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Santiago, Chile 
d Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, 
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A B S T R A C T   

The development of biofilms to replace plastics is urgent, due to the high environmental pollution caused by the 
non-biodegradable packaging. The objective of this study was to develop and understand the behavior and 
properties of biodegradable films based on an alginate/glycerol matrix with eggshell waste. Eggshells were 
transformed to eggshell powder (EP) and this ingredient used to obtain EP biodegradable films (EPBFs) using the 
casting method. EP contributed opacity and whitish coloration to the EPBFs. Stress-strain curves show that EP 
content significantly influences mechanical properties; resulting in harder, firmer and less elastic EPBFs with 
increasing EP content. The EPBFs had heterogeneous and rough surfaces with crystalline forms provided by EP 
with a particle size distribution ranged from 20.7 to 26.6 μm, arranged as a monolithic pattern with very low 
porosity. EPBFs were amorphous materials and WAXS analysis indicated that CaCO3 content ranged 18–50% in 
the EPBFs. Thermal decomposition processes of the EPBFs, was not affected by the EP addition at concentrations 
below 6%. The addition of EP increased the hydrophobicity of EPBFs, slowing solubilization in water; however, 
the water solubility percentage was high (82.9% for EPBF-2%–75.2% for EPBF-6%). EPBFs completely biode-
grade in vermicomposting in short periods of time (between 14 and 21 days). In conclusion, EPBFs, derived from 
waste, constitute an interesting new material with desirable mechanical properties for potential use as food 
coatings or packaging. The biodegradable properties of EPBFs allow easy disposal by dissolving in water or by 
vermicomposting.   

1. Introduction 

Several million tons of olefin-derived plastics are produced annually 
worldwide, accumulating in the ecosystem at a staggering rate of 

300–400 million tons per year. Non-biodegradable plastic packaging is 
the greatest source of waste globally (Chamas et al., 2020; UNEP United 
Nations Environment Programme, 2022). Plastics persist for hundreds to 
thousands of years polluting land, water and air (Barnes, 2002; Jambeck 
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et al., 2015; Lavers, Stivaktakis, Hutton, & Bond, 2019). Plastic pollution 
is the reason for growing global concern and programs that promote the 
use of strategies that manage plastic waste, including disposal, recycling 
and incineration, which also affect environmental pollution associated 
with greenhouse gas emissions (Al-Salem, Lettieri, & Baeyens, 2009; 
Elsabee & Abdou, 2013; Moharir & Kumar, 2019; Verma, Vinoda, 
Papireddy, & Gowda, 2016; Wright & Kelly, 2017). 

In recent years, the development of biodegradable packaging to 
replace plastics has become a hot topic (Chia, Ying Tang, Khoo, Kay Lup, 
& Chew, 2020; Flury & Narayan, 2021; Stoica, Marian Antohi, Laura 
Zlati, & Stoica, 2020). The potential benefits of biodegradable films are 
that they are edible, water-soluble, non-toxic, renewable, biocompatible 
and compostable (Bonilla & Sobral, 2020; Dehghani, Hosseini, & 
Regenstein, 2018; Oluic & Holmquist, 2021) and vermicompostable 
(Samal, Raj Mohan, Chaudhary, & Moulick, 2019). The vermicompost-
ing properties of biodegradable films is the least studied, and is based on 
the rapid degradation of organic matter by the action of a symbiotic 
system between earthworms and microorganisms (Alshehrei & Ameen, 
2021). Vermicomposting is a highly sustainable system for organic 
waste disposal in a short time, which is low cost, and eco-friendly (Bhat 
et al., 2018; Hazarika & Khwairakpam, 2022; Sharma & Garg, 2017), 
due to less methane emission than composting (Sharma & Garg, 2019; 
Swati & Hait, 2018). Vermicomposting does not produce waste and/or 
residues. Remarkably, vermicompost is a nutrient-rich organic material 
that is commonly used as a natural fertilizer (Ghorbani & Sabour, 2021; 
Raza, Wu, Rene, Ali, & Chen, 2022; Zhou, Li, Guo, Liu, & Cai, 2022). 

Biodegradable films have been prepared using mixtures of carbo-
hydrates, proteins, lipids, waxes, and plasticizers (Abera, Woldeyes, 
Demash, & Miyake, 2020; Molavi, Behfar, Ali Shariati, Kaviani, & 
Atarod, 2015; Vattanagijyingyong, Yonemochi, & Chatchawalsaisin, 
2021; Vinod, Sanjay, Suchart, & Jyotishkumar, 2020; Wang, Ding, Ma, 
& Zhang, 2021). Specifically, for food and medical packing, biode-
gradable film composition must include chemical, biological and phys-
ical protection (El Bourakadi, Mekhzoum, Qaiss, & Bouhfid, 2021). 
Although carbohydrates have good filmogenic properties, films made 
from carbohydrates are usually stiff and brittle with low adhesiveness 
(Roy & Rhim, 2020; Shankar, Wang, & Rhim, 2017). Therefore, it is 
necessary to combine carbohydrates with other components, such as 
proteins and/or plasticizers (which alone do not have film-forming 
properties), to obtain materials with the desirable mechanical proper-
ties (i.e. flexibility, strength, elongation, hardness), able to adhere to 
surfaces and/or contours, and to be used as coatings (Dong, Chen, Qiao, 
& Liu, 2019; Pavlath & Orts, 2009). When lipids are added to 
biopolymer blends, usually to improve the permeability of water vapour 
or gases, the resistance of biodegradable films tends to be reduced 
(Valenzuela, Abugoch, & Tapia, 2013). 

Sodium alginate is an outstanding candidate as a biopolymer in film 
design. Alginate is a colloidal anionic polysaccharide extracted from 
brown algae with biocompatibility, stability, and gelation and film- 
forming ability (Luo, Liu, Yang, Zeng, & Wu, 2019; Marangoni Júnior, 
Rodrigues, da Silva, Vieira, & Alves, 2021). However, when alginate is 
used alone, films show low resistance to fracture and elongation 
(Abdollahi, Alboofetileh, Rezaei, & Behrooz, 2013; Chen et al., 2021; 
Naidu & John, 2021; Yang, Shi, & Xia, 2018). 

Our research group is interested in the use of hen eggshells as a low- 
cost material that could improve the mechanical properties of biode-
gradable films. Eggshells have a bio-ceramic composition with high 
mechanical strength (3 kgf/cm2) (Taylor, Walsh, Cullen, & O’Reilly, 
2016), due to the high concentration of calcium carbonate (96%) 
(Gautron et al., 2021; Gbadeyan, Adali, Bright, Sithole, & Awogbemi, 
2020). Interestingly, a variety of studies have used calcium carbonate, 
from origins other than eggshells, with the aim of improving the strength 
of films (Lin, Chen, Chan, & Wu, 2008; Liu, Tian, Jia, & Zhang, 2008). 
Globally, large volumes of eggshell waste are generated in food pro-
cessing industries and in households (Sathiparan, 2021; Waheed et al., 
2020). For example, in the US, more than 45 million kg/year of eggshells 

are disposed of as waste (Yoo, Hsieh, Zou, & Kokoszka, 2009). Inter-
estingly, discarded eggshells also contain albumin (Guo, Xu, Xu, Cheng, 
& Ding, 2021; Jalili-Firoozinezhad, Filippi, Mohabatpour, Letourneur, & 
Scherberich, 2020) and membrane proteins, which could confer greater 
elasticity to films (Han, Liu, Liu, Huang, & Sheng, 2020; Mohammadi 
et al., 2018). Some authors have used eggshells as a bio-filler for coating 
materials (Seeharaj, Sripako, Promta, Detsri, & Vittayakorn, 2019; Wen, 
Huang, & Guo, 2019; Yew, Ramli Sulong, Yew, Amalina, & Johan, 
2013), to create nanocomposites (Rahman, Netravali, Tiimob, & Ran-
gari, 2014), and thermoplastic materials (Bootklad & Kaewtatip, 2013). 
These materials show significant improvements in Young’s modulus, 
tensile strength, and thermal stability over calcium carbonate; providing 
enhanced resistance to mechanical stress. In an interesting study by 
Vonnie et al. (2022), mixtures of eggshell powder (EP) and corn-starch 
were used to develop a film with a smooth structure, no cracks, and 
evidence of a large surface area. The authors believe the chemical 
composition of the O–C–O bond in the calcium carbonate of the eggshell 
is the main reason for the improvement in physical properties such as 
moisture content, swelling power, water solubility, and water 
absorption. 

The motivation for this study was to develop films with desirable 
physical, mechanical and biodegradable characteristics following a low- 
cost and simple process, with raw hen eggshell as the key waste ingre-
dient. The objective of this study was to develop and understand the 
behavior and properties of biodegradable films based on an alginate/ 
glycerol matrix with eggshell waste. 

2. Material and methods 

2.1. Materials 

Sodium alginate (viscosity 30 cps at 25 ◦C, CAS 9005-38-3, Cat. no 
W201502, molecular weight 12–40 kDa, Sigma-Aldrich, USA) and 
glycerol (≥95% purity, COPROLAN, Chile) were used to prepare the 
biodegradable films. Raw white hen eggshells containing remains of 
albumin and shell membranes were used. Eggshells were collected from 
household wastes. Eggs were obtained from supermarkets and local 
fairs. Eggshells were frozen at − 18 ◦C in Ziploc® plastic bags to stop 
microorganism activity until processing. 

2.2. Preparation and characterization of eggshell powder (EP) 

Eggshells were defrosted at refrigeration temperature (4–6 ◦C), 
transferred on aluminum trays and oven-dried at 70 ◦C for 4 h. Then the 
eggshells were ground 3 times for 10 s (70 rpm and room temperature) 
in a food processor (HuromChef®, Hurom, Chile) to produce EP. The 
particle size distribution of EP was determined by a laser scattering 
particle size distribution analyzer (Partica LA-960, HORIBA Scientific, 
Kyoto, Japan). Briefly, 1 g of sample was suspended in 10 mL of Milli-Q 
water and introduced in the measurement cuvette at 25 ◦C. During the 
measurement (n ≥ 3), a 650 nm laser diode passed through the particle 
suspension under magnetic stirring; the scattered light was detected and 
collected by a silicon photo diode detector. 

EP characterization in terms of dry matter, crude protein, ether 
extract, ash, crude fiber, nitrogen-free extract and calcium, was con-
ducted according to the Association of Official Analytical Chemists 
(AOAC) guidelines (AOAC Association of Official Analytical Chemists, 
1996). Briefly, dry matter was determined gravimetrically (method 
934.01). Crude protein was analyzed by the Kjeldahl method (981.10). 
Ether extract was determined using Soxhlet extraction (method 991.36). 
Ash content was determined gravimetrically (method 920.153). Crude 
fiber was determined by successive hydrolysis (method 993.19); 
nitrogen-free extract was calculated as the difference. Calcium de-
terminations were conducted according AOAC Association of Official 
Analytical Chemists (1996) standards, with an inducted coupled plasma 
analysis (Thermo-Fisher Scientific Corp., Pittsburgh, PA, USA). 
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2.3. EP biodegradable film (EPBF) preparation 

The EP was suspended in a solution of 2% w/v sodium alginate in 
distilled water at different concentrations: 0 (control film), 2, 4 and 6% 
EP w/v. Then, glycerol at 5% v/v was added. The dispersions were 
stirred for 3 h in a paddle homogenizer (Bosch MSM6A3R 750w, China), 
then subjected to ultrasound (Elma, Elmasonic E30H, Germany) for 30 
min, and left overnight at 4 ◦C to eliminate bubbles. EPBFs were pre-
pared by the casting method as described by Valenzuela, Abugoch, and 
Tapia (2013) and Valenzuela, Abugoch, Tapia, et al. (2013). Briefly, 20 
mL of EPBF-forming dispersions were cast on a horizontal surface in low 
density polyethylene boxes (10 cm diameter) and oven-dried at 40 ◦C, to 
a constant weight (approximately 16 h). The dried EPBFs were removed 
carefully from the boxes and placed on vinyl adhesive paper in a glass 
desiccator with silica gel beads. The acronyms used for the obtained 
biodegradable films are: EPBF-0% (control, without EP), EPBF-2% (2% 
w/v EP), EPBF-4% (4% w/v EP) and EPBF-6% (6% w/v EP). 

2.4. Characterization of EPBFs 

2.4.1. Appearance and color 
The appearance of the EPBFs was captured using a Sony DSC-HX1 

(Sony Corporation, Japan) digital camera. The color was measured 
and registered in triplicate according to the Lab color scale (N = 30 for 
each replicate) with a colorimeter (CR-300 Konica Minolta Inc, Japan). 

2.4.2. Mechanical properties 
The tensile properties of the EPBFs were obtained from the stress- 

strain curves characterized with a universal testing machine (Brook-
field CT3-1000 Texture Analyzer, USA) with 1 kg of maximum loading, a 
Brookfield Texture PRO CT® software control, and a test speed of 20 
mm/min. As there was an abrupt change in the mechanical properties of 
the samples between 0% and 2% EP, we additionally developed EPBFs 
with 0.5%, 1.0% and 1.5% EP. For each composition, three different 
EPBFs were measured. Strips of 10 mm (width) x 50 mm (length) were 
taken from the center part of each EPBF and measured using the TA-DGA 
fixture configuration where the material is double clamped at an initial 
separation of 40 mm, value used as initial distance for the strain 
determination. The cross-sectional area “A” (in mm2) was obtained by 
measuring the thickness of the strips with a micrometer (10 μm reso-
lution); the thickness values reported are the average of three points per 
sample. The tensile strength (TS) and percent of elongation at break 
(EAB%) are defined in Equations (1) and (2), respectively. The range of 
the apparent Young’s Modulus is given at 10% elongation (YM10%), as 
defined in Equation (3). YM10% is used for a semi quantitative com-
parison of strength between samples; the elongation condition of 10% is 
considered the lowest yield strength observed in the EPBF-6% sample. 
Toughness is computed as the area under the stress-strain curve before 
rupture. 

TS (MPa)=
F
A
=

106F(N)

10 (m) ∗ thickness (m)
(1)  

Where: F is the force maximum at rupture of the EPBF (in N) and A is the 
cross-sectional area in m2 

EAB%=
Df − 40 mm

40mm
× 100% (2)  

Where: Df is the distance elongation at break (mm) 

YM10%(MPa)=
Stress(at 10% elongation)

0.1
(3)  

2.4.3. Microstructural properties 
The optical microscopy was performed in a Bresser Trino Researcher 

II (4–10 × ) trinocular microscope (Rhede, Germany), coupled with a 5 

Mp CCD color camera (Bresser, Rhede, Germany) and with a cold light 
source Optika CL-41 (Ponteranica, Italy). 

Top views and cross sections of the EPBFs were observed by Field 
Emission Scanning Electron Microscopy (FE-SEM) (GeminiSEM 360, 
Carl Zeiss AG, Oberkochen, Germany), with a Gemini 1 optic InLens 
detector, which ensures an efficient signal detection for both secondary 
(SE) and backscattered (BSE) electrons. Parallel to FE-SEM imaging, 
Energy Dispersive X-ray Spectroscopy (EDX) was completed using an 
Ultim Max 40 detector (OXFORD Instruments, High Wycombe, UK) to 
perform elemental analysis on the sample surface. These samples were 
coated with 8 nm of gold to improve the image resolution using an argon 
sputter coater (model 108 AUTO, Cressington Scientific Instruments 
Ltd., Watford, UK). For the energy dispersive X-ray spectroscopy mea-
surements (EDS, Ultradry Pathfinder Alpine 129 eV, Thermo Fisher 
Scientific), the EPBFs were gold-sputter-coated in an argon atmosphere 
(Sputter Coater Cressington TEDPELLA, 108). Coated samples were 
examined with an EDS detector by FE-SEM (INSPECT-F50, Thermo 
Fisher Scientific, FEI) using an accelerating voltage of 25 kV. The size 
distribution was determined using ImageJ, 1.5 software in a population 
of 200 particles. Since the orientation of the particle is typically random, 
the diameter was measured at a fixed angle for all particles in each 
sample. The data obtained were represented as a histogram of frequency 
vs. size. The statistical analysis was completed with SigmaPlot, 12 
software. 

The EPBFs topography was obtained by Atomic Force Microscopy 
(AFM), using a CoreAFM from Nanosurf Inc. (Woburn, MA, USA) in 
intermittent contact mode. Additionally, the force spectroscopy was 
performed using a tip specially designed for this purpose (PPP-FMR from 
NanoWorld AG., Liestal, Switzerland). Images were treated using the 
offline freeware Gwyddion 2.42. 

To determine porosity in EPBF samples, nitrogen adsorption/ 
desorption isotherms were generated at − 196 ◦C in a relative pressure 
range of p/p0 = 0–1 in a Micromeritics 3Flex apparatus. Prior to the 
analyses, the samples were degassed under vacuum at 120 ◦C for 4 h in a 
Micromeritics Smart VacPrep device. The N2 isotherm data were used to 
determine the specific surface areas applying the BET model (Brunauer, 
Emmett, & Teller, 1938) with the Rouquerol criterion; the total pore 
volume (VT) calculated at p/p0 = 0.99. The pore volume was deter-
mined from CO2 adsorption at 273K using the Micromeritics 3Flex 
apparatus. 

2.4.4. Powder X-ray diffraction (PXRD) and two-dimensional wide-angle 
X-ray scattering (2D WAXS) 

X-ray diffraction is a technique used for determining atomic struc-
ture: consisting of constructive interference of a wave from a X-ray 
incident beam in relation to uniform atomic spacing. In this technique 
Bragg’s law is applied, defined by nλ = 2dsenθ, where nλ must fit the 
condition to be an entire value of wavelengths generated by a specific 
target to afford the constructive interference at a 2θ angle, allowing the 
determination of the interplanar distances (d) for each crystalline plane. 
PXRD was carried out in a two-circles Stoe Stadi-P diffractometer in 
transmission geometry with a PSD detector. The source was a line focus 
copper radiation monochromated with germanium (wavelength Cu Kα1 
= 1.5406 Å) at 40 kV and 30 mA. The sample was cut and stacked as 4 
layers, confined between mylar films, and subject to rotation in the 
plane of the film. The diffractograms were between 0 and 70◦ with a step 
size of 0.1◦ and 1050 s per step and then added up. 2D WAXS was carried 
out in an Anton Paar SAXSPoint 2.0 SAXS/WAXS/GISAXS system, with 
an Eiger R 1M detector and a Primus100 microfocus copper source at 50 
kV 100 μA monochromated by an ASTIX multilayer mirror (wavelength 
CuKα1-2 = 1.5418 Å) yielding point collimation. The sample was directly 
mounted as a single layer on a transmission sample holder and measured 
in a static vacuum. WAXS was measured at the sample detector distance 
of 116.8 mm, averaging 24 frames of 300 s exposure each time. 
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2.4.5. Fourier transform infrared spectroscopy (FTIR) 
FTIR analyses were performed on EP and EPBFs. An ATR/FTIR 

Interspec 200-X spectrometer (Interspectrum OU, Estonia) provided 
FTIR spectra for each sample. Spectroscopic measurements were per-
formed directly using the PIKE Miracle TM accessory in a Ge single 
reflection crystal plate. A concave tip was used for all FTIR spectra. An 
average of 20 scans over the spectral range of 600 to 4000 cm− 1 yielded 
each spectrum. 

2.4.6. Thermal characterization 
The thermal behavior of the EPBFs was studied using Modulated 

Differential Scanning Calorimetry (MDSC) with a TA Q20 DSC using 
sealed aluminum pans (TA T-Zero pans), under nitrogen purge (50 mL/ 
min), with a modulation amplitude of 1.5 ◦C/min each 90 s and a 
heating rate of 1.5 ◦C/min. The DSC was calibrated using indium 
(156.6 ◦C) at a rate of 10 ◦C/min. As control we used three different 
temperature standards: benzophenone (ME18870) m.p. 47.9 ± 0.2 ◦C; 
benzoic acid (ME18555) m.p. 122.3 ± 0.2 ◦C and caffeine (ME18872) 
m.p. 236.0 ± 0.3 ◦C. 

The Thermogravimetric Analysis (TGA) of the EPBFs were done on a 
TG 209 F1 Iris Netzsch analyzer (Germany). A sample of approximately 
15 mg was used in each determination. The samples were chopped in 
mm size bits to increase the surface area and were heated under nitrogen 
flow (20 mL/min) with a heating speed of 10 ◦C/min, in the temperature 
range of 25 ◦C–1000 ◦C. The thermal behavior was recorded in the TGA 
and Differential Thermogravimetry (DTG) modes. 

2.4.7. Biodegradability properties 

2.4.7.1. Contact angle measurements. Contact angle between ultra-pure 
water (resistivity 15.0 MΩ-cm) and EPBFs at 20 ± 0.1 ◦C were measured 
using a goniometer (Ramé-Hart Inc., model 250-F4, NJ, USA). The 
EPBFs were cut into rectangles (7 cm long and 1 cm width) and pasted 
with tape onto the leveling stage of the goniometer. Drops (1.0–1.5 μL) 
of ultra-pure water were manually deposited over the film surface using 
a precision microliter syringe (Ramé-Hart Inc., NJ, USA). At least 20 
right and left contact angles were measured automatically by the 
equipment software (DROPimage Advanced, USA). 

2.4.7.2. Solubility test. The EPBFs were subjected to a solubility test to 
measure their ability to dissolve in potable water (simulating household 
disposal conditions). This analysis was based on Gontard, Guilbert, and 
Cuq (1992), with some modifications. EPBF samples in the round disc 
shape (2 cm diameter) were cut and weighed (n = 4). Then, each disc 
was separately put in a beaker with 80 mL of potable water and sub-
jected to magnetic stirring for 12 h at 25 ◦C. The discs were dried in an 
oven (25 ◦C for 24 h) and weighed. The water solubility percentage was 
calculated according to the following equation (Dick et al., 2015): 

WS%=
Wi − Wf

Wi
× 100% (4)  

Where: WS% is water solubility percentage, Wi is the initial dry weight 
and Wf is the final dry weight. 

2.4.7.3. Biodegradability test in vermicomposting. Biodegradability 
testing was performed according Vig, Singh, Wani, and Singh Dhaliwal 
(2011) with some modifications. A nucleus of 370 adult earthworms 
(Eisenia foetida) was obtained from the vermiculture station of the Fac-
ulty of Veterinary and Livestock Sciences, University of Chile (Santiago, 
Chile). The nucleus was divided into four groups of 80 earthworms, each 
group weighed an average of 29 g. All earthworms used were adults, 
measuring no less than 7 cm in length, with the presence of clitellus. 
Four rectangular plastic boxes 34 × 20 × 12 cm3 were filled with 415 g 
of substrate (horse manure and organic household waste such as fruits 
and vegetables). The boxes were covered with a jute fabric and the 

earthworms were kept for 7 days in this system for acclimatization, 
spraying them with 100 mL of water every two days. The biodegrad-
ability test in vermicomposting was done according to Bandyopadhyay, 
Saha, Brodnjak, and Sáha (2019) with some modifications. Four rect-
angular pieces of EPBFs were cut (40 mm × 50 mm) and weighed in 
triplicate. The EPBFs were buried in the box at a depth of 1 cm of sub-
strate for four weeks. During this period, organic household waste (from 
fruits and vegetables) was also added as food for the earthworms. The 
buried films were removed from the substrate, cleaned to remove sub-
strate debris and weighed every 7 days. The weight loss percentage of 
the films was calculated using the equation described by di Franco, 
Cyras, Busalmen, Ruseckaite, and Vázquez (2004): 

WL%=
Wi − Wt

Wi
× 100% (5)  

Where: WL% is weight loss, Wi is the initial weight and Wt is the final 
weight at a predetermined time t. 

2.5. Statistical analysis 

All analyses were performed in triplicate. The statistics used were 
mean ± standard deviation. These data showed a normal distribution 
(Shapiro Wilk test) and homoscedasticity (Levene’s test); therefore, 
statistical analysis was performed by ANOVA analysis and Tukey’s test 
(p < 0.05), using the Stadistix 8® program (AOAC Association of Official 
Analytical Chemists, 1996; USA). 

3. Results and discussion 

3.1. EP production and characterization 

Dry EP showed the following proximate chemical composition: crude 
protein 5.9 ± 0.4%, crude fiber 1.6 ± 0.2% and ash 91.5 ± 0.5%. As 
expected, the main component of EP was ash, since eggshells consist of 
96% calcium carbonate in the form of calcite, the remaining 3–4% are 
organic materials (Her, Park, Li, & Bae, 2022). The second component of 
importance was protein, which was identified in greater amounts than 
reported by other authors (Masuda & Hiramatsu, 2007). This is probably 
because shell membranes were not removed in this study (we try to 
mimic the common discarded raw material), whose composition is 
mainly protein (83% crude protein on dry basis) (Long, Adams, DeVore, 
& Franklin, 2004) including collagen and keratin. In addition, the egg-
shells contained traces of albumen, which has a protein content of 90% 
on dry basis (Campbell, Raikos, & Euston, 2003). The percentage of 
crude fiber was low; traces of uronic acids and dermatan sulfate present 
in eggshell and membranes could be considered fiber (Lunn & Buttriss, 
2007; Nakano, Ikawa, & Ozimek, 2003). As expected, the calcium con-
tent of EP was high (36.7 ± 0.9 g/100 g) and similar to values reported 
by other authors (34–38 g) (Al-awwal & Ali, 2015; Masuda & Hiramatsu, 
2007). 

After grinding, the average particle size of EP was 41 ± 1 μm which is 
similar to other investigations that use trituration (manual/food pro-
cessor) as a preparation method, giving a size range between 38 and 75 
μm (Ferraz, Gamelas, Coroado, Monteiro, & Rocha, 2018; Shiferaw, 
Habte, Thenepalli, & Ahn, 2019). Particle size plays an important role in 
the properties of biodegradable films, since the interfacial region in-
creases as the particle size decreases (Agrawal, Thakur, & Singh, 2021). 
In previous studies, an increase in particle size generated a decrease in 
Young’s modulus, due to a decrease in the specific area of the particles, 
which reduces surface interactions and cross-linking of the material 
(Douce, Boilot, Biteau, Scodellaro, & Jimenez, 2004). Lower sizes could 
only be obtained using a combination of techniques such as ball milling, 
centrifugation and ultrasonication, which are more expensive and en-
ergy consuming (Iyer & Torkelson, 2014; Rahman et al., 2014). 

Raw eggshells represent an interesting ingredient for our purposes. 
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In addition to the simplicity for collection (waste in several industries), it 
possesses components potentially advantageous to provide desired me-
chanical properties to films (i.e. proteins) (Han et al., 2020; Mohammadi 
et al., 2018; Pavlath & Orts, 2009). In addition, the EP production 
method is advantageous, particularly for industries requiring homoge-
nous particle size through simple, low-cost techniques. 

3.2. EPBFs characterization 

3.2.1. Appearance and color 
Four different formulations of EPBFs were developed: EPBF-0%, 

EPBF-2%, EPBF-4% and EPBF-6% (Fig. 1 and Video 1 supplementary 
data). Fig. 1A shows the appearance of the EPBFs; EPBF-0% was trans-
parent, smooth, with a homogeneous surface, typical of alginate/glyc-
erol films (Avella et al., 2007; Benavides, Villalobos-Carvajal, & Reyes, 
2012; Jost, Kobsik, Schmid, & Noller, 2014; Kok & Wong, 2018; López 
et al., 2015). In contrast, EPBF-2%, EPBF-4% and EPBF-6% show pro-
gressively more heterogeneous surfaces, increasing the opacity and 
whitish coloration. These observations were analyzed with the color 
parameters (Table 1), where Y parameter (related to brightness) has a 
lower value for EPBF-0% and increases as the EP content increases. EP 
generates opacity due to the white-colored bioceramic characteristics of 
the added EP particles. The X and y parameters are similar for the EPBFs 

Fig. 1. Appearance (A), surface top views (B) and cross sections (C) by Scanning Electron Microscopy (SEM) of alginate/glycerol biodegradable films with different 
concentrations of eggshell powder of 0 (EPBF-0%), 2 (EPBF-2%), 4 (EPBF-4%) and 6% w/v (EPBF-6%). 

Table 1 
Properties of alginate/glycerol biodegradable films with different concentra-
tions of eggshell powder (EP) of 0 (EPBF-0%), 2 (EPBF-2%), 4 (EPBF-4%) and 
6% w/v (EPBF-6%).  

Properties EPBF-0% EPBF-2% EPBF-4% EPBF-6% 

Color parameters 
Y 5.8 ± 2.2a 20.3 ± 5.4b 34.5 ± 4.9c 36.9 ± 5.6d 

X 0.316 ±
0.006a 

0.313 ±
0.003b 

0.320 ±
0.002b 

0.323 ±
0.003b 

y 0.330 ±
0.005a 

0.333 ±
0.003b 

0.338 ±
0.002b 

0.341 ±
0.003b 

Mechanical properties 
TS (MPa) 80.3 ± 10.1 193.3 ±

22.5 
189.6 ±
18.5 

217.2 ±
49.5 

EAB% (%) 59 ± 3 31 ± 3 31 ± 6 27 ± 3 
YM10%(GPa) 
range 

0.03–0.07 0.15–0.22 0.20–0.27 0.25–0.44 

Solubility properties 
Contact angle (◦) 27.4 ± 2.2a 27.9 ± 3.0a 68.4 ± 4.8b 62.3 ± 2.7c 

Water solubility 
(%) 

90.7 ± 1.4a 82.9 ± 4.4b 80.3 ± 3.9b 75.2 ± 8.6b 

Different letters indicate significant differences (P < 0.05). 
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containing EP, thus locating them in the white region of a chromaticity 
diagram (Valero, 2013). These results contrast with Benavides et al. 
(2012), who did not find significant color differences when adding 
synthetic calcium carbonate to alginate films. The observed differences, 
in addition to the origin of the ingredient (raw materials versus calcium 
carbonate with 99.9%), could be due do to the significantly lower con-
centration of calcium carbonate used in the study (0.045% w/v) 
compared to this study (2–6% w/v). The color of synthetic calcium 
carbonate is different from the color of the EP used in this work. Raw 
eggshells have variations in color and chemical compositions. Colora-
tion could be relevant in the application of biodegradable films, espe-
cially when used as edible packaging; it is desirable to not change the 
color of foods. Interestingly, in a previous study, we observed that 
opaque chitosan-quinoa-oleic acid edible films, when applied by im-
mersion in strawberries, generated a thin layer whose opacity was not 
detected by consumers (Valenzuela et al., 2015). 

3.2.2. Mechanical properties 
Mechanical properties (i.e., strength, flexibility, elongation, hard-

ness) are critical characteristics for biodegradable films and, depending 
on the use, must be maintained (or not) after one or several uses. In 
addition, it is preferable that these films provide easy handling and 
storage. For example, mechanical strength is required to maintain the 
structural integrity of fragile contents, ideally able to prevent the 
biodegradable films breaking after applying accidental forces. Adequate 

elasticity is also desired to facilitate handling in a variety of applications, 
especially for food packaging (Santos et al., 2019). 

A set of stress-strain curves for the EPBFs is presented in Fig. 2A. TS, 
EAB% and YM10% values are summarized in Table 1. The EPBF-0% had 
the typical stress-strain curve commonly observed in other biopolymer 
materials with a TS of ~80 MPa (Ionita, Pandele, & Iovu, 2013; Paşcalău 
et al., 2012). The incorporation of EP clearly influences the mechanical 
properties of the EPBFs (Fig. 2A and B). Newer formulations with in-
termediate EP content (comprising 0.5%, 1.0% and 1.5% w/v EP) were 
included to provide intermediate stages of analyses and to further study 
the material. Even at the lowest EP content of 0.5%, the TS doubles 
EPBF-0%, i.e. 80 MPa vs. 166 MPa for EPBF-0% and EPBF-0.5%, 
respectively. This result, and the results from all other EPBFs, indicate 
that the TS parameter is very sensitive to EP content. The higher resis-
tance to deformation created by EP is because eggshell is a tough bio-
ceramic material (Chandan Kumar & Vasanthi, 2022; Ho, Hsu, Hsu, 
Hung, & Wu, 2013). Furthermore, the literature describes some specific 
functional groups in alginate that could bind to eggshell-derived com-
ponents (such as hydroxyapatite) through Ca2+ ionic bonds (Sampath 
Kumar et al., 2014). Therefore, the concentration of guluronate residues 
in alginate would be key in established interactions (Browning, Stocker, 
Gutfreund, & Clarke, 2021); representing important applications for 
future work. 

As shown in Fig. 2B, as EP increases, the nonlinear stress-strain 
characteristics gradually change to a linear one. For EPBF-2% the 
stress-strain curves have an elastic behavior until break (Fig. 2A). EPBF- 
4% are plastically deformed before rupture. Deformation becomes even 
more evident in EPBF-6% (Fig. 2A). The modifications of the mechanical 
properties due to EP incorporation into the alginate matrix are further 
shown in Fig. 2B where TS and toughness are plotted as a function of EP 
content: the higher the EP%, the harder and less tough the films become. 
Consistently, the reduction of toughness correlates with the increasing 
YM10% (Table 1), meaning that the EPBFs become more brittle as the 
amount of EP increases. Indeed, EPBF-6% displays at least a YM10% 
seven times larger than EPBF-0%, i.e., an average 0.05 vs. 0.35 GPa, 
respectively. 

In terms of future applications, EPBF-2% could be applied as an 
edible coating on foods, where the biodegradable films must have suf-
ficient elasticity to adhere to the contour of the food e.g. fruits such as 
strawberries, cherries, citrus fruits or avocado. EPBF-6% could be used 
as edible packaging for foods such as sausage and cheese. These for-
mulations could also be projected for other uses, considering interme-
diate or even larger concentration of EP than those tested here. In 
addition, as the ingredients proposed for these biodegradable film for-
mulations are edible, they could be potentially consumed with the food 
itself, however, a sensory panel is needed to determine consumer 
acceptance. 

3.2.3. Microstructural properties 
The optical microscopy images (Fig S1, supplementary data), showed 

a homogeneous and smooth surface for EPBF-0%, whereas EP particles 
tended to progressively agglomerate in EPBF-2%, EPBF-4% and EPBF- 
6%. 

The superficial topography for EPBFs is shown in Fig. 1B. For EPBF- 
0%, a homogeneous surface was observed, corresponding to typical 
morphologies of alginate/glycerol films (Gong et al., 2016; Liang, Wang, 
& Chen, 2019). EPBF-2% presented a rough but continuous structure. A 
significant change occurred for EPBF-4% and EPBF-6% and is related to 
the presence of organized crystalloid structures, presumably from the 
calcium carbonate provided by EP (Fernández, Valenzuela, Arias, 
Neira-Carrillo, & Arias, 2016; Seifan, Samani, Hewitt, & Berenjian, 
2017). Interestingly, cross sections of EPBFs show uniform structures for 
all formulations, indicating that calcium carbonate crystals are homo-
geneously distributed (Fig. 1C). 

Fig. 3A shows the Field Emission Scanning Electron Microscopy (FE- 
SEM) images for the EPBFs, with overlayed elemental distribution 

Fig. 2. A: stress-strain curves of alginate/glycerol biodegradable films with 
different concentrations of eggshell powder of 0 (EPBF-0%), 2 (EPBF-2%), 4 
(EPBF-4%) and 6% w/v (EPBF-6%). B: tensile strength (TS) and toughness 
measured with different concentrations of eggshell powder (EP: 0%, 0.5%, 1%, 
1.5%, 2%, 4% and 6%). *Indicates significant differences (P < 0.05). 
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obtained by Energy Dispersive X-ray Spectroscopy (EDX). EPBFs were 
mainly composed of carbon and oxygen, which are the main atoms 
composing the alginate/glycerol base matrix (Saravanakumar, 
Sathiyaseelan, Mariadoss, Xiaowen, & Wang, 2020). As EP increased in 
EPBFs, the oxygen content decreased and calcium increased (Table S2, 
supplementary data). As expected, EPBF-0% showed no presence of 
calcium. EPBF-2% showed some superficial calcium, representing 1.3% 
of the analyzed area. EPBF-4% and EPBF-6%, show a large increase of 
superficial calcium (20.8% and 23.9%, respectively; see Table S2, sup-
plementary data). 

The roughness of the surface of EPBF-0% and EPBF-2% was assessed 
by Atomic Force Microscopy (AFM). Fig. 3B shows the topographic 
images with a clear increase in the surface roughness for EPBF-2%. The 
surface methodology response (SMR) roughness values show an increase 
of 60% when adding 2% EP into EPBFs (from 189 ± 9 nm for EPBF-0% 
to 302 ± 11 nm for EPBF-2%). EPBF-4% and EPBF-6% were too rough to 
be measured by this instrument. The higher roughness observed is 
explained by the pattern that EP particles give to EPBF-4% and EPBF- 
6%, when organized as a "grain structure" (Fig. 3C), composed mainly of 
calcium atoms (Fig. 3A). 

Key microstructural properties of films such as porosity and particle 
distribution were analyzed. It is interesting to note that the EPBFs were 

not porous, showing porosity values below 300 nm, and a specific sur-
face area (SBET) close to 0 m2/g. This agrees with the pore volume ob-
tained from the CO2 isotherm values (ranging from 0.000574 to 
0.001573 cm3/g). The low porosity of EPBFs could be explained because 
the predominant CaCO3 form in eggshell is calcite (Aigbodion & Akin-
labi, 2019; Atikpo, Aigbodion, & Von Kallon, 2022), which is the most 
stable and least porous (Achour et al., 2017). 

The particle distribution in the EPBFs was also studied. Fig. 3C shows 
that particles in EPBF-4% and EPBF-6% are clustered as organized grain 
structures with size particle distribution peaks of 20.7 ± 2.0 and 26.6 ±
1.1 μm, respectively. The EPBF-2% particles were heterogeneously 
dispersed, providing low numbers of particles to be counted, which 
prevented a distribution peak analysis in a similar area as the others 
EPBFs. The study of the particle size, as well as their distribution in the 
EPBFs, is of interest because of its impact on the film microstructure and 
physical properties, such as water vapour permeability, mechanical 
properties, and general barrier properties (Jiménez, Fabra, Talens, & 
Chiralt, 2010). 

The study of surface morphology and topographical characteristics 
of the EPBFs is very important for their application, since it has been 
described that highly heterogeneous, rough and porous film surfaces 
could generate materials with: i) very low fracture toughness, and ii) low 

Fig. 3. A: Field Emission Scanning Electron Micro-
scopy coupled with Energy Dispersive X-ray Spec-
troscopy (FE-SEM/EDX) images of calcium 
distribution from alginate/glycerol biodegradable 
films with different concentrations of eggshell powder 
of 2 (EPBF-2%), 4 (EPBF-4%) and 6% w/v (EPBF-6%). 
Calcium is shown in purple for EPBF-2%, EPBF-4% 
and EPBF-6%. B: AFM topological micrograph for 
EPBF-0% and EPBF-2% films. C: particle size distri-
bution in the EPBF-4% and EPBF-6% films. The 
graphic inserted in the SEM image corresponds to the 
size distribution histogram of 200 particles (scale 
bars: 500 μm).   
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adhesiveness and moldability (Jouki, Khazaei, Ghasemlou, & Hadi-
Nezhad, 2013; Valenzuela et al., 2013, 2015). Low fracture toughness is 
one of the most complex characteristic to reproduce in biodegradable 
films compared to plastics materials. Low adhesiveness and moldability 
is important for adhesion of films to food contours for their use as 
coating or to develop functional packaging. Other authors have reported 
that the use of CaCO3 in coating formulations led to materials with very 
low strength and impact resistance, and with moderate moldability 
(Lucas, Borrajo, & Williams, 1993; Osman, Atallah, & Suter, 2004). 
However, in this study it was observed that the use of EP (which is 
mainly composed of CaCO3), improved the tensile strength of the films, 
as discussed in section 3.2.2. Based on the results obtained, we hy-
pothesize that the EP particles form a rough monolithic layer, which has 
very low porosity and is structurally cohesive with the polymer matrix 
explaining the improvements in mechanical properties; which could be 
influenced by the contribution of protein from the shell membranes and 
traces of albumin contained in the egg shells used in this study. The 
proteins could act as surfactants, which have been shown to improve the 
properties of CaCO3- polymeric coatings due to a good compatibility and 
strong interaction between proteins and CaCO3 (Barhoum et al., 2014; 
Bastrzyk, Fiedot-Toboła, Polowczyk, Legawiec, & Płaza, 2019; Fu, Qiu, 
Orme, Morse, & De Yoreo, 2005; Liu et al., 2008). 

3.2.4. Powder X-ray diffraction (PXRD) and 2D wide angle X-ray 
scattering (2D WAXS) 

X-ray diffraction is a technique used for determining atomic struc-
ture. It provides information on sample crystallinity, via diffractograms, 
distinguishing between amorphous and crystalline states that could 
predict the material behavior in future applications. Table S1 (supple-
mentary data) displays the 2θ values, observed and calculated, with the 
corresponding relative intensity as well as the observed and calculated 
d values using Bragg’s law for the EP as well as EPBF samples. Miller 
indexes were determined by refinement using WinXPOW INDEX Version 
2.03 (STOE GmbH). Powder X-ray diffraction assay is shown in Fig. 4. 
The results show that EP is primarily composed of trigonal calcite, in the 
space group R-3 c, in agreement with literature for most avian eggshells 
(Cahya & Marfuah, 2014; Nys, Gautron, Garcia-Ruiz, & Hincke, 2004; 
Spelta & Galdino, 2018). The refined cell parameters are a = b = 4.9869 
and c = 17.0526. 

Both PXRD and WAXS patterns show the scattering of the polymeric 
matrix together with the diffraction pattern of the EP. The eggshell 
diffraction patterns in the EPBF samples are the same as the neat 
eggshell powder (EP, calcite phase), without any modification in cell 
parameters, which means that it does not undergo any chemical modi-
fication within the resolution of the XRD measurements. The control 
matrix (EPBF-0%) shows an amorphous phase with diffuse scattering 
patterns, which implies that the sodium alginate/glycerol system does 

not yield any structuration at the molecular scale. 
Natural calcite exists in the sample as discrete crystals, as seen in the 

2D WAXS measurements (Fig S2, supplementary data) The 2D WAXS 
pattern shows spotty diffraction patterns according to the calcite phase. 

We used WAXS measurements to assess the CaCO3 content (as the 
main component of EP) in the EPBFs. The area of the (0 1 2) diffraction 
peak was chosen to normalize the lowest concentration of EPBF-2% 
(18.0%). We estimated a CaCO3 content of 32.0% and 50.3% in the 
EPBF-4% and EPBF-6%, respectively. Since the X-ray is always 
perpendicular to the film plane, preferential orientation of the eggshell 
particles cannot be ruled out. These values are quite distant from those 
found by FE-SEM/EDX (see Table S2., supplementary data), since this 
technique records the surface concentration of EP in EPBFs. This agrees 
with the SEM photographs (cross section) (Fig. 1C), where it is observed 
that for samples with increasing EP loading (EPBF-4% and EPBF-6%), 
the polymeric mixture goes to the bottom in the casting process, leaving 
more EP exposed on the surface. 

According to the data presented for PXRD and WAXS, all EPBFs were 
notably amorphous. As far as we know, the amorphous domains that 
conform the films have greater susceptibility to compression and 
decompression processes, favoring changes in the structures, and 
consequently on the mechanical properties of the EPBFs. Furthermore, 
its amorphous structure promotes EPBFs solubility in water (Choi et al., 
2022). Since amorphous materials are more feasibly to absorbe sur-
rounding water, water will act as a plastizicer, decreasing the glass 
transition temperature (Tg) and potentially affecting the storage sta-
bility (Espíndola, Norder, Koper, & Picken, 2023). 

3.2.5. Fourier Transform Infrared Spectroscopy (FTIR) 
The FTIR spectroscopy was performed to obtain reliable information 

about the chemical composition and the possible interactions between 
components in the EPBFs that could include the formation of new 
functional groups and/or destabilization of the components (Cas-
tro-Yobal et al., 2021; Gieroba et al., 2020; Luo et al., 2019). In our 
investigation, FTIR was used to analyze the EP and EPBFs (Fig. 5). In EP 
the characteristic bands of calcium carbonate were observed in the IR 
spectrum at 710, 871 and 1410 cm− 1 (Guru & Dash, 2014; Naemchan, 
Meejoo, Onreabroy, & Limsuwan, 2008). The band at 710 cm− 1 corre-
sponds to the bending of the C–O group of calcium carbonate (Abdel--
Khalek, Abdel Rahman, & Francis, 2017). The bands at 871 and 1410 
cm− 1 correspond to asymmetric stretching of CO3

− 2 molecules (Awog-
bemi, Inambao, & Onuh, 2020; Clark, 1995; Jazie, Sinha, & Pramanik, 
2013). The band at 2360 cm− 1 present in EP and all EPBFs corresponds 
to the asymmetric stretching vibration of CO2 (Liu, Cai, Ma, Sheng, & 
Huang, 2020; Pasquali, Andanson, Kazarian, & Bettini, 2008; Zhang 
et al., 2018). 

In the EPBFs, the spectra are similar and present absorption bands in 

Fig. 4. Powder x-ray diffraction (PXRD) for eggshell powder (EP) and alginate/glycerol biodegradable films (EPBFs) with different concentrations of eggshell 
powder: 0 (EPBF-0%), 2 (EPBF -2%), 4 (EPBF -4%) and 6% w/v (EPBF -6%). 
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the same regions with some slight differences. The absorption bands 
near 860 cm− 1 are related to the C–H bond of the glucuronic acid in 
alginate (Mahcene et al., 2020). The band at 1038 cm− 1 corresponds to 
the bending vibration of the O–H group of alginate, due to the formation 
of hydrogen bonds with water (Xiao, Gu, & Tan, 2014). The region close 
to 1400 cm− 1 and 1600 cm− 1 indicate symmetric and asymmetric 
stretching vibrations of the COO− group due to the presence of uronic 
acid in alginate (Lawrie et al., 2007; Mahcene et al., 2020; Xiao et al., 
2014). The band of 1400 cm− 1 also corresponds to the stretching of the 
C–O group of carbonate provided by EP (Prapruddivongs & Wong-
preedee, 2020), explaining why this band is more prominent in EPBFs 
with higher EP concentrations. The peaks around 2930 cm− 1 were 
attributed to C–H stretching vibration (Li et al., 2021; Nordin, Othman, 
Rashid, & Basha, 2020; Teixeira et al., 2021). Glycerol is an alcohol with 
a chemical structure containing CH groups, so its incorporation into 
films may have caused an increase in the interactions between the 
compounds in that region of the band (Gonçalves et al., 2019). The 3300 
cm− 1 band corresponds to the stretching of the O–H group (Lawrie et al., 
2007), this band is explained by the formation of hydrogen bridges 
between alginate and glycerol due to the uptake of water molecules and 
subsequent hydration. It is important to note, that those bands observed 
around 1400 cm− 1, 1600 cm− 1, 2900 cm− 1 and 3300 cm− 1 exhibit a 
slight shift from the EP and EPBF-0% to the EPBFs (2%, 4%, 6%), which 
is indicative of the interaction between the EP and the alginate/glycerol 
(Luo et al., 2019). Previous studies indicate that changes on the band 
position, that are related to the formation of hydrogen bonds between 
the components, could induce stronger intramolecular interactions 
improving the physical and mechanical properties of the biodegradable 
films (Luo et al., 2019; Tongdeesoontorn, Mauer, Wongruong, Sriburi, & 

Rachtanapun, 2011). 

3.2.6. Thermal characterization (MDSC, TGA) 
MDSC curves of EPBF-6% in non-hermetic pan under N2 shows the 

dehydration process by a broad endothermic peak centered at 65 ◦C, in 
the range 10 ◦C–110 ◦C. Afterwards the decomposition of the 
biopolymer takes place at c.a. 170 ◦C–220 ◦C, represented by an endo-
therm peak. In this step, there is an important evolution of glycerol, as 
was observed in the heating stage. The behavior in this zone is different 
from what observed in literature (Soares, Santos, Chierice, & Cavalheiro, 
2004). While they find an exothermal decomposition, in this study 
endothermic peak is seen due to the evaporation of the excess of glyc-
erol. Finally, a decrease in the Cp above 270 ◦C showed the final 
decomposition of the carbonaceous material (Fig. 6A). 

For hermetic pans, we observed 4 transitions for all samples. At 
143 ◦C and 159 ◦C, two small endothermic events which could be un-
derstood as melting of two low molecular weight fractions of alginate. 
Then a broad exothermic peak centered at c.a. 173 ◦C and a sharp peak 
around 190 ◦C, which are decomposition processes of alginate and 
glycerol under the pan internal pressure. For process 4, EPBF-6% shows 
the decomposition at lower temperatures due to the excess of EP 
(CaCO3), which must be overheating the surrounding organic material 
(Fig. 6B). 

The EPBFs have a similar TG measurement in a nitrogen atmosphere 
as the calorimetric curves (Fig. 6C). While we see 3 major decomposition 
steps, (proc 1 to 3 and 6) the differential curves (DTG) show further mass 
loss events (Fig. 6D). Initial weight loss up to 150 ◦C is due to the 
moisture loss from the sample (Proc. 1). Concurrent polymer degrada-
tion and glycerol evolution as a main weight loss is seen in the second 
stage between 150 ◦C and 310 ◦C (Proc. 2 and 3 respectively). Two 
minor events in the ranges 330 ◦C–390 ◦C and 390 ◦C–500 ◦C (Proc. 4 
and 5) were observed, attributed to further decomposition of organic 
residues, leaving just CaCO3 and Na2CO3. A step between 600 ◦C and 
800 ◦C must be due to the CaCO3 decomposition to CaO (Proc. 6). The 
transformation of Na2CO3 to Na2O is detected in EPBF-0% between 
710 ◦C and 750 ◦C which is hidden under the bigger Proc. 6 in the EP 
containing samples (Zhao et al., 2010). 

In general, the thermal analysis showed several thermal processes. 
The thermal behavior did not change abruptly at low EP concentrations 
in EPBFs. Only for EPBF-6% was a noticeable change observed, with a 
decrease in the decomposition temperature in sealed pans. According to 
our experience, the inorganic component of EP could transfer more 
efficiently the thermal energy to the whole material and negatively 
influencing the decomposition. However, these changes occur at high 
temperatures, therefore, it would not affect its application as a coating 
on foods that are kept under refrigeration or room temperature. On the 
other hand, if EPBFs were used as edible films on foods that are cooked 
at high temperatures, they would degrade progressively. This thermal 
behavior is typical of composite materials, where both organic (algi-
nate/glycerol) – inorganic (CaCO3) constituents behave as such 
separately. 

3.2.7. Biodegradability properties 
Thewettability of biomaterials is a prerequisite for projecting desired 

responses, such as degradation rates. It corresponds to the ease for 
spreading of liquid on the surface, which is directly related to the 
intermolecular forces between the phases. This behaviour is commonly 
estimated by contact angle measurements (hydrophilicity <90◦ < hy-
drophobicity) (Agrawal, Negi, Pradhan, Dash, & Samal, 2017; Grainger 
& Castner, 2017). As shown in Table 1, the contact angle values obtained 
for EPBFs increase with increasing EP concentration (27.4◦ for EPBF-0% 
to 62.3◦ for EPBF-6%). These results demonstrate the role of EP in 
decreasing the hydrophilicity of EPBFs, due to the presence of calcite in 
EP, which is the most insoluble form of calcium carbonate (Akin & 
Lagerwerff, 1965). 

To complement the hydrophilicity results of EPBFs, hydrosolubility 

Fig. 5. Fourier Transform Infrared Spectroscopy of eggshell powder (EP) and 
alginate/glycerol biodegradable films (EPBFs) with different concentrations of 
eggshell powder of 0 (EPBF-0%), 2 (EPBF-2%), 4 (EPBF-4%) and 6% w/v 
(EPBF-6%). 
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assays were also performed. The solubility percentages are shown in 
Table 1. As expected, EPBF-0% had a significantly higher solubility than 
formulations with increasing EP, although solubility for all EPBFs was 
high. The high solubility of EPBF-0% is explained by the hydrophilic 
nature of its constituent (alginate and glycerol), especially glycerol, that 
favors the absorption of water molecules (Mei, Yuan, Wu, & Li, 2013). 
Meanwhile, the incorporation of EP generated a decrease in the solu-
bility of the EPBFs as explained above. Interestingly, contact angle 
values of the EPBF-4% and EPBF-6% were about 2.7 times greater than 
EPBF-0% and EPBF-2% (Table 1), indicating that the former are more 
hydrophobic. However, water solubility values did not change between 
EPBF-2% and EPBF-4%, as found for contact angle values. This could be 
due to the surficial hydrophobicity of EPBF-4% and EPBF-6%. Similar 
results for contact angle and solubility values were found by Abdollahi 
et al. (2013) using cellulose nanocrystals as alginate film reinforcement. 
Solubility of films decreased consistently with increasing content of 
cellulose nanocrystals (until 5%), but contact angle values increased 
suddenly between 0 and 1% of cellulose nanocrystals, because of their 
hydrophobic nature. 

One of the major concerns regarding plastic waste is its impact on the 
environment. In addition to possible toxic effects generated by micro-
plastics, which can accumulate in soil and water, affecting plant and 
animal species (Salimi, Alavehzadeh, Ramezani, & Pourahmad, 2022; 
Yuan, Nag, & Cummins, 2022). Therefore, the development of a material 
capable of degrading completely in a short time represents an enormous 
environmental advantage. Fig. 7A shows the weight loss of the EPBFs at 
different times under vermicomposting. In the first stage (7 days), a slow 
degradation process was observed with an initial weight loss between 
10% and 30%. In the second stage (14 days), faster degradation was 
observed with a weight loss of ≈80% (EPBF-6% showed complete 
degradation). At 21 days, the residual structures were completely 

degraded (with the exception of EPBF-0%). Fig. 7B shows physical 
changes after biodegradation of EPBF-0% and EPBF-6% in the vermi-
composting system. On day 7, all the EPBFs had started the degradation 
process, presenting a rough appearance and changes in coloration. 
EPBF-0% and EPBF-2% remained almost whole, while EPBF-4% y 
EPBF-6% are fragmented. On day 14, EPBF-6% was completely 
degraded (Fig. 7B and Video 2, supplementary data) whereas fragments 
were observed for other EPBFs (0–4%). At day 21, only fragments of 
EPBF-0% were found. Importantly, the velocity of degradation was 
higher in this study compared to other authors. For example, Bandyo-
padhyay et al. (2019), did not obtain 100% degradation in 28 days for 
biodegradable films composed of bacterial cellulose and guar gum. 
Bootklad and Kaewtatip (2013) developed thermoplastic starch/egg-
shell powder composites, which did not completely biodegrade after 15 
days. Tang, Zou, Xiong, and Tang (2008) developed starch/polyvinyl 
alcohol/nano-silicon dioxide biodegradable films that did not 
completely biodegrade until 120 days. In this regard, the organic com-
pounds in EP (i.e. proteins) could make the EPBFs more attractive to 
earthworms, in addition EP could also be significantly more susceptible 
to biodegradation by microorganisms in the vermicomposting 
ecosystem (Bootklad & Kaewtatip, 2013). 

Several aspects of the potential applications of EPBFs as biodegrad-
able coatings or packaging are described in this work based on the na-
ture of the components, microstructure of the films, chemical 
interactions and biodegradability properties. Forthis study, we highlight 
the “grain structure” observed in Fig. 3C. This structure could act as a 
physical barrier hindering the penetration of water molecules into the 
EPBFs. This property is relevant when considering the application of 
these biodegradable films in foods with high respiration rates and the 
generation of water vapour, such as climacteric fruits and vegetables 
(Castellanos, Herrera, & Herrera, 2016; Garavito, Herrera, & 

Fig. 6. (A) Modulated Differential Scanning Calorimetry (MDSC) curves of EPBF-6% in non-hermetic pan under N2. (B) MDSC non-reversible traces for EPBF-0%, 
EPBF-2, EPBF-4 and EPBF-6%. (C) Thermogravimetric Analysis (TGA) and (D) differential thermogravimetry (DTG) of the investigated samples. 
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Castellanos, 2021). The solubilization assay showed the EPBFs fracture 
into several fragments after 1 h, gradually decreasing in size. This test 
indicates that EPBFs could be reduced at the household level by simply 
immersing them in water. Unlike petroleum-derived plastics, EPBFs do 
not generate microplastics, since their dissolution generates residues 
containing non-accumulating elements from sodium alginate, glycerol 
and eggshell. They are biocompatible, biodegradable and non-toxic 
compounds. Furthermore, alginate, glycerol and calcium carbonate 
have been used in soil fertilizers (Arafa, Sabaa, Mohamed, Elzanaty, & 
Abdel-Gawad, 2022; Borges, Soares Giroto, Klaic, Wypych, & Ribeiro, 
2021). EP could also be useful as a compostable ingredient (Aditya, 
Stephen, & Radhakrishnan, 2021). As discussed, our formulations 
degrade by vermicomposting faster compared to other studies. (Boot-
klad & Kaewtatip, 2013). 

The need to obtain water-soluble and vermicompostable film de-
pends on the intended application (Pelissari, Andrade-Mahecha, Sobral, 
& Menegalli, 2013). Water-solubility is convenient for future applica-
tions as edible packaging for coffee, instant soup, dehydrated puree. For 
example, coffee packaging that is capable of dissolving in hot water. 
EPBFs could also be used as calcium vehicles, since calcium carbonate is 
the most widely used calcium salt for fortification and supplementation 

strategies (Masuda & Hiramatsu, 2007; Schaafsma et al., 2000). 

4. Conclusions 

In this research, biodegradable and vemicompostable alginate/ 
glycerol and eggshell powder based films were developed by a simple 
and low-cost method. The EPBFs were whitish and opaque in appear-
ance, showed heterogeneous, rough microstructure and low porosity. 
The eggshell particles were distributed in a monolithic pattern on the 
polymeric matrix, where interactions were established, possibly be-
tween EP functional groups, shell membrane proteins and traces of al-
bumin and matrix functional groups. These interactions, together with 
the firmness provided by EP as a bioceramic, improved mechanical 
properties, producing films that were more resistant to fracture. The EP 
content also significantly increased the hydrophobicity of the EPBFs. 
Importantly, the films are biodegradable in water and can be disposed of 
at home and completely biodegrade under vermicomposting in short 
periods of time (between 14 and 21 days). EPBFs obtained from waste 
constitute a potential alternative as a coating or packaging that does not 
generate environmental pollution. 
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Formal analysis, Investigation. María Gabriela Villamizar-Sarmiento: 
Investigation, Writing – review and editing. Eduardo Soto-Bustamante: 
Methodology, Validation, Formal analysis, Investigation. Patricio 
Romero-Hasler: Methodology, Validation, Formal analysis. Jose Tapia: 
Methodology, Validation, Formal analysis. Judit Lisoni: Methodology, 
Validation, Formal analysis, Investigation. Felipe Oyarzun-Ampuero: 
Investigation, Writing – review and editing, Visualization. Carolina 
Valenzuela: Conceptualization, Methodology, Validation, Formal anal-
ysis, Investigation, Resources, Writing – original draft preparation, 
Writing – review and editing, Visualization, Supervision, Project 
administration. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

JL thanks the Unidad de Microscopía Electronica core facility of Uni-
versidad Austral de Chile, a Zeiss Reference Center for Latin-American, 
for the use of the FESEM Auriga system. CV and FO thanks to 
EQM170111, EDS detector of FE-SEM (Inspect F50), Facultad de Cien-
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