
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

CLASSIFICATION OF ASTRONOMICAL OBJECTS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

NICOLÁS JAVIER ASTORGA ROCHA

PROFESORES GUÍA:
NANCY HITSCHFELD KAHLER

PABLO ESTÉVEZ VALENCIA

PROFESOR CO-GUÍA:
PABLO HUIJSE HEISE

MIEMBROS DE LA COMISIÓN:
FELIPE BRAVO-MARQUEZ

GUILLERMO CABRERA-VIVES
FRANCISCO FÖRSTER BURÓN

SANTIAGO DE CHILE
2023

CLASIFICACIÓN DE OBJETOS ASTRONÓMICOS

RESUMEN

La clasificación de objetos astronómicos es un problema desafiante en astronomía y de
gran importancia en Chile. Actualmente, en el norte de Chile se construye el Observatorio
Vera C. Rubin que espera recibir petabytes de observaciones. Proyectos chilenos han hecho
esfuerzos considerables para crear clasificadores automáticos de objetos astronómicos. En
esta tesis, investigamos cómo mejorar estos clasificadores considerando técnicas que pueden
incluir más información en la clasificación. Seleccionamos dos de los desafíos más importantes
de la clasificación de objetos astronómicos: 1) La información necesaria para clasificar los
objetos astronómicos proviene de varias fuentes, y 2) existe una cantidad masiva de datos
sin etiquetar en comparación con la cantidad limitada de datos etiquetados. En esta tesis
se propone una nueva arquitectura llamada Astronomical Transformer for time series And
Tabular data (ATAT) para hacer frente al primer desafío. Para el segundo desafío, estudiamos
varias arquitecturas desde una perspectiva de Representation Learning, la perspectiva más
estudiada de Machine Learning, para identificar los modelos que mejor utilizan los datos sin
etiquetar. Además, se proporciona una metodología sobre cómo usar ATAT al considerar
datos no etiquetados. Finalmente, concluimos con la importancia del trabajo presentado.

i

ABSTRACT

Classification of astronomical objects is a challenging problem in astronomy and of great
importance in Chile. Currently, in the north of Chile is being built the Vera C. Rubin Ob-
servatory that expected to receive petabytes of observations. Chilean projects have made con-
siderable efforts to create automatic classifiers for astronomical objects. In this thesis, we
research how to improve classifiers by considering techniques that can include more informa-
tion in the classification. We select two of the most important challenges of the classification
of astronomical objects: 1) The information necessary to classify astronomical objects comes
from various sources, and 2) There exists a massive amount of unlabeled data compared to
the limited amount of the labeled one. We proposed a new architecture called the Astronom-
ical Transformer for time series And Tabular data (ATAT) to deal with the first challenge.
For the second challenge, we studied various architectures from a Representation Learning
perspective, the most studied perspective of Machine Learning, to identify the models that
best use the unlabeled data. Additionally, we provide guidelines on how to use ATAT when
considering unlabeled data. Finally, we conclude with the importance of the presented work.

ii

Esto no habría sido posible, sin las personas que me han apoyado. Para estas personas,
muchas gracias.

iii

Agradecimientos

Quiero agradecer profundamente a mi mamá y papá que me han apoyado en todo. Sin toda
la ayuda que me han dado a lo largo de mi vida no estaría aquí terminando de escribir esta
tesis. Gracias a su apoyo, he podido dedicarle el mayor tiempo posible a lo que me gusta,
investigar, así que por esto no tengo palabras que puedan expresar mi gratitud. Quiero
agradecer a mi abuela Yeya y abuelo Lolo por acompañarme en mi niñez, y a mi abuela Kako
y mi abuelo Nano por acompañarme en mi edad más juvenil. Quiero agradecer a mi hermana
Cata, a mis tíos Luli, Socio y Andrea, y a mis primos por estar siempre presentes y por su
compañía.

Quiero agradecer a la Yara, mi pareja civil, por hacer mi vida más feliz, ya sea jugando o
saliendo. También quiero agradecer a mis amigos del colegio Rocuz, Óscar, Diego, Cristóbal,
Fatias, Lolito y Mario por las interminables horas que hemos jugado videojuegos o juegos de
mesa. A mis amigos los bellos: Feña, Alonso, Vichotote, Javier, Vicho Vegano, Mauro, Cata
y Alfredo por haber hecho esta vida universitaria mucho más alegre y divertida :D. Quiero
agradecer a los cuchufletos Maca, Macla, Maos, Mare y Mati por las risas y estupideces que
hemos hecho en la universidad. Gracias también a mis amigos que conocí en el extranjero:
Belén, Manuel, Mohit e Isa por hacer esta experiencia mucho más divertida y acogedora.

Quiero agradecer al profesor Pablo Estévez que me recibió en su laboratorio cuando apenas
sabía que era una red neuronal y por siempre darme consejos desde la sabiduría. También
a Francisco Förster y a Guillermo Cabrera por incluirme en sus colaboraciones y dejarme
participar en ALerCE. También a la profesora Nancy por dejarme realizar el magíster en
Computación, sin ella esto no habría sido posible. Quiero dar gracias a mis amigos del
laboratorio Germán, Rodrigo, Esteban, Nico, Rosario, Ignacio, Mau y Óscar por compartir
esta única experiencia de aprendizaje, y bueno, por procastinar en el lab cuando era necesario.
Quiero agradecer a Pavlos Protopapas por invitarme a realizar una pasantía de investigación
y obtener una experiencia inolvidable. Finalmente quiero dar gracias a Pablo Huijse que en
términos académicos es la persona que más me ha apoyado y confiado en mí, gracias a él soy
el investigador que soy hoy en día.

Aunque no las haya mencionado, muchas gracias a todas las personas con quienes compartí
buenos momentos. Saludo especial al Balto, que le gusta acompañarme.

iv

Table of Content

1 Introduction 1
1.1 Related Work . 2
1.2 Research problem . 3
1.3 Hypothesis . 4

1.3.1 Research question . 4
1.4 Objectives . 4

1.4.1 General Objective . 4
1.4.2 Specific Objectives . 5

1.5 Methodology . 5
1.6 Contributions . 6
1.7 Thesis Outline . 6

2 Theoretical Framework 7
2.1 MVLIS’s architectures . 8

2.1.1 Encoders and Decoders . 8
2.1.2 Interpolation models . 11

2.2 Transformers . 14
2.3 Self-supervision . 14

2.3.1 BERT . 14
2.3.2 Masked Vision Autoencoders . 18

3 Representation learning for variable length and irregular sampling time
series 20
3.1 Background . 21
3.2 Decoded distributions in representation learning 22
3.3 Methodology . 24

3.3.1 Fair embedding comparison . 25
3.3.2 Modulating time information in embeddings 25
3.3.3 Metrics for representation . 26
3.3.4 Implementation details . 26
3.3.5 New decoders . 27

3.4 Experiments . 27
3.4.1 Datasets . 28
3.4.2 Varying decoders . 30
3.4.3 Varying encoders . 37

v

3.4.4 Semi-supervised fine-tuning . 38
3.5 Conclusion . 38

4 ATAT: Astronomical Transformer for time series And Tabular data 40
4.1 Introduction . 40
4.2 ELAsTiCC . 42
4.3 Methods . 43

4.3.1 ATAT . 43
4.3.2 Time Modulation . 44
4.3.3 Quantile Feature Tokenizer . 45
4.3.4 Transformers . 45
4.3.5 Mask temporal augmentation . 46
4.3.6 Implementation details . 46

4.4 Random forest baseline . 46
4.4.1 Balanced Hierarchical Random Forest 46
4.4.2 Processed features details . 47

4.5 Results . 48
4.5.1 Comparison between ATAT and RF-based baseline 48
4.5.2 Classification performance of ATAT variants 49
4.5.3 Confusion matrices . 50
4.5.4 Computational time performance . 53

4.6 Conclusion . 53

5 Self-supervision in time series and tabular data 55
5.1 Background of self-supervised methods . 56
5.2 Methodology . 56

6 Conclusions 60

Bibliography 62

vi

List of Tables

3.1 Varying decoders, with MHA encoder fixed for Syn-A dataset 32
3.2 Varying decoders, with MHA encoder fixed for Syn-B dataset 32
3.3 Varying decoders, with MHA encoder fixed for Syn-C dataset 33
3.4 Varying decoders, with MHA encoder fixed for MACHO dataset 35
3.5 Varying decoders, with MHA encoder fixed for ZTF-DR dataset 35
3.6 Varying encoders, with MLP decoder fixed and when variance is estimated for

MACHO dataset. 37
3.7 Varying encoders, with MLP decoder fixed and when variance is estimated for

ZTF-DR dataset. 37
3.8 Fine-tuning of different encoders for MACHO and ZTF-DR datasets. 38

4.1 Classification precision, recall and F1-score per class and macro average of
the models put into production. We include the two best-performing ATAT
variants (with MTA) and the RF-based baseline. 51

4.2 Average computational time per light-curve in seconds required to perform the
inference step for selected classification models. 53

vii

List of Figures

2.1 LSTM cell. xj is the input at step j and hj−1 the hidden unit of the last step.
The variables ij, fj, oj, cj are the input, forget, output, and memory gate cell,
respectively. 9

2.2 Self Multi-Head Attention. Q, V , and K refer to queries, values, and keys,
respectively. To obtain these values, a linear layer block, one for each of them,
is applied to the input. The next block combines the queries, values, and keys
with a dot-product operation. The last and linear layer blocks are repeated
Nheads times in parallel. The outputs of this parallel operation is combined
with a linear layer. 10

2.3 Illustration of interpolation points in the observed space for multivariate vari-
able length and irregularly sampled time series. Bands one and two are in green
and blue, respectively. Induction points are estimated from the observed data.
While, generally, induction points are regularly sampled and have fixed se-
quence lengths, observed data have variable lengths and are irregularly sampled. 12

2.4 Illustration of Interpolation Prediction. σ and γ refer to the low-pass and high-
pass filter operation, respectively. With these operations two sets of induction
points are. λ refers to the intensity constant of each of the induction points’
positions. These induction points in conjunction with their intensity obtain
the cross-correlation between channels χ and the transient component τ of the
induction points. Finally, λ, χ, and τ are used as input of the encoder. . . . 13

2.5 Illustration of a Transformer block. A Transformer block is a very general
architecture that can be stacked multiple times using skip connections. This
is identified in the diagram with the symbol plus. It consists of a Multi-Head
attention dot product operation (MHA) on the left. MHA outputs a sequence
from the correlation of the input elements. On the right, a non-linear operation
is applied after MHA. 15

2.6 Illustration of Bidirectional Encoder Representations from Transformers (BERT).
BERT considers two training steps, both trying to predict missing informa-
tion. First, in red, BERT modifies part of the sequence, and the model should
try to predict if part of the sequence was modified or not. Second, in purple,
the model modifies word inputs, and it should try to recover such inputs. A
representation token in red after that can be used in other applications using
fine-tuning. 17

viii

2.7 Illustration of Masked Autoencoder. First, the image is transformed into
patches, and only a subset is selected to be processed by the encoder Trans-
former. The selected patches are modified into tokens that include the posi-
tional information. A representation token is added at the beginning of this
sequence of tokens. An encoder Transformer processes the resulting sequence.
This encoded sequence is concatenated with learnable tokens that were modi-
fied with the positions patches that were not used in the input. The decoder
Transformer processes this concatenated sequence, and the output tries to
match the original image. 19

3.1 Diagram of the autoencoding process for astronomical light curves using the
proposed decoder. Pre-encoders are interpolation models that transform the
multivariate variable length and irregular sampling time series problem into
regularly sampled and fixed length problems. Post-decoders have the same
functionality but inverse. Encoders and Decoders are models to process data
sequences. Enc-post-operation adjusts the pre-encoders’ output dimensional-
ity with the encoder’s input dimensionality. Dec-post-operation transforms
the latent embedding into a sequence that is modulated with temporal mod-
ulation. Afterward, it is processed by the decoder. The latent embedding
results from an average pooling over the sequence obtained by the encoder. 24

3.2 Histograms of datasets used. 29
3.3 Examples of reconstructions in Synthetic dataset A when variance is estimated. 31
3.4 Examples of reconstructions in Synthetic dataset B when variance is estimated. 31
3.5 A scatter plot using UMAP over the latent variables. (a) shows real labels,

(b) shows a prediction of a linear layer over the embedding, and (c) shows
a prediction of an MLP. This figure shows that although the classes are not
linearly separable, the embedding contains all the information for classification
with a non-linear model. 34

3.6 Reconstructions in ZTF-DR, with encoder MHA and decoder MLP. Every row
a different class. Each color refers to a different band. 36

4.1 Diagram of ATAT, which consists of two branches: 1) on top a Transformer to
process light-curves (matrices x, t and M) and 2) at the bottom a Transformer
to process tabular data (matrix f). Both information sources are processed by
Time Modulation (TM) and Quantile Feature Tokenizer (QFT), respectively,
represented as white rectangles. In both cases, the results of this processing
are sequences. Subsequently, a learnable token is added as the first element
of the sequence. These sequences are processed by the Transformer architec-
tures Tlc (light-curves) and Ttab (tabular data). Finally, the processed token
is transformed linearly and used for label prediction (ŷlc or ŷtab). In train-
ing, we use cross-entropy H(·, y) to optimize the model (purple rectangle).
If both light-curves and tabular information are used at the same time, we
additionally minimize the cross-entropy of the prediction ŷmix resulting from
the concatenation of both processed tokens. In the diagram, MLP, LL, and
CAT refer to Multi-Layer Perceptron, Linear Layer, and concatenation in the
embedding dimension, respectively. For more details see Section 4.3. 42

ix

4.2 ELAsTiCC dataset class histogram. In (a) the original taxonomy class dis-
tribution is shown. In (b) the taxonomy class distribution selected by Vera
Rubin’s brokers is shown. Note that we use the SN-like/Other class to include
SNe IIb. 43

4.3 F1-score vs time since first alert for a selection of models. We show the bet-
ter performing ATAT variants and the RF-based baseline (a), the light-curve
only ATAT variants (b), the tabular data only ATAT variants (c), and the
combined light-curve and tabular data ATAT variants (d). LC/MD/Features
refers to models that are optimized using the light-curve, metadata and feature
information, respectively. Models can use more than one information source,
e.g., LC + MD + Features. Dotted lines refer to models that are optimized
with MTA (see Section 4.3.5). 49

4.4 Confusion matrix of two ATAT variants, and the Random Forest (RF) baseline.
ATAT (LC + MD + MTA) has an F1-Score of 82.25%, ATAT (LC + MD +
Features + MTA) has an F1-Score of 82.49%, and RF (MD + Features) has
an F1-Score of 77.24%. 52

5.1 Diagram of the types of self-supervision used. We consider two types of
self-supervision, Self-B and Self-M. The encoder of Self-B and the decoder
of Self-B have the same purpose, process all tokens, so a subset of them (ex-
plained later) are reconstructed. However, self-supervision Self-M process non-
learnable token with an additional transformer, in this case, the encoder. The
red rectangle refers to the representation token. Blue rectangles refer to in-
put tokens that are not used to reconstruct the input. Purple rectangles are
input tokens, but they are used to reconstruct the input. Green rectangles
are learnable embedding tokens with positional information to reconstruct the
data that should be in that position. 58

x

Chapter 1

Introduction

Machine learning is an area of Computer Science that has grown at a fast pace in recent years.
This growth has been driven by its great theoretical success as well as its practical applica-
tions. Thanks to this success, many laborious human tasks have been replaced by automated
machines. Machine Learning has been able to accelerate many areas of science, helping to
make scientific discoveries and pushing human technology [62, 74, 91, 106]. Particularly,
automating the classification of astronomical objects using machine learning techniques is a
big interest in Chile thanks to the facilities installed in the north, to which we have privileged
access.

The standard goal in astro-informatic applications is finding sources that allow us to
understand better the universe. In practice, supervised classification of light-curves has
shown to have considerable success in this task [32, 15, 77, 21, 12]. Despite its great success,
light-curves’ classification is restricted by two important factors. First, light-curves don’t
contain all the class information of astronomical objects, and additional relevant information
that comes in the form of tabular data also could be helpful. For example, the stellar dust
of the sky or the Redshift of stellar objects [42] can be relevant for classification. Second,
supervised classification requires a large amount of labeled data to make a successful and
high-performing training classification [28, 119, 117, 11]. In reality, in many astronomical
applications, it is not possible as labeled data is difficult to obtain in practice.

Classifying astronomical objects with tabular data is not new. For decades, Random Forest
models have been used to classify astronomical objects [44, 12, 100]. However, these models
don’t use light-curves directly, and they rely on hand-crafted features to make classifications.
In many cases, this practice can limit their classification power since hand-crafted features
cannot contain all the necessary information for classification. Moreover, it is not direct to use
Random Forest models in conjunction with unlabelled data, although some approaches exist
[71]. On the other hand, many advances in neural networks have been made in Representation
Learning and semi-supervised learning [108, 10, 70, 25, 26, 91], techniques that include the
use of unlabelled data. Additionally, recent progress in neural network architectures has
made considerable advances in processing light-curve time series [82, 88]. However, despite
these great advances, most of these models can not use tabular data. In this work, we study
the possibility of using new flexible architectures to combine tabular data and light-curve

1

information with improving classification.

To exploit unsupervised information, Representation Learning and semi-supervised learn-
ing (SSL) techniques can be used. These techniques are based on the idea of using unlabeled
data and not only labeled data. A model that is trained with additional unlabeled data
should improve model classification performance more than if only the labeled had been
used. Although Representation Learning and SSL have been extensively studied in images,
astronomical light-curves are not the case. The light-curves are the modeling of an astro-
nomical event whose length can be variable and with irregular times. The difference between
images and astronomical light-curves is huge. Recently, there are many architectures that
can deal with the light-curve challenges [104, 88, 105, 82] but currently, there isn’t a proper
study exploring the Representation Learning and semi-supervised learning capacity of these
models. In this work, we want to explore current architectures to use better unlabeled data.
We will do this from a Representation Learning perspective, which is the most widespread
technique in Machine Learning to study this behavior.

The classification of astronomical objects can mean the development of new astrophysical
theories and is of vital importance in research in Chile. Given the advantageous location
of Chile with respect to the world, it has attracted the attention of world organizations for
the creation of new observatories. Currently, in the north of Chile is being built the Vera C.
Rubin Observatory that expected to receive petabytes of observations. Chilean projects, e.g.,
http://alerce.science/, have made considerable efforts to create automatic classifiers for
astronomical objects. The development of classifiers is relevant in practice since it is difficult
for astronomers to classify the thousands of events that occur every night. The use of tabular
data and unlabeled data could further improve the current classifiers since they can use more
available information.

1.1 Related Work

In this section, we present a brief introduction to the topics presented in this thesis.

In this thesis, we will be working a lot with self-supervised models. Self-supervision
refers to processing unlabelled data, such that this training phase obtains useful represent-
ations that can help with other downstream learning tasks. How useful a representation
space is, is studied by Representation Learning. In this case, self-supervision is the task
that allows obtaining useful representation, while Representation Learning can include other
types of learning.

We will also be working with auto-encoding models, which reconstruct the input data
using a bottleneck of information. The compressed space obtained by auto-encoding models
should have the most important features of the data. In many Machine Learning applications
and in this thesis, auto-encoding models are used as a self-supervised approach. The auxiliary
task in this case is reconstructing the input data.

Semi-supervised learning is also a very interesting area to consider. Semi-supervised learn-
ing is an area where massive of unlabeled data can be useful by models, and only a few labeled
data are present to train the model in a supervised way. Semi-supervised learning in many

2

http://alerce.science/

cases [26, 3] is used as a Representation Learning metric. The Representation Learning per-
spective is the most widespread approach to testing how capable a model is using unlabeled
data, it is the approach we take. One focus that we take is studying how other Representation
Learning metrics relate to semi-supervised learning.

In this work, we are interested in classifying astronomical objects. Particularly, we want
to use unlabeled data and tabular data as additional sources of information. We used the
Representation Learning perspective to study what models take the most advantage of un-
labeled data. To do this in the astronomical literature, we need to consider architectures
that deal with multivariate variable length and irregular sampling time series (MVLIS).

We limit our scope to using only auto-encoding as the self-supervised approach to obtain
good representations. Although there is extensive research on Computer Vision [52, 75, 72,
121] on Representation Learning, there is no related work in astronomical light-curves, being
[37] the closest approach. Representation learning of MVLIS time series architecture is a
necessary step to understand better what architectures use best the unlabeled data.

We also perform studies on improving astronomical object classification when considering
not only light-curves, but also tabular data. We will use one of the most flexible Machine
Learning architectures to deal with both modalities, the Transformer [114]. We note that
various related works study how to classify MVLIS time series [2, 88, 37] and tabular data
[48, 58] separately.

However, there is no related work in the literature that considers both types of classi-
fication at the same time. In our work, we want to use one architecture that can perform
both tasks. To do this, we adapt most elemental components of related work to propose a
general approach. To our knowledge, no related work measures how much the light-curve
classification improves when adding tabular data.

1.2 Research problem

In this thesis, we consider two important problems for the classification of astronomical
objects: 1) The information necessary to classify astronomical objects comes from various
sources, and 2) There exists a massive amount of unlabeled data compared to the limited
amount of the labeled one.

The information necessary to classify astronomical objects can come from various sources,
light-curves, tabular data, stamps (images), etc. Being the two firsts, the most important. In
order to use time series and tabular data is necessary to research new architectures since, in
the past, the random forest has beaten all of its competitors using only tabular data. Because
of how it works, Random Forests can not use light-curves directly, which means there is a
considerable gap for improvements. Particularly, we want to find a neural architecture that
can beat Random Forests, which, until this day, haven’t been successful. We want to take
the neural network approach because there is extensive research on this architecture to use
unlabeled data related to our second research problem.

Using unlabeled data for time series is a challenging problem because to study how models

3

use unlabeled data properly, it is necessary to 1) identify architectures that can deal with
multivariate variable length and irregularly sampled (MVLIS) time series and 2) study metrics
that tell us how well these architectures are using the unlabeled data. To identify the best
architecture, considerable related work research is necessary. Moreover, various metrics are
required to be computed. These considerations result in extensive experiments to conclude.
Additionally, as mentioned in the previous section, this is a highly unexplored territory in
astronomical classification.

1.3 Hypothesis
We enunciate two hypotheses:

• H1: The choice of architecture for encoding and decoding MVLIS time series (light-
curves) data significantly impacts the performance of representation learning metrics.

• H2: Leveraging both light-curve information and tabular data leads to enhanced clas-
sification performance compared to using only light-curve information or tabular data
in isolation.

1.3.1 Research question

General research question

• What is the most effective architecture for representation learning and classification of
astronomical time series?

• To what extent does the classification performance improve when combining time series
and tabular data compared to using light-curve information or tabular data alone?

Specific research questions

• Which encoders/decoders documented in the literature yield the most informative rep-
resentations of unlabeled data? How do these encoders/decoders compare in terms of
representation learning metrics?

• Which Representation Learning metrics are most suitable for semi-supervised classific-
ation of MVLIS time series data?

• What approaches can be employed to effectively integrate light-curve information with
tabular data in classification tasks?

• How can we combine light-curve information with tabular data information in a self-
supervised setting?

1.4 Objectives

1.4.1 General Objective

Design, implement, and test classifiers for light-curves and tabular data. Additionally, design,
implement, and test architecture for the classification of light-curves from a Representation
Learning techniques perspective.

4

1.4.2 Specific Objectives

• Design, implement, test and compare different classifiers, encoders, and decoders to
identify what architectures extract the most relevant information from the unlabeled
data.

• Implement a unified architecture to process both light-curve and tabular data inform-
ation.

• Provide guidelines of how the architecture that processes both light-curve and tabular
data information can be used in self-supervision.

• Leave implementation of the classifiers, encoders, decoders, and Representation Learn-
ing techniques tested for future research.

1.5 Methodology

The content of this thesis is separated mainly into three chapters. In Chapter 3, we compare
encoders and decoders in terms of Representation Learning using small datasets that contain
only real light-curves. In Chapter 4, we extend the most promising technique of the previous
chapter and test it in a massive realistic dataset, combining light-curves and tabular data
information. In Chapter 5, considering the most promising technique from previous chapters,
we provide guidelines on how to use unlabeled data with time series and tabular data.

More specifically, the following steps will be followed for the correct development of this
thesis.

1. (Chapter 2) Bibliographic revision of the most relevant work in Representation Learning
along with related work of encoders and decoders that can be used for variable length
and irregular sampled times series.

2. (Chapter 3) Preprocess Astronomical data two astronomical datasets, 1) the Zwicky
Transient Facility (ZTF) light-curve astronomical dataset [30] and 2) the MACHO
light-curve astronomical dataset [30].

3. (Chapter 3) Implement an aleatoric variance estimator from a mathematical perspective
and see its relevance in step four.

4. (Chapter 3) Implement encoders and decoders that can be used for light-curve astro-
nomical datasets. Compare these models in a Representation Learning scheme to obtain
the encoder and decoder that can extract the most useful information of the unlabeled
data. Note that all these encoders can also be used as classifiers. For the next steps we
will extend the most promising approach to datasets with massive volume.

5. (Chapter 4) Preprocess the massive dataset provided from The Extended LSST Astro-
nomical Time-Series Classification Challenge (ELAsTiCC).

6. (Chapter 4) Extend the best architecture of step four to process the massive ELAsTiCC
dataset. Explore how to combine light-curve information and tabular data information
with this architecture. Additionally, implement and test a new data-augmentation
technique to improve early classification.

7. (Chapter 5) Provide a guideline and a methodology on how to use Transfomers, de-
veloped in step six, then using unlabeled data with time series and tabular data.

5

1.6 Contributions
In summary, this work presents the following main contributions:

• An extensive comparison between encoders and decoders in terms of Representation
Learning. We also study what Representation Learning metrics are closer to classific-
ation with few labeled data.

• A new aleatoric noise estimator to improve Representation Learning capabilities.
• A new transformer architecture to classify both time series information (light-curves)

and tabular data information (metadata, processed features).
• A new data-augmentation method to improve early classification in realistic production

scenarios.
• A methodology to use for tabular data and MVLIS time series for self-supervision.

1.7 Thesis Outline
In Chapter 1.1, we provide a background of all models that can encode and decode multivari-
ate variable length and irregular sampling (MVLIS) time series. To process sequences, we
study three architectures: Recurrent Neural networks (RNN), Multi-Head Attention (MHA),
and Convolution Neural networks (CNN). Additionally, we also explore interpolation tech-
niques that can be used as post or pre-processing techniques of MVLIS time series. Finally, we
review some Representation Learning and self-supervised techniques that can use unlabeled
data to improve supervised classification.

In Chapter 3, we describe the datasets used for the extensive experiments conducted in
this chapter. Afterward, we explain how we will be using different encoders and decoders for
our Representation Learning experiments. Additionally, we include the relevance of aleatoric
estimation for representation learning. Finally, we conclude based on the large number of
experiments conducted.

In Chapter 4, we extend the most promising architecture technique of Chapter 3 to process
the massive ELAsTiCC datasets. We propose the Astronomical Transformer for time series
And Tabular data (ATAT), a new approach to classify MVLIS time series and tabular data.
Additionally, we propose a new data augmentation technique to improve the early classific-
ation of the model. Finally, we conclude about the importance of ATAT in the astronomical
community.

In Chapter 5, we study and generalize self-supervised models from the Natural Language
Processing and Computer Vision community. We propose a methodology and algorithm for
using ATAT in a self-supervised way to use unlabeled data. The method proposed is general
and can be applied to other domains.

Finally, in Chapter 6 we conclude about the results and experiments conducted in this
thesis. We also comment on and justify promising future work to improve the classification
of astronomical objects.

6

Chapter 2

Theoretical Framework

In this chapter, we describe the different architectures and training procedures relevant to
the understanding of this thesis. We assume basic knowledge of Artificial Neural Networks,
Convolution Neural Networks [69, 90, 103], Recurrent Neural Networks [56, 29] between other
neural network architectures. We also assume an understanding of how ANNs are trained in
practice; concepts such as learning rate, optimizers, MSE, cross-entropy, etc. A recommended
lecture for this topic is the Deep Learning book of Ian Goodfellow [46]. Our work focuses
on light-curve classification with ANN. Light-curves are the brightness of a stellar object
over a period of time. This brightness is obtained from images captured by observatories
[61, 30, 1] at different times. Light-curves can be categorized as multivariate variable length
and irregular sampling (MVLIS) time series.

MVLIS time series refers to time series that have a variable number of observations, and the
time between each pair of observations is different from other pairs. In many cases, MVLIS
time series are also multivariate i.e. the observations depend on different filters or bands.
A different filter may imply different correlations between observations of different bands or
different magnitudes in the observation values. Additional knowledge regarding light-curves
and time series will be given in the respective chapters. Some specific architectures that are
necessary to deal with MVLIS time series are discussed in Section 2.1.

In this thesis, our main interest is to perform supervised learning with the most available
information possible. Particularly, we want to include tabular data in time series classifica-
tion, which in many cases, provides unique information about stellar objects. The tabular
data inclusion is discussed in Chapter 4. Additionally, we want to incorporate unlabeled
data when possible. Unlabeled data in astronomy is abundant and obtained every night
from observatories. Labeled data, on the contrary, is expensive since astronomers are ne-
cessary to label it. To take advantage of unlabeled data we resorted to auto-encoding and
self-supervised methods.

We separate this chapter into three sections, one related to each chapter. In Section
2.1, we describe many architectures that can encode or decode MVLIS time series and are
used in Chapter 3. In Section 2.2, we describe Transformers that extend from MHA, the
most promising architecture from the last step. Transformers are useful for massive datasets

7

and flexible for many input modalities. Finally, in Section 2.3, we describe self-supervision
techniques that are used in Chapter 5.

2.1 MVLIS’s architectures
We will consider encoders as architectures that encode data into latent variables and de-
coders as architectures that can decode latent variables into observed predictions. In Section
3.1, we discuss the encoders/decoders used. In addition to encoders/decoders, we also
considered interpolation architectures that we call pre-encoders and post-decoders. The
pre-encoders are models that transform the MVLIS time series problem into a regularly
sampled time series. The post-decoders do the contrary, transforming regularly sampled
time series into irregularly sampled observations. In both cases, sometimes the interpolation
can occur in the embedding space rather than the observed space.

2.1.1 Encoders and Decoders

Recurrent Neural Network

RNNs [98] are specialized neural networks for processing data sequences. There are different
types of RNNs with different properties. In our work, we use Long Short-Term Memory Model
(LSTM, [56]), which tries to solve typical vanishing and exploding gradients encountered in
vanilla RNN. Like RNNs, LSTMs assume the existence of hidden state hj, but to avoid
vanishing gradient, they also consider a memory cell cj. The sub-index j refers to the
sequence step j of sample i, with sub-index i omitted for simplicity. We denote LL as a
linear layer (matrix multiplication and bias) and xj as the input data in step j. Using this
notation, we can define the operations of the LSTM network as:

ij(xj, hj−1) = σ(LL(1)(xj) + LL(2)(hj−1)) (2.1)

fj(xj, hj−1) = σ(LL(3)(xj) + LL(4)(hj−1)) (2.2)

oj(xj, hj−1) = σ(LL(5)(xj) + LL(6)(hj−1)) (2.3)

ĉj(xj, hj−1) = tanh(LL(7)(xj) + LL(8)(hj−1)) (2.4)
cj(·) = fj(·)⊙ cj−1(·) + ij(·)⊙ ĉj(·) (2.5)
hj = oj ⊙ tanh(cj) (2.6)

With σ and tanh, the sigmoid activation function and the tangent hyperbolic activation
function, respectively. All linear layers LL(m) with m ∈ {1 . . . 8} have learnable parameters.
We refer to ⊙ as the pointwise multiplication. The variables ij, fj, oj, and cj are usually
called the input, forget, output, and memory gate cell, respectively. A more visual diagram
of LSTM is shown in Fig. 2.1.

Multi-Head attention

Multi-Head attention (MHA), in the deep learning context, was introduced by the Trans-
former [114] and used for Natural Language Translation. Transformers have received a lot

8

LSTM Cell

Figure 2.1: LSTM cell. xj is the input at step j and hj−1 the hidden unit of the last step.
The variables ij, fj, oj, cj are the input, forget, output, and memory gate cell, respectively.

of attention in the last few years. Bidirectional Encoder Representations from Transformers
(BERT, [31]) extended this work using self-supervision, allowing a wide variety of other tasks
by only applying to fine-tuning. Other works have extended the Transformer to use them in
Computer Vision [11, 39, 116], being the current state of the art in classification. Recently,
DeepMind successfully used only one multi-modal architecture to solve image classification
tasks, natural language processing, and reinforcement learning [92]. The flexibility of trans-
formers makes them suitable for multiple tasks, and we think this trend will continue in the
future.

In Section 2.2, we will describe Transformers in more detail. In this section, we will focus
on MHA, which is the core module of Transformer models. Since MHA is the basic module
to deal with sequences, In the next chapter we will compare it to RNNs.

MHA is based on combining input sequence information (values) with the attention that
the model should put to each of these values. This attention is learned through backpropaga-
tion and is obtained after a Softmax over the dot product between queries and key vectors.
How to obtain these queries and keys will depend on the application [114, 105]. In the case
of this thesis, we will use Multi-Head self-attention, where the values, queries, and keys are
obtained after a linear layer over the input. In general, the linear combination between val-
ues and attention is performed in parallel a number of Nheads times, and hence, the name
of “Multi-Head”. A particular case of MHA is when the queries, values, and keys are ob-
tained from the data input and receives the name Self Multi-Head Attention (Self-MHA).
Mathematically, the self-MHA, which generally we will refer to as MHA, can be expressed
as:

9

MHA

Figure 2.2: Self Multi-Head Attention. Q, V , and K refer to queries, values, and keys,
respectively. To obtain these values, a linear layer block, one for each of them, is applied
to the input. The next block combines the queries, values, and keys with a dot-product
operation. The last and linear layer blocks are repeated Nheads times in parallel. The outputs
of this parallel operation is combined with a linear layer.

v
(h)
j′ = LLvalue,h(xj) k

(h)
j′ = LLkey,h(xj) q

(h)
j′ = LLquery,h(xj)

s
(h)
j′ =

1√
dk

q
(h)
j′ (k

(h)
j′)T (2.7)

a
(h)
j′ =

exp(s
(h)
j′)∑L

j′=1 exp(s
(h)
j′)

(2.8)

c
(h)
j′ =

L∑
j′=1

a
(h)
j′ ⊙ v

(h)
j′ (2.9)

cj = LLoutput(Cat[c(1)j , . . . , c
(Nheads)
j]), (2.10)

where super-index h ∈ [1 . . . Nheads] refers to the head index. v
(h)
j′ , k(h)

j′ , and q
(h)
j′ refers to

values, keys and queries. Usually, s(h)j′ is called the alignment score, and a
(h)
j′ is the attention

score. dk is the embedding dimension of the vector of each head. All linear layers are
learnable. Note that MHA is completely defined by Nheads and dk. An illustration of the
MHA is shown in Fig. 2.2.

Convolution Neural Network

Convolution Neural Network is one of the most revolutionary architectures of Machine Learn-
ing. In 2012, AlexNet [69], an architecture based on CNN, won the ImageNet Large Scale

10

Visual Recognition Challenge (ILSVRC) 1 by a big margin. The main breakthrough of CNNs
is the parameter sharing of their weights. They assume local translation invariance that al-
lows for reducing the amount of ANN parameters needed for classification. Consequently,
bigger architectures could be developed, increasing the capacity of neural networks.

CNNs have been extensively applied for Computer Vision [34, 26, 63, 112, 5] and for time
series [111, 102, 101, 120]. These architectures treat multivariate time series as images with
height one and width equivalent to the maximum length of the sequences in the dataset.
In this way, CNN can be used straightforwardly. Mathematically, they can be expressed as
follows:

hl+1
j,k =

∑
n,p

hl
j−n,pW

l
n,k + blk, (2.11)

where variable hl+1
k refers to the feature map k in layer l + 1. The sub-index j refers to

the neuron j when considering the horizontal position of the feature map. W l
n,p and blk are

learnable parameters. The sub-indexes n and p are auxiliary sub-indexes for neurons in the
feature map and the feature map indexes, respectively.

Although CNN has been extensively used in image classification, its original formulation
can not handle irregularly sampled data and variable-length data. Pre-processing steps like
interpolation models could be useful with CNN to allow these models to be used in the
MVLIS time series. In the following section, we describe more about interpolation models.

2.1.2 Interpolation models

Interpolation models in the context of this thesis are models that can transform the MVLIS
time series problem into a regularly sampled multivariate time series problem. They can be
useful for models that can not directly tackle the MVLIS time series, like CNN. They also
may add inductive bias to models that could be useful in the semi-supervised or unsupervised
learning case. In the literature, we find two models that stand out, Interpolation-Prediction
(InterPred, [104]), described in Section 2.1.2, and Multi-time attention [105], described in
Section 2.1.2. In Fig. 2.3 we illustrate the interpolation problem.

Interpolation-Prediction

InterPred is based on the idea of creating “induction points” using high and low bandpass
filters. The induction points are regularly sampled, simplifying the MVLIS time series prob-
lem. Because induction points are regularly sampled, we can directly apply RNN and CNN
after the interpolation prediction step. MHA, in any case, needs to use positional encoding
to determine the position of a given observation. For RNN and CNN this step is unnecessary
thanks to their inductive bias.

InterPred estimates two sets of induction points positioned in the reference time points
r = [r1, . . . , rN ind]. N ind is the number of induction points that are generally equally spaced

1https://www.kaggle.com/getting-started/149448

11

https://www.kaggle.com/getting-started/149448

Figure 2.3: Illustration of interpolation points in the observed space for multivariate variable
length and irregularly sampled time series. Bands one and two are in green and blue, respect-
ively. Induction points are estimated from the observed data. While, generally, induction
points are regularly sampled and have fixed sequence lengths, observed data have variable
lengths and are irregularly sampled.

from each other (regularly sampled). One set of reference time points is obtained with a
lowpass filter and another set with a highpass filter. Finally, we can estimate induction
points using cross-channel or cross-band information. These last induction points subtract
the highpass filter induction points obtaining transient information.

Mathematically this can be expressed as:

λαd
kd = Zαd(rk, td) =

∑
t∈td

wαd(r, t), wαd(r, t) = exp(−αd(r − t)2), (2.12)

σkd =
1

λαd
kd

Ld∑
j=1

wαd(rk, tjd)xjd, γkd =
1

λκαd
kd

Ld∑
j=1

wκαd(rk, tjd)xjd, (2.13)

χkd =

∑
d′ ρdd′λ

αd′
kd σkd∑

d′ λ
αd′
kd

, τkd = γkd − χkd, (2.14)

where sub-index d represents the dimension index and k the k − th induction point. Eq.
(2.12). shows the intensity function λαd

kd that measures the amount of real data close to
the corresponding induction point. How close an induction point is to a real observation is
measured by wαd(r, t) (exponential quadratic kernel), where αd is a learnable parameter. In
Eq. (2.13), we show σkd and γkd induction points obtained by lowpass and highpass filters.

12

Figure 2.4: Illustration of Interpolation Prediction. σ and γ refer to the low-pass and high-
pass filter operation, respectively. With these operations two sets of induction points are. λ
refers to the intensity constant of each of the induction points’ positions. These induction
points in conjunction with their intensity obtain the cross-correlation between channels χ
and the transient component τ of the induction points. Finally, λ, χ, and τ are used as input
of the encoder.

Here, ρdd′ is a learnable parameter and κ is a hyperparameter that we select equal to 10 as
shown in [104]. xjd and tjd the observation and its observed times, respectively. τkd is the
transient information. InterPred use σkd, γkd and τkd as input information of a LSTM. In our
work, we also explore CNN and MHA. A flux diagram of InterPred in Fig. 2.4.

Multi-time attention

Multi-time attention (MTAN, [105]) is an interpolation model based on the MHA mechanism.
In this model, values and keys are different from queries. The queries are embeddings ϕh(t

ind)2

that codify the positional information of the inductions points, in this case, the times tind.
In simpler words, we ask queries about how an observation (or potentially an embedding)
will look at the times of the induction points, see Fig 2.3 for an illustration of the idea of the
interpolation problem. MTAN interpolates observed data when encoding and interpolates
embeddings when decoding. In what follows, we describe the encoding process of MTAN,
the decoding process is similar.

v
(h)
j′,b = xj,b k

(h)
j′ = ϕh(tj,b) · v q

(h)
j′ = ϕh(t

ind
j,b) · w

s
(h)
j′,b =

1√
dk

q
(h)
j′,b(k

(h)
j′,b)

T (2.15)

a
(h)
j′,b =

exp(s
(h)
j′,b)∑L

j′=1 exp(s
(h)
j′,b)

(2.16)

c
(h)
j′,b =

L∑
j′=1

a
(h)
j′,b ⊙ v

(h)
j′,b (2.17)

cj = LLoutput(Cat[c(1)j,1 , . . . , c
(Nheads)
j,1 , . . . , c

(1)
j,B, . . . , c

(Nheads)
j,B]), (2.18)

2These embeddings based on positional information are constructed in a way to vectorize a scalar value.
Usually, they are constructed using sinusoidal waves in each of the embedding dimensions. For more inform-
ation, please refer to [105]

13

where v and w are matrices with dimension dr×rk, with dr ≤ dk, dk is the dimension of each
head of the attention mechanism and dr is the dimension of the positional embedding ϕ(tj,b).
The sub-index b refers to the band or filter of the observed data. From the mathematical
decomposition, we observe that the only difference with respect to MHA is the addition of the
band b as a sub-index and how the queries and keys are obtained. The linear layer LLoutput, in
this case, does not consider a bias. Intuitively, Eq. (2.15) measures the correlation between
the inductions points and the observed data using the time (time embedding). Eq. (2.16) is
the attention mechanism to each observed data using this correlation. Eq. (2.17) combines
the attention with the input data. Later, Eq. 2.18 combines all attention heads of the model
into one output.

2.2 Transformers
Transformers are one of the most flexible architectures being used in the literature. Initially,
they were presented in [114] as an encoding/decoding architecture. Nowadays, Transformers
are colloquially known by the encoder used in [114] and have been used in Computer Vision
[11, 39], Natural language processing [31] and Reinforcement Learning [24]. In this thesis, we
will refer to Transformers as the latter architecture, and they are described in the following.

The architecture consists of a Multi-Head Attention step, described in Section 2.1.1, and
a forward fully-connected (FF) neural network step with skip connections. The hidden di-
mension of the FF is 2dk, with the architecture shown in Fig. 2.5. Consider the l layer
which receives as input the output of layer l − 1. Then, our transformer architecture can be
described as

hl
∗ = MHAl−1(hl−1) + hl−1, (2.19)

hl = FFl−1(hl
∗) + hl

∗, (2.20)

Tmodel ≡ hN layers

, (2.21)

where l ∈ [1 . . . N layers] (N layers being the number of layers of the transformer), hl is the
output of layer l, and hl

∗ is the output of the MHA step which includes a skip connection.
Notice hl

∗ serves as input to a feed-forward network with a skip connection which outputs hl.
Relevant transformer hyperparameters include the number of heads Nheads and the number
of embedding dimensions dk. In Fig. 2.5, we give an intuitive diagram of the Transformer
model.

2.3 Self-supervision
In this thesis, we consider two self-supervised models widely used in practice to adapt them
for MVLIS time series and tabular data in Chapter 4. In Section 2.3.1, we describe the
pretraining describe in BERT, one of the most recognized models in NLP. In Section 2.3.2,
we describe Masked Autoencoder (MAE) with Vision Transformers used in Computer Vision.

2.3.1 BERT

BERT has been used widely in NLP thanks to its flexible capacity to adapt to many tasks.
This capacity comes from pretraining or self-supervision, significantly reducing computational

14

Dropout

FF

Dropout

+
MHA

+

Figure 2.5: Illustration of a Transformer block. A Transformer block is a very general
architecture that can be stacked multiple times using skip connections. This is identified
in the diagram with the symbol plus. It consists of a Multi-Head attention dot product
operation (MHA) on the left. MHA outputs a sequence from the correlation of the input
elements. On the right, a non-linear operation is applied after MHA.

resources when tackling new problems. BERT can adapt to text summarization, translation,
and text generation, among many others. In what follows, we describe this pretraining phase.

BERT uses the Transformer architecture (see Section 2.2) as its main module to process
word sequences. In general, when considering Transformers, it is necessary to transform
the input data into tokens such that the model can find all the necessary correlations using
the token information. In BERT, three sources of information are necessary to create these
tokens. First, the token is created using the positional information to identify if a word
occurs after another word. Second, semantic information from each word is included using
WordPiece embeddings [118]. Finally, BERT also considers if a word is a part of sentence A
(the first part of the word sequence) or sentence B (the second part of the word sequence).
This last information source is relevant for pretraining purposes.

The pretraining contemplates two tasks, both of them trying to predict missing inform-
ation. The first pretraining task consists of replacing, with a 50% probability, sentence B
with another sentence B from the dataset. Using a representation token that is added at
the beginning of the sequence, the model should predict (after the transformer processing) if
the sentence was changed or not. This self-supervised task should force the model to learn
the correlation between sentence A and sentence B. The second pretraining task of BERT
is trying to predict masked words, which is masked with a 15% of probability. At the same
time, masked word can be modified in three ways. First, with an 80 % probability, the token
embedding of the word is replaced with a learnable MASK embedding. Note this MASK
embedding is equal for all the words in the dataset but with different positional encoding

15

information. In this case, the model should predict the missing or masked word considering
all contexts of the sentence. Second, with 10 % the embedding is replaced by the embedding
of other words, and third, with a 10 % the embedding remains the same. In all cases, the
model should predict the correct word that was changed with the masked. In Fig. 2.6, we
give a more illustrative diagram of this procedure.

16

Token
Embedding

Sentence
Embedding

Positional
Embedding

+

+

+

+

+

+

+

+

+

+

+

+

+

+

80 % are replaced by MASK token

10 % take the value of other word token
10 % remains the same

+

+

+

+

+

+

+

+

Transformer

15% of tokens are modified and need to be predicted

Needs to be predicted
representation

token

Does sentence B correspond
to sentence A?

50% sentence B is
changedfrom B of other pair
of sentences

Figure 2.6: Illustration of Bidirectional Encoder Representations from Transformers (BERT).
BERT considers two training steps, both trying to predict missing information. First, in red,
BERT modifies part of the sequence, and the model should try to predict if part of the
sequence was modified or not. Second, in purple, the model modifies word inputs, and it
should try to recover such inputs. A representation token in red after that can be used in
other applications using fine-tuning.

17

2.3.2 Masked Vision Autoencoders

Masked Autoencoders [52] is a self-supervised model that is actively used for representation
learning in Computer Vision and it is similar to BERT. Using Transformers, MAE tries to
predict missing information that is not included in the input. However, MAE uses a procedure
that is more similar to autoencoders than only-encoding models like BERT. Additionally, in
MAE, the tokens are created using patches of an image, similar to other Visual Transformers
[39]. The complete procedure of MAE can be summarized in an encoding and a decoding
step that are explained in what follows.

The encoding step consists of a tokenization step, a masking step, and a Transformer
layer. The tokenization step separates the input image in patches, applies a linear layer, and
adds a positional encoding, obtaining in this way, the input tokens. Note, these tokens can
be treated as sequences and we can input them directly into Transformers, similar to BERT.
In the masking step, a percentage of these tokens are masked, i.e., they are not considered
in the Transformer layer of the encoding step. After encoding these tokens, the decoding
step begins, which adds additional tokens to the encoded sequence. These additional tokens
are learnable and include their positional information. They have the same position as the
masked images patches i.e.. these tokens, after the decoder’s Transformer will try to recover
the masked image patches. In difference with BERT, MAE tries to reconstruct all the input,
in this case, the complete image. In Fig. 2.7, we give a more illustrative diagram of the MAE
training step.

18

Encoder Transformer

Decoder Transformer

= Token

= Processed Token

= Token after
selected
positional
encoding

 Representation Token

 Input Token

Prediction Token= Output to be
predicted
= LL or MLP

Figure 2.7: Illustration of Masked Autoencoder. First, the image is transformed into patches,
and only a subset is selected to be processed by the encoder Transformer. The selected patches
are modified into tokens that include the positional information. A representation token is
added at the beginning of this sequence of tokens. An encoder Transformer processes the
resulting sequence. This encoded sequence is concatenated with learnable tokens that were
modified with the positions patches that were not used in the input. The decoder Transformer
processes this concatenated sequence, and the output tries to match the original image.

19

Chapter 3

Representation learning for variable
length and irregular sampling time series

Representation learning of data is a fundamental problem in machine learning [9]. The
objective of representation learning is to transform the data distribution into a different and
more disentangled embedding space (generally, in terms of classification [25, 26, 18]). Ideally,
this embedding or “representative space” should be useful for other machine learning tasks
since it is a compact representation of data. This general view of representation learning
techniques makes them suitable for many machine learning applications like clustering [57,
53, 5, 4], semi-supervised learning [108, 10, 17], anomaly detection [122, 50, 40], and more
recently on self-supervised approaches to obtain a state of the art classification performance
on images benchmarks.

Representation learning has been studied extensively on image benchmarks but it hasn’t
been explored with the same extension for other types of data. Multivariate, variable-length,
and irregularly sampled (MVLIS) time series is the most general formulation for times series
where research on representation learning techniques are necessary; MVLIS time series occur
on medical records or astronomical datasets, where classification, semi-supervised learning or
anomaly detection techniques could have a great impact. The challenges found in times series
are different from the ones found on image benchmarks and depend on the methodology used
to obtain a representative space of the data.

We can recognize two general methodologies in representation learning: (1) self-supervision
based on auxiliary tasks like contrastive learning, which uses encoders to transform the
observable distribution into a low-dimensional space [25, 26, 18, 113] and (2) self-supervision
based on encoding/decoding techniques that compress the observable distribution into latent
variables through an encoding and decoding process [66, 52] or a reverse, decoding, and
encoding process [73, 5]. Both methodologies, when MVLIS time series are considered,
require encoders that can deal with variable length and irregularly sampled data. Moreover,
for the second methodology (2), we require decoders that can deal with these same difficulties.
Our study is focused on representation learning for auto-encoding models where a deep study
of encoders and decoders is required.

20

Different encoders/decoders for fixed-length time series or for regularly-sampled time series
have been applied extensively in the literature [111, 102, 120], but not for MVLIS time series.
When MVLIS times series are considered, most of the encoder/decoders used are variants
of Recurrent Neural Networks [98] including sometimes interpolation models [104, 105] as
preprocessing steps (when encoding) or post-processing steps (when decoding). It is not
known what encoders/decoders have better representation learning performance for MVLIS
time series in contrast to images, which have extensive research [52, 27, 66, 75].

Motivated by this, we test the most relevant encoders/decoders of MVLIS time series
literature and we compare them using relevant metrics like accuracy, reconstruction error, and
semi-supervised learning fine-tuning. Additionally, we include two decoder baselines, MLP,
and attention layers. We note that attention layers have been applied extensively in Natural
Language Processing (NLP), vision, and time series literature for pretraining purposes but
not when all the input xi is codified in a single embedding zi. In NLP usually a sequence
of embeddings zi,t, dependent on the position t, encodes the information corresponding to
the data observation input xi,t. In our study, we compress all the input xi,t into a single
latent space zi to follow more closely how representation learning is measured in the image
literature.

Additionally, we found that estimating the variance is relevant for the MVLIS time series
in terms of representation learning. Time series are noisier than images so the representation
learning is benefited from loss functions that measure not only the first moment of the data
(mean) like MSE but also from loss functions that measure the second moment (variance).

In summary, the contributions of our work in this Chapter are the following:

• We test various encoders and decoders from the literature that deal with MVLIS time
series. We test a combination of pre/post-processing encoders/decoders and encoder-
s/decoders not tested in the literature.

• We provide two decoder baselines not studied in the literature.
• We propose a loss function that forces us to learn the variance of the data.

3.1 Background
Multivariate variable length and irregular sampling time series are sequences of input data
(xi,j,b, ti,j,b) ∼ qδ(x, t), where xi,j,b refers to the magnitude of a given feature sampled at
time ti,j,b. The sub-index i refers to a given sample i ∈ [0, N], where N is the number
of samples in the dataset. Li,b is the maximum value of j for sample i and band b, with
j ∈ [1, . . . , Li]. B the numbers of magnitudes filters with b ∈ [1, . . . , B]. We will consider
datasets with correlated bands when B > 1 since we expect most of the latent variable zi will
share information from both filters, leaving a small amount to compress specific information
from each one.

MVLIS have two main difficulties that not all encoders can fulfill:

1. They have variable length i.e. in general Li1 ̸= Li2 with i1 ̸= i2.
2. They have irregular sampling i.e. in general ti,j1,b− ti,j2,b ̸= ti,j2,b− ti,j3,b with j1 ̸= j2 ̸=

21

j3.

There are many methods, encoding and decoding techniques that can deal with both diffi-
culties. We will consider encoders/decoders as machine learning techniques that can deal
with data sequences i.e. Multi-Head Attention (MHA), Long-Short Memory (LSTM) and
Residual Neural Networks (ResNets). Additionally, we will consider pre-encoders/post-
decoders as techniques that transform observational (or embedding) data xi,j,b (or zi,j,b),
which have variable length and irregular time sampling, into induction points xind

i,j,b (or zind
i,j,b).

In the literature, these induction points are regularly sampled and have Li1 = Li2 for i1 ̸= i2.
Pre-encoders are transformations used in the encoding process PreEncoder(x) = xind,
where xind can be encoded afterward with any regular encoder like Transformers, LSTMs
or even common Convolutional Neural Networks (CNNs). The post-decoders serves the
same purpose for the decoding process, we can use any decoder to obtain xind and afterward
a post-decoding process to make predictions x̂ of the observational data.

Previous studies [104, 105] have shown that pre-encoders in addition to regular encoders
have better classification performance than regular encoders on their own. However, these
works have not encoded properly the time information for their baseline methods. Recent
studies [88] have shown that modulating the time information, similar to positional encoding
[39], could result in an increase in classification performance. In this work, we want to test
if pre-encoders have better representation learning performance over regular encoders when
the time is properly encoded. We will test the performance of these models using the most
common metrics in representation learning literature. Note that measuring representation
learning can be more descriptive than purely classification performance delivering information
for unsupervised learning tasks like clustering.

Improving representation learning is not only a matter of how the observational data is
encoded but also of how the latent space is decoded [27]. For a long time, in VAEs literature
[65], the community-made research on decoders since the more complex ones ignore the latent
space affecting their representation capabilities. To evaluate how much affect the decoder
selection we tested the most common decoder baselines that can deal with MVLIS time series
and we also proposed two decoders: A conditioned MLP and a conditional attention model,
presented in Section 3.3.5. Finally, we noted that novel variational autoencoding approaches,
applied to image benchmarks, estimate not only the pixels but also the covariance between
them. This estimation gives place to loss functions that consider high-order statistics that
also could affect representation learning. In the following section, we proposed a new loss
function that considers higher-order statistics that we included in our representation learning
study.

3.2 Decoded distributions in representation learning

Usually in autoencoders, VAEs [65, 94], Autoregressive models [112], Diffusion Probabilistic
Models [55, 97] and Normalizing Flows [93, 67] the log-likelihood is estimated as a mean
squared error. Using the notation presented in Section 3.1 and considering B = 1 we can
present the MSE of a single data point as shown in Eq. (3.1).

22

MSE(xi, x̂i) =
1

Li

Li∑
j=1

(µi,j − µ̂i,j)
2, (3.1)

where we implicit wrote µi as the first moment of xi. In general, we will omit j (dimen-
sion index) when we refer to a vectorized form of a variable. We can note that MSE is a
simplification of the Gaussian log-likelihood given in Eq. (3.2).

LL(xi, x̂i) =
1

2
Li log(2π) +

1

2
log(|Σ̂i|)

+
1

2
(µi − µ̂i)Σ̂i(µi − µ̂i)

T , (3.2)

where Σ̂i is the estimated covariance of the data. If the estimated covariance is diagonal
with equal variance for each dimension we would reach MSE up to a normalization constant.
These assumptions mean that 1) each dimension j is independent of each other and 2) our
estimation of xi,j (reflected by the estimated variance σ̂2) is equally good for each dimension
j. Depending on the datasets these assumptions can be too restrictive and could affect the
representation learning capabilities of the model. Recent approaches [109, 38] have estimated
full covariance to improve the generative capabilities of their models. In our work, we found
that in MVLIS time series estimating only the variance of the data (first assumption) is
sufficiently relevant for representation learning. This case can be written as Eq. (3.3).

LL(1)(xi, x̂i) =
1

2

Li∑
j=1

[
log(2πσ̂2) +

(µi,j − µ̂i,j)
2

σ̂2

]
, (3.3)

where sub-index (1) on the left-hand side of the equation indicates assuming independence
in the dimension of features.

Eq. (3.2) and Eq. (3.3) increases the expressivity over the estimated observational data
x̂ allowing to integrate Σ̂ or σ̂2 into the loss function. But, how can we add higher-order
statistics for observed data x?

For that purpose, we can replace the likelihood of the cross-entropy between two normal
distributions. For diagonal covariance, we can write the close form solution of the cross-
entropy CE(1) = −N (µi, σ

2) logN (µ̂i, σ̂
2) as Eq. (3.4).

CE(1)(xi, x̂i) =
1

2

Li∑
j=1

[
log(2πσ̂2) +

σ2

σ̂2
+

(µi,j − µ̂i,j)
2

σ̂2

]
. (3.4)

We note that log-likelihood can be interpreted as a simplification of the cross-entropy
(indicated in Eq. (3.4)) when σ2 → 0. This case is equivalent to observational data xi

23

Pre-encoder
TimeMod

Encoder

Post-decoder

TimeMod

MLP

average mask pooling

Decoder
enc-post-operation

dec-post-operation

Figure 3.1: Diagram of the autoencoding process for astronomical light curves using the
proposed decoder. Pre-encoders are interpolation models that transform the multivariate
variable length and irregular sampling time series problem into regularly sampled and fixed
length problems. Post-decoders have the same functionality but inverse. Encoders and De-
coders are models to process data sequences. Enc-post-operation adjusts the pre-encoders’
output dimensionality with the encoder’s input dimensionality. Dec-post-operation trans-
forms the latent embedding into a sequence that is modulated with temporal modulation.
Afterward, it is processed by the decoder. The latent embedding results from an average
pooling over the sequence obtained by the encoder.

that is completely concentrated in µi i.e. xi is a delta function centered in µi. To the
best of our knowledge, the estimation of the variance σ̂2 by using the cross-entropy (Eq.
(3.4)) or the likelihood (Eq. (3.2)) has not been used in time series, in the context of
representation learning and we found that in some datasets (Section 3.4) these loss functions
can be fundamental for it. In practice, we additionally divide the length Li,j to these loss
functions to balance the loss function of each sample.

3.3 Methodology

The main purpose of this work is, from an autoencoding perspective, to establish what
encoder, decoders, and loss functions obtain the most representative space of the data and
if they have an effect on the semi-supervised learning setting. For that purpose, we chose
the most common architectures for encoders, decoders, pre-encoders and post-decoders. To
compare them fairly we use the most representative architectures, trying to maintain a similar
amount of parameters for each of them. For encoders, we selected MHA [114], LSTMs [56]
and ResNets [51]. For decoders, we selected LSTM and two new decoder baselines based
on MHA and MLPs (Section 3.3.5). For pre-encoders we select Interpolation prediction
(InterPred, [104]) and Multi-time attention networks (MTAN, [105]) and for post-decoders
MTAN as well.

24

We note common residual blocks have not been used as baselines for MVLIS time series,
and more complex convolutional neural networks have been developed for that purpose. We
note that using pre-encoders models or post-decoders models is possible without further
sophisticated CNNs, which is why we include common ResNets in our study.

In Fig. 3.1, we showed an illustration of how all the encoders, decoders, pre-encoders,
and post-decoders can be simplified in one diagram. In Section 3.3.4, we will describe the
implementation details of each architecture used. In what follows, we will discuss our main
concerns to compare these models in the most fair way possible.

3.3.1 Fair embedding comparison

This work is centered in low dimensional representations of MVLIS time-series, i.e., all the
information is compressed in a low dimensional embedding of the input data. For this
purpose, we are using autoencoding models with different encoding architectures, which
encode data differently. For example, generally, attention models use tokens to classify
the input data, and recurrent neural networks use the last output of the sequence. These
differences can affect the embeddings obtained. We aim to test how well these models encode
sequences in the fairest way possible. To do this, in each of the encoders we used in our
work: MHA, LSTM, and ResNets, we applied an average mask pooling in the sequence
output. Additionally, we avoid using skip connections in MHA and LSTM.

3.3.2 Modulating time information in embeddings

Positional encoding is a common practice in MHA to include the positional information of an
observation. In this case, the positional information is the time of each observation. We will
use a modified version of the temporal modulation proposed in [88] to include the temporal
information in the observation. We describe this Temporal Modulation (TM) in Chapter 4,
but we also included it here for completeness. Our main interest is observing how different
encoder process sequences. In the case of MHA, temporal encoding is always necessary, even
when a pre-encoding step is used. This is not the case with LSTM and ResNets, which have
an inductive bias to detect if one observation occurs after another. However, in the case of
vanilla LSTMs, although they can detect if one observation occurs after another, they can not
deal with irregular sampling, which is why in this case, we also applied temporal encoding.

In summary, the temporal modulation consists of applying a linear transformation LLTM

to the input x. Afterward, we apply an element-wise product γ1(tj,b) and a bias γ2(tj,b) to
the output of the linear layer.

TM(xj,b, tj,b) = LLTM(xj,b)⊙ γ1
b (tj,b) + γ2

b (tj,b). (3.5)
We define the functions γ1

b (tj,b) and γ2
b (tj,b) as Fourier series

γ1
b (t) =

H∑
h=1

α1
b,h sin

(
2πh

Tmax

t

)
+ β1

b,h cos

(
2πh

Tmax

t

)
,

γ2
b (t) =

H∑
h=1

α2
b,h sin

(
2πh

Tmax

t

)
+ β2

b,h cos

(
2πh

Tmax

t

)
,

(3.6)

25

where Tmax is an hyperparameter that is set higher than the maximum timespan of the longest
light-curve in the dataset (1 in this case), H is the number of harmonics in the Fourier series,
and α1

b,h, β
1
b,h, α

2
b,h, and β2

b,h are learnable Fourier coefficients. Finally, the result of TM can
be used as input of MHAs and vanilla LSTMs.

3.3.3 Metrics for representation

Different metrics have measured representation learning in the literature. Being the accuracy
in the test set measured with a linear layer trained in the representation space the most
common alternative [25, 26, 53]. Other relevant metrics are K-nearest neighbor applied
in the embedding space [19] and fine-tuning in a semi-supervised learning way after the
pretraining phase [26]. We note that semi-supervised learning has a wide spectrum of models
and applications [66, 108, 10, 95]. However, for simplicity, we will refer to semi-supervised
learning as the task of pretraining a model in an unsupervised learning manner and fine-
tuning this model with a small percentage of labeled data afterward.

In this work, we will consider a linear layer trained in the embedding space to measure
representation learning. In the literature, we observed two ways of doing this. The first is
obtaining the embedding of the entire training set and training a linear layer until convergence
using this dataset. We refer to this linear layer as “offline” (Acc-Linear and Acc-MLP). The
second way of doing this is by training the linear layer while the model is in the pretraining
or unsupervised phase but without propagating the gradients through the encoder. We refer
to this last training as “online” (Acc-On-Linear and Acc-On-MLP). The first way takes longer
and more memory, but it is more accurate. However, since a linear layer is a simple model,
maybe this step is unnecessary, which is unknown if it makes a big difference in practice.

We note a linear layer tells us how linearly separable is an embedding space, but it does
not tell us if the model has compressed all the necessary information for classification. To test
this behavior, we follow a similar methodology of a linear layer trained on the embedding
space, but instead, we use a multi-layer perceptron. If all the information is compressed,
although entangled, it should be separable by a non-linear model.

Finally, we want to identify whether metrics obtained by classifiers trained on the embed-
ding space represent the end-to-end classification task. Accuracy of a fine-tuned model in
a semi-supervised manner with a few labeled samples measures exactly this behavior. Cur-
rently, in literature, usually linear models are used to test representation. It is unknown if
there is a close connection between representation metrics based on linear models or fine-
tuned ones.

3.3.4 Implementation details

In what follows, we give details about the hyper-parameters and architectures used in this
work. The encoders and decoders used that have the same hyperparameters when encoding
and decoding are MHA, LSTM, and ResNet. We used one layer of vanilla MHA, with
four heads and a dimension of 48 for each one of them. We used vanilla LSTM with one
layer with a hidden dimension of 64. In ResNets, we used the residual block presented
in BigGAN [14]. Note in this case, the encoder and decoder are different, but they have

26

the same hyperparameters. We use a scale factor of down-sampling/up-sampling of three,
kernel dimension of four, average pooling, and 32 feature maps. The pre-encoders used are
MTAN and InterPred. We used 128 induction points and vanilla hyperparameters of their
original implementation. In the case of MTAN, this corresponds to an attention model of
one head and 48 dimensions, and its temporal embedding has 16 dimensions. The only
hyperparameter of InterPred, despite the number of induction points, is the factor κ, which
is set as the default value of ten. The post-decoder MTAN has the same hyperparameters as
the pre-encoder MTAN. Additionally, a simple MLP decoder is considered based on residual
blocks with MLPs. This architecture corresponds to the discriminator used in [33], but we
use four residual blocks and 64 hidden units.

In Fig. 3.1, we illustrate how encoders, decoders, pre-encoders, and post-decoders interact.
Pre-encoding and post-decoding steps are always necessary when using ResNet as an encoder
or decoder. TM is always applied to MHA models; when LSTMs don’t use pre-encoder, TM is
also applied. The enc-post-operation is an operation needed to adapt the output dimension of
the pre-encoder and the input dimension of the encoder. The enc-post-operation is a linear
layer for all encoders except for MHA, which always needs TM. The dec-post-operation
consists of repeating the latent variable L times, with L the length of the sequence to be
reconstructed. Afterward, time modulation with different tj is applied to each latent variable.
The only different dec-post-operation is ResNets. Here, a linear layer is applied to the latent
variable. The output is equal to the number of feature maps (in this case, 32) multiplied by
three, which is the size of the first feature map. Finally, all models can use a decoder and a
post-decoder afterward.

For all experiments, we used a batch size of 256 and a learning rate of 1e − 3. We train
until early stopping with a patience of five, and we validate every epoch. For unsupervised
learning, the stopping criterion is MSE using the training set. For semi-supervised learning
fine-tuning, we use the accuracy in the validation set. All the results provided are the mean
and standard deviation of five runs. In Section 3.4.1, we give more details about the sets
used.

3.3.5 New decoders

The new decoders correspond to the decoders MHA and MLPs described in Section 3.3.4.
Although they are simple, they haven’t been compared with the LSTM decoder proposed in
[82]. Both, the MHA and the MLP decoders are based on the same idea of this last work. The
embedding is repeated a number of times equal to the length of the sequence, as well as the
time information included on each embedding. In [82], this is done only using concatenation.
In our work, we include TM in MHA and MLP to expand this view.

3.4 Experiments
Considering models, metrics, and datasets, we construct our experiments to determine:

1. What models perform best considering representation learning metrics?
2. If metrics for representation learning metrics based on a linear layer in the embedding

space are comparable with semi-supervised fine-tuning representation metrics.

27

3. If estimating the aleatoric variance has a direct impact on representation learning.

In this section, we did three experiments: a) we varied the decoder used without estimating
the variance and with a fixed MHA encoder, b) we performed the same experiment of a) but
estimating the variance of the decoder and c) we varied the encoder with a fixed MLP decoder
that estimates the variance.

3.4.1 Datasets

Synthetic data

To test if the aleatoric variance estimation σ̂2 is relevant for representation learning we
construct two simple datasets where the noise is relevant for classification. We named these
datasets Synthetic datasets A and B. Additionally, we include a Synthetic dataset C to
test the representation learning capabilities of models in which the noise is not relevant
for classification. In all Synthetic experiments, the train and test set consists of 5000 and
2000 samples of each class, respectively. All observations are obtained by first sampling 200
samples and maintaining them with a mask sampled from a Bernoulli(0.8) distribution.

To create Synthetic dataset A (Syn-A), we use a simple parameterized sinusoidal wave
expressed in Eq. (3.7) with changing parameters for that purpose.

f(t, w, ϕ, ε) = sin(2 · π · w · t+ ϕ) + ε, (3.7)

which classes 0 and 1 are specified as:

1. Class 0: f(tA, wA, ϕA, εA,0), with εA,0 = 0.
2. Class 1: f(tA, wA, ϕA, εA,1), with εA,1 ∼ N (0, 5)

Parameters tA, wA, ϕA are equal for both classes being the only difference the data noise ε.
tA ∼ U(0, 1), wA ∼ max(wA ∼ U(1.4, 3), 0).

To create Synthetic dataset B (Syn-B) we use a simple parameterized sinusoidal wave
modulated inside another sinusoidal wave as expressed in Eq. (3.8)

g(t, w, ϕ, A,w2) = sin(2 · π · w · t+ ϕ) · (1 + A · sin(2 · π · w · t · w2 + ϕ)) (3.8)

Synthetic dataset B (Syn-B) is constructed with the same parameters tA, wA, ϕA of Syn-A
as follows:

1. Class 0: f(tA, wA, ϕA, εA,0), with εA,0 = 0.
2. Class 1: g(tA, wA, ϕA, Ag, wAp), with Ap = 0.25 and wAp = 30.

Finally, Synthetic dataset C (Syn-C) is obtained by sampling class 0 as f(tA, wA, ϕA, εA,1).
Class 1 is equivalent but replacing the sinusoidal in f by a saw blade function with period
one. Although, there is no noise explicitly, the modulated signal has the same purpose.

28

(a) MACHO dataset (b) ZTF-DR dataset

Figure 3.2: Histograms of datasets used.

MACHO and ZTF-DR

The Massive Compact Halo Object (MACHO) Project data is a dataset that originally con-
sisted of 21,474 light curves from periodic stars. In [82], this dataset was expanded, producing
nearly one hundred thousand light-curves with a length of two hundred and one band. In
this work, we used the last dataset and simplified the taxonomy resulting in four classes (see
Fig. 3.2). We also used constructed a more complex dataset from The Zwicky Transient
Facility (ZTF). ZTF is a public-private partnership aimed at systematically studying the
optical night sky. Periodically, ZTF releases data, and thus the name ZTF Data Release
or ZTF-DR. However, ZTF-DR releases light-curves but not the classes. To obtain labeled
light-curves, we cross-match the ZTF-DR with catalogs that contain labels. This cross-match
process consists of locating a source spatially and finding a close candidate in the catalogs.
Close enough candidates should be the same object. The catalogs were selected by ALeRCE
and are the same ones they used to create their training sets. We selected five classes such
as they had enough data for each class. ZTF-DR has two bands, and we constructed it such
as it has a maximum number of observations of two hundred in each of its bands.

In both datasets, periodic light-curves were folded, i.e., using the period p, we apply
module(t, p)/p to the light-curve. Consequently, the observation times are restricted to in-
tervals 0 and 1. In ZTF-DR, non-periodic light-curves don’t have a period, so we applied
max-min normalization. Both steps are necessary for interpolation models because they need
all the data to be in a fixed interval, in this case, 0 and 1. In Fig. 3.2, we show the class
histogram of this dataset. The test set of MACHO and ZTF-DR correspond to 1000 and
500 samples of each class, respectively. The validation set of MACHO and ZTF-DR corres-
pond to 550 and 240 samples of each class, respectively. The validation set is only used in
semi-supervised learning experiments. This semi-supervised setting consists of fine-tuning
the model end-to-end sampling 10% of the training datasets.

29

3.4.2 Varying decoders

Synthetic data, Syn-A and Syn-B

When varying decoders, Syn-A and Syn-B synthetic experiments show that estimating the
variance improves representation learning. In both cases, Table 3.1 and Table 3.2 show that
the model that estimated variance has nearly one hundred percent of Accuracy. On the
contrary, the model is confused in terms of the linear model metrics when it doesn’t estimate
the variance. Note this doesn’t mean the model doesn’t compress the information of the
observed data. For example, in Table 3.1, when the variance is not estimated the model is
confused in terms of the linear model metrics, but the Accuracy of the MLP (online and
offline) is high. In Table 3.1, when the variance is not estimated, we observed the linear
models don’t estimate the accuracy well. From these results, we observe that any decoder
model in addition to MTAN as a post-decoder performs better than the other models. This
suggests that MTAN can capture high-frequency information like the variance of the data for
some datasets. Additionally, these experiments don’t show an apparent difference between
online and offline metrics. In Fig. 3.3 and in Fig. 3.4, we show reconstructed examples from
Syn-A and Syn-B, respectively. In Fig. 3.3, we observe the variance of the model is low,
which corresponds to the null aleatoric noise of the data. On the contrary, in Fig. 3.4 we
observed that the model correctly estimates the variance of the data.

30

Figure 3.3: Examples of reconstructions in Synthetic dataset A when variance is estimated.

Figure 3.4: Examples of reconstructions in Synthetic dataset B when variance is estimated.

31

Is var? Dec pDec Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

✗ 70.15± 7.33 68.65± 4.28 99.93± 0.04 99.74± 0.23MHA MTAN 87.15± 9.45 83.60± 8.57 98.99± 1.05 99.35± 0.86
MLP ✗ 77.62± 2.30 74.17± 5.89 99.89± 0.09 99.77± 0.22

ResNet MTAN 58.71± 8.20 57.60± 7.32 55.78± 7.66 63.01± 17.80
✗ 71.14± 4.57 63.22± 14.11 99.93± 0.02 99.91± 0.02

✗

LSTM MTAN 79.98± 11.27 79.34± 12.85 99.94± 0.07 99.91± 0.10

✗ 99.88± 0.10 99.89± 0.20 99.95± 0.08 99.94± 0.07MHA MTAN 91.92± 17.59 91.88± 18.06 99.69± 0.62 93.87± 13.65
MLP ✗ 99.97± 0.03 100.00± 0.00 100.00± 0.00 100.00± 0.00

ResNet MTAN 79.27± 26.67 77.31± 25.19 79.82± 27.08 79.33± 26.67
✗ 99.81± 0.12 99.94± 0.04 99.95± 0.04 99.95± 0.04

✓

LSTM MTAN 99.91± 0.09 99.96± 0.04 99.98± 0.02 99.98± 0.03

Table 3.1: Varying decoders, with MHA encoder fixed for Syn-A dataset

Is var? Dec pDec Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

✗ 62.41± 15.46 63.02± 14.31 60.98± 17.75 73.82± 16.38MHA MTAN 52.44± 3.83 53.43± 4.50 55.75± 4.24 63.20± 8.51
MLP ✗ 90.10± 1.42 90.90± 1.65 85.98± 20.17 95.56± 1.83

ResNet MTAN 52.87± 1.74 55.65± 4.19 62.12± 3.69 64.46± 10.46
✗ 90.93± 5.99 94.05± 3.97 97.56± 1.61 97.91± 1.15

✗

LSTM MTAN 51.11± 1.05 52.28± 1.84 56.65± 7.86 62.86± 7.60

✗ 98.76± 0.87 99.13± 0.93 99.72± 0.23 99.64± 0.40MHA MTAN 98.76± 0.71 99.10± 0.46 99.61± 0.14 99.88± 0.05
MLP ✗ 96.76± 2.26 98.52± 1.70 99.78± 0.11 99.91± 0.04

ResNet MTAN 73.47± 19.57 73.22± 19.92 79.29± 18.33 78.71± 17.97
✗ 96.55± 2.37 97.61± 2.14 99.51± 0.22 99.68± 0.20

✓

LSTM MTAN 78.54± 13.98 79.50± 14.80 80.92± 17.13 81.51± 16.93

Table 3.2: Varying decoders, with MHA encoder fixed for Syn-B dataset

32

Synthetic data, Syn-C

When varying decoders for the Syn-C dataset in Table 3.3, we observe that LSTM or MHA
with MTAN is the best model combination when considering the Accuracy of the linear
model. In this dataset, we note that estimating the variance doesn’t necessarily mean a
positive effect on the metrics. This behavior could be contrasted by the fact that this dataset
was constructed such as the aleatoric variance of the data wouldn’t have an effect in the
classes. Note that in all cases the linear models cannot separate the classes but non-linear
models can. In Fig. 3.5, we show a UMAP over the embedding of models illustrating this
behavior, which doesn’t always occur. The best decoder model in terms of Accuracy is MHA
and MLP. Here, we also don’t observe a big difference between online and offline metrics.
Additionally, metrics obtained by non-linear layers obtain nearly a one-hundred percent of
Accuracy.

Is var? Dec pDec Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

✗ 72.17± 2.96 71.50± 2.93 99.49± 0.13 99.84± 0.03MHA MTAN 85.42± 3.21 87.21± 3.16 99.33± 0.33 99.72± 0.14
MLP ✗ 72.57± 1.44 73.09± 1.02 99.67± 0.10 99.89± 0.05

ResNet MTAN 65.66± 20.63 67.47± 17.75 78.68± 22.25 76.90± 22.06
✗ 70.01± 1.55 70.13± 2.17 99.42± 0.19 99.82± 0.08

✗

LSTM MTAN 60.96± 8.55 64.89± 6.32 78.13± 19.52 80.59± 17.76

✗ 70.63± 3.26 71.14± 3.22 99.48± 0.10 99.84± 0.05MHA MTAN 78.94± 4.85 79.32± 6.20 99.21± 0.20 99.70± 0.09
MLP ✗ 71.84± 3.17 71.64± 2.38 99.69± 0.03 99.84± 0.04

ResNet MTAN 60.43± 11.65 58.52± 12.12 75.62± 19.26 71.02± 18.15
✗ 66.86± 0.58 68.40± 0.90 99.33± 0.10 99.80± 0.03

✓

LSTM MTAN 89.40± 8.90 89.49± 8.76 96.47± 6.26 96.36± 6.88

Table 3.3: Varying decoders, with MHA encoder fixed for Syn-C dataset

33

(b) Linear prediction (c) Non-linear prediction

(a) Real labels

Figure 3.5: A scatter plot using UMAP over the latent variables. (a) shows real labels, (b)
shows a prediction of a linear layer over the embedding, and (c) shows a prediction of an
MLP. This figure shows that although the classes are not linearly separable, the embedding
contains all the information for classification with a non-linear model.

34

MACHO and ZTF-DR

MACHO and ZTF-DR are datasets obtained from real data sources. From both datasets in
Table 3.5 and Table 3.4, we observe that estimating the variance increases the Accuracy by
2-3 %. The online and offline metrics obtained by the non-linear models don’t differ greatly
for ZTF-DR. However, in all the other cases there exist a big gap. From these results, we
can conclude that we need to use offline metrics to obtain an accurate estimation. In these
datasets, we also include the reconstruction error measured in Mean Squared Error. We note
that the MLP model is the model with consistently less error, followed by MHA and LSTM.
In Fig. 3.6, we show qualitative results of MLP reconstruction in ZTF-DR. Models that
use MTAN, generally have a big MSE, which could be due to the higher complexity of the
datasets. Finally, we can note that varying the decoders doesn’t affect greatly the accuracy,
the biggest difference is the reconstruction error.

Is var? Dec pDec MSE Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

✗ 9.138± 0.775 67.01± 0.33 62.15± 1.04 82.81± 2.82 80.43± 3.32MHA MTAN 16.250± 1.080 64.98± 0.68 60.03± 0.97 69.04± 0.91 64.36± 1.27
MLP ✗ 7.823± 0.455 66.70± 0.91 61.57± 0.85 84.40± 0.34 81.79± 1.53

ResNet MTAN 46.448± 21.633 66.16± 0.40 61.46± 0.86 68.68± 1.04 65.05± 1.19
✗ 8.353± 0.645 65.93± 0.96 61.29± 0.93 84.71± 0.25 81.31± 1.35

✗

LSTM MTAN 12.926± 3.758 67.05± 0.38 62.23± 0.49 73.68± 6.63 70.19± 6.03

✗ 8.998± 0.258 68.97± 0.44 63.15± 0.86 84.62± 1.04 81.53± 1.14MHA MTAN 16.054± 0.438 66.61± 0.94 61.40± 1.17 71.76± 2.58 67.16± 2.44
MLP ✗ 8.380± 0.290 69.82± 0.58 63.55± 0.88 85.51± 0.39 82.99± 0.42

ResNet MTAN 61.671± 19.524 67.59± 0.82 62.47± 1.32 75.07± 5.42 69.63± 7.49
✗ 9.044± 0.840 69.16± 0.87 63.88± 1.10 85.78± 0.17 82.42± 0.85

✓

LSTM MTAN 14.033± 2.856 68.31± 0.65 63.92± 1.08 78.11± 4.01 74.71± 4.61

Table 3.4: Varying decoders, with MHA encoder fixed for MACHO dataset

Is var? Dec pDec MSE Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

✗ 22.75± 2.44 85.73± 1.34 79.79± 1.12 96.07± 0.73 95.10± 1.21MHA MTAN 59.89± 1.04 83.92± 1.23 77.25± 2.75 89.53± 1.02 86.36± 1.97
MLP ✗ 19.93± 1.85 85.24± 1.16 80.01± 2.29 96.22± 0.35 95.27± 0.52

ResNet MTAN 430.47± 265.09 83.86± 2.48 76.52± 2.98 94.46± 3.65 93.14± 3.21
✗ 21.00± 1.47 82.14± 1.18 76.18± 1.38 96.02± 0.30 95.28± 0.66

✗

LSTM MTAN 52.46± 17.30 84.87± 4.38 79.18± 4.84 91.42± 4.05 89.62± 4.73

✗ 22.80± 1.15 87.50± 1.18 80.74± 2.10 96.56± 0.56 95.63± 0.83MHA MTAN 55.36± 12.40 84.54± 1.94 78.74± 3.57 92.42± 1.39 89.58± 3.57
MLP ✗ 20.92± 0.66 88.07± 0.63 82.99± 2.03 95.70± 1.79 95.58± 0.60

ResNet MTAN 504.94± 329.11 87.94± 0.85 81.54± 3.13 95.79± 1.85 93.96± 2.54
✗ 22.58± 2.18 85.18± 1.19 78.01± 1.90 96.35± 0.47 95.10± 1.42

✓

LSTM MTAN 44.63± 20.09 87.49± 1.47 82.24± 3.61 94.58± 1.32 93.79± 1.65

Table 3.5: Varying decoders, with MHA encoder fixed for ZTF-DR dataset

35

Figure 3.6: Reconstructions in ZTF-DR, with encoder MHA and decoder MLP. Every row
a different class. Each color refers to a different band.

36

3.4.3 Varying encoders

We vary encoders for the datasets of MACHO and ZTF-DR in Table 3.6 and Table 3.7,
respectively. When observing the results of both datasets, we note the most robust results
correspond to MHA and InterPred-based models. InterPred with LSTM showed the best
Acc-Linear, which suggests this model can provide better results in unsupervised learning
tasks. Additionally, these models have similar reconstruction errors in MACHO, but when
considering more complex dataset like ZTF-DR, the reconstruction error of InterPred-based
models increase. Similar behavior is observed with LSTM, this model shows good Accuracy
results in MACHO, but its results don’t maintain in ZTF-DR. MTAN shows low performance
compared with respect to other models. As per previous results, we also observe a big gap
between online and offline metrics.

Enc pEnc MSE Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

MHA 8.719± 0.556 69.44± 0.92 62.15± 1.14 84.71± 0.83 83.16± 0.58
✗ LSTM 8.129± 0.098 73.17± 0.93 67.29± 3.57 83.45± 0.52 81.35± 0.69

MHA 12.575± 3.213 66.82± 0.20 61.83± 0.70 72.59± 8.09 68.50± 7.28
ResNet 16.209± 1.776 66.40± 0.81 60.99± 1.92 66.69± 0.38 62.94± 1.90MTAN
LSTM 14.826± 0.041 66.79± 0.48 61.78± 0.62 67.02± 0.27 63.35± 0.56
MHA 8.517± 0.074 67.77± 0.84 62.22± 1.73 82.70± 1.36 77.79± 0.90

ResNet 11.037± 1.418 72.19± 1.17 66.33± 1.79 77.76± 3.03 72.90± 3.05Ipred
LSTM 9.013± 0.065 73.39± 0.36 69.98± 1.31 81.07± 0.36 77.94± 0.42

Table 3.6: Varying encoders, with MLP decoder fixed and when variance is estimated for
MACHO dataset.

Enc pEnc MSE Acc-Linear Acc-On-Linear Acc-MLP Acc-On-MLP

MHA 20.64± 0.33 88.22± 0.77 83.92± 1.38 96.22± 1.31 95.90± 0.62
✗ LSTM 234.30± 4.06 79.25± 0.57 75.92± 1.08 86.81± 0.09 87.28± 0.70

MHA 60.36± 1.84 77.46± 0.31 70.21± 2.10 78.40± 0.34 69.60± 1.83
ResNet 60.37± 2.41 77.02± 0.54 68.28± 2.98 78.50± 0.17 70.45± 1.72MTAN
LSTM 58.74± 0.41 77.02± 0.40 69.74± 1.06 78.29± 0.34 71.74± 0.53
MHA 29.64± 5.16 83.81± 1.94 76.04± 8.35 97.27± 0.75 83.74± 5.10

ResNet 25.98± 3.19 90.07± 0.98 83.14± 3.06 95.32± 1.31 87.49± 8.11Ipred
LSTM 22.45± 0.96 91.31± 0.95 85.73± 2.27 96.06± 0.70 94.91± 0.68

Table 3.7: Varying encoders, with MLP decoder fixed and when variance is estimated for
ZTF-DR dataset.

37

3.4.4 Semi-supervised fine-tuning

Finally, we tested semi-supervised learning fine-tuning with the respective encoders from the
last section. We fine-tune these models using 10% of the labeled data from the training set,
as specified in Section 3.4.1. In Table 3.8, we observe that the best models in MACHO are
MHA, LSTM, and InterPred-based models. However, when considering ZTF-DR, only MHA
and InterPred-based models excel.

When we compare the accuracy of fine-tuned models of Table 3.8 with the model’s linear
Accuracy of Table 3.6, we observed that doesn’t exist a clear pattern. For example, in Acc-
Linear, LSTM surpass MHA by nearly four points in MACHO, while in fine-tuning MHA
surpasses LSTM by two. Another example is InterPred with MHA which has almost the
worst accuracy, but when is fine-tuned is the third best. We conclude that the accuracy
metric of semi-supervised fine-tuning is very different from a linear layer in the embedding
space.

We can note a pattern with accuracy based on MLP (Acc-MLP), in which a low perform-
ance in Acc-MLP is connected with a low accuracy in the fine-tuned model. Finally, as in
previous experiments, we also noted a big difference between online and offline metrics.

pEnc Enc Acc (MACHO) Acc (ZTF-DR)

MHA 79.97± 0.48 94.54± 0.54
✗ LSTM 77.62± 0.97 85.30± 0.70

MHA 68.48± 6.96 72.14± 0.56
ResNet 61.72± 0.70 72.01± 0.26MTAN
LSTM 62.01± 0.86 71.96± 0.47
MHA 76.32± 1.48 95.67± 0.95

ResNet 71.83± 3.82 92.38± 1.75Ipred
LSTM 74.83± 1.18 94.20± 0.58

Table 3.8: Fine-tuning of different encoders for MACHO and ZTF-DR datasets.

3.5 Conclusion
We noted that time codification is fundamental for comparable baselines of encoders when
comparing them against induction-based models. We showed that induction-based models
are not better than MHA or LSTM as shown previously in literature [105, 104].

We found that the estimation of σ̂2 can be fundamental in tasks when the amount of
noise in each class is needed to classify them. In general, across all experiments, we observed
that the estimation of σ̂2 is helpful for representation learning. To include this estimation
we proposed a cross-entropy loss function that can be seen as a more general case of the
log-likelihood. To the best of our knowledge, these loss functions have not been used in the
context of representation learning of time series.

In terms of metrics, we noted that there exists a big gap between online and offline metrics.
Online metrics although faster to compute, produce remarkably worst results and we suggest

38

not using them in practice. We also find a big difference between semi-supervised fine-tuned
metrics with respect to linear layers’ accuracy on the embedding space. However, we found
a strong connection between the accuracy of MLP in the embedding space with respect to
semi-supervised based on fine-tuning metrics.

We observed that the best decoding models in terms of representation learning (MHA,
LSTMs, and MLPs) showed marginal differences in their results. We found that a simple
decoder based on an MLP can be sufficient to decode MVLIS time. MLP also showed the
lowest MSE in the reconstruction error. When considering a decoder, we suggest the use of
a simple MLP.

When considering encoders, we found that LSTM struggles when considering more com-
plex datasets. MHA and InterPred (with LSTM) showed the most consistent results. Inter-
Pred with LSTM showed remarkable results in linear layer accuracy suggesting good capab-
ilities for unsupervised learning tasks. However, MHA showed the best results in non-linear
metrics suggesting better capabilities for supervised or semi-supervised learning tasks. Con-
sidering these results we will continue working with MHA-based models for the rest of this
thesis.

Finally, we plan to share all of our source code to reproduce our experiments. We construct
an implementation amenable to the inclusion of new encoders, decoders, pre-encoders, and
post-decoders modules. We hope this implementation is helpful for time series literature.

39

Chapter 4

ATAT: Astronomical Transformer for
time series And Tabular data

In this chapter, we present ATAT, the Astronomical Transformer for time series And Tabular
data, a classification model that receives as input both light-curves and tabular data from
astronomical sources. ATAT consists of a light-curve Transformer with a new time mod-
ulation that encodes the time of each observation, and a feature Transformer that uses a
Quantile Feature Tokenizer. This model was conceived in the context of the recent Extended
LSST Astronomical Time-Series Classification Challenge (ELAsTiCC). ATAT outperforms
previous decision tree-based ensemble approaches in terms of classification when trained over
the ELAsTiCC dataset. Importantly, some of its variants do not require human-engineered
features, with significantly reduced inference computational times (400x faster). The use of
Transformer multimodal architectures, combining light-curve and tabular data, opens new
possibilities for classifying alerts from a new generation of large etendue telescopes, such as
the Vera C. Rubin Observatory, in real-world brokering scenarios.

4.1 Introduction
A new generation of synoptic telescopes are carrying out data-intensive observation cam-
paigns. An emblematic example is the Vera C. Rubin Observatory and its Legacy Survey
of Space and Time (LSST) [61]. Starting in 2024, the Rubin Observatory will generate
an average of 10 million alerts and 20 TB of data every night. The massive data stream
of LSST is to be distributed to Community Brokers1 that will be in charge of ingesting,
processing and serving the annotated alerts to the astronomical community. Collaboration
between astronomers, computer scientists, statisticians, and engineers is key to solving the
rising astronomical big-data challenges [13, 59].

Automatic data processing based on Feature Engineering (FE, e.g., [85]) and Machine
learning (ML), including Deep Learning (DL) have been applied extensively in astronomical
data applications, such as light-curve and image-based classification (e.g., [32, 15, 77, 21]),
clustering [76, 4], physical parameter estimation [41, 99, 115], and outlier detection [86, 89,

1https://www.lsst.org/scientists/alert-brokers

40

https://www.lsst.org/scientists/alert-brokers

100, 60]. The Vera C. Rubin Community Brokers: ALeRCE [43], AMPEL [84], ANTARES
[78], BABAMUL, Fink [79], Lasair [107], and Pitt-Google2 are processing or will process
massive amounts of data that is annotated with cross-matches, ML model predictions, and/or
other information that is distributed to the community. These scientific products allow
astronomers to study transient and variable objects in almost real-time or in an offline fashion
for a systematic analysis of large numbers of objects. To enable the former, ML models
should be integrated into a complex infrastructure and allow for accurate, rapid and scalable
evaluation of tens of thousands of alerts received every minute [81, 96, 16]. In the past,
the most common choices have been decision tree-based ensembles (e.g., Random Forest,
RF), models with high predictive performance, but high resource usage, due to the FE step.
Despite several efforts in applying faster DL-based approaches to the problem of classifying
astronomical time series (e.g., Recurrent Neural Networks, RNN, [22, 82, 20, 80, 7, 45, 35]),
in practical applications they have not been able to surpass the performance of tree-based
ensembles [12, 54, 83, 110].

More recently, Multi-Head Attention (MHA, [114]) and Transformers have appeared as
promising alternatives to time series encoders in astronomy [2, 88, 37]. These models are
faster than RNNs since they have access to all the input simultaneously and not sequen-
tially. However, these works have not explored training with multiple data sources (time
series, metadata, and human-engineered features) simultaneously. Moreover, it is unknown
if Transformers are useful in more realistic production scenarios.

The astronomical community has made great efforts to create realistic scenarios to test ML
models [54], but none of them have contemplated an end-to-end ML pipeline, i.e. from the
data ingestion to the ML model’s outputs. The recent Extended LSST Astronomical Time-
Series Classification Challenge (ELAsTiCC3,4, see Section 4.2) has appeared as a unique
opportunity to test the broker’s pipelines and ML models in production. ELAsTiCC is a
challenge created by the Dark Energy Science Collaboration (DESC) that simulates LSST-
like astronomical alerts with the goal of connecting the LSST project, brokers, and DESC
by testing end-to-end pipelines in real time. To fulfill this objective, ELAsTiCC started an
official data stream on September 28th, 2022. Additionally, ELAsTiCC provided a dataset
to train ML models.

In this work, we propose ATAT, an Astronomical Transformer for time series And Tabular
data, a model that is based on a Transformer architecture. ATAT is trained with the dataset
provided by ELAsTiCC previous to the start of the real-time infrastructure challenge and
implemented as an end-to-end pipeline within the ALeRCE [43] broker. ATAT can use time
series information and all the available metadata and/or features obtained from other pre-
processing steps (see Figure 4.1). In summary, our contributions to this chapter are:

• A new state-of-the-art Transformer model called ATAT, which encodes multivariate,
variable length, and irregularly sampled light curves in combination with metadata
and/or extracted features.

• A thorough comparison between ATAT and an RF-based baseline (the most competitive

2https://pitt-broker.readthedocs.io/en/latest/
3ELAsTiCC Challenge, link 1
4 ELAsTiCC Challenge, link 2

41

https://pitt-broker.readthedocs.io/en/latest/
https://project.lsst.org/meetings/rubin2022/agenda/extended-lsst-astronomical-time-series-classification-challenge-elasticc
https://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/

Add token as first
element of seq.

Take first element of seq.

Take first element of seq.

Add token as first
element of seq.

Figure 4.1: Diagram of ATAT, which consists of two branches: 1) on top a Transformer to
process light-curves (matrices x, t and M) and 2) at the bottom a Transformer to process
tabular data (matrix f). Both information sources are processed by Time Modulation (TM)
and Quantile Feature Tokenizer (QFT), respectively, represented as white rectangles. In both
cases, the results of this processing are sequences. Subsequently, a learnable token is added as
the first element of the sequence. These sequences are processed by the Transformer architec-
tures Tlc (light-curves) and Ttab (tabular data). Finally, the processed token is transformed
linearly and used for label prediction (ŷlc or ŷtab). In training, we use cross-entropy H(·, y) to
optimize the model (purple rectangle). If both light-curves and tabular information are used
at the same time, we additionally minimize the cross-entropy of the prediction ŷmix resulting
from the concatenation of both processed tokens. In the diagram, MLP, LL, and CAT refer
to Multi-Layer Perceptron, Linear Layer, and concatenation in the embedding dimension,
respectively. For more details see Section 4.3.

model of ALeRCE) in the ELAsTiCC dataset.

4.2 ELAsTiCC
The ELAsTiCC dataset contains 1,845,146 light-curves in six bands (ugrizY) from simulated
astronomical objects distributed in 32 classes as shown in Figure 4.2 (a). We use the same
taxonomy than the ELAsTiCC broker’s comparison taxonomy, except for the SN-like/other
class that includes only SNe IIb (see Figure 4.2 b).

We split the ELAsTiCC dataset into training, validation, and test sets. The test set con-
tains one-thousand samples of each class. The rest of the data is divided into five splits, with
which we train five models leaving one fold for validation at each time, used for hyperpara-
meter tuning and early stopping. All the metrics reported in this chapter are the mean of
these five models in the test set.

Additionally, the ELAsTiCC dataset was modified by discarding information that is not
available in the ELAsTiCC alert stream. For this purpose, we use the PHOTFLAG5 key to
select only non-saturated data, and to only consider forced photometry starting thirty days

5Specific format information for the ELAsTiCC dataset.

42

https://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/TRAINING_SAMPLES/A_FORMAT.TXT

(a) Original data class distribution (b) Modified data class distribution

Figure 4.2: ELAsTiCC dataset class histogram. In (a) the original taxonomy class distri-
bution is shown. In (b) the taxonomy class distribution selected by Vera Rubin’s brokers is
shown. Note that we use the SN-like/Other class to include SNe IIb.

before the first alert.

4.3 Methods

4.3.1 ATAT

Here we describe our proposed transformed-based model, ATAT, and the techniques de-
veloped to process time series information (light-curves) and tabular data information (metadata
and/or processed features). For the rest of the chapter, we will call these models ATAT’s
variants since different input combinations can be used.

For each astronomical source, we consider two types of data: the light-curve and tabular
data composed of static metadata (e.g., host galaxy redshifts, if any) and features calculated
from the light-curves (e.g., the period of a periodic source). For a particular source, an
observation j in band b of its light-curve is described by the observation time tj,b and by the
photometric data xj,b = (µj,b, σj,b), where µj,b represents the difference flux6, and σj,b the flux

6Source flux density measured from a difference image.

43

error. Not all light-curves have the same number of observations. In order to represent this
in the model input, we consider fixed size light-curves of the length of the largest light-curve
in the dataset and perform zero padding (add zeros for observations after the maximum time
in each band, both for xj,b and tj,b). At the same time, not all bands are observed at all times.
This is represented by adding zeros to µj,b and σj,b of the unobserved bands of observation
j. In order to mask attention for these unobserved values, we use a binary mask Mj,b such
that Mj,b = 1 if observation j is observed at band b, and Mj,b = 0 if not [114, 31]. For each
source, tabular data consists of K features fk, k ∈ {1, . . . , K} which, as explained above,
may be static or depend on the light-curve.

As a first step, time series and tabular data are processed using Time Modulation and
a Quantile Feature Tokenizer, respectively. These steps return sequences that can be used
as inputs for common Transformer architectures. Figure 4.1 shows a general scheme of
ATAT. Its hyperparameters are further specified in Implementation details section. We noted
larger models showed better performance, but we limited their size to reduce the memory
requirements in production. For the rest of the chapter we will denote a linear layer as LL.

4.3.2 Time Modulation

Time Modulation (TM) incorporates time information of observation j and band b, tj,b, into
the difference flux µj,b and flux error σj,b. Previous works have successfully applied TM in
attention models, using processes similar to positional encoding [114]. We construct a variant
of the time modulation proposed by [88], which is based on a Fourier decomposition. For
each observation j and band b of the light-curve we perform a linear transformation on the
input vector, transforming xj,b = (µj,b, σj,b) to a vector LLTM(xj,b) of dimension ETM. We
modulate this vector by doing an element-wise product with the output of a vector function
γ1
b (tj,b) and add the output of a second vector function γ2

b (tj,b):

TM(xj,b, tj,b) = LLTM(xj,b)⊙ γ1
b (tj,b) + γ2

b (tj,b). (4.1)

We define the functions γ1
b (tj,b) and γ2

b (tj,b) as Fourier series

γ1
b (t) =

H∑
h=1

α1
b,h sin

(
2πh

Tmax

t

)
+ β1

b,h cos

(
2πh

Tmax

t

)
,

γ2
b (t) =

H∑
h=1

α2
b,h sin

(
2πh

Tmax

t

)
+ β2

b,h cos

(
2πh

Tmax

t

)
,

(4.2)

where Tmax is an hyperparameter that is set higher than the maximum timespan of the
longest light-curve in the dataset, H is the number of harmonics in the Fourier series, and
α1
b,h, β

1
b,h, α

2
b,h, and β2

b,h are learnable Fourier coefficients.

Eq. (4.1) applies a linear transformation to xj,b, expanding its dimension. After that, a
scale and bias are created as Fourier series (Eq. 4.2) using time tj,b. Note that a Fourier series
can have enough expressive power for large H. Eq. (4.1) is applied separately for each band,
and their output vectors are later concatenated in the sequence dimension. Consequently,
the output of TM for a light-curve is a matrix of dimension L · B × ETM, where B is the
number of bands, and L is the maximum number of observations that a band can have for
all bands and light-curves in the dataset.

44

4.3.3 Quantile Feature Tokenizer

Tabular data in ELAsTiCC may include processed light-curve features, static metadata, or
a concatenation of both. We process this data before feeding it into a Transformer. We call
this process Quantile Feature Tokenizer (QFT) and it comprises two steps. First, a quantile
transformation7 QTk(fk) is applied to each feature fk of the tabular data of each object, to
normalize them as a way to deal with complex distributions. Second, an affine transformation
is used to vectorize each scalar value of the attributes recorded in the tabular data

QFTk(fk) = Wk ·QTk(fk) + bk, (4.3)

where · stands for matrix multiplication, k refers to the index feature, and Wk and bk are
vectors of learnable parameters with dimensions EQFT. In other words, the kth scalar feature
fk is transformed by QTk and then vectorized by multiplying it by Wk and adding bk. Notice
that a different transformation is applied to each feature of the tabular data. The output
dimension EQFT is an hyperparameter to be chosen. This methodology is similar to [48],
but we additionally apply the quantile transformation to each feature that is fitted before
training the model.

4.3.4 Transformers

The Transformer architecture is based on Bidirectional Encoder Representations from Trans-
formers [BERT, 31] and Vision Transformers [39] which aim at processing sequential inform-
ation. The architecture consist of a MHA step and a forward fully-connected (FF) neural
network step with skip connections.

A Transformer architecture can be summarized as l layer which receives as input the
output of layer l − 1. Then, our Transformer architecture can be described as

hl
∗ = MHAl−1(hl−1) + hl−1, (4.4)

hl = FFl−1(hl
∗) + hl

∗, (4.5)

Tmodel ≡ hN layers

, (4.6)

where l ∈ [1 . . . N layers] (N layers being the number of layers of the Transformer), hl is the
output of layer l, and hl

∗ is the output of the MHA step which includes a skip connection.
Notice hl

∗ serves as input to a feed-forward network with a skip connection which outputs hl.
Relevant Transformer hyperparameters include the number of heads Nheads and the embed-
ding dimensionality ET , which are specified in Implementation details section. Additionally,
we use a learnable classification token of dimension ET that is concatenated at the beginning
of the input sequence. This token representation after the Transformer is fed into an output
layer that performs the classification task. The dimension number of ET is equal to ETM for
the light-curve Transformer and EQFT for the tabular data Transformer.

When only a single data source is considered (e.g., only light-curves data), we take the
first element of the Transformer’s output sequence, and apply a linear layer plus a softmax
activation function. When two data sources are considered, two Transformers Tlc and Ttab

7A quantile transformation transforms features into a desired distribution by mapping the cumulative
distribution function of the features to the quantile function of the desired distribution.

45

are used to process light-curve and tabular data information, respectively. The first output
elements of both sequences are concatenated, and a multilayer perceptron plus a softmax
activation function are applied to produce the label prediction (see Figure 4.1).

4.3.5 Mask temporal augmentation

To improve early classification performance, we train ATAT on light-curves reduced up to
a randomly selected time instant. During training, a day t∗ ∈ {8, 128, 2048} is randomly
selected for each light-curve, and the values of mask M corresponding to times t > t∗ are
set to zero. Note that t∗ = 2048 is equivalent to using the complete light-curves. Times are
selected from a limited discrete set since it is unfeasible to compute the features at arbitrary
times. Hereafter, we refer to this augmentation method as Masked Temporal Augmentation
(MTA).

4.3.6 Implementation details

ATAT variants are evaluated every twenty-thousand iterations, and early stopping with a
patience of three evaluations is used. Models are trained using the Adam optimizer [64] until
early stopping with learning rate of 2 · 10−4 and a batch size of 256. We use class balanced
batches. For both Tlc and Ttab, Nheads = 4 and N layers = 3. For Tlc/Ttab all input and output
dimensions of linear layers are 48/36 with the exception of the hidden layers of FF (Eq. 4.5)
which are 96/72. Note that this implies that ETM = 48 · 4 = 192 and ETT = 36 · 4 = 144.
We select Tmax = 1500 and H = 64. We use a dropout of 0.2 for training. All Nans, inf and
− inf in features and metadata are replaced by -9999.

4.4 Random forest baseline

4.4.1 Balanced Hierarchical Random Forest

We compare our Transformer models against the Balanced Hierarchical Random Forest
(BHRF) model of [110] adapted for the ELAsTiCC dataset. This section describes the
differences between the original BHRF and its ELAsTiCC adaptation.

The original BHRF described in [110] is composed of four Balanced Random Forest models
[23] that are used in a hierarchical structure. The top model classifies each light-curve into
Transient, Stochastic and Periodic classes. Then each one of these three groups is further
classified using its own Balanced Random Forest model. In this work, the Transient group in-
cludes the following classes: Calcium Rich Transients (CART), SNe Iax (Iax), SNe 91bg-like
(91bg), SNe Ia (Ia), SNe Ib/c (Ib/c), SNe II (II), SNe IIb (SN-like/Other), Superluminous
SNe (SLSN), Pair Instability SNe (PISN), Tidal Disruption Events (TDE), Intermediate Lu-
minosity Optical Transients (ILOT), and Kilonovae (KN). The Stochastic group includes the
following classes: M-dwarf flare, Dwarf novae, active galactic nuclei (AGN), and gravitational
micro lensing events (uLens). The Periodic group includes the following classes: Delta Scuti,
RR Lyrae, Cepheid, and Eclipsing Binary.

The ELAsTiCC dataset has six bands and its light-curves contain difference fluxes. In
comparison, the alert stream from ZTF [8, 49] classified by the original BHRF model has

46

only two fully-public bands and it offers light-curves in difference magnitudes. In order
to deal with this, we modified some of the original features from [110]. All light-curve
based features were modified to use fluxes as input instead of magnitudes. The supernova
parametric model (SPM) from [110] was modified to better handle the six bands available
and the extra information of redshift and Milky Way dust extinction. The fluxes were scaled
using the redshift information available and the WMAP5 cosmological model [68, 6], and also
deattenuated using the extinction information and the model from [87]. This means that some
of metadata information was used in the computation of features. We remove some features
from [110] that were not simulated by ELAsTiCC, e.g., the star-galaxy score from the ZTF
stream and the color information from ALLWISE. The coordinates of the objects are not
used because they were not simulated in a realistic way for each of the astrophysical classes.
These engineered features are also used for ATAT in Section 4.5. In the next section we give
a comprehensive list of the modified features.

In order to be consistent with ATAT, the Random Forest (RF) models were trained using
light-curves trimmed to 8, 128 and 2048 days long. From each astrophysical class 15,000,
9,000 and 3,900 light-curves were sampled to train the transient, periodic and stochastic
RF, respectively. Each RF has 500 trees, with the exception of the RF for transient classes,
which has 350 trees. The transient RF also uses a minimum impurity decrease value of
0.00003. Both decisions were made to diminish the final size of the model in order to facilitate
deployment.

4.4.2 Processed features details

To extract color information from the difference light-curves, on each band we take the
absolute value of the flux, compute the percentile 90 and save that value. Following the
order ugrizY, we take the value of the percentile 90 previously saved for one band and divide
it by the value of the next band. To avoid dividing by zero, we add 1 to the denominator.

Most differences in the features used are related to extracting information from supernova-
like light-curves. This is the list of supernova features, which are computed for each band:

• positive_fraction: fraction of observations with a positive flux value.
• dflux_first_det_band: difference between the flux of the first detection (in any band)

and the last non-detection (in the same selected band) just before the first detection.
• dflux_non_det_band: same as dflux_first_det_band, but instead of using the last

non-detection before the first detection, we take all the non-detections before the first
detection and compute the median. Later, this median is subtracted from the flux of
the first detection (in any band).

• last_flux_before_band: flux of the last non-detection (in the selected band) before
the first detection (in any band).

• max_flux_before_band: maximum flux of the non-detections (in the selected band)
before the first detection (in any band).

• max_flux_after_band: maximum flux of the non-detections (in the selected band)
after the first detection (in any band).

• median_flux_before_band: median flux of the non-detections (in the selected band)
before the first detection (in any band).

47

• median_flux_after_band: median flux of the non-detections (in the selected band)
after the first detection (in any band).

• n_non_det_before_band: number of non-detections (in the selected band) before the
first detection (in any band).

• n_non_det_after_band: number of non-detections (in the selected band) after the first
detection (in any band).

As we were not sure if the ELAsTiCC stream would indicate if the observations were alerts
or forced photometry (i.e. if the signal was strong enough compared with the noise), for the
supernova features we considered an observation as a detection if the absolute value of the
difference flux was at least 3 times larger than the observation error.

With respect to the Supernova Parametric Model [SPM, 110], one SPM model per band
was fitted to the data, but the optimization was done simultaneously and penalizing the
dispersion between the parameters on different bands. The extra term added to the cost
function is

〈


V̂ ar(A) + 1

V̂ ar(t0) + 0.05

V̂ ar(γ) + 0.05

V̂ ar(β) + 0.005

V̂ ar(trise) + 0.05

V̂ ar(tfall) + 0.05


,


0.0
1.0
0.1
20.0
0.7
0.01


〉

(4.7)

where the variances are estimated over the different bands and the coefficients were found
experimentally. The original SPM code was modified to avoid numerical instabilities. To
speed up the optimization, the gradient of the cost function is computed using the JAX
library 8. The initial guess and the boundaries for the parameter optimization were tuned
for the range of values in the ELAsTiCC dataset.

4.5 Results

4.5.1 Comparison between ATAT and RF-based baseline

Figure 4.3 (a) shows the test-set F1-score of two selected ATAT variants using different
data sources with a data augmentation strategy (Masked Temporal Augmentation, MTA,
see Section 4.3.5) and the Random Forest baseline (RF, described in Section 4.4.1) as a
function of the number of days after the first alert, starting at eight days and progressively
increasing in powers of two up to 2048. These ATAT variants outperform the RF model for
all light-curve lengths, specially for shorter light-curves. We further compare these models by
measuring the F1-score, recall and precision in a per-class basis as shown in Table 4.1. The
labels indicate whether the models were trained using the light-curve (LC) data, metadata
(MD), engineered features (Features), or combinations of these. In Section 4.5.3, we compare
ATAT and RF in terms of confusion matrices. The ATAT’s variants surpass the RF in most
classes. In particular, the ATAT variant based on LC and MD performs better in the SN
subclasses, but the ATAT variants that use all data sources obtain better scores in the periodic

8http://github.com/google/jax

48

http://github.com/google/jax

sub-classes. Three of the four classes where the RF-based baseline outperforms (F1-Score)
ATAT, namely KN, CART and M-dwarf are also the ones with fewer examples in the dataset
(see Figure 4.2). This may be explained by the differences in the class-balancing strategies,
with the RF being more robust to overfitting in the minority classes.

4.5.2 Classification performance of ATAT variants

(b) Light-curve only ATAT variants
 (c) Tabular data only ATAT variants
plus RF baseline

(d) Combined Light-curve and tabular
data ATAT variants

(a) Comparison between two ATAT variants and RF baseline

Figure 4.3: F1-score vs time since first alert for a selection of models. We show the bet-
ter performing ATAT variants and the RF-based baseline (a), the light-curve only ATAT
variants (b), the tabular data only ATAT variants (c), and the combined light-curve and
tabular data ATAT variants (d). LC/MD/Features refers to models that are optimized using
the light-curve, metadata and feature information, respectively. Models can use more than
one information source, e.g., LC + MD + Features. Dotted lines refer to models that are
optimized with MTA (see Section 4.3.5).

To explore the influence of the number and type of data sources on the classification
performance, eleven ATAT variants are compared in Figures 4.3 (b), (c) and (d). In all
figures the dashed lines correspond to the cases where the MTA strategy is used.

Figure 4.3 (b) shows the performance of the ATAT variants using only the light-curve as

49

input source, with and without the MTA strategy. The MTA strategy significantly improves
the classifier performance at early times, saturating at about 128 days and after that having
only marginal increments. This could be related with the majority of the classes in the
dataset being transients and with the absence of longer timescales variable objects (e.g.,
Miras and other LPVs).

Figure 4.3 (c) shows the performance of the ATAT variants trained using only tabular data
information. This includes metadata from the first alert and features that are a function of
the available light-curve data, where a strategy similar to MTA can also be applied. Note that
the feature-based model (yellow line) outperforms the LC-based model (grey line in Figure
4.3 b), although they may not be fully comparable (see Section 4.4). We can also observe
that the performance of the feature-based model increases considerably when metadata is
incorporated (purple line), and even outperforms the RF-based baseline (red line) when
considering MTA. The MTA strategy applied to feature computation has a positive effect in
early classification performance in all cases.

Figure 4.3 (d) shows the performance of four ATAT variants trained with both the light-
curves and the metadata, with and without features, and with and without the MTA strategy.
This figure suggests a low synergy between the light-curve and feature data and that ATAT
can extract the most relevant class information using only the light-curve and metadata.
Moreover, a comparison with Figure 4.3 (b) suggests a high synergy between the light-curve
and metadata, where adding metadata yields a performance improvement between 20% and
30% depending on the length of light-curves. The ATAT variant that uses all information
sources (blue solid-line) without the MTA strategy has a worse performance for light-curves
shorter than 128 days than the model that uses only light-curve and metadata information
(green solid-line). When the MTA strategy is applied, the model that uses all the data
sources is only marginally superior.

Summarizing, models combining light-curves and metadata information yield the highest
performance (highest synergy). The addition of features improves the classification margin-
ally if using the MTA strategy, but this does not appear to be significant. Additionally,
applying the MTA strategy is always beneficial for early classification in the models using
light-curves and/or feature data. The two ATAT variants that use light-curves plus metadata
and MTA shown in Figure 4.3 (a) were put into production within the pipeline that pro-
cesses the ELAsTiCC stream. In the future, we will explore class-weighting and/or additional
data-augmentation strategies to improve the performance of ATAT in the data-scarce classes.

4.5.3 Confusion matrices

Figure 4.4 shows the confusion matrices of: (a) the ATAT variant that uses LC, metadata and
MTA; (b) the ATAT variant that uses LC, features, metadata, and MTA; and (c) the RF-
based baseline. These results where obtained by evaluating the light-curves at their maximum
length (2048). The ATAT (LC + MD + Features + MTA) model outperformed the RF in
15 out of 20 classes in the dataset. In particular the ATAT performs better in all the SNe
subclasses, namely: Iax, 91bg, Ia, Ib/c, II, SLSN, PISN and SN-like/Other. This is specially
noticeable for types Ib/c and II where the difference in recall is 37% and 20%, respectively. In
the case of transient types, besides the aforementioned SNe subclasses, noticeable differences

50

Classnames ATAT (LC + MD) ATAT (LC + MD + Features) RF (MD + Features)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CART 0.7440 0.4040 0.5200 0.7520 0.3980 0.5200 0.5553 0.5526 0.5539
Iax 0.6080 0.6680 0.6360 0.6040 0.6520 0.6220 0.5434 0.5108 0.5265

91bg 0.8980 0.9220 0.9100 0.8960 0.9000 0.8980 0.7107 0.8752 0.7844
Ia 0.7520 0.8200 0.7840 0.7480 0.8060 0.7760 0.5674 0.7538 0.6474

Ib/c 0.5080 0.6740 0.5760 0.4780 0.6760 0.5600 0.5799 0.3114 0.4052
II 0.7520 0.5220 0.6140 0.7480 0.5440 0.6300 0.6381 0.3450 0.4478

SN-like/Other 0.5900 0.7500 0.6600 0.5900 0.7260 0.6500 0.5430 0.4900 0.5151
SLSN 0.9420 0.9180 0.9280 0.9340 0.9220 0.9280 0.8865 0.8846 0.8855
PISN 0.9140 0.9700 0.9420 0.9180 0.9660 0.9400 0.8341 0.9578 0.8917
TDE 0.7360 0.9180 0.8140 0.7420 0.9220 0.8200 0.8160 0.7370 0.7744
ILOT 0.9000 0.8300 0.8660 0.9060 0.8540 0.8800 0.7469 0.9178 0.8235
KN 0.9700 0.7040 0.8140 0.9700 0.6900 0.8040 0.8173 0.9328 0.8712

M-dwarf Flare 0.9900 0.6840 0.8120 0.9940 0.6720 0.8000 0.9529 0.7890 0.8632
uLens 0.8580 0.9500 0.9020 0.8520 0.9620 0.9040 0.9475 0.8274 0.8834

Dwarf Novae 0.8820 0.8740 0.8780 0.8780 0.8760 0.8800 0.7769 0.8272 0.8012
AGN 1.0000 1.0000 1.0000 0.9980 1.0000 1.0000 0.9457 1.0000 0.9721

Delta Scuti 0.9280 0.9580 0.9440 0.9680 0.9980 0.9820 0.9051 0.9882 0.9448
RR Lyrae 0.9520 0.9540 0.9560 0.9740 0.9900 0.9800 0.9209 0.9836 0.9512
Cepheid 0.9560 0.9820 0.9700 0.9800 0.9980 0.9900 0.9213 0.9878 0.9533

EB 0.8720 0.9900 0.9240 0.8840 0.9900 0.9340 0.9282 0.9752 0.9511

Macro avg 0.8376 0.8246 0.8225 0.8407 0.8271 0.8249 0.7769 0.7823 0.7724

Table 4.1: Classification precision, recall and F1-score per class and macro average of the
models put into production. We include the two best-performing ATAT variants (with MTA)
and the RF-based baseline.

between the models arise. For example the RF-based baseline outperforms ATAT by 24%
and 15% in the case of KN and CART, respectively. The former model confused these classes
mainly with SNe types Ib/c and Iax. The baseline is also 7% better at detecting ILOT. ATAT
confuses this class mainly with TDEs, whereas the baseline does not present such confusion.
On the other hand, ATAT outperforms the baseline by 18% and 6% in the case of TDE and
uLens, respectively. Cataclysmic types also present interesting differences between models.
For example the ATAT outperforms the baseline by 7% for the Dwarf-novae class. On the
other hand, the RF-based baseline outperforms the ATAT model by 16% in the case of M-
dwarf flares. The latter model has 11% confusion between this class and the EB periodic
subtype, whereas the baseline does not present such confusion. Finally, the confusion matrices
show that both models achieve almost perfect detection for periodic variable star classes and
for the stochastic AGN class, with the proposed model being marginally superior than the
baseline. It is worth noting that in three of the four classes where the RF-based baseline
outperforms ATAT, namely KN, CART and M-dwarf are also the ones with fewer examples
in the dataset (see Figure 4.2). This suggests that the RF is more efficient for highly class-
imbalanced datasets than the Transformer-based approach. Additional data-augmentation
strategies may be required to improve the performance of ATAT in these data-scarce classes.
The ATAT variant that does not use features (LC + MD + MTA) shows a similar performance
than the ATAT variant that uses them (LC + MD + Features + MTA), except for periodic
classes where the feature-based variant is marginally better.

51

(c) RF (MD + Features)

(a) ATAT (LC + MD + MTA) (b) ATAT (LC + MD + Features + MTA)

Figure 4.4: Confusion matrix of two ATAT variants, and the Random Forest (RF) baseline.
ATAT (LC + MD + MTA) has an F1-Score of 82.25%, ATAT (LC + MD + Features +
MTA) has an F1-Score of 82.49%, and RF (MD + Features) has an F1-Score of 77.24%.

52

4.5.4 Computational time performance

Table 4.2 shows the average computational time to predict the class of a single light-curve9

with the selected ATAT variants and the RF-based baseline. The table also shows the
average time per light-curve to compute the complete set of engineered features. Note that
only the RF-based baseline and ATAT (LC + MD + Features + MTA) require features to
be computed. From Table 4.2, we observe that the computational time required to perform
inference with any of the models is negligible in comparison with the time required to compute
features. This means that in total, the ATAT (LC + MD + MTA) variant, is several orders
of magnitude faster than the RF-based baseline and feature-based ATAT variants. This sets
the LC + MD + MTA variant as a very interesting trade-off, reducing computational time
in 99.75% with only a 0.3% decrease in F1-score. We note, however, that some classes are
more affected when features are excluded, e.g., periodic variables. As future work we plan to
explore which subset of features are more synergistic with the ATAT (LC + MD + MTA)
variant. The selection of the best trade-off may also need to be reevaluated as future surveys
such as LSST are expected to incorporate some features (e.g., period) in the alert stream.

Inference step Average time [s]

ATAT (LC + MD + MTA) 4.75 · 10−4

ATAT (LC + MD + Features + MTA) 8.29 · 10−4

RF (MD + Features) 2.02 · 10−4

Feature computation 1.88 · 10−1

Table 4.2: Average computational time per light-curve in seconds required to perform the
inference step for selected classification models.

4.6 Conclusion

We introduced ATAT, a novel Deep Learning Transformer model that combines time series
and tabular data information. The proposed model was developed for the ELAsTiCC chal-
lenge that simulates an LSST-like stream, with the objective of testing end-to-end alert
stream pipelines. We were able to evaluate both classification and infrastructure perform-
ance metrics in the training set provided by ELAsTiCC. Our model was put into production
within the ALeRCE broker in preparation for the real-time classification of the LSST alert
stream.

Our results show that, using the ELAsTiCC dataset, ATAT outperforms a Balanced Hier-
archical RF model similar to the current ALeRCE’s light-curve classifier. This RF obtains a
macro precision/recall/f1-score of 0.777/0.782/0.772, while ATAT achieves 0.841/0.827/0.825
when using light-curves, metadata and features calculated over the light-curves. Further-
more, if only the light-curves and metadata are considered for ATAT, we achieved values
of 0.838/0.825/0.823 for the previous metrics, and about 400 times faster inference times
than with the RF. Importantly, our work suggests that it is possible to classify light-curves
excluding human-engineered features with no significant loss in performance, and highlights

9Averages are estimated using the whole dataset and full-length light-curves.

53

the importance of including metadata information such as the properties of the host galaxy
(e.g., [42]).

The metrics presented in this work, e.g., in Table 4.1 or Figure 4.3, are representative of
the dataset provided by ELAsTiCC to prepare machine learning models previous to the end-
to-end challenge. The ELAsTiCC simulated stream may not be representative of this dataset
(e.g., in the distribution of classes), nor of the real LSST alert stream, and this may result
in different performance metrics than those reported in this work. In order to tackle these
differences, we suggest the application of fine-tuning and domain adaptation techniques.

To the best of our knowledge, this is the first time that a deep neural network outperforms
feature-based tree ensembles in a large, complex and multi-class light-curve classification
setting, including very different variability classes. Transformer-based models represent a
paradigm shift and we believe that more astronomical applications based on these models
will be developed. Particularly, ATAT opens the door for more multi-modal applications,
e.g., a third branch for stamps in Fig 4.1. Finally, it is important to note that we won the
ELAsTiCC challenge, although we disclosed the results for privacy reasons.

54

Chapter 5

Self-supervision in time series and
tabular data

This thesis mainly focuses on classifying astronomical objects using the most information
available. We particularly want to use unlabelled and tabular data to improve the classi-
fication. In Chapter 3, we investigated the best architectures for classification when using
unlabeled data. We studied different encoders and decoders from a representation learning
and semi-supervised learning perspective. Thanks to this research, we could demystify what
model is the most promising and flexible for MVLIS time series classification. In Chapter 4,
using Transformers, we proposed a new model ATAT that could take advantage of MVLIS
time series and also tabular data. The proposed model showed impressive performance al-
lowing us to win the ELAsTiCC Challenge.

Although we explored how to use unlabeled data and tabular data for classification sep-
arately, it is important to study a unified approach that can take advantage of unlabeled
data and tabular data at the same time. Thanks to our studies, in Chapter 3 and Chapter
4, we can narrow our exploration to MHA models and Transformers. Moreover, we demon-
strate that using Transformers is possible to overcome the most widespread approach used in
astro-informatics for classification, the Random Forest. But, is it possible to use Transformer
with self-supervised approaches for representation learning and semi-supervised learning? In
Computer Vision, the literature is vast about it [26, 25, 19]. But, in the astro-informatic
literature, this problem is not well studied, and only a couple of works have been developed
in this direction [36]. In Chapter 3, we showed various architectures that could be trained
with the auto-encoding approaches, a self-supervised technique, but this technique can not
be applied to features.

Other self-supervised techniques [48, 58, 47] are more promising to tackle tabular data
as input, in addition to time series. These self-supervised techniques have not been widely
explored in astro-informatics. However, they are based on Transformers, and they are flexible
enough to use other data modalities like time series and tabular data as inputs. In what
follows, we will study the most widely self-supervised approaches in Computer Vision and
Natural Language Processing. We will obtain their main components, and we will unify
them. Finally, we will propose guidelines on how to use these self-supervised approaches and

55

what hyperparameters should be explored. Note, the purpose of this chapter is not to provide
experiments or results. Rather, it is to unify under one framework two of the most important
self-supervised methods in the literature. This framework can be helpful for future research
in self-supervision on tabular and time series data.

5.1 Background of self-supervised methods

In Computer Vision, for representation learning and semi-supervised learning MAE [52] is
widely used. In contrast, in Natural Language Processing, BERT [31] and BERT’s variation
are more popular. Although these methods are from different areas, they are incredibly
similar and share many components. Both methods try to reconstruct data that is not
present in the input. However, they do this in slightly different manners. While MAE uses
encoding and decoding steps, BERT uses only an encoding step. Both methods use tokens
that, after being processed by the Transformer, estimate the data that was not present in the
input. Let’s call these tokens as “predictive tokens”. In the case of MAE, the Transformer
used to predict missing data is the decoder Transformer, while in the case of BERT, it is the
encoder Transformer.

Finally, MAE only uses learnable embeddings as predictive tokens with their correspond-
ing positional encoding, while in BERT, the predictive tokens sometimes were learnable
embeddings, sometimes were replaced by tokens of other words, and sometimes predictive
tokens were simply the same word token without modifications. Additionally, MAE tries
to predict not only missing information but also all the input information. BERT predict
only predictive tokens and only reconstructs unmodified inputs occasionally. Note, in this
work, we will ignore completely sentence A and sentence B pretraining of BERT. For more
information about BERT and MAE, please see Chapter 2.

5.2 Methodology

Let’s consider the input pair (xj, pj), with j ∈ [1, . . . , L], being L the maximum length of
the sequences in the dataset. This input x can be a time series or tabular data ordered as
a sequence or any other sequence of interest. The pj is the position or time (in case of time
series) of input xj. Additionally, let’s consider a mask Mj, which tells us if the input xj

is observed or not. This can occur because we are using matrices and the input can have
variable length, see Section 4.3.1 of Chapter 4 for more intuition about this practice. In
the case of tabular data, we would have a matrix of ones, unless we also consider missing
values. Considering the proposed notation, and how MAE and BERT work, we propose a
methodology to test the most important components of these models.

We note MAE reconstructs all the input, while BERT only a 15% of it. Using our notation,
we can simulate this behavior by sampling a Bernoulli distribution of the mask M , denoted
as Mpred ∼ Bernoulli(M, ηpred), where only the ones in M are sampled with probability
ηpred and the zeros are maintained as zeros. Using this notation, we would have Mpred

MAE ∼
Bernoulli(M, 1) for MAE and Mpred

BERT ∼ Bernoulli(M, 0.15). We denote the input that data
is not predicted as Mbase = max(1 −Mpred, 0). From the data to be predicted, generally,
with a probability 1 − ηorig, the predictive tokens replace the input tokens and the rest are

56

unmodified inputs. This generated the masks Mmod and Morig. In practice, this is equivalent
to Mmod

MAE ∼ Bernoulli(Mpred
MAE, 0.75) and Morig

MAE ∼ Bernoulli(Mpred
MAE, 0.25) for MAE (when

maintaining only 25% of the image), and Mmod
BERT ∼ Bernoulli(Mpred

BERT, 0.80) and Morig
BERT ∼

Bernoulli(Mpred
BERT, 0.10). Note that in the case of BERT, there is also a 10% of probability

that the input token is modified by the token of another word.

The expressed methodology unifies many components of MAE and BERT and can be used
directly in time series and tabular data. However, we observed two differences between MAE
and BERT that this methodology doesn’t consider. First, MAE adds the predictive tokens
in the decoder Transformer; let’s call this methodology SSL-M (see Fig. 5.1). While BERT
adds the predictive tokens at the encoder’s input, let’s call this methodology SSL-B (see Fig.
5.1). Second, when BERT modifies the predictive tokens, these are modified into learnable
embeddings or are changed by the other token words. To study both behaviors, we separate
them. We modify the second behavior because we are using time series and tabular data
and not words like BERT. In the case of time series, we didn’t consider this step. In the
case of tabular, we replace the scalar value with a sample from a normal distribution. This
is possible because we are using QFT from Chapter 4. Hence all the tabular data have a
normal distribution.

The proposed methodology has four important hyperparameters to search ηpred, ηorig, if
the model uses SSL-B or SSL-M, and, in the case of tabular data, if the predictive tokens
are replaced by learnable embeddings or noise from a normal distribution. Using this meth-
odology we propose the Algorithm 1, which formalizes our observations and can help to find
the best self-supervised model for tabular data and time series for future work.

57

Encoder Transformer

REP

Encoder Transformer

REP

Decoder Transformer

(a) SSL-B
 (b) SSL-M

= Token

= Processed Token

= Token after
positional
encoding

 Representation Token

 Input Tokens

Predictive Token= Output to be
predicted
= LL or MLP

Figure 5.1: Diagram of the types of self-supervision used. We consider two types of self-
supervision, Self-B and Self-M. The encoder of Self-B and the decoder of Self-B have the same
purpose, process all tokens, so a subset of them (explained later) are reconstructed. However,
self-supervision Self-M process non-learnable token with an additional transformer, in this
case, the encoder. The red rectangle refers to the representation token. Blue rectangles
refer to input tokens that are not used to reconstruct the input. Purple rectangles are input
tokens, but they are used to reconstruct the input. Green rectangles are learnable embedding
tokens with positional information to reconstruct the data that should be in that position.

58

Algorithm 1 Algorithm for self-supervision. Input: Hyperparameters to explore
(ηpred, ηorig), what self-supervision is used (SSL-M or SSL-B), how the predictive token is
modified. Output: pre-trained model on unlabeled data.
1: train, val, test← Set the train, validation, and test set
2: ηlr ← Set learning rates
3: ηpred, ηorig ← Set probabilities for masking data
4: SSL ← Set type of self-supervision, SSL-B or SSL-M
5: tabular ← Set if using tabular data (True) or time series (False)
6: ptoken ← Set how the predictive token will be changed, noise (only for tabular data) or

embedding
7: if tabular then
8: Mod← modulator is a pretrained Quantile Feature Transformer
9: else

10: Mod← modulator is Temporal Modulator
11: end if
12: Tθ ← Initialize Transformer with parameters θ
13: tok ← Initialize learnable embedding
14: if SSL == SSL-M then
15: Tθd ← Initialize decoder Transformer with parameters θd
16: Tp ← Tθd ▷ Create auxiliary variable
17: θu ← (θ, θd) ▷ Create auxiliary variable for parameters
18: else
19: Tp ← Tθ ▷ Create auxiliary variable
20: θu ← θ ▷ Create auxiliary variable for parameters
21: end if
22: repeat
23: X,P,M ∼ train ▷ Obtain input, position and mask matrices
24: Mpred ∼ Bernoulli(M, ηpred) ▷ Obtain mask for prediction
25: Mmod ∼ Bernoulli(Mpred, 1− ηorig) ▷ Obtain mask that modify predictive tokens
26: Mbase = max(1−Mpred, 0) ▷ Obtain mask for the Transformer
27: X̃ ← X if SSL == SSL-B else Tθ(Mod(X)⊙Mbase) ▷ Create auxiliary input
28: ptoken← tok if ptoken == embedding else sample from N (0, I) with shape of X
29: X̃ = Mod(X̃, P)⊙Mbase + Mod(ptoken, P)⊙Mmod ▷ Modify input with predictive

tokens
30: X̂ = Tp(X̃) ▷ Process auxiliary input with Transformer
31: θu ← θu + ηlr∇θuMSE(X ⊙Mpred, X̂ ⊙Mpred) ▷ Gradient update on network
32: until convergence

59

Chapter 6

Conclusions

In this work, we tackle the challenging problem of classifying astronomical objects, which has
various practical difficulties. We consider two of their most fundamental challenges: 1) There
exists a massive amount of unlabelled data that could be useful for classification, and that is
currently being wasted, and 2) the astronomical objects have various information modalities,
they include multivariate variable length and irregular sampling (MVLIS) time series and
also tabular data that could be useful for classification. At the same time, tabular data
have complex distribution, usually with missing or nan values, and, moreover, specialized
architectures are needed to process MVLIS time series.

To deal with the MVLIS time series, we did extensive experiments over encoders and
decoders that could manage these time series (Chapter 3). We explored various architectures
with a focus on representation learning, which is the core area in Machine Learning that
studies models’ potential when using unlabeled data. We studied various representation
learning metrics and established their connection with semi-supervised learning (Table 3.8).
Exploring representation and semi-supervised learning can be useful to take advantage of
all the unlabeled data in practice. Additionally, we explore how estimating the aleatoric
variance could help representation learning. Thanks to this study, we conclude what models
are more robust and flexible. Concluding about what models perform best allows accept or
reject Hypothesis 1 which states that representation learning metrics should be dependent
on the encoder/decoder architecture used.

We found that decoder architectures are not as relevant for representation learning as
in Computer Vision [27]. Although decoders don’t significantly affect the representations
obtained, there is a big difference in reconstruction error, which could impact forecasting
models (see Table 3.5, 3.4). From our explorations, we suggest using a simple MLP for
decoding instead of more sophisticated techniques like LSTM or MHA (Chapter 3). Consid-
ering these results, we conclude that Hypothesis 1 is not true when measuring representation
learning metrics for decoder architectures. However, for reconstruction metrics, the decoder
architecture is relevant.

Upon observing the significant impact of encoding architectures, we discovered that LSTMs
faced difficulties when dealing with more complex datasets. Surprisingly, interpolation tech-

60

niques such as InterPred displayed impressive results. However, for encoding MVLIS time
series, we opted for MHA due to its consistent performance across various datasets (refer
to Table 3.6, 3.7, and 3.8, as well as Sections 3.4.3 and 3.4.4). Additionally, MHA offers
greater flexibility as an architecture. These findings confirm Hypothesis 1, indicating that
the choice of architecture plays a crucial role in representation learning metrics, primarily
observed during the encoding procedure, where high variability exists.

To validate Hypothesis 2, we selected the ELASTiCC dataset, which encompasses both
tabular and time series data, offering a more complex and comprehensive evaluation. To
effectively handle the substantial volume of data, we employed Transformers with MHA as
the primary module. Transformers have established themselves as highly flexible architec-
tures capable of accommodating diverse data modalities, including images, speech, and text.
Notably, they have also demonstrated scalability to handle massive datasets, as exemplified
in prior studies [11]. In our research, we leveraged Transformers, specifically designed for
the two most prevalent modalities in astronomy and astro-informatics, namely, time series
and tabular data. By employing distinct modulation techniques for these data types, we
effectively utilized the same Transformer architecture to process our astronomical objects.
This methodology led to outstanding results, surpassing the conventional RF models, which
have been widely adopted for classification purposes in the astronomy literature.

The proposed architecture exhibits remarkable flexibility, enabling us to assess the indi-
vidual and combined performance of each modality. Fig. 4.3 provides a comparative analysis
of the model’s performance when utilizing only light-curves, only tabular data, and when
leveraging both modalities jointly, depicted in Fig. 4.3(a), Fig. 4.3(b), and Fig. 4.3(c),
respectively. Notably, the models that leveraged both modalities outperformed the dedic-
ated time series and tabular classifiers by approximately 20% and 2%, respectively, thereby
validating Hypothesis 2. Furthermore, our results demonstrate that hand-crafted features,
traditionally employed in astronomy literature for many years, may be unnecessary. The
ATAT Transformer we propose exhibited processing times two orders of magnitude faster
than the computation of hand-crafted features. This significant improvement has implica-
tions for the infrastructure of astronomical object classification brokers. Notably, we applied
ATAT in the international challenge ELAsTiCC and emerged as the winners of the classi-
fication challenge, further substantiating the effectiveness and practical applicability of our
proposed model. While we are unable to present the specific results of the ELAsTiCC chal-
lenge in this thesis due to their non-public nature, their successful outcome further validates
our model’s efficacy.

Finally, in the last Chapter, we give guidelines on how to use Transformers and unla-
belled data for classification when considering time series and tabular data. We reviewed the
most relevant self-supervised models in Natural Language Processing and Computer Vision
literature and selected one model from each area. We identify the essential attributes and
hyperparameters of both models and unify them. We provide pseudo-code to test these at-
tributes and to demystify in future work what parameters and hyperparameters are the most
important for classification when using unlabelled data with tabular data and time series.

Future work. This work opens the door for several research areas to improve even fur-
ther the classification of astronomical sources. Our results are promising, and the proposed

61

methodology delivers guidelines on using unlabeled and tabular data for classification. Addi-
tionally, we identify three Machine Learning areas that could impact practical applications in
classifying astronomical sources. First, although it is extensively explored in ML literature,
Domain Adaptation in astro-informatics hasn’t been studied to the same extent. Nowadays,
there exists a large amount of astronomical data from various surveys that could be helpful
to classify new surveys, e.g., the LSST. Second, Active Learning is an ML area that tells
the user the most promising data to be labeled. This technique could improve the model
classification using the astronomer’s time efficiently. Third and final, we think simulated data
is fundamental in practical application. Although the before-mentioned techniques allow for
improving the models augmenting the labeled data, they will always be restricted by the
humans that label the data. Simulated data doesn’t have this restriction. For example, in
practice, ML models for self-driving cars are trained using simulated data.

62

Bibliography

[1] Alcock, C, Allsman, R A, Axelrod, T S, Mount Stromlo, Siding Spring Observatories,
Australian National University, Weston, ACT 2611, Bennett, D P, Cook, K H, Freeman,
K C, Griest, K, Marshall, S L, Peterson, B A, Pratt, M R, Quinn, P J, Rodgers, A W,
C W Stubbs, Sutherland, S, Welch, and D L. The macho project lmc variable star
inventory. ii. lmc rr lyrae starsemdashpulsational characteristics and indications of a
global youth of the lmc. Astronomical Journal, 111(3), 3 1996.

[2] Tarek Allam and Jason D. McEwen. Paying attention to astronomical transients: Pho-
tometric classification with the time-series transformer, 2021. URL https://arxiv.
org/abs/2105.06178.

[3] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin,
Nicolas Ballas, and Michael Rabbat. Semi-supervised learning of visual features by
non-parametrically predicting view assignments with support samples. arXiv preprint
arXiv:2104.13963, 2021.

[4] Nicolás Astorga, Pablo Huijse, Pablo A. Estévez, and Francisco Förster. Cluster-
ing of astronomical transient candidates using deep variational embedding. In 2018
International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2018. doi:
10.1109/IJCNN.2018.8489358.

[5] Nicolás Astorga, Pablo Huijse, Pavlos Protopapas, and Pablo Estévez. Mpcc: Matching
priors and conditional for clustering. In European Conference on Computer Vision
(ECCV), 2020.

[6] Astropy Collaboration, Adrian M. Price-Whelan, Pey Lian Lim, Nicholas Earl, Nath-
aniel Starkman, Larry Bradley, David L. Shupe, Aarya A. Patil, Lia Corrales, C. E.
Brasseur, Maximilian Nöthe, Axel Donath, Erik Tollerud, Brett M. Morris, Adam Gins-
burg, Eero Vaher, Benjamin A. Weaver, James Tocknell, William Jamieson, Marten H.
van Kerkwijk, Thomas P. Robitaille, Bruce Merry, Matteo Bachetti, H. Moritz Gün-
ther, Thomas L. Aldcroft, Jaime A. Alvarado-Montes, Anne M. Archibald, Attila Bódi,
Shreyas Bapat, Geert Barentsen, Juanjo Bazán, Manish Biswas, Médéric Boquien, D. J.
Burke, Daria Cara, Mihai Cara, Kyle E. Conroy, Simon Conseil, Matthew W. Craig,
Robert M. Cross, Kelle L. Cruz, Francesco D’Eugenio, Nadia Dencheva, Hadrien A. R.
Devillepoix, Jörg P. Dietrich, Arthur Davis Eigenbrot, Thomas Erben, Leonardo Fer-
reira, Daniel Foreman-Mackey, Ryan Fox, Nabil Freij, Suyog Garg, Robel Geda, Lauren
Glattly, Yash Gondhalekar, Karl D. Gordon, David Grant, Perry Greenfield, Aus-
ten M. Groener, Steve Guest, Sebastian Gurovich, Rasmus Handberg, Akeem Hart, Zac

63

https://arxiv.org/abs/2105.06178
https://arxiv.org/abs/2105.06178

Hatfield-Dodds, Derek Homeier, Griffin Hosseinzadeh, Tim Jenness, Craig K. Jones,
Prajwel Joseph, J. Bryce Kalmbach, Emir Karamehmetoglu, Mikołaj Kałuszyński, Mi-
chael S. P. Kelley, Nicholas Kern, Wolfgang E. Kerzendorf, Eric W. Koch, Shankar
Kulumani, Antony Lee, Chun Ly, Zhiyuan Ma, Conor MacBride, Jakob M. Maljaars,
Demitri Muna, N. A. Murphy, Henrik Norman, Richard O’Steen, Kyle A. Oman,
Camilla Pacifici, Sergio Pascual, J. Pascual-Granado, Rohit R. Patil, Gabriel I. Per-
ren, Timothy E. Pickering, Tanuj Rastogi, Benjamin R. Roulston, Daniel F. Ryan,
Eli S. Rykoff, Jose Sabater, Parikshit Sakurikar, Jesús Salgado, Aniket Sanghi, Nich-
olas Saunders, Volodymyr Savchenko, Ludwig Schwardt, Michael Seifert-Eckert, Al-
bert Y. Shih, Anany Shrey Jain, Gyanendra Shukla, Jonathan Sick, Chris Simpson,
Sudheesh Singanamalla, Leo P. Singer, Jaladh Singhal, Manodeep Sinha, Brigitta M.
SipHocz, Lee R. Spitler, David Stansby, Ole Streicher, Jani Šumak, John D. Swinbank,
Dan S. Taranu, Nikita Tewary, Grant R. Tremblay, Miguel de Val-Borro, Samuel J.
Van Kooten, Zlatan Vasović, Shresth Verma, José Vinícius de Miranda Cardoso, Peter
K. G. Williams, Tom J. Wilson, Benjamin Winkel, W. M. Wood-Vasey, Rui Xue, Peter
Yoachim, Chen Zhang, Andrea Zonca, and Astropy Project Contributors. The Astropy
Project: Sustaining and Growing a Community-oriented Open-source Project and the
Latest Major Release (v5.0) of the Core Package. , 935(2):167, August 2022. doi:
10.3847/1538-4357/ac7c74.

[7] Ignacio Becker, Karim Pichara, Márcio Catelan, Pavlos Protopapas, Carlos Aguirre,
and Fatemeh Nikzat. Scalable end-to-end recurrent neural network for variable star
classification. Monthly Notices of the Royal Astronomical Society, 493(2):2981–2995,
2020.

[8] Eric C Bellm, Shrinivas R Kulkarni, Matthew J Graham, Richard Dekany, Roger M
Smith, Reed Riddle, Frank J Masci, George Helou, Thomas A Prince, Scott M Adams,
et al. The zwicky transient facility: system overview, performance, and first results.
Publications of the Astronomical Society of the Pacific, 131(995):018002, 2018.

[9] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013. URL http://arxiv.org/abs/1206.5538. cite
arxiv:1206.5538.

[10] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han
Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with distribution
matching and augmentation anchoring. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=HklkeR4KPB.

[11] Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Big vision. https://github.
com/google-research/big_vision, 2022.

[12] Kyle Boone. Avocado: Photometric classification of astronomical transients with gaus-
sian process augmentation. The Astronomical Journal, 158(6):257, dec 2019. doi:
10.3847/1538-3881/ab5182. URL https://dx.doi.org/10.3847/1538-3881/ab5182.

[13] Kirk D Borne. Astroinformatics: data-oriented astronomy research and education.

64

http://arxiv.org/abs/1206.5538
https://openreview.net/forum?id=HklkeR4KPB
https://github.com/google-research/big_vision
https://github.com/google-research/big_vision
https://dx.doi.org/10.3847/1538-3881/ab5182

Earth Science Informatics, 3(1):5–17, 2010.

[14] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high
fidelity natural image synthesis. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=B1xsqj09Fm.

[15] Guillermo Cabrera-Vives, Ignacio Reyes, Francisco Förster, Pablo A. Estévez, and
Juan-Carlos Maureira. Deep-hits: Rotation invariant convolutional neural network for
transient detection. The Astrophysical Journal, 836(1):97, feb 2017. doi: 10.3847/
1538-4357/836/1/97. URL https://dx.doi.org/10.3847/1538-4357/836/1/97.

[16] Guillermo Cabrera-Vives, Zheng Li, Austen Rainer, Dionysis Athanasopoulos, Diego
Rodríguez-Mancini, and Francisco Förster. Managing the root causes of “internal api
hell”: An experience report. In International Conference on Product-Focused Software
Process Improvement, pages 21–36. Springer, 2022.

[17] Zhaowei Cai, Avinash Ravichandran, Paolo Favaro, Manchen Wang, Davide Modolo,
Rahul Bhotika, Zhuowen Tu, and Stefano Soatto. Semi-supervised vision transformers
at scale. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=7a2IgJ7V4W.

[18] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 9912–9924. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
70feb62b69f16e0238f741fab228fec2-Paper.pdf.

[19] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. In Proceedings of the International Conference on Computer Vision (ICCV),
2021.

[20] Rodrigo Carrasco-Davis, Guillermo Cabrera-Vives, Francisco Förster, Pablo A Es-
tévez, Pablo Huijse, Pavlos Protopapas, Ignacio Reyes, Jorge Martínez-Palomera, and
Cristóbal Donoso. Deep learning for image sequence classification of astronomical
events. Publications of the Astronomical Society of the Pacific, 131(1004):108006, 2019.

[21] Rodrigo Carrasco-Davis, Esteban Reyes, Camilo Valenzuela, Francisco Förster, Pablo A
Estévez, Giuliano Pignata, Franz E Bauer, Ignacio Reyes, Paula Sánchez-Sáez,
Guillermo Cabrera-Vives, et al. Alert classification for the alerce broker system: The
real-time stamp classifier. The Astronomical Journal, 162(6):231, 2021.

[22] Tom Charnock and Adam Moss. Deep recurrent neural networks for supernovae clas-
sification. The Astrophysical Journal Letters, 837(2):L28, 2017.

[23] Chao Chen, Andy Liaw, Leo Breiman, et al. Using random forest to learn imbalanced
data. University of California, Berkeley, 110(1-12):24, 2004.

65

https://openreview.net/forum?id=B1xsqj09Fm
https://dx.doi.org/10.3847/1538-4357/836/1/97
https://openreview.net/forum?id=7a2IgJ7V4W
https://openreview.net/forum?id=7a2IgJ7V4W
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf

[24] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

[25] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020.

[26] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hin-
ton. Big self-supervised models are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020.

[27] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John
Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. CoRR,
abs/1611.02731, 2016. URL http://arxiv.org/abs/1611.02731.

[28] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehr-
mann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif,
Nan Du, Benton C. Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier García, Vedant Misra, Kevin Robinson, Liam
Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Al-
exander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkow-
ycz, Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. Palm: Scaling language modeling with pathways. 2022.

[29] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling, 2014. URL http:
//arxiv.org/abs/1412.3555. cite arxiv:1412.3555Comment: Presented in NIPS 2014
Deep Learning and Representation Learning Workshop.

[30] Richard Dekany, Roger M. Smith, Reed Riddle, Michael Feeney, Michael Porter, David
Hale, Jeffry Zolkower, Justin Belicki, Stephen Kaye, John Henning, and et al. The
zwicky transient facility: Observing system. Publications of the Astronomical Society
of the Pacific, 132(1009):038001, Jan 2020. ISSN 1538-3873. doi: 10.1088/1538-3873/
ab4ca2. URL http://dx.doi.org/10.1088/1538-3873/ab4ca2.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2018. URL
http://arxiv.org/abs/1810.04805. cite arxiv:1810.04805Comment: 13 pages.

[32] Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional
neural networks for galaxy morphology prediction. Monthly notices of the royal astro-

66

http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1088/1538-3873/ab4ca2
http://arxiv.org/abs/1810.04805

nomical society, 450(2):1441–1459, 2015.

[33] Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning.
ArXiv, abs/1907.02544, 2019.

[34] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017. URL https://openreview.
net/forum?id=BJtNZAFgg.

[35] C Donoso-Oliva, Guillermo Cabrera-Vives, Pavlos Protopapas, Rodrigo Carrasco-
Davis, and Pablo A Estévez. The effect of phased recurrent units in the classifica-
tion of multiple catalogues of astronomical light curves. Monthly Notices of the Royal
Astronomical Society, 505(4):6069–6084, 2021.

[36] C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, Vishnu M., and Harsh
Vardhan. Astromer: A transformer-based embedding for the representation of light
curves, 2022. URL https://arxiv.org/abs/2205.01677.

[37] C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, Vishnu M., and Harsh
Vardhan. Astromer: A transformer-based embedding for the representation of light
curves, 2022. URL https://arxiv.org/abs/2205.01677.

[38] Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D. F. Campbell, and Ivor Simpson.
Training vaes under structured residuals, 2018. URL https://arxiv.org/abs/1804.
01050.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR, 2021.

[40] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t
know by virtual outlier synthesis. Proceedings of the International Conference on Learn-
ing Representations, 2022.

[41] F Förster, TJ Moriya, JC Maureira, JP Anderson, S Blinnikov, FILOMENA Bufano,
G Cabrera-Vives, Alejandro Clocchiatti, T De Jaeger, PA Estévez, et al. The delay
of shock breakout due to circumstellar material evident in most type ii supernovae.
Nature Astronomy, 2(10):808–818, 2018.

[42] Francisco Förster, Alejandra M. Muñoz Arancibia, Ignacio Reyes-Jainaga, Alexander
Gagliano, Dylan Britt, Sara Cuellar-Carrillo, Felipe Figueroa-Tapia, Ava Polzin, Yara
Yousef, Javier Arredondo, Diego Rodríguez-Mancini, Javier Correa-Orellana, Amelia
Bayo, Franz E. Bauer, Márcio Catelan, Guillermo Cabrera-Vives, Raya Dastidar,
Pablo A. Estévez, Giuliano Pignata, Lorena Hernández-García, Pablo Huijse, Esteban
Reyes, Paula Sánchez-Sáez, Mauricio Ramírez, Daniela Grandón, Jonathan Pineda-
García, Francisca Chabour-Barra, and Javier Silva-Farfán. DELIGHT: Deep Learning
Identification of Galaxy Hosts of Transients using Multiresolution Images. , 164(5):

67

https://openreview.net/forum?id=BJtNZAFgg
https://openreview.net/forum?id=BJtNZAFgg
https://arxiv.org/abs/2205.01677
https://arxiv.org/abs/2205.01677
https://arxiv.org/abs/1804.01050
https://arxiv.org/abs/1804.01050

195, November 2022. doi: 10.3847/1538-3881/ac912a.

[43] F. Förster, G. Cabrera-Vives, E. Castillo-Navarrete, P. A. Estévez, P. Sánchez-Sáez,
J. Arredondo, F. E. Bauer, R. Carrasco-Davis, M. Catelan, F. Elorrieta, S. Eyhera-
mendy, P. Huijse, G. Pignata, E. Reyes, I. Reyes, D. Rodríguez-Mancini, D. Ruz-
Mieres, C. Valenzuela, I. Álvarez Maldonado, N. Astorga, J. Borissova, A. Clocchi-
atti, D. De Cicco, C. Donoso-Oliva, L. Hernández-García, M. J. Graham, A. Jordán,
R. Kurtev, A. Mahabal, J. C. Maureira, A. Muñoz-Arancibia, R. Molina-Ferreiro,
A. Moya, W. Palma, M. Pérez-Carrasco, P. Protopapas, M. Romero, L. Sabatini-
Gacitua, A. Sánchez, J. San Martín, C. Sepúlveda-Cobo, E. Vera, and J. R. Vergara.
The automatic learning for the rapid classification of events (alerce) alert broker. The
Astronomical Journal, 161(5):242, apr 2021. doi: 10.3847/1538-3881/abe9bc. URL
https://dx.doi.org/10.3847/1538-3881/abe9bc.

[44] Dan Gao, Yan-Xia Zhang, and Yong-Heng Zhao. Random forest algorithm for classific-
ation of multiwavelength data. Research in Astronomy and Astrophysics, 9(2):220–226,
February 2009. doi: 10.1088/1674-4527/9/2/011.

[45] Catalina Gómez, Mauricio Neira, Marcela Hernández Hoyos, Pablo Arbeláez, and
Jaime E Forero-Romero. Classifying image sequences of astronomical transients with
deep neural networks. Monthly Notices of the Royal Astronomical Society, 499(3):
3130–3138, 2020.

[46] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT Press Cambridge, 2016.

[47] Yu. V. Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting
deep learning models for tabular data. ArXiv, abs/2106.11959, 2021.

[48] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Re-
visiting deep learning models for tabular data. In M. Ranzato, A. Beygelzi-
mer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 18932–18943. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf.

[49] Matthew J Graham, SR Kulkarni, Eric C Bellm, Scott M Adams, Cristina Barbarino,
Nadejda Blagorodnova, Dennis Bodewits, Bryce Bolin, Patrick R Brady, S Bradley
Cenko, et al. The zwicky transient facility: science objectives. Publications of the
Astronomical Society of the Pacific, 131(1001):078001, 2019.

[50] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. AD-
Bench: Anomaly detection benchmark. In Thirty-sixth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=foA_SFQ9zo0.

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

68

https://dx.doi.org/10.3847/1538-3881/abe9bc
https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://openreview.net/forum?id=foA_SFQ9zo0
https://openreview.net/forum?id=foA_SFQ9zo0

770–778, June 2016. doi: 10.1109/CVPR.2016.90.

[52] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Gir-
shick. Masked autoencoders are scalable vision learners. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June
18-24, 2022, pages 15979–15988. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01553.
URL https://doi.org/10.1109/CVPR52688.2022.01553.

[53] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bach-
man, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual
information estimation and maximization. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Bklr3j0cKX.

[54] R. Hložek, Kara Ponder, A. Malz, M. Dai, Gowthami Narayan, E. Ishida, Tarek Allam,
Anita Bahmanyar, Rahul Biswas, Lluís Galbany, Sourav Jha, David Jones, R. Kessler,
Michelle Lochner, A. Mahabal, K. Mandel, J. Martínez-Galarza, J. McEwen, Daniel
Muthukrishna, and Christian Setzer. Results of the photometric lsst astronomical time-
series classification challenge (plasticc). 12 2020.

[55] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[56] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[57] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama.
Learning discrete representations via information maximizing self-augmented training.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pages 1558–1567. JMLR.org, 2017. URL http://dl.acm.org/citation.
cfm?id=3305381.3305542.

[58] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer:
Tabular data modeling using contextual embeddings, 2020.

[59] Pablo Huijse, Pablo A Estevez, Pavlos Protopapas, Jose C Principe, and Pablo Zegers.
Computational intelligence challenges and applications on large-scale astronomical time
series databases. IEEE Computational Intelligence Magazine, 9(3):27–39, 2014.

[60] EEO Ishida, F Mondon, S Sreejith, MV Kornilov, KL Malanchev, MV Pruzhinskaya,
AA Volnova, VS Korolev, AA Malancheva, and S Das. Active anomaly detection for
time-domain discoveries. Astronomy and Astrophysics, 650:A195–A195, 2021.

[61] Željko Ivezić, Steven M Kahn, J Anthony Tyson, Bob Abel, Emily Acosta, Robyn Alls-
man, David Alonso, Yusra AlSayyad, Scott F Anderson, John Andrew, et al. Lsst: from
science drivers to reference design and anticipated data products. The Astrophysical
Journal, 873(2):111, 2019.

69

https://doi.org/10.1109/CVPR52688.2022.01553
https://openreview.net/forum?id=Bklr3j0cKX
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
http://dl.acm.org/citation.cfm?id=3305381.3305542
http://dl.acm.org/citation.cfm?id=3305381.3305542

[62] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Po-
tapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew
Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Tre-
vor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steineg-
ger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver,
Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis
Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, 596
(7873):583–589, 2021. doi: 10.1038/s41586-021-03819-2.

[63] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. CoRR, abs/1812.04948, 2018. URL http://arxiv.
org/abs/1812.04948.

[64] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
URL http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as
a conference paper at the 3rd International Conference for Learning Representations,
San Diego, 2015.

[65] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/
1312.6114.

[66] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edit-
ors, Advances in Neural Information Processing Systems 27, pages 3581–
3589. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5352-semi-supervised-learning-with-deep-generative-models.pdf.

[67] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved variational inference with inverse autoregressive
flow. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edit-
ors, Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf.

[68] Eiichiro Komatsu, J Dunkley, MR Nolta, CL Bennett, B Gold, G Hinshaw, N Jarosik,
D Larson, M Limon, L Page, et al. Five-year wilkinson microwave anisotropy probe* ob-
servations: cosmological interpretation. The Astrophysical Journal Supplement Series,
180(2):330, 2009.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

70

http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[70] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning
method for deep neural networks. ICML 2013 Workshop : Challenges in Representation
Learning (WREPL), 07 2013.

[71] Christian Leistner, Amir Saffari, Jakob Santner, and Horst Bischof. Semi-supervised
random forests. In 2009 IEEE 12th International Conference on Computer Vision,
pages 506–513, 2009. doi: 10.1109/ICCV.2009.5459198.

[72] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai,
Lu Yuan, and Jianfeng Gao. Efficient self-supervised vision transformers for represent-
ation learning. International Conference on Learning Representations (ICLR), 2022.

[73] Hanbo Li, Yaqing Wang, Changyou Chen, and Jing Gao. AIM: Adversarial inference
by matching priors and conditionals, 2019. URL https://openreview.net/forum?
id=rJx_b3RqY7.

[74] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158. URL
https://www.science.org/doi/abs/10.1126/science.abq1158.

[75] Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong Zhu, Chaoyang Zhao,
Rui Deng, Liwei Wu, Rui Zhao, Ming Tang, and Jinqiao Wang. Mst: Masked
self-supervised transformer for visual representation. In M. Ranzato, A. Beygelzi-
mer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 13165–13176. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf.

[76] Cristóbal Mackenzie, Karim Pichara, and Pavlos Protopapas. Clustering based feature
learning on variable stars. The Astrophysical Journal, 820, 03 2016. doi: 10.3847/
0004-637X/820/2/138.

[77] Ashish Mahabal, Kshiteej Sheth, Fabian Gieseke, Akshay Pai, S George Djorgovski,
Andrew J Drake, and Matthew J Graham. Deep-learnt classification of light curves. In
2017 IEEE symposium series on computational intelligence (SSCI), pages 1–8. IEEE,
2017.

[78] Thomas Matheson, Carl Stubens, Nicholas Wolf, Chien-Hsiu Lee, Gautham Narayan,
Abhijit Saha, Adam Scott, Monika Soraisam, Adam S Bolton, Benjamin Hauger, et al.
The antares astronomical time-domain event broker. The Astronomical Journal, 161
(3):107, 2021.

[79] Anais Möller, Julien Peloton, Emille E. O. Ishida, Chris Arnault, Etienne Bachelet,

71

https://openreview.net/forum?id=rJx_b3RqY7
https://openreview.net/forum?id=rJx_b3RqY7
https://www.science.org/doi/abs/10.1126/science.abq1158
https://proceedings.neurips.cc/paper/2021/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf

Tristan Blaineau, Dominique Boutigny, Abhishek Chauhan, Emmanuel Gangler, Fabio
Hernandez, Julius Hrivnac, Marco Leoni, Nicolas Leroy, Marc Moniez, Sacha Pateyron,
Adrien Ramparison, Damien Turpin, Réza Ansari, Jr. Allam, Tarek, Armelle Bajat,
Biswajit Biswas, Alexandre Boucaud, Johan Bregeon, Jean-Eric Campagne, Johann
Cohen-Tanugi, Alexis Coleiro, Damien Dornic, Dominique Fouchez, Olivier Godet,
Philippe Gris, Sergey Karpov, Ada Nebot Gomez-Moran, Jérémy Neveu, Stephane
Plaszczynski, Volodymyr Savchenko, and Natalie Webb. FINK, a new generation of
broker for the LSST community. , 501(3):3272–3288, March 2021. doi: 10.1093/mnras/
staa3602.

[80] Daniel Muthukrishna, Gautham Narayan, Kaisey S Mandel, Rahul Biswas, and Renée
Hložek. Rapid: early classification of explosive transients using deep learning. Public-
ations of the Astronomical Society of the Pacific, 131(1005):118002, 2019.

[81] Gautham Narayan, Tayeb Zaidi, Monika D. Soraisam, Zhe Wang, Michelle Lochner,
Thomas Matheson, Abhijit Saha, Shuo Yang, Zhenge Zhao, John Kececioglu, Car-
los Scheidegger, Richard T. Snodgrass, Tim Axelrod, Tim Jenness, Robert S. Maier,
Stephen T. Ridgway, Robert L. Seaman, Eric Michael Evans, Navdeep Singh, Clark
Taylor, Jackson Toeniskoetter, Eric Welch, Songzhe Zhu, and ANTARES Collabora-
tion. Machine-learning-based Brokers for Real-time Classification of the LSST Alert
Stream. , 236(1):9, May 2018. doi: 10.3847/1538-4365/aab781.

[82] Brett Naul, Joshua Bloom, Fernando Perez, and Stéfan van der Walt. A recurrent neural
network for classification of unevenly sampled variable stars. Nature Astronomy, 2, 02
2018. doi: 10.1038/s41550-017-0321-z.

[83] Mauricio Neira, Catalina Gómez, John F Suárez-Pérez, Diego A Gómez, Juan Pablo
Reyes, Marcela Hernández Hoyos, Pablo Arbeláez, and Jaime E Forero-Romero. Man-
tra: A machine-learning reference light-curve data set for astronomical transient event
recognition. The Astrophysical Journal Supplement Series, 250(1):11, 2020.

[84] J. Nordin, V. Brinnel, J. van Santen, M. Bulla, U. Feindt, A. Franckowiak, C. Frem-
ling, A. Gal-Yam, M. Giomi, M. Kowalski, A. Mahabal, N. Miranda, L. Rauch,
S. Reusch, M. Rigault, S. Schulze, J. Sollerman, R. Stein, O. Yaron, S. van Velzen,
and C. Ward. Transient processing and analysis using AMPEL: alert management,
photometry, and evaluation of light curves. , 631:A147, November 2019. doi:
10.1051/0004-6361/201935634.

[85] Isadora Nun, Pavlos Protopapas, Brandon Sim, Ming Zhu, Rahul Dave, Nicolas Castro,
and Karim Pichara. FATS: Feature Analysis for Time Series. arXiv e-prints, art.
arXiv:1506.00010, May 2015.

[86] Isadora Nun, Pavlos Protopapas, Brandon Sim, and Wesley Chen. Ensemble learning
method for outlier detection and its application to astronomical light curves. The
Astronomical Journal, 152(3):71, 2016.

[87] James E O’Donnell. Rnu-dependent optical and near-ultraviolet extinction. The As-
trophysical Journal, 422:158–163, 1994.

72

[88] Oscar Pimentel, Pablo A. Estévez, and Francisco Forster. Deep attention-based super-
novae classification of multi-band light-curves, 2022. URL https://arxiv.org/abs/
2201.08482.

[89] Maria V Pruzhinskaya, Konstantin L Malanchev, Matwey V Kornilov, Emille EO
Ishida, Florian Mondon, Alina A Volnova, and Vladimir S Korolev. Anomaly detection
in the open supernova catalog. Monthly Notices of the Royal Astronomical Society, 489
(3):3591–3608, 2019.

[90] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.06434.

[91] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hier-
archical text-conditional image generation with clip latents, 2022. URL https:
//arxiv.org/abs/2204.06125.

[92] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A
generalist agent, 2022. URL https://arxiv.org/abs/2205.06175.

[93] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1530–1538, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.
press/v37/rezende15.html.

[94] Danilo Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pages 1278–1286, 2014. URL http://jmlr.org/proceedings/papers/
v32/rezende14.html.

[95] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In
defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for
semi-supervised learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=-ODN6SbiUU.

[96] Diego Rodriguez-Mancini, Zheng Li, Camilo Valenzuela, Guillermo Cabrera-Vives, and
Francisco Förster. Toward fractal development of data processing-intensive artificial
intelligence systems. IEEE Software, 39(6):28–34, 2022.

[97] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models, 2021.

[98] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal

73

https://arxiv.org/abs/2201.08482
https://arxiv.org/abs/2201.08482
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2205.06175
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://jmlr.org/proceedings/papers/v32/rezende14.html
http://jmlr.org/proceedings/papers/v32/rezende14.html
https://openreview.net/forum?id=-ODN6SbiUU

representations by error propagation. In David E. Rumelhart and James L. Mccle-
lland, editors, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[99] Alexis Sánchez, Guillermo Cabrera, Pablo Huijse, and Francisco Förster. Amortized
variational inference for type ia supernova light curves. In Machine Learning and
the Physical Sciences Workshop, 35th Conference on Neural Information Processing
Systems (NeurIPS), 2021. URL https://ml4physicalsciences.github.io/2022/
files/NeurIPS_ML4PS_2022_16.pdf.

[100] P Sánchez-Sáez, Hernan Lira, Luis Martí, Nayat Sanchez-Pi, J Arredondo, FE Bauer,
A Bayo, G Cabrera-Vives, C Donoso-Oliva, PA Estévez, et al. Searching for changing-
state agns in massive data sets. i. applying deep learning and anomaly-detection tech-
niques to find agns with anomalous variability behaviors. The Astronomical Journal,
162(5):206, 2021.

[101] Azusa Sawada, Taiki Miyagawa, Akinori F. Ebihara, Shoji Yachida, and Toshinori
Hosoi. Convolutional neural networks for time-dependent classification of variable-
length time series, 2022. URL https://arxiv.org/abs/2207.03718.

[102] Azusa Sawada, Taiki Miyagawa, Akinori F. Ebihara, Shoji Yachida, and Toshinori
Hosoi. Convolutional neural networks for time-dependent classification of variable-
length time series, 2022. URL https://arxiv.org/abs/2207.03718.

[103] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2014.09.003. URL https://www.sciencedirect.com/science/article/pii/
S0893608014002135.

[104] Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for
irregularly sampled time series. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=r1efr3C9Ym.

[105] Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irreg-
ularly sampled time series. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=4c0J6lwQ4_.

[106] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Grae-
pel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836. doi:
10.1038/nature16961.

[107] K. W. Smith, R. D. Williams, D. R. Young, A. Ibsen, S. J. Smartt, A. Lawrence,
D. Morris, S. Voutsinas, and M. Nicholl. Lasair: The Transient Alert Broker for
LSST:UK. Research Notes of the American Astronomical Society, 3(1):26, January

74

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_16.pdf
https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_16.pdf
https://arxiv.org/abs/2207.03718
https://arxiv.org/abs/2207.03718
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://openreview.net/forum?id=r1efr3C9Ym
https://openreview.net/forum?id=4c0J6lwQ4_

2019. doi: 10.3847/2515-5172/ab020f.

[108] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D.
Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685,
2020.

[109] Suwon Suh and Seungjin Choi. Gaussian copula variational autoencoders for mixed
data. ArXiv, abs/1604.04960, 2016.

[110] P. Sánchez-Sáez, I. Reyes, C. Valenzuela, F. Förster, S. Eyheramendy, F. Elorrieta,
F. E. Bauer, G. Cabrera-Vives, P. A. Estévez, M. Catelan, G. Pignata, P. Huijse, D. De
Cicco, P. Arévalo, R. Carrasco-Davis, J. Abril, R. Kurtev, J. Borissova, J. Arredondo,
E. Castillo-Navarrete, D. Rodriguez, D. Ruz-Mieres, A. Moya, L. Sabatini-Gacitúa,
C. Sepúlveda-Cobo, and E. Camacho-Iñiguez. Alert classification for the alerce broker
system: The light curve classifier. The Astronomical Journal, 161(3):141, feb 2021. doi:
10.3847/1538-3881/abd5c1. URL https://dx.doi.org/10.3847/1538-3881/abd5c1.

[111] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. 2016. URL http://arxiv.org/abs/1609.03499. cite
arxiv:1609.03499.

[112] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu,
Oriol Vinyals, and Alex Graves. Conditional image generation with pixel-
cnn decoders. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
4790–4798. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6527-conditional-image-generation-with-pixelcnn-decoders.pdf.

[113] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-
trastive predictive coding. CoRR, abs/1807.03748, 2018.

[114] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[115] V Ashley Villar. Amortized bayesian inference for supernovae in the era of the vera
rubin observatory using normalizing flows. arXiv preprint arXiv:2211.04480, 2022.

[116] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[117] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael
Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Si-
mon Kornblith, and Ludwig Schmidt. Model soups: averaging weights of multiple

75

https://dx.doi.org/10.3847/1538-3881/abd5c1
http://arxiv.org/abs/1609.03499
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders.pdf
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

fine-tuned models improves accuracy without increasing inference time. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 23965–23998. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/wortsman22a.html.

[118] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[119] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and
Yonghui Wu. Coca: Contrastive captioners are image-text foundation models. ArXiv,
abs/2205.01917, 2022.

[120] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Con-
volutional neural networks for time series classification. Journal of Systems Engineering
and Electronics, 28(1):162–169, 2017. doi: 10.21629/JSEE.2017.01.18.

[121] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao
Kong. ibot: Image bert pre-training with online tokenizer. International Conference
on Learning Representations (ICLR), 2022.

[122] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho,
and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised an-
omaly detection. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJJLHbb0-.

76

https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=BJJLHbb0-

	Introduction
	Related Work
	Research problem
	Hypothesis
	Research question

	Objectives
	General Objective
	Specific Objectives

	Methodology
	Contributions
	Thesis Outline

	Theoretical Framework
	MVLIS's architectures
	Encoders and Decoders
	Interpolation models

	Transformers
	Self-supervision
	BERT
	Masked Vision Autoencoders

	Representation learning for variable length and irregular sampling time series
	Background
	Decoded distributions in representation learning
	Methodology
	Fair embedding comparison
	Modulating time information in embeddings
	Metrics for representation
	Implementation details
	New decoders

	Experiments
	Datasets
	Varying decoders
	Varying encoders
	Semi-supervised fine-tuning

	Conclusion

	ATAT: Astronomical Transformer for time series And Tabular data
	Introduction
	ELAsTiCC
	Methods
	ATAT
	Time Modulation
	Quantile Feature Tokenizer
	Transformers
	Mask temporal augmentation
	Implementation details

	Random forest baseline
	Balanced Hierarchical Random Forest
	Processed features details

	Results
	Comparison between ATAT and RF-based baseline
	Classification performance of ATAT variants
	Confusion matrices
	Computational time performance

	Conclusion

	Self-supervision in time series and tabular data
	Background of self-supervised methods
	Methodology

	Conclusions
	Bibliography

