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Abstract: High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer.
However, a low proportion of HR-HPV-infected women finally develop this cancer, which suggests
the involvement of additional cofactors. Epstein–Barr virus (EBV) has been detected in cervical
squamous cell carcinomas (SCCs) as well as in low- (LSIL) and high-grade (HSIL) squamous in-
traepithelial lesions, although its role is unknown. In this study, we characterized HR-HPV/EBV
co-presence and viral gene expression in LSIL (n = 22), HSIL (n = 52), and SCC (n = 19) from
Chilean women. Additionally, phenotypic changes were evaluated in cervical cancer cells ectopically
expressing BamHI-A Rightward Frame 1 (BARF1). BARF1 is a lytic gene also expressed in EBV-
positive epithelial tumors during the EBV latency program. HPV was detected in 6/22 (27.3%) LSIL,
38/52 (73.1%) HSIL, and 15/19 (78.9%) SCC cases (p < 0.001). On the other hand, EBV was detected
in 16/22 (72.7%) LSIL, 27/52 (51.9%) HSIL, and 13/19 (68.4%) SCC cases (p = 0.177). HR-HPV/EBV
co-presence was detected in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%) SCC cases
(p = 0.020). Additionally, BARF1 transcripts were detected in 37/55 (67.3%) of EBV positive cases and
in 19/30 (63.3%) of HR-HPV/EBV positive cases. Increased proliferation, migration, and epithelial-
mesenchymal transition (EMT) was observed in cervical cancer cells expressing BARF1. Thus, both
EBV and BARF1 transcripts are detected in low- and high-grade cervical lesions as well as in cervical
carcinomas. In addition, BARF1 can modulate the tumor behavior in cervical cancer cells, suggesting
a role in increasing tumor aggressiveness.

Keywords: Epstein–Barr virus; human papillomavirus; BamHI-A rightward frame 1 expression;
cervical cancer
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1. Introduction

Cervical cancer is the fourth most commonly diagnosed malignant tumor in women
worldwide and also the fourth cause of death [1]. In 2018, an estimated 569,847 new cases
of cervical cancer and 311,365 deaths attributable to this malignancy were reported, with a
marked prevalence in low- and middle-income countries [2]. In Chile, cervical cancer is the
sixth most common diagnosed tumor among women and the second most frequent type of
cancer in women between the ages of 20 and 44 years. It caused 725 deaths among females
in 2018, mainly belonging to low socio-economic levels. Most cervical tumors (≥95%) arise
from epithelial cells, and 80–90% of them are squamous cell carcinomas (SCCs) [3,4].

Persistent human papillomavirus (HPV) infection is the most important risk factor for
development of cervical [5] and penile [6] SCCs, as well as a subset of vulvar carcinomas [7].
A group of HPV types (16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 70), so-called
high-risk (HR)-HPVs, are involved in the development of 99.7% of cervical carcinomas
worldwide. HPV16 and HPV18 play an important role in the development of squamous
intraepithelial lesions (SILs) [8]. Furthermore, approximately 70% of cervical SCCs are
caused solely by HPV16 or HPV18 types [9,10]. The overexpression of HR-HPV E6 and
E7 oncoproteins in the cervical epithelium is an essential event for carcinogenesis [11,12].
These oncoproteins target p53 and pRB tumor suppressor proteins, evading apoptosis
and disrupting the cell cycle in infected epithelial cells, respectively [13,14]. However,
HR-HPV infection is insufficient for the development of cervical cancer. In fact, it has been
reported that 50% of low-grade squamous intraepithelial lesions (LSIL) associated with
HR-HPV infection (e.g., HPV16 or HPV18) regress to normal cytology [15], while only
3.6% of these precancerous cases progress to high-grade squamous intraepithelial lesions
(HSIL) and potentially cause cancer [16]. Accordingly, other host and/or environmental
factors are required for promoting the progression of cervical lesions. In this regard, the
potential contribution of additional viral infections to cervical cancer progression is still
unclear [17,18].

Epstein–Barr virus (EBV), formerly named human gammaherpesvirus-4 (HHV-4),
is a member of the Herpesviridae family (reviewed in [19]) that infects more than 90%
of the human population worldwide [20,21]. This virus is etiologically associated with
a variety of tumors of both lymphoid and epithelial origin, including some lymphomas,
nasopharyngeal carcinoma (NPC) and a subset of gastric cancers (GC) [22–25]. Additionally,
EBV infection has been suggested to be a potential cofactor for the development and
progression of cervical carcinoma. For instance, HR-HPV/EBV coinfection was shown
to be increased in HSIL and cervical carcinomas when compared with LSIL and non-
premalignant lesions [26]. Moreover, in EBV-positive cervical lesions it was found an
increase in the methylation status of the E-cadherin (CDH1) gene promoter region, which
was related with the epithelial-to-mesenchymal transition (EMT) [27]. Even though EBV
latency is a requisite for EBV-driven tumors, which involves restricted and regulated
viral gene expression, in recent years the contribution of EBV lytic genes to malignant
transformation has been proposed [28]. Among lytic genes, the BamHI-A rightward frame
1 (BARF1) (reviewed in [29]) is mainly expressed in epithelial malignancies, although its
presence has also been reported in lymphomas [30,31]. In fact, increased BARF1 expression
has been detected in NPC and EBV-associated GC (EBVaGC) during the EBV latency
program, which has been characterized as an exclusively epithelial oncoprotein [30,31].
However, to the best of our knowledge, only one previous study reported the expression of
BARF1 in cervical carcinomas [32].

In the present study, we evaluated the prevalence of HR-HPV/EBV co-presence in
premalignant lesions and cervical carcinomas from Chilean patients. Additionally, the
contribution of EBV BARF1 to the aggressiveness of HPV-positive cervical cancer cells
was assessed. The capacity of EBV BARF1 to induce EMT in cervical cancer cells was also
evaluated by means of E-cadherin and ZEB1 protein levels.
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2. Materials and Methods
2.1. Tissue Samples

Seventy-seven premalignant and 25 malignant cervical lesions from Chilean women
collected between 2005 and 2010 were obtained from the Pathology Department at the
Hospital Clínico “Dr. José Joaquín Aguirre” from the University of Chile. All samples were
formalin-fixed and paraffin-embedded (FFPE) tissues, which were processed following
the standard histological procedures. Clinical records were revised and the totality of
samples with diagnosis of SIL or SCC of the uterine cervix was primarily selected. The
histological diagnosis was confirmed by two experienced pathologists (C.V. and I.G.), based
on hematoxylin and eosin staining. Cases that did not match the initial diagnosis or without
paraffin blocks available for additional procedures were excluded from the study. This
study was approved by the Ethical Committee Board of both the Hospital Clínico “Dr.
José Joaquín Aguirre” and the Faculty of Medicine, Universidad de Chile (approval code
No. 061-2019).

2.2. DNA Extraction

DNA from tissue samples was extracted as previously described [33]. Briefly, 10-µm
sections from each FFPE sample were treated with digestion buffer containing 10 mM Tris–
HCl pH 7.4, 0.5 mg/mL proteinase K, and 0.4% Tween 20. The specimens were incubated
at 56 ◦C overnight under constant shaking, followed by incubation at 95 ◦C for 10 min. The
samples were then immediately centrifuged at 14,000 rpm for 2 min and maintained on ice.
The aqueous phase was transferred to a new tube and stored at −20 ◦C until use.

2.3. Polymerase Chain Reaction (PCR)

The PCR reaction mixture was prepared in a total volume of 25 µL, which contained
12.5 µL of 2X GoTaq® G2 Green Master Mix (Promega, Madison, WI, USA), 0.5–0.625 µL
of 20 µM forward and reverse primers, 5 µL of template DNA, and an adequate volume
of nuclease-free water. Primer sequences and PCR conditions for each gene fragment are
shown in Table S1. For DNA quality determination, a β-globin gene fragment was ampli-
fied. The amplification products were stained with SafeView PlusTM (ABM, Vancouver,
BC, Canada), analyzed by 2.5% agarose gel electrophoresis and visualized by UV transil-
lumination (Vilber Lourmat). The Accuruler 100 bp plus DNA ladder (MaestroGen Inc.,
Hsinchu, Taiwan) was used as DNA molecular weight standard control. DNA extracted
from HPV16-positive CaSki cells (ATCC® CRL-1550TM) or from a clinical sample of known
positivity for EBV were used as positive controls. Digestion buffer and nuclease-free water
were used as negative controls.

2.4. HPV Genotyping

Amplified PCR products obtained from HPV-positive specimens were sent to Macro-
gen Co. Ltd. (Seoul, Korea) for viral DNA sequencing. When necessary, PCR products were
purified using the Wizard SV Gel and PCR clean-up kit (Promega, Madison, WI, USA) to
avoid potential sample contamination. For genotyping, the sequences obtained with GP5+
and GP6+ primers were manually depurated from raw chromatograms and compared to
known HPV DNA sequences stored in the nucleotide collection (nr/nt) database using
the BlastN algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch)
(Accessed date: 19 February 2021).

2.5. In Situ Hybridization for EBV

Epstein–Barr encoded early RNAs (EBERs) were detected by in situ hybridization
with the ZytoFast EBV Probe (Digoxigenin-labeled) reagent and the ZytoFast PLUS CISH
Implementation Kit (HRP-DAB) (ZytoVision, Bremerhaven, Germany) following the manu-
facturer’s protocols with minor modifications as follows: (1) denaturation was done using
an oven instead of on a hot plate or hybridizer and (2) 8 µL probe solution was applied to
each specimen instead of 10 µL. For verification of cellular mRNA integrity, the ZytoFast

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch
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28S rRNA (+) control probe was used. A known EBV-positive Hodgkin lymphoma case
and Raji cells (derived from a patient with Burkitt’s lymphoma) were used as positive
controls. A positive result was considered when a brown color localized in premalignant
or malignant epithelial cells was observed.

2.6. Reverse Transcriptase-PCR

Total RNA from tissue samples was isolated using the High Pure FFPET RNA Isolation
Kit (Roche Molecular Systems, Inc., Pleasanton, CA, USA) according to manufacturer’s
instructions. For cDNA synthesis, a reaction mix containing 2 µg of pure total RNA,
1 U of RNase inhibitor (Promega, Madison, WI, USA), 0.04 µg/µL of random primers
(Promega, Madison, WI, USA), 2 mM of dNTP mix (Promega, Madison, WI, USA) and 10 U
of Moloney Murine Leukemia Virus reverse transcriptase (M-MLV RT) (Promega, Madison,
WI, USA), in a total reaction volume of 20 µL, was incubated for 1 h at 37 ◦C and stored at
−20 ◦C until use. For cDNA amplification, 25 µL-reaction mixtures containing 12.5 µL of 2X
GoTaq® G2 Green Master Mix (Promega, Madison, WI, USA), 0.5 µL of 20 µM forward and
reverse primers (specific for BARF1 and HPV16 E6 transcripts), 10.5 µL of RNase-free water
(Promega Corporation, Madison, WI, USA), and 1 µL of cDNA were prepared. Endogenous
β-actin mRNA levels were used for normalization of RNA expression.

2.7. Cell Culture and Transfection

SiHa (HTB-35TM) and CaSki (CRL-1550TM) cervical carcinoma cells were obtained
from the American Type Culture Collection (ATCC; Manassas, VA, USA) and cultured
in RPMI-1640 basal medium (Gibco, Carlsbad, CA, USA) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Hyclone, Fremont, CA, USA), 100 U/mL penicillin,
100 g/mL streptomycin, and 0.25µg/mL amphotericin B (Gibco, Carlsbad, CA, USA).
Cells were maintained at 37 ◦C in a humidified atmosphere containing 5% CO2. For
passaging, cell monolayers were washed with sterile 1X phosphate-buffered saline pH
7.4 and detached in 1X trypsin-EDTA (Gibco, Carlsbad, CA, USA) for 5 min. Cells were
periodically tested for mycoplasma contamination by PCR. SiHa and CaSki cells were
seeded into 6-well plates at a density of 0.5 × 106 cells per well and on the next day
transfected with 30 µM MSCV (Addgene, Plasmid #41033, depositing lab: Wade Harpe) or
MSCVBARF1 (Addgene, Plasmid #37922, depositing lab: Karl Munger) plasmids using
Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s protocol.
Cells were maintained in culture medium without antibiotics for 12–18 h, after which
transfected cells were selected by addition of 0.2 µg/mL puromycin for seven days (Gibco,
Carlsbad, CA, USA).

2.8. Phosphoproteomic NF-kB Array

Empty vector and BARF1-transfected SiHa cells were grown to 90% confluence in
10 cm plates and subjected to serum starvation for 24 h. Cells were then collected by
centrifugation and washed once in phosphate buffered saline (PBS). Cell pellets were
suspended in extraction lysis buffer and incubated for 20 min at 4 ◦C. Protein concentration
was determined using the PierceTM BCA protein assay kit (Thermo Scientific, Rockford,
IL, USA) according to manufacturer’s instructions. Screening of different proteins in cell
lysates was performed with a Proteome profiler array kit (ARY029, R&D Systems), for the
parallel determination of relative levels of phosphorylation of NF-kB. The array allows
determination of the relative phosphorylation of P53S46, RelA/p65S529, STAT1Y701, and
STAT2Y689. Horseradish peroxidase substrate (Millipore Corporation, Burlington, VT, USA)
was used to detect protein signal and data was captured by exposure to Fujifilm Light films.
Films were analyzed with the NIH ImageJ software.

2.9. Cell Migration Assay

Cell migration capacity was assessed by Boyden chamber assay (Transwell migration
assay) as previously reported by our group [34]. Briefly, the bottom side of transwell upper
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chambers (Corning, New York, NY, USA) was coated with 2 µg/mL fibronectin (Thermo
Fisher Scientific, Inc., MS, USA) and incubated overnight at 4 ◦C. Then, 7000 SiHa and
CaSki cells were seeded inside the inserts in 200 µL of serum-free RPMI-1640 media, and
500 µL of RPMI-1640 supplemented with 10% FBS was added to each plate well. Cells
were allowed to migrate for 7 h at 37 ◦C and 5% CO2. Then, migrated cells were fixed
and stained in a solution of 0.5% crystal violet in 20% methanol for 1 h. Unmigrated cells
were scraped from the upper chambers using cotton swabs. Migrated cells were counted in
seven high-power fields (400×) for three independent experiments.

2.10. Cell Proliferation Assay

For evaluation of cell proliferation we used the MTS (3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (Promega Corporation,
Madison, WI, USA) colorimetric assay [34]. Briefly, 3 × 104 cells were cultured in 96-well
flat-bottom cell culture microplates in RPMI-1640 supplemented with 10% FBS. At 24, 48,
72, and 96 h, 30 µL of MTS reagent was added to each well and plates were incubated for
3 h at 37 ◦C and 5% CO2. Finally, absorbance was measured at 492 nm using a Synergy
2 spectrophotometer (BioTek Instruments Inc., Winooski, VT, USA).

2.11. Anchorage-Independent Growth Assay

To evaluate cell colony formation in soft agar, the procedure previously reported by our
group was used [35]. SiHa and CaSki cells (5 × 103) were suspended in 0.33% Bacto-agar
(BD Biosciences, Heidelberg, Germany) dissolved in RPMI-1640 supplemented with 12.5%
FBS. Cell suspensions were added to 6-well plates containing 2 mL of 0.5% agar dissolved
in the same medium and cultured at 37 ◦C under normal conditions. Fresh RPMI-1640/10%
FBS (0.5 mL) was added to each well twice a week. After 3 weeks, cells were stained in
0.005% crystal violet dissolved in 20% methanol for 1 h at room temperature. Finally, cell
colonies were photographed with a Nikon D5100 camera and differences between empty
vector and BARF1-transfected cells were visually estimated.

2.12. Western Blot

Protein lysates obtained from empty vector and BARF1-transfected cells were extracted
with RIPA 1X lysis buffer (Abcam, Cambridge, UK) containing protease and phosphatase
inhibitor cocktail (Roche, Basel, Switzerland). Suspensions were incubated at 4 ◦C for
10 min, sonicated in an ice bath for 20 s, and then centrifuged at 14,000× g for 15 min.
Protein concentration was quantified with the PierceTM BCA protein assay kit (Thermo
Scientific, Rockford, IL, USA). Thirty micrograms of total protein were loaded per well and
separated by SDS-PAGE on 12% gels. Proteins were then transferred by electroblotting
to Hybond-P ECL membranes (Amersham, Piscataway, NJ, USA) using a pH 8.3 Tris-
glycine transfer buffer (20 mM Tris, 150 mM glycine, 20% methanol) and a Trans–Blot®

SD semi–dry electrophoretic transfer cell (Bio-Rad, Hercules, CA, USA). Membranes were
blocked in 5% bovine serum albumin/0.5% Tween-20 in Tris buffered saline pH 7.6 (TBS)
for 1 h at room temperature and then incubated overnight at 4 ◦C with mouse anti-human
E-cadherin monoclonal antibody (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) or
rabbit anti-human ZEB1 polyclonal antibody (Thermo Fisher Scientific, Inc., MS, USA)
diluted 1:1000 in TBS/Tween 20 (TBS–T20). After three washes in TBS–T20, membranes
were incubated either with anti-mouse IgG (BD Pharmingen; BD Biosciences, Heidelberg,
Germany) or anti-rabbit IgG (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) conjugated
to HRP, diluted 1:1000 in BSA 5% blocking buffer for 1 h at RT. Membranes were washed as
above and revealed with the ClarityTM western ECL detection reagent (Bio-Rad, Hercules,
CA, USA) according to manufacturer’s instructions. Membranes were visualized on a
ChemiDocTM touch gel imaging system (Bio-Rad, Hercules, CA, USA).
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2.13. Statistical Analyses

Data analysis was conducted using the Stata version 17.0 (StataCorp LLC, College
Station, TX, USA) and GraphPad Prism version 6 (2012 GraphPad Software Inc. La Jolla,
CA, USA) software. Fisher’s exact test and Chi-square test were applied to compare two or
three different categorical variables, respectively. For statistical analyses of cell experiments,
Wilcoxon test, or Mann–Whitney U test were used. A p-value of 0.05 or less was considered
statistically significant.

3. Results
3.1. Patients

Of the 102 FFPE samples, 9 were excluded for subsequent analysis because they
resulted negative for β-globin fragment amplification. The median age of patients at
diagnosis was 38 years (38.2 ± 9.7 years). Distribution according to histopathological
classification was as follows: 22/93 (23.7%) LSIL, 52/93 (55.9%) HSIL, and 19/93 (20.4%)
SCC. The occurrence of LSIL was more frequent in younger patients (≤38 years), while
SCC was more common in older women (>38 years) (p = 0.001) (Table 1).

Table 1. Clinicopathological features of patients.

Type of Lesion

Age at Diagnosis

Total ≤38 >38 p-Value

No. Cases No. (%) No. (%)

LSIL 22 16 (72.7) 6 (27.3)
0.001 aHSIL 52 28 (53.8) 24 (46.2)

SCC 19 3 (18.8) 16 (84.2)
a The increase in SCC frecuency in patients over 38 years old and in LSIL frequency in patients younger than 38
was statistically significant.

3.2. HPV Presence in Cervical Lesions

Generic HPV infection was evaluated by PCR using GP5+/GP6+ primers (Figure 1a,
upper panel). HPV infection was detected in 6/22 (27.3%) LSIL, 38/52 (73.1%) HSIL, and
15/19 (78.9%) SCC cases. A statistically significant difference was obtained when the
frequency of HPV infection in LSIL was compared to HSIL and SCCs (p < 0.001) (Table 2).
Considering HPV positive samples, genotyping was successfully achieved by L1 fragment
sequencing in 52/59 (88.1%) cases. In the remaining seven samples, HPV16 and 18 were
evidenced in one sample each (1.7%) by specific PCR for each of these genotypes, while
in five cases (8.5%), the HPV genotype was not identified (HPVX). The distribution of the
most common HR-HPV genotypes was as follows: HPV16 (57.6%), HPV33 (8.5%), HPV31
(5.1%), HPV45 (5.1%), HPV18 (3.4%), and HPV58 (3.4%). Other HR-HPVs such as 35 and
66 were detected in one sample each (1.7%). HPV16 was only detected in HSIL and SCC,
which was statistically significant compared to LSIL (p < 0.001). Low-risk HPVs 6 and 81
were evidenced in two (3.4%) and one (1.7%) positive tissues, respectively.

Table 2. Frequency of generic HPV and HPV16 according to the type of cervical lesion.

Type of
Lesion

Generic HPV HPV16

Total HPV− HPV+ p-Value Total HPV16− HPV16+ p-Value

No. Cases No. (%) No. (%) No. Cases No. (%) No. (%)

LSIL 22 16 (72.7) 6 (27.3)
<0.001 a

22 22 (100) 0 (0)
<0.001 bHSIL 52 14 (26.9) 38 (73.1) 52 29 (55.8) 23 (44.2)

SCC 19 4 (21.1) 15 (78.9) 19 8 (42.1) 11 (57.9)
a,b The increased frequency of generic HPV or HPV16 infection in HSIL and SCC compared to LSIL is statisti-
cally significant.
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sample, located in epithelial cells and tumor-infiltrating lymphocytes (red arrow). Samples were 

counterstained with Hematoxylin (blue color). Red bar = 50 µm. (c) HR-HPV/EBV co-presence was 
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co-presence according to HPV genotype. 

Figure 1. HPV and EBV infection in cervical lesions. (a) Conventional PCR for HPV (upper panel)
and EBV (lower panel). Lane 1: 100-pb DNA ladder, Lanes 2–15: cervical samples, Lane 16: positive
control (HeLa cells), Lanes 17 and 18: negative controls (extraction buffer or nuclease-free water).
(b) In situ hybridization for EBERs in cervical lesions. A Hodgkin’s lymphoma sample was used
as positive control. A positive signal for EBERs (brown color) is observed in a HSIL and a cervical
SCC sample, located in epithelial cells and tumor-infiltrating lymphocytes (red arrow). Samples
were counterstained with Hematoxylin (blue color). Red bar = 50 µm. (c) HR-HPV/EBV co-presence
was increased in cervical SCC when compared to LSIL (** p = 0.008). (d) Distribution of HPV/EBV
co-presence according to HPV genotype.
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3.3. EBV Presence in Cervical Lesions

EBV presence was determined by PCR (Figure 1a, lower panel) and ISH (Figure 1b).
By PCR, EBV DNA was detected in 16/22 (72.7%), 27/52 (51.9%), and 13/19 (68.4%) of
LSIL, HSIL, and SCCs, respectively, with a non-statistically significant difference among
groups (p = 0.177) (Table 3). A non-statistically significant difference between EBV positivity
and patient age was also found (p = 0.529). To determine the lineage of EBV-infected cells,
EBERs ISH was performed in all PCR EBV-positive tissue samples (Figure 1b). Overall,
EBV was detected in 4/56 (7.1%) of cervical lesions by ISH. EBV infection in epithelial
cells was confirmed in 2/56 (3.6%) of cases (one HSIL and one SCC). In one of these
samples, an additional staining in tissue-infiltrating lymphocytes was evidenced (Figure 1b,
lower right panel, arrow). In two other different cases (3.6%), EBV was only observed in
tissue-infiltrating lymphocytes.

Table 3. Frequency of EBV infection according to grade of cervical lesions.

Type of
Lesion

EBV/PCR EBV/ISH(Epithelial Cells)

Total EBV− EBV+ p-Value EBV− EBV+ p-Value

No. Cases No. (%) No. (%) No. (%) No. (%)

LSIL 22 6 (27.3) 16 (72.7)
0.177 a

16 (100) 0 (0)
0.539 bHSIL 52 25 (48.1) 27 (51.9) 26 (98.1) 1 (1.9)

SCC 19 6 (31.6) 13 (68.4) 12 (94.7) 1 (5.3)
a,b The presence of EBV measured by means of PCR or ISH was not related with the grade of cervical lesions.

By PCR, HPV/EBV, and HR-HPV/EBV co-presence was detected in 36/93 (38.7%) and
30/93 (32.3%) cervical lesions, respectively. According to the type of lesion, HR-HPV/EBV
co-presence was evidenced in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%)
SCCs with a statistically significant difference (p = 0.020) (Figure 1c). HPV16 subtype
was evidenced in 18/30 (60.0%) of HR-HPV/EBV positive samples (Table 4, Figure 1d).
EBV infection was also evidenced in 3/3 (100%) of LR-HPV infected samples. Absence of
HPV/EBV co-presence was evidenced when EBV was assessed by ISH.

Table 4. Frequency of HPV16/EBV coinfection in cervical lesions.

HPV16
Detection

EBV Detected by PCR

Total EBV− EBV+ p-Value

No. Cases No. (%) No. (%)

HPV16+ 34 16 (47.1) 18 (52.9)
0.277 a

HPV16− 59 21 (35.6) 38 (64.4)
a No statistically significant difference was obtained between EBV detected by PCR and HPV16 infection.

3.4. BARF1 Transcripts in EBV-Positive Cervical Pre-Malignant Lesions and Squamous Cell
Carcinomas

The presence of BARF1 transcripts was evaluated in all EBV-positive samples tested by
PCR. Overall, BARF1 transcripts were detected in 37/55 (67.3%) of these cases. According
to the type of lesion, BARF1 transcripts were detected in 12/16 (75.0%) LSIL, 16/26 (61.5%)
HSIL, and 9/13 (69.2%) SCCs, though without a statistically significant difference (p = 0.360,
Table 5). The expression level of BARF1 was increased (fold change ≥ 0.41, median) in
18/36 (50.0%) positive samples. BARF1 was also detected in 19/30 (63.3%) HR-HPV/EBV
co-infected tissues. cDNA for evaluating HPV16 E6 expression was available in sixteen
HPV16/EBV positive cases. Co-expression of HPV16 E6 and BARF1 transcripts was
evidenced in 6/16 (37.5%) of these cases.
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Table 5. Expression of BARF1 according to type of lesion.

Type of
Lesion

BARF1 Positivity BARF1 Expression Level

Total BARF1− BARF1+ p-Value Total BARF1 Low BARF1 High p-Value

No. Cases No. (%) No. (%) No. Cases No. (%) No. (%)

LSIL 16 4 (25.0) 12 (75.00)
0.655 a

12 4 (33.3) 8 (66.7)
0.360 bHSIL 26 10 (38.5) 16 (61.5) 15 * 9 (60.0) 6 (40.0)

SCC 13 4 (30.8) 9 (69.2) 9 5 (55.6) 4 (44.4)
a,b No statistically significant differences were obtained when BARF1 positivity or BARF1 expression levels were
compared with the type of cervical lesion. * β-actin control was not available for one BARF1-positive sample.

3.5. BARF1 Increases Cervical Cancer Cell Proliferation

To determine the effects of BARF1 on cell proliferation rates, cervical cancer cell lines
were stably transfected with a BARF1-encoding vector or an empty vector and BARF1
expression was corroborated in BARF1-transfected cells by RT-PCR (Figure 2a). BARF1-
and empty vector-transfected cells were seeded, and proliferation was determined at 24,
48, 72, and 96 h using the MTS assay. As shown in Figure 2b (left), BARF1-expressing
SiHa cells displayed an increased proliferation rate compared to empty vector, which
was statistically significant at 48, 72, and 96 h (p = 0.002, p = 0.004, and p = 0.002, respec-
tively). Similar results were obtained in CaSki cells, although the difference in proliferation
rates between BARF1-transfected cells and empty vector was more evident than for SiHa
cells (Figure 2b, right). The p-values for 48, 72, and 96 h were p = 0.002, p = 0.008. and
p = 0.016, respectively.

3.6. BARF1 Promotes Cervical Cancer Cell Migration

The capacity of BARF1 to increase cervical cell migration was evaluated using the
transwell migration assay. BARF1-expressing SiHa cells showed a statistically significant
increase in migrated cells (180 ± 40), compared to empty vector-transfected cells (122 ± 19)
(p = 0.009) (Figure 2c, left). Similar results were obtained for CaSki cells, with 122 ± 40 and
82 ± 5 for BARF1-expressing and empty vector-transfected cells, respectively (p = 0.002)
(Figure 2c, right).

3.7. BARF1 Promotes Epithelial to Mesenchymal Transition in Cervical Cancer Cells

BARF1-expressing SiHa cells displayed morphological changes characterized by the
loss of epithelial phenotype and the appearance of spindle-shaped cells (Figure 3a, right)
compared to empty vector-transfected cells (Figure 3a, left). Thus, the levels of biomark-
ers related to epithelial to mesenchymal transition, such as E-cadherin and ZEB1, were
assessed. As shown in Figure 3b, a statistically significant increase in the expression of
ZEB1 protein was observed in BARF1-expressing SiHa cells compared to empty vector-
transfected control cells (p = 0.050). Although a slight decrease in E-cadherin was observed
in BARF1-transfected cells, the difference was not statistically significant. Similar results
were obtained for CaSki cells (Figure 3c).
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Figure 2. BARF1 increases cell proliferation and migration of HPV16-positive cervical cancer cells.
(a) RT-PCR to evaluate BARF1 transcript levels in SiHa and CaSki cells transfected with empty vector
(V) or BARF1 vector; β-actin was used as loading control. (b) Cell proliferation assay performed
in SiHa and CaSki cells. For BARF1-transfected SiHa cells, statistically significant differences were
obtained at 48, 72, and 96 h of culture (* p = 0.002, * p = 0.004, and * p = 0.002, respectively) compared
to empty vector-transfected cells. Statistically significant differences were also evidenced for BARF1-
expressing CaSki cells at 48, 72, and 96 h of culture (* p = 0.002, * p = 0.008, and * p = 0.016, respectively).
(c) Transwell migration assay performed in SiHa and CaSki cells transfected with BARF1 or empty
vector. Increased migration was evidenced in both SiHa and CaSki cells transfected with BARF1 after
7 h of culture using fibronectin-coated transwell inserts, compared to empty vector-transfected cells
(* p = 0.009 and * p = 0.002, respectively).
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Figure 3. BARF1 promotes epithelial to mesenchymal transition in cervical cells. (a) Morphological
changes characterized by the appearance of spindle-shaped cells were observed in SiHa cells stably
transfected with BARF1 compared to empty vector-transfected cells. Analysis of ZEB1 and E-cadherin
protein levels in SiHa and CaSki cells transfected with BARF1 or empty vector (b,c, left). A significant
increase in the expression of ZEB1 was evidenced in BARF1-expressing SiHa and CaSki cells compared
to empty vector-transfected cells (b,c, right) (* p = 0.050, for both). A decrease in E-cadherin was also
evidenced in BARF1 transfected cells, but not statistically significant. Densitometric analyses of three
independent assays normalized against β-actin were plotted. Data are presented as mean ± SEM.
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3.8. BARF1 Is Unable to Increase Anchorage-Independent Growth in Cervical Cancer Cells

The capacity of BARF1 to induce anchorage-independent growth was also assessed by
counting the number of colony-forming cells in soft agar (Figure S1). The number of colonies
was greater in BARF1-transfected SiHa cells (252.1 ± 120.2) compared to empty vector-
transfected cells (221.2 ± 69.0), but no statistically significant difference was observed.
Under the same experimental conditions, CaSki cells were unable to form colonies.

3.9. Phosphoproteomic NF-kB Assay in SiHa Cells

To evaluate which proteins could be potentially involved in the increased migration
capacity of cells expressing BARF1, a phosphoproteomic assay for NF-κB signaling pathway
activation was performed in SiHa cells. Some proteins such as p53, IRF5, STAT1 (pY701),
c-Rel, and IL-18Ra were positively regulated in BARF1-expressing cells when compared
to empty vector (Figure 4 and Figure S2). In contrast, NGFR/TNFRSF16, STAT2, ASC,
STAT2 (pY689), and p53 (pS46), among others, were negatively regulated in the presence of
BARF1.
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Figure 4. Protein array for NF-κB signaling pathway activation in SiHa cells. Activation of NF-κB
signaling pathway was compared between SiHa cells transfected with BARF1 or empty vector. Data
were presented in reference to the fold-change occurring in the presence of BARF1 compared to the
empty vector control.

4. Discussion

HR-HPV infection is a necessary condition for the development and progression of
cervical carcinoma. However, only a small number of HR-HPV-infected women actually de-
velop cervical cancer, suggesting that other cofactors are additionally required to promote
this malignancy [15,16]. EBV infection has been detected in cervical carcinomas, suggesting
that this persistent virus may be a cofactor for cervical cancer. Considering that both
HR-HPV and EBV require additional cofactors for carcinogenesis [36,37], in the present
study, we characterized HPV/EBV co-presence in low- and high-grade squamous intraep-
ithelial lesions and squamous cervical carcinomas. Indeed, we evaluated the frequency
of HPV/EBV co-presence in premalignant and malignant cervical lesions from Chilean
women as well as its contribution to the progression of cervical cancer. HR-HPV infection
rate was significantly increased in HSIL and cervical cancer when compared to LSIL, as
previously reported [32,38]. Although it has been established that HR-HPV is present in
almost 100% of cervical carcinomas, we were able to detect this infection in almost 80% of
cases. Probably, factors related to sensitivity of the PCR methodology, DNA fragmentation
in the clinical samples or a probably low viral load account for this percentage of detection.
Indeed, Zehbe et al. reported that the sensitivity of this methodology (HPV detection using
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GP5+/GP6+ primers) is around 95% [39]. HPV16 was the predominant type encountered
among HPV-positive specimens and its frequency increased along with the severity of
cervical lesions. This result is consistent with data obtained by other authors [40,41], though
interestingly, HPV33 was the second most frequent HPV genotype. HPV18, considered the
second most frequent HR-HPV genotype worldwide, was only detected here in 3.4% of
the cases.

In this study we determined by PCR that EBV is present in LSIL, HSIL and SCCs, as
was previously reported using this methodology [42,43], although without a statistically
significant difference. Though conventional PCR assay cannot distinguish between ep-
ithelial and lymphocyte infection, this result needs to be interpreted with caution because
EBV was detected in one high grade and one cervical SCC by EBER1 ISH, considered
the gold standard for EBV detection in clinical specimens. Sasagawa et al. detected less
than 1 copy of EBV genome in cervical SCCs by PCR, which suggests a reduced number
of cells infected with this virus. This fact was confirmed by BamHI-W mRNA in situ
hybridization and IHC for LMP1 and EBNA2 proteins [42]. Unfortunately, the age of
collected specimens may affect the sensitivity of ISH and could account for the low number
of EBV ISH-positive cases detected in this study, as previously reported [44,45]. Neverthe-
less, HR-HPV/EBV co-presence by PCR was detected in 38.7% of cases, with a significant
increase from LSIL to HSIL and cervical SCC. A similar pattern was previously reported
by Khenchouche et al. [32]. In a meta-analysis conducted by de Lima et al., the pooled
prevalence of HPV/EBV co-presence also increased from normal cervix, to LSIL, HSIL and
SCC [26]. However, in aforementioned study the pooled prevalence for HR-HPV/EBV
co-presence was not reported.

Interestingly, in the present work HPV16/EBV co-presence also showed a significant
association with the grade of the cervical lesions. In previous studies, EBV was associated
with infection by HR-HPV subtypes, such as HPV16, HPV18, or HPV31 [46], as well as
with an increased risk of HPV16 integration into the host genome [47,48]. The co-presence
of HPV and EBV was also reported in oropharyngeal squamous cell carcinomas [49], in
which HPV16 is the most frequent genotype detected [50]. In addition, the presence of
EBV DNA was evidenced in about 80% of HPV16 or HPV18 positive NPCs [51]. In fact, in
head and neck cancer, EBV infection was significantly associated with HR-HPV subtypes
such as HPV16, 18, 45, and 58 [52]. Moreover, the co-expression of HR-HPVs E6 and
EBV LMP1 was related with advanced tumor stage [52]. Overall, these data suggest a
potential role of EBV as a cofactor in the progression of cervical SCCs. Moreover, we cannot
deny a potential role of EBV infection in tumor-infiltrating lymphocytes as an additional
mechanism implicated in cervical cancer progression.

On the other hand, BARF1 was detected in most EBV-positive specimens (67.3%)
and a semiquantitative analysis revealed the absence of a significant association with the
cervical lesion grade. Although the expression of BARF1 is commonly found in NPC
and EBVaGC, only one previous study reported experimental evidences of BARF1 protein
expression in cervical cancer [32]. In fact, the expression of BARF1 protein was detected
in frozen cervical SCCs using immunoblotting technique, which was also confirmed by
immunohistochemistry. Interestingly, BARF1 protein expression was only detected in
HPV+/EBV+ SCCs samples [32]. Additionally, in the present study the two EBV ISH-
positive specimens showed BARF1 expression in tumor epithelial cells. In this regard,
the role of BARF1 in development and progression of epithelial tumors was recently
reviewed [53]. Moreover, HPV16 E6 and BARF1 transcripts were co-expressed in 37.5%
of HPV16/EBV-positive cases, which suggests a potential cooperation of these proteins
for cervical SCC progression, as was previously reported for HR-HPV E6 and EBV LMP1
protein co-expression [18].

In the present study, we also evaluated the capacity of BARF1 to induce phenotypic
changes in HPV16-positive cervical cells. In fact, when SiHa and CaSki cells were trans-
fected with a BARF1 encoding vector, the proliferation rate was significantly increased.
In previous studies, it was demonstrated that BARF1 can increase the proliferation rate
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in a variety of epithelial cells [53]. For instance, treatment of human keratinocytes with
exogenous BARF1 increased transition from G1 to S-phase of the cell cycle [54]. Transfec-
tion with BARF1 vector also increases the expression of cyclin D1 in the same cells [54].
Moreover, BARF1 induces proliferation of GC cells through a reduction in p21WAF1 [55]
or NF-κB RelA upregulation [56]. Although in the present study we were unable to find
NF-κB RelA activation in SiHa cells transfected with BARF1, the NF- κB subunit c-Rel was
positively regulated in these cells, which is also related with the progression of a variety of
epithelial tumors [57]. Furthermore, BARF1 was also able to increase the migration capac-
ity of cervical cancer cells. Similarly, Hoebe et al. described alterations in the migration
properties of BARF1-transfected epithelial cells [58].

In addition, we assessed the capacity of BARF1 to induce epithelial-mesenchymal
transition (EMT) in cervical cancer cells. Notably, the expression of BARF1 was related
to increased levels of ZEB1 protein, whereas E-cadherin expression decreased, albeit non-
significantly. In a previous study, HPV16 E7 was shown to decrease the expression of
E-cadherin through DNA methyltransferase 1 (DNMT1) overexpression [59]. Interestingly,
McCormick et al. reported an increase in the methylation status of the E-cadherin gene
(CDH1) in EBV-positive cervical lesions, although no statistical significance was found [27].
Overall, these data suggest a potential contribution of BARF1 to EMT in cervical cancer cells,
although further studies investigating the DNMT1/E-Cadherin axis and/or the expression
profile of other EMT-related molecules are strongly recommended. Moreover, BARF1 was
unable to increase the anchorage-independent growth potential of SiHa cells. At present,
the tumorigenic properties of BARF1 remain controversial. Previously, it was reported
that BARF1 was able to induce anchorage-independent growth and tumor growth in nude
mice in tumor and non-tumor epithelial cells [58,60]. In contrast, Jiang et al. found that
BARF1 only increases the cell proliferation rate and the anchorage-independent growth
of nasopharyngeal cancer cells in cooperation with H-ras [31]. Since SiHa cells contain
1 or 2 copies of HPV16, experiments in HPV-negative cervical cells transfected with BARF1
are necessary to elucidate the potential contribution of this molecule to tumorigenesis. In
addition, the HPV-negative HaCaT cell line or primary human keratinocytes might repre-
sent alternative in vitro models for evaluating the role of BARF1 in epithelial carcinogenesis,
as was previously reported [54,61].

In summary, we report here that EBV is present in preneoplastic lesions as well as in
cervical carcinomas, without a significant difference. Additionally, BARF1 is expressed in
a majority of EBV positive cases, which in turn can increase proliferation, migration and
EMT of cervical cancer cells in vitro. More studies are warranted to dissect the role of EBV
and BARF1 in cervical cancer.
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