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Cisplatin is a known ototoxic chemotherapy drug, causing irreversible hearing loss.
Evidence has shown that cisplatin causes inner ear damage as a result of adduct
formation, a proinflammatory environment and the generation of reactive oxygen species
within the inner ear. The main cochlear targets for cisplatin are commonly known to be
the outer hair cells, the stria vascularis and the spiral ganglion neurons. Further evidence
has shown that certain transporters can mediate cisplatin influx into the inner ear cells
including organic cation transporter 2 (OCT2) and the copper transporter Ctr1. However,
the expression profiles for these transporters within inner ear cells are not consistent in
the literature, and expression of OCT2 and Ctr1 has also been observed in supporting
cells. Organ of Corti supporting cells are essential for hair cell activity and survival.
Special interest has been devoted to gap junction expression by these cells as certain
mutations have been linked to hearing loss. Interestingly, cisplatin appears to affect
connexin expression in the inner ear. While investigations regarding cisplatin-induced
hearing loss have been focused mainly on the known targets previously mentioned, the
role of supporting cells for cisplatin-induced ototoxicity has been overlooked. In this
mini review, we discuss the implications of supporting cells expressing OCT2 and Ctr1
as well as the potential role of gap junctions in cisplatin-induced cytotoxicity.
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INTRODUCTION

The cochlear sensory epithelium, also known as the organ of Corti, contains both hair cells (HCs)
and supporting cells. The HCs, or sensory cells, are specialized and translate the mechanical energy
of sound into neurophysiological signals. The supporting cells, on the other hand, are involved in
the maintenance of the epithelium during hearing and development. Although they are not the
actual transducers, they are essential, and without them, hearing would not be possible (Wan et al.,
2013). In fact, some mutations linked to genetic deafness affect genes expressed in supporting cells
but not in HCs, such as connexin (Cx) genes for gap junction formation (Forge et al., 1999; Martínez
et al., 2009). There are approximately 15 supporting cells per each inner hair cell (IHC) and there
are different types of supporting cells including: border, inner phalangeal, pillar, Deiters’ (outer
phalangeal cells), and Hensen’s cells (Merchant et al., 2010). They span the whole thickness of the
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epithelium providing a rigid but vibratile backbone for the
organ of Corti. In their luminal domain, they form tight
unions with HCs, electrochemically isolating the endolymph,
and enabling the endocochlear potential. However, at the
basolateral domain, they are widely connected to HCs with
important communicative, nutritive, and homeostatic functions
(Wangemann, 2006; Zdebik et al., 2009). They can mediate
recycling of neurotransmitters and ions, and also perform
immunologic and housekeeping functions (Abrashkin et al.,
2006; Bird et al., 2010). They can phagocyte or eject fragments
of cells, debris, and even whole HCs from the epithelium that
have been terminally injured, and produce a phalangeal scar
to keep the integrity and electrochemical properties of the
epithelium (Kelley et al., 1995; Żak et al., 2016). During organ
development, supporting cells participate in cell patterning,
polarity and synaptogenesis. There is evidence from other
species that supporting cells can perform regenerative functions
(Cotanche, 1987; Corwin and Cotanche, 1988). In mammals,
although there is no spontaneous cochlear regeneration, it
is possible to induce trans-differentiation or proliferation in
supporting cells in vitro and in vivo (Chen and Segil, 1999;
Löwenheim et al., 1999; Izumikawa et al., 2005; Sage et al., 2005;
White et al., 2006; Yu et al., 2010; Yang et al., 2012; Mizutari
et al., 2013; Atkinson et al., 2014; Cox et al., 2014; Silva and
Maass, 2019). Additionally, supporting cells are more resistant
than HCs and usually remain in the epithelium upon damage
(McFadden et al., 2002, 2004; Raphael et al., 2007; deTorres et al.,
2019). Thus, they are potential targets for regenerative therapies.
Despite their importance, they have drawn much less attention
and have not been studied as much as HCs (Wan et al., 2013;
Waldhaus et al., 2015; Maass et al., 2016). Moreover, it is known
that persistent or very severe damage to the sensory epithelium
may destroy supporting cells and result in a flat epithelium, in
which the normal columnar specialized epithelium is replaced by
a non-specialized monolayer epithelium (McFadden et al., 2002,
2004; Raphael et al., 2007; Izumikawa et al., 2008). Several drugs
can induce damage to the organ of Corti, however, their effects
have been mostly characterized for HCs, and not for supporting
cells (Anniko and Sobin, 1986; Slattery and Warchol, 2010).

In this article, we review the potential roles supporting cells
may play in cisplatin-induced ototoxicity.

CISPLATIN-INDUCED CYTOTOXICITY

Cisplatin is a commonly used chemotherapeutic agent
worldwide. It is a platinating agent that is used to treat various
types of cancers (Gold and Raja, 2021). While it is quite efficient
as a chemotherapeutic agent, it is known to cause various dose-
limiting side effects which include nephrotoxicity and ototoxicity
(Wensing and Ciarimboli, 2013). Cisplatin cytotoxicity derives
mainly from its capacity to form irreversible DNA adducts,
disrupting replication and transcription, and leading to cell death
as the cell fails to repair itself (Jamieson and Lippard, 1999).

Cisplatin is a small, and highly reactive molecule and it is
believed to enter the inner ear cells through passive diffusion
and various transporters, mainly organic cation transporter 2

(OCT2)/solute carrier (SLC) 22A2, and copper transporter Ctr1
(Ciarimboli et al., 2010; More et al., 2010). Once inside the cell,
it undergoes an aquation reaction and can bind irreversibly to
DNA, RNA and proteins, which leads to cell death, mainly by
apoptosis (Johnstone et al., 2016). Ototoxicity is believed to occur
as a result of these adducts, a proinflammatory environment and
the generation of reactive oxygen species (ROS) within the inner
ear. Cisplatin increases the release of proinflammatory cytokines
TNF-α, IL-1β and IL-6, and activates MAPKs and factor NF-κB
which in turn, promote the expression of pro-inflammatory genes
(So et al., 2008). It also activates signal transducer and activator
of transcription family proteins, STAT1 and STAT6, which also
promote an inflammatory response (Gentilin et al., 2019).

Reactive oxygen species play a major role in cisplatin-induced
ototoxicity. They can activate NOX3, a NADPH oxidase highly
expressed in the cochlea (Bánfi et al., 2004), which leads to
lipid peroxidation and the accumulation of ROS. Cisplatin also
depletes glutathione and antioxidant enzymes, which further
increases lipid peroxidation (Rybak et al., 2007). As a result of
the overwhelming oxidative stress, the cells undergo apoptosis
(Sheth et al., 2017; Gentilin et al., 2019). Interestingly, a recent
study has shown that following cisplatin exposure in a murine
model, Nox3 expression is increased in supporting cells and outer
hair cells (OHCs), especially at the basal turn of the cochlea, yet,
OHCs but not supporting cells exhibited ROS-induced apoptosis
from endogenously produced ROS and/or that of surrounding
supporting cells (Mohri et al., 2021) indicating that somehow
supporting cells are resistant to ROS-induced cell damage.

On the other hand, morphological analysis following cisplatin
application shows that supporting cells exhibit signs of structural
damage even before HC loss (Ramírez-Camacho et al., 2004).
Moreover, phagocytosis of dead HCs by supporting cells seems
to be impaired after cisplatin treatment (Monzack et al., 2015),
indicating that supporting cells can be a direct target of cisplatin
damage. The association between supporting cells and HC
survival can be further supported by the finding that constitutive
activation of PI3K-dependent survival signals in some supporting
cells, by means of specific genetic ablation of Phosphatase and
Tensin Homolog (PTEN), protects HCs from cisplatin damage
(Jadali et al., 2017). This protection only occurs in the nearest
neighboring HC to the supporting cell presenting greater activity
for PI3K, probably through the activation of Checkpoint Kinase
1 (CHK1), which allows supporting cells to repair cisplatin-
induced DNA damage (Jadali et al., 2017). Hence, the protection
of supporting cells could indirectly protect HCs from cisplatin
damage through the secretion of unknown extracellular signaling
molecules or other cell-cell signaling molecules that activate HC
survival programs.

CISPLATIN-INDUCED HEARING LOSS

Clinically, cisplatin-induced ototoxicity presents as a high
frequency sensorineural hearing loss that progresses toward
the low frequencies (Sheth et al., 2017). Hearing loss is
progressive and can also appear months to years after the
end of the chemotherapy treatment (Einarsson et al., 2010;
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FIGURE 1 | Location of Ctr1 and OCT2 in inner ear cells. (A) Midmodiolar cross section of the cochlea with emphasis on the organ of Corti. Different cell types are
indicated as follows: SGN, spiral ganglion neurons; ISC, inner sulcus cells; IHC, inner hair cells; PC, pillar cells; OHC, outer hair cells; DC, Deiters’ cells; HS, Hensen’s
cells; OSC, outer sulcus cells; SV, stria vascularis. (B) Variable and inconsistent localization of Ctr1 and OCT2 in the inner ear in various studies; 1 base of OHC, 2

apical pole of OHC, 3 SGN type 1, 4 IHC synapse area.

Waissbluth et al., 2018). Platinum has been shown to be retained
in the inner ear after cisplatin chemotherapy and this has been
suggested as one of the explanations for progressive hearing loss
(Breglio et al., 2017). Patients often have tinnitus (Sakamoto
et al., 2000; Dille et al., 2010; Frisina et al., 2016; Brooks
and Knight, 2018) and in some cases, bilateral vestibulopathy
(Prayuenyong et al., 2018).

An important subset of patients are pediatric patients
because hearing loss can have debilitating long term effects
including difficulties in learning, speech delays, and psychosocial
impairment (Sheth et al., 2017). Another subset of high-risk
patients are patients with cancers requiring concomitant head
and neck radiotherapy, as this is an independent risk factor
for developing hearing loss. Other risk factors include age
(<5 years, >65 years), type of administration, renal function,
cumulative cisplatin dose, concomitant use of other ototoxic
medications and genetic predisposition (Paken et al., 2019). To
date, there are no protective strategies or treatments for cisplatin-
induced hearing loss that are FDA-approved. Despite its clinical
relevance, the mechanisms by which cisplatin induces hearing
loss are still under scrutiny, without clear evidence supporting a
principal venue.

MAIN TRANSPORTERS INVOLVED IN
CISPLATIN TRANSPORT INTO THE
INNER EAR

van Ruijven et al. (2004) described that cisplatin causes HC loss
which is accompanied by protrusion of supporting cells into
Nuel’s space and the tunnel of Corti, resulting in a disturbed
microarchitecture of the organ of Corti. Thereafter, the same

group proposed that the main inner ear targets for cisplatin
toxicity are the OHCs, stria vascularis and the spiral ganglion
neurons (SGN) (van Ruijven et al., 2005). The latter indicates that
cisplatin may induce generalized damage to cochlear tissue more
than a cell-type specific effect. Evidence shows that transporters
that may mediate cisplatin influx include OCT2 and Ctr1, and
they are expressed in cochlear tissue (Figure 1). However, the
expression profiles for these transporters are not consistent in
the literature. More et al. (2010) observed the presence of Ctr1 in
the IHCs, OHCs, stria vascularis and SGN; and OCT2 in the stria
vascularis and SGNs but absent from HCs, in 3–4 weeks mouse
cochleae. Ding et al. (2011) found Ctr1 in HCs, epithelium of
the stria vascularis, and SGN in postnatal day 3 rat pups while
Fransson et al. (2017) observed expression in the IHC synapse
area, Deiters’ cells and stria vascularis in guinea pigs.

On the other hand, Ciarimboli et al. (2010) observed OCT2
distributed throughout IHCs, at the apical pole of OHCs, and the
stria vascularis but not in the SGN; they do, however, mention
some expression in the inner spiral bundle fibers. They also
looked into Ctr1; it was present in mouse cochleae but in lower
expression as compared to OCT2, hence they decided not to
perform further testing for Ctr1; they focused on OCT2 seen as it
had greater expression by RT-PCR. Later on, Hellberg et al. (2015)
found OCT2 in supporting cells and SGN but not HCs or the
stria. They report OCT2 in Deiters’ cells, Hensen’s cells, outer and
inner sulcus cells, and outer and inner pillar cells (Hellberg et al.,
2015). Consistently, Fransson et al. (2017) also showed strong
immunoreactivity for OCT2 in inner and outer pillar cells, and
also found Ctr1 in Deiters’ cells and in the stria but not in OHCs.

Another interesting finding is the presence of ATP7A
in the pillar cells (Ding et al., 2011). P-type ATPases,
copper-transporting ATP7A and ATP7B, are believed to be
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FIGURE 2 | Possible role of Gap Junction Channels (GJC) in the propagation of cisplatin-induced cellular signals. (1) Cisplatin (CDDP) can potentially enter
supporting cells (SCs) through non-selective transporters such as OCT2. Inside the cells, cisplatin induces toxicity by damaging DNA and mitochondria, producing
ROS and other death signals that can propagate through GJC, spreading cell death signals through the sensory epithelium (Bystander effect). (2) Cisplatin can
potentially enter SCs that lack intercellular communication through gap junctions, which restrict toxicity only to these cells. (3) Alternatively, GJC can potentially allow
the transmission of protective signals that can reduce cell death between the coupled cells affected by cisplatin. (4) The loss of gap junction communication induced
by cisplatin could also induce loss of cell viability in SCs.

involved in cisplatin sequestration and efflux (Safaei, 2006),
and overexpression has been linked to cisplatin resistance in
cancer cells (Samimi et al., 2004). Remarkably, although pillar
cells express OCT2, they also express ATP7A and only limited
uptake of cisplatin has been reported in supporting cells; while
ATP7B was localized in the OHCs of postnatal day 3 rat pups
(Ding et al., 2011).

WHAT ABOUT GAP JUNCTIONS?

Connexins (Cxs) are transmembrane proteins pivotal for cell
communication as they assemble in hemichannels and gap
junction channels (GJCs). Hemichannels connect the cell with
its external milieu either in a paracrine or autocrine manner
(Sáez and Leybaert, 2014). GJCs are aqueous pores through
appositional plasma membranes in neighboring cells that connect
their cytoplasm. Both hemichannels and GJCs allow the passage
of molecules and ions that are essential to maintain cell
homeostasis (Sáez et al., 2003) such as ATP, miRNA, glucose,
NAD, second messengers and other signaling molecules (Kang
et al., 2008; Zong et al., 2016). In physiological conditions,
extracellular Ca2+ and the resting membrane potential keep
hemichannels closed, and depending on the Cx isoform,
hemichannels can be opened by diverse signaling mechanisms
including phosphorylation, calcium-calmodulin, nitrosylation,
etc. (Sáez and Leybaert, 2014).

Several Cx genes have been identified in the cochlea, including
Cx26, Cx30, Cx31, Cx29, Cx43, and Cx45 (Forge et al., 2003a;
Martínez et al., 2009). Although HCs do not express Cxs,
supporting cells are highly interconnected through GJCs formed
mainly by Cx26 and Cx30, forming functional heteromeric

hemichannels and GJCs (Ahmad et al., 2003; Forge et al., 2003b;
Sun et al., 2005; Verselis, 2019), with some reports indicating
expression of Cx43 in rodent prenatal stages (Cohen-Salmon
et al., 2004; Jagger and Forge, 2015). Mutations in Cx26 gene
(GJB2) are responsible for 50% of genetic deafness causing
sensorineural hearing loss due to cochlear malfunction (Kelsell
et al., 1997; Martínez et al., 2009; García et al., 2015, 2016;
Verselis, 2019). Cxs are involved in the regulation and recycling
of K+ and pH maintenance, along with the passage of molecules
such as ATP, IP3 and others between supporting cells (Zhao
et al., 2005; Jagger and Forge, 2015; Verselis, 2019), maintaining
the sensitivity and viability of HCs (Ramírez-Camacho et al.,
2006; Zhu et al., 2013) and general homeostasis of the auditory
sensory epithelium.

In certain types of cancer cells, communication through GJCs
allows the spread of toxic signals to adjoining cells in response
to cisplatin treatment, potentiating cell death, a process named
“Bystander effect” (Jensen and Glazer, 2004; Arora et al., 2018).
A similar mechanism has been proposed for cisplatin-induced
toxicity in the organ of Corti. A report showed that inhibition
of GJCs with 18α-GA, a non-selective blocker, reduced cisplatin-
induced apoptosis of auditory HCs (Kim et al., 2014). They
suggest Cx43 may play a proapoptotic role (Kim et al., 2016)
as treatment of HEI-OC1 cells, an undifferentiated organ of
Corti progenitor cell line, with Cx43 siRNA, present greater
cell viability compared to control cells during in vitro cisplatin
treatment (Kim et al., 2014). However, a recent study contradicts
this “Bystander effect” and the necessity of Cx43 function in
cisplatin-induced propagation of death signals in the organ of
Corti (Abitbol et al., 2020). In this report, researchers found that
in organotypic cochlear cultures from two Cx43-mutant mouse
strains expressing Cx43 mutations characterized by moderate
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(Cx43I130T/+) or severe (Cx43G60S/+) reduction of Cx43
GJC function, cisplatin-induced HC apoptosis was similar to
wild type cochlear cultures. In addition, the inhibition of GJC
with carbenoxolone did not modify cisplatin-induced HC death
(Abitbol et al., 2020). However, as mentioned early, in the
mature inner ear, Cx43 is not expressed in supporting cells
(Jagger and Forge, 2015).

On the other hand, in some conditions, GJCs can dilute
toxic signals induced by cisplatin, which can lead to protection
(Hong et al., 2012). In fact, it has been proposed that gap
junctions protect non-cancer cells from cisplatin toxicity while
enhancing it in tumor cells (Hong et al., 2012; Zhang et al., 2015).
Protective signals such as cAMP can pass through gap junctions
spreading the transcellular activation of cAMP/PKA/CREB
signaling, thereby reducing cisplatin toxicity in organ of
Corti cells (Kim et al., 2021). Supporting previous findings,
gap junction enhancers, all-trans retinoic acid and quinoline,
potentiate the effects of forskolin induced-cAMP production on
cell survival via activation of cAMP/PKA/CREB (Kim et al.,
2021). Moreover, mice treated with cisplatin exhibited damage
to the stria vascularis and reduced endocochlear potentials. This
was associated with decreasing expressions of Cx26 and Cx43
in marginal and basal cells of the stria vascularis (Zhang et al.,
2020). The latter result is consistent with findings showing that
the deletion or mutation of the Cx26 gene negatively impacts the
endocochlear potential (Mei et al., 2017). In addition, Wang et al.
(2010) found that high concentrations of cisplatin or oxaliplatin
inhibit the activity of GJCs formed by Cx26 and Cx32 in HeLa
cells. Furthermore, using reconstituted connexin-containing
liposomes (immunopurified Cx26/Cx32 hemichannels), the
authors found that cisplatin reduces the activity of the purified
hemichannels, suggesting that cisplatin may interfere directly
with channels made by Cx26 and Cx32. Interestingly, the
concentration range for cisplatin used in this study (0.5–
7.5 mg/ml) is similar to the cisplatin plasma concentration
found in patients during cancer treatment. Moreover, prolonged
treatment with cisplatin (48 h) reduces the expression of Cx26
in transfected HeLa cells. Therefore, the inhibition of GJCs
by cisplatin and oxaliplatin decreases the cytotoxicity of these
compounds, thereby generating a form of resistance to these
antitumor agents (Wang et al., 2010). However, in the cochlea,
the possible inhibition of gap junctions induced by cisplatin
may contribute to HC death as gap junctions are critical for
homeostasis and cochlear function.

DISCUSSION

The precise pathophysiology of cisplatin-induced ototoxicity
remains unknown. What we do know is that oxidative stress,
inflammation and DNA adducts lead to cell death in the cochlea.
It appears OCT2 and Ctr1, which would allow cisplatin influx, are
expressed in supporting cells, yet the OHCs die initially; and that

the distribution of potential transporters is variable depending on
experiment/cells/species studied. Most interestingly, if OHCs are
highly susceptible to cisplatin, a logical question would be: are
these cells accumulating more cisplatin than other structures in
the cochlea? Well, it appears they don’t. Immunohistochemical
detection of cisplatin-DNA adducts has been observed in the
nuclei of most cells in the organ of Corti and the lateral wall after
cisplatin administration (van Ruijven et al., 2005). Using laser
ablation coupled to ICP-MS, concentrations of platinum within
the organ of Corti were indistinguishable from neighboring
tissue, suggesting no specific accumulation of cisplatin within
HCs (Breglio et al., 2017). Cisplatin does, however, accumulate
consistently in the stria vascularis (van Ruijven et al., 2005;
Thomas et al., 2006; Breglio et al., 2017), and it has been proposed
that disruption of cochlear fluid homeostasis could lead to HC
apoptosis (Prayuenyong et al., 2021).

Another possibility is that HCs are somehow exposed to cell
death signals that may be from surrounding cells. We know Cxs
are present in all types of non-sensory cells in the cochlea and
that they are essential for hearing (Wu et al., 2019). There is also
evidence that they can spread either toxic or protective signals
generated by cisplatin to adjoining cells (Figure 2). However,
contradictory evidence on the exact role of gap junctional
intercellular communication in cisplatin-induced ototoxicity
impedes a mechanistic model. There is variable expression of
Cxs in the organ of Corti and it has been demonstrated that
cisplatin can decrease the activity and expression of Cxs. Hence, a
decreased expression in the supporting cells, or lateral wall, could
perhaps be involved in OHC death.

While the commonly known areas of the cochlea that are
affected by cisplatin are the OHCs, stria vascularis and SGN,
greater research efforts should be focused on the supporting cells
as they are essential for HC activity and survival. Further research
is needed to better understand the pathophysiology of cisplatin-
induced ototoxicity, cisplatin inner ear trafficking, as well as the
functions of gap junctions in the cochlea.
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