
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

MUSIB: MUSIC INPAINTING BENCHMARK

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

MAURICIO JESÚS ARANEDA HERNÁNDEZ

PROFESOR GUÍA:
FELIPE BRAVO MARQUEZ

PROFESOR CO-GUÍA:
DENIS PARRA SANTANDER

MIEMBROS DE LA COMISIÓN:
NELSON BALOIAN TATARYAN
EDUARDO GRAELLS GARRIDO

ELIANA SCHEIHING GARCIA

SANTIAGO DE CHILE
2023

MUSIB: Referencia de evaluacion para
autocompletado musical contextual

La Generación Automática de Música, y en particular, el Inpainting (o autocompletación
contextual) de Partituras Musicales, es un tema fascinante en la investigación del Aprendizaje
Automático, sin embargo, actualmente no es posible comparar los enfoques que resuelven esta
tarea: las métricas, los conjuntos de datos y las representaciones de los datos difieren de un
art́ıculo a otro, lo que dificulta conocer el progreso de la comunidad. En este contexto, el
desarrollo de un benchmark estandarizado para evaluar adecuadamente estos modelos seŕıa
de gran ayuda a efectos de análisis y reproducibilidad.

En esta tesis discutimos cómo los diferentes modelos generan música y cómo podemos
resolver este problema de evaluación con MUSIB: the Musical Score Inpainting Benchmark,
nuestra propuesta de nuevo benchmark con condiciones estandarizadas. Para evaluar adecua-
damente estos modelos proponemos dos conjuntos de métricas extendidas desde la literatura:
Métricas de notas y Métrica de divergencia. La primera se basa en la comparación indivi-
dual de los atributos de las notas, mientras que la segunda se basa en la comparación de las
distribuciones entre el conjunto de datos original y los datos generados artificialmente.

Nuestros experimentos sugieren hallazgos interesantes en relación con el estado del arte
del inpainting de partituras musicales. 1) La reproducibilidad de los modelos no es del todo
precisa, lo que demuestra que todav́ıa se puede mejorar para que los modelos sean más
reproducibles. 2) El rendimiento de los modelos depende en gran medida de la cantidad de
datos de entrenamiento. 3) El rendimiento de todos los modelos vaŕıa según el conjunto de
datos. 4) Todos los modelos aprenden algunos aspectos de la música mejor que otros (el ritmo
por sobre el tono, por ejemplo).

Este trabajo constituye la primera aproximación a la evaluacion estandarizada del in-
painting musical, siendo un importante soporte para el estudio de la Generación Musical
Automatizada.

i

MUSIB: Music Inpainting Benchmark

Automatic Music Generation, and in particular, Musical Score Inpainting, is a fascina-
ting topic in Machine Learning research, however, it is currently not possible to compare
approaches that solve this task: metrics, datasets, and data representations differ from paper
to paper, which hinders the progress the community has made. In this context, the develop-
ment of a standardized benchmark to properly evaluate these models would be of great help
for analytical and reproducibility purposes.

In this thesis, we discuss how different models generate music and how we can solve this
evaluation problem with MUSIB: the Musical Score Inpainting Benchmark, our proposed
new benchmark with standardized conditions. In order to properly evaluate these models
we propose two sets of metrics extended from the literature: Note Metrics and Divergence
Metrics. The first relies on a one-on-one comparison of notes attributes while the second relies
on the comparison of distributions between the original dataset and the artificially generated
data.

Our experiments suggest interesting findings regarding the start of the art for musical
score inpainting. 1) The replicability of models is not quite accurate, showing that there
is still room for improvement in making models more reproducible. 2) The performance of
models is highly dependent on the amount of training data. 3) The performance of all models
varies as the dataset varies. 4) All models learn some aspects of music better than others
(rhythm over the pitch, for example).

This work constitutes the first approach to benchmark the musical inpainting task, being
an important support for the study of Automated Music Generation.

ii

A Erick por enseñarme a amar la música.
A Daniel por enseñarme a amar la programación.

iii

Agradecimientos

Primero que todo, le agradezco a mis padres, Marisol y Alan, por siempre inculcarme
el espiritu de aprender más y superarme, gracias a ellos puedo decir que estoy donde estoy.
Agradezco a mis hermanos Erick y Daniel por compartirme sus pasiones en las areas que
disfrutan, como son la musica y la programacion. De ellos viene gran parte de la inspiracion
para esta tesis y ademas para quien soy hoy.

En segundo lugar, agradezco profundamente a Valeria por ser mi compañera de vida estos
años y por apoyarme en las alegŕıas, penas y frustraciones que me ha tráıdo el proceso de
escribir una tesis.

En tercer lugar, agradezco a mis profesores guias, Felipe y Denis, por su apoyo a lo largo
de esta tesis. A Felipe por sus esfuerzos en enseñarme a aplicar buenas metodologias para mi
investigacion y sobre todo su motivacion por querer aprender nuevas cosas junto a mi en esta
area no tan explorada como es la generacion de musica automatica, y a Denis por recibirme
y compartir conmigo sus conocimientos del mundo de la creatividad e inteligencia artificial
junto al grupo de CreativAI.

Le agradezco tambien a mis amigos, Benjamin, Nicolas y Jose por compartir conmigo el
amor por la musica por años desde los tiempos del colegio. De la misma forma agradezco al
Chavo, al Santos, a Rodrigo, y a Matias por ser grandes amigos que formé en la universidad,
con quienes ademas en algun momento pude discutir ideas sobre esta tesis.

Finalmente, agradezco el financiamiento rebicido por parte del Instituto Milenio Funda-
mento de los Datos (IMFD), junto con la infraestructura de computo provista por ReLeLa.

iv

Table of Content

1. Introduction 1

1.1. Problem Statement . 2

1.2. Hypothesis . 3

1.3. Objectives . 3

1.3.1. General Objective . 3

1.3.2. Specific Objectives . 3

1.4. Methodology . 3

1.5. Thesis Structure . 4

2. Background and Related Work 5

2.1. Scientific Disciplines . 5

2.1.1. Artificial Intelligence . 5

2.1.2. Machine Learning . 6

2.1.3. Automated Music Generation . 10

2.2. Music Generation . 12

2.2.1. Preliminary Concepts . 12

2.2.2. Data Representation . 12

2.2.3. Vector Encoding . 15

2.3. Music Inpainting Task . 18

2.4. Related Work . 18

2.4.1. Similar Benchmarks . 18

v

2.4.2. Music Inpainting Models . 18

2.4.3. Metrics . 21

3. MUSIB: Music Inpainting Benchmark 24

3.1. Motivation . 24

3.2. Datasets . 25

3.3. Evaluation . 27

3.3.1. Note Metrics . 27

3.3.2. Divergence Metrics . 31

3.4. Results and Discussion . 35

4. MUSIB Implementation Details 38

4.1. Data Processing . 38

4.1.1. Download from source . 38

4.1.2. Make data frames . 40

4.1.3. Clean data . 41

4.2. Feature Extraction . 41

4.2.1. Encoding MIDI as vectors . 42

4.2.2. MIDI Dataset . 43

4.3. Model Architecture and Training . 44

4.4. Evaluation . 44

5. Conclusions and Future Work 45

5.1. Conclusions . 45

5.1.1. Main Findings . 46

5.1.2. Future Work . 47

Bibliography 53

vi

List of Tables

2.1. Existing models for music inpainting . 19

3.1. Original evaluation conditions for music inpainting models, showing how dif-
ficult is to compare them. 25

3.2. MUSIB evaluation on IrishFolk Dataset. 35

3.3. MUSIB evaluation on JSB Chorales Dataset. 35

4.1. Comparison of datasets formats and sources 39

4.2. Filters applied to each dataset. 41

4.3. Models encoding defined in MIDI Dataset 43

vii

List of Figures

1.1. Musical Score Inpainting setup. The measures in the middle of a score are
unknown at first, then generated and conditioned to the surrounding context. 2

2.1. Diagram showing the relation of Artificial Intelligence, Machine Learning,
and some disciplines such as Computer Vision, Natural Language Processing
(NLP), and Automated Music Generation 6

2.2. Diagram of a Feedforward Neural Network. 7

2.3. Diagram of a Recurrent Neural Network shown as a multiplication of matrices
and vectors. 9

2.4. Diagram of a Variational Autoencoder Network. The bottleneck encodes the
input as the distribution parameters µ and σ. The input is then reconstructed
through sampling from the distribution defined by these parameters. 10

2.5. MIDI representation of music score. 13

2.6. MusicXML representation of music score. 14

2.7. Temporal scope comparison for a piano roll-like representation. Dotted lines
represent the granularity of each representation. 15

2.8. Vector encoding for each method discussed in this work. (a) Musical input
data. (b) The encoding used in ARNN [22] and InpaintNet [40]. The token
” represents the state of holding a note. (c) The factorized encoding used in
Music SketchNet[11]. (d) The REMI-based encoding used in VLI [10]. 17

2.9. Diagram of the Music Inpaintnet architecture. 20

2.10. Diagram of the Music SketchNet architecture. 22

2.11. Diagram of the Anticipation RNN. 23

3.1. Pitch distribution for the IrishFolkSong dataset. 26

3.2. Pitch distribution for the JSB Chorales dataset. 26

viii

3.3. Example of evaluation between an expected sequence y and two generated
sequences ŷ1 and ŷ2. (a) Shows the results when applying Pitch Accuracy over
time indexes as proposed by Chen et. al [11]. (b) Shows the results when
applying our proposed modification to Pitch Accuracy in conjuction with our
proposed Position Score. 30

3.4. Example of Rhythm Accuracy giving different results when applied to the
same data with different resolution. 31

3.5. Note metrics evaluation pipeline. We represent each note in true and predicted
data as triplets (Position, Pitch, Duration). We compute true positives, false
positives, and false negatives for predicted positions. Then we calculate the
position-F1 score, pitch accuracy, and rhythm accuracy. Since we can only
compare notes present on both sets, we filter false positives and false negatives
when calculating pitch and rhythm accuracy. 32

3.6. Divergence Metric of an arbitrary function f . Each sequence in Ytrue and Ypred
is mapped to a single value in [0, 1]. Then, the distribution of these values for
each set is compared using Jensen-Shannon Divergence. 33

3.7. Comparison of Note Metrics for different datasets. 36

3.8. Comparison of Divergence Metrics for different datasets. 37

4.1. Diagram of the overall data pipeline in MUSIB. 39

ix

Caṕıtulo 1

Introduction

Automatic music generation is a research topic in machine learning that is especially
useful for assisting musicians in the process of composing new music. Its goal is to develop
computational systems that provide recommendations to enhance human creativity.

Multiple models have been proposed to assist in this human-creative process. In recent
years, deep learning techniques have emerged as the tool of choice for model design in this
field, mainly due to their ability to learn complex implicit rules and temporal dependencies
in data [6].

However, most approaches to music generation assume that new music is conditioned by
the music that precedes it, which forces sequential generation. This introduces limitations
on the degree of interaction between musicians and computers, as musicians’ composition is
highly non-sequential: different segments of a piece are made, then expanded, combined, and
refined in several stages to completion, rather than a single sequential stage from beginning
to end [4].

For this reason, we focus on the Musical Score Inpainting (or Infilling) task, which aims
to fill in incomplete pieces of music to better mimic the non-sequential musical composition
process. In this configuration, musicians can enter incomplete ideas they are working on and
receive recommendations on how to progress that are specifically tailored to their context,
making interaction easier and more intuitive.

Although several methods have been proposed to address this task, there is no comparable
configuration among them: training and evaluation are performed in different datasets using
different metrics as well. This brings a problem when comparing approaches, hindering the
progress development in the state of the art and the understanding of what is useful or not.

To address these issues, we propose an evaluation procedure to serve as a suitable stan-
dardization framework for all music inpainting methods. First, we compiled the four most
recent models up to 2021 and adapted them from their source code so that they could all be
run in a single environment. These models share the same base framework (PyTorch), which
made the adaptation appropriate to the time span of the project. To validate our correct
reproduction of these methods, we performed experiments to compare the metrics stated

1

in each work with the results we obtained. We then defined our evaluation procedure and
applied it to these four models to analyze the results. In the next section, we describe in
detail the technical problem and standardization challenges in the evaluation of our selected
models.

1.1. Problem Statement

The evaluation of models for Musical Score Inpainting presents significant challenges in
terms of defining a standardized framework to adequately measure performance:

• First, the metrics previously proposed in the literature cannot be used as-is: the results
for these metrics differ when applied to different representations of the same data [23].
This is undesirable as proper evaluation requires comparing multiple methods with
different representations.

• Second, the sets of metrics utilized for evaluation on each method proposal differ from
paper to paper. This implies that different evaluations measure different properties that
they do not share with each other, making them not comparable.

• Third, methods are applied to different datasets with different characteristics such as
data format, number of samples, average song length, and notes/rhythms distributions,
among others. Consequently, the performance of a model in one dataset is not neces-
sarily the same in another.

• Finally, the output of each model is generated by a random process to encourage varia-
bility in the recommendations. This makes the evaluation process non-trivial, as there
may be several samples generated that sound good in context even though they are not
an exact reproduction of the true data.

Figure 1.1: Musical Score Inpainting setup. The measures in the middle of a score are unknown
at first, then generated and conditioned to the surrounding context.

That said, it is not clear whether it is possible to formulate an evaluation procedure that
brings together all previous evaluations into a single framework that can be applied to general
music inpainting models.

2

1.2. Hypothesis

In this thesis, we hypothesize that it is possible to find a unifying pattern across several
models of musical score inpainting that enables a direct comparison of performances for
multiple AI methods. Furthermore, we argue that it is possible to extend current evaluation
procedures to include measures on the expected variability of model’s output.

1.3. Objectives

1.3.1. General Objective

The main objective of our research is to develop an evaluation framework that allows
to properly compare different approaches for musical score inpainting, thus providing solid
evidence to define the current progress of this task and its state of the art. The idea is
to establish which model works best under defined circumstances and metrics, replicating,
integrating and testing previously proposed methods for comparison with different datasets.

1.3.2. Specific Objectives

1. Propose and develop an evaluation method that is agnostic to the data representations
chosen by the different models of music inpainting.

2. Introduce a formalization of Note Metrics and Divergence Metrics: two types of eva-
luation derived from our methodology.

3. Benchmark and analyze the results of each music inpainting model under standardized
conditions.

4. Integrate models for musical score inpainting in an open-source library for easy repro-
ducibility of the experiments conducted.

1.4. Methodology

This section presents the methodology proposed to fulfill the specific objectives of our
research. Concisely, our work mainly consists of the following steps:

1. Literature review of music generation and musical score inpainting and selection of
models for the task based on two criteria: source code availability and recency of pu-
blication.

2. Reproduce the implementation of an existing model for musical score inpainting. The
idea is to determine how to generalize the data flow for several models from a study

3

case. In particular Data Processing, Feature Extraction, Model Architecture, Training,
and Evaluation.

3. Design a module to serve as a unified pipeline to transform raw data from MIDI/MXL
format to vector representations needed for each model and their consequent trainin-
g/evaluation. This requires the abstraction of the logic of all model pipelines.

4. Study the replicability of experiments for each model when compared to their former
published datasets, taking as a comparison the Loss value declared on each publication.

5. Design and implementation of our proposed evaluation pipeline, which includes Note
Metrics and Divergence Metrics. We formalize their properties for standardization and
generalization with respect to different data representations.

1.5. Thesis Structure

The remainder of this thesis is organized as follows:

In Chapter 2 we discuss the theoretical background necessary to understand the concepts
presented in our research. Chapter 3 presents the models, datasets, and metrics that conform
to our proposed benchmark MUSIB. Chapter 4 describes code design and implementation de-
tails. Finally, the last chapter summarizes the conclusions of this work and discusses possible
extensions of the project for future work.

4

Caṕıtulo 2

Background and Related Work

This chapter presents the scientific disciplines involved in our research and the related
bibliography. First, an overview of the area of knowledge in which this thesis is developed
and its methods is given. Then, the overview of Musical Generation is explained: preliminary
musical concepts, digital representation of music, vector data encodings and the formalization
of our studied sub-task Musical Score Inpainting. Next, in related work, an overview of
benchmarks and previous evaluations performed by other research communities for different
tasks in the context of machine learning is presented to show the need for stronger replicability
standards. Finally, it presents current approaches to music inpainting and with what metrics
these approaches have been measured.

2.1. Scientific Disciplines

2.1.1. Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science that theorizes and develops
computer systems capable of performing tasks that normally require human intelligence,
such as visual perception, speech recognition, decision-making, language translation, and
even tasks to enhance human creativity, such as automated music generation or text-to-
image systems such as Dall-e 2 [43].

To be considered artificially intelligent, a system would need at least these capabilities
(as described in [34]):

• Knowledge representation: able to hold knowledge and store it somewhere.

• Automated reasoning: able to reason based on stored knowledge.

• Machine learning: able to learn from its environment (data).

5

Figure 2.1: Diagram showing the relation of Artificial Intelligence, Machine Learning, and
some disciplines such as Computer Vision, Natural Language Processing (NLP), and Auto-
mated Music Generation

2.1.2. Machine Learning

Machine learning consists of the use and development of computer systems that are ca-
pable of learning and adapting without following explicit instructions, by using algorithms
and statistical models to analyze and draw conclusions from patterns in data.

Machine Learning algorithms are often classified into unsupervised and supervised models,
depending on the degree of human interaction required to use each approach.

Supervised machine learning learns the relationship between input data and labeled out-
put data. The vast majority of available data is unlabeled raw data. Human interaction is
usually necessary to accurately label data ready for supervised learning. This makes this kind
of algorithm dependent on human intervention, hence the name supervised. Once a model
has been trained to predict labels, it is often used to classify new and unseen datasets or to
predict outcomes given previous data.

Unsupervised machine learning, on the other hand, identifies patterns and trends in raw
datasets, by clustering similar data into a specific number of groups. When working with raw
data, there is no need to label input and outputs, so the only human intervention is to define,
for example, the number of clusters expected to be obtained from the data. Unsupervised
learning is a powerful tool for gaining insight from data, and is often used as a data exploration
method to better understand data sets.

Classical Machine Learning

This approach consists of developing models in which the data is intended to be repre-
sented by its most important features, which are those that best improve the quality of a
model’s output. This process requires complex feature engineering in which human experts

6

define what characteristics of the data are best suited to a given problem. The main drawback
is that engineering this solution is time-consuming and does not guarantee that the selected
features are the optimal combination for a problem.

Neural Networks

Neural networks, also known as artificial neural networks (ANNs), are a subset of machine
learning algorithms whose name and structure are inspired by the way that biological neurons
signal to one another.

Neural networks are comprised of multiple layers of nodes, containing an input layer, one
or more hidden layers, and an output layer. Each node, which mimics a neuron, connects to
another and has an associated weight at each connection. The output of any individual node
is calculated as a non-linear transformation of the values present on each previous neuron,
and then this data is sent to the next layer of the network.

Figure 2.2: Diagram of a Feedforward Neural Network.

Recently, approaches based on Neural Networks have been preferred to Classical Machine
Learning mainly because of these features:

• Feature engineering is omitted: Neural Network’s layer-based architecture extracts and
abstracts key information from raw data to focus on the important parts of the data.
In other words, the network highlights and use the relevant data information automa-
tically, so there is no need to extract features manually, which is a time-consuming
activity.

7

• Can approximate any function: In 1989 Hornik et. Al [27] proved the Universal Appro-
ximation Theorem for ANNs. This implies that neural networks can represent a wide
variety of interesting functions when given appropriate weights. This shows the poten-
tial that this approach can achieve. Note, however, that this theorem states that such
a construction for an ANN is possible, but it does not provide the construction for the
weights.

Formally, Artificial Neural Networks are a family of functions that given an input x, and a
set of parameters θ learned from the observation of previous data will approximate its output
ŷ as close as possible to the true output value y.

f(x; θ) = ŷ v y

The choice of the definition of the function f will determine the class type of the network.
The simplest class of ANN is called Feedforward Neural Network and has been successfully
used for multiple purposes. However, multiple variations of this architecture have been deve-
loped through the years to better suit different problem domains and obtain better results.
In particular, we will discuss the common Neural Network approaches used for the music
generation methods that will be presented in this document.

Feedfoward Neural Network

The feedforward neural network was the first and simplest type of artificial neural network
devised. In this network, the information moves in only one direction forward from the input
nodes, through the hidden nodes, to the output nodes. There are no cycles or loops in the
network. The output nodes are used to classify the input into a class, thus the softmax will
output the corresponding class.

h(0) = σ(W
(0)
θ x+ b

(0)
θ)

h(i) = σ(W
(i)
θ h(i−1) + b

(i)
θ)

f(x; θ) = softmax(σ(W
(n)
θ h(n) + b

(n)
θ))

Where σ is a non-linear function: commonly Sigmoid, tanh or ReLu.

Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) [21] is a class of artificial neural networks where recu-
rrent connections between nodes allow them to exhibit temporal dynamic behavior. Derived
from feedforward neural networks, RNNs have an internal state mechanism that allows se-
quences of variable-length inputs to be processed.

8

Recurrent networks can have additional store states, and the storage can be under direct
control by the neural network. Such controlled states are referred to as gated states or ga-
ted memory and are part of Long Short-Term Memory Networks (LSTM) [25] and Gated
Recurrent Units (GRU) [12].

The function f for this class of neural networks is defined as:

h(0) = random sample()

h(i) = tanh(x(i)U + h(i−1)V + b)

Figure 2.3: Diagram of a Recurrent Neural Network shown as a multiplication of matrices
and vectors.

The last vector h(n) in the RNN condenses the information of the whole sequence x. Note
that there is no softmax function in the formulation of RNNs. This is due to its design not
being necessarily made for classification. The vector h(n) can be used for classifying, but also
used to generate a new sequence y through sampling conditioned on h and the output of each
step.

Variational Auto Encoder (VAE)

A Variational Autoencoder [33] is an architecture composed of both an encoder and a
decoder network that is trained to minimize the reconstruction error between the encoded-
decoded data and the initial data. In order to introduce regularisation to the latent space
instead of encoding an input as a single point, it encodes it as a distribution over the latent
space.

This regularisation induces variance in order to ensure points close to each other will share
properties of the original encoded input, making the transition through different groups of
points smoother.

The variational encoder architecture is formally described as:

µθ = gθ(x)

9

σθ = hθ(x)

ξ = N(0, I)

z = σθξ + µθ

x̂θ = fθ(z)

Where the optimization goal is to minimize the following expression:

L = ||x− x̂θ||2 +KL[N(µθ, σθ), N(0, I)]

Figure 2.4: Diagram of a Variational Autoencoder Network. The bottleneck encodes the input
as the distribution parameters µ and σ. The input is then reconstructed through sampling
from the distribution defined by these parameters.

Transformers

A transformer is a Neural Network architecture that adopts a mechanism called self-
attention which highlights the relevant context for any position in an input sequence when
being processed.

Like recurrent neural networks (RNNs), transformers are designed to process sequen-
tial input data. However, transformers process the entire input all at once to allow higher
parallelization than RNNs and therefore reduce training times.

Transformers have been documented to outperform several approaches when exposed to
massive amounts of data [19].

2.1.3. Automated Music Generation

Composing music automatically with computers is challenging since it requires mimicking
musical rules, which is complex to formally describe in the context of a musical language as

10

it is very ambiguous depending on the context or style of a song, and as it is constantly
evolving.

Several computational methods have been proposed to address this human creative pro-
cess, which can be divided into three main approaches: Rule-based systems, Classical Machine
Learning, and Deep Learning.

Rule-based systems

This approach consists of defining hand-crafted rules to introduce knowledge into ge-
nerative systems by finding musical patterns or regularities. The major drawback of this
approach is that it is time-consuming and not extensible to new data due to the difficulty in
the maintenance of a large number of rules.

An interesting case of this approach is Generative Grammars [20, 53, 9]. They describe
different music styles through knowledge-based grammar which creates chord progressions or
melodies on the basis of what is observed in musical corpora and rules of a particular style.

Classical Machine Learning-based systems
This approach utilizes algorithms to statistically analyze a dataset to apply a pre-defined
algorithm over relevant features engineered by an expert. Some of these approaches include:

• Hidden Markov Models [1, 47, 42]: In this approach, the music is represented as a
sequence of states where the transition probabilities between a note to another are
calculated by frequency in the dataset.

• Genetic Algorithms [26, 37, 44]: In this approach, a probability distribution over re-
levant features is set to randomly sample and create music. This sampling is further
refined by setting constraints over pre-defined musical rules.

Deep Learning-based systems

Deep Learning-based approaches [31, 50, 17, 39] are currently the best performers in
music generation tasks. The main advantage over previous approaches comes from the fact
that neural networks capture relevant information through time and infer the inner rules of
the sequences, which means that expert knowledge is not required to encode several rules by
hand as before. Under this approach, the most commonly used models are recurrent neural
networks, encoder-decoder architectures, and lately transformer-based models.

This approach has been mostly stated as a Supervised Learning task consisting of a clas-
sification problem, where each note represents a class. The goal is that given a sequence of
musical tokens a model could predict the next note to belong to the correct class. This pre-
diction is done iteratively through Auto-regression, where each note prediction will condition
the next prediction step recursively.

11

2.2. Music Generation

2.2.1. Preliminary Concepts

In this section we present some musical concepts required to follow the document:

• Note: Representation of pitch and duration of a sound in musical notation.

• Pitch: Highness or lowness of a sound in terms of frequency. Often discretized as part
of pitch classes. For example: C, D, E, F, etc.

• Rhythm: The placement of sounds in time. This includes both the onset of a note but
also the duration of the note.

• Melody: Sequence of notes for a single instrument or vocal, with at most one note
playing at the same time.

• Harmony: Group of notes that sound at the same time.

• Monophonic music: Sequence of notes exclusively formed by melodies for one instru-
ment/voice.

• Polyphonic music: Sequence of notes for one or many instruments where more than one
note can be played at the same time.

• Musical Key: A main group of pitches, or notes, that form the harmonic foundation of
a piece of music.

• Beat: Basic unit of time that will mark regularly repeating events.

• Measure: Segment of time corresponding to a specific number of beats.

• Time signature: Specifies how many beats are contained in each measure (bar)

• Dynamics: Variation in loudness between notes. It gives expressiveness to music per-
formances.

2.2.2. Data Representation

Symbolic music vs Audio Signal

Music Generation approaches often treat musical data as symbolic representations. This
means that data is encoded as a sequence of events regarding attributes of notes such as
pitches, onsets, and dynamics instead of raw audio signals which are harder to process.

Symbolic music has multiple advantages compared to audio representations:

• Representations are closer to an actual musical score than audio. This is due to the
use of metadata that explicit attributes such as tempo, pitch, rhythm, onsets, velocity,
time signature, etc.

12

• Extracting information and applying common operations such as adding/removing no-
tes, key changes, changes in tempo, etc is easier.

• Symbolic data uses less disk space than audio signals due to encoding just the events
of interest as opposed to sampling each millisecond in audio representations.

• Transformations of symbolic data to another source of musical data are direct: symbolic-
to-score and even symbolic-to-audio.

However, symbolic music also has disadvantages when compared to audio data:

• The expressiveness of symbolic data is very limited due to an oversimplification of audio
signals into discretized events.

• The conversion from symbolic-to-audio formats makes the music feel unrealistic when
is listened to due to the utilization of digitalized instruments.

Data Format

Symbolic music is often formatted as either MIDI or MusicXML files.

Musical Instrument Digital Interface (MIDI) is a protocol originally designed to com-
municate computers with electronic musical instruments. MIDI store event messages about
musical notes: Track for specifying the current instrument, clock signals to set the Tempo
of specific events in absolute time, Channel to define where the output of an event will be
played, parameters such as Velocity to define the volume of a note, among several other
metadata. An example of MIDI encoding is shown in Figure 2.5.

Figure 2.5: MIDI representation of music score.

MusicXML, on the other hand, is a digital sheet music interchange and distribution
format based on XML syntax. Its goal is to create a universal format for common Western
music notation. In contrast to MIDI, it is more musical-oriented than event-oriented. It stores
musical information based on relative positions (musical scores) instead of absolute time. It
also contains musical information as Key and the names of the notes contained in a file. An
example of MusicXML format is shown in Figure 2.6.

Temporal Discretization

13

Figure 2.6: MusicXML representation of music score.

Since time works over a continuous space, it is necessary to initially decide how to dis-
cretize each note event over time to match its musical representation and thus determine if
it is a quarter note, eighth note, etc.

The choice of how to discretize temporal data first considers how fast the notes are
played measured in beats per minute (bpm), which will define the tempo of the piece. Once
the tempo is set, the minimal step of a time grid will consider an arbitrary but fixed number
of subdivisions for each beat.

Common choices seen in automated music generation consider 2, 4, 6, and 8 subdivisions
for each beat [23]. In musical terms, this translates as the minimal note length for each
discretization as an eighth note (quaver), sixteenth note (semi-quaver), sixteenth triple note,
and thirty-second note (demisemiquaver), respectively. The time discretization is also often
referred to over 4/4 musical measures, in which case they will contain 8, 16, 24, and 32
subdivisions per measure, respectively.

Temporal Scope

When describing the temporal grid for our data, there are two main approaches to conside-
ring the temporal scope of the musical piece. Figure 2.7 shows an example of both approaches
listed below.

• Time Based Discretization: The representation of the musical piece is done through an

14

equally spaced grid of time steps, usually set to the shortest note duration. Each time
step corresponds to a specific temporal moment where an event could or not be present.
Since may be time steps without notes it may induce sparsity to the representation.

• Note Based Discretization: In this approach, there is no fixed time step. The granularity
of the representation is defined depending on the number of notes and how long they
last. Note that, by considering one note as a single processing step, the number of
processing steps and its memory usage is greatly reduced.

Figure 2.7: Temporal scope comparison for a piano roll-like representation. Dotted lines
represent the granularity of each representation.

2.2.3. Vector Encoding

Piano Roll

Piano Roll is a common vector representation for music. It encodes music as a sequence
of time steps where each time is a multi-hot vector that indicates whether a note is being
played or not. This representation has a limitation for distinguishing the end of a note and
the start of another note. Formally,

x ∈ {0, 1}I×T×N

where {0, 1}N represents a multi-hot vector that indexes notes currently being played
with 1 and 0 otherwise, N represents notes’ vocabulary size, I the number of instruments,
and T the number of time-steps.

Note Sequence

Note Sequence is a particular case of piano roll that is often used for monophonic setups.
Since the vector in the note’s dimension will be a one-hot vector, its representation can be
compressed as a single integer value indexing the position where the vector is one. By doing
this the data is compactly stored. The encodings of silences and holds are added as two extra
tokens. Then, the values in this encoding can be seen as:

15

x ∈ {0, 129}I×T

where {0,129} represents the token space (0 to 127 represent pitches, 128 hold, 129 silen-
ce), I the instrument dimension, and T the time-step dimension. An example of this encoding
is shown in Figure 2.8 (b).

Factorization

Chen et. al [11] introduced the concept of factorization over Note Sequence encoding. It
consists of representing the music in two different dimensions: pitch and rhythm. An example
of this encoding is shown in Figure 2.8(c).

REMI

REMI [32] is an encoding scheme inspired by MIDI that follows the Note-Based temporal
scope strategy. It encodes each note as a tuple for:

• Tempo: Beats per Minute (BPM) for the measure where the note is present.

• Bar-Start: Boolean value that represents whether the note is the start of a music mea-
sure or not.

• Relative Position: Integer value indexing the position of the note in the subdivision of
a measure.

• Pitch: Integer value ranging between 0-127 that represents which note is being played.

• Velocity: Integer value representing the loudness of the note being played.

• Duration: Integer representing how many minimal time-steps does the note last.

Formally defined as:

x ∈ {(tempo, beat, pos, px, vel, dur)}I×M×N(I,M)

where I represents the instrument’s cardinality, M the number of measures in the song,
N(I,M) represents the number of notes, which depends on the instrument index and the
current musical measure index.

An example of this encoding is shown in Figure 2.8 (d).

16

Figure 2.8: Vector encoding for each method discussed in this work. (a) Musical input data.
(b) The encoding used in ARNN [22] and InpaintNet [40]. The token ” represents the state of
holding a note. (c) The factorized encoding used in Music SketchNet[11]. (d) The REMI-based
encoding used in VLI [10].

17

2.3. Music Inpainting Task

Task Formalization

In most Machine Learning tasks, a formal definition is usually introduced in order to better
understand a problem. This process exhibits the input and output variables of the task of
interest. In our context, we introduce the formal definition of Musical Score Inpainting as
stated in [40].

Given a past musical context Cp, a future musical context Cf , the modeling task is to
generate an inpainted sequence Cm, which can connect Cp and Cf in a musically meaningful
manner.

Note that the phrase ”musically meaningful manner”does not represent a formal definition
itself since musicality is open to interpretation and subject to change depending on how it is
measured. Although several musical metrics have been proposed for this purpose, designing
metrics that numerically show the quality of a musical piece is still an open problem. One of
the most limiting factors is that given a musical piece, multiple variations of a piece could
be considered as musically correct as the others.

2.4. Related Work

2.4.1. Similar Benchmarks

In the latest years, several research communities have highlighted the need for stronger
standards of replicability. Without it, research communities might have a false sense of what
is the state of the art in different tasks.

For instance, Dacrema et al. [15] benchmarked several deep learning methods against
traditional approaches for the task of collaborative filtering recommendation, finding that
there was not a clear and consistent improvement of deep learning techniques against classical
machine learning methods. Furthermore, Arango et al. [2] found that the task of hate speech
detection had made less progress than reported in the literature after benchmarking several
methods under the same datasets with equal training and testing conditions. These examples
support the need for strong, fair, and replicable benchmarks to claim progress in a task. These
works inspire us to develop MUSIB for music inpainting.

2.4.2. Music Inpainting Models

This section describes the four models evaluated in our work. We emphasize that the
decision to implement these models is based on the feasibility of replicating their code in a
single environment. We mention, however, all inpainting models published to date, to the best

18

Model Architecture Year Music Type Base Framework
CocoNet CNN 2017 Polyphony TensorFlow
DeepBach RNN 2017 Polyphony Pytorch
InpaintNet VAE + RNN 2019 Monophony Pytorch
SketchNet VAE + RNN 2020 Monophony Pytorch
AnticipationRNN RNN 2020 Monophony Pytorch
VLI XL-Net 2021 Polyphony Pytorch
DiffModel Diffusion models 2021 Monophony Flax
MusIAC Transformer 2022 Polyphony Pytorch

Table 2.1: Existing models for music inpainting

of our knowledge, in Table 2.1 for reference. We highlight the general strategies/architecture
utilized for each model alongside with their source implementation framework.

Anticipation RNN

Hadjeres et Al [22] proposed Anticipation RNN. This model represents input as a Note
Sequence. The main idea consists in capturing two temporal sequences with two RNNs:
one encodes unary-constraints embeddings while the other auto-regressively generates tokens
conditioned on these constraints. Unary constraints allow the model to include pre-defined
notes at arbitrary timesteps. Constraining Cp and Cf before the generation process recreates
the musical score inpainting setup. See Figure 2.11 for reference.

Music InpaintNet

Proposed by Pati et Al [40], it uses VAEs [33] to encode isolated monophonic measures into
a latent space vector (called MeasureVAE). The model uses this normalized space to operate
the past zp and future zf latent context with a called LatentRNN. This last representation
is then hierarchically decoded into beats and ticks for reconstructing the inpainted sequence.
See Figure 2.9 for reference.

Music SketchNet

Proposed by Chen et Al. [11], it utilizes a similar strategy to [40] by applying VAEs for
encoding music measures. However, prior to encoding into latent space, it modifies the input
data representation to naturally separate pitch and rhythm into two separate dimensions.
Their VAE then encodes these two separate channels and decodes them hierarchically. A
final training phase is done to condition the final output with users’ input over general
constraints on pitch and rhythms. See Figure 2.10 for reference.

19

Variable Length Piano Infilling (VLI)

Proposed by [10], this model is designed to create polyphonic music inpainting based on
XLNet [51]. Since monophonic music is a particular case of polyphonic music, it is possible
to evaluate this model over monophonic music. The method encodes each note event as a
word token and feeds it to a pre-trained language model over Wikipedia. They incorporate
a musically specialized positional encoding called relative bar encoding to keep track of the
relative position of each note within its context.

Figure 2.9: Diagram of the Music Inpaintnet architecture.

20

2.4.3. Metrics

Negative Log-Likelihood (NLL) has been widely used both for training and evaluating
models on music inpainting. This value represents a statistical distance between two given
distributions, where the lower the value, the closer these distributions are. The main drawback
of this function is that the value itself does not represent any musical concept nor captures
the domain’s semantics and thus cannot be analyzed intuitively.

Two simple yet intuitive metrics were proposed by Chen et Al [11] called pAcc and rAcc.
They represent whether the model generates the correct pitch/rhythm token in the correct
time-step position. However, pAcc has limitations in distinguishing, for example, whether a
note is misplaced or is different from the expected pitch, while rAcc can change its values
depending on chosen time step discretization.

Pitch Class Histogram Entropy and Grooving Pattern Similarity [49] were used in [10] to
compare the similarity of musical attributes between measures in the infilled part with those
present in the context. These metrics were used assuming that to generate fluent music, the
metrics calculated on Cm should be close to the ones calculated for Cp and Cf . They state
that the lower the differences between the middle part metrics and its context, the better the
model is. However, this is not necessarily true since values too close to zero indicate that the
model is just repeating its context instead of articulating past and future musical ideas.

Finally, some other metrics capture more general musical attributes that are not directly
comparable between two sequences but can be useful in understanding the output of a model.
For example, Number of Silence [8] calculates the percentage of empty time steps in a sequence
to check if a model is generating too much silence or not.

21

Figure 2.10: Diagram of the Music SketchNet architecture.

22

Figure 2.11: Diagram of the Anticipation RNN.

23

Caṕıtulo 3

MUSIB: Music Inpainting Benchmark

This chapter aims to present and formally describe the algorithms and the math un-
derlying our theoretical proposal for the evaluation methodology in MUSIB. For a detailed
description of the implementation of MUSIB, see Chapter 4.

3.1. Motivation

Most evaluations of musical inpainting models do not share data representations, metrics,
or datasets. This hinders finding out what progress has been made in the task, what current
limitations need to be addressed, and which ideas have proven to be successful and could be
further exploited.

Our proposed benchmark considers four models out of the eight listed on table 2.1. We
selected the most recently published models (by September of 2021), limited to four models
based on time restrictions. This decision was suitable since all these models shared the same
framework.

To illustrate the difference in evaluation among these four models we show in Table 3.1
the evaluation setups for Anticipation-RNN (ARNN), Music Inpaintnet, Music SketchNet,
and Variable Length Piano Infilling (VLI).

Anticipation-RNN validated its method by comparing its model against a modified ver-
sion of this same proposed architecture over JSB Chorales. Then, InpaintNet verified that
their models’ results accomplished better validation loss than Anticipation-RNN over Irish-
FolkSong, however, there were no comparisons over JSB Chorales, the original dataset for
ARNN. Later, SketchNet evaluated their model against InpaintNet using NLL, pAcc, and
rAcc over IrishFolkSong, introducing two new metrics which made the comparison harder
with previous approaches outside InpaintNet. Finally, VLI tested their model against two
baselines also firstly introduced in their paper which were based on language models: ILM,
and FELIX over AILabs1k7.

On top of that, the results for each metric are dependent on the data representation chosen

24

Model Representation Dataset Metrics
VLI REMI-16 AILabs1k7 H1, H4, GS
SketchNet NoteSeq-24 IrishFolk NLL, pAcc, rAcc
InpaintNet NoteSeq-24 IrishFolk NLL
A-RNN NoteSeq-16 JSBChorales Accuracy, JS Div

Table 3.1: Original evaluation conditions for music inpainting models, showing how difficult
is to compare them.

on each model. This implies that, for instance, the results for the NLL metric shown in the
SketchNet [11] publication can not be compared since they may have different magnitudes
than the one presented in InpaintNet [40]. This phenomenon is empirically shown in [29] for
the NLL metric over the same data when represented as quarters, eighths, and sixteenths
time-step resolution per measure. In this research, we formally show that in a similar way,
Pitch Accuracy and Rhythm Accuracy [11] also change their value when changing the data
representation, and a way of standardizing the metric values even when data representations
change.

MUSIB: the music inpainting benchmark is proposed as a new evaluation methodology
to standardize conditions to directly evaluate different inpainting models. It comprises the
study of four models, over two datasets, with seven different metrics.

3.2. Datasets

We selected JSB Chorales and IrishFolkSong datasets to implement our evaluation. We
prioritized these datasets since they have been used to train several musical inpainting models.
They also represent different musical styles which provide meaningful differences in their
musical content. Finally, they have an important difference in size, making generalizing results
a challenging task.

JSB Chorales [13] dataset contains 408 samples of 4-voices chorales pieces. Each sample
corresponds to the harmonization of a hymn. Its source format is MXL; however, we transform
the data to MIDI format to have a single pipeline to process all data.

IrishFolkSong [45] dataset contains 45,849 pieces of monophonic folk tunes in midi format.

An overview of the pitch distribution for both dataset is shown in Figure 3.1 and 3.2. It
can be observed from this that: 1) Both datasets do not share support sets. 2) The pitch
distribution for both datasets tend to concentrate most values in the middle of the support
set. 3) The pitch classes are unbalanced in both datasets.

25

Figure 3.1: Pitch distribution for the IrishFolkSong dataset.

Figure 3.2: Pitch distribution for the JSB Chorales dataset.

For both datasets, we filtered invalid files (i.e., no instruments or zero-length), repeated
files (files with the same hash), and files shorter than 16-measures long. We also filtered the

26

data in IrishFolkSong to only have pieces on 4/4 time signatures. This last step is done to
reproduce conditions described in papers that originally used this dataset.

The final JSB Chorales dataset contains 171 songs, totaling 13,304 measures that were
grouped into 2,360 contexts. IrishFolkSong dataset ended up with 17,538 songs, 605,164
measures, and 324,556 grouped contexts.

3.3. Evaluation

We classify MUSIB metrics into two groups: Note Metrics and Divergence Metrics.

3.3.1. Note Metrics

Note metrics directly compare note attributes in predicted data vs true data, one note
at a time. We argue that for measuring the quality of notes predicted, we need to compare
at least three dimensions: Position, Pitch, and Rhythm. Position indicates the time when a
note starts, Pitch is the pitch of a note (C4, G2, D

#
3 , ...), and Rhythm is the combination of

duration and position of a note. We represent all notes in Ytrue and Ypred as triplets for these
three dimensions when evaluating note metrics (see Figure 3.5 for reference).

Position Score

Position Score is a metric proposed in this work that measures the similarity of two
musical sequences in terms of the position of their notes.

We argue that to correctly measure notes’ position similarity, a metric needs to be able
to meet the following requirement:

1. Be equipped with a strategy to align the notes’ positions within gold and predicted
sequences independently of the order in which they appear.

2. Handle sequences with potentially different number of notes.

3. Reward sequences that share the same positions for their notes.

4. Penalize sequences that do not share the same positions for their notes.

5. Penalize generated sequences with different number of notes than expected.

Delving deeper into requirement (1), we should point out that the i-th note of the gold
sequence may be present as the j-th note of the predicted sequence. Therefore, to check that
a given position has been correctly predicted, it is important that our metric can align the
positions between the two sequences to perform a proper evaluation.

27

Taking the above into account, we construct our metric as an F1 score calculated from gold
and predicted note’s positions whose internal variables (i.e., True Positives, False Positives,
False Negatives) are computed as follows:

• True Positives (TP): A note’s position is present in both sequences.

• False Positives (FP): A note’s position is present in the generated sequence when it was
not present in the gold sequence.

• False Negatives (FN): A note’s position is missing in the generated sequence when it
was present in the gold sequence.

Note that True Negatives are not part of the F1 score function and thus its definition is
not stated here.

Next, we discuss how each of the the aforementioned requirements are satisfied by our F1
metric:

1. By defining the process of alignment based on checking the presence of a note within a
given sequence we resolve the ordering problem between non-matching sequences.

2. Building the internal variables of the F1 Score based on the alignment of positions allows
us to compare sequences with different number of notes since the match of positions
for the i-th and j-th note may occur at arbitrary indexes in arbitrary long sequences.

3. Both values precision and recall will increase as the number of True Positives increases,
increasing F1-Score performance, and thus rewarding sequences that share positions.

4. Both values precision and recall will decay as FP and FN increase. Note that metric
functions such as Accuracy would not be able to penalize missing notes (FN). Additio-
nally, there is no difference in cost for different types of mis-classifications in this task.
Either adding or removing notes to the generated sequence with respect to the gold
sequence would have the same impact in musicality. Due to this, both the recall and
precision do not need particular weights when being evaluated, discarding alternatives
such as Fβ functions.

5. If the generated sequence contains more notes than the true sequence, the number of
false positives will increase. Similarly, if the number of notes is smaller than the true
sequence, the number of false negatives will increase. Both cases imply that F1-Score
will decrease in performance, either by a worse Recall or Precision. This implies that
Position Score penalizes sequences with a different number of notes than expected.

We formally define Position Score as:

posF1(y, ŷ) = F1(tp,fp,fn)
(y, ŷ)

tp(y, ŷ) =
n∑
i=0

1yi∈ŷ

28

fp(y, ŷ) =
m∑
j=0

1ŷi 6∈y

fn(y, ŷ) =
n∑
i=0

1yj 6∈ŷ

where y is the list of positions in the gold sequence, ŷ is the list of positions in the predicted
sequence, tp is the function that computes true positives, fp is the function that computes
false positives, fn is the function that computes false negatives, n is the number of notes
present in the gold sequence, m is the number of notes present in the predicted sequence, and
F1(tp,fp,fn)

(y, ŷ) is the f1 score computed from the result of the fp, tp, fn functions applied
over y and ŷ.

Pitch Accuracy

Firstly defined by Chen et Al. [11], is the percent of pitches correctly predicted over
the total of pitches in a sequence. The metric is thought as a comparison of two musical
sequences, where if a pitch is present at a given time index, the metric function checks the
equality of this pitch in the same index for the other sequence.

For our evaluation procedure we slightly modified the application of the metric. We argue
that the result of this metric may be misleading in explaining two fundamentally different mu-
sical phenomenons. In particular, with this metric as is, a mismatch of pitch might represent
either:

1. The first note and the note to be compared (both at time index i) do not share the
same pitch (e.g. one note is F3 and the other one is D4), or

2. There is a note at time index i for the first sequence, but there is no matching note
at the same time index in the sequence to compare because there is a silence or hold
token.

The second case is a case of misplacing of notes instead of an error of pitches. In Figure 3.3
(a) we show an example where the two different phenomenon lead to the same result.

To address this ambiguity, we restrict the instances to which this metric is applied to
only pairs of notes with matching positions within their corresponding sequences; otherwise,
the comparison is omitted. The intuition is that notes that share position but not pitch will
be measured by Pitch Accuracy, while the misplaced notes will be measured by Positional
Score. We argue that this modification gives a clearer understanding of the output of the
Pitch Accuracy metric, addressing potential concerns when comparing against Positional
Score. We show an example in Figure 3.3 (b).

Formally, Pitch Accuracy is defined as:

29

Figure 3.3: Example of evaluation between an expected sequence y and two generated se-
quences ŷ1 and ŷ2. (a) Shows the results when applying Pitch Accuracy over time indexes as
proposed by Chen et. al [11]. (b) Shows the results when applying our proposed modification
to Pitch Accuracy in conjuction with our proposed Position Score.

pAcc(y, ŷ) =
1

N

N∑
i=0

N∑
j=0

1pitch(yi)=pitch(ŷj)1pos(yi)=pos(ŷj)

where N is the number of notes that share positions in both sequences, y is the gold
sequence of notes, ŷ is the predicted sequence of notes, pitch(yi) retrieves the pitch value of
the note at index i, pos(yi) retrieves the position of the note at index i. Note that the metric
definition sums the number of notes that match both pitch and position and then normalizes
it by the number of notes present in both sequences.

Rhythm Accuracy

Firstly defined by Chen et Al. [11], is the percent of notes’ duration correctly predicted
over the total of notes.

For our evaluation procedure we slightly modified the application of the metric. We argue
that this metric as is does not correctly measure the performance of the models due to
differences in the results when it is applied to the same data with different notes’ resolutions.
We show an example in Figure 3.4.

Note that the issue comes from the fact that the duration of a note is stored as multiple
tokens, one per time-step. Changing the resolution of the sequence affects the representation
of hold/silence classes while keeping intact the number pitch classes. This unbalances the
overall distribution and raises errors where rhythm tokens are confused with pitch tokens.

30

Figure 3.4: Example of Rhythm Accuracy giving different results when applied to the same
data with different resolution.

In order to fix this behaviour we need to transform the input data before applying the
metric such that the rhythm is a single value attached to a note instead of multiple values
distributed among multiple time steps. This can be done by representing each note as Note-
based discretization (see Temporal Scope in section 2.2.2) including the number of time-steps
that a note is held as the rhythm value. The comparison then is applied similarly to Pitch
Accuracy, where if two notes match in position, then the rhythm values of both notes are
compared else the comparison is skipped and falls under Position Score evaluation.

Formally, Rhythm Accuracy is defined as:

rAcc(y, ŷ) =
1

N

N∑
i=0

N∑
j=0

1duration(yi)=duration(ŷj)1pos(yi)=pos(ŷj)

where N is the number of notes that share positions in both sequences, y is the gold
sequence of notes, ŷ is the predicted sequence of notes, duration(yi) retrieves the pitch value
of the note at index i, pos(yi) retrieves the position of the note at index i. Note that the
metric definition sums the number of notes that match both duration and position and then
normalizes it by the number of notes present in both sequences.

An example of these three metrics, including the data representation proposed for their
application is shown in Figure 3.5.

3.3.2. Divergence Metrics

Although note metrics are useful for one-on-one comparison, there are cases in music
generation where the attributes can not be directly compared since there are multiple correct
options.

This variability in music is common and even desirable. However, there is a lack of methods
to measure the correct variability of these attributes in generated data.

How do we verify that a given musical attribute in a set of predicted songs is within
the correct range of variability? We argue that we need to look at the distribution of this
attribute in true data and measure how close it is to the one in generated data. By measuring

31

Figure 3.5: Note metrics evaluation pipeline. We represent each note in true and predicted
data as triplets (Position, Pitch, Duration). We compute true positives, false positives, and
false negatives for predicted positions. Then we calculate the position-F1 score, pitch accu-
racy, and rhythm accuracy. Since we can only compare notes present on both sets, we filter
false positives and false negatives when calculating pitch and rhythm accuracy.

32

Figure 3.6: Divergence Metric of an arbitrary function f . Each sequence in Ytrue and Ypred
is mapped to a single value in [0, 1]. Then, the distribution of these values for each set is
compared using Jensen-Shannon Divergence.

this closeness between distributions we relax the condition of correctness to accept multiple
valid answers.

We introduce Divergence Metrics to implement this measuring procedure by defining the
divergence of a metric function f : (x0, x1, · · · , xn) → [0, 1] between true data Ytrue and
predicted data Ypred as:

fdiv(Ytrue||Ypred) = JSdiv(
−→
h f(Ytrue)||

−→
h f(Ypred))

where
−→
h f(A) is the histogram of the function values when applied to all sequences in a

set and JSdiv is the Jensen-Shannon Divergence [36] [16]. In our evaluation, we set
−→
h f(A) to

have 100 bins. This concept is illustrated in Figure 3.6.

Note that the metric function f maps a whole sequence to a single value. Since the value
of the metric f changes from piece to piece, f(A) will compute a distribution of values given
a set A. Therefore, to compare the distribution of a metric in generated data against the one
in true data we use a divergence. We choose JSdiv since it is bounded, symmetric and do not
require matching supports [38].

Silence Density Divergence quantifies if the predicted data contains the right amount
of silence when compared to the distribution of silence in true data. It is formally defined as:

Sdiv(Ytrue||Ypred) = JSdiv(
−→
h S(Ytrue)||

−→
h S(Ypred))

S(x) =
1

T

T∑
t=0

1n notes(xt)=0

where T is the total time steps in the sequence, and n notes(xt) is the function that

33

counts the number of notes played at a given time step xt.

Pitch Class Divergence quantifies how similar is the pitch entropy in Cm and {Cp∪Cf}.
This comparison is done by computing the Pitch Class Histogram Entropy according to the
notes pitch classes (i.e. C, C#, ..., A#, B) as defined in [49] for each isolated measure. Then
we calculate the mean difference between pitch entropy in Cp and pitch entropy in {Cp∪Cf}.
We formally define Hdiv as:

Hdiv(Ytrue||Ypred) = JSdiv(
−→
h H(Ytrue)||

−→
h H(Ypred))

H(x) =
1

n1n2

n1∑
i=0

n2∑
j=0

|Hmi
−Hmj

|

Hmi
= H(

−→
h pitch(mi)) = −

11∑
i=0

hi log2(hi)

where n1 is the number of measures in Cm, n2 is the number of measures in {Cp ∪ Cf},
mi are the measures in Cm, mj are the measures in {Cp ∪ Cf}, and

−→
h pitch(mi) is the pitch

class histogram of a measure mi.

Groove Similarity Divergence measures how similar are the groove patterns between
Cm and {Cp ∪ Cf}. The comparison is made by representing each measure as a sequence
of time steps, where 1 corresponds to the start of a note and 0 is either a hold or a rest.
Then the two sequences are compared by penalizing each unmatched value with an XOR
function. Similar to Pitch Class Divergence we calculate the mean difference between groove
similarities in Cp and {Cp ∪ Cf}.

GSdiv(Ytrue||Ypred) = JSdiv(
−→
h GS(Ytrue)||

−→
h GS(Ypred))

GS(x) =
1

n1n2

n1∑
i=0

n2∑
j=0

GS(−→g mi ,−→g mj)

GS(−→g a,−→g b) = 1− 1

T

T−1∑
t=0

XOR(gat , g
b
t)

where n1 is the number of measures in Cm, n2 is the number of measures in {Cp ∪ Cf},
mi are measures in Cm, and mj are measures in {Cp ∪ Cf}, and −→g mi is the encoding of a
measure as a rhythm sequence where 1 is an onset, while 0 represents hold or silence.

34

IrishFolk Dataset (≈ 300K samples)
Model NLL ↓ posF1 ↑ pAcc ↑ rAcc ↑ Sdiv ↓ Hdiv ↓ GSdiv ↓
Anticipation-RNN 0.453 (*0.662) 0.930 0.657 0.860 0.017 0.060 0.007
InpaintNet 0.487 (*0.662) 0.860 0.517 0.750 0.013 0.174 0.024
SketchNet 0.539 (*0.516) 0.914 0.560 0.868 0.005 0.134 0.009
VLI 0.059 0.968 0.911 0.965 0.015 0.010 0.006

Table 3.2: MUSIB evaluation on IrishFolk Dataset.

JSB Chorales Dataset (≈ 2.4K samples)
Model NLL ↓ posF1 ↑ pAcc ↑ rAcc ↑ Sdiv ↓ Hdiv ↓ GSdiv ↓
Anticipation-RNN 0.459 0.832 0.243 0.682 0.240 0.525 0.232
InpaintNet 0.327 0.852 0.505 0.788 0.059 0.411 0.153
SketchNet 0.605 0.833 0.272 0.708 0.079 0.529 0.228
VLI 1.053 0.827 0.283 0.747 0.087 0.286 0.306

Table 3.3: MUSIB evaluation on JSB Chorales Dataset.

3.4. Results and Discussion

In Table 3.2 and 3.3 we present the results of all four models evaluated on the IrishFolk
and JSB Chorales Dataset, respectively. Arrows indicate if higher/lower values represent
better performance. Values in parentheses are evaluation results declared in the literature.
Note that VLI’s NLL value is not comparable to the rest since the class prediction setup is
encoded differently.

From Table 3.2 we can observe in the NLL metric that the results declared in the literature
are not exactly reproduced in our experiments. In particular, the result for Anticipation-
RNN, InpaintNet, and SketchNet, shows a percentual difference of +32 %, +26 %, and -4 %,
respectively. We explain this behavior by two variables: hyperparameters and split sets. The
reproduction of the models was performed by utilizing the hyperparameters defined on the
publication of each model although the hyperparameters observed on the official projects’
source code were different, causing potential inconsistencies. Additionally, since the split sets
were not publicly available we defined our own sets for training, validation, and testing.

We observe that VLI is the best performer for IrishFolk Dataset in all metrics except for
Sdiv while InpaintNet is the best performer on JSB Chorales Dataset for all metrics except
for Hdiv. VLI, which is based on the Transformer architecture, performs better on a larger
dataset. This is supported by the literature, where it has been documented that transformers
models require larger datasets to generalize properly [19].

As seen in Figure 3.7 and 3.8, all models have a significant drop in performance from
one dataset to another, being the only exception the InpaintNet model for the rAcc metric.
In particular, the model with the biggest drop in performance is VLI. We argue that this
tendency is explained by the difference in the size of each dataset.

Although InpaintNet achieves the best performance in JSB Chorales, the results roughly

35

Figure 3.7: Comparison of Note Metrics for different datasets.

surpass 50 % pitch accuracy. This exhibits a significant gap in performance for this dataset in
contrast to IrishFolkSong which is yet to be solved. Interestingly, from Figure 3.7 and 3.8, we
note that InpaintNet has the most stable performance across datasets, having the lowest va-
riation in results of all methods when testing them over IrishFolkSong and JSBChorales.This
property may be helpful to improve the stability of other models when less data is available,
thus improving the task in general.

SketchNet is good at reproducing silence distributions, as seen in Sdiv metric on both
datasets, surpassing VLI in IrishFolkSong and seconding InpaintNet in JSB Chorales. This
may be explained by SketchNet design. Its representation of data explicitly separates rhythm
from the pitch, which may help the model focus more on rhythmic patterns and, consequently,
on tokens of silence.

VLI is the best model for resembling the distribution of pitch classes between infilled
data and its context, as seen in Hdiv metric. This may be explained by its XLNet-based
architecture, which would make the model learn the correct pitch distribution first before the
correct sequential order of the notes.

Looking at posf1, pAcc, and rAcc values across all models we can see that models consis-
tently perform the best in posf1 metric compared to other Note Metrics. Similarly, all models
perform better in rAcc than in pAcc independent of the dataset. We theorize that music in-
painting models first learn to predict the correct onsets of notes, then learn the rhythm, and
finally the pitch. However, further experimentation needs to be done in order to verify this
hypothesis.

36

Figure 3.8: Comparison of Divergence Metrics for different datasets.

37

Caṕıtulo 4

MUSIB Implementation Details

In this section, we show the implementation details for our framework MUSIB. The key
components of the code are grouped as Data Processing, Feature Extraction, Model Archi-
tecture, Training, and Evaluation. All the code is written in Python, alongside multiple data
science libraries such as Pandas or Numpy, and all the models are written with the Pytorch
framework. The source code for MUSIB is publicly available and can be found in 1.

4.1. Data Processing

The data processing pipeline is in charge of collecting the raw data and filtering valid
data according to the conditions presented in Chapter 3. Three modules separate the codes:

1. download from source.py

2. make frames.py

3. clean data.py

4.1.1. Download from source

This module is intended to collect, download, and format automatically all the required
data files for the models present in MUSIB, assembling all the different data sources in one
place.

As discussed in Chapter 3, we used two datasets for evaluation purposes: JSBChorales
and IrishFolkSong, however, a third dataset called AILabs1k7 is also downloaded for checking
the reproducibility of the re-implementation of the VLI model over our environment.

1https://github.com/maranedah/music_inpainting_benchmark

38

https://github.com/maranedah/music_inpainting_benchmark

Dataset Format Source
JSBChorales MusicXML Github
IrishFolkSong MIDI Github
AILabs1k7 MIDI Google Drive

Table 4.1: Comparison of datasets formats and sources

Figure 4.1: Diagram of the overall data pipeline in MUSIB.

39

To simplify further processing of the data, JSBChorales is transformed to MIDI format
using the music21 library so all datasets are in the same format. The transformation from
MusicXML to MIDI implies a loss of information, however, it is not relevant to our case since
it affects metadata outside of pitch and rhythm.

4.1.2. Make data frames

This module is in charge of generating a dataframe that contains all the relevant metadata
for each file, in particular for musical data. This metadata will be used for further filtering
useful data.

Each file entry in the data frames will contain:

• filename: Name of the data file.

• n instruments: Number of instruments in the file.

• instrument names: Tuple containing the name id for the instruments present in the file.

• n notes: Tuple containing the number of notes for each instrument in the file.

• is monophony: Tuple containing boolean values for each instrument in the file repre-
senting whether each instrument is monophonic or polyphonic.

• max poly: Tuple containing the max number of notes played at the same time for each
instrument.

• polys percent: Tuple containing the percent of time steps where simultaneous notes are
played vs the total of time steps where notes are played for each instrument.

• tempo changes: List of tuples representing all tempo changes for a piece (in bpm)
alongside the time when the given tempo starts applying.

• tsc length: Number of Time Signature Changes (TSC) in the musical piece.

• first tsc: The first signature observed in a song. Can be 4/4, 3/4, 9/8, etc.

• is 4 4: A boolean value representing whether a song is in 4/4 time signature during all
the piece.

• tsc: List of time signature changes present in the song.

• duration: Max duration of a song, considering all instruments present in the file.

• n measures: Number of music measures in the song. It is calculated from the duration
column.

• is empty: Boolean value representing if a file has no instruments or zero notes.

• hash val: String representing the file bytecode to identify possible repetition of songs.

40

4.1.3. Clean data

This module is in charge of filtering raw data to get the final train/val/test sets. We define
five filters for our data:

• Non-empty: the file contains at least one instrument, and at least one note event.

• Non-repeated: the file does not share hash with other files, in which case the first is
preserved and the copy or copies is discarded.

• 4/4 time signature: The file starts with a 4/4 time signature, and that time signature
never changes in the span of the musical piece.

• Monophony: The file contains only one instrument, and such instrument never plays
more than one note per time-step.

• Min Length: The file is at least sixteen measures long.

Table 4.2 shows the filters applied for each dataset. For the case of IrishFolkSong, the
dataset is filtered with 4/4 time signature just to replicate the experiments in [11] and [40],
although is not necessary. JSBChorales is not filtered as monophony since it contains multiple
instruments even though all instruments are monophonic when separated. This processing
step is done further in the pipeline. For more details see Section 4.2.2.

Filter IrishFolk JSBChorales AILabs1k7
Non-empty X X X
Non-repeated X X X
4/4 time signature X
Monophony X
Min Length (16 measures) X X

Table 4.2: Filters applied to each dataset.

4.2. Feature Extraction

The feature extraction is in charge of encoding the filtered data files into vectors to be fed
into the model, as discussed in Section 2.2.3. The vector encoding can be Noteseq or REMI
depending on the model. The module is separated into the following files:

• encoded midi noteseq.py

• encoded midi remi.py

• midi dataset.py

41

4.2.1. Encoding MIDI as vectors

Encoding MIDI events into vectors is a challenging task. The absolute time defined on
each MIDI event needs to be matched to a musical representation of rhythm: quarter notes,
eighth notes, etc, which depends on the current tempo associated with each note.

Although the models replicated in this work contained logic for encoding the vectors
from MIDI files, the algorithms were meant to work only in their source dataset and failed
when applied to new datasets. This is due to hard-coding features from the dataset into
the algorithm, making assumptions from the data such as constant tempo, same temporal
resolution on the oncoming files, fixed ranges for pitch, velocity, etc. All these limitations
held the algorithms from making generalizations.

Based on the implementation for vector encoding for VLI [10], we designed a new algo-
rithm for vector encoding that could replicate the outputs of the original algorithms on their
source code and datasets, but also could generalize to new datasets with different properties.

Our algorithm is separated into two parts: The generation of a time grid, and the appro-
ximation of note events to the grid.

Generation of the time grid

The time grid will contain all musically valid time steps found in a MIDI file given the
number of subdivisions per measure for the model and the tempo specifications for the piece.
See tempo changes in Section 4.1.2 for details on tempo data.

Algorithm 1 Compute time grid

1: Input: Time-step subdivision n, list of tempo tuples containing bpm value and tempo
start T

2: Create empty time grid
3: for i from 0 to N − 2 do
4: bpm← T [i][bpm]
5: start← T [i][start]
6: end← T [i+ 1][start]
7: time per beat← bpm/60
8: min time step← time per beat/n
9: while curr time < end do

10: Append curr time to time grid
11: curr time← curr time+min time step
12: end while
13: end for

Approximation of note events

42

Although note events could have slight variations on absolute time when being played,
the rhythmic intention is often pretty clear. To determine the rhythm of notes (i.e. start and
end of notes) we approximate the absolute time of the events to the closest time present on
the time grid with the following expression:

tquantized = argmin
t∈T

(|t− tevent|)

where T ∈ Rn is the time grid vector and tevent ∈ R is the time for a given note event.

4.2.2. MIDI Dataset

File in charge of generating the batch logic for each model. Each file is loaded according
to the split for train/val/test, then sent to the corresponding encoder depending on the mo-
del, where given a time resolution and a context size it will sample a vector representing a
valid musical context from the file. For the case of JSBChorales, since the instruments are
monophonic, each instrument is separately sampled from the file to construct monophonic
contexts. These sampling procedures are random for training and deterministic for validatio-
n/testing. The retrieved vectors are then post-processed with zero or more of the following
operations:

• Padding: Adds empty notes to match the number of tokens required for the model
language utilized in VLI (512 tokens).

• Factorization: Separates notes into pitch and rhythm as described in Section 2.2.3.
Applied for SketchNet and its internal VAE.

• FixEmpty: Adds an artificial note token for measures with zero notes played as in
the implementation of [11]. This special encoding covers the cases of empty measures
not being handled by some architectures. Utilized in SketchNet, InpaintNet, and their
internal VAE models.

Model Time Resolution Context Size Representation FixEmpty Factorize
VLI 16 16 REMI
SketchNet 24 16 Noteseq X X
InpaintNet 24 16 Noteseq X
ARNN 24 16 Noteseq
VAE SketchNet 24 1 Noteseq X X
VAE InpaintNet 24 1 Noteseq X

Table 4.3: Models encoding defined in MIDI Dataset

43

4.3. Model Architecture and Training

Module in charge of defining the model architectures for each method studied in this
work. Each model code is included in model.py and train model.py files:

• model.py: The class definition for each model. It exhibits relevant operations of the
model, such as layer definitions and the forward function definition.

• train model.py: Encapsulates the training and evaluation logic of the models. Its pur-
pose is to condense the source code of all models into a file structure that would allow
invoking the methods of a model through the same interface: init model(), epoch step(),
generate().

To be able to run the training procedure for each model we defined a general trainer
function that iterates the training epochs by applying the epoch step function. This trainer
is also in charge of validating the model, applying early stopping if required, saving the model
checkpoints, and monitoring the training metrics in the console.

Composing all models under this module structure was a challenging task since each
model had a different training logic in its code. For instance, the VLI model had its training
algorithm inside the class definition for the architecture instead of having a separate class
or script for that functionality. The same occurs with ARNN where additionally the class
definition for the model includes the evaluation procedure.

4.4. Evaluation

Finally, the evaluation module is in charge of the evaluation of the output of each model.
It comprises the logic for:

• Generating data: Standardize the output of all models to be readable by each of our
proposed metrics.

• Evaluating data: Defines the metrics functions proposed in our benchmark and applies
them to report the results.

• Transform vector data into MIDI: Allows to play the output of the models as standard
MIDI format, which can be reproduced in most audio programs.

44

Caṕıtulo 5

Conclusions and Future Work

5.1. Conclusions

In this thesis, we have proposed MUSIB, a new benchmark for musical score inpainting
evaluation. We publicly released our experiments, models, data, and code for easier repro-
ducibility1. We compiled, extended and proposed metrics to measure meaningful musical
attributes in generated data. In particular, we defined two approaches for measuring mu-
sical score inpainting performances: Note Metrics and Divergence Metrics. The first relies
on a one-on-one comparison of note attributes while the second relies on the comparison of
distributions between the original dataset and the artificially generated data.

Our experiments allowed us to verify our hypothesis. We show that it is possible to find a
unifying pattern across several models of musical score inpainting to directly compare their
performance, validating our hypothesis. More over, we show that is possible to measure the
variability of the models with respect to similar songs, being able to quantify the degree
of closeness of musical terms by applying statistical strategies over key musical properties.
We consider this last part to be particularly relevant for people interested in working with
generative models since the evaluation of a generated piece with respect to what is correct is
not trivial. This sets the paradigm of ”what is correct”from ”something is good if it achieves
the rules for correctness arbitrarily defined”to ”something is good if it is similar to other
examples we know are good (because they are the training data and follow a particular
musical style)”.

We additionally summarize the key advantages of our evaluation proposal and its current
limitations.

Advantages:

• We introduce a new evaluation procedure that compiles and standardizes metrics pre-
viously not compatible for different musical inpainting experiments.

• We introduce Position Score, a new metric that quantifies the alignment of matching

1https://github.com/maranedah/music_inpainting_benchmark

45

https://github.com/maranedah/music_inpainting_benchmark

pairs of notes which works in pairs of sequences with different number of notes.

• We propose a new paradigm for evaluation (Divergence Metrics): metrics that respond
to statistical information rather than a singular expected value.

Limitations:

• The correlation of human evaluation and our evaluation metrics is yet to be clarified.

• The calculation of divergence metrics is resource intensive because the number of sam-
ples needed for the evaluation has to be similar in size to the input data set.

5.1.1. Main Findings

The results obtained from our benchmark suggest interesting findings regarding the state-
of-the-art of musical inpainting task:

1. It was not possible to exactly reproduce the results declared on the literature, ha-
ving differences ranging from 4 % to 32 %. This suggests that there is still room for
improvement in making the musical inpainting models more reproducible.

2. The performance of existing models is highly dependent on the amount of training
data: while VLI, a transformer-based model, achieves the best results when more data
is available, InpaintNet, a VAE-based model, excels when less data is available.

3. The performance of all models varies consistently and significantly as the dataset varies.

4. When comparing performance on the note metrics (onset, pitch, and rhythm), all mo-
dels rank these metrics consistently, achieving the highest results for position score,
then rhythm accuracy, and finally pitch accuracy. This gives clear signals regarding
which aspects of the notes are harder to capture for any model.

These results have a number of implicates:

1) Replicating models may unexpectedly show that the results of a model can be better
than the results declared in their original paper. In our case, we showed that Anticipation-
RNN and InpaintNet got even better results than those described in prior work. In this
case, we argue that the difference comes from a mismatch of the hyperparameters explained
in their first publication and the hyperparameters set on the released code. This arises an
interesting question: how many models are underperforming due to an incorrect setting of
hyperparameters instead of a bad architecture design? This question is yet to be solved and
opens up a path to check if newer models are intrinsically better than older models or if it is
just that older models require a better tuning of hyperparameters.

2) Results show a trend that models trained on the bigger dataset perform better. Con-
sidering that, and the fact that models based on Deep Learning are expected to be trained
with high amounts of data, we consider that an extension of musical inpainting models to

46

be compatible with datasets with more data samples such as LAKH would greatly benefit
the state of the art on the task. However, one considerable limitation is that bigger datasets
are more likely to be less standardized and thus new assumptions to process data will need
to be done, such as the standardization of time events to fall into a singular resolution that
fits for all samples. Additionally, existing datasets that are bigger than the ones we studied
are less likely to contain monophonic pieces, which may need to define strategies to extract
monophonic instruments such as voice, wind instruments, etc.

3) Study of performances of these models requires to consider several datasets since the
differences in musical attributes greatly impact the ability to be reproduced by a given model.

We believe that our metrics can explain properties not shown in previous work that could
be relevant for the music generation topic. These metrics of course can be further improved,
and a correct evaluation is not necesarily limited to only these metrics. However, in order to
make replicable experiments and to be able to set an argument on the state of the art, each
new research should at least evaluate their proposal with the same set of metrics utilized in
past works.

We expect our note metrics to show simpler musical behaviour of the predicted sequences
even though it is not correlated to human evaluations. These type of metrics are to have a
direct and interpretable meaning, making the output of the models easier to understand. In
the other hand, we expect our divergence metrics to be more correlated to human evaluation
since the point of comparison for humans can be thought as a distribution of properties from
multiple songs heard. In case this metrics perform poorly we argue that the issue might be
the metric function chosen rather than the algorithm for comparison. This metrics can be
further extended by adding musical rules.

We expect a degree of correlation between our metrics. In particular since Rhythm and
Silence are somewhat related, Rhythm Accuracy and Silence Divergence could be related.
Similarly Pitch Accuracy and Pitch Histogram might have a degree of correlation.

Metrics can be further improved by adding different weights to different pitch errors.
Usually changing a note for its third, fifth or octave won’t have a great impact on the
musicality of a piece. However, smaller distances of notes such as semitone would probably
affect the sound of a piece.

5.1.2. Future Work

Considering our findings and our proposed benchmark, there are several possible exten-
sions to this work. For instance, including more datasets that share similar sizes would clarify
whether the difference in results we have shown depends only on the volume of data or if
there are other variables such as the musical style that affect the models’ performances.

In terms of evaluation, additional subjective listening experiments may be helpful to
exhibit correlations between our proposed metrics and human perception of the generated
data.

47

The evaluation of the models could also include data augmentation strategies. Different
methods such as transposing a sequence to all keys or randomly changing a note with its
third or fifth may have a different impact on the models’ performance.

ur Note Metrics could be further extended. One promising idea is to add different weights
to different pitch errors. This would follow the musical intuition that some notes are more
dissonant than others. Changing a note for its third, fifth or octave should not have a great
impact on the musicality of a piece since they share an implicit sense of harmony. On the
other hand, changing a note for a non-harmonic note such as its second or tritone interval
would likely make the piece to feel less enjoyable.

Similarly, new Divergence Metrics that evaluate other musical attributes could be of
interest when evaluating music generation. This may include the amount of self-replication
for the sequences on a given dataset, the number of harmonies or intervals, and the amount
of polyphony, among others.

As a final remark, we hope that the proposed benchmark will benefit the community by
paving the way to facilitate the reproducibility and evaluation of music inpainting models,
as well as providing standards for the development of new ones.

48

Bibliograf́ıa

[1] Teodor Lucian Anton and Stefan Trausan-Matu. Byzantine music composition using
markov models. In Adrian Sabou and Philippe A. Palanque, editors, 15th Internatio-
nal Conference on Human Computer Interaction, RoCHI 2018, Cluj-Napoca, Romania,
September 3-4, 2018, pages 71–75. Matrix Rom, 2018.

[2] Aymé Arango, Jorge Pérez, and Barbara Poblete. Hate speech detection is not as
easy as you may think: A closer look at model validation. In Proceedings of the 42nd
international acm sigir conference on research and development in information retrieval,
pages 45–54, 2019.

[3] J.S. Bach. 389 Chorales: for SATB Voices; Choral Score. Kalmus Classic Edition. Alfred
Publishing Company, 1985.

[4] Blanka Bogunović. Creative cognition in composing music. New Sound International
Journal of Music, 53(1):89–117, 2019.

[5] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling tempo-
ral dependencies in high-dimensional sequences: Application to polyphonic music gene-
ration and transcription. arXiv preprint arXiv:1206.6392, 2012.

[6] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learning Tech-
niques for Music Generation. Springer, 2020.

[7] Filippo Carnovalini and Antonio Rodà. Computational creativity and music generation
systems: An introduction to the state of the art. Frontiers in Artificial Intelligence, 3:14,
2020.

[8] M. Cartagena. Exploring symbolic music generation techniques using conditional genera-
tive adversarial networks. Master’s thesis, Escuela de Ingenieŕıa. Pontificie Universidad
Católica de chile, 2021.

[9] Edgar Castillo-Barrera and O. Vital-Ochoa. Using l-system grammars for music au-
tomatic generation. In Hamid R. Arabnia and Youngsong Mun, editors, Proceedings
of the 2008 International Conference on Artificial Intelligence, ICAI 2008, July 14-17,
2008, Las Vegas, Nevada, USA, 2 Volumes (includes the 2008 International Conference
on Machine Learning; Models, Technologies and Applications), pages 318–322. CSREA
Press, 2008.

49

[10] Chin-Jui Chang, Chun-Yi Lee, and Yi-Hsuan Yang. Variable-length music score infilling
via xlnet and musically specialized positional encoding. In Proc. of the 22th Int. Society
for Music Information Retrieval Conf., pages 97–104, 2021.

[11] Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Music sketch-
net: Controllable music generation via factorized representations of pitch and rhythm.
In Proc. of the 21th Int. Society for Music Information Retrieval Conf., pages 77–84,
2020.

[12] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[13] Michael Scott Cuthbert and Christopher Ariza. music21: A toolkit for computer-aided
musicology and symbolic music data. 2010.

[14] Michael Scott Cuthbert and Christopher Ariza. Music21: A toolkit for computer-aided
musicology and symbolic music data. In J. Stephen Downie and Remco C. Veltkamp,
editors, Proceedings of the 11th International Society for Music Information Retrieval
Conference, ISMIR 2010, Utrecht, Netherlands, August 9-13, 2010, pages 637–642. In-
ternational Society for Music Information Retrieval, 2010.

[15] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really ma-
king much progress? a worrying analysis of recent neural recommendation approaches.
In Proceedings of the 13th ACM conference on recommender systems, pages 101–109,
2019.

[16] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia of
distances, pages 1–583. Springer, 2009.

[17] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian
McAuley. Lakhnes: Improving multi-instrumental music generation with cross-domain
pre-training. arXiv preprint arXiv:1907.04868, 2019.

[18] Chris Donahue, Huanru Henry Mao, and Julian McAuley. The nes music database: A
multi-instrumental dataset with expressive performance attributes. In ISMIR, 2018.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[20] Lukas Eibensteiner, Martin Ilćık, and Michael Wimmer. Temporal-scope grammars
for polyphonic music generation. In Daniel Winograd-Cort and Jean-Louis Giavitto,
editors, FARM 2021: Proceedings of the 9th ACM SIGPLAN International Workshop
on Functional Art, Music, Modelling, and Design, Virtual Event, Korea, 27 August 2021,
pages 23–34. ACM, 2021.

[21] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

50

[22] Gaëtan Hadjeres and Frank Nielsen. Anticipation-rnn: Enforcing unary constraints in
sequence generation, with application to interactive music generation. Neural Computing
and Applications, 32(4):995–1005, 2020.

[23] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model
for bach chorales generation. In International Conference on Machine Learning, pages
1362–1371. PMLR, 2017.

[24] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,
Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano
music modeling and generation with the MAESTRO dataset. In International Confe-
rence on Learning Representations, 2019.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[26] David M. Hofmann. A genetic programming approach to generating musical composi-
tions. In Colin G. Johnson, Adrián Carballal, and João Correia, editors, Evolutionary
and Biologically Inspired Music, Sound, Art and Design - 4th International Conference,
EvoMUSART 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings, volume 9027
of Lecture Notes in Computer Science, pages 89–100. Springer, 2015.

[27] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366, 1989.

[28] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. Compound word trans-
former: Learning to compose full-song music over dynamic directed hypergraphs. arXiv
preprint arXiv:2101.02402, 2021.

[29] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Dou-
glas Eck. Counterpoint by convolution. In Proc. of the 18th Int. Society for Music
Information Retrieval Conf., pages 211–218, 2017.

[30] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Douglas
Eck. Counterpoint by convolution. In Proceedings of ISMIR 2017, 2017.

[31] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon,
Curtis Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Dou-
glas Eck. Music transformer. arXiv preprint arXiv:1809.04281, 2018.

[32] Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling
and generation of expressive pop piano compositions. In Proceedings of the 28th ACM
International Conference on Multimedia, pages 1180–1188, 2020.

[33] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua
Bengio and Yann LeCun, editors, 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[34] Joost N Kok, Egbert J Boers, Walter A Kosters, Peter Van der Putten, and Mannes Poel.
Artificial intelligence: definition, trends, techniques, and cases. Artificial intelligence,
1:270–299, 2009.

51

[35] Qiuqiang Kong, Bochen Li, Jitong Chen, and Yuxuan Wang. Giantmidi-piano: A large-
scale midi dataset for classical piano music. arXiv preprint arXiv:2010.07061, 2020.

[36] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans. Inf.
Theory, 37(1):145–151, 1991.

[37] Yoichiro Maeda and Yusuke Kajihara. Rhythm generation method for automatic mu-
sical composition using genetic algorithm. In FUZZ-IEEE 2010, IEEE International
Conference on Fuzzy Systems, Barcelona, Spain, 18-23 July, 2010, Proceedings, pages
1–7. IEEE, 2010.

[38] Frank Nielsen. On a generalization of the jensen–shannon divergence and the jensen–
shannon centroid. Entropy, 22(2):221, 2020.

[39] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[40] Ashis Pati, Alexander Lerch, and Gaëtan Hadjeres. Learning to traverse latent spaces
for musical score inpainting. In ISMIR, 2019.

[41] Colin Raffel. Learning-based methods for comparing sequences, with applications to
audio-to-midi alignment and matching. Columbia University, 2016.

[42] Adhika Sigit Ramanto and Nur Ulfa Maulidevi. Markov chain based procedural music
generator with user chosen mood compatibility. International Journal of Asia Digital
Art and Design Association, 21(1):19–24, 2017.

[43] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchi-
cal text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125,
2022.

[44] Shipra Shukla and Haider Banka. Monophonic music composition using genetic algo-
rithm and bresenham’s line algorithm. Multim. Tools Appl., 81(18):26483–26503, 2022.

[45] Bob L. Sturm, João Felipe Santos, Oded Ben-Tal, and Iryna Korshunova. Music trans-
cription modelling and composition using deep learning. CoRR, abs/1604.08723, 2016.

[46] Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator.
In International Conference on Machine Learning, pages 467–475. PMLR, 2014.

[47] Karsten A. Verbeurgt, Michael Dinolfo, and Mikhail Fayer. Extracting patterns in music
for composition via markov chains. In Robert Orchard, Chunsheng Yang, and Moonis
Ali, editors, Innovations in Applied Artificial Intelligence, 17th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
IEA/AIE 2004, Ottawa, Canada, May 17-20, 2004. Proceedings, volume 3029 of Lecture
Notes in Computer Science, pages 1123–1132. Springer, 2004.

[48] Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, Xianbin Gu,
and Gus Xia. Pop909: A pop-song dataset for music arrangement generation. arXiv
preprint arXiv:2008.07142, 2020.

52

[49] Shih-Lun Wu and Yi-Hsuan Yang. The jazz transformer on the front line: Exploring the
shortcomings of ai-composed music through quantitative measures. In Julie Cumming,
Jin Ha Lee, Brian McFee, Markus Schedl, Johanna Devaney, Cory McKay, Eva Zangerle,
and Timothy de Reuse, editors, Proceedings of the 21th International Society for Music
Information Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11-16, 2020,
pages 142–149, 2020.

[50] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional genera-
tive adversarial network for symbolic-domain music generation. arXiv preprint ar-
Xiv:1703.10847, 2017.

[51] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
Advances in neural information processing systems, 32, 2019.

[52] Li Yao, Sherjil Ozair, Kyunghyun Cho, and Yoshua Bengio. On the equivalence between
deep nade and generative stochastic networks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 322–336. Springer, 2014.

[53] Halley Young. A categorial grammar for music and its use in automatic melody ge-
neration. In Michael Sperber and Jean Bresson, editors, Proceedings of the 5th ACM
SIGPLAN International Workshop on Functional Art, Music, Modeling, and Design,
FARM@ICFP 2018, Oxford, UK, September 9, 2017, pages 1–9. ACM, 2017.

53

	Introduction
	Problem Statement
	Hypothesis
	Objectives
	General Objective
	Specific Objectives

	Methodology
	Thesis Structure

	Background and Related Work
	Scientific Disciplines
	Artificial Intelligence
	Machine Learning
	Automated Music Generation

	Music Generation
	Preliminary Concepts
	Data Representation
	Vector Encoding

	Music Inpainting Task
	Related Work
	Similar Benchmarks
	Music Inpainting Models
	Metrics

	MUSIB: Music Inpainting Benchmark
	Motivation
	Datasets
	Evaluation
	Note Metrics
	Divergence Metrics

	Results and Discussion

	MUSIB Implementation Details
	Data Processing
	Download from source
	Make data frames
	Clean data

	Feature Extraction
	Encoding MIDI as vectors
	MIDI Dataset

	Model Architecture and Training
	Evaluation

	Conclusions and Future Work
	Conclusions
	Main Findings
	Future Work

	Bibliography

