
Chapter 1 
Artificial Intelligence for the Future 
of Medicine 

Rocío B. Ruiz and Juan D. Velásquez 

Abstract Since its origins, medicine has been more linked to the cure of diseases 
than to their prevention. This is due to multiple factors, training of health professionals 
aimed at curing diseases, lack of quality data, processing capacity, poor multidisciplinary 
approach, etc. However, this paradigm is changing, focusing on maintaining the 
health of individuals to avoid diseases, improving social welfare. To achieve this, the 
new approach proposes that medicine must be Preventive, Participatory, Predictive, 
and Personalized (P4 Medicine). In this chapter, we will analyze how artificial 
intelligence can convincingly contribute to the construction of P4 Medicine, through 
the processing of key data such as DNA, electronic medical records and environmental 
variables to which people have been exposed. Here we can find complex data such 
as Computed Tomography images, electroencephalograms, free text in electronic 
medical records, pharmacological data, etc. These data have grown exponentially 
and efforts to improve their quality are already paying off. However, it is no longer 
possible for a health professional to analyze them to provide a better diagnosis or carry 
out preventive work on diseases, requiring the formation of multidisciplinary teams 
to find new solutions to ancient problems, such as healthcare, where data processing, 
knowledge extraction and its subsequent parameterization in support systems for 
medical decision-making are vital to save lives. In this sense, artificial intelligence, 
together with new methods for processing complex data and computational resources 
to process massive data, will be key to improving the humanity health. 
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1.1 Introduction 

Artificial Intelligence (AI) is perhaps the greatest technological revolution of the 
21st century. Its beginnings can be placed in the late 50s, when the famous English 
mathematician Alan Turing began to wonder what conditions are needed to consider 
a machine as intelligent. His ideas were reflected in his seminal article “Computing 
Machinery and Intelligence” [1]. However, the main concept was coined in 1956 by 
John McCarthy in the Dartmouth Summer Research Project on Artificial Intelligence 
[2], defining AI as “the science and engineering of making intelligent machines, 
especially intelligent computer programs”. Currently, practically no technological 
development escapes the use or influence of AI. We can find it in everyday situations 
such as the coffee machine that prepares us a cappuccino or sophisticated ones 
such as those that allow us to calculate the most optimal path so that an emergency 
vehicle (ambulance, fire truck, etc.) finds the optimal route to save lives or even very 
complex ones like a robot performing a complex surgery on a patient with a critical 
heart condition. In that sense, the IA has two main branches: virtual and physical. 
The first one is related with the informatics approaches where the algorithms are 
used for creating complex computer systems. The second one is close to robotics, 
where the algorithms are used to give the correct movement to the physic parts of a 
devices to perform an specific task. 

But, what is intelligence? A very simple question with a no simple answer. In fact, 
we don’t have a general agreement on the definition of intelligence, but some good 
approaches have been presented during the last century, such as the capacity to give 
good answers from the point of view of truth or facts [3], the ability to continue an 
abstract thinking [4], the combination of abilities necessaries to survive in a particular 
culture [5], the ability to solve problems, to create products valued based on cultural 
settings [6] and from Random House Unabridged Dictionary (2006), the “capacity 
for learning, reasoning, understanding, and similar forms of mental activity; aptitude 
in grasping truths, relationships, facts, meanings, etc.”. It seems the learning capacity 
is an important issue when we try to explain what intelligence is. 

Can a machine be intelligent as a human being? For now and hopefully for the 
future, the answer is no. But a very good approach is to give the machines the capacity 
of learning from data originated in a source, for example environmental data for a 
good prediction about future conditions. In that sense, if during the learning process 
the machine gets enough capacity to predict future scenarios, and making good 
predictions for taking correct decisions, we will be in front of an intelligent machine. 
But the reasoning and understanding capacities are not present in that machine. 

For creating an intelligent machine, the learning process is essential because it is 
where the machine can identify patterns from the data and define rules on how to 
use them to make its best prediction regarding a future situation. However, data is 
not always required to make a machine perform tasks as an intelligent being would. 
Who has not ever played chess with the computer? Normally chess programming 
is based on rules of piece movements, being unnecessary data regarding the moves 
of other players. But these rules intrinsically contain a series of patterns that the
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programmer has programmed into algorithms. Clearly, the algorithm that represents 
the cybernetic player can be improved by finding new patterns that the programmer 
never imagined. This is where once again the massive processing of data from other 
players’ plays becomes extremely relevant. Indeed, the algorithm that represents the 
cybernetic player can be continuously improved until it reaches the point where it 
learns from patterns of so many plays that it practically covers a large part of the 
universe of possibilities that a human player would have, making the machine beat 
the man, which has already happened, but it has not been a process of reasoning, but 
rather of processing capacity. 

There is no doubt that the applications developed and to be developed based on AI 
are beyond any prediction that we can make at the moment. However, it is practically 
an assumed fact that the world we know is undergoing dizzying changes where AI 
in many cases has taken a leading role. This is how in healthcare and in medicine in 
general, the next step in its development cannot be taken without the support of AI. 

Since immemorial time, medicine has been focused on the cure of diseases and 
ailments of all kinds of patients [7], who have in common that symptoms have first 
manifested before decisions can be made, which in many cases may arrive late. 
However, the focus is changing, where the maintenance of healthy begins to to be 
relevant. Indeed, medicine is moving from a reactive to a proactive discipline being 
participatory, predictive, personalized and preventive P4 medicine [8]. The foregoing 
will be possible to the extent that we can obtain information and knowledge of the 
data related to the health of patients, in particular their DNA, electronic medical 
records and the environment in which they have lived, among other data. This is a 
huge challenge, starting with the maintenance and consolidation of data that ensures 
secure access for study purposes and of course to help patients with their ailments. 
Followed by the data storage and processing capacity for the extraction of patterns 
that help all health personnel in tasks such as diagnosis, treatment, medication, etc. 
And finally, to provide adequate help to both the patient and the health personnel 
to achieve the primary objective that goes beyond the cure of the disease, we refer 
to the maintenance of good health in the population. Given this scenario, artificial 
intelligence is playing a key role in massive data processing that allows the creation 
of countless applications, which cover practically all branches of medicine, such as 
radiology, nephrology, nutrition, psychiatry, neurology, etc. [9]. 

This chapter is organized as follow. Section 1.2 introduces the process about how 
the machines learn. In Sect. 1.3, the possible applications of artificial intelligence in 
medicine is shown. A short review about papers related with P4 medicine is developed 
in Sect. 1.4. And finally, as chapter’s summary, some reflections on the current and 
future potential of the application of artificial intelligence in medicine are shown. 

1.2 How Do Machines Learn? 

How do we human beings learn? through examples which are reflected in our neural 
network that then allow us to analyze sounds, images, movements, structures, tastes, 
etc. In this sense, the automatic learning of a machine is very similar, that is, many
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examples are needed so that the machine can extract patterns from the data that then 
allows it to extrapolate a future decision. When they receive data that did not belong 
to the set of examples as input and for which you are looking for an output, it will 
give you the best prediction based on what it had learnt before [10]. 

According to [11] an algorithm is capable to learn when given a task, training 
experience, and a performance measure, so its achievement on the task improves 
with experience. Based on experiences learned, the algorithms can take decisions, 
make predictions, classify objects, predict cancer in a patient, give directions to the 
robots, recognize the human voice, and a huge set the possible uses and applications. 
In this context, the data play a central role in achieving a correct training of the 
algorithms. In other words, if the data are not clean and consolidated, the training of 
the algorithm will be affected and its learning capacity will be reduced, which will 
affect all the uses described above, making it impossible to create applications. 

Machine learning is the concept that groups the set of algorithms that are capable 
of learning from the data. It was defined by Arthur L. Samuel as a “field of study 
that gives computers the ability to learn without being explicitly programmed” [12]. 
Depending of type of data and the algorithm to use, the learning process can be 
classified in supervised, unsupervised, reinforcement [13], and deep learning [14]. 

In supervised learning, a set of training data is created where the input and output 
vector are known. Then the algorithm learns the associations between inputs and 
outputs to create a mathematical model, which is validated and tested with real data 
before it can be used. A different situation happens in unsupervised learning where 
the algorithm learns the associations in the training data but the output is unknown, 
identifying undiscovered patterns. In reinforcement learning the algorithm learns 
a behaviour through trial-and-error to maximize a defined reward. Finally, deep 
learning allow to process big amount of raw data to extract patterns for detection or 
classification of issues. 

1.2.1 Machine Learning Process 

Giving a collection of data we are trying to extract patterns and rules about how to 
use them. The basic assumption is that the data was not created randomly, i.e., there 
are intrinsic relationships among them, for example regularities, which can then be 
detected and represented as patterns that allow a machine learning algorithm to be 
trained. In other words, if the data are dirty, their dispersion is high or there are no 
possible relationships among them, then there will be no machine learning algorithm 
able to create an analysis, predict, classify, or model the phenomenon under study. In 
that sense, statistical techniques are used to analyze the quality of the data and make 
prospects of its possible uses in a training process of a machine learning algorithm 
[15]. 

Figure 1.1 shows a conceptual diagram about the machine learning algorithms, 
where the deep learning one is part of the artificial neural network family. Depending 
on the kind of data to be processed and the phenomenon under study to be modeled, 
is the machine learning algorithms to use.
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Fig. 1.1 Machine learning algorithms, concepts and classes, based on [14] 

Fig. 1.2 Machine learning general training process workflow 

Figure 1.2 shows the general learning process for machine learning algorithms 
focused in supervised learning. From a set of row data, the target data, i.e. the data to 
be considered to analyze the phenomenon under study, are selected. Next, a feature 
vector transformation process is developed. The feature vectors set is divided in three 
parts: training, validation, and testing. The training data are used to train the model 
by applying a selected machine learning algorithm. Then the model is validated to 
check if there are problems of overfitting/underfitting. And finally, testing is applied 
to get some effectiveness measure such as accuracy. After the whole process, the 
model is put into production, being useful for taking decisions.
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1.2.2 Machine Learning in Medicine 

Considering the current amount of data related to people’s health, and that its future 
growth will be exponential, it is no longer possible by using traditional methods 
of extracting information and knowledge, fundamentally manual, can obtain any 
benefit from these data [16]. In this way that machine learning algorithms have 
become the new way of processing large volumes of data, in many cases complex 
and multivariable, and in particular medical data [17]. 

Machine learning algorithms and a subset of them, like deep learning, allow to 
create a computational model to process medical data for getting novel patterns from 
raw data, for instance, digitized X-ray images of a human chest to detect if the patient 
has pneumonia or COVID-19 [18]. The learning model is trained by using a set of 
learning techniques, in this case an object detection technique to predict if a new 
chest X-ray image is classify as normal, pneumonia, or COVID-19. 

Medical data are available in an enormous variety of types and sources, which 
include diseases, public health data, prognosis, diagnosis, images, time series, etc., 
and everything indicates that its growth will continue to be exponential, as more 
and better sensor devices are added to medical exams [19]. Almost by construction, 
medical data are complex to analyze, even when there are very few records to analyze 
a disease, the mere fact that these records have high dimentionality makes them a 
challenge in machine learning. Additionally, in many cases it is not entirely clear 
what methods have been used to ensure the quality of medical data, which directly 
influences the predictive quality of the model to be trained [20]. 

There is no doubt that the applications of machine learning, and deep learning in 
particular, in medicine are enormous and will continue to expand in the incoming 
years. In [17] presents a study on the use of machine learning in medical research 
in recent years. From there it follows that the most used algorithms have been 
Random Forrest, Decision Tree, Support Vector Machine, Naïve Bayes, Artificial 
Neural Networks, and clustering techniques. Especial attention with Deep Learning 
algorithms, used in an important set of papers, in particular Convolutional neural 
network (CNN) for medical imagine processing [21]. 

1.3 Artificial Intelligence in Medicine 

During the last decade, Artificial Intelligence research has grown exponentially in 
projects related to medicine. Indeed only in 2016, AI projects related to medicine 
attracted much more investment than AI projects related to other sectors of the 
global economy [22, 23]. What factors explain this heightened growth and interest?, 
among the reasons we can find is the great capacity of AI to improve the efficiency 
and effectiveness of healthcare delivery. AI in medicine aims to optimize clinical 
decision-making by using data related with health to provide information and patterns 
for improving the healthcare of the individuals.
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Then, what AI algorithms can do for the future of medicine? It is an inescapable 
fact that in the developed world, the amount of data related to each person’s health is 
growing by leaps and bounds. Also that the reality of the quality and consolidation 
of these data in many countries is doubtful. However, steps are being taken in the 
right direction to achieve the digitalization of computer systems related to electronic 
medical data, continuous improvement in data quality, interoperability of systems, 
and security protocols that guarantee that the access, processing, and use of the data 
will be carried out in accordance with the law [24]. In this context, there is only 
one question: what do we do with medical data? This is where AI plays a central 
role. With the avalanche of data that health information systems are producing day 
by day, the number of exams that patients must perform, DNA analyzes that are 
less expensive every day, and the data provided by the patients themselves through 
applications for Smartphones or other devices, the possibility of a human being able 
to analyze all this is simply impossible, which is why advanced mechanisms are 
required in data processing and in the presentation of information and patterns for 
making relevant clinical decisions. 

Consider the following situation. A person suffers from a severe headache and 
tells a friend about his ailment. Immediately the friend takes out a medicine that 
he carries in his backpack that a doctor diagnosed him with years ago and that 
has always helped him with his headaches. Immediately afterwards, he gives a pill 
to his friend so that he can make the strong pain that he is suffering disappear. 
Several questions immediately arise: (1) if they are different persons, why give them 
the same drug? (2) does the friend know the person’s medical history?; (3) The 
dose delivered is correct?; (4) Will there be any contraindications? And we could 
continue asking questions, but the fact is that the advisable thing would be that if they 
are different persons, the treatment at least would not have to be the same. This is the 
essence of precision medicine that is the basis of the medicine of the future. Precision 
medicine, sometimes called personalized medicine is defined by the National Institute 
of Health (NIH) precision medicine as “refers to a new treatment and prevention 
method based on understanding of individual gene, environment and life-style” [25]. 
And to achieve this, information and knowledge extracted from quality data per 
individual are required, considering their medical history, DNA, environment, and 
lifestyle. 

Figure 1.3 shows the integration of several data sources related with the patients, 
and the respective data processing by using artificial intelligence tools, machine 
learning algorithms and deep learning algorithms. The outcome aims to provide 
information, patterns, knowledge, etc, to improve the decision-making for different 
users, such as healthcare professionals and patients. 

In Fig. 1.3, the collection of data presented is only a part of the data that are related 
to the life and healthcare of people. Among these data we also find those from online 
social networks [26] and those provided by people through smartphone applications 
related to healthcare [27]. Clearly, the more quality data that can be collected from 
an individual, the better the diagnosis to cure a disease or the advice to maintain their 
health, making the patient central in their healthcare. However, such amount of data 
cannot be processed directly by human beings, so a large data processing capacity is
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Fig. 1.3 Artificial intelligence as enable factor for future medicine 

needed together with advanced algorithms for the extraction of information, patterns, 
and knowledge. The final result points to multiple users, starting with the patient, 
being able to make correct use of this new knowledge, which is key in healthcare. 

There is no doubt that AI is causing a great positive revolution in terms of people’s 
healthcare. However, not everything is a rose garden. As it is sensitive personal 
data, its processing must be carried out under strict security measures and ethical 
considerations [28]. Indeed, what would happen when analyzing the DNA data of 
an individual, it is detected that she/he has a high probability of developing diabetes 
in the future, will this be a prevalence? will health insurance cover this disease? will 
the individual suffer some kind of discrimination? We must not forget that the use of 
AI in healthcare is to help people in an ethical and responsible manner [29], taking 
care that their personal data is not used for purposes other than to support health 
maintenance or cure the disease that affects an individual. In no way can they be 
used for other purposes that violate the fundamental human rights [30]. 

1.4 AI Applications in Medicine 

As mentioned above, the development of high-throughput, data-intensive research 
assays, and technologies in medicine has created a need for researchers to develop 
strategies to analyze, integrate, and interpret the massive amounts of data they 
generate. Traditional approaches do not allow working with ’big data’, which presents 
the opportunity to improve people’s health, so the use of AI techniques suggest that 
they could be particularly appropriate. In addition, the results of the application 
of medical exams reveal a great heterogeneity in the pathophysiological factors



1 Artificial Intelligence for the Future of Medicine 9

and processes that contribute to a disease, suggesting that there is a need to adapt 
or ’customize’ the medicines to the nuanced characteristics and, often, unique to 
individual patients [31]. 

P4 Medicine represents the foundations of a model of clinical medicine, which 
offers the opportunity to modify the healthcare paradigm: the participation of the 
individual is essential to put into practice the other three aspects of P4 Medicine with 
each patient [32]. 

In Fig. 1.4 a summary about the P4 Medicine is shown. The future of health 
services focuses on giving people a complete picture of the many factors that 
affect their health. Personalized medicine proposes the integration of numerous 
biological data points, including molecular, cellular, and phenotypic longitudinal 
measurements, as well as individual genome sequences, to better define the health 
or well-being of each person, predict transitions to disease and guide medical 
interventions [33–35]. The implementation of the P4 from the clinical point of view 
will create predictive and personalized models that represent the well-being of each 
patient or of a disease, which will allow the design of new pharmacological tests that 
take into account the heterogeneity of responses to therapies and disease stratification 
[36]. 

1.4.1 Predictive Medicine 

Predictive medicine is a branch of medicine that aims to identify patients at risk 
of developing a disease, allowing for early prevention or treatment of that disease. 
Single or more commonly multiple assays are used to identify markers of future 
disease disposition [38]. 

The goal of predictive medicine is to obtain and catalog the characteristics of 
individual patients, analyze that data to predict an individual patient’s risk for 
an outcome of interest, predict which treatment in which individual will be most 
effective, and then intervene before the event occurs. However, previously limited 
to the realm of genetics, genetics-based risk prediction has been of limited benefit 
because whole genome sequencing is still relatively expensive, and most diseases 
affecting today’s population depend on different variables [39]. These are not only 
influenced by genetics but also by demographic, psychosocial data, eating habits, 
stress levels, etc. Therefore, the need arises to collect and organize different types of 
data to perform a more complete analysis of people. 

In recent years, machine learning algorithms such as deep learning that can account 
for complex interactions among features is shown to be promising in predictive 
modeling in healthcare [40]. Artificial intelligence can help doctors make better 
clinical decisions. Algorithms can unlock clinically relevant information hidden in 
the vast volume of healthcare data guided by clinically relevant questions asked 
by healthcare professionals. In clinical trials of most medical studies, specific 
hypotheses or questions are clearly defined, and algorithms are trained to predict
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certain outcomes, given that a set of features and insights can be developed through 
prediction [41]. 

Artificial intelligence is used in many different health conditions and healthcare 
applications, for example, to assess the readmission of patients to hospitals [42], 
to detect patients who will suffer adverse effects when taking medications [43], in 
chronic diseases such as diabetes [44] and hypertension [45]; just to name a few. 
Table 1.1 presents some research that has applied artificial intelligence in predictive 
medicine. 

1.4.2 Participatory Medicine 

Participatory medicine focuses on the patient, in order to empower people to make 
more informed decisions related to their health, where the individual/patient is at the 
center of any related health care initiative [61]. In recent times, the role of patients in 
managing their own health has been changing [62]. People have gone from being mere 
observers to more active, committed and empowered actors in the decision-making 
process shared with the health team [63, 64]. For example, vaccination is strictly 
participatory since the individual is responsible for administering it, including that of 
children. This issue has become highly relevant due to the pandemic, and the multiple 
recently developed COVID-19 vaccines, given their differences in composition, 
timing of administration, effectiveness, and potential adverse events [65]. 

AI applied to participatory health involves individuals and their representatives, 
who would be the main beneficiaries of this technology [66, 67]. People can 
collect, record, and track indicators to quantify their health, providing insights into 
their overall health status [68], giving AI the opportunity to further understand 
their health.Continuing with the example in the pandemic context, thanks to AI, 
surveillance, monitoring of close contacts, compliance with quarantines, and the 
reduction of workload for health teams have been facilitated. Along with this, 
mobile technology has been harnessed to collect data on the symptoms reported by 
individuals combined with other data from different sources to obtain information 
on the disease and the spread of infection, contributing to knowledge about the 
prevalence and transmission of asymptomatic COVID-19 [69]. Images from security 
cameras, facial recognition, bank card records, and GPS data from vehicles and 
mobile phones have also been used to closely monitor possible contacts between 
infected people. In this way, data on the location and movements of people were 
collected to alert neighbors/patients to new cases. 

AI applications within participatory health have been evaluated in the context of a 
wide variety of health conditions, health promotion activities, and healthcare settings 
through: social media, mobile apps, chatbots, health records, questionnaires, and 
open collaborative health studies [64, 67]. Each allows for the generation, production, 
or collection of various types of data, reflecting various facets of health, including 
psychological, physical, social, physiological, or cognitive indicators.
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Tables 1.2 and 1.3 present the tools that have been used to apply AI in participatory 
medicine: papers that work with social networks and research where different devices 
and applications are used. 

1.4.3 Personalized Medicine 

Personalized medicine is the tailoring of therapies to defined subsets of patients 
based on their likelihood to respond to therapy or their risk of adverse events [85]. 
It uses an individual’s genetic profile to guide decisions about disease prevention, 
diagnosis, and treatment. Knowing a patient’s genetic profile can help clinicians 
select the appropriate drug or treatment and administer it at the appropriate dose or 
regimen [86]. 

Personalized medicine has the potential to tailor therapy with the best response 
and the largest safety margin to ensure better patient care. By enabling every patient 
to receive early diagnosis, risk assessment and optimal treatment, it promises to 
improve care while lowering costs [87]. 

The focus of personalized medicine is on identifying which approaches will be 
effective for which patients based on genetic, environmental, and lifestyle factors. 
If information is collected from different sources for the same individual, a specific 
profile of the subject can be established, in which the sensitivity to certain risk 
factors can be accurately determined, and with this, appropriate measures can be 
taken to reduce the risk of developing the disease. Furthermore, risk assessment 
can benefit from precision medicine by generating estimates that lead to evidence-
based recommendations for different outcomes [88], including historical data [89]. 
In addition, precision medicine’s focus on the individual will lead to accumulating 
evidence of multiple exposures and thus characterizing the body’s short- and long-
term response to changes that occur, exposures to environmental factors, and 
occupational agents [88]. 

The use of Artificial Intelligence techniques applied to personalized medicine 
can contribute to the detection or prediction of diseases, achievement of accurate 
diagnosis, and optimal treatment. Some examples are based on personalized diagnosis 
and treatment based on Cardiac Imaging [90], applications of artificial intelligence 
in early detection of cancer [91] (such as automatic classification of cancer based 
on images [92] and on genes [33]), computer-aided detection and computer-aided 
diagnosis of colorectal polyps [93], and automatic health-record heart failure with 
preserved ejection fraction patient phenotyping [33]. Finally, it is highlighted that 
in recent times, the pandemic prompted the execution of research in personalized 
medicine applied in the timely diagnosis of COVID-19, in order to be able to deal 
with the disease, from containing the spread of the virus to the correct treatment of 
patients [34]. 

Table 1.4 presents some studies that focus on the use of artificial intelligence to 
support personalized medicine.
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1.4.4 Preventive Medicine 

Due to rising health care costs, early disease prevention has never been more 
important than it is today. Given the above, the concept of preventive medicine 
is strengthened, which is based on Medical practices that are designed to avert and 
avoid disease[108]. 

Digital health announces that thanks to technological progress embodied in 
applications, wearable technology, remote monitoring, telemedicine, and communication 
tools, among other diagnostic devices; the quality of patient care will be optimized, 
as well as a more timely response to any situation. This occurs because these tools 
make data available, which are extracted and used for the detection, prediction, and 
support for diagnosis/decision making of anomalies [109]. 

AI-driven health interventions fall into four categories relevant to global health 
researchers: (1) diagnosis, (2) patient morbidity or mortality risk assessment, (3) 
disease outbreak prediction and surveillance, and (4) health policy and planning 
[110]. Through the use of AI, huge amounts of data derived from different sources can 
be interpreted to facilitate diagnosis and increase the ability to execute early initiatives 
and prevent diseases to reduce the burden on both the patient and caregivers. Then 
executing successful interventions depends on the knowledge of the causes of the 
disease, the transmission dynamics, the identification of risk factors and groups, the 
methods of early detection and treatment, the implementation of these methods and 
the continuous evaluation and development of the methods. prevention methods and 
treatment. The identification of the determinants of a disease at the population level 
is a prerequisite, to prevent its appearance in a single individual, providing the basis 
for targeted and specific treatment [109]. 

The application of AI in disease prevention has been carried out in the evaluation 
of breast cancer risk [111], heart disease diagnosis [112], early prognosis in patients 
with liver disorders [113], prediction of admissions, complications and mortality in 
ICUs [114], and the prognosis of severity and outcome of cerebrovascular accidents 
[115], among others. 

Table 1.5 shows a summary of some research that applies Machine Learning and 
Deep Learning algorithms in the field of preventive medicine. 

1.5 Summary 

People’s healthcare is changing, going from being a task focused on curing diseases 
to one based on preserving health, through various methods that anticipate possible 
illnesses, treatments to maintain indicators of internal biology of the human body 
within certain margins and of course, considering that people are the center of any 
initiative regarding healthcare. Hence, the adequate collection of quality data related 
to people’s lives and health is very important. For several years, enormous efforts 
have been made to improve the processes of capturing and storing data related to
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health, its subsequent maintenance, transmission, and exploitation. However, despite 
all these efforts, in many places there is still no unified electronic medical record, 
which is essential to apply the concepts behind 4P medicine. But it is a matter of 
time before the situation gradually improves. For now, efforts have been focused 
on using the data related to people’s health in the best possible way to create 
various applications and systems that are aimed at gradually improving population’s 
health. Considering this scenario and the inescapable fact that health-related data 
only grows in complexity and size, it is essential to have automated tools for its 
processing to extract information and knowledge to support decision-making in 
the field of healthcare. This is where artificial intelligence plays an essential role, 
enabling massive data processing, process automation, timely delivery of information 
and knowledge and, of course, support for diagnosis. We are at the gates of a 
new medicine, much more participatory, predictive, preventive and personalized, 
where the joint work between health personnel and artificial intelligence is bearing 
increasingly significant fruits. But remember, with all this tremendous technological 
power comes great responsibility. The processing of data related to people’s health 
must be carried out in a safe, responsible and, above all, ethical manner, taking care 
to safeguard the human rights of individuals above all else. Only in this way can the 
benefits of AI be accessed in the field of healthcare. 
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