∫ t

0

∫
R×Rp

EX,Y [(fm
s (X) − fs(X))c2∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

)
︸ ︷︷ ︸

(3)

−
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T (Hwσ(w) − Hw(σ ◦ T m

s )(w, x))
))

µ0(dc, dw)ds
)

︸ ︷︷ ︸
(4)

+
(

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
(S(c, w, µ0)T − S(c, T m

s (w), µm
s ))T Hw(σ ◦ T m

s )(w, x)
))

µ0(dc, dw)ds
)

︸ ︷︷ ︸
(5)

.

Let’s begin with (1). We have, conditionally on the initialization, that:

E[
∫

X
(f0(X) − fm

0 (X))2] = E[(⟨σ(X) − σ ◦ T m
0 (X), η0)2]

= E
[∫

X

∫
(cσ(w, X) − cσ(T m

0 (w), X)2µ0(dc, dw)
]

≤ CE
[∫

(c∥w − T m
0 (w)∥2µ0(dc, dw)

]
≤ CW2

2 (µm
0 , µ0),
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therefore we can conclude:

E[∥f0 − fm
0 ∥L2(X)] ≤ CW2(µm

0 , µ0).

For (2), we note that:

|(2)| =
∣∣∣∣∫ t

0
⟨EX,Y [(Y − fs(X))c(∇σ(w, x)T ∇σ(w, X)

−∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X))], µ0⟩ds
∣∣∣

=
∣∣∣∣∫ t

0
EX,Y [(Y − fs(X))⟨c(∇σ(w, x)T ∇σ(w, X)

−∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X)), µ0⟩]ds
∣∣∣

C−S
≤

∫ t

0
∥(Y − fs(X)∥2 ∥⟨c(∇σ(w, x)T ∇σ(w, X̃) − ∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X̃)), µ0⟩∥L2(X̃)︸ ︷︷ ︸

(⋆)

ds.

Let’s focus on (⋆) for a moment. We have:

(⋆) = ∥⟨c(∇σ(w, x)T ∇σ(w, X̃) − ∇(σ ◦ T m
s )(w, x)T ∇(σ ◦ T m

s )(w, X̃)), µ0⟩∥L2(X̃)

≤ ∥⟨c(∇σ(w, x)T ∇σ(w, X̃) − ∇σ(w, x)T ∇(σ ◦ T m
s )(w, X̃)), µ0⟩∥

+ ∥⟨c(∇σ(w, x)T ∇(σ ◦ T m
s )(w, X̃)) − ∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X̃)), µ0⟩∥

≤ C∥w − T m
s (w)∥2

≤ CW(µ0, µm
s ).

By replacing this in (2):

|(2)| ≤ C
∫ t

0
EX,Y [|Y − fs(X)|W(µ0, µm

s )ds

C−S
≤ C

∫ t

0
∥Y − fs(X)∥L2(X)W(µ0, µm

s )ds.

For (3), by directly using Cauchy-Schwartz inequality and the fact that ∇σ’s norm is bounded,
we obtain:

|(3)| =
∣∣∣∣∫ t

0

∫
R×Rp

EX,Y [(fm
s (X) − fs(X))c∇(σ ◦ T m

s )(w, x)T ∇(σ ◦ T m
s )(w, X)]µ0(dc, dw)ds

∣∣∣∣
≤ C

∫ t

0
∥fm

s − fs∥L2(X)ds.

By noting that S(c, w, µ) is bounded, we do the same we did in (2) at (4) and obtain:

|(4)| ≤ Cγ

2

∫ t

0
W(µm

s , µ0)ds.

At last, by the same type of manipulations, we obtain:

|(5)| ≤ Cγ

2

∫ t

0
W(µm

s , µ0)2ds.
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By putting all our bounds together, we can conclude:

∥fs − fm
s ∥L2(X) ≤ CW2

2 (µm
0 , µ0) + C

∫ t

0
W(µm

s , µ0) + C
∫ t

0
∥fm

s − fs∥L2(X)ds

+ Cγ

2

∫ t

0
W(µm

s , µ0)ds + Cγ

2

∫ t

0
W(µm

s , µ0)2ds. (5.14)

We define:

Lm(t) = W2
2 (µm

0 , µ0) +
∫ t

0
W(µm

s , µ0) + +γ

2

∫ t

0
W(µm

s , µ0)ds + γ

2

∫ t

0
W(µm

s , µ0)2ds,

therefore:
∥ft − fm

t ∥L2(X) ≤ CLm(t) + C
∫ t

0
∥fm

s − fs∥L2(X)ds.

And by applying Gronwall’s inequality:

∥ft − fm
t ∥L2(X) ≤ CLm(t)et, (5.15)

and by making m to infinity, since Lm(t) → 0 as m → ∞, we can conclude:

lim
m→∞

∥ft − fm
t ∥L2(X) = 0.

As a conclusion, when α = 1
2 the limiting dynamic of f will be:

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µ0)T Hwσ(w)

))
µ0(dc, dw)ds,

and when α > 1
2 :

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds,

where the initial condition for both equations is f0 = ⟨σ, η0⟩.

5.2. Studying the Limiting Dynamic with Xavier ini-
tialization

We devote this section to the study of the limiting equations we found in the last section.
As in the last section, we focus our study in the case when when the initialization of our
parameters is centered. By Theorem 5.1, the limit ODE that ft satisfies is:

ft(x) = f0(x) +
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c∇σ(w, x)T ∇σ(w, X)]µ0(dc, dw)ds.

In this section, we attempt to answer the question: Does ft converges to a minima of some
kind when t grows? As we’ll see, the answer will be yes. Nevertheless, it won’t be in the
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sense we’d like it to be: The convergence will not be for our loss

L[f ] = EX,Y [(Y − fs(X))2],

but for a modified version of it, in a different space than the one we’d expect (which would
be L2(X )). For this mission, we’ll study the results presented in [19], where the authors
study the limiting object when the number of neurons go to infinity by means of the Neural
Tangent Kernel, and we’ll revisit them through a different perspective.
Note that, since all measures are finite, we can exchange integrals and rewrite ft’s dynamic,
obtaining:

ft(x) = f0(x) +
∫ t

0
EX,Y [(Y − fs(X))⟨c2∇σ(w, x)T ∇σ(w, X), µ0⟩]ds. (5.16)

By remembering the definition of the continuous Neural Tangent Kernel we introduced in
equation (4.106) of section 3.6,

K(x, x′) := ⟨c2∇σ(w, x)∇σ(w, x′), µ0⟩,

we obtain that:
ft(x) = f0(x) +

∫ t

0
EX,Y [(Y − fs(X))K(X, ·)]ds. (5.17)

Consider the RKHS definition we gave in the background section. Then, it’s not hard to see
from the dynamic of ft, that it follows Kernel Gradient Descent on the Reproducing Kernel
Hilbert Space, with the Kernel equal to the Neural Tangent Kernel. That is, ft follows
gradient descent on the RKHS associated to the NTK with respect to the loss:

LK : HK → R

LK [f ] = ∥Y − f(X))∥2
HK

.

We’d like to prove that this loss converges to some kind of global minima. For this, we’ll rely
on the strong convexity of LK . We stress the fact that LK does not corresponds to the
original loss metric, but to a it’s modification in the RKHS defined by the Neural
Tangent Kernel. Before proving convergence, let’s give a definition of m-convexity:

Definition 5.1 An operator O : HK → R is m-convex if the operator

f → O[f ] − m

2 ∥f∥2
HK

is convex. If m > 0, we say O is strongly convex.

Lemma 5.4 If K is a positive definite kernel, the operator LK [f ] = ∥Y − f(X))∥2
HK

is
2-convex in the Hilbert Space HK.

Proof. Let f1, f2 ∈ HK , and λ ∈ [0, 1]. We denote λ̄ = 1 − λ. If the Kernel is positive
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definite, it defines an RKHS and hence, we have:

L[λf1 + λ̃f2] = ⟨Y − λf1 + λ̃f2, Y − λf1 + λ̃f2⟩HK

= ⟨λ(Y − λf1) + λ̃(Y − f2), λ(Y − λf1) + λ̃(Y − f2)⟩HK

= λ2∥Y − λf1∥ + λ̃2∥Y − λf2∥ + 2λλ̃⟨Y − f1, Y − f2⟩HK

= λ2L[f1] + λ̃2L[f2] + 2λλ̃⟨Y − f1, Y − f2⟩HK

= λ(1 − λ̃)L[f1] + λ̃(1 − λ)L[f2] + 2λλ̃⟨Y − f1, Y − f2⟩HK

= λL[f1] − λλ̄L[f1] + λ̄L[f2] − λλ̄L[f2] + 2λλ̄⟨Y − f1, Y − f2⟩HK

= λL[f1] + λ̄L[f2] − λλ̄(L[f1] + L[f2] − 2⟨Y − f1, Y − f2⟩HK
)

= λL[f1] + λ̄L[f2] − λλ̄∥f1 − f2∥2
HK

.

By noting that:

∥f1 − f2∥2
HK

= λ2∥f1∥2
HK

+ 2λλ̄⟨f1, f2⟩HK
+ λ̄2∥f2∥2

HK

= λ∥f1∥2
HK

− λλ̄∥f1∥2
HK

+ 2λλ̄⟨f1, f2⟩HK
+ λ̄∥f2∥2

HK
− λλ̄∥f2∥2

HK
,

and replacing in L’s expression, we obtain:

L[λf1 + λ̃f2] − ∥f1 − f2∥2
HK

= λL[f1] + λ̄L[f2] − λλ̄∥f1 − f2∥2
HK

− λ∥f1∥2
HK

+ λλ̄∥f1∥2
HK

− 2λλ̄⟨f1, f2⟩HK
− λ̄∥f2∥2

HK
+ λλ̄∥f2∥2

HK

= λL[f1] + λ̄L[f2] − λ∥f1∥2
HK

− λ̄∥f2∥2
HK

,

with which we conclude that L is 2-convex.

In order to prove convergence, we use the following Lemma, which is classic for the prove
of convergence of gradient descent methods. For a deeper study of this kind of inequalities,
called Lojasiewicz-Simon inequalities, we recommend [37].

Lemma 5.5 (Lojasiewicz-Simon Inequality) Let L : HK → R be an k-convex functional,
and ft be such that:

d

dt
ft = −∇L[ft].

Then:
L[ft] − L∗ ≤ 1

2k
∥∇L[ft]∥2

HK
,

where L∗ is a global minima of L.
We’ll use this Lemma in order to create a Gronwall Inequality for our Loss functional.

Theorem 5.2 Let L be the loss we defined above, and consider ft such that

ft(x) = f0(x) +
∫ t

0
EX,Y [(Y − fs(X))K(X, ·)]ds.

Then, if K is a positive definite kernel,

lim
t→∞

L[ft] = L∗.
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Proof. As we noted before, we have that:

d

dt
ft = −∇L[ft].

Then, by Lemma 5.5:
L[ft] − L∗ ≤ 1

4∥∇L[ft]∥2
HK

,

and by multiplying by −1:

−∥∇L[ft]∥2
HK

≤ −(L[ft] − L∗). (5.18)

Now, note that:

d

dt
L[ft] = ⟨∇L[ft],

d

dt
ft⟩HK

= −⟨∇L[ft], ∇L[ft]⟩HK
= −∥∇L[ft]∥2

HK
. (5.19)

By using equation 5.18 in 5.19:

d

dt
L[ft] ≤ −(L[ft] − L∗),

which we can rewrite as:
d

dt
(L[ft] − L∗) ≤ −(L[ft] − L∗).

Now, by applying Gronwall’s inequality:

(L[ft] − L∗) ≤ (L[f0] − L∗)e−t.

We conclude by taking the limit t → ∞.

With this last Theorem, we prove that as time passes, the mean field version of our shallow
neural network converges as to a minimizer of LK as t grows.

Remark The fact that the functional being minimized is LK , the RKHS version of L can be
seen in the following way in practice: Since in practice the NTK is actually given by the train
set, this suggests that the neural network’s limit will over-fit in the training set as training
occurs.

A natural question would be, what happens in the more general case of non-centered
initialization for c, where the limiting dynamic is:

ft(x) − f0(x) =
∫ t

0

∫
R×Rp

EX,Y [(Y − fs(X))c2∇σ(w, x)T ∇σ(w, X)]µs(dc, dw)ds

− γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µs)T Hwσ(w)

))
µs(dc, dw)ds.

As we already saw, the first term is minimizing our Loss, but what is the non-linear term
doing in this dynamic? The answer lies in part in [17]. The non-linear term is given by:

γ

2

∫ t

0

∫
R×Rp

c
(
Tr
(
S(c, w, µs)T Hwσ(w)

))
µs(dc, dw)ds
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Consider the case when S(c, w, µs)T = I. We’d obtain

γ

2

∫ t

0

∫
R×Rp

c (Tr (Hwσ(w))) µs(dc, dw)ds.

This corresponds to an entropic regularization of µ. From this, we can conclude that in the
mean field, the neural network minimizes a regularized version of the loss, which could be
one of the reasons why SGD generalizes better than gradient descent.
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Chapter 6

Conclusion

Different parametrizations of neural networks have been studied in the literature, being the
most important ones among them the mean field parametrization and the Neural Tangent
Kernel (NTK) parametrization. Even though both lines of research have witnessed lots of
advances in recent years, some questions still remain open. The results in this work studied
the NTK regime by using the methods proposed in [17]. This techniques proved to be a very
good toolkit for the study of the limiting dynamics.

In the first place, this work proved that the NTK is a direct consequence of a centered
initialization of the parameters. This suggest that for a complete study of the good general-
ization properties of neural networks, we should be considering the behavior of more general
initialization distributions. In the second place, the results in this work provide a novel
framework for studying the neural network process, that is, the one that considers signed
measures for the parameters of the neural network. In the third place, this work also studies
the differences between different training schemes. We found that, as in [17], a regularizing
term appears when the network is trained by Stochastic Gradient Descent, yet not in the
same way, since it appears in the neural network’s dynamic.

Even though some training regimes could be completely studied, in particular the ones
that arise when α ≥ 1

2 , it’s also relevant to mention that it seems difficult to study the case
when α ≥ 1

2 with the same tools. This is because the non-linear terms appearing in the
limiting dynamics seem to go to infinity when the limit of infinite neurons is taken. We
conjecture that this study can be made by the use of other tools, and that in the particular
case of centered initializations the dynamics will be the same as the ones in this work. This
presents an interesting possible line of future work.

It’s also important to remark that while finishing this work, the authors found the work
in [11], which does a similar study. Nevertheless, the techniques they use are based on a
discrete setting, while ours is a continuous setting. On the other hand, our assumptions on
the parameters initialization are more general in Section 3.

An interesting future line of research is extending the work done in this thesis to multilayer
neural networks, with different training schemes. This work is partially done in the literature,
yet a satisfying theory that completely explains the success of deep neural networks and more
generally of deep learning is still not in sight.
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1

Annex

1.1. Controlling the moments of the parameters
In this appendix, we’ll prove that the 4th moment of the vector of all the weights in the
neural network’s hidden layer, W m

s is finite, i.e E[∥W m
s ∥4]] < ∞.

Lemma 1.1 Let α > 0, λ ∈ [0, 1) , γ ≥ 0, and µm
t denote the empirical measure process

that represents the weights of a shallow neural network, who’s parameters are trained in
continuous time by the dynamics:

dW k,m
t = hk,m(W m

t )dt + γ
1
2

m
α
2

Σ
1
2
k,m(W k,m

t )dBk,m
t +

√
2τdB̃k,m

s , (1.1)

where W k,m
t denotes one neuron in the hidden layer. Let µ0 denote the initialization

distribution for the pair (C, W ). Then, we have, for all s ≥ 0

E[∥W k,m
s ∥2] < ∞ and E[∥W k,m

s ∥4] < ∞.

Proof. We already proved, in section 3, that the coefficients in equation (1.1) are Lipschitz
for W m. Then, by Ito’s Lemma:

∥W k,m
t ∥2 = ∥W k,m

0 ∥2 +
∫ t

0
(W k,m

s )T hk,m(W m
s )ds

+
∫ t

0
(W k,m

s )T Σ
1
2
k,m(W m

s )dBk,m
s + γ

2

∫ t

0
Tr(Σk,m(W m

s ))ds.
(1.2)

Then, by applying expectation :

E[∥W k,m
t ∥2] = E[∥W k,m

0 ∥2] + E
[∫ t

0
(W k,m

s )T hk,m(W m
s )ds

]
+ γ

2E
[∫ t

0
Tr(Σk,m(W m

s ))ds
]

≤ E[∥W k,m
0 ∥2] + E

[∫ t

0
(W k,m

s )T hk,m(W m
s )ds

]
+ γ

2E
[∫ t

0
Tr(Σk,m(W m

s ))ds
]

≤ E[∥W k,m
0 ∥2] +

∫ t

0
E
[
∥W k,m

s ∥∥hk,m(W m
s )∥

]
ds + γ

2

∫ t

0
E [| Tr(Σk,m(W m

s ))|] ds

≤ E[∥W k,m
0 ∥2] +

∫ t

0
E
[
∥W k,m

s ∥∥hk,m(W m
s )∥

]
ds + γ

2

∫ t

0
E [∥Σk,m(W m

s ))∥] ds.
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Now, by using that the coefficients are Lipschitz:

E[∥W k,m
t ∥2] ≤ E[∥W k,m

0 ∥2] + C
∫ t

0
E
[
∥W k,m

s ∥(∥W m
s − W m

0 ∥ + ∥W m
0 ∥)

]
ds

+ γ

2

∫ t

0
E
[
(∥W m

s − W m
0 ∥ + ∥W m

0 ∥)2
]

ds.

Now, since ∥W k,m
s ∥ ≤ ∥W m

s ∥:

E[∥W k,m
t ∥2] ≤ E[∥W m

0 ∥2] + C
∫ t

0
E
[
(∥W m

s − W m
0 ∥ + ∥W m

0 ∥)2
]

ds

+ γ

2

∫ t

0
E
[
(∥W m

s − W m
0 ∥ + ∥W m

0 ∥)2
]

ds.

Next, we use that (a + b)2 ≤ 2a2 + 2b2 and the triangular inequality and obtain:

E[∥W k,m
t ∥2] ≤ CE[∥W m

0 ∥2] + C
∫ t

0
E
[
∥W m

s ∥2
]

ds.

Since this applies for every k ∈ {1, . . . , m}, we have:

E[∥W m
t ∥2] ≤ CE[∥W m

0 ∥2] + C
∫ t

0
E
[
∥W m

s ∥2
]

ds.

By using Gronwall in this inequality, we conclude:

E[∥W k,m
t ∥2] ≤ CE[∥W m

0 ∥2] < ∞,

where the last norm is finite because we assumed the initial distribution to have finite second
moments. Now, let’s do the same for the 4th moment. For that, we’ll use (1.3), which we
recall is given by

∥W k,m
t ∥2 = ∥W k,m

0 ∥2 +
∫ t

0
(W k,m

s )T hk,m(W m
s )ds

+
∫ t

0
(W k,m

s )T Σ
1
2
k,m(W m

s )dBk,m
s + γ

2

∫ t

0
Tr(Σk,m(W m

s ))ds.
(1.3)

By applying Itô’s Lemma to the function (1 + ∥W k,m
s ∥2)p, we obtain:

(1 + ∥W k,m
s ∥2)p = (1 + ∥W k,m

0 ∥2)p +
∫ t

0
p(1 + ∥W k,m

s ∥2)p−1(W k,m
s )T hk,m(W m

s )ds

+
∫ t

0
p(1 + ∥W k,m

s ∥2)p−1(W k,m
s )T Σ

1
2
k,m(W m

s )dBk,m
s +

γ

2

∫ t

0
Tr
(
p(p − 1)(1 + ∥W k,m

s ∥2)p−2(W k,m
s )(W k,m

s )T Σk,m(W m
s )
)
ds

+ γ

2

∫ t

0
Tr
(
p(1 + ∥W k,m

s ∥2)p−1Σk,m(W m
s )
)
ds.
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Next, we apply expectation on both sides:

E[(1 + ∥W k,m
s ∥2)p] = E[(1 + ∥W k,m

0 ∥2)p] + E
[∫ t

0
p(1 + ∥W k,m

s ∥2)p−1(W k,m
s )T hk,m(W m

s )ds
]

+

γp(p − 1)
2 E

[∫ t

0
Tr
(
(1 + ∥W k,m

s ∥2)p−2(W k,m
s )(W k,m

s )T Σk,m(W m
s )
)
ds
]

+ pγ

2 E
[∫ t

0
Tr
(
(1 + ∥W k,m

s ∥2)p−1Σk,m(W m
s )
)
ds
]

.

By bounding each integral by the integral of the module:

E[(1 + ∥W k,m
s ∥2)p] = E[(1 + ∥W k,m

0 ∥2)p] + E
[∫ t

0
p(1 + ∥W k,m

s ∥2)p−1∥W k,m
s ∥∥hk,m(W m

s )∥ds
]

+

γp(p − 1)
2 E

[∫ t

0
(1 + ∥W k,m

s ∥2)p−2∥W k,m
s ∥2∥Σk,m(W m

s )∥ds
]

+ pγ

2 E
[∫ t

0
(1 + ∥W k,m

s ∥2)p−1∥Σk,m(W m
s )∥ds

]
.

Now, by using that the coefficients are Lipschitz and doing the same manipulation of the
terms as in the last case:

E[(1 + ∥W k,m
s ∥2)p] = CE[(1 + ∥W k,m

0 ∥2)p] + E
[∫ t

0
p(1 + ∥W k,m

s ∥2)p−1∥W m
s ∥2ds

]
+

γp(p − 1)
2 E

[∫ t

0
(1 + ∥W k,m

s ∥2)p−2∥W k,m
s ∥2∥W m

s ∥2ds
]

+ pγ

2 E
[∫ t

0
(1 + ∥W k,m

s ∥2)p−1∥W k,m
s ∥2ds

]
.

Next, we bound E[∥W k,m
s ∥] ≤ CE[∥W m

s ∥] and obtain:

E[(1 + ∥W k,m
s ∥2)p] = CE[(1 + ∥W m

0 ∥2)p] + E
[∫ t

0
p(1 + ∥W m

s ∥2)p−1∥W m
s ∥2ds

]
+

γp(p − 1)
2 E

[∫ t

0
(1 + ∥W m

s ∥2)p−2∥W m
s ∥2∥W m

s ∥2ds
]

+ pγ

2 E
[∫ t

0
(1 + ∥W m

s ∥2)p−1∥W m
s ∥2ds

]
.

Since ∥W m
s ∥2 ≤ 1 + ∥W m

s ∥2, we obtain:

E[(1 + ∥W k,m
s ∥2)p] = CE[(1 + ∥W m

0 ∥2)p] + E
[∫ t

0
p(1 + ∥W m

s ∥2)pds
]

+

γp(p − 1)
2 E

[∫ t

0
(1 + ∥W m

s ∥2)ds
]

+ pγ

2 E
[∫ t

0
(1 + ∥W m

s ∥2)pds
]

.

This way, we conclude:

E[(1 + ∥W k,m
s ∥2)p] = CE[(1 + ∥W m

0 ∥2)p] + CE
[∫ t

0
(1 + ∥W m

s ∥2)pds
]

.
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Since this is true for every k ∈ {1, . . . , m}:

E[(1 + ∥W m
s ∥2)p] = CE[(1 + ∥W m

0 ∥2)p] + CE
[∫ t

0
(1 + ∥W m

s ∥2)pds
]

,

and by Gronwall:

E[(1 + ∥W m
s ∥2)p] = CE[(1 + ∥W m

0 ∥2)p].

Therefore, the equation propagates all the initial moments, and in particular the 4th one,
which is what we wanted to prove.
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