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RESUMEN TESIS PARA OPTAR AL
GRADO DE MAGÍSTER EN CIENCIAS DE LA
INGENIERÍA, MENCIÓN MATEMÁTICAS APLICADAS
MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO
CIVIL MATEMÁTICO
POR: MATÍAS ANDRÉS AZÓCAR CARVAJAL
FECHA: 2023
PROFESORA GUÍA: MAYA STEIN

CONDICIONES DE GRADO MÍNIMO PARA PARTICIONES DE CICLOS
MONOCROMÁTICOS EN GRAFOS BIPARTITOS

Si coloreamos con r colores las aristas de un grafo con grado mínimo n/2 + 1200r log(n)
es posible construir una partición del conjunto de vértices, compuesta únicamente ciclos
monocromáticos, de tamaño O(r2). Este resultado, probado por Korándi, Lang, Letzter y
Pokrovskiy en [26], es el que motiva el estudio de esta tesis.

El resultado de que se presenta aquí es una adaptación de la condición de grado mínimo,
condicionado a que ahora el grafo estudiado sea bipartito balanceado. Más precisamente,
para todo η > 0, para todo grafo bipartito balanceado r-arista-coloreado suficientemente
grande con grado mínimo (1/4 + η)n, es posible asegurar la existencia de un vertex cover de
tamaño O(r2) compuesto únicamente por ciclos monocromáticos vértice disjuntos.

Para la demostración del resultado, se presenta el concepto de grafos birobustamente em-
parejables y usamos el lema de regularidad, en su versión de r colores. Posterior a esto,
utilizamos un método propuesto por Łuczak para cubrir casi todo el grafo. Finalizamos
utilizando el “blow-up lemma” para cubrir los vértices faltantes.
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MINIMUM DEGREE CONDITIONS FOR MONOCHROMATIC CYCLE
PARTITIONING IN BIPARTITE GRAPHS

If we colour with r colours the edges of a graph with minimum degree n/2 + 1200r log(n)
it is possible to construct a partition of the vertex set, which only contains monochromatic
cycles, of size O(r2). This result, proved by Korándi, Lang, Letzter, and Pokrovskiy in [26],
is the motivation for the study of this thesis.

The result presented here is an adaptation of the minimum degree condition, conditional
on the fact that now the studied graph is balanced bipartite. More precisely, for every η > 0
and for any sufficiently large balanced bipartite r-edge-coloured graph with minimum degree
(1/4 + η)n, it is possible to ensure the existence of a vertex cover of size O(r2) composed
only of vertex-disjoint monochromatic cycles.

For the proof of the result, we present the concept of birobustly matchable graphs and use
the regularity lemma, in its r-colour version. Subsequently, we use a method proposed by
Łuczak to cover almost the whole graph. We finish by using the “blow-up lemma” to cover
the remaining vertices.
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Education never ends, Watson. It is a series
of lessons, with the greatest for the last.

Sherlock Holmes
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Chapter 1

Introduction

This chapter will introduce, in section 1.1, the previous studies done on vertex covers
in monochromatic pieces as a historical context for this thesis, going through different
approaches that have led to different results and conjectures. Finally, in section 1.2 we
conclude with an overview of the proof of the main theorem. For the sake of simplicity, every
time we mention a 2-edge-colouring without any further details, we are going to assume the
two colours are red and blue.

1.1. Vertex covers in monochromatic pieces
The study of vertex covers in monochromatic pieces has been a very popular topic in extremal
graph theory through the years. Going back to 1967, Gerencsér and Gyárfás [13] proved that
the vertex set of any 2-edge-coloured complete graph Kn can be partitioned into a red and a
blue path. This arises as the first approach to the study of path covering in r-edge-coloured
graphs.

Roughly ten years later, in 1979, Lehel conjectured that the vertex set of any 2-edge-
coloured complete graph Kn can be partitioned into a red and a blue cycle; this conjecture
was first cited in [4]. Here we admit an isolated vertex and K2 as cycles, allowing some par-
ticular graphs to have this decomposition. These cycles will be called “degenerated cycles”.
Gyárfás [21] proved in 1983 a slightly weaker statement which was that the vertex set of
any 2-edge-coloured complete graph can be covered by a red and a blue cycle such that they
intersect in at most one vertex. Please note that covering the vertex set means to cover the
vertices, but not necessarily the edges.

It was not until several years after Gyárfás had presented his proof that Lehel’s conjecture
could be fully demonstrated. First, in 1998, Łuczak, Rödl, and Szemerédi [40] proved Lehel’s
conjecture for large enough graphs using the regularity lemma. Allen [1], in 2008, improved
the result of Łuczak, Rödl, and Szemerédi by reducing the order required in [40] for the
graphs. It is noteworthy that he did not use the regularity lemma. Finally in 2010, Bessy
and Thomassé [6] fully proved Lehel’s conjecture using an inductive proof.

Lehel’s conjecture can be understood as a particular case of a more general conjecture
proposed by Erdős, Gyárfás, and Pyber [11] in 1991. They conjectured that any r-edge-
coloured complete graph can be partitioned into at most r monochromatic cycles. They also
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showed there exist r-edge-coloured complete graphs that can only be covered by at least r
monochromatic paths (therefore, the number of cycles needed is also r). An example pro-
vided by them is the following:
Consider a complete graph whose vertices are partitioned into sets Ai where |Ai| = 2i − 1 for
i = 1, 2, . . . , r. The edge xy gets colour min{i : Ai ∩ {x, y} ≠ ∅}. Then colour 1 must be used
to cover A1 and if colour i is not used for some 1 < i ≤ r then paths of colour 1, 2, . . . , i − 1
can cover at most ∑i−1

i=1 2j = 2i − 2 < |Ai| vertices of Ai. Since edges of colour j > i cannot
cover any vertex of Ai, some vertex of Ai remains uncovered. Thus all the r colours are
needed in a vertex cover formed by monochromatic paths.

The r = 3 case of the conjecture of Erdős, Gyárfás, and Pyber [11] was solved asymp-
totically by Gyárfás, Ruszinkó, Sárközy, and Szemerédi [20] in 2011. Unfortunately, the
previously mentioned conjecture was proven false by Pokrovskiy [30] in 2014 for all r ≥ 3.
He presented a counterexample in which r vertex disjoint monochromatic cycles can cover,
at most, all vertices except one. Pokrovskiy [30] also conjectured that for each r there is a
constant cr, such that in every r-edge-coloured complete graph Kn, there are r vertex-disjoint
monochromatic cycles covering n − cr vertices in Kn. For r = 3 Pokrovskiy [30] proved that
c3 ≤ 43000 and Letzter [28], independently, proved that c3 ≤ 60. Pokrovskiy [31] conjectured
c3 = 1.

The best known general upper bound for the minimum number of monochromatic cycles
required to partition any r-edge-coloured complete graph is 100r log(r), established by Gyár-
fás, Ruszinkó, Sárközy, and Szemerédi [19] in 2006. Therefore, the gap between the upper
and lower bound for the minimum number of cycles needed to partition the vertex set of an
r-edge-coloured complete graph remains a factor of log r.

There exist results for other host structures such as hypergraphs [16, 17, 35] and infinite
graphs [10, 17, 33, 38]. Also, there are results using other subgraphs to cover such as graphs
of bounded degree [14, 36] and connected components [11, 12, 24].

In 1997, Gyárfás, Jagota, and Schelp [18] took another direction and proved the following:
Assuming n ≥ 5 and that G is a graph obtained from Kn by deleting at most m = ⌊n/2⌋
edges, then for every 2-edge-colouring of G, V (G) can be partitioned into a red and a blue
path. This was one of the first approaches of monochromatic covering with a non-complete
host graph.

There exist more specific results of monochromatic cycle (and path) partitioning for few
colours on non-complete host graphs. For two colours, in 2015, Schaudt and Stein [37] proved
that any 2-edge-coloured complete k-partite graph G on n vertices, with k ≥ 3 such that the
largest partition class of G contains at most n/2 vertices, can be covered with two vertex-
disjoint monochromatic paths of distinct colours. Moreover, the same authors proved in [37]
that, under the same conditions, if the graph G is large enough, then it can be covered with
14 vertex-disjoint monochromatic cycles. For three colours, Lang, Schaudt, and Stein [27]
proved in 2017 that every 3-edge-coloured complete bipartite graph Kn,n contains 5 vertex-
disjoint monochromatic cycles such that they cover all but o(n) vertices. The same authors
in [27] proved that there exists n0 ∈ N such that for every complete bipartite graph Kn,n

with n ≥ n0 there exists a partition of V (Kn,n) into 18 monochromatic cycles.
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Monochromatic cycle partitioning for r-edge-coloured complete bipartite graphs has also
been studied to a large extent. In 1989, Gyárfás [15] proved that for any r-edge-coloured
balanced complete bipartite graph Kn,n, the minimum number of monochromatic paths
needed to cover its vertex set is bounded by a function of r. Moreover, in 1997, Haxell
[23] proved a stronger result. For any r-edge-coloured Kn,n the number of monochromatic
cycles needed to partition its vertex set is upper bounded by a function of r. Furthermore,
for large r the needed number of cycles to partition the vertex set of any r-edge-coloured Kn,n

can be upper bounded by c(r log(r))2. Peng, Rödl, and Ruciński [29] showed a better upper
bound, lowering the number of needed cycles to O(r2 log r). This result of Peng, Rödl, and
Ruciński was improved in 2018 by Stein and Lang [27] who proved that 4r2 monochromatic
cycles suffice to partition the vertex set of a large enough bipartite graph.

Other parameters have been studied to bound the number of monochromatic cycles needed
to partition the vertex set of a graph. In 1963, Pósa [32] proved that the vertex set of every
graph G can be partitioned into at most α(G) cycles where α(G) denotes the independence
number of G. In 2010, Sárközy [34] showed that the vertex set of any r-edge-coloured graph
G can be partitioned into at most 25(αr)2 log(αr) monochromatic cycles and conjectured this
number can be lowered to α(G)r. The counterexample provided by Pokrovskiy mentioned
above disproves this conjecture. Nevertheless, the r = 2 case of this conjecture is true in an
asymptotic sense, as Balogh, Barát, Gerbner, Gyárfás, and Sárközy [5] showed in 2014.

Minimum degree is another parameter that has been studied to bound the cycle partition
number. In 1952, Dirac [9] proved a classic result. For every graph G with n ≥ 3 vertices, if
δ(G) ≥ n/2, then there exists a Hamiltonian cycle, which is a cycle that contains every vertex
in V (G). This can be considered a monochromatic cycle partition in a 1-edge-coloured graph.

Following with the study of minimum degree conditions, in 2014, Balogh, Barát, Gerbner,
Gyárfás, and Sárközy [5] conjectured the following: For any 2-edge-colouring of the edges of
any n-vertex graph G of minimum degree 3n/4, there are two distinctly coloured monochro-
matic cycles which together partition the vertices of G. If this result is true, it would be tight.
In support of their conjecture, they proved an approximate version in which G has minimum
degree 3n/4 + o(n) and the cycles are allowed to miss o(n) vertices. In 2017, DeBiasio and
Nelsen [8] showed that under this (stronger) degree condition a complete partition is possible.
Finally, in 2019, Letzter [28] resolved the full conjecture for all sufficiently large n.

After these advances, Pokrovskiy [31] conjectured that analogous results are true for graphs
of lower minimum degree. In particular, he conjectured that for a 2-edge-coloured graph G
with δ(G) ≥ 2n/3 a partition into 3 monochromatic cycles is possible. Similarly, he also
conjectured that for a 2-edge-coloured graph G with δ(G) ≥ n/2 a partition into 4 monochro-
matic cycles is possible. In 2022, Allen, Böttcher, Lang, Skokan, and Stein [2] proved the
first of these conjectures approximately (using δ(G) ≥ (2/3 + ε)n).

In 2021, Korándi, Lang, Letzter, and Pokrovskiy [26] proved the following theorem.

Theorem 1.1 (Theorem 1.2 in [26]) For r ≥ 2, let n be sufficiently large. Then any r-edge-
coloured graph G on n vertices with δ(G) ≥ n/2 + 1200r log(n) admits a partition into 107r2
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monochromatic cycles.

They also provide a construction which shows that the number of cycles of Theorem 1.1
is essentially best possible. Notice that this minimum degree condition allows us to find a
Hamiltonian cycle in G, so for r = 1, we can find a monochromatic cycle partition of one cycle.

The main contribution made by Korándi, Lang, Letzter and Pokrovskiy was providing a
minimum degree threshold such that, for graphs that satisfy such threshold, there exists a
monochromatic cycle partition of size O(r2). Such threshold cannot be reduced too much
since there are graphs with slightly less degree than n/2 + 1200r log(n) that cannot be parti-
tioned into O(r2) monochromatic cycles. This last fact is supported by the next proposition
from [26].

Proposition 1.2 (Proposition 1.1 in [26]) There exists n0 such that there exists a 2-edge-
coloured graph G on n ≥ n0 vertices with δ(G) ≥ n/2+log(n)/(16 log(log(n))) whose vertices
cannot be partitioned into fewer than log(n)/(32 log(log(n))) monochromatic cycles.

The proof of Proposition 1.2 presented in [26] is done through the construction of a graph
that cannot be covered by less than log(n)/(32 log(log(n))). Unfortunately, Proposition 1.2
cannot be used to bound the minimum degree needed in bipartite graphs since the construc-
tion involved is not bipartite.

There exists an interesting result on minimum degree conditions for cycle partitioning
in (uncoloured) balanced bipartite graphs. Define an n-ladder to be the balanced bipar-
tite graph Ln with vertex sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} such that
(ai, bj) ∈ E(Ln) if and only if |i − j| ≤ 1. So Ln consists of two vertex disjoint n-paths
a1b2a3b4 . . . and b1a2b3a4 . . . together with rungs formed by the matching a1b1, . . . , anbn. In
2002, Czygrinow and Kierstead [7] proved that for sufficiently large n, every balanced bipar-
tite graph G = (U, V ) with |U | = |V | = n and δ(G) ≥ n/2 + 1 contains a spanning ladder.
This implies the existence of a Hamiltonian cycle, a cycle partition of size 1.

Following the work carried out in [26], the main contribution of this thesis is that we
establish minimum degree conditions to bound the smallest number of monochromatic cycles
needed to partition the vertex set of an r-edge-coloured balanced bipartite graph given that
the vertex set of the graph is large enough. This is summarized in the next theorem.

Theorem 1.3 For each r ≥ 2 and each η > 0, there exists n0 ∈ N such that for every n ≥ n0
any r-edge-coloured balanced bipartite graph G on n vertices with δ(G) ≥ (1/4 + η)n admits
a partition into 107r2 monochromatic cycles.

The minimum degree bound of Theorem 1.3 is not far from the very best. The following
example shows that, given a graph G such that its minimum degree is slightly less than n/4
it is not possible to partition the vertex set V (G) into f(r) monochromatic cycles where f is
any increasing function.

We construct a balanced bipartite graph G on n vertices with parts A and B as follows.
Consider two copies of K(1/4−η)n,(1/4+η)n, G1 = {C1, D1} and G2 = {C2, D2} such that |C1| =
|C2| = (1/4−η)n and |D1| = |D2| = (1/4+η)n. Then, we define A := C1 ∪D2, B := D1 ∪C2

4



and E(G) = E(G1) ∪ E(G2). It is clear that G is a balanced bipartite graph and δ(G) =
(1/4 − η)n. We colour E(G) with only one colour (say, red) as in Figure 1.1.

A B

Figure 1.1: Diagram of graph with δ(G) = (1/4 − η)n which cannot be
covered with less than O(n) monochromatic cycles.

The dashed lines represent the separation between the copies of K(1/4−η)n,(1/4+η)n. We
know that cycles will cover the same number of vertices in A and B so for each of the copies
of K(1/4−η)n,(1/4+η)n there will be 2ηn uncovered vertices. We have to add them as isolated
vertices to the cycle partition, resulting in at least O(n) monochromatic cycles.

The following corollary presents an extension to Theorem 1.3 in which we can partition the
vertex set of slightly unbalanced r-edge-coloured bipartite graphs into O(r2) monochromatic
cycles.

Corollary 1.4 For each r ≥ 2 and each η > 0, there exists n0 ∈ N such that for every
n ≥ n0 any r-edge-coloured bipartite graph G = {A, B} on n vertices with δ(G) ≥ (1/4 + η)n
and max{|A|, |B|} − min{|A|, |B|} ∈ O(r2) admits a partition in 107r2 + max{|A|, |B|} −
min{|A|, |B|} monochromatic cycles.

We defer the proof of Corollary 1.4 to Annex.

1.2. Overview of the proof
Following very closely the proof of Theorem 1.1 by Korándi, Lang, Letzter, and Pokrovskiy in
[26], we start with a graph G to which we apply a modified version of Szemerédi’s regularity
lemma [25] to obtain a regular partition {V0, V1, . . . , Vm} of the vertices of G, and define
the corresponding reduced graph G. Then, we choose O(r2) monochromatic components
such that its union H contains a perfect matching M. The graph H will contain a perfect
matching even after removing some vertices. This property will be introduced as being “biro-
bustly matchable”.

Using a method proposed by Łuczak [39] we turn the matching M into O(r2) disjoint
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monochromatic cycles CH covering almost all of G. The uncovered vertices will be added
to CH using the blow-up lemma, finding monochromatic spanning paths in the regular pairs
associated to the matching M. To do this we have to prepare the graph. First, we cover the
vertices that do not have regular behaviour with O(r2) cycles, Cb. Then we want to extend
the cycles of CH to the remaining vertices. The remaining vertices in the clusters might be
unbalanced after removing the vertices that are already covered. Thus, we extend CH at
the right location by finding space to allocate the extension of the cycles. This is possible
because of the birobustly matchable property mentioned earlier.

We end the proof by applying the blow-up lemma to add the remaining vertices to CH.
We end up with a monochromatic cycle partition CH ∪Cb that contains O(r2) cycles. Finally,
we prove a lemma that joins the two concepts, birobustly matchable graphs and balanced
bipartite graphs with large minimum degree, and allows us to conclude the result.
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Chapter 2

Notation and previous results

In this chapter, we establish the foundation for our investigation by introducing the essential
notation, definitions, and previous results that will serve as the framework for our subsequent
analysis.

2.1. Initial definitions
A graph is a pair G = (V, E) of sets such that E ⊆ [V ]2; thus, the elements of E are 2-element
subsets of V . We call the elements in V vertices of G and the elements in E edges of the
graph G.

Let G = (V, E) be a (non-empty) graph. Two vertices x, y of G are adjacent, or neigh-
bours, if {x, y} is an edge of G. The set of neighbours (or neighbourhood) of a vertex v in G
is denoted by NG(v). The degree of a vertex v in the graph G is defined as degG(v) := |NG(v)|.

The neighbourhood of a set S in the graph G is defined as the set NG(S) := ⋃
v∈S NG(v).

The degree of a vertex v to a set W in a graph G is defined as degG(v, W ) := |NG(v) ∩ W |

In the last definitions, we drop the index G, leaving just N(v), deg(v), N(S) and deg(v, W )
if it is clear the underlying graph we are studying.

2.2. Matching theorem
Matchings are a keystone in the construction of large monochromatic cycles in this work.
Thus, we present a well-known result that we use to construct matchings in graphs.

Theorem 2.1 (Hall [22]) Let H be a bipartite graph with bipartition {X, Y }. Then there
exists a matching that covers X if and only if for each subset S of X it holds that |S| ≤ |N(S)|.

2.3. Regularity
A crucial tool in extremal graph theory, also used in this thesis, is regularity. Regularity (and
more specifically, Szemerédi’s regularity lemma) is a cornerstone of extremal graph theory,
allowing any graph to be approximated by random graphs. This “random” behaviour is really
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powerful in the sense that reasonable properties with the random framework help prove the
result in a more general one. Here we introduce the necessary concepts to understand and
work with regularity.

Given a graph G and vertex sets V, W ⊆ V (G) such that V ∩W = ∅ we define the density of
the pair (V, W ) by d(V, W ) = |E(G)|

|V ||W | . The pair (V, W ) is called ε-regular, if every pair of sub-
sets X ⊆ V and Y ⊆ W with |X| ≥ ε|V | and |Y | ≥ ε|W | satisfy that |d(V, W )−d(X, Y )| ≤ ε.

We say that a vertex v ∈ V has typical degree in (V, W ), if deg(v, W ) ≥ (d(V, W )− ε)|W |.
Notice that all but at most ε|V | vertices in V have typical degree in (V, W ).

Now we present a different version of Szemerédi’s regularity lemma. This lemma is a
cornerstone result in extremal combinatorics and is widely used to have a rough idea of how
a large graph should look like.

Lemma 2.2 (Szemerédi’s Regularity Lemma, degree form with r colors and a prepartition
[25]) For every ε > 0 and integers r, ℓ, there is an M = M(ε, r, ℓ) such that the following
holds. Let G be a graph on n ≥ 1/ε vertices whose edges are coloured with r colours, let
{W1, . . . , Wℓ′} be an equipartition of V (G) for some 1 ≤ ℓ′ ≤ ℓ, and let d > 0. Then there is
a partition {V0, . . . , Vm} of V (G) and a subgraph G′ of G with vertex set V (G) \ V0 such that
the following conditions hold.

a) 1/ε ≤ m ≤ M ,

b) |V0| ≤ εn and |V1| = . . . = |Vm| ≤ εn,

c) for every i ∈ [m], there is j ∈ [ℓ′] with Vi ⊆ Wj,

d) for every j ∈ [ℓ′], there are equally many i ∈ [m] with Vi ⊆ Wj,

e) degG′(v) ≥ degG(v) − (rd + ε)n for each v ∈ V (G) \ V0,

f) G′[Vi] contains no edges for i ∈ [m], and

g) all pairs (Vi, Vj) are ε-regular in G′ for i ̸= j ∈ [m] and have in each colour either
density 0 or density at least d.

Let G be an r-edge-coloured graph with a partition {V0, . . . , Vm} obtained from Lemma 2.2
with parameters ε and d. We define the (ε, d)-reduced graph G with respect to the partition
{V0, . . . , Vm} to be a graph with vertex set V (G) = {x1, . . . , xm} where two vertices xi and
xj are connected by an edge of colour c, if (Vi, Vj) is an ε-regular pair of density at least d in
colour c (if this holds for multiple colours, we choose one of them arbitrarily). Note that if
G is balanced ℓ-partite with partition {W1, . . . , Wℓ}, then G is a balanced ℓ-partite graph as
well. It is often convenient to refer to a cluster Vi via its corresponding vertex in the reduced
graph, i.e. Vi = V (xi).

Proposition 2.3 (Degree and edges variation in reduced graphs. Proposition 3.3 in [26])
Let G be an r-edge-coloured graph and G be an (ε, d)-reduced graph obtained from Lemma
2.2. Then the following properties hold:

a) If degG(v) ≥ cn for some v ∈ Vi, i ∈ [m], then degG(xi) ≥ (c − rd − ε)m.
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b) If degG(v) ≥ cn for all but ηn vertices v ∈ V (G), then degG(x) ≥ (c − rd − ε)m for all
but (η + ε)m vertices x ∈ V (G).

c) If
⋃

xi∈X

Vi induces at least cn2 edges in G for some X ⊆ V (G), then X induces at least

(c − rd − ε)m2 edges.

2.4. Robustly matchable graphs and matching lem-
mas

As we mentioned, Korándi, Lang, Letzter, and Pokrovskiy worked on a more general frame-
work than the one presented in this thesis. Here we mention previous definitions and results
from [26] to reference them when needed.

Definition 2.4 (Perfect b-matching. Definition 3.5 in [26]) Let b : V (G) → N be a func-
tion. A perfect b-matching of G is a non-negative function ω : E(G) → N, such that∑

u∈N(v) ω(uv) = b(v) for every vertex v ∈ V (G). When b is a constant function equal
to τ , we call ω a perfect τ -matching.

Lemma 2.5 (Lemma 3.8 in [26]) Every (µ, ν)-robustly 2-matchable graph H with µ ≤ ν <
1/1000 contains a perfect 2-matching.

Lemma 2.6 (Lemma 3.9 in [26]) Suppose H is a (µ, ν)-robustly 2-matchable graph on n
vertices and let ε > 0. Suppose H ′ is a spanning subgraph of H such that degH′(v) ≥
degH(v)−εn for every vertex v. Then H ′ is a (µ+ε, ν −ε)-robustly 2-matchable graph whose
type coincides with that of H.

Lemma 2.7 (Lemma 3.10 in [26]) Suppose H is an r-edge-coloured (µ, ν)-robustly 2-matchable
graph on n vertices. Let H be the (ε, d)-reduced graph of H obtained from Lemma 2.2 with
some parameters ε, d > 0 and ℓ = 2 (and the corresponding bipartition if H is a robustly
2-matchable of type 2 graph). Then H is (µ + rd + 2ε, ν − rd − 2ε)-robustly 2-matchable.
Moreover, the type of H coincides with the type of H.

Lemma 2.8 (Lemma 3.11 in [26]) Let t, γ be constants, and let H be a (µ, ν)-robustly 2-
matchable graph on m vertices such that m/t ≤ γ ≤ µ ≤ ν/4 < 1/4000. Then H has a
perfect b-matching for every function b : V (H) → N that satisfies

a) (1 − γ)t ≤ b(x) ≤ t for every x ∈ V (H),

b) ∑
x∈V (Ψ) b(x) is even for every component Ψ of H, and

c) if H is of type 2 with bipartition {X, Y } then ∑
x∈X b(x) = ∑

y∈Y b(y).

2.5. Auxiliary lemmas for paths and cycles
Finding long paths or paths that behave in a particular way can be very difficult. Here we
present some results that will be helpful when we need to obtain some specific kind of paths,
cycles or vertex sets.
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Lemma 2.9 (Long paths in regular pairs. Lemma 3.1 in [26]) For every d ∈ (0, 1), there
exist ε > 0 and n0 ∈ N such that for every n ≥ n0 the following statement holds. Suppose
that (V1, V2) is an ε-regular pair of density d = d(V1, V2) with |V1| = |V2| = n in a graph G.
For i ∈ {1, 2}, let vi ∈ Vi and let Ui ⊆ Vi be a set of size at least n/6 which contains at least
2εn neighbours of v3−i.
Then for every 2 ≤ k ≤ (1 − 24ε) · min{|U1|, |U2|}, there is a v1-v2-path of order 2k in
G[U1 ∪ {v1}, U2 ∪ {v2}].

If, aditionally, δ(G[U1, U2]) ≥ 5εn, then G[U1 ∪ {v1}, U2 ∪ {v2}] contains a v1-v2-path of
order 2k for every k such that 2 ≤ k ≤ min{|U1 ∪ {v1}|, |U2 ∪ {v2}|}.

Lemma 2.10 (Set-avoiding paths. Lemma 3.4 in [26]) For every d ∈ (0, 1), there exist ε > 0
and n0 ∈ N such that for every n ≥ n0 the following statement holds. Let G = (V, E) be an r-
edge-coloured graph on n vertices with a partition {V0, . . . , Vm} and an (ε, d)-reduced graph G
obtained from Lemma 2.2. Suppose that W ⊆ V is a vertex set such that |W ∩Vi| ≤ (d/2)·|Vi|
for every i ∈ [m]. Let xixj, xi′xj′ ∈ E(G) be two edges in a component of colour c.

Then for any two vertices v ∈ Vi and w ∈ Vj′ of typical degree in colour c in (Vi, Vj) and
(Vi′ , Vj′), G contains a c-coloured v-w-path P of order at most 2m that avoids all vertices of
W .

Lemma 2.11 (Erdős, Gyárfás & Pyber [11]) Let H be an r-coloured bipartite graph with
bipartition {A, B}. Suppose that |A| ≥ 1003r3|B| and that every vertex in B has at least
|A|/100 neighbours in A. Then there is a set of at most 100r2 monochromatic pairwise
vertex-disjoint proper cycles and edges that together cover all vertices of B.

2.6. Graphs and probabilities
The probabilistic method allows us to consider the existence of certain kind of graphs (or
subgraphs) with specific conditions without explicitly finding them (for further references,
see [3]). Here we work with a result that will be recurrent in the next chapter to guarantee
the existence of a set of vertices with good properties.

Proposition 2.12 (Proposition 3.14 in [26]) Let G be a graph on n vertices with an (ε, d)-
regular partition {V0, . . . , Vm} as provided by Lemma 2.2. Also, let p be a positive parameter,
and let B ⊆ V = V (G) be a vertex set satisfying V0 ⊆ B and |B ∩ Vi| ≤ 10p|Vi| for every
i ∈ [m]. If m log(n)/

√
n < p < 1/100 and ε < 1/10, then there is a set A ⊆ V \ B with the

following properties.

a) |A| ≥ (p/2)n,

b) |A ∩ Vi| ≤ 2p|Vi| for every i ∈ [m],

c) deg(v, A ∩ Vi) ≥ (p/2) deg(v, Vi) for every v ∈ V and i ∈ [m] with deg(v, Vi) > 30p|Vi|,

d) deg(v, A) ≥ |A|/100 for every vertex v ∈ V with deg(v, V \ B) > n/40.
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2.7. Main covering theorems
Now, we mention the main results obtained in [26] to highlight them and also to compare
them in the next section with the results presented in this thesis.

Theorem 2.13 (Theorem 4.1 in [26]) For every r ∈ N, there exists n0 ∈ N and µ > 0 such
that for every n ≥ n0 the following statement holds. Let G be an r-edge-coloured graph on
n vertices with minimum degree δ(G) ≥ n/2 + 1200r log n. Then the vertices of G can be
partitioned into at most 400r + 2 monochromatic cycles and a (µ, 20µ)-robustly 2-matchable
graph H on at least n/2 vertices.

Theorem 2.14 (Theorem 4.2 in [26]) For every r ∈ N, there exists n0 ∈ N and µ > 0, ν > 0
such that, for every n ≥ n0, every r-edge-coloured (µ, ν)-robustly 2-matchable graph on n
vertices can be partitioned into (1/µ + 200)r2 cycles.

2.8. Similarities and differences
We now present the comparison of the work presented in this thesis with their analogous
results in [26].

We start by changing the initial definition of what is the main tool for partitioning a graph
into monochromatic cycles. In the case of [26], this is the definition of robustly 2-matchable
graph.

Definition 2.15 ((µ, ν)-robustly 2-matchable graphs. Definition 3.7 in [26]) A graph H on
n vertices is (µ, ν)-robustly 2-matchable if any of the following two conditions holds.

1. δ(H) ≥ (1/2 − µ)n and every set of (1/2 − ν)n vertices spans at least νn2 edges.

2. H is a balanced bipartite graph with parts A, B (of size n/2) such that

• δ(H) ≥ (1/32 − µ)n, and
• all but at most (1/64 + µ)n vertices in H have degree at least (1/3 − µ)n.

If condition 1 is satisfied, then the graph is said to be (µ, ν)-robustly 2-matchable of type 1.
Likewise, if condition 2 is satisfied, the graph is said to be (µ, ν)-robustly 2-matchable of type
2.

We replace this definition with our own definition of what is a (µ, ν)-birobustly matchable
graph. This is presented as Definition 3.1.

We adapt the conditions of a (µ, ν)-robustly 2-matchable graph of type 1 to conditions
that adequately apply to a balanced bipartite graph. In particular, this means setting the
minimum degree of the graph to almost half of the degree that a complete balanced bipartite
graph would have, just as in Definition 2.15, δ(G) ≥ (1/2 − µ)n, in the (µ, ν)-birobustly
matchable graph definition, we set δ(G) ≥ (1/4 − µ/2)n.
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We also adapt that “every set of (1/2 − ν)n vertices spans at least νn2 edges” from Defi-
nition 2.15 to make sense in the bipartite graph. This is done by adding the requirement to
(µ, ν)-birobustly matchable graphs that any set of vertices that is large enough (we keep the
(1/2 − ν)n threshold) and has

√
νn vertices in each part spans at least νn2 edges. We will

refer to this condition as the edge spanning condition throughout this thesis.

We mostly compare the proofs of the results of this thesis with their analogues from [26]
on (µ, ν)-robustly 2-matchable graphs of type 1 due to the fact that we adapted that type of
graphs to define (µ, ν)-birobustly matchable graphs.

Following, there is the presentation of Lemma 3.2, an analogue to Lemma 2.5 for (µ, ν)-
birobustly matchable graphs. The objective of these two Lemmas is, under the assumption
that µ ≤ ν < 1/1000, to find a perfect 2-matching in every (µ, ν)-robustly 2-matchable
graph, and a perfect matching in every (µ, ν)-birobustly matchable graph for Lemma 2.5 and
Lemma 3.2, respectively.

The proof of Lemma 2.5 presented in [26] applies Theorem 2.1 to any (µ, ν)-robustly 2-
matchable graph H of type 1 (with µ ≤ ν < 1/1000) remembering that, by Definition 2.5, for
any independent set S, |S| ≤ (1/2 − ν)n ≤ (1/2 − µ)n ≤ δ(G) ≤ |N(S)|. In our case Lemma
3.2 is proved by contradiction. Given a (µ, ν)-birobustly matchable graph H = {X, Y },
we assume that there exists a set S ⊆ X which prevents the use of Theorem 2.1. Then,
since H has large minimum degree, after some computation, we conclude that the existence
of S contradicts the edge spanning condition for H to be a (µ, ν)-birobustly matchable graph.

Lemma 3.3 is the analogue of Lemma 2.7 in [26]. As before, we consider a (µ, ν)-
birobustly matchable graph H instead of a (µ, ν)-robustly 2-matchable graph. We show that
if H = {X , Y} is the (ε, d)-reduced graph of an r-edge-coloured (µ, ν)-birobustly matchable
graph H, with |H| = m, then H is a (µ+2rd+2ε, ν −rd−ε)-birobustly matchable graph. We
follow the same strategy as in [26], using Proposition 2.3, but adapting some calculations. By
Proposition 2.3a) δ(H) ≥ (1/4−µ)m implies that δ(H) ≥ (1/4−µ/2−rd−ε)m and by Propo-
sition 2.3c), for every set Z ⊆ V (H) such that |Z| ≥ (1/2−ν)m, |Z∩X |, |Z∩Y| ≥

√
νm spans

at least (ν −rd−ε)m2 edges. In Lemma 2.7 the minimum degree of H is (1/2−µ−rd−ε)m,
and the condition of set Z is only that |Z| ≥ (1/2 − ν)m to span (ν − rd − ε)m2 edges.

For Lemma 3.4, our version of Lemma 2.8, the main objective is to prove, under some
assumptions, the existence of a perfect b-matching. In Lemma 2.8, the perfect b-matching
is found in a (µ, ν)-robustly 2-matchable graph, whereas in Lemma 3.4 we find a perfect
b-matching in a (µ, ν)-birobustly matchable graph.

We start in the same way as in the proof of Lemma 2.8 but we elaborate more in the details
of the proof. Given a (µ, ν)-birobustly matchable graph H, the second condition of Lemma
3.4 indicates that ∑

x∈V (Ψ) b(x) is even for every component Ψ of the graph H. Therefore,
we can associate each vertex with odd b(x) with another vertex with odd b(x). For each pair
of these vertices, we choose one path whose endpoints are the two associated vertices. The
family of these paths is defined as P . Then, we define ω0(e) as the number of paths in P
that contain e, and b0(x) as ∑

y∈N(x) ω0(xy). Then, b0(x) is odd if and only if b(x) is odd.
Defining b1(x) = b(x) − b0(x) we get that b1(x) is always even.
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Using the third condition of Lemma 3.4, we obtain that ∑
x∈X b1(x) = ∑

y∈Y b1(y). In
our proof, we transform our graph H into H ′, where each vertex v ∈ H is replaced by a
cluster W (x) of b1(v) vertices (instead of b1(v)/2, like it is done in [26]), and for each edge
uv ∈ E(H), the graph H ′[W (u), W (v)] is complete. The fact that ∑

x∈X b1(x) = ∑
y∈Y b1(y)

shows that H ′ is a balanced bipartite graph. We obtain that δ(H ′) ≥ (1/4 − γ/2 − µ/2)|H ′|
instead of the degree in the proof of Lemma 2.8, where δ(H ′) ≥ (1/4 − γ − µ)|H ′|. The
remaining step is done using a different strategy. We count the vertices in each cluster to
contradict the existence of a set that blocks the use of Lemma 2.1. In [26], instead of count-
ing the vertices of each cluster, the size of independent sets is bounded, so Lemma 2.1 can
be applied. In any case, this allows us to find a perfect matching in H ′ which implies the
existence of a perfect b-matching in H.

We define the conditions (3.7) in a very similar way as in [26], but we choose d = µ/r so
that we can set the value and determine the constants involving d.

The next result in this thesis is Theorem 3.5. This is the analogue to Theorem 2.14 in
[26]. We start with the exact same opening but using a graph G that is birobustly matchable
instead of robustly 2-matchable. We apply Lemma 3.3 to obtain the corresponding (ε, d)-
reduced graph G and we define H as the subgraph of G that consists of all the edges contained
in monochromatic components of order at least mµ/r. Then we present the proof of Claim
3.6. This claim has an analogue role to Claim 2.6 has in this proof. We present the proof of
this Claim within the proof of Theorem 3.5 because it is easier to work with the graph being
already defined by (3.7) than with a graph that satisfies fewer hypotheses like it is done in [26].

The proof of Claim 3.6 consists in verifying the two conditions of Definition 3.1 for H to
be a (6µ, ν − 5µ)-birobustly matchable graph. Here, H is a graph such that |H| = m, and
degH(v) ≥ degG(v) − µm, where G is a (4µ, ν − 3µ) birobustly matchable graph. This Claim
has the same role as Lemma 2.6. The minimum degree condition is verified by a simple cal-
culation, just as in the proof of Lemma 2.6 in [26]. The proof of the edge spanning condition
is more technical than its counterpart. In [26], the result follows from noticing that if each
vertex loses at most εn neighbours, for n vertices, the amount of lost edges is at most εn2,
concluding their result. In our case, we separate two cases. Because of how we defined the
edge spanning condition in Definition 3.1 we have to verify that, for any set Z ⊆ H such
that |Z| ≥ (1/2 − (ν − 5µ))m and |Z ∩ X |, |Z ∩ Y| ≥ (

√
ν − 5µ)m, |E[Z]| ≥ (ν − 5µ)m2. We

study the cases when relying on the good properties (3.8) and (3.9) that H has because of
how it is defined and the relation between the parameters by (3.7).

We follow the same structure, find a perfect matching M (instead of a 2-perfect matching)
contained in H, and then we prove Claim 3.7. This proof is almost identical to the proof
of Claim 4.3 in [26] (using the numeration of [26]). We The only difference is that we can
bound |B| with 2εn instead of 3εn, but that makes no difference in this proof. Claim 3.7
proves the existence of a monochromatic cycle cover for bad vertices, these are vertices which
do not have typical degree in each regular pair that corresponds to an edge of M. Using the
fact that bad vertices are few per cluster (|B ∩ Vi| ≤ ε|Vi|) we obtain that the number of bad
vertices is at most 2εn. Then, using Proposition 2.12 and Lemma 2.11 we can conclude the
result.
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Next is Claim 3.8, which is essentially a rearrangement of the proof of Claim 4.4 in [26]
(using the numeration of [26]). There is no notable difference other than the presentation
of the proof. We perform an algorithm over the monochromatic components of the graph
H which is performed on every monochromatic component ϕ of H. For each edge xixj of
ϕ, choose a “representative” edge uv ∈ E(G) such that u and v are typical vertices in the
regular pair (V (xi), V (xj)), and the colour of uv is the same as the colour of xixj. Then,
use Lemma 2.10 to extend this edge to a long monochromatic path. This result gives us an
structure of vertex-disjoint monochromatic cycles that cover most of the good vertices of the
graph G.

Claim 3.9 is an original addition to this thesis. We present this proof as a tool to simplify
the proof of the following result, Claim 3.10. We rely on the large minimum degree and edge
spanning condition of H, which is a (6µ, ν −5µ)-birobustly matchable graph, to verify that H
cannot have 3 components. Finally, we verify that H cannot have two components, because
there would be edges between the two of them, due to the edge spanning condition of H,
which concludes the proof.

The proof of Claim 3.10 starts exactly as its counterpart, Claim 4.5 in [26] (using the
numeration of [26]), but take a closer look at the details of the proof. We verify the three
conditions to use Lemma 3.4 with our function b. The proof is similar to the one presented
in [26] with the difference of using Claim 3.9 for the third condition. The other two condi-
tions are verified in more detail, but not in a different way from [26]. That is, bounding the
function b using the different hypotheses of Claim 3.10 and doing some calculations.

Next, we define ω, which will help us to choose a length for the paths will find in G between
regular pairs in H. The main difference is that, as our matching is a perfect matching and
not a perfect 2-matching, degM(xi) = 1 for every xi ∈ H. So, we redefine ω to be consistent
with this fact.

Finally, having proved all the claims up to Claim 3.11, we can apply the results directly.
There is no difference with the proof of the analogue result, Claim 4.6 in [26] (using the
numeration from [26]).

Section 3.3 is an analogue of Section 5 in [26]. In Section 3.3, we compare Theorem 3.12
with Theorem 2.13. The proof of Theorem 2.13 starts assuming that G, the graph we want to
partition, is not a (µ, 20µ)-robustly 2-matchable graph of type 1. Due to the minimum degree
of G, there exists a set of size (1/2 − 20µ)n that spans fewer than 20µn2 edges. From there,
G can be partitioned into two sets that can be turned into a (µ, 20µ)-robustly 2-matchable
graph of type 2 by removing few cycles, which are constructed inductively. Our Theorem
is simpler (in a technical sense) because it only involves some computations to verify that a
balanced bipartite graph of sufficient minimum degree is a birobustly matchable graph. We
do not need to remove cycles beforehand, or proving that there exists a specific partition of
our graph with certain properties, as is done in the proof of Theorem 2.13 in [26].

Finally, in the last section of Chapter 3, we combine Theorem 3.12 and Theorem 3.5 to
provide the details and conclude the proof of Theorem 1.3. This is not done in [26].
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Chapter 3

Proof of the principal theorem

In this chapter we prove Theorem 1.3. For this purpose, the first section is devoted to the
introduction of a family of graphs called birobustly matchable graphs and to the study some
useful properties about those graphs. In the second section we prove that we can find a
monochromatic cycle partition on these graphs under certain conditions. After that, in the
third section we show that every balanced bipartite graph with enough minimum degree is a
birobustly matchable graph. Finally, we join the main results obtained through the chapter
and we prove Theorem 1.3.

3.1. Birobustly matchable graphs
In order to prove Theorem 1.3 we will define what is a birobustly matchable graph. Afterwards,
we prove some useful lemmas which will lead us to the proof of the principal result.

Definition 3.1 We call a balanced bipartite graph H with bipartition {X, Y } on n vertices
a (µ, ν)-birobustly matchable graph if the next two conditions hold.

1. δ(H) ≥ (1/4 − µ/2)n, and

2. every set Z ⊆ X∪Y of at least (1/2−ν)n vertices with |Z∩X| ≥
√

νn and |Z∩Y | ≥
√

νn
spans at least νn2 edges.

An example of a (µ, ν)-birobustly matchable graph can be constructed as follows. Consider
µ ≤ ν, a balanced bipartite graph G with bipartition {X, Y } and a set Z ⊆ V (G) such that
|Z ∩ X| = (1/4 − ν)n and |Z ∩ Y | = n/4. Now, add to E(G) every edge from Z ∩ X to
Y \ (Z ∩ Y ), every edge from Z ∩ Y to X \ (Z ∩ X) and every edge from Y \ (Z ∩ Y ) to
X \ (Z ∩ X). Finally, add any νn2 edges between Z ∩ X and Z ∩ Y .
Now, the graph G satisfies condition 1 of Definition 3.1 by construction.

• d(v) = n/2 for every v ∈ (X \ (Z ∩ X)) ∪ (Y \ (Z ∩ Y )),

• d(v) = n/4 + νn for every v ∈ Z ∩ Y , and

• d(v) = n/4 for every v ∈ Z ∩ X.

15



ZX Y
few edges
all edges

Figure 3.1: Diagram of the example of a birobustly matchable graph.

Condition 2 of Definition 3.1 is also satisfied. Note that, by construction, Z spans νn2

edges. Adding vertices only adds edges, so that is not a problem. Changing the set Z would
exchange its vertices with the ones in (X \ (Z ∩ X)) ∪ (Y \ (Z ∩ Y )) which are connected to
every vertex in their counterpart. This implies that the number of edges only increases when
compared to E[Z]. In any case, any set of at least (1/2−ν)n vertices span at least νn2 edges.

The next lemma is our modified version of Lemma 2.5. Some obvious differences are that
now we are verifying the existence of a perfect matching (instead of a perfect 2-matching) on a
birobustly matchable graph (instead of a robustly 2-matchable graph). More importantly, the
main difference is how we verify conditions in order to use Theorem 2.1. We take advantage
of the large degree of the birobustly matchable graphs as well as the edge spanning condition.

Lemma 3.2 Every (µ, ν)-birobustly matchable graph H with µ ≤ ν < 1/1000 contains a
perfect matching.

Proof. Let H = {X, Y } satisfy the hypotheses of the lemma. By Theorem 2.1 it suffices to
prove that for all S ⊆ X we have that |S| ≤ |N(S)|. Let us assume this assumption is false,
i.e., there exists S ⊆ X such that |S| > |N(S)|.
Note that

|S| > |N(S)| = |Y | − |Y \ N(S)| = n/2 − |Y \ N(S)|

Since |S| ≤ |X| = n/2, it follows that |Y \ N(S)| > 0.
Note that no vertex v ∈ Y \ N(S) has any neighbour in S. Also as H is (µ, ν)-birobustly

matchable for every v ∈ H, deg(v) ≥ (1/4 − µ/2)n. So, (1/4 + µ/2)n ≥ |S| > |N(S)|, and
therefore,

|Y \ N(S)| > n/2 − (1/4 + µ/2)n = (1/4 − µ/2)n ≥
√

νn. (3.1)

Thus, since H is (µ, ν)-birobustly matchable, there are no edges between S and Y \ N(S)
and

|S| > |N(S)| ≥ δ(H) ≥ (1/4 − µ/2)n >
√

νn (3.2)

it follows that |S ∪ (Y \ N(S))| < (1/2 − ν)n, but this is a contradiction with (3.1) and
(3.2).

The next lemma is our version of Lemma 2.7. Aside from proving the lemma for birobustly
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matchable graphs instead of proving it for robustly 2-matchable graphs this lemma is proved
following the same structure as Lemma 2.7.

Lemma 3.3 Suppose H is an r-edge-coloured (µ, ν)-birobustly matchable graph on n vertices.
Let H be the (ε, d)-reduced graph of H obtained from Lemma 2.2 with parameters ε and d > 0.
Then H is (µ + 2rd + 2ε, ν − rd − ε)-birobustly matchable.

Proof. Let us assume that H is a (µ, ν)-birobustly matchable graph with bipartition {X, Y }.
Suppose that H has m vertices and a bipartition {X , Y}. Proposition 2.3a) guarantees that
δ(H) ≥ (1/4 − µ/2 − rd − ε)m, and Proposition 2.3c) implies that every set Z ⊆ H such
that |Z| ≥ (1/2 − ν)m, |Z ∩ X | ≥

√
νm and |Z ∩ Y| ≥

√
νm induces at least (ν − rd − ε)m2

edges. Therefore H is (µ + 2rd + 2ε, ν − rd − ε)-birobustly matchable.

Lemma 3.4 is our version of Lemma 2.8. Aside from changing the studied graph to a
(µ, ν)-birobuslty matchable graph we change some details of the proof.

• Here we transform each vertex x ∈ X into a set W (x) of size b1(x) (instead of b1(x)/2).

• We use the structure of the reduced graph in a different way to achieve the condition
needed to use Theorem 2.1.

• We add the third condition here to balance out the function b between both sides.

The main objective of the lemma remains the same. Find a perfect b-matching under certain
conditions.

Lemma 3.4 Let t, γ be constants, and let H be a (µ, ν)-birobustly matchable graph on m
vertices with bipartition {X, Y } such that m/t ≤ γ ≤ µ ≤ ν/4 < 1/4000. Then H has a
perfect b-matching for every function b : V (H) → N that satisfies

a) (1 − γ)t ≤ b(x) ≤ t for every x ∈ V (H),

b) ∑
x∈V (Ψ) b(x) is even for every component Ψ of H, and

c) ∑
x∈X b(x) = ∑

y∈Y b(y).

Proof. As, by b), ∑
x∈V (Ψ) b(x) is even for every component Ψ, we can associate each vertex

with odd b(x) with another vertex which also has odd b(x) in the same component. Consider
a family P that contains one path in H between each such pair of vertices.
Note that

|P| ≤ m. (3.3)

Let ω0 : E(H) → N be the function for which ω0(e) is the number of paths in P containing
e. Then, b0(x) = ∑

y∈N(x) ω0(xy) is odd if and only if b(x) is odd. Let us elaborate this a bit
further.

We have two options for any path P ∈ P such that x ∈ P . Either it ends at x or it does
not. If it ends at x, then P adds 1 to b0(x) and if it does not end at x then P adds 2 to b0(x).
Therefore, b0(x) is odd if and only if there exists a path P ∈ P such that x is an endpoint of
P . Finally, by our choice of P , this occurs if and only if b(x) is odd.

So b1(x) = b(x) − b0(x) is even for every x ∈ V (H). Thus, using a) and the fact that
m ≤ γt by assumption, it follows that for every vertex x,
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(1 − 2γ)t ≤ (1 − γ)t − m ≤ b1(x) ≤ t, (3.4)

where the second inequality comes from the fact that b0(x) ≤ m as b0(x) counts the num-
ber of paths between vertices with odd b that pass through x. This number is at most m
because of (3.3).

Also note that∑
x∈X

b1(x) =
∑
x∈X

b(x) −
∑

e∈E(H)
ω0(e) =

∑
y∈Y

b(y) −
∑

e∈E(H)
ω0(e) =

∑
y∈Y

b1(y),

where the second equality is obtained using c) and the first equality arises from∑
x∈X

b1(x) =
∑
x∈X

b(x) −
∑
x∈X

∑
y∈N(x)

ω0(xy) =
∑
x∈X

b(x) −
∑

e∈E(H)
ω0(e).

Let H ′ denote the graph obtained from H by replacing each vertex x ∈ V (H) by a set
W (x) of size b1(x) and replacing each edge xy ∈ E(H) by a complete bipartite graph with
bipartition {W (x), W (y)}. We claim that

H ′ has a perfect matching ω′. (3.5)

Note that assuming (3.5), we can obtain a b-matching in H. Indeed, let ω1 : E(H) → N be
a function such that ω1(xy) := ∑

x′∈W (x),y′∈W (y) ω′(x′y′). Then ω1 is a perfect b1-matching in
H, and defining ω(xy) := ω0(xy) + ω1(xy) we get a perfect b-matching in H, which finishes
the proof.

x

y z

H ′H

Figure 3.2: Example of H ′ with V (H) = {x, y, z}, E(H) = {(x, y), (x, z)}
and b1(x) = 5, b1(y) = 2, b1(z) = 3

It remains to prove (3.5). For this let us consider that |H ′| = n where n := ∑
x∈V (H) b1(x),

and by a),
(1 − 2γ)tm ≤ n ≤ tm. (3.6)

We will show that H ′ has a perfect matching ω′. Since H is bipartite with bipartition
{X, Y }, H ′ is also bipartite with bipartition {X ′, Y ′} such that X ′ := {v ∈ W (x) : x ∈ X}
and Y ′ := {v ∈ W (y) : y ∈ Y }. Note that |X ′| = |Y ′| = n/2 since ∑

x∈X b1(x) = ∑
y∈Y b1(y).

As H is a (µ, ν)-birobustly matchable graph of type 1, δ(H) ≥ (1/4−µ/2)m, and by (3.6)
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we readily get

δ(H ′) ≥ δ(H) · min
x∈V (H)

b1(x)

≥ (1/4 − µ/2)m · (1 − 2γ)t
≥ (1/4 − γ/2 − µ/2 + γµ)n
≥ (1/4 − γ/2 − µ/2)n.

Let us consider a set S ′ ⊆ X ′. We are using Theorem 2.1 to cover X ′ by vertex-disjoint edges
in H ′.
If |S ′| > |N(S ′)|, we have

|S ′| + |Y ′ \ N(S ′)| = |S ′| + |Y ′| − |N(S ′)|
= |Y ′| + (|S ′| − |N(S ′)|)
> |Y ′| = n/2.

Note that as |S ′∪(Y ′\N(S ′))| > n/2, (S ′∪(Y ′\N(S ′)))∩X ′ ̸= ∅ and (S ′∪(Y ′\N(S ′)))∩Y ′ ̸=
∅. Also note that, using that b1(x) ≤ t, ∀x ∈ V (H), these vertices come from a set Z ⊆ V (H)

that has more than n/2
t

vertices (in particular, |Z ∩ X| ≥
√

νn and |Z ∩ Y | ≥
√

νn by an
argument similar to the one presented in Lemma 3.2). Moreover, this quantity is bounded

n/(2t) ≥ (1 − 2γ)m/2
= (1/2 − γ)m
≥ (1/2 − ν)m.

The first inequality arises as we stated earlier that n ≥ (1 − 2γ)mt and the last one derives
from using the fact that γ ≤ ν/4. But H is a (µ, ν)-birobustly matchable graph. Therefore,
any set of at least (1/2 − ν)m vertices spans at least νm2 edges.
Thus, there exist edges in H[Z] and that implies the existence of edges between S ′ and
Y ′ \ N(S ′), which is a contradiction. Proving that |S ′| ≤ |N(S ′)| for any independent set
S ′ ⊆ X ′.
Then, using Theorem 2.1, we conclude that there exists a matching ω′ which covers X ′. As
|X ′| = |Y ′| = n/2, ω′ is a perfect matching of H ′. By what we mentioned earlier, this con-
cludes the proof.

3.2. Monochromatic cycle partition of birobustly match-
able graphs

Since we are interested in finding monochromatic cycle partitions, this section is dedicated
to showing that we are able to find such partitions in birobustly matchable graphs.

We define the conditions that our parameters must fulfil in order to satisfy the hypotheses
of the following demonstrations. This will allow us to focus on the demonstration itself,
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rather than on verifying that the hypotheses are satisfied during each proof.

ν <
1

1000 ,

µ < min
{ 1

700000 ,
ν

20

}
,

d = µ

r
,

ε < min
{

1
1013r6 ,

µ4

204 ,
d2

4000 , ε2.9(d), ε2.10(d)
}

,

n > max{4
ε
(M2.2(ε, r, 2))4, n2.9(ε), n2.10(ε)},



(3.7)

where ε2.9 and n2.9 are the constants ε and n0 obtained by using Lemma 2.9 with d =
µ/r ∈ (0, 1), ε2.10 and n2.10 are the constants ε and n0 obtained by using Lemma 2.10 with
d = µ/r ∈ (0, 1), and M2.2 is the constant M obtained by using Lemma 2.2 with ε defined
as above, r as the number of colours, and ℓ = 2 (because our graph is bipartite).

The proof of the following theorem is very close to the one presented in [26] for Theorem
2.14. Nevertheless, many of the technicalities, bounds and arguments have been subtly
modified to fit the framework established in this thesis. For instance, in Claim 3.6 we prove
that the graph H is (6µ, ν − 5µ)-birobustly matchable instead of (4µ, ν − 3µ)-robustly 2-
matchable. In particular, this means that we have to verify that new conditions are met,
which are not studied in [26]. In Claim 3.7 we bound the number of bad vertices by 2εn
instead of 3εn, even though this does not change the final bound of the Claim. We organize
the proof of Claim 3.8 in way that seems more natural which is present the steps of an
algorithm, then verify that the steps can be performed, and finally we conclude that the
algorithm outputs the object we are looking for. We also introduce Claim 3.9 as a tool to
prove Claim 3.10.

Theorem 3.5 For every 0 < ν < 1/1000 and r ∈ N there exist µ > 0 and n0 ∈ N such that
for every n ≥ n0, every r-edge-coloured (µ, ν)-birobustly matchable graph on n vertices can
be partitioned into (1/µ + 100)r2 monochromatic cycles.

Proof. Let G be an r-edge-coloured (µ, ν)-birobustly matchable graph with bipartition {X, Y }.
We apply Lemma 2.2 with ε, r and ℓ = 2 to obtain a partition V0, V1, V2, . . . , Vm of V (G) as
detailed in Lemma 2.2. Let G be the corresponding (ε, d)-reduced graph. As G is balanced
bipartite, G is also balanced bipartite, and we denote its bipartition by {X , Y}. Note that G
has m ≤ M2.2(ε, r, 2) vertices.

By Lemma 3.3, and as ε ≤ µ/2 and d ≤ µ/r, by (3.7), we know that G is (4µ, ν − 3µ)-
birobustly matchable. Let H denote the subgraph of G that consists of all edges contained
in monochromatic components of order at least mµ/r. Then

H is the union of at most r2/µ monochromatic components (3.8)

and
degH(x) ≥ degG(x) − µm for every vertex x in G. (3.9)
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Claim 3.6 H is (6µ, ν − 5µ)-birobustly matchable.
As G is a (4µ, ν − 3µ)-birobustly matchable graph, then

δ(H) ≥ δ(G) − µm ≥ (1/4 − (4µ + 2µ)/2)m = (1/4 − 6µ/2)m, (3.10)

as needed.
Consider any set Z ⊆ V (H) such that

|Z ∩ Y| ≥ |Z ∩ X | ≥ (
√

ν − 5µ)m and |Z| = (1/2 − (ν − 5µ))m. (3.11)

(The case where |Z ∩ X | ≥ |Z ∩ Y| is analogous.)

We separate two cases.
First, if |Z ∩ X | ≥ (

√
ν − 3µ)m, we can use the fact that G is a (4µ, ν − 3µ)-birobustly

matchable graph so H[Z] spans at least (ν − 3µ)m2 edges in G by Definition 3.1. But,

|E(H)| =
∑
v∈H

degH(v)/2 ≥
∑
v∈G

(degG(v) − µm)/2 = |E(G)| − µm2/2

where the first inequality holds because H is spanning. So, H[Z] spans at least (ν − 5µ)m2

edges.
The other case is when (

√
ν − 5µ)m ≤ |Z ∩ X | < (

√
ν − 3µ)m. In this case, each vertex

v ∈ Z ∩ X is connected (in H) to at least degH(v) − |Y \ Z| vertices of Z ∩ Y .
Aditionally, we can bound |Y \ Z| with the information we have. First, note that

((1/2 − (ν − 5µ)) −
√

ν − 3µ)m ≤ |Z ∩ Y| ≤ ((1/2 − (ν − 5µ)) −
√

ν − 5µ)m (3.12)

because (1/2 − (ν − 5µ))m = |Z| = |Z ∩ Y| + |Z ∩ X |. Therefore,

((ν − 5µ) +
√

ν − 5µ)m ≤ |Y \ Z| ≤ ((ν − 5µ) +
√

ν − 3µ)m. (3.13)

Bounding the number of edges we obtain

|E(Z ∩ X , Z ∩ Y)| ≥ (δ(H) − |Y \ Z|) · |Z ∩ X |
≥ ((1/4 − 6µ/2) − (ν − 5µ) −

√
ν − 3µ)m · (

√
ν − 5µ)m

≥ (1/4 + 2µ − ν −
√

ν) · (
√

ν − 5µ)m2

≥ (1/4 − 2
√

ν) · (
√

ν − 5µ)m2

≥ (ν − 5µ)m2

where the second inequality follows from (3.10) and (3.13) and the fourth inequality holds
because ν <

√
ν and the last one follows from (3.7). As Z is an arbitrary set we conclude

that H is a (6µ, ν − 5µ)-birobustly matchable graph. With this the proof of Claim 3.6 is
finished.

As 20µ ≤ ν ≤ 1/1000, by (3.7), Lemma 3.2 implies that H contains a perfect matching
denoted by M.

Let us call a vertex v ∈ Vi (i ∈ [m]) good if v has typical degree in the regular pair (Vi, Vj)
that corresponds to the respective edge of M. In other words, if xixj ∈ M is of colour c
then v is good if degc(v, Vj) ≥ (d − ε)|Vj|. We call all other vertices of G bad.
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Claim 3.7 There is a collection Cb of at most 100r2 vertex-disjoint monochromatic proper
cycles and edges in G covering all bad vertices such that

|Vi ∩ V (Cb)| ≤ 5
√

ε|Vi| for every i ∈ [m]. (3.14)

Now, we prove Claim 3.7. Let B be the set of bad vertices (note that V0 ⊆ B). By the
definition of typical degree, and because M is a perfect matching, we know that |B ∩ Vi| ≤
ε|Vi| for every i ∈ [m]. In particular,

|B| ≤ ε|Vi| · m + |V0| ≤ ε|Vi| · m + εn ≤ 2εn. (3.15)

This together with (3.7) means that we can apply Proposition 2.12 with p = 2
√

ε to obtain
a set A of size |A| ≥

√
εn≥ 2 · 1003r3εn ≥ 1003r3|B| such that |A ∩ Vi| ≤ 4

√
ε|Vi| for every

i ∈ [m], where the second inequality is a consequence of (3.7), and each vertex v ∈ G with
degG(v, V \ B) > n/40 has at least |A|/100 neighbours in A. As δ(G) ≥ (1/4 − µ/2)n and
|B| ≤ 2εn, this actually holds for every vertex of G, and in particular for every vertex in
B. But then Lemma 2.11 provides a set Cb of at most 100r2 disjoint monochromatic proper
cycles and edges covering B. Note that the vertices of Cb are contained in A ∪ B, meaning
that

|Vi ∩ V (Cb)| ≤ |Vi ∩ A| + |Vi ∩ B| ≤ 4
√

ε|Vi| + ε|Vi| ≤ 5
√

ε|Vi| (3.16)

so (3.14) clearly holds. This proves Claim 3.7.

Claim 3.8 There is a collection CH of at most r2/µ vertex-disjoint monochromatic proper
cycles and edges in G, all disjoint from Cb, such that

1. for every edge e = xixj of H, there is an edge ueve of colour c(e) in CH between vertices
ue ∈ Vi and ve ∈ Vj that have typical degree in the regular pair (Vi, Vj), and

2. |Vi ∩ V (CH)| ≤ ε|Vi| for every i ∈ [m].

To prove Claim 3.8 let ϕ be a monochromatic component of H of colour c and let
e1, e2, . . . , es ∈ E(H) be its edges. We will apply an algorithm over ϕ which consists of
the following two steps:

1. For i = 1, . . . , s let ei = yizi, and pick ui ∈ V (yi) and vi ∈ V (zi) that are not yet used,
but have typical degree in the regular pair (V (yi), V (zi)), and uivi is a c-coloured edge
in G.

2. For i = 1, . . . , s use Lemma 2.10 to find a c-coloured vi − ui+1 path Pi in G of order at
most 2m that avoids all previously used vertices (except vi and ui+1), where us+1 = u1.

Let us verify that the algorithm can perform its steps.

For step 1, note that as (V (yi), V (zi)) is a regular pair, each one of the sets have at least
(1 − ε)|V (yi)| typical vertices, of which at most ε|V (yi)| have been used in former steps and
at most 5

√
ε|Vi| are in Cb by (3.14). Then there is an edge between unused typical vertices

in colour c because ε < 1/100, by (3.7), and (V (yi), V (zi)) is ε-regular.
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For step 2, we apply Lemma 2.10 with the set W consisting of the vertices of Cb in
V (yi) ∪ V (zi), as well as all previously used vertices except vi and ui+1. This is possible
because, using that at most ε|V (yi)| vertices of V (yi) are used by the algorithm and (3.14),

|W ∩ Vi| ≤ |W | < 12
√

ε|Vi| ≤ (d/2)|Vi| for every i ∈ [m]. (3.17)

The last inequality comes from (3.7).
As the algorithm works, we define Cϕ = u1v1P1u2v2P2 . . . usvsPsu1. By construction, every

edge uivi satisfies condition 1 for ei. This implies that the condition 1 is satisfied in ϕ with
Cϕ. Repeating this for every monochromatic component ϕ ∈ H gives us at most r2µ disjoint
monochromatic cycles satisfying condition 1 for every edge of E(H). Now as the edges and
paths produced by these steps use at most |E(H)| · 2m ≤ m3 ≤ ε|Vi| vertices in G, condition
2 is also satisfied. Thus, ending the proof of the Claim.

Note that Cb and CH together contain at most (1/µ + 100)r2 cycles.

In order to verify the necessary conditions to use Lemma 3.4 we prove the following claim.
This is a small difference from the proof of Theorem 2.14. We first verify that there cannot be
more than 2 components by taking advantage of the large degree of H. Finally, we verify that
there is only one component by using the edge spanning condition of birobustly matchable
graphs.

Claim 3.9 H (uncoloured) is a connected graph.
To prove Claim 3.9 notice that as H is a (6µ, ν − 5µ) the next two conditions hold.

1. δ(H) ≥ (1/4 − 3µ)m, and

2. every set Z ⊆ X ∪ Y of at least (1/2 − (ν − 5µ))m vertices with |Z ∩ X | ≥
√

(ν − 5µ)m
and |Z ∩ Y| ≥

√
(ν − 5µ)m spans at least (ν − 5µ)m2 edges.

First, let us verify that there can be at most two components. Let a ∈ X be a vertex. If H is
disconnected and has more than two connected components, then there are vertices b, c ∈ X
such that there is no path in H connecting any two of a, b and c. If that is the case, then

NH(a) ∩ NH(b) ∩ NH(c) = ∅. (3.18)

Because of 1, that would mean that

|Y| ≥ |NH(a) ∪ NH(b) ∪ NH(c)| = |NH(a)| + |NH(b)| + |NH(c)| ≥ (3/4 − 9µ)m. (3.19)

As 9µ < m/4, because of (3.7), this is a contradiction because |Y| = m/2.

Now, let us verify that H cannot have 2 components. Assume the opposite. That is, exists
A, B ⊆ V (H) such that A and B are components, partition V (H) and E[A, B] = ∅. Note
that it must hold either |A ∩ X | ≥ |A ∩ Y| or |A ∩ X | ≤ |A ∩ Y|. Let us assume the first one
holds (the procedure is analogous in the other case).
If |A ∩ X | ≥ |A ∩ Y| then |B ∩ X | ≤ |B ∩ Y|, because |X | = |Y| = m/2.
Notice that |A ∩ X | + |B ∩ Y| > m/2 > (1/2 − (ν − 5µ))m which, by condition 2, implies
that there are edges between the two components, which is a contradiction. Thus, H is a
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connected graph, proving Claim 3.9.

Defining C0 := Cb ∪ CH we know that

|Vi ∩ V (C0)| ≤ |Vi ∩ V (Cb ∪ CH)| ≤ (5
√

ε + ε)|Vi| ≤ 6
√

ε|Vi| (3.20)

for every i ∈ [m]. The rest of the proof will extend the cycles in CH so that they cover all the
remaining vertices with CH as the base structure of our cycle cover. That means we will use
Lemma 2.9 to replace each edge ueve (corresponding to some e = xixj in H) with a ue − ve

path Pe in (Vi, Vj). In order to do this, let us define ℓ such that

(1 − ε1/4)|Vi| ≤ ℓ ≤ (1 − ε1/4)|Vi| + 1 and ℓ is an integer. (3.21)

This will be the length of our new ue − ve paths. We intend to cover at least ℓ vertices in
each cluster by the paths corresponding to the edges of the perfect matching M. This leaves
b(xi) = |Vi \ V (C0)| − ℓ vertices in Vi. Note that

0 ≤ ε1/4|Vi| − |Vi ∩ V (C0)| ≤ b(xi) ≤ ε1/4|Vi| (3.22)

vertices in each Vi. The last inequality comes from (3.20) and (3.7).

Claim 3.10 H contains a perfect b-matching ω0 : E(H) → N
We now prove Claim 3.10. Since, by (3.20) and (3.7), |Vi ∩ V (C0)| ≤ 6

√
ε|Vi| ≤ µε1/4|Vi|,

using (3.22) we have

(1 − µ)ε1/4|Vi| ≤ ε1/4|Vi| − |Vi ∩ C0| ≤ b(xi) ≤ ε1/4|Vi| (3.23)

Now, we use Lemma 3.4 setting
• γ = µ, and

• t = ε1/4|V (xi)| which is constant as a function of xi.

In particular, we want to verify if

m/(ε1/4|V (xi)|) ≤ µ ≤ 6µ ≤ (ν − 5µ)/4 < 1/4000. (3.24)

The inequalities above hold because of (3.7).
We need to verify that b satisfies the conditions needed for Lemma 3.4.

1. By (3.23), (1 − γ)t ≤ b(x) ≤ t for every x ∈ V (H).

2. We can see the following ∑
x∈X

b(x) =
∑
x∈X

|V (x) \ V (C0)| − ℓ

=
∑
y∈Y

|V (y) \ V (C0)| − ℓ

=
∑
y∈Y

b(y).

The second equality comes from the fact that H is a balanced bipartite graph.
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3. As H is a connected balanced bipartite graph, it is clear that ∑
x∈V (Ψ) b(x) is even for

every component Ψ of H, as it is ∑
x∈V (Ψ) b(x) = ∑

x∈X b(x) + ∑
y∈Y b(y) = 2 · ∑

x∈X b(x).

Thus, H contains a perfect b-matching. This finishes the proof of Claim 3.10.

Let ω0 be the perfect b-matching guaranteed by Claim 3.10. Define ω : E(H) → N as

ω(xixj) =

ω0(xixj) for xixj ̸∈ M
ω0(xixj) + ℓ for xixj ∈ M

Note that for every edge xixj ∈ E(H), ω(xixj) is integral because ω0 is integral since it is
the value assigned by the perfect b-matching and ℓ is integral because of how we defined it.
Then for every vertex xi ∈ H, we have

∑
xj∈NH(xi)

ω(xixj) = |Vi \ V (C0)| and
∑

xj∈NH\M(xi)
ω(xixj) ≤ b(xi) ≤ ε1/4|Vi|. (3.25)

The proof of the next claim is exactly as its analogue from the proof of Theorem 2.14. As
we have proved every necessary claim and lemma to reach this point, this last step can be
applied exactly as in [26].

Claim 3.11 (Claim 4.6 of [26]) For every edge e = xixj in E(H), there is a ue −ve path Pe of
colour c(e) in G[Vi, Vj] that contains exactly ω(e)+1 vertices in each of Vi and Vj. Moreover,
these paths can be chosen so that they are internally vertex-disjoint from each other and from
C0.

In order to prove Claim 3.11 let us first apply Proposition 2.12 with p = 2
√

ε and B =
V (C0) to get a set A = A1 with the properties given in the statement of the proposition and
then apply it again with the same p and B = V (C0) ∪ A1 to get another such set A2. This is
possible because V0 ⊆ V (C0) ⊆ V (C0) ∪ A1 holds, and we also have |V (C0) ∩ Vi| ≤ 6

√
ε|Vi|.

Thus
|A1 ∩ Vi| ≤ 4

√
ε|Vi| and |A2 ∩ Vi| ≤ 4

√
ε|Vi| for every i ∈ [m] (3.26)

as a consequence of Proposition 2.12. Let Ab
i = Ab ∩ Vi for every i ∈ [m] and b ∈ [2]. Then

1. |Ab
i | ≤ 4

√
ε|Vi| for every i ∈ [m] and b ∈ [2], and

2. for every edge xixj in H of colour c and every vertex v ∈ Vj with typical degree in the
regular pair (Vi, Vj), we have degc(v, Ab

i) ≥ 6ε|Vi| for b ∈ [2].

Let us elaborate on 2. Note that every such vertex v of typical degree satisfies degc(v, Vi) ≥
(d − ε)|Vi| > 60

√
ε|Vi| (using d > 61

√
ε, from (3.7)) so by Proposition 2.12

degc(v, Ab
i) ≥

√
ε(d − ε)|Vi| > 60ε|Vi|. (3.27)

This last inequality holds because of (3.7).

Now, consider CH as mentioned in Claim 3.8. Let e1, . . . , es be the edges of H \ M. We
will find the uk − vk paths Pk (where ukvk is the edge in CH corresponding to ek) one by one
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so that

for every k, the vertex set of Pk :=
k−1⋃
j=1

Pj is disjoint from each A2
i , and (3.28)

intersects each A1
i in at most k − 1 vertices. (3.29)

We are going to use an inductive argument. Suppose we have already found P1, . . . , Pk−1.
Let us also assume that uk ∈ Vi and vk ∈ Vj (so ek = xixj), and let c be the colour of ek.

If ω(ek) = 0 we can take Pk = ukvk.

If ω(ek) = 1, then notice that degc(uk, A1
j \ V (Pk)) ≥ 4ε|Vj| − k ≥ ε|Vj| (using ε|Vi| >

εn/(2m) > m2, from (3.7)) and similarly, degc(vk, A1
i \V (Pk)) ≥ ε|Vi|. Hence, as A1

j \V (Pk) ⊆
Vj, A1

i \ V (Pk) ⊆ Vi and (Vi, Vj) is an ε-regular pair with density at least d in the colour c,
by Lemma 2.2 we can find adjacent vertices u ∈ A1

i \ V (Pk) and v ∈ A1
j \ V (Pk) such that

Pk = ukvuvk is a c-coloured path, as needed.

To verify the remaining cases, suppose ω(ek) > 1. Let W = V (C0) ∪ A1 ∪ A2 ∪ V (Pk)
be the set of “forbidden” vertices. We will need a pair of neighbours u ∈ A1

i \ V (Pk) and
v ∈ A1

j \ V (Pk) of vk and uk respectively, but now we are going to apply Lemma 2.9 to
connect them with a u − v path of the right length that avoids W .

We have seen above that degc(uk, A1
j \ V (Pk)) ≥ ε|Vj|. Also,

|Vi \ W | ≥ |Vi| − |Vi ∩ V (C0)| − |A1
i | − |A2

i | − b(xi) ≥ (1 − 14
√

ε − ε1/4)|Vi| ≥ |Vi|/2

by (3.7). Following the same argument shown in the previous case, by Lemma 2.2, there is
a neighbour v ∈ A1

j \V (Pk) of uk such that degc(v, Vi \W ) ≥ (d−ε)|Vi|/2 ≥ ε|Vi|. Where the
last inequality follows from (3.7). Similarly, there is a neighbour u ∈ A1

i \ V (Pk) of vk such
that degc(u, Vj \ W ) ≥ ε|Vi|. As ω(ek) ≤ ε1/4|Vi| ≤ (1 −

√
ε)|Vi \ W |, we can apply Lemma

2.9 (with U1 = Vi \ W and U2 = Vj \ W ) to find a c-coloured v − u path P ′ of order 2ω(ek)
that is internally vertex-disjoint from W . Therefore, Pk = ukvP ′uvk is a path satisfying our
requirements.

Finally, let es+1, . . . , es+t be the edges of M. Note that each vertex of H is incident to
exactly one of these edges. Using the same notation as before, we will find the final uk − vk

paths Pk.
Fix k and let Ui = Vi \ (V (C0) ∪ V (Pk)). Using |A2

i | ≤ ℓ/2 and the assumption that, by
(3.7), ε is small enough, it is easy to verify from the definitions that we have |Ui| ≥ ω(ek) ≥
ℓ/2 ≥ |Vi|/3. We can also state that |Uj| ≥ ω(ek) ≥ |Vj|/3 for Uj defining it analogously to Ui.

Now we are going to find a uk −vk path Pk of order 2(ω(ek)+1). As min{|Ui ∪{uk}|, |Uj ∪
{vk}|} ≥ ω(ek) + 1, we just need to verify that δ(G[Ui, Uj]) ≥ 5ε|Vi| to use Lemma 2.9.
As ek is the last edge at xi, A2

i ⊆ Ui. Then, by condition 2, we obtain degc(v, Ui) ≥
6ε|Vi| − k ≥ 5ε|Vi| for every v ∈ Uj, and similarly, degc(u, Uj) ≥ 5ε|Vj| for every u ∈ Ui, as
needed. This concludes the proof of Claim 3.11.
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Now replace every edge ueve with the path obtained in Claim 3.11 in the appropriate cycle
of CH. This gives us (1/µ + 100)r2 monochromatic cycles that cover all vertices in V0, and
|Vi| vertices in each Vi. This last fact is given by how ω is defined. Therefore, we find a
monochromatic cycle partition of G, as needed.

3.3. Turning balanced bipartite graphs into birobustly
matchable graphs

As the family of birobustly matchable graphs does not obviously seem to be big, we con-
nect the family of birobustly matchable graphs with the family of balanced bipartite graphs
through the next theorem.

Even though Theorem 3.12 is much simpler, it has an equivalent role in the proof of
Theorem 1.3 as Theorem 2.13 has in the proof of Theorem 1.1 but without having to consider
any additional cycles. The simplicity of Theorem 3.12 lies in the fact that we verify the two
conditions of Definition 3.1 by relying on the large minimum degree from the hypothesis,
rather than having to construct the robustly 2-matchable graph through a more technical
prodecure.

Theorem 3.12 For any µ > 0, every balanced bipartite graph G with minimum degree
δ(G) ≥ n/4 + 11νn/2 is a (µ, ν)-birobustly matchable graph.

Proof. Let G be a balanced bipartite graph such that δ(G) ≥ n/4 + 11νn/2.
As the minimum degree condition is satisfied for G to be a (µ, ν)-birobustly matchable graph
(regardless of the chosen µ), we are going to focus on the edge spanning condition.
Let us consider a set W and a parameter ω such that

|W | = (1/2 − ν)n and |W ∩ B| ≥ |W ∩ A| = ω ≥
√

νn. (3.30)

This also means that
|W ∩ B| = (1/2 − ν)n − ω. (3.31)

As |W ∩ B| ≥ |W ∩ A| it holds that
√

νn ≤ ω ≤ (1/4 − ν/2)n. (3.32)

Now, note that for every vertex v ∈ A ∩ W

|NB∩W (v)| ≥ δ(G) − |B \ W | ≥ (1/4 + 11ν/2)n − (νn + ω) = (1/4 + 9ν/2)n − ω (3.33)

where the second inequality comes from (3.31). Now, we can bound the number of edges
induced by W .
Let v ∈ W ∩ A, then

|E[W ]| ≥ |W ∩ A| · |NB∩W (v)|
≥ ω · ((1/4 + 9ν/2)n − ω).
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We define f(ω) as the quadratic equation of ω on the previous line. By (3.32) the minimum
value of f is given by

min(f) = min{f(
√

νn), f((1/4 − ν/2)n)}.

We study these two cases separately.

1. min(f) = f(
√

νn).

It suffices to prove that

(
√

νn) · ((1/4 + 9ν/2)n −
√

νn) ≥ νn2

which is equivalent to prove that

(1/4 + 9ν/2) ≥ 2
√

ν

and this holds by (3.7).

2. min(f) = f((1/4 − ν/2)n).

As before, it suffices to prove that

((1/4 − ν/2)n) · ((1/4 + 9ν/2)n − (1/4 − ν/2)n) ≥ νn2

but this is equivalent to
5(1/4 − ν/2) ≥ 1

which, as before, holds by (3.7).

These cases prove that |E[W ]| ≥ νn2. Therefore, G is (µ, ν)-birobustly matchable.

3.4. Proof of Theorem 1.3
Finally, having all the necessary tools to complete the proof of Theorem 1.3 we present it.

Proof. Let r ≥ 2 and η > 0. Let G be an r-edge-coloured balanced bipartite graph on n
vertices such that δ(G) ≥ (1/4 + η)n. By Theorem 3.5, choosing ν = min{1/1001, 2η/11}
we know that there exist µ ∈ R and n0 ∈ N such that for every n ≥ n0, every r-edge-
coloured (µ, ν)-birobustly matchable graph on n vertices can be partitioned into (1/µ+100)r2

monochromatic cycles. Nevertheless, by Theorem 3.12 we know that for any µ > 0, G is a
(µ, ν)-birobustly matchable graph. Finally, choosing n0 provided by Theorem 3.5 we know
that G admits a partition into 107r2 monochromatic cycles, concluding the proof.
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Annex

Proof of Corollary 1.4
Here we present the proof of Corollary 1.4.

Proof. Here, n1.3(η, r) will be the number n0 provided by Theorem 1.3 such that for every
n ≥ n0, an r-edge-coloured balanced bipartite graph on n vertices with δ(G) ≥ (1/4 + η)n
contains a monochromatic cycle partition of size 107r2.
Let G = {A, B} be an r-edge-coloured bipartite graph such that δ(G) ≥ (1/4 + η)n with
η > 0. Let us assume |A| = n/2 + ω and |B| = n/2 − ω such that ω ∈ O(r2). Since G is
bipartite, any cycle that is not an isolated vertex will cover the same number of vertices in A
and B. Now, choose any set S ⊆ A such that |S| = 2ω. Choose any η′ > 0 such that η > η′.
Note that we can define n0 = max{n1.3(η′, r) + 2ω, 2ω/(η − η′)}. This is possible because, by
our hypotheses, ω ∈ O(r2). This implies that for every n ≥ n0, (1/4+η)n−2ω ≥ (1/4+η′)n.
Then, δ(G[A \ S, B]) ≥ (1/4 + η′)n and G[A \ S, B] is a balanced bipartite graph. Thus, as
|G[A \ S, B]| ≥ n0(η′, r), by Theorem 1.3, V (G[A \ S, B]) contains a monochromatic cycle
partition of size 107r2. We denote such partition as C.
Finally, we define C2 = C ∪ S which, clearly, is a monochromatic cycle partition for V (G).
Since |S| = 2ω, C2 has size 107r2 + max{|A|, |B|} − min{|A|, |B|}, concluding the proof.
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