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Resumen

Esta tesis, titulada “Análisis funcional en estructuras asimétricas”, consiste en el estudio de
distintos tipos de estructuras de naturaleza asimétrica, ya sea en relación a una estructura
métrica, algebráica, diferencial, o a una combinación de ellas, teniendo las asimetŕıas métricas
un rol protagónico. Algunos ejemplos de estas estructuras incluyen a los espacios normados
asimétricos, en los cuales un espacio vectorial real E es dotado de una función p que satisface
todas salvo una de las condiciones necesarias para ser una norma, lo cual permite que los
valores de p(v) y p(−v) puedan diferir para algunos puntos v ∈ E. Esta noción puede
generalizarse aún más relajando la estructura algebráica del espacio vectorial, reemplazando
el grupo aditivo por un monoide (el cual puede no poseer inversos aditivos), y restringiendo el
producto por escalar a los escalares no-negativos. Esto da origen a la noción de cono normado.
Otro ejemplo interesante son las variedades de Finlser, las cuales tienen la misma estructura
diferencial de una variedad suave de dimensión finita, pero cada uno de los espacios tangentes
está dotado de una norma asimétrica, en contraste de las normas generadas por productos
internos usados en las variedades Riemannianas. Estos ejemplos pueden ser estudiados en
el contexto de los espacios cuasi-métricos, los cuales son una generalización de los espacios
métricos en la que la función distancia cumple todas las condiciones necesarias para ser una
métrica a excepción de la simetŕıa, en el sentido de que la distancia entre dos puntos a y
b puede no coincidir con la distancia entre b y a. Quitar esta hipótesis permite una mayor
flexibilidad en las situaciones que pueden ser modeladas con este concepto, pero tiene la
desventaja de que pueden perderse herramientas y resultados conocidos en espacios métricos.

Nuestro estudio de estas estructuras asimétricas se realiza usando herramientas y nociones
inspiradas por el análisis funcional clásico. En especial, la idea de utilizar alguna estructura
en un espacio de funciones a valores reales F(X) sobre un conjunto X para determinar alguna
propiedad sobre el conjunto X está presente en la mayoŕıa de los resultados de este trabajo.

El Caṕıtulo 2 contiene todas las definiciones y nociones preliminares necesarias. El
Caṕıtulo 3 presenta una caracterización de casi isometŕıas entre variedades de Finsler, la
cual fue publicada en [17]. El Caṕıtulo 4 trata sobre una generalización del concepto de
espacio Lipschitz-libre al contexto de los espacios cuasi-métricos, la cual se publicó en [18].
El Caṕıtulo 5 se divide en dos secciones: la Sección 5.1 da una generalización del clásico
teorema de Myers-Nakai al caso asimétrico de las variedades de Finsler. Este resultado re-
quirió definir nuevas estructuras asimétricas (llamadas semianillo-cónico y álgebra normada
asimétrica extendida), las cuales son luego utilizadas en la Sección 5.2 para demostrar un
teorema tipo Banach-Stone abstracto para espacios métricos.

Palabras clave: Espacios cuasi-métricos, espacios normados asimétricos, cono normado,
variedad de Finsler, isometŕıas, casi isometŕıas, funciones Lipschitz, funciones semi-Lipschitz,
espacio libre asimétrico, teoremas tipo Banach-Stone.
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Abstract

This thesis, entitled “Functional analysis in asymmetric structures”, consists of the study of
different types of structures of asymmetric nature, related to metric, algebraic and differential
structures, as well as combinations of them, with metric asymmetries playing a central role.
Some examples of these structures include asymmetric normed spaces, where a real linear
space E is endowed with a function p satisfying all but one of the conditions required to be
a norm, which allows for the values of p(v) and p(−v) to differ for some points v ∈ E. This
notion can be generalized further by relaxing the algebraic structure of the linear space, by
replacing the additive group with a monoid (which may lack additive inverses), and restricting
scalar multiplication to non negative scalars. This gives rise to the notion of normed cones.
Another interesting example are Finsler manifolds, which share the differential structure of
finite-dimensional smooth manifolds, but each tangent space in the tangent bundle of the
manifold is endowed with an asymmetric norm, as opposed to the inner product norms used
in Riemannian manifolds. These examples, as well as most of the structures studied in this
work, can be viewed in the framework of quasi-metric spaces, which are a generalization
of metric spaces in which the distance function satisfies all the conditions required to be a
metric except one: the distance function does not need to be symmetric, in the sense that
the distance between two points a and b may differ from the distance between b and a.
Dropping the assumption of symmetry from the definition of a metric offers a greater degree
of flexibility regarding situations that can be modeled using this concept, at the expense of
losing some of the tools and results known for metric spaces.

Our study of these asymmetric structures is carried out using tools and notions inspired
by classical functional analysis. In particular, the idea of employing some structure on a
space of real-valued functions F(X) over a set X to determine some property on the set X
itself is present in most of the results of this work.

Chapter 2 contains the necessary preliminary definitions and notions. Chapter 3 contains
a characterization of almost isometries between Finsler manifolds, which was published in
[17]. Chapter 4 deals with the construction of a generalization of Lipschitz-free spaces in
the framework of quasi-metric spaces, which was published in [18]. Chapter 5 is divided in
two sections: Section 5.1 gives a generalization of the classical Myers-Nakai theorem, which
characterizes isometries between Riemannian manifolds, to the asymmetric case of Finsler
manifolds. This result required the definition of new asymmetric structures (namely, conic-
semirings and extended asymmetric normed algebras), which are then used in Section 5.2 to
prove an abstract Banach-Stone type theorem for metric spaces.

Keywords: Quasi-metric spaces, asymmetric normed spaces, normed cones, Finsler man-
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ifolds, isometries, almost isometries, Lipschitz functions, semi-Lipschitz functions, asymmet-
ric free space, Banach-Stone type theorems.
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Chapter 1

Introduction

The study of metric spaces is a well-explored field in mathematics, paramount for the training
of mathematicians with interest in analysis. The definition of metrics encompasses three
axioms, namely, separation of points, symmetry, and the famous triangle inequality. These
three axioms are strong enough to produce a robust theory, and at the same time easy
to verify in order to give metric spaces plethora of applications. Still, in some cases (both
theoretical and applied) the axioms of metrics are too restrictive, which motivates considering
relaxations.

Relaxations can be made in several directions, by addressing different aspects of the
definition of metrics, and in particular, one of the three aforementioned axioms. One of the
earliest examples of such a relaxation came under the name of pseudometric spaces [32],
where the distance function is no longer required to separate points (i.e., two different points
can be at distance zero). In the context of linear spaces, this leads to the notion of semi-
norms. Another known example, under the name of p-metric spaces or quasimetric spaces,
relaxes the triangular inequality instead [1]. This notion has been studied in the context of
Banach spaces under the name of quasi-Banach spaces and p-Banach spaces [2].

Unfortunately, notations and terminology of generalized metric spaces are not yet stan-
dard. What some authors call a pseudometric, some others call a semimetric (in an effort to
use a similar name to the one already widely established on normed spaces). The situation
is even more complicated with terms such as quasi-metric, which for most authors refers
to a distance function that does not need to be symmetric, while other authors (e.g. [1])
use the term quasimetric to refer to a relaxation of the triangle inequality. On top of that,
linear versions of these notions do not often use the same terminology, as most of them were
developed earlier along with the theory of Banach spaces. Such is the case of pseudomet-
ric spaces and seminormed spaces, and quasi-metric spaces (in the asymmetric sense) and
its linear version, called asymmetric normed spaces, since the term quasi-normed space and
quasi-Banach space were already established, and mean something completely different.

Therefore, readers should be constantly alerted when dealing with these types of notions,
and authors should be as clear as possible with all definitions. Fortunately, a mayor part
of this document involves only one of the above mentioned relaxations of metric spaces, so
possible ambiguities are kept to a minimal. Any such troubles will be properly addressed as
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needed, mainly on Chapter 2.

This work deals with different types of structures of asymmetric nature, related to metric,
algebraic and differential structures, as well as combinations of them. Most of these notions
can be studied within the framework of quasi-metric spaces, that is, sets endowed with
distance functions satisfying the axioms of a metric, except symmetry. This difference might
seem small at first but, as we shall see on Chapter 2, it has deep consequences even in the
most fundamental aspects of metric spaces, such as their topology. Even though quasi-metric
spaces have appeared in the literature as early as the 1930s (see [44]), their structure is not
completely understood yet.

Dropping the assumption of symmetry from the definition of a metric can be seen as a
natural relaxation of the core concept of metric spaces. Indeed, by looking at some of the real
world scenarios (be it in physics, resource allocation, measuring travel distances and times,
etc) that inspired the definition and study of metrics, one may argue that the symmetry
requirement is somewhat “unnatural”. This was noted by M. Gromov in his celebrated
book “Metric Structures for Riemannian and Non-Riemannian Spaces”, where he stated the
following (in regards to the symmetry requirement in the definition of metrics): “...This
unpleasantly limits many applications: the effort of climbing up to the top of a mountain, in
real life as well as in mathematics, is not at all the same as descending back to the starting
point.”.

The definition of quasi-metric spaces is instinctively associated with its natural class of
morphisms, known as semi-Lipschitz functions. The study of this class of functions quickly
becomes quite interesting: as we shall see in Chapter 2, the set of real-valued semi-Lipschitz
functions on a quasi-metric space (X, d), denoted by SLIP(X), is often not a linear space,
but only a convex cone. We highlight the importance of this fact, as it reveals how our
starting “metric asymmetry” is then reflected as an “algebraic asymmetry”, since the cone
SLIP(X) lacks the “additive inverse” property of a linear space. This sort of “propagation” of
asymmetries into natural function spaces makes the endeavor of developing tools of functional
analysis for these spaces more challenging.

This document is organized as follows: Chapter 2 contains all the preliminary definitions
and notions necessary for a reader, from whom we will not assume acquaintance with quasi-
metric spaces and related topics. This chapter also contains the basic definitions of Finsler
manifolds and Lipschitz-free spaces, which will be necessary for the remaining chapters.

Chapters 3, 4 and 5 present different, self-contained results, which are not required to be
read in order.
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Chapter 2

Preliminaries

As already mentioned in Chapter 1, dropping the assumption of symmetry from the definition
of a metric offers a major degree of flexibility regarding situations that can be modeled
using this concept. On the other hand, the advantages of working with symmetric distances
cannot be denied. As we shall see in this Chapter, symmetry plays a very important role
in many notions of crucial importance to the theory of metric spaces, such as completeness
and Lipschitzianity. Nevertheless, some other notions remain “well-behaved-enough” under
the loss of symmetry, resulting in an interesting and new framework, which retains enough
key similarities with the classic symmetric theory as to not be completely detached from it,
while exhibiting profound and remarkable differences.

This section contains basics of the theory of quasi-metric spaces, as well as more advanced
results in the literature that will be required for Chapters 3 to 5.

2.1 Quasi-metric spaces

Before giving the abstract definition of quasi-metric spaces, some concrete examples are in
order. Suppose one wants to walk up a relatively steep hill. The Euclidean distance between
our starting point A at the bottom, and a point B at the top of the hill will be the same
no matter if we are going up or down, which is of course factually correct, but it does not
reflect other variables of the problem that might be of interest, such as the effort involved
(going from A to B should be harder than the other way around), the time required to make
the trip, and so on. If one wants to include such information in the definition of distance,
we must look further than the classical notion of metrics. The same problem of traveling
through uneven terrain can be approached from a geometrical standpoint, as at each point p
of the terrain, the effort required to move would depend not only in the point p, but in the
direction v of movement. This can be modeled using Finsler manifolds, which we will visit
on Section 2.4.

More applied examples justifying the need for asymmetric distances can be found in
transportation problems using roads and streets of a city, which are often not bidirectional,
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and even when they are, the most optimal route from point A to point B need not coincide
with the best route from B to A. This implies that quantities such as traveled distance, travel
times, fuel consumption, etc, may not be symmetric with respect to the starting and ending
points. More generally, any problem that can be modeled using directed graphs admits a
potential asymmetry, as the shortest path distance commonly used on directed graphs is not
symmetric.

2.1.1 Basic definitions

Throughout this work we will denote by R+ the set of non-negative real numbers. The
maximum and minimum between two real numbers a and b are denoted by a ∨ b and a ∧ b,
respectively. We will also use the convention inf ∅ = +∞.

Definition 2.1 (Quasi-metric space) A quasi-metric space is a pair (X, d), where X ̸= ∅
and

d : X ×X → [0,∞)

is a function, called quasi-metric (or quasi-distance), satisfying:

(i) ∀x, y, z ∈ X: d(x, y) ≤ d(x, z) + d(z, y) ( triangular inequality);

(ii) ∀x, y ∈ X: x = y ⇐⇒ d(x, y) = 0.

Note that a quasi-metric does not possess the symmetric property d(x, y) = d(y, x) of a
distance.
If we replace the last condition by

(ii)′ x = y ⇐⇒

{
d(x, y) = 0

d(y, x) = 0

then we say that d is a quasi-hemi-metric, in which case the distance between two different
points is allowed to be 0, as long as the distance in the “opposite orientation” is strictly
positive. Throughout this paper, we shall treat both variants of quasi-metric spaces. The
terminology of quasi-metric space will thus refer to a pair (X, d) where d is either a quasi-
distance or a quasi-hemi-distance.

In this work we shall also consider extended quasi-metrics d̃ : X × X → [0,∞], that is,
quasi-metrics that satisfy the same two conditions above, but are also allowed to take the
value +∞.

As it is the case in the classical theory of metric spaces, the special case when the distance
function is associated with a norm deserves to be addressed on its own right.

Definition 2.2 Given a real vector space E, we denote by ∥ · ∥ : E → R+ a norm on E and
by ∥ · | : E → R+ an asymmetric norm on E, that is, a function satisfying:
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(i) ∀x, y ∈ E: ∥x+ y| ≤ ∥x| + ∥y|;

(ii) ∀x ∈ E: x = 0 ⇐⇒ ∥x| = 0;

(iii) ∀x ∈ E, ∀r > 0: ∥r x| = r ∥x|.

If we replace the second condition by

(ii)′ x = 0 ⇐⇒

{
∥x| = 0

∥−x| = 0

then we say that ∥ · | : E → R+ is an asymmetric hemi-norm on E.

The terminology of asymmetric normed space refers to pairs (E, ∥ · |) having either asym-
metric norms or asymmetric-hemi norms on E. The symbol ∥ · |, using two vertical bars on
the left and only one bar on the right side, serves as a reminder of the asymmetric nature of
these type of functionals, in the sense that the values ∥x| and ∥ − x| may not coincide.

We may also consider, keeping the same notation, extended asymmetric hemi-norms,
allowing ∥ · | to take the value +∞. Finally, we denote by u the asymmetric hemi-norm on
R defined by

u(x) = max{x, 0}, for every x ∈ R. (2.1)

If X is a vector space equipped with an (extended) asymmetric (hemi-)norm ∥ · |, then
the function

d(x, y) := ∥y − x|, for all x, y ∈ X (2.2)

is an (extended) quasi-(hemi-)metric on X that satisfies:

d(x+ z, y + z) = d(x, y) and d(rx, ry) = rd(x, y), (2.3)

for all x, y, z ∈ X and r ∈ R+.

For a general quasi-metric space (X, d), and x, y ∈ X the reverse quasi-metric d̄ is defined
by

d̄(x, y) = d(y, x).

Remark 2.3 (Terminology alert I) The reader should be alerted that terminology may slightly
vary according to the authors. Some authors allow the quasi-hemi-metric and the asymmetric
hemi-norm to also take negative values. They also use the terms hemi-metric and hemi-norm
to refer to what we call quasi-hemi-metric and asymmetric hemi-norm, respectively (see, for
instance, [26]). In this work, the adjective quasi refers to the asymmetry of the metric, and
the adjective hemi to the fact that distinct elements x, y in X may have a quasi-distance
d(x, y) equal to 0.

Two quasi-metric spaces can be completely identified via isometries, as follows.

Definition 2.4 (Isometry) A bijective mapping Φ between extended quasi-metric spaces
(X, d) and (Y, ρ) is called an isometry if for every x1, x2 ∈ X, it holds

ρ(Φ(x1),Φ(x2)) = d(x1, x2).
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This notion of isometry is the most straight-forward generalization of the notion of isome-
tries between metric spaces, but it is not the only one. The following notion, relevant to some
applications, presents itself as a weaker generalization of isometries in the classical sense.
First, we need to define the triangular function associated with a quasi-metric.

Definition 2.5 (Triangular function) Let (X, d) be a quasi-metric space. The triangular
function TrX : X ×X ×X → [0,+∞) (associated to the quasi-metric space X) is defined by

TrX(x1, x2, x3) = d(x1, x2) + d(x2, x3)− d(x1, x3).

Definition 2.6 (Almost isometries) A bijection τ : X → Y between the quasi-metric spaces
(X, dX) and (Y, dY ) is called:

(i) an almost isometry, if it preserves the respective triangular functions, that is

TrY (τ(x1), τ(x2), τ(x3)) = TrX(x1, x2, x3), for all x1, x2, x3 ∈ X (2.4)

(ii) a strict almost isometry, if it satisfies (2.4) and there exists a constant c ≥ 1 such that

1

c
dX(x1, x2) ≤ dY (τ(x1), τ(x2)) ≤ c dX(x1, x2) for all x1, x2 ∈ X.

Clearly, every isometry is a (strict) almost isometry, and in metric spaces every almost
isometry is in fact an isometry. The following proposition gives a useful characterization of
almost isometries.

Proposition 2.7 (Characterization of almost isometries) Given quasi-metric spaces (X, dX)
and (Y, dY ), a bijection τ : X → Y is an almost isometry if and only if there exists a function
ϕ : X → R such that for any x1, x2 ∈ X

dY (τ(x1), τ(x2)) = dX(x1, x2) + ϕ(x1)− ϕ(x2).

Moreover, the function ϕ can be determined up to an additive constant by

ϕ(x) = dY (τ(x), τ(x0))− dX(x, x0), for any fixed x0 ∈ X.

In a Chapter 3, we will show that strict almost isometries can be identified in terms of
the function ϕ used in Proposition 2.7

2.1.2 Topologies of a quasi-metric space

A particularly useful tool when dealing with quasi-metric spaces is the fact that every quasi-
metric has associated several (symmetric) metrics. Every quasi-metric can be symmetrized
in the sense of the following definition.
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Definition 2.8 (Symmetrized distance) Let (X, d) be a quasi-metric space. Then

ds(x, y) = max{d(x, y), d(y, x)} and ds1(x, y) = d(x, y) + d(y, x) (2.5)

are two natural symmetrizations of the quasi-distance d, which are equivalent to each other:

ds(x, y) ≤ ds1(x, y) ≤ 2 ds(x, y), for all x, y ∈ X.

If d is an extended quasi-metric, then so is its reverse d̄ and consequently the symmetrizations
ds and ds1 give rise to extended metrics. In case that X is a vector space and d satisfies (2.3),
the above symmetrizations preserve the invariance by translations and homothety.

Definition 2.9 Every (possibly extended) quasi-metric space (X, d) can be endowed with
three “natural” topologies:

(i) The forward topology T (d), generated by the family of open forward-balls

{Bd(x, r): x ∈ X, r > 0},

where Bd(x, r) := {y ∈ X: d(x, y) < r}, for all x ∈ X and r > 0.

(ii) The backward topology T (d̄), generated by the family of backward-balls

{Bd̄(x, r): x ∈ X, r > 0},

where Bd̄(x, r) := {y ∈ X: d(y, x) < r}, for all x ∈ X and r > 0.

(iii) The symmetric topology T (ds), generated by the family of sets

{Bd(x, r) ∩Bd̄(x, r): x ∈ X, r > 0}.

The symmetric topology being generated by the symmetrized distance ds or ds1 defined
in (2.5) is obviously a metric topology. On the other hand, T (d) and T (d̄) are not in
principle metric topologies. Nevertheless, they are both first countable topologies, since they
have local bases consisting of balls of rational radii. Notice also that T (ds) is finer that
both T (d) and T (d̄), and therefore, any d-open (respectively d̄-open) set is also open in the
symmetrized topology.

In what follows, unless stated otherwise, for any the quasi-metric space (X, d), the default
topology will be the forward topology, which is either a T1-topology (when d is a
quasi-metric) or a T0-topology (when d is a quasi-hemi-metric).

Definition 2.10 Let us consider R with the asymmetric distance du defined by

du(x, y) = u(y − x) = max{y − x, 0}.

7



It is easy to check that T (du) has a local basis of the form {(−∞, x0 + ε) : ε > 0} for
each x0 ∈ R, while T (d̄u) has a local basis consisting of sets of the form (x0 − ε,+∞), and
T (dsu) is the usual topology of R. Notice that du is issued from the asymmetric hemi-norm
u(x) = max{x, 0} for all x ∈ R, see (2.1) and (2.2). The forward topology of this space
behaves in a remarkably different way than the usual (metric) topology of R. For example,
the unit ball B(0, 1) = {y ∈ R : du(0, y) ≤ 1} = (−∞, 1] is not T (du)-closed because (1,∞)
is not T (du)-open.

Remark 2.11 The topology T (du) is a particular case of the left order topology for totally
ordered sets (see [40] for more details on left and right order topologies).

Another interesting fact about the space (R, du), is that it characterizes semi-continuity.

Proposition 2.12 Let (X, τ) be a topological space, and let f : X → R be a function. Then,
f is continuous for du (that is, continuous for the forward topology T (du)) if and only if f is
upper semicontinuous for the usual topology of R. The same assertion holds for the backward
topology and lower semicontinuity.

Proof. Let us note that every non trivial open set in (R, du) is of the form (−∞, λ), for λ ∈ R.
Then, both notions of continuity are fulfilled when the super-level sets S(λ) = f−1([λ,+∞))
are closed in (X, τ) for all λ ∈ R.

The following example reveals that the topology of a quasi-metric space, which is T1, may
not be T2.

Example 2.13 Let {xn}n∈N be a sequence of distinct elements and consider the space

X = {xn : n ∈ N} ∪ {x̄, ȳ},

where x̄ and ȳ are different from each other and from any element of the sequence. Then the
function d defined on X ×X by d(x̄, xn) = d(ȳ, xn) = 1/n, for every n ∈ N, and d(x, y) = 1
for all other cases where x ̸= y, is a quasi-metric on X. In this case, the forward topology
T (d) cannot be T2, since {xn}n converges to both x̄ and ȳ. Notice that the symmetrized
distance ds is discrete, with ds(x, y) = 1, whenever x ̸= y.

2.1.3 Cones and conic norms

As stated earlier, the particular case where a quasi-metric space is endowed with linear
structure is of paramount importance. Asymmetric normed spaces have been the focus of
the theory of asymmetric functional analysis so far, and we refer the reader to the book [15]
for an in-depth and mostly self-contained review on the subject. However, as important as
asymmetric normed spaces are, we shall approach them from a more general point of view, as
we firmly believe there is a more general and fundamental object behind asymmetric normed
spaces. This object, known in the literature by the names of normed cone, semi-linear space,
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quasi-normed cone, among others, has been known for a while (see for instance, [9] and [31]),
but it has not received the same attention and development as asymmetric normed spaces.
We shall see that this type of spaces appear naturally when studying quasi-metric spaces
when we delve into the asymmetric equivalent of Lipschitz functions in Section 2.2. For the
time being, let us start the basic definitions and notions needed to understand normed cones
as a generalization of normed linear spaces.

First, we shall recall from [41] the notion of an abstract cone. To this end, let us first
recall that a monoid is a semigroup (X,+) with neutral element 0.

Definition 2.14 (Abstract cone) A cone on R+ is a triple (C,+, ·) such that (C,+) is an
abelian monoid (with neutral element 0), and · is a mapping from R+×C to C such that for
all x, y ∈ C and r, s ∈ R+:

(i) r · (s · x) = (rs) · x;

(ii) r · (x+ y) = (r · x) + (r · y) and (r + s) · x = (r · x) + (s · x);

(iii) 1 · x = x and 0 · x = 0.

Note that this definition does not include the existence of additive inverses. However,
when such an inverse exists for some x ∈ C, it is unique, and we denote it by −x. This
purely algebraic definition can be seen as a “natural” generalization of real linear spaces,
where the Abelian group is replaced by a monoid, and the field of scalars is reduced to R+.
Removing the possibility of negative scalars is necessary, as the notion of abstract cone does
not ensure the existence of additive inverses. However, when the monoid C is actually a
commutative group, the scalar product can be extended to R in the natural way, and we end
up with a linear space in the usual sense.

Definition 2.15 (Subcone) A subcone of a cone (C,+, ·) is a cone (S,+|S, ·|S) such that S
is a subset of C and +|S and ·|S are, respectively, the restriction of + to S × S and of · to
R+ × S.

Definition 2.16 (Cancellative cone) A cone (C,+, ·) is called cancellative if for any x, y, z ∈
C,

x+ z = y + z =⇒ x = y.

It follows readily that every cone that embeds into a linear space is cancellative. Before
we proceed, let us give two examples of abstract cones which are not cancellative.

Example 2.17 (Non-cancellative cone) (i) Consider a cone C and let S(C) be the set of
subcones of C, under the usual operations of subset addition and scalar product. Then S(C)
may not be cancellative.
Indeed, for C = R2, let us consider the following elements of S(C):

X = {(x, 0) : x ∈ R}, Y = {(0, x) : x ∈ R} and Z = {(x, x) : x ∈ R}.

It follows that X + Z = Y + Z but X ̸= Y.
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(ii) For a nonempty set X, consider the set of non-negative functions RX
+ , with the operations

λ ⊙ f = fλ (product with external scalar) and f ⊕ g = f · g (addition). Then RX
+ is not

cancellative.

Definition 2.18 (Cone morphisms) A linear mapping from a cone (C1,+, ·) to a cone
(C2,+, ·) is a mapping f : C1 → C2 such that f(α · x + β · y) = α · f(x) + β · f(y) for
any x, y ∈ C1 and any α, β ∈ R+.

Remark 2.19 (Compatibility of cone morphisms) Let f be a linear mapping between two
cones C1 and C2. Then if Hi := {x ∈ Ci : −x ∈ Ci} denotes the linear part of the cone Ci,
for i ∈ {1, 2}, then it is straightforward to see that for every x ∈ H1, f(−x) = −f(x). In
particular, the restriction of f onto H1 yields a linear mapping between the linear spaces H1

and H2.

We shall now introduce the notion of a conic-norm, which will be relevant for our devel-
opments.

Definition 2.20 (Conic norm) A conic-norm on a cone (C,+, ·) is a function ∥ · |: C → R+

such that for all x, y ∈ C and r > 0:

(i) ∥x+ y| ≤ ∥x|+ ∥y|;

(ii) ∥x| = 0 ⇐⇒ x = 0;

(iii) ∥r · x| = r∥x|.

The pair (C, ∥ · |) is called normed cone. If we replace condition (ii) by

(ii)′ x = 0 ⇐⇒ ∀z ∈ C, [x+ z = 0 =⇒ ∥x| = ∥z| = 0] ,

then we say that ∥·|: C → R+ is a conic hemi-norm. A cone equipped with either a conic-norm
or a conic hemi-norm will be called normed cone. This is in accordance with the terminology
asymmetric normed space, which refers to a vector space equipped with either an asymmetric
norm or an asymmetric hemi-norm. (The asymmetry is now stemming from the use of a
cone, rather than a vector space. Notice however that C is not necessarily a cancellative
cone.)

Example 2.21 Consider the pair (R2, ∥ · |), with

∥(x1, x2)| := u(x1) + u(x2),

where u is the canonical asymmetric hemi-norm of R given by u(x) = max{x, 0} for all
x ∈ R. By restricting ∥ · | to any cone C ⊆ R2, we obtain a conic-hemi-norm. The case of
the third quadrant C = R2

− corresponds to an example of normed cone with the trivial conic
hemi-norm equal to 0 everywhere.

Remark 2.22 (Terminology alert II) The reader should again be alerted that some authors
([41], e.g.) employ the term of quasi-norm to refer to what we call “conic hemi-norm”. We
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Figure 2.1: Illustration of Example 2.21

decided to opt for the term “conic hemi-norm” because it is more suggestive. At the same
time, the term “quasi-norm” might have a different meaning in the theory of asymmetric Ba-
nach spaces ([2], e.g.). The asymmetric aspect of the conic-norm is inherent to the definition
of a cone, and therefore does not require the prefix “quasi”.

Remark 2.23 (Conic-norm vs asymmetric norm) If the cone happens to be a linear space
X, then the conic-norm corresponds to an asymmetric norm on X, and instead of the term
“normed cone” we use the term asymmetric normed space, as in [15]. The same applies to
the case of conic hemi-norms and asymmetric hemi-norms. Given an asymmetric normed
space (X, ∥ · |), one can define the reverse norm of an element x ∈ X as ∥−x|, and the
(symmetric) norms (symmetrizations of ∥· |)

∥x∥s := max{∥x|, ∥−x|} and ∥x∥s1 := ∥x|+ ∥−x|.

It is clear that the above norms are equivalent.

An extended quasi-metric d on a cone (C,+, ·) is called invariant if it satisfies

d(x+ z, y + z) = d(x, y) and d(rx, ry) = rd(x, y), (2.6)

which is the case whenever the extended quasi-metric d is induced by a conic-norm which
is the restriction of an asymmetric norm of a vector space that contains C. An extended
quasi-metric d on a cone (C,+, ·) is called subinvariant if d(x + z, y + z) ≤ d(x, y) instead
of the first part of (2.6). More generally, the following result, established in [23, Proposition
1], states that given a normed cone (C, ∥ · |), there is a natural way to generate an extended
quasi-metric de.

Proposition 2.24 (Extended quasi-metrics generated by conic-norms) Let ∥ · | be a conic-
(hemi-)norm on a cone (C,+, ·). Then the function de defined on C × C by

de(x, y) = inf
z∈C
y=x+z

∥z|,
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is a subinvariant extended quasi(-hemi)-metric on C. If the cone (C,+, ·) is cancellative,
then de is invariant.

Moreover, for x ∈ C, r ∈ R+\{0} and ε > 0, we have

rBde(x, ε) = rx+ {y ∈ C: ∥y| < rε},

and the translations are T (de)-open.

Remark 2.25 (i) The quasi-metric de might take infinite values as long as C is not a linear
space (the infimum may be taken over the empty set).

(ii) If C is a cancellative cone, then the infimum in the above definition becomes superfluous,
and if C is a linear space, the definition of de coincides with the definition of the quasi-metric
given in (2.2).

(iii) The quasi-metric induced by the reverse norm coincides with the one obtained by the
reverse quasi-metric. The same is true for the symmetrized metric which coincides with the
metric obtained by the symmetrization of the asymmetric norm.

Using the extended quasi-metric of Definition 2.24, we define an equivalence between normed
cones.

Definition 2.26 (Isomorphisms between normed cones) A bijective mapping Φ : X → Y be-
tween two normed cones is called an isometric isomorphism if it is linear (c.f. Definition 2.18)
and an isometry between the corresponding extended quasi-metrics, that is,

de(Φx1,Φx2) = de(x1, x2) , for all x1, x2 ∈ X.

Note that this is equivalent to the relation ∥Φx| = ∥x|, for all x ∈ X.

2.1.4 Completeness in quasi-metric spaces

It is a well known fact that completeness is a crucial notion in the study of metric spaces,
and it is a necessary hypothesis for many of the most important results on said theory. Sadly,
completeness is one of the concepts that does not have one straight-forward generalization to
quasi-metric spaces. In fact, there are several quasi-metric generalizations of completeness,
each one preserving a relevant aspect of metric completeness, and all being non equivalent to
each other. Proposition 2.27 illustrates that. The following definitions are not meant to be
compared by the reader, as only one of them will be relevant for this work. For an in-depth
discussion on the subject, we refer the reader to [15].

Let (X, d) be a quasi-metric space. We say that a sequence (xn) in (X, d) is

• left d-Cauchy if for every ε > 0 there exists x ∈ X and n0 ∈ N such that

∀n ≥ n0, d(x, xn) < ε;
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• ds-Cauchy if it is a Cauchy sequence in the metric space (X, ds), that is, for every ε > 0
there exists n0 ∈ N such that

∀n, k ≥ n0, d(xn, xk) < ε;

• left K-Cauchy if for every ε > 0 there exists n0 ∈ N such that

∀n, k, n0 ≤ k ≤ n =⇒ d(xk, xn) < ε;

• weak left K-Cauchy if for every ε > 0 there exists n0 ∈ N such that

∀n ≥ n0, d(xn0 , xn) < ε.

This notions, along with their backward variants, can be used to define notions of com-
pleteness, by asking for the chosen class of Cauchy sequences to be convergent. Moreover,
by choosing the topology under which the convergence in considered, even more notions are.
As for the relation between some of this notions, the following proposition sheds some light
into the situation.

Proposition 2.27 [15, Proposition 1.2.1] Let (X, d) be a quasi-metric space. The aforemen-
tioned notions of Cauchy sequence are related as follows:

ds-Cauchy ⇒ left K-Cauchy
⇒ weakly left K-Cauchy ⇒ left d-Cauchy.

No one of the above implications is reversible.

As a consequence, the notions of quasi-metric completeness that can be defined using the
aforementioned notions of Cauchy sequences will also differ. From all the possible choices,
two will be of use for our purposes.

Definition 2.28 (Forward completeness) A sequence (xn) in a (possibly extended) quasi-
metric space (X, d) is said to be forward-Cauchy if for every ε > 0, there exists n0 ∈ N such
that, if n0 ≤ n ≤ m,

d(xn, xm) < ε.

A space where every forward-Cauchy sequence is forward-convergent (i.e, there exists x0 ∈ X
such that d(x0, xn) → 0) is called forward complete.

Definition 2.29 (Bicompleteness) A (possibly extended) quasi-metric space (X, d) is called
bicomplete if the (extended) metric space (X, ds) is complete, meaning that any ds-Cauchy
sequence in X is ds-converging in X. If X is a linear space and d is the quasi-metric induced
by an asymmetric norm ∥ · |, we say (X, ∥ · |) is a bi-Banach space, whenever X is complete
under the symmetrized metric ds.
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Definition 2.30 (Bicompletion of a quasi-metric space) Let (X, d) be an (extended) quasi-
metric space. A bicompletion of (X, d) is an (extended) quasi-metric space (X̃, d̃), along with
a mapping

ι : (X, d) → (X̃, d̃)

such that:

(i) ι is an isometric embedding;

(ii) ι(X) is dense in X̃ for the symmetrized topology;

(iii)
(
X̃, d̃

)
is bicomplete.

An important result regarding bicompleteness of normed cones (and therefore of asym-
metric normed spaces) is the existence and uniqueness of the bicompletion, see [37, Theorem
3.13]. This result, once again, generalizes the usual completion of normed linear spaces.

Proposition 2.31 (Uniqueness of bicompletion for cancellative normed cones) Let (C, ∥ · |)
be a cancellative normed cone. Then there exists a unique (up to an isometric isomorphism)
bicompletion of (C, ∥·|), which is also a normed cone, and the embedding into the bicompletion
is linear. If C is a linear space, then its bicompletion is an asymmetric normed space.

The reason for choosing bicompleteness among all other possible notions of quasi-metric
completeness is its compatibility with linear and conic structures, as shown by the proposition
above. We shall also see on Section 2.2 that this compatibility extends to the notion of dual
cones, which play a crucial role in our results.

2.1.5 Index of symmetry

Not every quasi-metric space exhibits the same behavior with respect to its reverse quasi-
metric. As a trivial example, we have metric spaces, where d and d̄ are the same. The opposite
occurs on Definition 2.10, where du and d̄u are never comparable, as whenever du(x, y) > 0,
d̄u(x, y) = 0. Intermediate examples can be constructed by taking α ∈ (0,∞), and defining
following the quasi-metric on R

ρα(x, y) =

{
α(y − x) if y ≥ x

x− y if x ≥ y
,

so that ρα and ρ̄α are “equivalent”.

The following notion to quantify how asymmetric a quasi-metric space is was introduced
independently by Shen and Zhao in [39] and by Bachir and Flores in [7].

Definition 2.32 (Index of symmetry) Let (X, d) be a quasi-metric space. The index of
symmetry of (X, d) is defined by

c(X, d) = inf
d(x,y)>0

d(y, x)

d(x, y)
∈ [0, 1].
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When there is no risk of confusion, we simply write c(X). If (X, d) is an extended quasi-
metric space, with at least two points at infinite distance, the index of symmetry will be
considered 0.

Clearly, the class of quasi-metric spaces with index of symmetry 1 is exactly the class of
metric spaces. It is also easy to check that c(R, du) = 0 and that c(R, ρα) = min{α, α−1}.

The index of symmetry can be used to classify asymmetric normed spaces in terms their
duals. A particularly useful result is presented in Subsection 2.3. For an in depth study on
the classification of asymmetric normed spaces using their index of symmetry, we refer the
reader to [7].

2.2 Semi-Lipschitz functions

This Section deals with the most fundamental concept and tool of this work. Semi-Lipschitz
functions are the natural generalization of Lipschitz functions to quasi-metric spaces, albeit
not without it subtleties. Before we give the definition of semi-Lipschitz functions, we will first
take a closer look at the quasi-metric space of Definition 2.10. This space, which we would
continue to denote (R, du), will serve as our “model” quasi-metric space. For convenience of
the reader, we recall the definitions of the function u and du.

u(x) = max{x, 0}, for every x ∈ R. (2.7)

du(x, y) = u(y − x) = max{y − x, 0}, for every x, y ∈ R. (2.8)

Mind the order of the variables x and y on the leftmost and rightmost sides of eq. (2.8).
The fact that u is an asymmetric hemi-norm on R implies that order in which we write the
difference between y and x (as opposed to x− y) does matter. We chose this order because
it aligns with the notion that, in a (symmetric) normed linear space, the norm of a vector
v represents the length of an “arrow” going from the origin to the position of v. Since we
usually write the norm of v as ∥v∥ instead of ∥ − v∥, we argue that “correct” orientation is
the one that results in d(0, v) = ∥v − 0∥.

Another important aspect of the space (R, du) is that it “splits” the usual metric d of R
in the sense that the symmetrization of du coincides with d, and moreover, only one of the
terms of the symmetrization is non zero, that is,

d(x, y) =

{
du(x, y) if y ≥ x

du(y, x) if y ≤ x
(2.9)

Moreover, as shown in Proposition 2.12, the forward topology of this quasi-metric space
characterizes the usual notion of upper semicontinuity for real-valued functions, in the sense
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that, for every topological space X, a function f : X → R is upper semicontinuous if and
only if f : X → (R, du) is continuous. It can easily be proved that the backward topology
T (du) holds the same property for lower semicontinuous functions.

The quasi-metric space (R, du) will show its relevance once we proceed to define real-
valued semi-Lipschitz functions.

As for the general definition of semi-Lipschitz function, it comes as a straightforward
generalization of the usual definition of Lipschitz functions between metric spaces.

Definition 2.33 Let (X, d) and (Z, ρ) be quasi-metric spaces. A function f : X → Z is said
to be semi-Lipschitz if there exists a constant L ≥ 0 such that for every x, y ∈ X we have

ρ(f(x), f(y)) ≤ Ld(x, y). (2.10)

The infimum of all constants satisfying eq. (2.10) is called the semi-Lipschitz constant
of f , and is denoted by SLIPd,ρ(f), or simply SLIP(f) when there is no risk of confusion
regarding the quasi-metrics used to compute the constant.

SLIP(f) := inf
{
L > 0 : eq. (2.10) holds

}
.

In addition, we say that a function g is λ-semi-Lipschitz whenever SLIP(g) ≤ λ.

Proposition 2.34 Let (X, d) and (Z, ρ) be quasi-metric spaces and let f : X → Z be a
semi-Lipschitz function. Then,

SLIP(f) = sup
d(x,y)>0

ρ(f(x), f(y))

d(x, y)
.

Remark 2.35 Notice that, unlike in metric spaces, the conditions “d(x, y) > 0” and “x ̸= y”
are not equivalent. However, this two conditions coincide whenever d is a quasi-metric (as
opposed to a quasi-hemi-metric).

Given two quasi-metric spaces (X, d) and (Z, ρ), the set of semi-Lipschitz functions from
X to Z will be denoted by SLIP ((X, d), (Z, ρ)), or simply SLIP(X,Z) when there is no risk of
confusion regarding the respective quasi-hemi-metrics. If X and Z are pointed quasi-metric
spaces with base points x0 and z0, we will consider the subset

SLIP0(X,Z) = {f ∈ SLIP(X,Z) : f(x0) = z0}.

Normed cones will always be assumed to have their respective origin as base point. The
special case when Z = R shall be addressed later.

Proposition 2.36 Let (X, ρ) be a quasi-metric space with index of symmetry c(X) = α > 0.
Then, for every quasi-metric space (Z, d), every semi-Lipschitz function f : X → Z is
α−1SLIPρ̄,d(f)-semi-Lipschitz. In other words,
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SLIPρ̄,d(f) ≤ α−1SLIPρ,d(f).

Moreover, we have
αSLIPρ̄,d(f) ≤ SLIPρ,d(f) ≤ α−1SLIPρ̄,d(f).

Proof. The first inequality follows directly by taking f ∈ SLIPρ,d(X,Z), writing the semi-
Lipschitz inequality and using the index of symmetry of X to bound ρ with ρ̄. The same
argument yields the remaining inequality.

Remark 2.37 This proposition holds regardless of the symmetry index of the target space
(Z, d).

The next step is to define real-valued semi-Lipschitz functions in a useful manner. A first
approach could be to endow R with its usual metric d and see what happens when we apply
it to Definition 2.33. Let (X, ρ) be a quasi-metric space, and let f : (X, ρ) → (R, d) be a
semi-Lipschitz function, which means that for every x, y in X, we have

d(f(x), f(y)) ≤ Lρ(x, y),

for some constant L ≥ 0. Since d(α, β) = |β − α|, we can replace f by −f in the inequality
above, obtaining

d(−f(x),−f(y)) ≤ Lρ(y, x),

which implies the function −f is also semi-Lipschitz, with the same constant as f . This
choice of quasi-metric for R would lead us to a set of semi-Lipschitz functions SLIP(X,R)
which does not reflect any of the possible asymmetries present in the space (X, ρ), which is
not very promising for our purposes, as we seek to utilize this class of functionals to study
the quasi-metric structure of (X, ρ). Nevertheless, we shall keep this notion under a different
name.

Definition 2.38 We say a function f : (X, ρ) → (M,d) from a quasi-metric space (X, ρ)
into a metric space (M,d) is Lipschitz if it is semi-Lipschitz in the sense of Definition 2.33.
In this case, both semi-Lipschitz constants SLIPρ,d(f) and SLIPρ̄,d(f) coincide, and we denote
it instead by LIP(f), which will be referred as the Lipschitz constant of f . When (M,d) =
(R, | · |), we adopt the notation ∥f∥LIP = LIP(f).

A more interesting approach is to endow R with a quasi-metric, and by the arguments
presented at the beginning of this Section, the natural candidates are du and its reverse,
du. The question then becomes, which one to choose? We are not aware of any discussion
regarding this choice in the literature, besides the one presented by the author and his
collaborators in [17] and [18]. To the best of our knowledge, all other sources implicitly use
the quasi-metric du on R, resulting in inequalities usually written as follows, for a function
f : (X, ρ) → R from a quasi-metric space (X, ρ),

f(x)− f(y) ≤ Lρ(x, y). (2.11)

17



Perhaps this inequality was first introduced by simply removing the absolute value from
the usual inequality for real-valued Lipschitz functions, but if we rewrite it in the language
of quasi-metric spaces using the conic-hemi-norm u, we obtain

f(x)− f(y) ≤ Lρ(x, y) ⇐⇒ u(f(x)− f(y)) ≤ Lρ(x, y)
⇐⇒ du(f(y), f(x)) ≤ Lρ(x, y)

⇐⇒ du(f(x), f(y)) ≤ Lρ(x, y).

In other words, f : (X, ρ) → (R, du) is semi-Lipschitz according to Definition 2.33.

The choice between using du and du may seem arbitrary, due to the fact that a function
f : (X, ρ) → (R, du) is semi-Lipschitz according to Definition 2.33 if and only if it is semi-
Lipschitz on (X, ρ̄) according to (2.11). This is also equivalent to −f being semi-Lipschitz on
(X, ρ) according to (2.11). Therefore, the difference between using du or d̄uis equivalent to
either a change of orientation of the quasi-metric (replace ρ by ρ̄) or of the sign of the values
of f (replace f by −f). In view of this, it could seem that the reasonable thing to do would be
to adopt the same convention that has been used for decades in the literature. Nevertheless,
this poses practical disadvantages that justify our choice of orientation for Definition 2.33:

(i) If (X, ∥ · |) is a normed cone, the norm ∥ · | may not be semi-Lipschitz according
to (2.11), while −∥ · | is always semi-Lipschitz according to (2.11).

(ii) In general, if (X, ρ) is a quasi-metric space, the functions of the form ρ(x0, ·) that char-
acterize forward convergence (in the sense that {xn}n−→ x0 in the forward topology
if and only if ρ(x0, xn) −→ 0) may not be semi-Lipschitz according to (2.11), while
−ρ(x0, ·) and ρ(·, x0) will be so.

(iii) The notion of dual space of a normed cone (or asymmetric normed space) currently
used in the literature is based on the conic-hemi-norm u, in such a way that the
real-valued linear functions belonging to said dual spaces (which will be defined in
Section 2.3) are always semi-Lipschitz when endowing R with the quasi-hemi-metric
du (with respect to Definition 2.33).

Therefore, if we wish for the theory of quasi-metric spaces to be fully compatible with the
theory of normed cones and asymmetric normed spaces, the definition of real-valued semi-
Lipschitz functions must follow the orientation given in Definition 2.33. From now on, when-
ever we write a semi-Lipschitz inequality for a real-valued function f : (X, d) → R,
we will simply write

f(y)− f(x) ≤ Ld(x, y), (2.12)

where the conic hemi-norm u(·) is omitted on the left side of (2.12), as t = u(t) for any
t ∈ R+ and the inequality is trivially satisfied whenever the left side is negative.

A criterion to determine whether a function is semi-Lipschitz can be established.

Proposition 2.39 Let (X, d) be a quasi-metric space and f : X → R.
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(i) If d is a quasi-metric, then f is semi-Lipschitz if and only if

SLIP(f) = sup
x ̸=y

max{f(x)− f(y), 0}
d(y, x)

= sup
x ̸=y

f(x)− f(y)

d(y, x)
<∞.

(ii) If d is a quasi-hemi-metric, then f is semi-Lipschitz if and only if SLIP(f) < ∞. In
this case,

SLIP(f) = sup
d(y,x)>0

max{f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

f(x)− f(y)

d(y, x)
.

Remark 2.40 Let (X, d) be a quasi-metric space and f : X → R. If for all x, y ∈ X we
have f(x) ≤ f(y) whenever d(y, x) = 0 (usually called d-monotonicity), then the following
equality holds:

sup
d(y,x)>0

max{f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

f(x)− f(y)

d(y, x)
. (2.13)

It follows readily from Definition 2.33 that every semi-Lipschitz function is d-monotonic, and
therefore it satisfies (2.13).

Example 2.41 (i) If f : X → R is not semi-Lipschitz or d-monotonic, then the equal-
ity (2.13) is not necessarily true. For example, let X = {a, b} with a, b ∈ R, consider
d : X × X → [0,∞) the quasi-hemi-metric given by d(a, b) = 1 and d(b, a) = 0, and let
f : X → R defined as f(a) = 1 and f(b) = 0. Then f is not semi-Lipschitz,

sup
d(y,x)>0

f(x)− f(y)

d(y, x)
= −1 and sup

d(y,x)>0

max{f(x)− f(y), 0}
d(y, x)

= 0.

(ii) The equality (2.13) could be true without f being semi-Lipschitz. For instance, let X =
{a, b, c} with a, b, c ∈ R, consider d : X ×X → [0,∞) the quasi-hemi-metric given by

d(x, y) =


1, if x = a, y = b

1, if x = b, y = c

2, if x = a, y = c

0, otherwise

,

and let f : X → R defined as f(a) = 2, f(b) = 1 and f(c) = 1. Then f is not semi-Lipschitz,
since f(a)− f(b) = 1 and d(b, a) = 0. However,

sup
d(y,x)>0

f(x)− f(y)

d(y, x)
= 0 and sup

d(y,x)>0

max{f(x)− f(y), 0}
d(y, x)

= 0.

Now that we have settled the definition of semi-Lipschitz functionals, we can fix the nota-
tion for the space of real-valued semi-Lipschitz functions. For any quasi-metric space (X, d),
we write SLIP(X) (respectively SLIP0(X)) to denote the space SLIP(X,R) (respectively
SLIP0(X,R)), where R is endowed with its usual quasi-metric du. From this point forward,
we will use the symbol ∥ · |S to denote the semi-Lipschitz constant of a real-valued function.
The reason, as the notation suggests, is the following.

19



Proposition 2.42 Let (X, d) be a pointed quasi-metric space. Then, (SLIP0(X), ∥ · |S) is a
cancellative normed cone.

Proposition 2.43 Let (X, d) be a quasi-metric space. Then, a function f : X → R is
Lipschitz (in the sense of Definition 2.38) if and only if both f and −f are semi-Lipschitz.

Remark 2.44 In general, SLIP(X) and SLIP0(X)) need not be linear spaces. This can be
seen by taking (X, d) = (R, du), and considering the function f(x) = du(0, x), which belongs
to SLIP0(X), while −f does not. A more nuanced example will be given in Chapter 3 (see
forthcoming Example 3.8). Notice that we can always define the (possibly trivial) subcone of
Lipschitz functions, which is always a linear space.

Next, we state some notable properties of semi-Lipschitz functionals that will be useful
later. Some proofs are omitted, as they follow directly from the definitions involved.

Proposition 2.45 Let (X, d) ,(Y, q) and (Z, ρ) be quasi-metric spaces. The following prop-
erties hold.

• Every semi-Lipschitz function is continuous for the respective forward topologies.

• If f ∈ SLIP(X, Y ) and g ∈ SLIP(Y, Z), then g ◦ f belongs to SLIP(X,Z).

• SLIPd,q(X, Y ) ⊆ SLIPds,q(X, Y ) = LIPds,qs(X, Y ).

Remark 2.46 The last property of Proposition 2.45 can be interpreted as “semi-Lipschitz
functions are always Lipschitz in the symmetrized spaces”.

Proposition 2.47 Let (X, ρ) be a quasi-metric space, and let f : (X, ρ) → (R, du) be a semi-
Lipschitz function. Then, f is upper-semicontinuous with respect to the forward topology of
(X, ρ).

Proof. It follows directly from Proposition 2.45 and the fact that the forward topology of
(R, du) characterizes upper semi-continuity (see Proposition 2.12).

Proposition 2.48 Let (X, ρ) be a quasi-metric space. Then, for every x ∈ X, the function
ρ(x, ·) : (X, ρ) → (R, du) is semi-Lipschitz and has semi-Lipschitz constant equal to 1.

Proof. Let y, z ∈ X. By the triangular inequality, ρ(x, y) ≤ ρ(x, z) + ρ(z, y), which can be
rewritten as

ρ(x, y)− ρ(x, z) ≤ ρ(z, y),

which implies ρ(x, ·) is semi-Lipschitz of constant less or equal to 1 for any x ∈ X. Moreover,
the constant is achieved when z = x.
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Proposition 2.49 Real-valued semi-Lipschitz functions are stable with respect to the max/min
operations. Moreover, if f, g ∈ SLIP(X) for a quasi-metric space X, then

max{SLIP(f ∧ g), SLIP(f ∨ g)} ≤ max{SLIP(f), SLIP(g)}.

Proof. Let (X, d) be a quasi-metric space, and let f, g ∈ SLIP(X). Let us consider the
function h = f ∨ g and two points x, y ∈ X. Without loss of generality, we may assume
f(x) ≥ g(x). Then,

h(x)− h(y) = f(x) ∨ g(x)− [f(y) ∨ g(y)]
= f(x)− [f(y) ∨ g(y)]
≤ f(x)− f(y)

≤ SLIP(f)d(y, x)

≤ max{SLIP(f), SLIP(g)}d(y, x).

Notice that the last inequality holds regardless of our assumption on the values of f(x) and
g(x). It follows that h = f ∨ g is semi-Lipschitz of constant at most max{SLIP(f), SLIP(g)}.
A similar argument can be made for the function f ∧ g.

Using this property, we have in particular the following definition.

Definition 2.50 Let (X, d) be a quasi-metric space. The space of real-valued semi-Lipschitz
functions with semi-Lipschitz constant less or equal to 1 is denoted by

SLIP1(X) = {f : X → R : SLIP(f) ≤ 1}.

Thanks to Proposition 2.49, we know SLIP1(X) has a natural lattice structure. Furthermore,
it is also closed under convex combinations. Thus, following [14], we say that SLIP1(X) has
a convex lattice structure. If (Y, ρ) is another quasi-metric space, we say that a bijection
T : SLIP1(Y ) → SLIP1(X) is a convex lattice isomorphism if T preserves both order and
convex combinations, that is,

• Tf ≥ Tg if and only if f ≥ g for all f, g ∈ SLIP1(Y ), and

• T (λf + (1− λ)g) = λTf + (1− λ)Tg for all f, g ∈ SLIP1(Y ) and λ ∈ [0, 1].

Remark 2.51 Note that any order-preserving bijection between lattices is automatically a
lattice isomorphism, so any convex lattice isomorphism satisfies T (f ∧ g) = Tf ∧ Tg and
T (f ∨ g) = Tf ∨ Tg for all f, g ∈ SLIP1(Y ).

The following result, taken from [14, Theorem 3.1] (and modified to fit our orientation for
semi-Lipschitz functionals) reveals the importance of the convex lattice structure SLIP1(X)
for the study of the quasi-metric structure of a bicomplete quasi-metric space.
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Theorem 2.52 (Representation of almost isometries between quasi-metric spaces) Let (X, d)
and (Y, ρ) be bicomplete quasi-metric spaces, and let T : SLIP1(Y ) → SLIP1(X) be a convex
lattice isomorphism. Then there exist α > 0, a homeomorphism τ : (X, d) → (Y, ρ) and a
quasi-metric d′ on X, such that

• (X, d) and (X, d′) are almost-isometric, and d′(x, x′) = d(x, x′)+T0(x′)−T0(x), where
T0 is the image via T of the constant function of value 0.

• τ : (X,α · d′) → (Y, ρ) is an isometry.

• For every f ∈ SLIP1(Y ) we have that Tf = c · (f ◦ τ) + ϕ, where c = α−1 and ϕ = T0.

Therefore, two bicomplete quasi-metric spaces are almost isometric up to a multiplicative
constant whenever the respective spaces of real-valued 1-semi-Lipschitz functions are isomor-
phic as convex lattices, and that the isomorphism is a composition operator associated with
the almost isomerty.

In Chapter 3, we will show a result of similar flavor to the above, for the case that the
quasi-metric spaces are Finsler manifolds (see forthcoming Definition 2.66).

2.3 Duality on normed cones and asymmetric normed

spaces

If one wants to define duality between normed cones or asymmetric normed spaces, the
natural notion would be to consider a space of real-valued functions which preserve the
structure of the normed cone, which encompasses algebraic and quasi-metric structures, as
well as the relation between both. Therefore, we need functionals that are both conic and
quasi-metric morphisms. The following proposition helps us characterize said functionals.

Proposition 2.53 (Linear functionals over a normed cone) Let (C, ∥ · |) be a normed cone
and φ : C → R a linear functional. Then the following are equivalent:

(i) φ is upper semicontinuous (in short, usc);

(ii) φ belongs to SLIP0(C, de), where de is the (extended) quasi-metric induced by the conic-
norm ∥ · | (c.f. Proposition 2.24);

(iii) there exists M ≥ 0 such that φ(x) ≤M∥x|, for all x ∈ C.

Proof. Let us show that (i) implies (iii). Assume that the linear functional φ is usc. Then
there exists α > 0 such that φ (B(0, α)) ⊆ (−∞, 1). Set M = 2/α. Then for every x ∈ C
with ∥x| ≠ 0, we have x̃ = αx

2∥x| ∈ B(0, α), hence φ (x̃) < 1 and φ(x) < M∥x|. If x ∈ C with

∥x| = 0, then for every r > 0 we have ∥rx| = 0 and φ(rx) < 1, which implies φ(x) < 1
r
and

necessarily φ(x) ≤ 0.
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Let us now show that (iii) implies (ii). We need to establish the inequality φ(x) − φ(y) ≤
Lde(y, x), ∀x, y ∈ C, for some L ≥ 0. If de(y, x) = ∞, the inequality becomes trivial. If
not, then x ∈ y + C, so we can write x = y + z, and then φ(x) − φ(y) = φ(z) ≤ M∥z|. By
taking infimum of all z such that x = y + z, we get that φ(x)− φ(y) ≤Mde(y, x), that is, φ
is semi-Lipschitz.

Let us finally assume (ii) and recall that the forward topology on (C, ∥ · |) is first countable.
Then take {xn}n ⊆ C such that de(x, xn) → 0. Since φ is semi-Lipschitz, we have φ(xn) −
φ(x) ≤ Lde(x, xn) for some L ≥ 0, which yields that φ(x) ≥ lim supφ(xn).

Remark 2.54 Each one of the above statements is also equivalent to φ being lower semi-
continuous (in short, lsc) for the reverse extended quasi-metric d̄e:

Indeed, assume there exists M ≥ 0 such that φ(x) ≤ M∥x| for all x ∈ C, and consider a
sequence {zn}n and z in C such that d̄e(z, zn) → 0. Then de(zn, z) → 0, which yields the
existence of a sequence {yn}n ⊂ C such that yn + zn = z and ∥yn| → 0. Since φ is linear,
φ(z) = φ(zn) + φ(yn) ≤ φ(zn) +M∥yn|, which yields that φ is lsc for d̄e.

On the other hand, if φ is lsc for de, an analogous argument to Proposition 2.53 ((i) =⇒ (iii))
leads to the same conclusion, that is, the existence of M ≥ 0 such that φ(x) ≤ M∥x| for all
x ∈ C.

Definition 2.55 (Dual normed cone) Let (C, ∥ · |) be a normed cone. We define the dual
cone of C as

C∗ := {φ : C → R : φ usc, linear} = {φ ∈ SLIP0(C) : φ linear}.

For any φ ∈ C∗, the dual conic-norm is defined by

∥φ|∗ := sup
∥x|≤1

max{φ(x), 0} = sup
∥x|≤1

φ(x).

It is easy to check that ∥ · |∗ is a conic-norm on C∗ (obviously ∥φ|∗ ≥ 0, since φ(0) = 0).
Moreover, if (C, ∥ · |) is a normed cone with conic-hemi-norm, then ∥ · |∗ is a conic-hemi-norm
on C∗.

The next result follows directly from the proof of Proposition 2.53.

Proposition 2.56 Let (C, ∥ · |) be a normed cone, and φ ∈ C∗. Then

∥φ|∗ = inf{M > 0 : φ(x) ≤M∥x|, for all x ∈ C}.

As in the case of normed spaces, there is a direct relation between the semi-Lipschitz
constant and the dual norm of a linear functional:

Corollary 2.57 (Dual conic-norm and semi-Lipschitz constant) Let (C, ∥ · |) be a normed
cone, and φ ∈ C∗. Then ∥φ|∗ = ∥φ|S and the subcone of linear functionals of SLIP0(C) (lin-
ear semi-Lipschitz functions) is isometrically isomorphic to (C∗, ∥ · |∗) (linear usc functions).

23



Proof. The inequality ∥φ|S ≤ ∥φ|∗ follows from Proposition 2.53 (see (ii)⇒(iii)). For the
opposite inequality, since φ is semi-Lipschitz and φ(0) = 0 we get:

φ(x) = φ(x)− φ(0) ≤ ∥φ|S de(0, x) = ∥φ|S ∥x|,

yielding by Proposition 2.56 that ∥φ|∗ ≤ ∥φ|S. The proof is complete.

A very curious fact about asymmetric normed spaces is that, in general, their duals are
not linear spaces. In fact, it was proved in [7] (see Corollary 2) that having a linear dual
cone is exclusive to asymmetric normed spaces with positive index of symmetry.

Proposition 2.58 Let (E, ∥ · |) be an asymmetric normed space. Then, the dual cone E∗ is
a linear space if and only if c(E) > 0.

A non linear version of this result will be presented in Chapter 4 (see forthcoming Propo-
sition 4.19.

Remarkably, this property does not hold for normed cones, in the sense that a normed
cone (C, ∥ · |) can have index of symmetry c(C) = 0 and still have its dual C∗ be a linear
space.

Example 2.59 Consider the asymmetric normed space (R, u). It is easy to check that the
dual cone of (R, u) is isometrically isomorphic to the cone (R+, u), which is not a linear
space. If we compute the dual cone of (R+, u), we find out that it is isometrically isomorphic
to the original asymmetric normed space (R, u). Therefore, we have found a normed cone
(R+, u) of symmetry index 0, whose dual cone is a linear space (of index 0 as well).

It is worth noting that the index of symmetry is not very well suited to study normed
cones, as every normed cone which is not a linear space has symmetry index 0.

Proposition 2.60 Let (C, ∥ · |) be a normed cone with non-zero symmetry index. Then C
is a linear space.

Proof. Choose v ∈ C such that it does not have an additive inverse in C. If we try to
compute de(v, 0), we see that the infimum used in the definition of the extended quasi-metric
is taken over an empty set, and therefore, de(v, 0) = +∞.

For T1 and finite dimensional asymmetric normed spaces, the situation is much simpler.

Proposition 2.61 (Dual of a finite-dimensional linear space) Let (E, ∥·|) be a T1 asymmetric
normed space of finite dimension. Then there exists M > 0 such that

∥−x| ≤M∥x|, for all x ∈ E. (2.14)

Furthermore, (E, ∥ · |)∗ is also an asymmetric normed space satisfying that for every φ ∈
(E, ∥ · |)∗, −φ ∈ (E, ∥ · |)∗ and ∥ − φ|∗ ≤ M∥φ|∗. In particular, (E∗, ∥ · |) is a linear space
(not only a normed cone).
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Proof. Let B = {x ∈ E : ∥x| ≤ 1} be the unit ball of E. Since in finite dimensions
all asymmetric norms inducing a T1-topology are equivalent (see [22, Corollary 11] or [7,
Theorem 3] for example), it follows that B is closed convex and 0 ∈ intB. Thus we can

assure the existence of M > 0 such that
∥∥∥−x
∥x|

∣∣∣ ≤M , for all x ∈ E with ∥x| ≠ 0, which yields

∥−x| ≤M∥x|, for all x ∈ E. Now, if φ ∈ (E, ∥ · |)∗ then

−φ(x) = φ(−x) ≤ ∥φ|∗∥−x| ≤M∥φ|∗∥x|, for all x ∈ E

and

∥−φ|∗
(

= sup
∥x|≤1

−φ(x)

)
≤M∥φ|∗, for all φ ∈ (E, ∥ · |)∗.

The proof is complete.

Remark 2.62 If E is infinite-dimensional, then (2.14) may not be fulfilled. For example,
let

E = {f ∈ C([0, 1]) :
∫ 1

0

f(t) dt = 0}

and ∥f | := maxt∈[0,1]max{f(t), 0}. Consider the sequence of functions {fn}n ⊂ E defined as

fn(x) =


1
n
, if 0 ≤ x < 1

n2

n
2−n2x+

1−n2

2n−n3 , if 1
n2 ≤ x < 1− 1

n2

−n3x− n(1− n2) , if 1− 1
n2 ≤ x ≤ 1

(n ∈ N).

Then ∥fn| = 1/n for each n ≥ 2 and ∥ − fn| = n −→ ∞, which contradicts (2.14).

In addition, E∗ is a normed cone (and not a vector space). To see this, let δ1 : C([0, 1]) → R
be defined as δ1(f) = f(1). Then {fn}n−→ 0, δ1(fn) = −n −→ −∞ and δ1(0) = 0, which
shows that the linear functional δ1 is not lower semicontinuous in (E, ∥ · |).

Next, we present some results regarding weak topologies in asymmetric normed spaces.

Remark 2.63 (Continuity of evaluation functionals) Let (E, ∥ · |) be an asymmetric normed
space with dual E∗. For every x ∈ E, the evaluation functional x̂ : E∗ → R defined as
x̂(φ) = φ(x) is linear and ∥ · |∗-continuous. Indeed, we have

x̂(φ) = φ(x) ≤ ∥φ|∗∥x| and − x̂(φ) = −φ(x) = φ(−x) ≤ ∥φ|∗∥−x|,

which yields |x̂(φ)| ≤ max{∥x|, ∥−x|}∥φ|∗, which implies x̂ is continuous.

Definition 2.64 (Asymmetric weak topologies) Let E be an asymmetric normed space with
dual E∗.

(i) The weak topology w on E is defined as the coarsest topology for which every ϕ ∈ E∗

remains upper semicontinuous.

(ii) The weak-star topology w∗ on E∗ is defined as the coarsest topology that makes every
evaluation functional {x̂ : E∗ → (R, | · |), x ∈ E} continuous (notice by Remark 2.63 that x̂
is always ∥ · |∗-continuous, where ∥ · |∗ is the conic norm of E∗).
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Therefore the weak-star topology w∗ on E∗ is weaker than the forward ∥ · |∗-topology.

Some results regarding duality of asymmetric normed spaces that were not found in the
literature, and were developed as part of this Thesis, will be presented in Subsection 4.1 of
Chapter 4.

2.4 Finsler Manifolds

One of the most studied examples of quasi-metric spaces are Finsler Manifolds, due to the
variety of physical phenomena that can be modeled using them. For more details on this, we
refer the reader to the first chapter of the book [8].

Definition 2.65 (Minkowski norm) Let E be a finite-dimensional real vector space. A func-
tional F : E → [0,+∞) is called a Minkowski norm on E if the following conditions are
satisfied:

(i) Positive homogeneity: F (λv) = λF (v) for every v ∈ E and λ ≥ 0.

(ii) Regularity: F is continuous on E and C∞-smooth on E \ {0}.

(iii) Strong convexity: for every v ∈ E \ {0}, the quadratic form associated to the second
derivative of the function F 2 at v, that is,

gv =
1

2
d2[F 2](v),

is positive definite on E.

Every Minkowski norm satisfies in addition the following conditions (see [8, Theorem 1.2.2]
e.g.):

(iv) Positivity: F (v) = 0 if and only if v = 0.

(v) Triangle inequality: F (u+ v) ≤ F (u) + F (v), for every u, v ∈ E.

Thus, a Minkowski norm is an asymmetric norm in the sense of Definition 2.2. We say F
is symmetric (or absolutely homogeneous) if

F (λv) = |λ|F (v) for any λ ∈ R and v ∈ E,

in which case F is a norm in the usual sense.

It is clear that every norm associated to an inner product is a Minkowski norm. In general,
a Minkowski norm does not need to be symmetric, and there are indeed very interesting
examples of asymmetric Minkowski norms, such as, for example, Randers spaces ([8]) or
more generally Finsler manifolds.
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Definition 2.66 (Finsler manifold) A Finsler manifold is a pair (X , F ) such that X is
a finite-dimensional C∞-smooth manifold and F : TX → [0,∞) is a continuous function
defined on the tangent bundle TX , satisfying

(i) F is a C∞-smooth on TX \ {0}.

(ii) For every x ∈ X , F (x, ·) : TxX → [0,∞) is a Minkowski norm on the tangent space
TxX .

The Finsler structure F is said to be reversible if, for every x ∈ X , F (x, ·) is symmetric.
Clearly, any Riemannian manifold is a reversible Finsler manifold, where the symmetric
Minkowski norm on each tangent space is given by an inner product.

Definition 2.67 (Finsler distance dF ) Let (X , F ) be a connected Finsler manifold. The
Finsler distance dF on X is defined by

dF (x, y) = inf{ℓF (σ) : σ is a piecewise C1 path from x to y},

where the Finsler length of a piecewise C1 path σ : [a, b] → X is defined as:

ℓF (σ) =

∫ b

a

F (σ(t), σ̇(t))dt,

where σ̇ is the derivative of σ. The Finsler distance dF is a T1-quasi-metric on X for any
connected Finsler manifold (X , F ) (see e.g. [8, Section 6.2]).

Remark 2.68 (Topology of a Finsler manifold) Even if the forward and backward distances
of a connected Finsler manifold X differ, they do induce the same topology on X , which
coincides with the manifold topology (see [8, Chapter 6.2]). Therefore, for Finsler manifolds,
the three topologies of Definition 2.9 are the same.

Definition 2.69 (Finsler isometry) A mapping τ : (X , F ) → (Y , G) between Finsler man-
ifolds is said to be a Finsler isometry if it is a diffeomorphism which preserves the Finsler
structure, that is, for every x ∈ X and every v ∈ TxX :

F (x, v) = G(τ(x), dτ(x)(v)).

A classical result due to Myers and Steenrod [35] asserts that a mapping between Rie-
mannian manifolds is a Riemannian isometry if and only if it is a metric isometry for the
corresponding Riemannian distances. This was extended by Deng and Hou in [20] to the
context of Finsler manifolds:

Theorem 2.70 (Characterization of isometries for Finsler manifolds) Let (X , F ) and (Y , G)
be connected Finsler manifolds. Then τ : (X , F ) → (Y , G) is a Finsler isometry if and only
if it is bijective and an isometry for the corresponding Finsler distances.
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A weaker result, established in [30] (see Lemma 3.1 and Proposition 3.2 therein), holds
for almost isometries. Given a diffeomorphism τ : X → Y and a Finsler structure F on X ,
we denote by τ∗(F ) the Finsler structure on Y obtained as the push-forward of F by τ , that
is, for every y ∈ Y and every w ∈ TyY :

τ∗(F )(y, w) = F (τ−1(y), dτ−1(y)(w)).

Proposition 2.71 (Characterization of almost isometries for Finsler manifolds) Let (X , F )
and (Y , G) be connected Finsler manifolds, and let τ : X → Y be an almost isometry induced
by a function ϕ : X → R (in the sense of Proposition 2.7). Then τ and ϕ are smooth, and
G = τ∗(F )− d(ϕ ◦ τ−1). Conversely, if G = τ∗(F )− d(ϕ ◦ τ−1), then τ is an almost isometry.

In what follows, for simplicity, the term Finsler manifold will also refer to the pair (X , dX ),
where (X , F ) is a Finsler Manifold and dX is the Finsler distance induced by F .

A remarkable property of Finsler manifolds is that Lipschitz functions can be approxi-
mated using functions of class C1. The following result [25, Theorem 8] ensures this property.

Theorem 2.72 (Smooth approximation of Lipschitz functions in Finsler manifolds) Let
(X , F ) be a connected, second countable Finsler manifold, f : X → R a Lipschitz function
(in the sense of Definition 2.38), ε : X → (0,+∞) a continuous function and r > 0. Then,
there exists a C1-smooth Lipschitz function g : X → R such that:

(i) |g(x)− f(x)| ≤ ε(x) for all x ∈ X ;

(ii) ∥g∥LIP ≤ ∥f∥LIP + r.

2.5 Lipschitz-free spaces

Lipschitz-free Banach spaces, also known by the name of Arens-Eells spaces [6], have been
an active field of research in the areas of functional analysis and non linear geometry of
Banach spaces. The surge in interest on this object was initiated with the seminal paper of
Godefroy and Kalton [29], and has continued to this day. In this brief section, we give the
basic definitions and most fundamental properties of Lipschitz-free spaces. For an in depth
review on the subject, we refer the reader to the book [42].

Let (M,d) be a metric space with a distinguished point x0 ∈ M . We will refer to M as
a pointed metric space. For each pointed metric space, we can define its associated space of
real-valued Lipschitz functions.

LIP0(M) = {f : X → R : f is Lipschitz and f(x0) = 0}.

It is a well known fact that LIP0(M) is a Banach space when endowed with the norm
∥f∥LIP.
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For each x ∈ M , the evaluation functional δx : LIP0(M) → R belongs to the dual space
LIP0(M)∗. Moreover, the subset of evaluation mappings δ(M) ⊆ LIP0(M)∗ is isometric to
(M,d).

Definition 2.73 The Lipschitz-free space over a pointed metric space (M,d), denoted by
F(M), is defined as the closed linear span of δ(M). That is,

F(M) = span ({δm : m ∈M}) ⊆ LIP0(M)∗.

Proposition 2.74 The Lipschitz-free space F(M) is an isometric predual to LIP0(M), whose
weak-star topology coincides with the topology of point wise convergence on bounded sets.

One of the main features of the Lipschitz-free spaces is the following “universal property”.

Proposition 2.75 Let (M,D) be a pointed metric space, E a normed space and f :M → E
a Lipschitz functional such that f(x0) = 0. There exists a unique linear and continuous
extension Tf : F(M) → E, such that ∥Tf∥ = ∥f∥LIP and Tf ◦ δ = f . In other words, the
extension Tf has the same norm as f , and the following diagram commutes.

M

F(M) E

f
δ

Tf

The following definitions, which will be useful for Chapters 4 and 5, are taken from [42].

Definition 2.76 Let (M,d) be a metric space. We say a function f : M → R is locally
flat if for every p ∈ M and every ε > 0 there exists δ > 0 such that a, b ∈ Bd(p, δ) implies
|f(b)− f(a)| ≤ εd(a, b).

Definition 2.77 We say a function f : M → R is flat at infinity if for every ε > 0, there
exists a compact set K ⊂M such that

a, b /∈ K =⇒ |f(b)− f(a)| ≤ εd(a, b).

Definition 2.78 Let (M,d) be a pointed and boundedly compact metric space. The set of
little Lipschitz functions lip(M) consists of all Lipschitz functions which are locally flat and
flat at infinity. We denote by lip0(M) the subset of little Lipschitz functions which vanish at
the base point.

Proposition 2.79 [42, Proposition 4.7] Let (M,d) be a compact metric space. Then, lip(M)
is a lattice and an algebra, and it is also closed under bounded inversions. In particular, for
every f, g ∈ lip(M),

(i) f ∨ g, f ∧ g and fg belong to lip(M),
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(ii) if f is bounded away from 0, then 1
f
belongs to lip(M).

We conclude this subsection with a remarkable biduality result for the space lip0(M).

Definition 2.80 Let (M,d) be a pointed metric space. We say a linear subspace E of
LIP0(M) separates points uniformly if there exists a constant C ∈ (0, 1] such that for every
p, q ∈ M there exists a function f ∈ E such that ∥f∥LIPleq1 and |f(p) − f(q)| = Cd(p, q).
The greatest constant C satisfying this condition is called the separation factor of E.

Theorem 2.81 [42, Theorem 4.35] Let (M,d) be a pointed complete metric space such that
lip0(M) separates points uniformly. Then, lip0(M)∗ is linearly homeomorphic to F(M) and
lip0(M)∗∗ is linearly homeomorphic to LIP0(M). IfM is boundedly compact, or the separation
factor is 1, then both isomorphisms are isometries.

A recent result gives a geometrical characterization of the uniform separation property. A
metric space is called purely 1-unrectifiable if it contains no bi-Lipschitz images of compact,
positive measure subsets of R.

Theorem 2.82 [3, Theorem A] Let (M,d) be a compact metric space. Then, lip0(M) sepa-
rates points uniformly if and only if (M,d) is purely 1-unrectifiable.
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Chapter 3

Almost isometries between Finsler
manifolds

This chapter corresponds to the article [17], where a new result on almost isometries between
Finsler manifolds was established, using a space of smooth real-valued functions. The chapter
is organized as follows: first, some new results regarding smooth semi-Lipschitz functions
and almost isometries of Finsler manifolds are presented in Section 3.1. Section 3.2 contains
the proof of the main result of this chapter (Theorem 3.14), which is divided in 3 stages
in Subsections 3.2.1, 3.2.2 and 3.2.3. Characterization of isometries and almost isometries
following Theorem 3.14 are presented in Subsection 3.2.4.

3.1 Smooth semi-Lipschitz functions and almost isome-

tries

We begin this chapter by drawing inspiration from Theorem 2.52, which in broad terms,
states that almost isometries between bicomplete quasi-metric spaces X and Y can always
be described using the convex lattices SLIP1(X) and SLIP1(Y ). The following proposition
shows that semi-Lipschitz functional with constant strictly less than 1 play a special role in
terms of the almost isometries they define.

Proposition 3.1 (Characterization of strict almost isometries) Let τ : X → Y be an almost
isometry between the quasi-metric spaces (X, dX) and (Y, dY ). Let ϕ : X → R and ψ : Y → R
be the functions associated to τ and respectively, to τ−1 in the sense of Proposition 2.7, that
is,

dY (τ(x1), τ(x2)) = dX(x1, x2) + ϕ(x1)− ϕ(x2),

dX(τ
−1(y1), τ

−1(y2)) = dY (y1, y2) + ψ(y1)− ψ(y2).

Then τ is a strict almost isometry if, and only if, ∥ϕ|S < 1 and ∥ψ|S < 1.

Proof. Suppose first that τ : X → Y is a strict almost isometry, and consider c > 1 such
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that
c−1 dX(x, x

′) ≤ dY (τ(x), τ(x
′)) ≤ c dX(x, x

′) for all x, x′ ∈ X.

Since ϕ(x′)− ϕ(x) = dX(x, x
′)− dY (τ(x), τ(x

′)), whenever dX(x, x
′) > 0 we have that

ϕ(x′)− ϕ(x)

dX(x, x′)
= 1− dY (τ(x), τ(x

′))

dX(x, x′)
≤ 1− c−1.

Thus ∥ϕ|S ≤ 1− c−1 < 1. By considering τ−1, we also obtain that ∥ψ|S ≤ 1− c−1 < 1.

Conversely, let 0 < α < 1 such that ∥ϕ|S ≤ α and ∥φ|S ≤ α. Then for dX(x, x
′) > 0 we

have that
dY (τ(x), τ(x

′))

dX(x, x′)
= 1− ϕ(x′)− ϕ(x)

dX(x, x′)
≥ 1− α =

1

c
,

where c = (1− α)−1. The other inequality follows in the same way.

As stated on Proposition 2.71, almost isometries between connected Finsler manifolds are
always, and the functional ϕ inducing the almost isometry (in the sense of Proposition 2.7) is
smooth as well. Given that the objective of this chapter is to study strict almost isometries
between Finsler manifolds, Propositions 2.7 and 3.1 point towards the following class of
real-valued functions.

Definition 3.2 Let (X , dX ) be a connected Finsler manifold. The space of C1-smooth (for-
ward) semi-Lipschitz functions with semi-Lipschitz constant strictly less than 1 will be de-
noted by

SC1
1−(X ) := {f ∈ C1(X,R) : ∥f |S < 1}.

When the Finsler manifold (X , dX ) is reversible, we write C1
1−(X ) instead of SC1

1−(X ).

The set SC1
1−(X ) (respectively, the set C1

1−(X ) in the reversible case) is convex and
partially ordered, but in contrast to SLIP1(X ), it is not a lattice, since differentiability is
often lost when taking suprema and infima. Therefore, for the study of Finsler manifolds, we
shall consider the structure SC1

1−(X ) as a convex partially ordered set. We shall now define
the notion of isomorphism for the aforementioned structures.

Definition 3.3 (Isomorphism between convex partially ordered sets) Given connected Finsler
manifolds (X , dX ) and (Y , dY), we say that a bijection

T : SC1
1−(Y) → SC1

1−(X )

is an isomorphism of convex partially ordered sets if

(i) Tf ≥ Tg if and only if f ≥ g for all f, g ∈ SC1
1−(Y), and

(ii) T (λf + (1− λ)g) = λTf + (1− λ)Tg for all f, g ∈ SC1
1−(Y) and λ ∈ [0, 1].

We shall now define the norm and the asymmetric norm of the derivative df(x) of a
smooth function f ∈ C1(X ), at a point x of a Finsler manifold X .
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Definition 3.4 (Norm and asymmetric norm of the derivative df(x)) Let (X , F ) be a con-
nected Finsler manifold and f : X → R a C1-smooth function. The norm of the derivative
of f at the point x ∈ X is defined by:

∥df(x)∥F = sup{|df(x)(v)| : v ∈ TxX , F (x, v) = 1}.

In the same way, the asymmetric norm of df(x) is defined by:

∥df(x)|F = sup{df(x)(v) : v ∈ TxX , F (x, v) = 1}.

It is clear that, in the case of a reversible Finsler manifold, the norm and the asymmetric
norm of df(x) coincide. In general, we have that ∥df(x)|F ≤ ∥df(x)∥F .

It is proved in [25, Theorem 5] that, for a C1-smooth function f defined on a connected
Finsler manifold, the Lipschitz constant of f coincides with the supremum of the norm of its
derivative. In fact, the same proof of [25, Theorem 5] gives also the corresponding one-sided
result:

Proposition 3.5 (∥f |S = ∥df |S,∞) Let (X , F ) be a connected Finsler manifold and f : X →
R a C1-smooth function. Then

∥f∥LIP = ∥df∥∞ := sup{∥df(x)∥F : x ∈ X} ∈ [0,∞],

where

∥f∥LIP = sup
x ̸=y

|f(x)− f(y)|
dF (x, y)

is the Lipschitz constant of f.

Similarly,
∥f |S = ∥df |S,∞ := sup{∥df(x)|F : x ∈ X} ∈ [0,∞],

where ∥f |S is the semi-Lipschitz constant of f with respect to the Finsler quasi-metric dX .

As a direct consequence we obtain the following alternative description of SC1
1−(X ):

Corollary 3.6 (The convex partially ordered set SC1
1−(X )) Let (X , dX ) be a connected

Finsler manifold. Then

SC1
1−(X ) = {f ∈ C1(X,R) : ∥f |S < 1} = {f ∈ C1(X,R) : ∥df |S,∞ < 1}.

Using the above result, we can easily see that, in the case of compact manifolds, every
almost isometry is strict.

Proposition 3.7 (Almost isometries for compact Finsler manifolds) Let (X , F ) and (Y , G)
be connected and compact Finsler manifolds. Then every almost isometry τ : X → Y is
strict.
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Proof. Consider the function ϕ : X → R associated to τ in the sense of Proposition 2.7. By
Proposition 2.71 we have that G = τ∗(F ) − d(ϕ ◦ τ−1). Then for every x ∈ X and every
v ∈ TxX :

G(τ(x), dτ(x)(v)) = F (x, v)− dϕ(x)(v).

As a consequence, if F (x, v) = 1, since we have that dτ(x)(v) ̸= 0, and thenG(τ(x), dτ(x)(v)) >
0, it follows that dϕ(x)(v) < 1.

For every x ∈ X , the indicatrix Sx := {v ∈ TxX : F (x, v) = 1} is compact. Therefore,
for each fixed x0 ∈ X we can choose a compact neighborhood W x0 such that the portion of
the indicatrix bundle over W x0 is a compact set. That is, the set

Bx0 = {(x, v) ∈ TX : x ∈ W x0 ; v ∈ TxX , F (x, v) = 1}

is compact, and furthermore dϕ(x)(v) < 1 for every (x, v) ∈ Bx0 . Then ∥dϕ(x)|S < 1 for
every x ∈ W x0 . Now, from the compactness of X we obtain that ∥dϕ|S,∞ < 1. Then by
Corollary 3.6 we have that ∥ϕ|S < 1. Finally, considering τ−1 and using Proposition 3.1 we
obtain the result.

We next give a simple example of non-strict almost isometry:

Example 3.8 (Nonstrict almost isometry) Let X = Y = R. We consider on X the usual
Finsler structure FX (x, v) = |v| and we define on Y the Finsler structure FY(x, v) = |v| −
dϕ(x)(v), where ϕ : R → R is given by

ϕ(x) :=

∫ x

0

t2

1 + t2
dt.

Note that (Y , FY) is a Randers space, since |ϕ′(x)| < 1 for every x ∈ R. It is easy to see that
the associated Finsler distances are dX (x, x

′) = |x−x′| and dY(x, x′) = |x−x′|+ϕ(x)−ϕ(x′).
In this way we obtain that the identity map τ : X → Y given by τ(x) = x is an almost
isometry from (X , dX ) to (Y , dY). Nevertheless in this case we have that ∥ϕ|S = 1. Therefore
by Proposition 3.1 the almost isometry τ is not strict.

The Finsler manifold (Y , dY) also provides a concrete example of a semi-Lipschitz function
f on a T1-quasi-metric space such tat −f is not semi-Lipschitz (the example mentioned after
Remark 2.44 makes use of the fact that du does not separate points, while in this case,
dY(x, y) > 0 whenever x ̸= y). Let us consider the function f(x) = −x. By Proposition 3.5,
we can use the asymmetric norm of the derivative of f to compute the corresponding semi-
Lipschitz constant. Let t ∈ Y. Then,

∥df(t)|F = sup {v · df(t) : FY(t, v) = 1} = sup{−v : |v| − vdϕ(t) = 1} ≤ 1,

and therefore, ∥f |S ≤ 1. On the other hand, for −f , we have

∥d(−f)(t)|F = sup{ v : |v| − vdϕ(t) = 1},

which grows to +∞ when t→ +∞. It follows that ∥ − f |S can not be finite.
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The following proposition shows that the elements of SC1
1−(X ) can be used to describe open

sets of X . The proof is omitted, as it follows from standard smooth manifold arguments.

Proposition 3.9 Let (X , F ) be a Finsler manifold and U an open subset of X . Then, there
exists a smooth function f : X → [0,∞) such that

U = {x ∈ X : f(x) > 0}.

Moreover, f can be chosen so that ∥df∥∞ < 1, and therefore f ∈ SC1
1−(X ).

Let us now recall the approximation result from [25, Theorem 8] already mentioned as
Theorem 2.72 in Chapter 2. An adaptation of this result (stated below as Corollary 3.11)
will be one of the key elements of the main result of this Chapter.

Theorem 3.10 (Smooth approximation of Lipschitz functions in Finsler manifolds) Let
(X , F ) be a connected, second countable Finsler manifold, f : X → R a Lipschitz function,
ε : X → (0,+∞) a continuous function and r > 0. Then, there exists a C1-smooth Lipschitz
function g : X → R such that:

(i) |g(x)− f(x)| ≤ ε(x) for all x ∈ X ;

(ii) ∥g∥LIP ≤ ∥f∥LIP + r.

By replacing the Lipschitz functions by semi-Lipschitz functions in Proposition 6, Lemma
7 and Theorem 8 of [25], we obtain the following corollary:

Corollary 3.11 (Smooth approximation of semi-Lipschitz functions in Finsler manifolds)
Let (X , F ) be a connected, second countable Finsler manifold, f : X → R a semi-Lipschitz
function, ε : X → (0,+∞) a continuous function and r > 0. Then, there exists a C1-smooth
semi-Lipschitz function g : X → R that approximates f in the following sense:

(i) |g(x)− f(x)| ≤ ε(x) for all x ∈ X ;

(ii) ∥g|S ≤ ∥f |S + r.

The proof of Corollary 3.11 (which is based to results analogous to Proposition 6 and
Lemma 7 of [25]) is omitted, since all arguments are straightforward adaptations of the
aforementioned ones, by replacing Lipschitz bounds with semi-Lipschitz ones. Nevertheless,
we state the asymmetric version of Proposition 6 of [25], as it will be of use later.

Proposition 3.12 Let X , Y be connected Finsler manifolds. A function f : X → Y is
C-semi-Lipschitz if and only if it is locally C-semi-Lipschitz, that is, for every x ∈ X there
exists a neighborhood U of x such that f |U is C-semi-Lipschitz.

The following proposition shows that given two connected Finsler manifolds X and Y ,
each strict almost isometry between X and Y (with respect to their Finsler distances) induces
an isomorphism of convex partially ordered sets between SC1

1−(Y) and SC1
1−(X ).
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Proposition 3.13 Let X , Y be connected Finsler manifolds and τ : X → Y a strict almost
isometry with respect to their Finsler distances induced by a function ϕ : X → R (in the
sense of Proposition 2.7). Then the mapping T : SC1

1−(Y) → SC1
1−(X )

Tf = f ◦ τ + ϕ

is an isomorphism of convex partially ordered sets.

Proof. Consider the mapping Tf = f ◦ τ + ϕ. Note that the convexity and order-preserving
properties of T are immediate, so we only need to check that T is a well-defined bijection.
To this end, note first that if ∥f |S ≤ 1, then ∥Tf |S ≤ 1, since:

Tf(x′)−Tf(x) = f(τ(x′))−f(τ(x))+ϕ(x′)−ϕ(x) ≤ dY(τ(x), τ(x
′))+ϕ(x′)−ϕ(x) = dX (x, x

′).

We shall now prove that if f ∈ SC1
1−(Y) then ∥Tf |S < 1. Note that T0 = ϕ and from

Proposition 3.1 we have that ∥ϕ|S < 1. Choose λ ∈ (0, 1) such that ∥λ−1f |S < 1. Then

∥Tf |S =
∥∥T ((λλ−1)f + (1− λ)0

)∣∣
S
=
∥∥λT (λ−1f

)
+ (1− λ)T0

∣∣
S

(3.1)

≤ λ
∥∥T (λ−1f

)∣∣
S
+ (1− λ) ∥T0|S ≤ λ+ (1− λ)∥T0|S < 1.

This shows that T
(
SC1

1−(Y)
)
⊂ SC1

1−(X ) and T is well-defined. An analogous argument
holds for the inverse mapping T−1g = g◦τ−1−ϕ◦τ−1, so we conclude that T is a bijection.

3.2 Main result

The main result of this Section is the converse of Proposition 3.13 which eventually provides
a functional characterization of strict almost isometries between connected, second countable
and bicomplete Finsler manifolds, which becomes a characterization of all almost isometries
in the compact setting (see forthcoming Corollaries 3.35–3.36).

Theorem 3.14 (Main result) Let (X , dX ) and (Y , dY) connected, second countable Finsler
manifolds which are bicomplete (with their respective Finsler distances). Assume there exists
an isomorphism of convex partially ordered sets T : SC1

1−(Y) → SC1
1−(X ). Then, there exist

α > 0, a quasi-metric d′X on X and a bijection τ : X → Y such that:

(i) (X , dX ) is almost isometric to (X , d′X ).

(ii) (X , α · d′X ) is isometric to (Y , dY) via τ .

(iii) X is diffeomorphic to Y via τ .

(iv) ∀f ∈ SC1
1−(Y), T f = c · (f ◦ τ) + ϕ, with c = α−1 and ϕ = T0.

(In particular, ϕ is smooth and ∥ϕ|S < 1).
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The proof of the above theorem will be given in Subsection 3.2.3. Before, we shall need
to establish several intermediate results. The proof is divided in three steps, presented in
Subsections 3.2.1, 3.2.2 and 3.2.3.

In what follows, we assume that:

(H1) (X , dX ), (Y , dY) are connected, second countable and bicomplete Finsler manifolds;

(H2) T is an isomorphism of the convex partially ordered sets SC1
1−(Y) and SC1

1−(X ).

3.2.1 Order and topology

The following definition introduces some useful notation and describes a certain type of
open subsets of the Finsler manifolds that are naturally associated with the class of smooth
semi-Lipschitz functions.

Definition 3.15 (Open sets related to the order structure) Let h ∈ SC1
1−(Y). We define

SC1
1−(Y)h ={f ∈ SC1

1−(Y) : f ≥ h},
SC1

1−(X )Th ={g ∈ SC1
1−(X ) : g ≥ Th} = T (SC1

1−(Y)h).

Furthermore, for any f ∈ SC1
1−(Y)h, we denote:

supph(f) ={y ∈ Y : f(y) > h(y)} and Vfh = int (supph(f)) ,

suppTh(Tf) ={x ∈ X : Tf(x) > Th(x)} and UTf
Th = int (suppTh(Tf)) ,

where closure and interior are taken in the symmetric topologies of (Y , dY) and (X , dX ).

Before we proceed, let us introduce the notion of bump function on a Finsler manifold X .

Definition 3.16 ((Smooth semi-Lipschitz) bump functions) Let X be Finsler manifold. A
nonnegative smooth semi-Lipschitz function b : X → R+ is called a bump function on X
centered at a point x0 ∈ X , provided b(x0) > 0 and supp(b) ⊂ BX (x0, r) for some r > 0.

It is well-known that for every x0 ∈ X and r > 0 there exists a bump function b ∈
SC1

1−(X )0 with supp(b) ⊂ BX (x0, r) and b(x0) > 0.

We are now ready to describe a basis for the topologies in Y and X respectively, which
will play an important role in the sequel.

Proposition 3.17 (Topology basis for X and Y) Let X ,Y be two Finsler manifolds and let
us fix a function h ∈ SC1

1−(Y). Then the families

Bh(Y) = {Vfh : f ∈ SC1
1−(Y)h} and Bh(X ) = {UTf

Th : f ∈ SC1
1−(Y)h}

are basis for the topologies of (Y , dY) and (X , dX ) respectively.
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Proof. Given y0 ∈ Y and a ball BY := BY(y0, r) for the distance dsY centered at y0 and of
radius r > 0, we take a bump function b ∈ SC1

1−(Y)0 such that supp(b) ⊂ BY , b(y0) > 0 and

∥b|S + ∥h|S < 1. Defining f = h+ b, we get that y0 ∈ Vfh ⊂ BY .

Given x0 ∈ X and a ball BX for dsX containing x0, take b ∈ SC1
1−(X )0 such that supp(b) ⊂

BX , b(x0) > 0 and ∥b|S + ∥Th|S < 1. Since Th+ b ≥ Th and T is an isomorphism of convex
partially ordered sets, there exists f ∈ SC1

1−(Y)h such that Tf = Th + b. Therefore,

x0 ∈ UTf
Th ⊂ BX .

The following proposition is straightforward. It asserts the existence of a natural bijection
between the basis Bh(Y) and Bh(X ):

Proposition 3.18 Let T be as in (H2). Then for every h ∈ SC1
1−(Y), the mapping Ih :

Bh(Y) → Bh(X ) given by T (Vfh ) = UTf
Th is a bijection.

Remark 3.19 The aforementioned basis seems to depend on the choice of the function h.
Nonetheless, we shall show in forthcoming Proposition 3.25 and respectively, Corollary 3.28,
that the basis Bh(X ), Bh(Y) and, respectively, the bijection Ih do not depend on the choice
of h.

Next, we show that for each h ∈ SC1
1−(Y), the bijection Ih preserves the order structure

of (Bh(Y),⊂) and (Bh(X ),⊂). To this end, following [11] we introduce the following notation:

1. f ⊓h g = {u ∈ SC1
1−(Y)h : u ≤ f, u ≤ g}.

2. f ⊏h g if for any u ∈ SC1
1−(Y)h, u ⊓h g = {h} =⇒ u ⊓h f = {h}.

3. Tf ⊓Th Tg = {v ∈ SC1
1−(X )Th : v ≤ Tf, v ≤ Tg}.

4. Tf ⊏Th Tg if for any v ∈ SC1
1−(X )Th, v ⊓Th Tg = {Th} =⇒ v ⊓Th Tf = {Th}.

The following proposition gives more insight to the above notation. The proof follows the
ideas of [11].

Proposition 3.20 Let h ∈ SC1
1−(Y) and f, g ∈ SC1

1−(Y)h. Then

(i) f ⊓h g = {h} ⇐⇒ Vfh ∩ Vgh = ∅.

(ii) f ⊏h g ⇐⇒ Vfh ⊂ Vgh ⇐⇒ supph(f) ⊂ supph(g).

(iii) Tf ⊓Th Tg = {Th} ⇐⇒ UTf
Th ∩ UTg

Th = ∅.

(iv) Tf ⊏Th Tg ⇐⇒ UTf
Th ⊂ UTg

Th ⇐⇒ suppTh(Tf) ⊂ suppTh(Tg).
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Proof. (i) If Vfh∩V
g
h = ∅ and u ∈ f⊓hg, then u(y) ≤ f(y) ∧ g(y) for all y ∈ (Vfh )c∪(V

g
h)
c = Y ,

so u = h.
Conversely, suppose that Vfh ∩Vgh ̸= ∅ and let y ∈ Vfh ∩Vgh. Since y ∈ supph(f), there exists a
sequence {yn} ⊂ {z : f(z) > h(z)}, with yn → y. Then, there exists N ∈ N such that yN ∈
Vfh ∩Vgh and f(yN) > h(yN). Since yN ∈ supph(g), there exists a sequence (yj) ⊂ {z : g(z) >
h(z)} such that yj → yN , and there is J ∈ N such that yJ ∈ (f − h)−1(0,∞) ∩ Vfh ∩ Vgh, so
f(yJ) ∧ g(yJ) > h(yJ). Taking a suitable bump function b ∈ SC1

1−(Y)0 with positive value
at yJ , we get that h ⪇ b+ h ∈ f ⊓h g, and therefore f ⊓h g ̸= {h}.

(ii) Let f, g ∈ SC1
1−(Y)h. Then we have

f ⊏h g ⇐⇒
[
∀u ∈ SC1

1−(Y)h, u ⊓h g = {h} =⇒ u ⊓h f = {h}
]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, Vuh ∩ Vgh = ∅ =⇒ Vuh ∩ Vfh = ∅
]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, Vgh ⊂ (Vuh )
c =⇒ Vfh ⊂ (Vuh )

c
]
. (3.2)

Clearly, Vfh ⊂ Vgh implies f ⊏h g. On the other hand, since Bh(Y) is a basis, we can express

Vgh as an intersection of sets of the form (Vuh )
c. Let H ⊂ SC1

1−(Y)h such that Vgh =
⋂
u∈H

(Vuh )
c.

Then, using (3.2) we deduce:

f ⊏h g =⇒ ∀u ∈ H, Vgh ⊂ (Vuh )
c =⇒ Vfh ⊂ (Vuh )

c ,

so that
Vfh ⊂ Vgh =⇒ Vfh ⊂ Vgh =⇒ Vfh ⊂ Vgh,

since the elements of Bh(Y) are regular open sets (that is, they coincide with the interior of
their closure).

The proofs of (iii) and (iv) are analogous to the proofs of (i) and (ii) respectively, and will
be omitted.

We have shown that inclusions between members of Bh(Y) (and Bh(X )) can be described
using the relation ⊏h on SC1

1−(Y)h (respectively ⊏Th on SC1
1−(X )h), which depends only

on the convex and order structure of SC1
1−(Y) (respectively SC1

1−(X )), so we can use the
isomorphism T to relate inclusions between sets of each basis.

Proposition 3.21 Let h ∈ SC1
1−(Y) and f, g ∈ SC1

1−(Y)h. Then

f ⊏h g ⇐⇒ Tf ⊏Th Tg.

Therefore,
Vfh ⊂ Vgh ⇐⇒ UTf

Th ⊂ UTg
Th .
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Proof. Let f, g ∈ SC1
1−(Y)h. Using the properties of T , we obtain:

f ⊏h g ⇐⇒
[
∀u ∈ SC1

1−(Y)h, u ⊓h g = {h} =⇒ u ⊓h f = {h}
]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, {v ∈ SC1
1−(Y)h : v ≤ u ∧ g} = {h}

=⇒ {v ∈ SC1
1−(Y)h : v ≤ u ∧ f} = {h}

]
,

⇐⇒
[
∀Tu ∈ SC1

1−(X )Th, {Tv ∈ SC1
1−(X )Th : Tv ≤ Tu ∧ Tg} = {Th}

=⇒ {Tv ∈ SC1
1−(X )Th : Tv ≤ Tu ∧ Tf} = {Th}

]
,

⇐⇒ Tf ⊏Th Tg.

The second part of the statement follows directly using Proposition 3.20.

Corollary 3.22 For any h ∈ SC1
1−(Y), the mapping Ih from Proposition 3.18 is an order-

preserving bijection, that is, for any V1,V2 ∈ Bh(Y)

V1 ⊂ V2 ⇐⇒ Ih (V1) ⊂ Ih(V2).

Next, we show that local inequalities between elements of SC1
1−(Y) can be characterized

via its convex-order structure. In what follows, we fix h ∈ SC1
1−(Y) and for any g ∈ SC1

1−(Y)h
and λ ∈ [0, 1], we set:

gλ := λg + (1− λ)h.

Proposition 3.23 (Characterization of dominance on Vfh ) Let h ∈ SC1
1−(Y) and φ, ψ, f ∈

SC1
1−(Y)h. Then we have:

φ ≥ ψ on Vfh ⇐⇒ ∀λ ∈ [0, 1], ∀u ⊏h f, ψλ ⊓h u ⊂ φλ ⊓h u.

Proof. The “only if” implication is straightforward. For the “if” implication, suppose there
is y0 ∈ Vfh such that ψ(y0) > φ(y0). Then there is a symmetric ball B containing y0 such
that ψ > φ on B. Furthermore, we can take u ∈ SC1

1−(Y)h defined by u = h + b, with
b : Y → [0, ε] a C1 Lipschitz bump function supported on B such that b(y0) = ε, for some
ε > 0. With this, u(y0) := α > h(y0) and y0 ∈ Vuh ⊂ B ⊂ Vfh . Without lost of generality,
ψ(y0) > α. Let λ ∈ [0, 1] such that ψλ(y0) > α > φλ(y0), and let η : Y → [0, 1] be a C1

Lipschitz bump function such that η|{ψλ<u} = 0, η(y0) = 1, and define v = ηb+ h. Note that
v is semi-Lipschitz, since for y, y′ ∈ Y we have:

v(y′)− v(y) = η(y′)b(y′) + h(y′)− η(y)b(y)− h(y)

= η(y′)b(y′)− η(y′)b(y) + η(y′)b(y)− η(y)b(y) + h(y′)− h(y)

≤ ∥η∥∞(b(y′)− b(y)) + ∥b∥∞(η(y′)− η(y)) + ∥h|S dY(y, y′)
≤ (∥b∥LIP + ε∥η∥LIP + ∥h|S) dY(y, y′).

Choose t ∈ (0, 1] such that vt ∈ SC1
1−(Y). Since for g ∈ SC1

1−(Y) and λ ∈ [0, 1],

(gλ)t = tgλ + (1− t)h = λtg + (1− λt)h = gλt,

we get that vt ∈ SC1
1−(Y)h, vt ⊏h f (since supph(vt) ⊂ supp(b) ⊂ B ⊂ supph(f)), vt(y) ≤

ψλt(y) for all y ∈ Y , and finally vt(y0) = ut(y0) > φλt(y0). Therefore, vt ∈ (ψλt ⊓h vt) \
(φλt ⊓h vt), a contradiction.

40



We now state the following useful lemma.

Lemma 3.24 (Transfer principle) Let h ∈ SC1
1−(Y) and φ, ψ, f ∈ SC1

1−(Y)h. Then:

φ ≥ ψ on Vfh ⇐⇒ Tφ ≥ Tψ on UTf
Th .

Proof. It follows from Proposition 3.23, since the right side of the equivalence depends
only on the convex and order structure of SC1

1−(Y), which is preserved by T , so for any
u, v, f, g ∈ SC1

1−(Y)h we have:

u ⊏h f ⇐⇒ Tu ⊏h Tf and v ∈ f ⊓h g ⇐⇒ Tv ∈ Tf ⊓h Tg.

Therefore (Tφ)λ = T (φλ), for any φ ∈ SC1
1−(Y)h and λ ∈ [0, 1].

Next, we show that the basis Bh(Y), Bh(X ) and the bijection Ih are independent of h.

Proposition 3.25 (Independence of the topological basis from h) Let h ∈ SC1
1−(Y). Then

(i). Bh(Y) = B0(Y) := B(Y)

(ii). Bh(X ) = B0(X ) := B(X ).

Proof. (i). Let Vf0 ∈ B(Y). Since ∥h|S < 1, there is λ ∈ (0, 1] such that λf + h ∈ SC1
1−(Y),

so {f > 0} = {λf +h > h}, and therefore Vf0 = Vλf+hh ∈ Bh(Y). Conversely, let Vgh ∈ Bh(Y).
Since the set {g > h} := {y ∈ Y : g(y) > h(y)} is open, by Proposition 3.9 there exists
f ∈ SC1

1−(Y)0 such that {f > 0} = {g > h}, so Vgh = Vf0 ∈ B(Y).

(ii). Let UTf
T0 ∈ B(X ), and g ∈ SC1

1−(X )0 such that {Tf > T0} = {g > 0}. Take λ ∈ (0, 1]

such that λg+Th ∈ SC1
1−(X ), and since λg+Th ≥ Th, there exists f̃ ∈ SC1

1−(Y)h such that

T f̃ = λg + Th. Therefore, {Tf > T0} = {T f̃ > Th} and UTf
T0 = UT f̃

Th ∈ Bh(X ). Conversely,

let UTf
Th ∈ Bh(X ) and g ∈ SC1

1−(X )0 such that {Tf > Th} = {g > 0}. Taking λ ∈ (0, 1] such

that λg + T0 ∈ SC1
1−(X ), we get that UTf

Th = Uλg+T0
T0 ∈ B(X ).

The following result completes the transfer principle of Lemma 3.24:

Proposition 3.26 Let h ∈ SC1
1−(Y) and U ∈ B(X ). Then V = I−1

h (U) is the only element
in B(Y) such that for any φ, ψ ∈ SC1

1−(Y)h

φ ≥ ψ on V ⇐⇒ Tφ ≥ Tψ on U . (3.3)

Proof. Lemma 3.24 ensures that V satisfies (3.3). Let Ṽ ≠ V in B(Y) satisfying the same
property. Without loss of generality, V \ Ṽ ̸= ∅. Since both sets are regular open sets,
there exists y ∈ V \ Ṽ and ε > 0 such that the symmetric ball B(y, ε) := B is contained in
V \ Ṽ . Given y0 ∈ B, we can take φ, ψ ∈ SC1

1−(Y)h such that supph(φ) ∪ supph(ψ) ⊂ B,

φ(y0) < ψ(y0). Therefore φ ≱ ψ on B ⊂ V , but φ ≥ ψ on Ṽ , which contradicts (3.3).
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Using the above, we show the independence of the bijection (c.f. Proposition 3.18) from
h for a particular case. (The general case will be given in Corollary 3.28.)

Proposition 3.27 Let h1, h2 ∈ SC1
1−(Y), such that h1 ≤ h2. Then Ih1 = Ih2.

Proof. Let U ∈ B(X ), and let φ, ψ ∈ SC1
1−(Y)h2 such that φ ≥ ψ on V2 := I−1

h2
(U). By

Lemma 3.24, Tφ ≥ Tψ on U , and since h1 ≤ h2, φ, ψ ∈ SC1
1−(Y)h1 , and by Lemma 3.24

φ ≥ ψ on V1 := I−1
h1

(U). Hence, by Proposition 3.26, V1 = V2, and therefore, Ih1 = Ih2 .

Corollary 3.28 (Independence of the bijection from h) Let h ∈ SC1
1−(Y). Then

Ih = I0 := I.

Proof. Consider h ∨ 0 ∈ SLIP1(Y) and note that ∥h ∨ 0|S ≤ ∥h|S < 1. Take η > 0 such
that ∥h|S + η < 1 and g : Y → R a semi-Lipschitz C1-smooth approximation given by
Corollary 3.11, using ε = η

2
and r = η. Replacing g by g + ε we get an approximation from

above of h ∨ 0, that is:

g ≥ h ∨ 0, ∥g|S ≤ ∥h ∨ 0|S + η < 1 and g(y)− (h ∨ 0)(y) ≤ η, ∀y ∈ Y .

It follows that g ∈ SC1
1−(Y), g ≥ h and g ≥ 0. By Proposition 3.27, Ih = Ig = I0.

Thanks to this result, we can simply work with the basis B(Y) and B(X ) (without fixing
a function h) and with the bijection I : B(Y) → B(X ). The following lemma, established in
[12, Lemma 6] and [13, Lemma 2] is paramount for our considerations.

Lemma 3.29 (Key Lemma) Let (X, dX) and (Y, dY ) be complete metric spaces, and let
B(X) and B(Y ) be bases for their topologies. If I : B(Y ) → B(X) is an inclusion-preserving
bijection, then there exist dense subsets X ′ ⊂ X, Y ′ ⊂ Y and a homeomorphism τ : X ′ → Y ′

such that for every x ∈ X ′ and V ∈ B(Y ) it holds:

τ(x) ∈ V ⇐⇒ x ∈ I(V).

Since we deal with Finsler manifolds X and Y which are bicomplete, we can apply
Lemma 3.29 to the underlying complete metric spaces (X , dsX ) and (Y , dsY) to obtain:

Corollary 3.30 (Homeomorphism of dense subsets) Let X , Y bicomplete Finsler manifolds
and T as in (H2). Then there exist dense subsets for the symmetrized topologies X ′ ⊂ X ,
Y ′ ⊂ Y and an homeomorphism τ : X ′ → Y ′ such that for any x ∈ X ′ and V ∈ B(Y),

τ(x) ∈ V ⇐⇒ x ∈ I(V). (3.4)
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3.2.2 Pointwise behaviour of the isomorphism

The following result will allow us to deduce information about the pointwise behavior of the
isomorphism T .

Corollary 3.31 Let f, g ∈ SC1
1−(Y), X ′ ⊂ X the dense subset of Corollary 3.30 and x0 ∈ X ′.

Then,
f(τ(x0)) = g(τ(x0)) ⇐⇒ Tf(x0) = Tg(x0),

where τ : X ′ → Y ′ is the homeomorphism of Corollary 3.30.

Proof. We need to ensure that we can apply Lemma 3.24. To this end, take ε > 0 such
that ∥f |S ∨ ∥g|S + ε < 1, and let h be a C1-smooth semi-Lipschitz approximation of f ∧ g
such that h ≤ f ∧ g and ∥h|S ≤ ∥f |S ∨ ∥g|S + ε < 1. Set y0 = τ(x0). It suffices to prove
that Tf(x0) > Tg(x0) implies f(y0) > g(y0). Let us assume, towards a contradiction, that
Tf(x0) > Tg(x0) and f(y0) ≤ g(y0). Since Tf > Tg holds true in a neighborhood of x0, it
follows from Lemma 3.24 that f ≥ g is also satisfied in a neighborhood of y0. Therefore,
f(y0) = g(y0) and y0 is a local minimum of the function f − g. In particular, we deduce that
df(y0) = dg(y0).

Let now φ ∈ SC1
1−(Y)h such that φ(y0) = f(y0) and dφ(y0) ̸= df(y0). Choose m ∈ N such

that f ≥ g is satisfied in the symmetric ball B(y0,
1
m
). Then, for every n ≥ m we can choose

yn ∈ B(y0,
1
n
) ∩ Y ′ and rn > 0 such that φ > f on B(yn, rn). By Lemma 3.24, we deduce

that Tφ ≥ Tf on I (B(yn, rn)). Denoting xn = τ−1(yn), and applying Corollary 3.30, we
obtain sequences (yn) and (xn) converging to y0 and x0 respectively, and such that Tφ(xn) ≥
Tf(xn) for all n ≥ m, which yields Tφ(x0) ≥ Tf(x0). The same argument can now be
repeated (choosing yj ∈ B(y0,

1
j
) ∩ Y ′ such that φ < g in a neighborhood of yj) to obtain

Tφ(x0) ≤ Tg(x0), which gives a contradiction.

The other implication follows by the same argument.

We shall now show that the convexity property of the isomorphism T determines how it
acts on the constant functions.

Proposition 3.32 (Action of T on the constant functions) Let g ∈ SC1
1−(Y). Then Tg−T0

is constant if and only if g is constant. Moreover, there exists α > 0 such that

Tλ = T0 + α−1λ, ∀λ ∈ R.

Proof. Let λ ∈ R and gλ ∈ SC1
1−(Y) such that Tgλ = T0 + λ.

Let us first assume that λ ≥ 1. Then by convexity property of the isomorphism T we
deduce:

T
(
λ−1gλ

)
= T

(
λ−1gλ + λ−1(λ− 1)0

)
= λ−1Tgλ+λ−1(λ−1)T0 = λ−1T0+1+λ−1(λ−1)T0 = T0+1.

It follows that Tg1 := T0 + 1 = T (λ−1gλ), therefore, since T is bijective, λg1 = gλ for all
λ ≥ 1, so ∥g1|S ≤ λ−1 for all λ ≥ 1. This latter yields that the function g1 is constant, that is,
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there exists α ∈ R such that g1 = α, whence gλ = αλ for all λ ≥ 1. Since Tg1 = T0 + 1 > T0,
it follows that α > 0.

Let us now consider the case λ ∈ [0, 1). Then T (λg1) = λTg1 + (1 − λ)T0 = λ + T0 =
T
(
gλ
)
, therefore, λg1 = λα = gλ for all λ ∈ [0, 1). It follows that gλ = λα for any λ ≥ 0. In

particular, T
(
gα

−1λ
)
= T0 + α−1λ= Tλ for any λ ≥ 0.

Finally, using again convexity of T we get:

T0 = T

(
1

2
λ+

1

2
(−λ)

)
=

1

2
Tλ+

1

2
T (−λ) = 1

2

(
T0 + α−1λ

)
+

1

2
T (−λ),

which yields T (−λ) = T0− α−1λ, for every λ ≥ 0.

Combining Proposition 3.32 and Corollary 3.31, we obtain

Corollary 3.33 Let f ∈ SC1
1−(Y), X ′ ⊂ X the dense subset from Corollary 3.30 and

x0 ∈ X ′. Denoting by c = α−1 = T1− T0 and ϕ = T0, we have that

Tf(x0) = c · f(τ(x0)) + ϕ(x0).

Proof. Applying Corollary 3.31 to f and the constant function of value f(τ(x0)), we get

Tf(x0) = Tg(x0) = T0(x0) + α−1f(τ(x0)) = cf(τ(x0)) + ϕ(x0).

3.2.3 Proof of the main result

Recalling the notation of the statement of Theorem 3.14 we set c := α−1 = T1 − T0 and
ϕ = T0. Since ∥ϕ|S < 1, in particular ϕ(x1) − ϕ(x2) < dX (x2, x1) for all x1, x2 ∈ X such
that x1 ̸= x2. It is easy to check that we can use ϕ to define a quasi-metric on X as in
Proposition 2.7, obtaining that d′X (x1, x2) = dX (x1, x2) + ϕ(x1)− ϕ(x2) is a quasi-metric on
X such that (X , dX ) is almost isometric to (X , d′X ). In order to modify the isomorphism T ,
we define the following mappings:

• R : SC1
1−(X , dX ) → SC1

1−(X , d′X ) by R(g) = g − ϕ ;

• S : SC1
1−(X , d′X ) → SC1

1−(X , αd′X ) byS(h) = αh ; and

• T̂ : SC1
1−(Y , dY) → SC1

1−(X , αd′X ) by T̂ (f) = S ◦R ◦ T (f).
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Thanks to Proposition 3.13 the mapping R is well-defined: indeed, the same arguments used
in Proposition 3.13 are valid for the quasi-metric dX ′ (which comes from a Finsler structure,
thanks to Proposition 2.71). We shall prove that both T̂ and T̂−1 act as composition operators
whenever their images are evaluated on the dense sets X ′ and Y ′ of Corollary 3.30 respectively.
Indeed, let f ∈ SC1

1−(Y) and x0 ∈ X ′. Applying Corollary 3.33, we have:

T̂ f(x0) = S ◦R ◦ T (f)(x0) = α
(
α−1f(τ(x0)) + ϕ(x0)− ϕ(x0)

)
= f(τ(x0)).

On the other hand, for g ∈ SC1
1−(X , αd′X ) and y0 ∈ Y ′, we have

T̂−1g(y0) = T−1 ◦R−1 ◦ S−1(g)(y0) = T−1
(
α−1g + ϕ

)
(y0).

Since α−1g + ϕ ∈ SC1
1−(X , dX ), there exists f ∈ SC1

1−(Y , dY) such that Tf = α−1g + ϕ.
Then, denoting x0 = τ−1(y0) we obtain that α−1g(x0)+ϕ(x0) = Tf(x0) = α−1f(y0)+ϕ(x0),
whence f(y0) = g(x0). Finally

T̂−1g(y0) = T−1(Tf)(y0) = g(x0) = g(τ−1(y0)).

Let us now prove that τ : (X ′, αd′X ) → (Y ′, dY) is an isometry. To this end, let x1, x2 ∈ X ′,
y1 = τ(x1) and y2 = τ(x2). Take λ ∈ (0, 1) and ε > 0 such that λ + ε < 1, and consider the
function fλ(·) = λdY(y1, ·). Note that ∥fλ|S = λ < 1, so we can apply Corollary 3.11 (smooth
approximation of semi-Lipschitz functions), obtaining g ∈ C1(Y) such that |g(y)−fλ(y)| < ε
for all y ∈ Y and ∥g|S ≤ λ+ ε < 1. The second condition guarantees that g ∈ SC1

1−(Y , dY).
From the first condition it follows that |g(y1)| < ε and g(y2) > λdY(y1, y2)− ε. We deduce:

αd′X (x1, x2) ≥ T̂ g(x2)− T̂ g(x1) = g(y2)− g(y1) ≥ λdY(y1, y2)− 2ε

for any ε > 0 such that ε+λ < 1. Consequently, αd′X (x1, x2) ≥ λdY(y1, y2), for any λ ∈ (0, 1).
Therefore

αd′X (x1, x2) ≥ dY(y1, y2).

A similar argument holds for the reverse inequality. Take λ ∈ (0, 1), ε > 0 such that λ+ε < 1,
and consider fλ(·) = λdX (x1, ·). Applying again Corollary 3.11 we get g ∈ C1(X ) such that
|g(x)− fλ(x)| < ε for all x ∈ X and ∥g|S ≤ λ + ε < 1. Consider g̃ = α(g − ϕ) + αλϕ(x1) ∈
C1(X ). Moreover, g̃ ∈ SC1

1−(X , αd′X ), since g̃ = S ◦R(g) + αλϕ(x1). Let us now note that

|g̃(x2)−λαd′X (x1, x2)| = |α(g(x2)−λdX (x1, x2))−αϕ(x2)−λαϕ(x2)| ≤ αε+α(1−λ)|ϕ(x2)|,

which together with |g̃(x1)| = |αg(x1)− αϕ(x1) + αλϕ(x1)| ≤ αε+ α(1− λ)|ϕ(x1)|, yields

dY(y1, y2) ≥ T̂−1g̃(y2)− T̂−1g̃(y1) = g̃(x2)− g̃(x1)

≥ λαd′X (x1, x2)− 2αε− α(1− λ)(|ϕ(x1)|+ |ϕ(x2)|),

for any ε > 0 such that ε+ λ < 1. Hence,

dY(y1, y2) ≥ αd′X (x1, x2)− α(1− λ)(|ϕ(x1)|+ |ϕ(x2)|),

for any λ ∈ (0, 1), and therefore dY(y1, y2) ≥ αd′X (x1, x2).
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We conclude that τ : (X ′, αd′X ) → (Y ′, dY) is an isometry. It is easy to check that (X , αd′X )
is also bicomplete, as (d′X )

s ≤ 2dsX . Then, the isometry τ between the symmetrizations of
(X ′, αd′X ) and (Y ′, dY) extends to an isometry between (X , αd′X ) and (Y , dY). By continuity,
we obtain that for any f ∈ SC1

1−(Y) and x ∈ X ,

Tf(x) = c · f(τ(x)) + ϕ(x).

Moreover, since τ is an almost isometry between the Finsler manifolds (X , dX ) and
(Y , α−1dY), both τ and ϕ are smooth, thanks to Proposition 2.71.

3.2.4 Characterizations of isometries and strict almost isometries

Let us recall from [14] the following definition:

Definition 3.34 (almost unital isomorphism) An isomorphism of convex partially ordered
sets

T : SC1
1−(Y) → SC1

1−(X )

is called almost unital if T1− T0 = 1.

Applying the results of the previous section we obtain:

Corollary 3.35 (Characterization of strict Finsler almost isometries) Let (X , dX ) and (Y , dY)
be connected, second countable Finsler manifolds, which are bicomplete (with their respective
Finsler distances). Then, there is a strict almost isometry between (X , dX ) and (Y , dY) if
and only if there exists an almost unital isomorphism

T : SC1
1−(Y) → SC1

1−(X ).

In particular, for any such isomorphism, there exist a diffeomorphism τ : X → Y and a
smooth function ϕ ∈ SC1

1−(X ) such that Tf = f ◦ τ + ϕ for all f ∈ SC1
1−(Y).

Proof. The “if” implication follows directly from Theorem 3.14 and Definition 3.34, since
by Proposition 3.32 we deduce that c := α−1 = T1 − T0 = 1. The “only if” part follows
from Proposition 3.13, using again the fact that Proposition 3.32 holds with α = 1 and
consequently the isomorphism T is almost unital.

Using Proposition 3.7, we obtain the following characterization of almost isometries be-
tween compact Finsler manifolds:

Corollary 3.36 (Characterization of almost isometries between compact Finsler manifolds)
Let (X , dX ) and (Y , dY) be compact, connected, second countable Finsler manifolds, which
are bicomplete (with their respective Finsler distances). Then (X , dX ) and (Y , dY) are almost
isometric if and only if there exists an almost unital isomorphism

T : SC1
1−(Y) → SC1

1−(X ).
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In particular, for any such isomorphism, there exist a diffeomorphism τ : X → Y and a
smooth function ϕ ∈ SC1

1−(X ) such that Tf = f ◦ τ + ϕ for all f ∈ SC1
1−(Y).

If we focus on isometries, we obtain:

Corollary 3.37 (Characterization of Finsler isometries) Let (X , dX ) and (Y , dY) be con-
nected, second countable Finsler manifolds which are bicomplete (with their respective Finsler
distances). Then, (X , dX ) and (Y , dY) are isometric if and only if there exists an isomorphism
T : SC1

1−(Y) → SC1
1−(X ) such that

∥Tf |S = ∥f |S , for all f ∈ SC1
1−(Y).

Moreover, for any such isomorphism, there exist a diffeomorphism τ : X → Y and β ∈ R
such that Tf = f ◦ τ + β for all f ∈ SC1

1−(Y).

Proof. If τ is an isometry between (X , dX ) and (Y , dY), then f 7→ T (f) := f ◦ τ is an
isomorphism between convex, partially ordered structures that satisfies ∥Tf |S = ∥f |S for all
f ∈ SC1

1−(Y).

Conversely, we can apply Theorem 3.14 to the isomorphism T , and since ∥T0|S = 0, the
function T0 is a constant, so the quasi-metric d′X induced by T0 is the same as dX . In addition,
α must be 1 for T to preserve semi-Lipschitz constants, and therefore τ : (X, dX ) → (Y, dY)
is an isometry.

In the particular case of reversible Finsler manifolds, Theorem 3.14 can be restated as
follows.

Corollary 3.38 Let (X , dX ) and (Y , dY) be connected, second countable, reversible complete
Finsler manifolds and T : C1

1−(Y) → C1
1−(X ) be an isomorphism of convex partially ordered

sets. Then, there exist α > 0, β ∈ R and a bijection τ : X → Y such that:

(i) (Y , dY) and (X , αdX ) are isometrically diffeomorphic via τ .

(ii) For every f ∈ C1
1−(Y ) we have Tf = c · (f ◦ τ) + β, where c = α−1 and β = T0.

Proof. It follows from Theorem 3.14. (Since all involved distances are symmetric, ϕ must
be constant.)

Therefore we obtain the following characterization of isometries for reversible Finsler
Manifolds.

Corollary 3.39 (Characterization of isometries for reversible Finsler manifolds) Let (X , dX )
and (Y , dY) connected, second countable, reversible complete Finsler manifolds. Then the
manifolds (X , dX ), (Y , dY) are isometric if and only if there exists an almost unital isomor-
phism T : C1

1−(Y) → C1
1−(X ). Moreover, for any such isomorphism there exists a diffeomor-

phism τ : X → Y and β ∈ R such that

Tf = f ◦ τ + β for all f ∈ C1
1−(Y).
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Note that the isomorphism of partially ordered sets in the above Corollary preserves
Lipschitz constants, and can be replaced by T̃ = T−β in order to extend linearly to the spaces
of C1-smooth Lipschitz functions, denoted by C1

LIP(Y) and C1
LIP(X ) respectively. Therefore,

for the particular case of reversible Finsler manifolds we can reformulate Corollary 3.39 as
follows:

Corollary 3.40 Let (X , dX ) and (Y , dY) connected, second countable, reversible complete
Finsler manifolds. Then (X , dX ) and (Y , dY) are isometric if and only if there exists a
linear, order and semi-norm preserving bijection T : (C1

LIP(Y), ∥ · ∥LIP) → (C1
LIP(X ), ∥ · ∥LIP).

Moreover, for any such bijection there exists a diffeomorphism τ : X → Y such that Tf = f◦τ
for all f ∈ C1

LIP(Y).

The same idea can be applied to non reversible manifolds, using the normed cones of
C1-smooth semi-Lipschitz functions C1

SLIP(Y) and C1
SLIP(X ):

Corollary 3.41 Let (X , dX ) and (Y , dY) connected, second countable and bicomplete Finsler
manifolds. Then (X , dX ) and (Y , dY) are isometric if and only if there exists a linear, order
and asymmetric-norm preserving bijection T : (C1

SLIP(Y), ∥·|S) → (C1
SLIP(X ), ∥·|S). Moreover,

for any such bijection there exists a diffeomorphism τ : X → Y such that Tf = f ◦ τ for all
f ∈ C1

SLIP(Y).
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Chapter 4

The semi-Lipschitz free space

The objective of this chapter is to present the construction of a generalization of the Lipschitz
free space in the framework of quasi-metric spaces, published in [18], as well as related results
related to the subject. Section 4.2 is devoted to the construction of the semi-Lipschitz free
space, and its main properties are showcased in Section 4.3. In Section 4.4 we introduce
the notion of asymmetrizations of a metric spaces, and we explore its relation with the
semi-Lipschitz free space. Section 4.5 contains examples of semi-Lipschitz free spaces for
concrete quasi-metric spaces. At the end of the Chapter, we introduce the notion of locally
flat semi-Lipschitz functions, and present an illustrative examples where the cone of locally
flat semi-Lipschitz functions forms a predual of the semi-Lipschitz free space, mirroring the
result known for Lipschitz free spaces.

A first immediate challenge in endeavoring to construct an asymmetric version of Lipschitz
free spaces is the lack of linear structure of the cone SLIP0(X). In order to address this
difficulty, a considerable amount of bibliographical research was required, in order to find
the right tools and framework needed for this idea to work. The bulk of those efforts are
condensed in Chapter 2, but some “gaps” had to be filled. We start this chapter with some
propositions and lemmas that were not found in the literature, and had to be developed in
order to construct the semi-Lipschitz free space.

4.1 Additional results regarding duality in asymmetric

normed spaces

In what follows, we shall make use of the notation ⟨y∗, y⟩ = y∗(y).

Lemma 4.1 Let E be an asymmetric normed space with dual E∗, and φ : E∗ → R a linear
w∗-continuous functional. Then there exists xφ ∈ E such that φ(x∗) = x∗(xφ) for all x

∗ ∈ E∗.

Proof. Since φ is w∗-continuous, the set φ−1(−1, 1) is a w∗-neighborhood of 0, so there exist
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x1, ..., xn ∈ E such that

{x∗i ∈ E∗ : max
i=1,...,n

|⟨x∗, xi⟩| < 1} ⊆ φ−1(−1, 1),

which yields
n⋂
i=1

Ker(x̂i) ⊆ Ker(φ). (4.1)

The above kernels are contained in the cone E∗. We can linearly extend φ and the evaluation
functionals x̂1, ..., x̂n from the normed cone E∗ to the linear space span(E∗) ⊆ RE. This
operation preserves the inclusion (4.1) on the linear space span(E∗). It follows that the
extension x̂φ of φ is a linear combination of the extensions of x̂1, ..., x̂n.

The following result is analogous for the classical one in the operator theory (see [38,
Theorem 4.10]).

Lemma 4.2 Let (E, ∥·|E), (F, ∥·|F ) be asymmetric normed spaces, E∗ and F ∗ their respective
dual cones and T : F ∗ → E∗ a linear bounded operator (meaning that there exists K ≥ 0
such that ∥Ty∗|F ≤ K∥y∗|E for all x ∈ E). If T is (w∗-w∗)-continuous, then there exists a
linear bounded operator S : E → F such that T = S∗, in the sense that

⟨y∗, Sx⟩ = ⟨Ty∗, x⟩, for all x ∈ E and y∗ ∈ F ∗.

Furthermore, if T is a bijective isometry, so is S.

Proof. Let x ∈ E, and define f : F ∗ → R as f(y∗) = x̂(Ty∗) = y∗(yx) = ŷx(y
∗), which

is w∗-continuous, and therefore by Lemma 4.1 there exists yx such that x̂(T ) = ŷx and
y∗(yx) = x̂T y∗, and define Sx = yx, which is linear and bounded, since

∥Sx|F = ∥yx|F = ∥ŷx| = ∥x̂ ◦ T | = sup
∥y∗|≤1

(x̂ ◦ T )(y∗) ≤ ∥x|E∥T |.

And S∗ = T , as
⟨S∗y∗, x⟩ = ⟨y∗, Sx⟩ = ⟨x̂ ◦ T, y∗⟩ = ⟨Ty∗, x⟩

for all x ∈ E and y∗ ∈ F ∗, so S∗ = T . Finally, if T is an isometry then

∥Sx|F = sup
∥y∗|≤1

⟨y∗, Sx⟩ = sup
∥y∗|≤1

⟨Ty∗, x⟩ = sup
∥y∗|≤1

⟨x∗, x⟩ = sup
∥x∗|≤1

⟨Ty∗, x⟩,

where the first equality follows as a corollary of the Hahn-Banach theorem for asymmetric
normed spaces ([15, Corollary 2.2.4]).

The following proposition shows that an asymmetric normed space and its bicompletion
have the same dual. This fact will be relevant for our main result.

Proposition 4.3 (Unique extension of a linear usc functional) Let (E, ∥·|) be an asymmetric
normed space, D ⊆ E a subspace that is dense in the symmetrization of the induced quasi-
metric, and φ : D → R a linear usc functional. Then φ has a unique linear usc extension to
E.
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Proof. Thanks to the Hahn-Banach theorem [15, Theorem 2.2.1], φ has at least one linear usc
extension to E. Let us assume, towards a contradiction, that φ has two different extensions
ϕ1 and ϕ2, with ϕ1(x) < ϕ2(x) for some x ∈ E. Since D is dense for the symmetrized
extended quasi-metric (c.f. Definition 2.8), there is a sequence {xn}n ⊆ D such that xn → x
in both de and d̄e. Since ϕ1 and ϕ2 are usc for de, we deduce that they are also lsc for d̄e (see
Remark 2.54). Moreover, both functionals coincide on the sequence {xn}n. We deduce:

lim sup
n

ϕ2 (xn) ≤ ϕ1(x) < ϕ2(x) ≤ lim inf
n

ϕ2 (xn) ,

which is a contradiction. Therefore ϕ1 = ϕ2.

Proposition 4.4 (Dual of an asymmetric normed space) Let (E, ∥ · |) be an asymmetric
normed space and (Ẽ, ∥·|∼) its bicompletion. Then, the respective dual cones are isometrically
isomorphic.

Proof. We already know that the extension mapping from E∗ to Ẽ∗ is a bijection, in virtue
of Proposition 4.3. To check that it is an isometry, we only need to check that ∥ϕ|E |∗ ≥ ∥ϕ|∗
for any ϕ ∈ Ẽ∗, as the reverse inequality is obvious. Let BẼ be the unit ball of Ẽ for the
forward distance, and consider ϕ ∈ Ẽ∗ and a sequence {zn}n on BẼ such that ϕ(zn) →
∥ϕ|∗ := supz∈BẼ

ϕ(z). Since E is dense for the symmetrized topology in Ẽ (by definition),

for each n ∈ N there exists a sequence {xjn}j ⊆ BE such that {xjn} converges to zn in the
symmetrized distance of Ẽ. In particular, {xjn}j converges for both quasi-metrics de and d̄e.
Since ϕ is lsc for d̄e, we have that ϕ (zn) ≤ lim infj ϕ (x

j
n), for every n ∈ N. Then, for any

ε > 0 there exists n0 ∈ N such that ∥ϕ|∗ < ε+ ϕ (zn0), and consequently

∥ϕ|∗ < ε+ lim inf
j

ϕ
(
xjn0

)
≤ ε+ ∥ϕ|E |∗.

This completes the proof.

Finally, the following lemma will be of use for Subsection 4.5.

Lemma 4.5 ((L1(R), ∥ · |1,+)∗ = (L∞
+ (R), ∥ ·∥∞)) Let L1(R) be endowed with the asymmetric

norm

∥f |1,+ :=

∫
R
f+dλ,

where f+(x) = max{f(x), 0} and λ denotes the Lebesgue measure. Then, the dual of
(L1(R), ∥ · |1,+) is isometrically isomorphic to (L∞

+ (R), ∥ · ∥∞), where L∞
+ (R) denotes the

cone of non negative functions in L∞(R).

Proof. The facts that (L1(R), ∥ · |1,+) is an asymmetric normed space and (L∞
+ (R), ∥ · ∥∞) is

a normed cone are straightforward. Take φ ∈ (L1(R), ∥ · |1,+)∗. Then φ : L1(R) → R is linear
and (∥ · |1,+-u)-continuous (see Example 4.25). Then, by Proposition 2.45, φ is continuous
for the symmetrized norms in both spaces, therefore

|φ(f)| ≤ ∥φ∥∗max
{
∥f+|1,+, ∥−f+|1,+

}
≤ ∥φ∥∗∥f∥1,
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where ∥ · ∥∗ denotes the dual norm of the normed space (L1(R), (∥ · |1,+)s) and ∥ · ∥1 is the
usual norm on L1(R). It follows that φ is (∥ · ∥1-| · |)-continuous, and therefore there exists
g ∈ L∞(R) such that φ(f) =

∫
gfdλ for all f ∈ L1(R).

We claim that g ≥ 0 almost everywhere:

Indeed, suppose, towards a contradiction, that there exists a set E of measure 0 < λ(E) <∞
such that g < 0 on E. Consider the sequence fn = −n1E (where 1E is the characteristic
function of E), which clearly belongs to L1(R). On the other hand, since ∥fn|1,+ = 0 for all
n ∈ N, the function fn belongs to the unit ball of the asymmetric norm ∥ · |1,+. Then, as
n −→ +∞, we deduce

φ(fn) =

∫
gfndλ =

∫
Ec

gfndλ+

∫
E

gfndλ = n

∫
E

(−g)dλ −→ +∞.

Therefore, φ can not be (∥ · |1,+-u)-continuous, a contradiction.

Notice now that any g ∈ L∞
+ (R) defines a linear (∥ · |1,+-u)-continuous functional φ in the

same manner:

φ(f) =

∫
R
g f dλ ≤

∫
R
gf+dλ ≤ ∥g∥∞

∫
R
f+ = ∥g∥∞∥f |1,+,

which yields that ∥φ|∗ ≤ ∥g∥∞. On the other hand, take ε > 0 and a set E of finite measure

such that g(x) ≥ ∥g∥∞ − ε on E. Then consider the function f =
sgn(g)

λ(E)
1E, where sgn(g)

denotes the sign of g, and note that ∥f |1,+ ≤ 1. Then

φ(f) =
1

λ(E)

∫
E

gdλ ≥ 1

λ(E)

∫
E

[∥g∥∞ − ε]dλ = ∥g∥∞ − ε.

It follows that ∥φ|∗ = ∥g∥∞, and therefore, we can identify the dual of (L1(R), ∥ · |1,+) to
(L∞

+ (R), ∥ · ∥∞) by an isometric isomorphism.

4.2 Construction of the semi-Lipschitz free space

Throughout this Chapter, (X, d) will denote a quasi-metric space, with d being possibly a
quasi-hemi-metric, and with base point x0 ∈ X. We are ready to proceed to the construction
of the (asymmetric) semi-Lipschitz free space. For every x ∈ X we consider the corresponding
evaluation mapping

δx : SLIP0(X) → R defined by δx(f) = f(x), ∀f ∈ SLip0(X).

Notice that δx is a linear mapping over the cone SLip0(X) (c.f. Definition 2.18). We can
also define the linear mapping −δx by −δx(f) := −f(x), for all f ∈ SLip0(X).

Proposition 4.6 (δx belongs to the linearity part of (SLip0(X))∗) For each x ∈ X, both
the evaluation functional δx : SLIP0(X) → R and its opposite −δx belong to the dual cone
(SLip0(X), ∥ · |S)∗.
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Proof. Let x ∈ X. Since δx is linear, we only need to check that it is bounded from above
on the unit ball of SLip0(X). Indeed, for any f ∈ SLIP0(X), we have f(x) = f(x) −
f(x0) ≤ d(x0, x) ∥f |S, therefore δx ∈ SLip0(X)∗. Using the same argument, we get that
−f(x) ≤ d(x, x0) ∥f |S.

Remark 4.7 The fact that both δx and −δx are semi-Lipschitz yields that δx is actually a
Lipschitz function on (SLip0(X), ∥ · |) of constant ∥δx∥LIP = max{d(x, x0), d(x0, x)}.

Proposition 4.8 (Isometric injection of X into SLip0(X)∗) The mapping

δ : (X, d) → (SLIP0(X)∗, ∥ · |∗) ,

defined by δ(x) = δx is (injective and) an isometry onto its image. Therefore, for any
x, y ∈ X, we have:

d(x, y) = ∥δy − δx|∗.

Proof. Let us take x, y ∈ X. First of all, it is worth noting that the quasi-metric generated
by the conic-norm is extended (Proposition 2.24) and that ∥δy − δx|∗ is well defined (by
Proposition 4.6). Note also that any dual cone is cancellative, since it is contained in a
linear space of real-valued functions. To prove injectivity of δ, consider x, y ∈ X such that
δx = δy. Then we take the functions f(·) = d(x, ·) − d(x, x0) and g(·) = d(y, ·) − d(y, x0).
Since δx(f) = δy(f), and δx(g) = δy(g), we conclude that both d(x, y) and d(y, x) must be
zero, therefore x = y (Definition 2.1(iii)).

By Remark 2.25(ii), for any x, y ∈ X we have that de (δx, δy) = ∥δy − δx|∗. Then, for any
x, y ∈ X,

de (δx, δy) = sup
∥f |S≤1

(δy − δx) (f) = sup
∥f |S≤1

{
f(y)− f(x)

}
≤ sup

∥f |S≤1

∥f |S d(x, y) = d(x, y).

Conversely, by taking f(·) = d(x, ·)− d(x, x0) it follows (see Proposition 2.48) that

f(y)− f(x) = d(x, y) and f(y)− f(x) = (δy − δx)(f) ≤ ∥δy − δx|∗ = de(δx, δy).

Then the result holds.

We now take the asymmetric normed space (span (δ(X)) , ∥ · |∗) (which is contained in the
normed cone (SLIP0(X), ∥ · |∗)), and we define the (asymmetric) semi-Lipschitz free space to
be the bicompletion of (span (δ(X)) , ∥ · |∗).

Definition 4.9 (The semi-Lipschitz free space) Let (X, d) be a quasi-metric space with base
point x0. The semi-Lipschitz free space over (X, d), denoted by Fa(X), is the (unique)
bicompletion of the asymmetric normed space (span (δ(X)) , ∥ · |∗), where ∥·|∗ is the restriction
of the norm of SLIP0(X)∗.
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4.3 Main properties

We are now ready to establish our main result which is analogous of the fundamental property
of the Lipschitz-free space of a metric space: being a predual of the space of Lipschitz
functions vanishing at the base point.

Theorem 4.10 (Fa(X)∗ = SLip0(X)) Let (X, d) be a quasi-metric space with base point x0.
Then the dual cone of Fa(X) is isometrically isomorphic to SLIP0(X).

Proof. Thanks to Proposition 4.4, we only need to check that the dual cone of (span (δ(X)) , ∥·∗)
is isometrically isomorphic to SLIP0(X). To this end, we define the mapping

Φ : SLIP0(X) → (span (δ(X)) , ∥ · |∗)∗ ,

with

Φ(f)

(∑
i

λi δxi

)
=
∑
i

λif (xi)

for any linear combination of evaluation functionals. First, we check that Φ is well defined:
Φ is obviously linear and we next demonstrate the condition (ii) of Proposition 2.53. For any
f ∈ SLIP0(X) and any

∑
i λi δxi ∈ span (δ(X)), we have

Φ(f)

(∑
i

λiδxi

)
=
∑
i

λif(xi) =

(∑
i

λiδxi

)
(f) ≤

∥∥∥∥∥∑
i

λiδxi

∣∣∣∣∣
∗

∥f |S.

Therefore ∥f |S ≥ ∥Φ(f)|∗∗, where ∥ · |∗∗ is the norm on (span (δ(X)) , ∥ · |∗)∗. Conversely,
consider f ∈ SLIP0(X). Then, by Proposition 2.39, we have

∥f |S = sup
d(y,x)>0

max {f(x)− f(y), 0}
d(y, x)

= sup
d(y,x)>0

max{Φ(f) (δx − δy) , 0}
∥δx − δy|∗

≤ ∥Φ(f)|∗∗,

from which we deduce that Φ is an isometry. Since Φ is obviously linear and injective, it re-
mains only to establish surjectivity. This follows from the fact that any φ ∈ (span (δ(X)) , ∥ · |∗)∗
can be seen as Φ (φ ◦ δ), with φ ◦ δ being semi-Lipschitz on X: indeed, for every x, y ∈ X we
have:

φ (δ(x))− φ (δ(y)) = φ (δx − δy) ≤ ∥φ|∗∗∥δx − δy|∗ = ∥φ|∗∗ d(y, x).

This shows that φ ◦ δ belongs to SLip0(X) and Φ is surjective.

Remark 4.11 (Compatibility with the classical theory of metric free spaces) If (X, d) is a
metric space, then SLIP0(X) = LIP0(X). Moreover, every linear usc functional on a normed
space is continuous; thus, the dual cone of a normed linear space is the same as the usual
dual. We deduce that Fa(X) = F(X).
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Remark 4.12 For a quasi-metric space (X, d), it is easy to check that the space of semi-
Lipschitz functions for the reverse quasi-metric SLIP0(X, d̄) is exactly −SLIP0(X, d), and
that ∥f |S = ∥−f |S̄ for any f ∈ SLIP0(X, d), where ∥−f |S̄ denotes the semi-Lipschitz constant
of −f on (X, d̄). Using this isometry, we can identify the dual cones of SLIP0(X, d̄) by the
isometry Ψ defined by Ψ(µ)(f) = µ(−f) for all f ∈ SLIP0(X, d), and therefore we obtain that
Fa(X, d) = Ψ(Fa(X, d̄)) and that ∥Ψ(µ)|∗

d̄
= ∥−µ|∗, where ∥ · |∗

d̄
is the norm of Fa(X, d̄).

4.3.1 Linearization of semi-Lipschitz functions: a universal prop-
erty

As normed cones can be endowed with extended quasi-metrics (see Proposition 2.24), we
can apply Definition 2.33 to the case of semi-Lipschitz functions with values in a normed
cone. Let (C, ∥ · |) be a normed cone, and denote as dce(u, v) its corresponding extended
quasi-metric (as per Proposition 2.24). For the sake of convenience, we rewrite some of our
previous definitions for functions with values in C.

As in Proposition 2.39, a function f : X → C is semi-Lipschitz if and only if ∥f |S < ∞.
Moreover, if d is a quasi-metric and f : X → C is semi-Lipschitz, then

∥f |S = sup
x ̸=y

max{dce(f(y), f(x)), 0}
d(y, x)

= sup
x ̸=y

dce(f(y), f(x))

d(y, x)
<∞.

The same as Proposition 2.39 applies to the case that d is a quasi-hemi-metric.

Given a quasi-metric space (X, d) with base point x0, for the following result consider
the isometric injection δ : (X, d) → (SLIP0(X)∗, ∥ · |∗) of Proposition 4.8. We next show
that the semi-Lipschitz free space over a quasi-metric space (X, d) with base point x0 is
characterized by the following universal property, which is an analog of the Lipschitz case
(see [29, Lemma 2.2]).

Theorem 4.13 (Linearization of semi-Lipschitz functions) Let (X, d) be a quasi-metric space
with base point x0. Suppose that (C, ∥ · |) is a normed cone and f ∈ SLIP0(X,C). Then there
exists a unique linear map Tf : Fa(X) → C extending f , i.e. Tf ◦ δ = f and ∥Tf | = ∥f |S.

Proof. If f ∈ SLIP0(X,C), then Tf : Fa(X) → C∗∗ defined by

Tf (γ)(ϕ) = γ(ϕ ◦ f) (γ ∈ Fa(X), ϕ ∈ C∗)

belongs to the set of bounded linear mappings from Fa(X) into C∗∗, and

∥Tf | = sup
∥γ|∗≤1

∥Tf (γ)|∗∗ = sup
∥γ|∗≤1

sup
∥ϕ|∗≤1

Tf (γ)(ϕ)

= sup
∥ϕ|∗≤1

sup
∥γ|∗≤1

γ(ϕ ◦ f) = sup
∥ϕ|∗≤1

∥ϕ ◦ f |S ≤ ∥f |S.
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Observe that the last inequality is accomplished by taking into account that ϕ is linear and

sup
∥ϕ|∗≤1

∥ϕ ◦ f |S = sup
∥ϕ|∗≤1

sup
d(y,x)>0

{
(ϕ ◦ f)(x)− (ϕ ◦ f)(y)

d(y, x)

}
= sup

∥ϕ|∗≤1

sup
d(y,x)>0

{
ϕ(f(x)− f(y))

d(y, x)

}
≤ sup

∥ϕ|∗≤1

∥ϕ|∗ ∥f |S = ∥f |S.

(By abuse of notation, we still denote by ∥Tf | = sup∥γ|∗≤1 ∥Tf (γ)|
∗ the conic-norm of the

linear function Tf : Fa(X) → C∗∗). Furthermore, if iC : C → C∗∗ is the canonical injection,
we have

⟨Tf (δ(x)), ϕ⟩ = Tf (δ(x))(ϕ) = δ(x)(ϕ ◦ f)
= ϕ(f(x)) = iC(f(x))(ϕ) = ⟨iC(f(x)), ϕ⟩

for every x ∈ X and ϕ ∈ C∗, and hence Tf (δ(x)) = iC(f(x)) ∈ iC(C) for every x ∈ X. This
yields that Tf (γ) ∈ iC(C) for every γ ∈ Fa(X). Identifying iC(f(x)) ∈ iC(C) with f(x) ∈ C,
we have Tf ∈ L(Fa(X), C) and Tf ◦ δ = f . So, since Tf ◦ δ = f and δ is an isometry
(Proposition 4.8), we deduce that

∥f |S = sup
d(y,x)>0

{
dce(f(y), f(x))

d(y, x)

}
= sup

d(y,x)>0

{
∥Tf (δ(x))− Tf (δ(y))|

d(y, x)

}
= sup

d(y,x)>0

{
∥Tf (δ(x)− δ(y))|

d(y, x)

}
≤ sup

d(y,x)>0

{
∥Tf |∥δ(x)− δ(y)|∗

d(y, x)

}
= ∥Tf | sup

d(y,x)>0

{
∥δ(x)− δ(y)|∗

∥δ(x)− δ(y)|∗

}
= ∥Tf |.

Thus ∥Tf | = ∥f |S. Assume now that there exists a linear bounded mapping Sf : Fa(X) → C
such that Sf ◦ δ = f . Then it is clear that Sf (δ(x)) = Tf (δ(x)) for all x ∈ X and, by the
definition of Fa(X), it follows that Sf = Tf .

Remark 4.14 (Universal property) Equivalently, the condition Tf ◦ δ = f means that the
following diagram commutes

X

Fa(X) C

f
δ

Tf

Furthermore, as a consequence of the universal property that we have just proved, it is not
difficult to establish that the mapping f 7→ Tf is an isometric isomorphism of SLIP0(X,C)
into the cone of bounded linear mappings L(Fa(X), C), which constitutes another proof of
Theorem 4.10 for the particular case C = R. Indeed, we already know that the mapping
f 7→ Tf is an isometry of SLIP0(X,R) onto Fa(X)∗. Now, given T ∈ L(Fa(X), C), we can
define a mapping f : X → C by f(x) = T (δ(x)) for all x ∈ X. Since

dce(f(y), f(x)) = dce(T (δ(y)), T (δ(x))) ≤ ∥T | ∥δ(x)− δ(y)|∗ = ∥T | d(y, x)

56



for all x, y ∈ X, the function f is in SLIP0(X,C). By the universal property of Fa(X), there
is a unique operator Tf ∈ L(Fa(X), C) such that Tf ◦ δ = f . Hence T = Tf and thus the
mapping f 7→ Tf is a surjective isometry.

The proof of the following result is immediate from Theorem 4.13.

Corollary 4.15 (Linearization of quasi-metric morphisms) Let (X1, d1) and (X2, d2) be two
pointed quasi-metric spaces, and f ∈ SLIP0(X1, X2). Then there is a unique linear map
T̂f : Fa(X1) → Fa(X2) such that T̂f ◦ δX1 = δX2 ◦ f , i.e. the diagram

X1 X2

Fa(X1) Fa(X2)

δX1

T̂f

f

δX2

commutes, and ∥T̂f | = ∥f |S, where δX1 and δX2 are the isometric injections of the quasi-
metric spaces (X1, d1) and (X2, d2) to their free spaces ( c.f. Proposition 4.8).

For the following proposition, we refer to the reader to [33] for a survey on the extensions
of semi-Lipschitz functions on quasi-metric spaces.

Proposition 4.16 (The free space of a quasi-metric subspace) Let (X, d) be a quasi-metric
space with base point x0, and consider (M,d) a subspace of (X, d) such that x0 ∈ M . Then
Fa(M) is isometrically isomorphic to a subspace of Fa(X).

Proof. Let T̂i : Fa(M) → Fa(X) be the linearization given by Corollary 4.15 of the identity
mapping i :M → X. Since ∥T̂i| = ∥i|S = 1, we know that ∥T̂i(Q)|∗Fa(X) ≤ ∥Q|∗Fa(M). For the

opposite inequality, consider Q ∈ span (δ(M)). Clearly, T̂i(Q) = Q ∈ span (δ(X)). Then, for
any f ∈ SLIP(M), the expression f̃(x) = infm∈M{f(m) + ∥f |Sd(m,x)}, x ∈ X (which is an
adaptation of the McShane extension of Lipschitz maps), provides a semi-Lipschitz extension
with the same associated conic-norm ∥f |S. It follows that

∥Q|∗Fa(M) = sup
∥f |S≤1

f∈SLIP(M)

⟨Q, f⟩ ≤ sup
∥f |S≤1

f∈SLIP(X)

⟨Q, f⟩ = ∥Q|∗Fa(X) = ∥T̂i(Q)|∗Fa(X).

By continuity of T̂i (and density of span (δ(M)) in Fa(M)), we can extend the previous
inequality to any Q ∈ Fa(M), which concludes the proof.

4.3.2 Preservation of index of symmetry

Proposition 4.17 Let (X, d) be a quasi-metric space with index of symmetry c(X) > 0.
Then, SLIP0(X) is an asymmetric normed space, with the same index of symmetry as (X, d).
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Proof. The fact that SLIP0(X) is a linear space follows from Proposition 2.36, noting that
for real-valued functions, SLIPd,du(−f) = SLIPd̄,du(f). The fact that the index of symmetry
of SLIP0(X) is no greater than c(X) also follows from Proposition 2.36. To see that the
index of symmetry of SLIP0(X) can not be lower than c(X), fix y ∈ X and consider the
function fy(x) = d(y, x), which is semi-Lipschitz of constant 1 (see Proposition 2.48). If we
assume c(SLIP0(X)) = α < c(X), then fy will be an α-semi-Lipschitz function on (X, d̄),
and therefore

fy(x)− fy(y) = d(y, x) ≤ αd̄(y, x) = αd(x, y),

for any x, y ∈ X, which contradicts the definition of c(X).

Proposition 4.18 (Preservation of index of symmetry) Let (X, d) be a quasi-metric space.
Then, the semi-Lipschitz free space Fa(X) has the same index of symmetry as (X, d).

Proof. It is clear that, since Fa(X) contains an isometric copy of (X, d), its index of sym-
metry is no greater than c(X). This implies that if c(X) = 0, then so is c (Fa(X)). On the
other hand, if c(X) > 0, Proposition 4.17 implies that c(X)∥f |S ≤ ∥ − f |S ≤ c(X)−1∥f |S
for every f ∈ SLIP0(X). This inequality, together with the definition of the norm in Fa(X)
yield that c(X)∥µ|∗ ≤ ∥ − µ|∗ ≤ c(X)−1∥µ|∗ for all µ ∈ Fa(X).

This result, albeit simple, can be extremely useful, as it allows us to apply results con-
cerning the index of symmetry obtained in the context of asymmetric normed spaces (such as
the ones showed in [7]) to any quasi-metric space. The following proposition follows directly
from one such result (see Proposition 2.58) and Proposition 4.18.

Proposition 4.19 Let (X, d) be a quasi-metric space. Then, the following are equivalent:

(i) c(X) > 0

(ii) SLIP0(X) is a linear space.

4.3.3 Relation with molecules and the Kantorovich-Rubinstein norm

Given (X, d) a quasi-metric space (always with a base point x0 ∈ X), we next give a descrip-
tion of the closed unit ball of Fa(X) by means of the semi-Lipschitz evaluation functionals
(often called molecules)

M(x,y) =
δ(x)− δ(y)

d(y, x)
,

where x, y ∈ X such that d(y, x) > 0. Let M̂X denote the set {M(x,y) : x, y ∈ X with d(y, x) >
0}.

Before going to this, if (X, d) is an asymmetric locally convex space, it is worth noting
that the asymmetric polar of a subset Y ⊂ X in the case of the asymmetric dual X∗ can be
defined as [15, p. 161]

Y α = {φ ∈ X∗ : φ(y) ≤ 1, for all y ∈ Y }.
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Analogously, we can define the asymmetric polar of a subset W of the dual X∗ by [15, p.
165]

Wα = {x ∈ X : φ(x) ≤ 1, for all φ ∈ W}.

Proposition 4.20 Let (X, d) be a quasi-metric space with base point x0. The closed unit
ball of Fa(X) coincides with

(
{M(x,y) : x, y ∈ X : d(y, x) > 0}α

)
α
.

Proof. LetBSLIP0(X), BFa(X) andBFa(X)∗ denote respectively the closed unit balls of SLIP0(X),
Fa(X) and Fa(X)∗, and consider the isometry Φ : SLIP0(X) → (span (δ(X)) , ∥ · |∗)∗ defined
in the proof of Theorem 4.10 as

Φ(f)

(∑
i

λiδxi

)
=
∑
i

λif (xi)

for any linear combination of evaluation functionals. If f ∈ SLIP0(X), the condition ∥f |S ≤ 1

is equivalent to f(x)−f(y)
d(y,x)

≤ 1, for all x, y ∈ X with d(y, x) > 0 (by Proposition 2.39). Since

Φ is an isometry, ∥f |S ≤ 1 also yields Φ(f)(M(x,y)) ≤ 1, for all M(x,y) ∈ M̂X . Hence

BFa(X)∗ = {Φ(f) : f ∈ SLIP0(X),Φ(f)(M(x,y)) ≤ 1, ∀M(x,y) ∈ M̂X}
= {F ∈ Fa(X)∗ : F (M(x,y)) ≤ 1, ∀M(x,y) ∈ M̂X} = (M̂X)

α

and thus
Φ(BSLIP0(X))α =

(
(M̂X)

α
)
α
.

Moreover, (
(M̂X)

α
)
α
= Φ(BSLIP0(X))α

= {γ ∈ Fa(X) : Φ(f)(γ) ≤ 1, ∀f ∈ BSLIP0(X)}
= {γ ∈ Fa(X) : γ(f) ≤ 1, ∀f ∈ BSLIP0(X)}
= {γ ∈ Fa(X) : ∥γ|∗( = sup

∥f |S≤1

γ(f) ) ≤ 1} = BFa(X).

The proof is complete.

Remark 4.21 Let (X, d) be a quasi-metric space and x /∈ X. Then setting X̃ = X ∪ {x}
and extending d from X ×X to X̃ × X̃ by d̃(x, x) = d̃(x, x) = 1 and d̃(x, x) = 0, we obtain
a new quasi-metric space (X̃, d̃) with base point x0 ≡ x. Then the above construction will
correspond to an asymmetric version of the Arens-Eells approach (c.f. [6]).

Let us consider another conic-norm on span (δ(X)) (and on Fa(X)) which is based on a
variant of the so-called Kantorovich-Rubinstein norm (see [16, Section 8.4.5]).

Example 4.22 (Kantorovich-Rubinstein conic-norm) Let X be a vector space equipped with
a quasi-metric d and a base point x0. For γ, γ ∈ span (δ(X)) take the representation γ− γ =∑n

i=1 λi(ŷi − ẑi), where possibly some ŷi or ẑi are equal to x̂0 = 0, and set

dKR(γ, γ) := inf{d(λ1z1, λ1y1) + . . .+ d(λnzn, λnyn)}.
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Then ∥γ|KR := dKR(x̂0, γ) is an asymmetric norm on span (δ(X)) and

dKR(x̂, ŷ) = d(y, x), for all x, y ∈ X.

Moreover, ∥γ|KR coincides with the restriction of the conic norm ∥ · |∗ of SLIP0(X)∗ to
span (δ(X)) and thus extends to Fa(X). Indeed, if ∥ · |′ is a conic-norm on span (δ(X))
satisfying ∥δ(x)−δ(y)|′ ≤ d(y, x), for all x, y ∈ X, then every γ = λ1(ŷ1−ẑ1)+. . .+λn(ŷn−ẑn)
accomplishes

∥γ|′ = ∥λ1(ŷ1 − ẑ1) + . . .+ λn(ŷn − ẑn)|′ ≤ ∥λ1(ŷ1 − ẑ1)|′ + . . .+ ∥λn(ŷn − ẑn)|′

≤ d(λ1z1, λ1y1) + . . .+ d(λnzn, λnyn),

which shows that ∥γ|′ ≤ ∥γ|KR. Particularly, we deduce from this that ∥γ|∗ ≤ ∥γ|KR (since
the conic-norm ∥ · |∗ on Fa(X) satisfies ∥δ(x) − δ(y)|∗ = d(y, x), for all x, y ∈ X). Hence
d(y, x) = ∥δ(x)− δ(y)|∗ ≤ ∥δ(x)− δ(y)|KR ≤ d(y, x), for all x, y ∈ X, which implies that

∥δ(x)− δ(y)|KR = d(y, x), for all x, y ∈ X.

Consider now the mapping L : X → (span (δ(X)) , ∥ · |KR) sending x to δ(x), which is clearly
an isometric embedding. By the universality property of Fa(X) (see Theorem 4.13), we know
that L extends to L̃ : Fa(X) → (span (δ(X)) , ∥ · |KR) and ∥ · |KR ≤ ∥ · |∗, so the conic-norms
∥ · |KR and ∥ · |∗ are the same.

4.4 Canonical asymmetrizations and free spaces

We shall start this section by noting how, given a metric space (X,D), certain subcones of
LIP0(X) can be used to endow the Lipschitz-free space F(X) of asymmetric hemi-norms.
Following Definition 2.14, all cones considered in this Section will be assumed to be convex.

Remark 4.23 (Asymmetrizations in F(X)) There is a natural way to asymmetrize the
norm ∥ · ∥F of the free space F(X) of a given metric space (X,D), based on the dual space
L := LIP0(X). Let us denote by ⟨·, ·⟩ the duality map of the duality pair (L,F(X)). Then
the norm || · ||F of F(X) can be represented as follows:

∥Q∥F := sup
ϕ∈L

∥ϕ∥L≤1

⟨ϕ,Q⟩, for every Q ∈ F(X). (4.2)

Consider any generating closed cone P of L (i.e., L = span (P ) = P − P ) that satisfies:

∀ϕ ∈ L, ∃ϕ1, ϕ2 ∈ P :

{
ϕ = ϕ1 − ϕ2

max {||ϕ1||L, ||ϕ2||L} ≤ ||ϕ||L ≤ ||ϕ1||L + ||ϕ2||L
. (4.3)

We set:
∥Q|FP

:= sup
ϕ∈P

∥ϕ∥L≤1

⟨ϕ,Q⟩, for every Q ∈ F(X). (4.4)
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Notice that for any Q ∈ F(X) we have max {∥Q|FP
, ∥−Q|FP

} ≤ ∥Q∥F . Since the supre-
mum in (4.2) is attained at some ϕ ∈ L with ||ϕ||L = 1 (by Hahn-Banach theorem), using
the decomposition (4.3) we deduce:

∥Q∥F = ⟨ϕ,Q⟩ = ⟨ϕ1, Q⟩+ ⟨ϕ2,−Q⟩ ≤ ∥Q|FP
+ ∥−Q|FP

. (4.5)

This shows that condition (ii)′ of Definition 2.2 holds and (4.4) defines an asymmetric hemi-
norm ∥ · |FP

on the vector space F(X).

We shall refer to the asymmetric norm ∥ · |FP
defined in (4.4) as the P -asymmetrization

of the free space F(X), for which we implicitly assume that (4.3) holds. We shall mainly

deal with the case where P is the cone of positive Lipschitz functions, that is:

P = L+ := {ϕ ∈ L : ϕ ≥ 0}.

In this case, we denote the arising asymmetric norm by ∥ · |F+. Notice that if ϕ(= ϕ+−ϕ−) ∈
L then both its positive part ϕ+ and its negative part ϕ− are also in L and they satisfy
|ϕ+(x)− ϕ+(y)| ≤ |ϕ(x)− ϕ(y)| and |ϕ−(x)− ϕ−(y)| ≤ |ϕ(x)− ϕ(y)|, for all x, y ∈ X, which
leads to (4.3).

More generally, a P -asymmetrization of F(X) is called canonical, if P is of the form

P := {ϕ ∈ L : Tϕ ≥ 0} ,

where T is a linear isometry that identifies L with some Banach lattice in a canonical way.

Definition 4.24 (Canonical asymmetrization of a metric space) Let (X,D) be a metric
space with a base point x0 ∈ X. Every P -asymmetrization of the free space F(X) (c.f.
Remark 4.23) induces, via the isometric injection of X into F(X), an asymmetrization of
the distance D, given by:

DP (x, y) = ∥δy − δx|FP
= sup

ϕ∈P
∥ϕ∥L≤1

(ϕ(y)− ϕ(x)), for all x, y ∈ X.

The quasi-(hemi-)distance DP is called the P -asymmetrization of (X,D). If ∥·|FP
is a canon-

ical asymmetrization of F(X), then DP will be called a canonical asymmetrization of D. In
case P = L+, the canonical asymmetrization will be denoted by D+. The diagram below
illustrates the situation.
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L = LIP0(X,D)

∥ϕ∥L = sup
x ̸=y

ϕ(x)−ϕ(y)
D(x,y)

Nonlinear
dual ↗ ↖ Linear

dual

(X,D) F(X)

D(x, y) = ∥δy − δx∥F
i−→ ∥Q∥F := sup

ϕ∈L
∥ϕ∥L≤1

⟨ϕ,Q⟩

y y
D+(x, y) = ∥δy−δx|F+ ∥Q|F+ := sup

ϕ∈L,ϕ≥0
∥ϕ∥L≤1

⟨ϕ,Q⟩

Let us illustrate the above notion of canonical asymmetrization by means of the following
simple example.

Example 4.25 (Canonical asymmetrizations of R) Let us consider R as a metric space,
with its usual distance D(x, y) = |y − x|, for all x, y,∈ R and x0 = 0 as a distinguished
point. It is well-known ([27, 42]) that the free space F(R) can be identified with the space of
Lebesgue integrable functions L1(R), provided we identify the space L = (LIP0(X,D), ∥ · ∥L)
of real-valued Lipschitz functions vanishing at 0 with the Banach space L∞(R) (essentially
bounded Lebesgue measurable functions) via the canonical linear isometry Tϕ = ϕ′ (a.e.), for
all ϕ ∈ L (c.f. Rademacher theorem). Then taken either

P = L+ = {ϕ ∈ L : ϕ ≥ 0} or, respectively, P = {ϕ ∈ L : ϕ′ ≥ 0},

leads to two different canonical asymmetrizations of R (via the asymmetrizations ∥ · |F+ and
respectively ∥ · |FP

of its free space). The first asymmetrization is given by the formula

D+(x, y) = ∥δ(y)− δ(x)|F+ = sup
ϕ∈L+

∥ϕ∥L≤1

(ϕ(y)− ϕ(x)) .

Notice that D+(x, y) ≤ max{|y−x|, |y|}. It can be easily seen that if y > x > 0 or y < x < 0,
then D+(x, y) = |y−x| (take ϕ∗(t) = |t| in L+ with ||ϕ∗||L = 1). However, D+(1, n) = n− 1,
while D+(n, 1) = 1 for every n ≥ 2.
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The second asymmetrization, thanks to the monotonicity of every ϕ in P , yields that for all
x, y ∈ X

DP (x, y) = ∥δy − δx|FP
= sup

ϕ∈L, ϕ′≥0
∥ϕ∥L≤1

(ϕ(y)− ϕ(x))

= max{y − x, 0} = u(y − x) = du(x, y),

where u(·) is the asymmetric hemi-norm given by u(x) = max{x, 0} for all x ∈ R and du the
corresponding quasi-hemi-distance.

Proposition 4.26 (Asymmetrization vs symmetrization) Assume that (X,DP ) is a P -
asymmetrization of a metric space (X,D) (c.f. Definition 4.24). Then the symmetrizations
Ds
P and Ds0

P are bi-Lipschitz equivalent to the initial distance D, and consequently, the Ba-
nach spaces LIP0(X,D), LIP0(X,D

s
P ) and LIP0(X,D

s0
P ) are isomorphic.

Proof. It suffices to prove the result for Ds
P . Take x, y ∈ X. Let ϕ̂ be a function in

L = LIP0(X,D) with ∥ϕ̂∥L ≤ 1 such that

D(x, y) = sup
ϕ∈L

∥ϕ∥L≤1

(ϕ(y)− ϕ(x)) = ϕ̂(y)− ϕ̂(x).

Let ϕ̂1 and ϕ̂2 be functions in P such that ϕ̂ = ϕ̂1−ϕ̂2, with the inequality max{∥ϕ̂1∥L, ∥ϕ̂2∥L} ≤
∥ϕ̂∥L = 1. Then

D(x, y) = (ϕ̂1(y)− ϕ̂1(x)) + (ϕ̂2(x)− ϕ̂2(y))

≤ sup
ψ∈P

∥ψ∥L≤1

(ψ(y)− ψ(x)) + sup
ψ∈P

∥ψ∥L≤1

(ψ(x)− ψ(y)),

which coincides with DP (x, y) +DP (y, x) = Ds
P (x, y). Furthermore, it is clear that

Ds
P (x, y) = DP (x, y) +DP (y, x) ≤ 2D(x, y).

Thus, the distances Ds
P and D are equivalent, and LIP0(X,D) is linear isomorphic to

LIP0(X,D
s
P ).

4.4.1 Relation with the semi-Lipschitz free space

Let X = (X,D) be a metric space with a base point x0 ∈ X and denote by

L = (LIP0(X,D), ∥ · ∥L)

its nonlinear dual. Let P ⊆ L be a cone satisfying (4.3), that is, for every ϕ ∈ L there exists
ϕ1, ϕ2 ∈ P such that ϕ = ϕ1 − ϕ2 and max {||ϕ1||L, ||ϕ2||L} ≤ ||ϕ||L ≤ ||ϕ1||L + ||ϕ2||L. Let
us denote by DP the P -asymmetrization of X (c.f. Definition 4.24). We also denote by

SL = (SLIP0(X,DP ), ∥ · |S)

the nonlinear asymmetric dual of (X,DP ), that is, the normed cone of semi-Lipschitz func-
tions on (X,DP ).
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Lemma 4.27 (Isometric injection of P into SL) For every metric space (X,D) and every
P -asymmetrization (X,DP ):

(i) there exists an isometric injection of P into SL;

(ii) there is a non-expansive injection of SL into L.

Proof. Let ϕ ∈ SL and x, y ∈ X. Then

ϕ(y)− ϕ(x) ≤ ∥ϕ|SDP (x, y) = ∥ϕ|S∥δy − δx|FP
≤ ∥ϕ|S∥δy − δx∥F = ∥ϕ|SD(x, y),

which yields that ϕ ∈ LIP0(X,D) and ∥ϕ∥L ≤ ∥ϕ|S. This proves (ii).
Let now ϕ : (X,D) → R be in P with ∥ϕ∥L ̸= 0. Then ϕ1 =

ϕ
∥ϕ∥L

is also in P and ∥ϕ1∥L = 1.
Given x, y ∈ X, we deduce:

DP (x, y) = ∥δy − δx|FP
= sup

ψ∈P
∥ψ∥L≤1

(ψ(y)− ψ(x))

≥ ϕ1(y)− ϕ1(x) =
1

∥ϕ∥L
(ϕ(y)− ϕ(x)),

which yields ϕ(y)− ϕ(x) ≤ ∥ϕ∥LDP (x, y). Therefore, ϕ ∈ SL and ∥ϕ|S ≤ ∥ϕ∥L. Combining
with (ii) we deduce ∥ϕ∥L = ∥ϕ|S and (i) follows.

Let us set

F = span{δ(x) : x ∈ X} ⊂ SL∗ and F̂ = span{δ̂(x) : x ∈ X} ⊂ L∗ (4.6)

where δ (respectively, δ̂) is the canonical injection of (X,DP ) into SL
∗ (respectively, of (X,D)

into L∗). There is a canonical bijection between F and F̂ , under which a general element

Q =
∑n

i=1 λiδ(xi) of F is identified with the element Q̂ =
∑n

i=1 λiδ̂(xi) of F̂ . Using this
bijection, we have the following result.

Proposition 4.28 ( || · ||F is equivalent to the symmetrization of ∥ · |Fa) For any Q ∈ F it
holds:

max{∥Q|Fa , ∥−Q|Fa} ≤ ∥Q̂∥F ≤ ∥Q̂|FP
+ ∥ − Q̂|FP

≤ 2max{∥Q|Fa , ∥−Q|Fa}.

Proof. Let F = span (δ(X)) and Q ∈ F . Then Q is of the form Q =
∑k

i=1 λiδ(xi) for some
n ∈ N, λi ∈ R and xi ∈ X, i = 1, . . . , n, and

∥Q̂|FP
= sup

ϕ∈P
∥ϕ∥L≤1

⟨ϕ, Q̂⟩ = sup
ϕ∈P

∥ϕ∥L≤1

n∑
k=1

λiϕ(xi) ≤ sup
φ∈SL
∥ϕ|S≤1

n∑
k=1

λiφ(xi) := ∥Q|Fa .

We also obtain ∥−Q̂|FP
≤ ∥−Q|Fa . Now, if φ ∈ SL satisfies ∥ϕ|S ≤ 1, then by Lemma 4.27(ii)

we deduce that φ ∈ L and ∥φ∥L ≤ ∥φ|S ≤ 1. Hence

∥Q|Fa ≤ sup
ϕ∈L

∥ϕ∥L≤1

n∑
k=1

λiϕ(xi) = ∥Q̂∥F
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and ∥−Q|Fa ≤ ∥Q̂∥F , which yields

max{∥Q|Fa , ∥−Q|Fa} ≤ ∥Q̂∥F ≤ ∥Q̂|FP
+ ∥ − Q̂|FP

,

where the last inequality follows from (4.5). The result follows.

In the sequel, we shall identify F with F̂ , defined in (4.6). Under this identification, the
norm ∥ · ∥F can be considered to be also defined on F . Under this convention, the statement
of Proposition 4.28 reads as follows: the norm || · ||F is equivalent to the symmetrization of
∥ · |Fa and consequently

Fa(X,DP ) = F
∥·∥Fs

a = F
∥·∥F

= F(X,D), (4.7)

which yields that Fa(X,DP ) and F(X,D) can be identified as sets. Moreover

DP (x, y) = ∥δ(y)− δ(x)|FP
= ∥δ(y)− δ(x)|Fa .

Hence the following result holds.

Theorem 4.29 (Compatibility I) Let (X,D) be a metric space with a P -asymmetrization.
Then, the symmetrizations of (F(X,D), ∥ · |FP

) and (Fa(X), ∥ · |Fa) are both isomorphic to
the Lipschitz-free space (F(X,D), ∥ · ∥F).

The following diagram illustrates the situation described by Theorem 4.29.

F = span (δ(X)) ⊑

∥ · ∥Fs
a
-dense

Fa(X) ⊑ (SL)∗

F̂ = span
(
δ̂(X)

)
⊑ F(X) ⊑ L∗

∥ · ∥F -dense

Let us now study the inverse procedure: we start with a quasi-metric space (X, d) and con-
sider a symmetrization D of its distance (where D is either ds or ds0 , see Remark 2.8). It is
easily seen that every ϕ ∈ SLIP0(X, d) satisfies ϕ ∈ LIP0(X,D) and ∥ϕ∥L ≤ ∥ϕ|S. Therefore,
P := SLIP0(X, d) can be viewed as a cone in LIP0(X,D) and be used to define an asymmetric
norm ∥·|FP

on F(X,D) and consequently a quasi-metric DP on X. In this setting, forth-
coming Proposition 4.30 establishes a compatibility result under the following assumption:

There exists α ≥ 1 such that for every ϕ ∈ SLIP0(X, d)(
∥ϕ∥L ≤

)
∥ϕ|S ≤ α∥ϕ∥L . (4.8)
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Proposition 4.30 (Compatibility II) Let (X, d) be a quasi-metric space with symmetrized
distance D and assume (4.8) holds. We set P := SLIP0(X, d) and define for every Q ∈
F(X,D)

∥Q|FP
:= sup

ϕ∈P
∥ϕ∥L≤1

⟨Q, ϕ⟩ .

Then for all Q ∈ span(δ(X))

∥Q|Fa ≤ ∥Q|FP
≤ α∥Q|Fa . (4.9)

In particular, setting for x, y ∈ X

DP (x, y) := ∥δy − δx|FP

we obtain that for all x, y ∈ X it holds:

d(x, y) ≤ DP (x, y) ≤ αd(x, y) . (4.10)

Terminology (equivalence of asymmetric norms/quasi-metrics). We interpret relation (4.9)
as an equivalence relation for the asymmetric norms ∥Q|Fa and ∥Q|FP

. Similarly, rela-
tion (4.10) means that the quasi-distances d and DP are equivalent.

Proof. The equivalence between the asymmetric norms ∥·|Fa and ∥·|FP
on the vector space

span(δ(X)) follows directly from their definitions and the inequalities ∥ϕ∥L ≤ ∥ϕ|S ≤ α∥ϕ∥L.

Remark 4.31 The equivalence between the quasi-metric d and the canonical asymmetriza-
tion DP of the symmetrized distance D yields an equivalence between D and the symmetriza-
tion (DP )

s of DP .

If in addition to (4.8), we assume that P = SLIP0(X, d) induces an asymmetrization on the
free space F(X,D), that is, for every ϕ ∈ LIP0(X,D) there exist ϕ1, ϕ2 ∈ P such that

ϕ = ϕ1 − ϕ2 and max {||ϕ1||L, ||ϕ2||L} ≤ ||ϕ||L ≤ ||ϕ1||L + ||ϕ2||L

then the equivalence between D and (DP )
s extends to the corresponding free spaces (see

Remark 4.23). In particular, the following result holds.

Proposition 4.32 (Compatibility III) Let (X, d) be a quasi-metric space and D = ds or
D = ds0. Assume that the cone P = SLIP0(X, d) of LIP0(X,D) induces an asymmetrization
in F(X,D) and (4.8) holds. Then the asymmetric free spaces Fa(X, d) and Fa(X,DP )
coincide (as sets) with the free space F(X,D), that is:

Fa(X, d) = F(X,D) = Fa(X,DP ).

Moreover:

(i). The quasi-metrics d and DP are equivalent and the same applies to the (symmetric)
metrics D and (DP )

s, (DP )
s0 (symmetrizations of DP ).

(ii). The asymmetric norms ∥ · |Fa(X,d), ∥ · |FP
and ∥ · |Fa(X,DP ) are equivalent.

(iii). The symmetrizations of ∥·|Fa(X,d), ∥·|FP
and ∥·|Fa(X,DP ) are equivalent to ∥·∥F .
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Proof. We have already seen that F(X,D) = Fa(X,DP ) (as sets), see (4.7). By Proposi-
tion 4.30, the asymmetric norms ∥·|Fa(X,d) and ∥·|FP

are equivalent on F = span{δ(x) : x ∈ X},
therefore

Fa(X, d) = F
∥·∥sFa(X,d) = F

∥·∥sFP = F(X,D).

Assertions (i) follow directly from Proposition 4.30. For (ii) it remains to prove that ∥·|Fa(X,d)

and ∥ · |Fa(X,DP ) are equivalent. We established in (4.10) that the quasi-distances d and
DP are equivalent. This yields that the normed cones SLIP0(X, d) and SLIP0(X,DP ) are
isomorphic, which leads to an isomorphism of the corresponding semi-Lipschitz free spaces.
The equivalence between the symmetrizations of the asymmetric norms asserted in (iii) now
follows from (ii). Thanks to Theorem 4.29 they are also equivalent to ∥·∥F .

Remark 4.33 If the value of α associated to the assumption (4.8) is equal to 1, all of the
aforementioned equivalences of Proposition 4.32 become equalities.

4.4.2 Properties (S) and (S∗)

We have shown that the P -asymmetrization of a metric space (X,D) gives rise to a quasi-
metric space, for which the symmetrization of its asymmetric free space is isomorphic to
the free space (F(X), ∥·∥F). In this subsection we shall be interested in cases in which the
aforementioned isomorphism is in fact an isometry.

Definition 4.34 Let (X,D) be a metric space, L = LIP0(X,D) and P ⊂ L be a cone. We
say that the metric space (X,D) satisfies:

(i) property (S) with respect to P , if P induces a nontrivial asymmetrization DP on X and

SL = SLIP0(X,DP ) = P.

(ii) property (S∗) (respectively, (S∗
0)) with respect to P if, in addition to (i), it holds:

∥Q∥F = ∥Q|FP
+ ∥−Q|FP

(respectively, ∥Q∥F = max{∥Q|FP
, ∥−Q|FP

})

for every Q ∈ F(X,D).

The following proposition is straightforward.

Proposition 4.35 Let (X,D) be a metric space.

(i). If (X,D) satisfies (S) with respect to P , then (F(X,D), ∥ · |FP
) and (Fa(X,DP ), ∥ · |Fa)

are identical.

(ii). If (X,D) satisfies (S∗) (resp. (S∗
0)) with respect to P , then the ds-symmetrization

(resp. ds0-symmetrization) of (Fa(X,DP ), ∥ · |Fa) given in (2.5) is isometrically isomorphic
to (F(X,D), ∥·∥F).

Before we proceed, let us give examples of metric spaces for which the above properties fail.
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Example 4.36 (i) (Property (S) fails) Let X = R with the usual distance D(t, s) = |s− t|,
for t, s ∈ R. Let L be the space of Lipschitz functions on R vanishing at 0 and set

P := {ϕ ∈ L :

∫
R
ϕ ∈ [0,+∞]}.

Then P contains the cone L+ of non-negative Lipschitz functions vanishing at 0, and conse-
quently L = P − P and (4.3) holds. It is easy to see that

DP (t, s) = sup
ϕ∈P

∥ϕ∥L≤1

(ϕ(s)− ϕ(t)) = |s− t| = D(t, s).

Therefore, SL = L ̸= P and (S) fails.

(ii) (Property (S) holds but properties (S∗) and (S∗
0) fail) We consider again X = R equipped

with its usual distance D and L be the space of Lipschitz functions on R vanishing at 0. We
now set

P = L+ := {ϕ ∈ L : ϕ ≥ 0}.
It follows easily that

D+(s, t) = sup
ϕ∈L+

∥ϕ∥L≤1

(ϕ(t)− ϕ(s))

=



|t− s| , if 0 ≤ s ≤ t or s ≤ t ≤ 0

min{ t, s− t } , if 0 ≤ t ≤ s

min{|s|, s− t} , if t ≤ s ≤ 0

|t| , if t ≤ 0 ≤ s or s ≤ 0 ≤ t

.

Let us show that property (S) holds. Indeed, for s ̸= 0 we have D+(0, s) = s and D+(s, 0) = 0.
By Lemma 4.27(i), P ⊂ SL ⊂ L. Let φ : R 7→ R be any function vanishing at 0 and assume
that for some s ̸= 0 we have φ(s) < 0. Then φ(0)− φ(s) > 0 and D+(s, 0) = 0 reveals that
φ cannot be in SL, showing that (S) holds.

Taking now any two integers n, k ≥ 2 we have D+(n,−k) = k, D+(−k, n) = n and
D(n,−k) = n+k, which shows that (S∗

0) fails. On the other hand, D+(1, n) = n−1 = D(1, n)
and D+(n, 1) = 1 which shows that (S∗) fails.

A typical example of a metric space for which (S∗) holds is the set of real numbers R viewed
as a pointed metric space, for the cone P = {ϕ ∈ L : ϕ′ ≥ 0}, see forthcoming Lemma 4.46.
To obtain additional examples of metric spaces satisfying (S∗), let us first recall definitions
and results due to Godard [27], regarding R-trees.

Definition 4.37 (R-tree) An R-tree is a metric space T satisfying the following two condi-
tions:

(i) For any points x, y ∈ T , there exists a unique isometry ϕ := ϕxy of the closed interval
[ 0 , d(x, y) ] into T such that ϕ(0) = x and ϕ(d(x, y)) = y.
(The range of this isometry is called segment and is denoted by [x, y].)
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(ii) Any one-to-one continuous mapping φ : [ 0 , 1 ] → T has same range as the isometry
ϕa,b associated to the points a = φ(0) and b = φ(1).

Our aim is to prove that subsets of (pointed) R-trees satisfy property (S∗). The base point
of an R-tree is denoted by 0. Then one defines a partial order ≼ on T , by setting x ≼ y if
x ∈ [0, y].

A subset A of T is said to be measurable whenever ϕ−1
xy (A) is Lebesgue-measurable for any x

and y in T . If A is measurable and S is the segment [x , y ], we write λS(A) for λ
(
ϕ−1
xy (A)

)
,

where λ is the Lebesgue measure on R. Let R be the family of all subsets of T which can be
written as a finite union of disjoints segments, and for R =

⋃n
k=1 Sk ∈ R, we set

λR(A) =
n∑
k=1

λSk
(A).

Then,
λT (A) = sup

R∈R
λR(A),

defines a measure (called the length measure) on the σ-algebra of T -measurable sets such
that ∫

[x,y]

f(u)dλT (u) =

∫ d(x,y)

0

f(ϕxy(t))dt

for any f ∈ L1(T ) and x, y ∈ T .

Definition 4.38 (measure on an R-tree) Let T be a pointed R-tree, and let A be a closed
subset of T . We denote by µA the measure defined by

µA = λA +
∑
a∈A

L(a)δa,

where λA is the restriction of the length measure λT to A, δa is the Dirac measure on a and
L(a) = infx∈A∩[0,a) d(a , x).

Proposition 4.39 [27, Proposition 2.3] Let T be a pointed R-tree, and let A be a closed
subset of T containing 0. Then, L1(µA)

∗ is isometrically isomorphic to L∞(µA).

Definition 4.40 (Differentiation on an R-tree) Let T be a pointed R-tree, A a closed subset
of T containing 0 and f : A → R. For a ∈ A, let ã be the unique point in [0, a] such that
d(a, ã) = L(a). If L(a) > 0, we say that f is differentiable at a with derivative

f ′(a) =
f(a)− f(ã)

L(a)
.

If L(a) = 0, we say that f is differentiable at a, whenever the limit

lim
x→ã

x∈[0,a)∩A

f(a)− f(x)

d(x, a)

exists, and we denote by f ′(a) the value of this limit.
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Proposition 4.41 [27, pp. 4313-4314] Let f be a real-valued Lipschitz function defined on
an R-tree T . Then, f is differentiable almost everywhere on T and

f(x)− f(0) =

∫
[0,x]

f ′dλT ,

for all x ∈ T .

The following theorem characterizes subsets of R-trees in terms of their Lipschitz-free spaces.

Theorem 4.42 [27, Theorem 4.2] Let (X,D) be a complete pointed metric space. Then the
following assertions are equivalent:

(i). F(X) is isometrically isomorphic to a subspace of an L1-space;

(ii). (X,D) isometrically embeds into an R-tree.

We are now ready to prove our result on R-trees.

Proposition 4.43 Let (X,D) be a subset of an R-tree T . Then, (X,D) satisfies property
(S∗) with respect to the cone

P = {ϕ ∈ LIP0(X,D) : ϕ′ ≥ 0},

Proof. Thanks to Theorem 4.42, we may use Godard’s embedding, denoted by Φ∗, to iso-
metrically identify F(X,D) with a subspace Y of L1(T ), by sending δx ∈ F(X,D) to
Φ∗(δx) = 1[0,x] ∈ L1(T ). This embedding is the restriction to F(X,D) of the pre-adjoint
of the (weak-star to weak-star continuous) isometry Φ : L∞(T ) → LIP0(T ) defined by
Φ(g)(x) =

∫
[0,x]

gdµX for any x ∈ T .

Let ι : (X,D) → (Y, ∥ · ∥1) be the isometric injection induced by Godard’s embedding
Φ. We keep the same notation ∥ · |FP

for the asymmetric hemi-norm induced in Y by this
embedding. The P -asymmetrization of the norm of Y is given by

∥f |FP
= sup

ϕ≥0
∥ϕ∥∞≤1

⟨ϕ, f⟩ = sup
ϕ≥0

∥ϕ∥∞≤1

∫
X

fϕdµX =

∫
X

f+ := ∥f |1,+,

for all f ∈ Y , where f+(t) = max{f(t), 0} for any t ∈ T . Therefore, DP (y, x) = ∥ι(x) −
ι(y)|FP

= 0 whenever ι(x) ≤ ι(y) almost everywhere, which is equivalent to x ≼ y in the
order of T . Then, for φ ∈ SL = SLIP0(X,DP ) and x, y ∈ X such that x ≼ y, we have
φ(x)− φ(y) ≤ ∥φ|SDP (y, x) = 0, and therefore x ≼ y yields φ(x) ≤ φ(y).

It is easy to check that Φ−1(φ) = φ′ ∈ L∞(T ) for all φ ∈ L. The monotonicity property
of semi-Lipschitz functions proved above yields that φ′ ≥ 0, so φ belongs to the cone P .
Therefore, SL ⊂ P and in view of Lemma 4.27(i) we deduce that SL = P , hence (X,D)
satisfies property (S).
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Let g ∈ F(X,D), and f = Φ∗(g). Then

∥g∥F = ∥f∥1 = sup
∥ϕ∥∞≤1

⟨ϕ, f⟩ = ⟨f, sgn(f)⟩

= ⟨f+, sgn(f)⟩ − ⟨f−, sgn(f)⟩ = ∥f |1,+ + ∥ − f |1,+
= ∥g|FP

+ ∥ − g|FP
,

where sgn(f) denotes the sign of f . We conclude that (X,D) satisfies property (S∗).

Combining Propositions 4.35 and 4.43, we obtain

Proposition 4.44 Let (X,D) be a subset of an R-tree. Then, there exists a canonical asym-
metrization DP of D such that the symmetrization of the semi-Lipschitz free space Fa(X,DP )
is isometrically isomorphic to F(X,D).

4.5 Examples of semi-Lipschitz free spaces

Let us now illustrate the semi-Lipschitz free space for three concrete examples of quasi-metric
spaces: a finite quasi-metric space consisting of three points, the set of natural numbers N
with a discrete quasi-metric and the set of real numbers R under the quasi-hemi-metric
defined by the canonical conic hemi-norm u. We also include an example-scheme stemming
from canonical asymmetrizations of subsets of R-trees.

4.5.1 A 3-point quasi-metric space

Let X = {x0, x1, x2} be a set of three points, endowed with the following quasi-metric (in a
general form):

ρ(x0, x1) = a01 ρ(x1, x0) = a10 ρ(x0, x2) = a02

ρ(x2, x0) = a20 ρ(x1, x2) = a12 ρ(x2, x1) = a21

Taking x0 as base point, it is clear that the set of semi-Lipschitz functions vanishing at x0
can be algebraically identified with R2, i.e. any function g : X → R with g(x0) = 0 is in
SLIP0(X), with associated semi-Lipschitz norm equal to

∥g|S = max
{ g1 − g2

a21
,
g2 − g1
a12

,
g1
a01

,
g2
a02

,
−g1
a10

,
−g2
a20

}
,

where g1 = g(x1) and g2 = g(x2). Therefore, the unit ball B of SLIP0(X, ρ) ≃ R2 is in
the polygon generated by the linear inequalities defined in terms of the asymmetric norm.
The dual cone of (SLIP0(X), ∥ · |S) is the vector space R2 endowed with the asymmetric
norm determined by the Minkowski gauge of the asymmetric polar Bo of the unit ball B of
SLIP0(X, ρ), that is

Bo = {X ∈ R2 : ⟨g,X⟩ < 1, ∀g ∈ B}.
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Since the evaluation functionals δ(x1), δ(x2) generate the vector space R2, it follows that

Fa(X, ρ) is isomorphic to R2, with the asymmetric norm determined by the aforementioned
Minkowski gauge. Furthermore, for any g ∈ SLIP0(X), its linearization Tg : Fa(X) → R is
given by

Tg (λ1x̂1 + λ2x̂2) = λ1g(x1) + λ2g(x2),

with λi ∈ R, i = 1, 2. Notice that the unit balls of SLIP0(X, ρ) and its dual cone have at
most 6 extreme points (see Figure 4.1).

(0,1)

(1,0)

(-3/2,-1)
(0,-1)

(-3/2,-1/2)

(1,1)

(-2/3,0)

(1,0)

(0,-1)

(0,1)

(-1,1)

(1,-1)

Figure 4.1: Representation of the unit ball of SLIP0(X, ρ) and its asymmetric polar, respec-
tively, with X = {x0, x1, x2}, ρ(x1, x0) = 3

2
and ρ(xi, xj) = 1 for i ̸= j with (i, j) ̸= (1, 0)

4.5.2 N as a quasi-metric space

We now consider the set of natural numbers N (including 0) endowed with the quasi-metric
defined by

d(n,m) =

{
1, if m /∈ {0, n}
0, if m ∈ {0, n}

.

We fix as a base point x0 = 0. Let y = (y(n))n ∈ SLIP0(N, d). Then y(0) = 0 and the
semi-Lipschitz condition implies that the sequence (y(n))n is non-negative: indeed

y(0)− y(n) = −y(n) ≤ ∥y|S d(n, 0) = 0

and
y(n)− y(0) = y(n) ≤ ∥y|S d(0, n) = ∥y|S.

Therefore we have (y(n))n ∈ ℓ∞(N) and ∥y|S ≥ ∥y∥∞. Moreover,

∥y|S = sup
d(n,m)>0

y(m)− y(n)

1
≤ sup

d(n,m)>0

y(m) = ∥y∥∞,

since y(n) ≥ 0 for all n ∈ N. It is easy to check than any bounded non-negative sequence
satisfies the semi-Lipschitz condition, so it follows that SLIP0(N, d) is (ℓ∞+ (N), ∥ · ∥∞), the
positive cone of ℓ∞(N). The dual norm on ℓ∞+ (N)∗ is given by

∥φ|∗ = sup
(yn)∈ℓ∞+ (N)
∥(yn)∥∞≤1

φ((yn)).
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The set of evaluation functionals {δ(n) : n ∈ N} ⊂ ℓ∞+ (N)∗ can be identified with the
canonical basis of ℓ1(N), so the linear span of δ(N) is the set of finitely supported sequences
c00(N). On this set, the dual norm of SLIP0(N, d)∗ becomes

∥(xn)|∗ =
∑
n∈N

max{xn, 0} =
∑
n∈N

x+n := ∥(xn)|1,+,

since the supremum on the dual norm is taken over the positive cone of ℓ∞(N) (and it
is attained at the sequence (sgn(xn) ∨ 0)). It is easy to check that the symmetrization of
the asymmetric norm ∥ · |1,+ is equivalent to the usual norm of ℓ1(N), and therefore the
asymmetric normed space (ℓ1(N), ∥ · |1,+) satisfies the conditions to be the bicompletion of
(c00(N), ∥ · |1,+). Therefore, the semi-Lipschitz free space Fa(N, d) is isometrically isomorphic
to (ℓ1(N), ∥ · |1,+) and the linearization Ty of a function y = (y(n))n ∈ SLIP0(N, d) can be
obtained from

Ty (en) = y(n), n = 1, 2, . . .

where en is the n-th element of the canonical basis of ℓ1(N).

It is well known that the free space F(N, D) of N equipped with the distance

D(m,n) =


2, if n /∈ {0,m}
1, if n = 0 or m = 0

0, if n = m

is isometric to ℓ1(N) (see, for instance, [27, 28, 42]), and

L = LIP0(N, D) = {y = yn ∈ RN : ∥y∥L :=
y(n)− y(m)

D(m,n)
<∞}

is isometric to ℓ∞(N). Given m,n ∈ N, then the canonical asymmetrization of D (Defini-
tion 4.24) is

D+(m,n) = ∥δ̂(n)− δ̂(m)|F+ = sup
y∈l∞(N)+
∥y∥∞≤1

⟨y, en − em⟩ = sup
0≤yn≤1

∑
k≥0

ykxk,

where xn = 1, xm = −1, and xk = 0, for k /∈ {n,m}. According to Theorem 4.29, notice
that F(N, D) = F(N, d) (as a set), with d = D+, SLIP0(N, d) = ℓ∞+ (N) = SLIP0(N, D+) and
∥x|Fa = ∥x|F+ =

∑
n≥0 x

+
n .

4.5.3 The quasi-metric space (R, du)

Note that since the symmetrized distance dsu is equal to the usual metric of R (which can be
seen as a pointed R-tree), F(R, u) can be obtained from Proposition 4.35. We hereby include
a direct self-contained proof, which does not rely on Godard’s work on R-trees. Let us start
with some preliminary results.

Lemma 4.45 (Semi-Lipschitz functions in (R, u)) Let f ∈ SLIP0(R, u). Then f is a non-
decreasing function in LIP0(R).
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Proof. By Proposition 2.45, f is Lipschitz on (R, us) = (R, |·|), and therefore is differentiable
almost everywhere. Note that if x ≤ y, then du(y, x) = 0, so f(x) ≤ f(y). As f is non-
decreasing, f ′ ≥ 0.

We are now ready to establish the following result.

Lemma 4.46 (SLIP0(R, u), ∥·|S) and (L∞
+ (R), ∥ · ∥∞) are isometrically isomorphic as normed

cones.

Proof. Consider the mapping T : (L∞
+ (R), ∥ · ∥∞) → (SLIP0(R, u), ∥ · |S) defined by

Tg(x) =

∫ x

0

gdλ =

∫
1[0,x]g,

which is surjective by the previous analysis. This mapping is well defined since for x ≥ y we
have Tg(x)− Tg(y) =

∫ x
y
gdλ ≤ ∥g∥∞(x− y) = ∥g∥∞du(y, x). If x < y then

Tg(x)− Tg(y) = −
∫ y

x

gdλ ≤ 0 = du(y, x).

This also proves that ∥Tg|S ≤ ∥g∥∞. On the other hand, consider x ∈ R a point of differen-
tiability of Tg. Then

Tg′(x) = lim
y↘x

Tg(y)− Tg(x)

y − x
≤ sup

x<y

Tg(y)− Tg(x)

y − x
= ∥Tg|S,

and since clearly (Tg)′ = g, we conclude that ∥g∥∞ ≤ ∥Tg|S and that T is an isometric
isomorphism.

For the following result, if f ∈ L1(R) recall the notation ∥f |1,+ =
∫
R f

+dλ, where f+(x) =
max{f(x), 0} and λ denotes the Lebesgue measure, which was used in Lemma 4.5.

Theorem 4.47 The semi-Lipschitz free space Fa ((R, u)) of the asymmetric hemi-normed
space (R, u) is isometrically isomorphic to (L1(R), ∥ · |1,+).

Proof. By Lemma 4.5, we know that (L1(R), ∥·|1,+) is the asymmetric predual of (L∞
+ (R), ∥·

∥). Therefore we only need to check that the isometry T : (L∞
+ (R), ∥ ·∥∞) → (SLIP0(R, u), ∥ ·

|S) defined in the previous proof is (w∗-w∗)-continuous, in which case Lemma 4.2 will give
us an isometry between the preduals Fa(R, u) and (L1(R), ∥ · |1,+). So, let (gα) be a net on
L∞

+ (R) converging to g in the w∗ topology induced by the predual (L1(R), ∥ · |1,+), and take
x ∈ R and the corresponding x̂ ∈ Fa(R, u). Then

⟨Tgα, x̂⟩ =
∫ x

0

gα = ⟨gα,1[0,x]⟩ −→ ⟨g,1[0,x]⟩, (4.11)

by the w∗ convergence of (gα). Now, for an arbitrary µ ∈ Fa(X) we can take a sequence
(µn) ⊂ span(δ(R)) such that µn → µ in the symmetrized topology of SLIP0(R, u)∗, and
therefore

⟨Tgα, µ⟩ = lim
n
⟨Tgα, µn⟩, (4.12)
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where the last convergence is with respect to the usual norm on R, thanks to the symmetrized-
| · | continuity of semi-Lipschitz functions. Equations (4.11) and (4.12) yield that ⟨Tgα, µ⟩ →
⟨Tg, µ⟩ for the norm topology in R, so T is (w∗-w∗)-continuous, and by Lemma 4.2 there
exists an isometric isomorphism between (Fa(R, u), ∥ · |∗) and (L1(R), ∥ · |1,+).

As we show in Example 4.25, du(x, y) = u(y − x) is a canonical asymmetrization of
D(x, y) = |y− x| for the cone P = {ϕ ∈ L : ϕ′ ≥ 0}. Notice that the canonical asymmetriza-
tion D+, based on the cone P = L+ gives a different asymmetrization.

4.5.4 Canonic asymmetrization of subsets of R-trees.

Propositions 4.35 and 4.43 provide a variety of examples of quasi-metric spaces (X, d) whose
corresponding semi-Lipschitz free spaces are isometrically isomorphic to subspaces of (L1(T ), ∥·
|1,+), where T is an R-tree containing the symmetrized space (X, ds). We can obtain more
specific examples by applying the following recent result from [4, Theorem 1.1], which gives
a characterization of all complete metric spaces whose Lipschitz-free space is isometric to a
subspace of ℓ1(Γ) for some set Γ.

Theorem 4.48 Let (X,D) be a complete pointed metric space. Then the following are
equivalent:

(i) F(X) is isometrically isomorphic to a subspace of ℓ1(Γ) for some set Γ;

(ii) (X,D) is a subset of an R-tree such that λ(X) = 0 and λ(Br(X)) = 0, where λ is the
length measure and Br(X) is the set of branching points of X.

Since every metric space as above satisfies property (S∗) (c.f. Proposition 4.43), we deduce
that the corresponding semi-Lipschitz free space are isometrically isomorphic to (ℓ1(Γ), ∥·|1,+)
for some set Γ.

A careful reader might have observed that in all examples presented in this section the
semi-Lipschitz free space of the given quasi-metric space can be easily obtained from the
Lipschitz free space of its symmetrization. We shall now show that this is always the case,
provided assumption (H) below holds. (This is the case in all of the aforementioned exam-
ples).

Using the same notation as in the second part of Subsection 4.4.1, let (X, d) be a quasi-metric
space and (X,D) its symmetrization (D is either ds or ds0). Then P := SLIP0(X, d) is a
cone in LIP0(X,D) and ∥ϕ∥L ≤ ∥ϕ|S for all ϕ ∈ P . Let us assume:

(H) For every ϕ ∈ LIP0(X,D) there exist ϕ1, ϕ2 ∈ SLIP0(X, d) such that

ϕ = ϕ1 − ϕ2 and max {∥ϕ1|S, ∥ϕ2|S} ≤ ∥ϕ∥L.

Notice that since ∥ϕi∥L ≤ ∥ϕi∥S, for i ∈ {1, 2} and in view of the triangular inequality

∥ϕ∥L = ∥ϕ1 − ϕ2∥ ≤ ||ϕ1||L + ||ϕ2||L
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we observe that (H) yields in particular that P induces a canonical asymmetrization in
F(X,D) (in the sense of Remark 4.23).

Proposition 4.49 Let (X, d) be a quasi-metric space and assume (H) holds. Then the
semi-Lipschitz free space Fa(X, d) coincides (as a set) with the free space F(X,D) of the
symmetrized space (X,D) and is endowed with the asymmetric norm

∥Q| = sup
∥ϕ|S≤1

ϕ∈SLIP0(X,d)

⟨Q, ϕ⟩ , for all Q ∈ Fa(X, d).

Proof. Following the method used in Subsection 4.4.1, we start by identifying the sets

F = span{δ(x) : x ∈ X} ⊂ SLIP0(X, d)
∗

and
F̂ = span{δ̂(x) : x ∈ X} ⊂ LIP0(X,D)∗

where δ and δ̂ are the canonical injections of (X, d) into SLIP0(X, d)
∗ and of (X,D) into

LIP0(X,D)∗, respectively. To conclude, it suffices to prove that the ds-symmetrization ∥ · ∥s
of the asymmetric norm ∥ · | is equivalent to ∥ · ∥F . Consider Q ∈ F . Since ∥ϕ|S ≥ ∥ϕ∥L
for any ϕ ∈ SLIP0(X, d), it follows (by the definition of each norm) that ∥Q| ≤ ∥Q∥F , so
∥Q∥s ≤ 2∥Q∥F . Conversely, take ϕ in the unit ball of LIP0(X,D) such that ∥Q∥F = ⟨Q, ϕ⟩,
and consider ϕ1, ϕ2 ∈ SLIP0(X, d) such that ϕ = ϕ1−ϕ2, with max {∥ϕ1|S, ∥ϕ2|S} ≤ ∥ϕ∥L ≤ 1.
Then

∥Q∥F = ⟨Q, ϕ⟩ = ⟨Q, ϕ1⟩+ ⟨−Q, ϕ2⟩ ≤ ∥Q|+ ∥ −Q| := ∥Q∥s.

The result follows from the fact that Fa(X, d) = F
∥·∥sFa = F

∥·∥F
= F(X,D).

4.6 Locally flat semi-Lipschitz functions

In this brief section we explore the idea of generalizing the notion of locally flat Lipschitz
functions to quasi-metric spaces. The following definitions follows the ideas found in Chapter
4 of [42].

Definition 4.50 Let (X, d) be a quasi-metric space. We say a function f : X → (R, du) is
locally flat if for every p ∈ X and every ε > 0 there exists δ > 0 such that a, b ∈ Bd(p, δ)
implies f(b)− f(a) ≤ εd(a, b).

Definition 4.51 We say a function f : X → (R, du) on a quasi-metric space (X, d) is flat
at infinity if for every ε > 0, there exists a forward-compact set K ⊂ X such that

a, b /∈ K =⇒ f(b)− f(a) ≤ εd(a, b).

Definition 4.52 Let (X, d) be a pointed and boundedly compact (for the forward topology)
quasi-metric space. The set of little semi-Lipschitz functions slip(X) consists of all semi-
Lipschitz functions which are locally flat and flat at infinity. We denote by slip(X)0 the
subset of little semi-Lipschitz functions which vanish at the base point.
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It is clear that for any boundedly compact pointed quasi-metric space, (slip0(X), ∥ · |S)
is a subcone of SLIP0(X). It is natural then to ask whether, under the right assumptions,
slip0(X) is a predual to the semi-Lipschitz free space Fa(X). We currently do not know
whether such a duality result (mirroring the symmetric case, see Theorem 2.81) can be
asserted. Nevertheless, we present an illustrative example where the desired duality relation
holds.

Consider the set of natural numbers N (including 0) endowed with the quasi-hemi-metric
defined by

d(n,m) =

{
1, if m /∈ {0, n}
0, if m ∈ {0, n}

. (4.13)

and take x0 = 0 as base point. As seen in Subsection 4.5.2, the space of semi-Lipschitz
functions over this quasi-metric space can be identified with the positive cone of ℓ∞(N),
meaning that SLIP0(N, ∥ · ∥S) is isometrically isomorphic (in the sense of normed cones)
to (ℓ∞(N)+, ∥ · ∥∞). We have also shown in Subsection 4.5.2 that Fa(N, d) is isometrically
isomorphic (in the sense of asymmetric normed spaces) to ℓ1(N), endowed with the following
asymmetric norm:

∥(xn)|∗ =
∑
n∈N

max{xn, 0} =
∑
n∈N

x+n := ∥(xn)|1,+.

We proceed to show that slip0(N, d) is isometrically isomorphic (in the sense of normed
cones) to the positive cone of c0(N), endowed with the supremum norm.

Proposition 4.53 slip0(N, d) is isometrically isomorphic to (c0(N)+, ∥ · ∥∞).

Proof. First of all, since the space (N, d) is discrete, the local flatness condition is super-
fluous. Secondly, the fact that any f ∈ slip0(N, d) must be non negative follows from the
semi-Lipschitz inequality (using 0 as one of the points). Finally, it is clear that (N, d) is
boundedly compact, and that the condition of flatness at infinity is equivalent to belong-
ing to c0(N). Indeed, assuming flatness at infinity, for every ε > 0, there exists N ∈ N
such that fn − fm ≤ εd(m,n) for all m,n ≥ N . From this inequality we can deduce
|fn − fm| ≤ εmax{d(m,n), d(n,m)} = ε, and we are done. The remaining implication is
trivial, which finishes the proof.

Proposition 4.54 The dual cone of (c0(N)+, ∥·∥∞) is isometrically isomorphic to the asym-
metric normed space (ℓ1(N), ∥ · |1,+).

Proof. Let φ ∈ (c0(N)+, ∥ · ∥∞)∗. By linearity, it is clear that φ must be of the form
φ((fn)) = ⟨φn, fn⟩ for a sequence (φn)n∈N. Fix φ ∈ (c0(N)+, ∥ · ∥∞)∗, and for any k ∈ N, let
ak denote the truncation to the k-th coordinate of the sequence an = sgn((φn)

+). Then, by

77



continuity of φ, we have that

φ(ak) =
k∑
i=1

(φi)
+ ≤ ∥φ|∗∥ak∥∞ = ∥φ|∗

It follows that (φn) belongs to ℓ
1(N) and that ∥φ|∗ ≥ ∥(φn)|1,+. The opposite inequality for

the norms follows immediately using the sequence (ak)k∈N in the definition of dual norm of
(c0(N)+, ∥ · ∥∞)∗, and so does the fact that every element in ℓ1(N) defines a linear functional
in (c0(N)+, ∥ · ∥∞)∗.

Proposition 4.55 Consider the natural numbers N (including 0), endowed with the quasi-
hemi-metric d given in (4.13). Then, the space of little semi-Lipschitz functions slip0(N) is
a predual for the semi-Lipschitz free space Fa(N), which is in turn a predual for SLIP0(N).
In particular,

slip0(N)∗∗ = SLIP0(N).

Remark 4.56 This biduality relation is particularly interesting, as the primal (c0(N)+, ∥ · ∥∞)
is strictly a cone, the first dual (ℓ1(N), ∥ · |1,+) is a linear space, and the bidual (ℓ∞(N)+, ∥ · ∥∞)
is once again strictly a cone.
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Chapter 5

Asymmetric structures and
Banach-Stone type results

This chapter deals with the idea of employing asymmetric structures in order to determine
quasi-metric and metric structures. This follows the general idea behind the classical Banach-
Stone Theorem, which states that compact and Hausdorff topological spaces are completely
determined by the Banach space structure of the corresponding space of continuous functions.
The term Banach-Stone type theorem is commonly used to describe results that assert that a
certain structure on a set X is determined by the structure of a suitable space of real-valued
functions over X. For more examples on Banach-Stone type theorems, we refer the reader
to the survey [24]. In Section 5.1, we present one such result, which generalizes the classical
Myers-Nakai Theorem to the case of non reversible Finsler manifolds. In order to achieve
this, new structures on subsets of smooth functions have to be defined. In Section 5.2, we
make use of the newly defined structures to obtain an abstract Banach-Stone type theorem
for metric spaces, which encompasses several known results, as well as some new ones.

5.1 A Myers-Nakai theorem for non reversible Finsler

manifolds

The classical Myers-Nakai theorem asserts that the Riemannian structure of a Riemannian
Manifold M is determined by the normed algebra structure of the associated space of real-
valued, bounded functions of class C1 with bounded derivatives, denoted by C1

b (M), when
C1
b (M) is endowed with the natural norm ∥f∥ = ∥f∥∞∨∥df∥∞. More precisely, the theorem

can be stated as follows.

Theorem 5.1 (Myers-Nakai theorem for Riemannian manifolds) Let M and N be two con-
nected Riemannian manifolds. Then M and N are isometric as Riemannian manifolds if
and only if the spaces C1

b (M) and C1
b (N) are isometrically isomorphic as normed algebras.

Moreover, every isometric isomorphism of normed algebras T : C1
b (N) → C1

b (M) must be of
the form Tf = f ◦ τ , for a Riemannian isometry τ :M → N .
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This result was proved by Myers in [34] for compact manifolds, and later by Nakai in [36]
for the general case. This theorem is closely related to a previous result of Myers and Steenrod
(see [35]), where it was shown that, between connected Riemannian manifolds, Riemannian
isometries coincide with metric isometries, when viewing each manifold as a metric space. As
mentioned in Chapter 2, this result was generalized to Finsler manifolds by Deng and Hou
(see Theorem 2.70).

Another aspect to keep in mind is that, for a Riemannian manifold, a smooth function
has bounded derivative if and only if it is Lipschitz, so the algebra C1

b (M) can be seen as a
subspace of LIP(M), with norm given by ∥f∥ = ∥f∥∞ ∨ ∥f∥LIP. The same assertion holds
true for reversible Finsler manifolds, and this was used by Garrido et al. to generalize the
Myers-Nakai theorem to the context of reversible Finsler manifolds.

The aim of this section is to provide a further generalization to the case of general (asym-
metric) Finsler manifolds. Proposition 3.5 gives a hint of to this possibility, as it allows us to
see the space of C1-smooth functions with bounded derivative (with respect to Definition 3.4)
as a subset of SLIP(X ), for any connected Finsler manifold X . This observation provides a
good starting point to study the possibility of extending the Myers-Nakai theorem to Finsler
manifolds, but at the same time, it points to an imminent obstacle.

5.1.1 Algebraic challenges

As discussed in Chapter 2, the set SLIP(X ) needs not be a linear space (see Remark 2.44).
This is the case even for quasi-metric spaces as “well behaved” as Finsler manifolds, as shown
by Example 3.8. Therefore, our first step will be to define a suitable asymmetric analogue
for the space C1

b (M) used in Theorem 5.1.

Definition 5.2 Let (X , F ) be a second countable and connected Finsler manifold. Consider
the following sets of C1-smooth, bounded, semi-Lipschitz and real-valued functions on X :

SC1
b (X ) :={f ∈ C1(X ) : ∥f∥∞ <∞, ∥f |S <∞} = C1(X ) ∩ L∞(X ) ∩ SLIP(X ),

SC1
b (X )+ :={f ∈ SC1

b (X ) : f ≥ 0}.

Clearly, both sets are subcones of SLIP(X ), and can be endowed with the natural conic-
norm ∥f | = ∥f∥∞ ∨ ∥f |S. Note that, thanks to Proposition 3.5, an equivalent definition for
both spaces and their conic-norm can be given by asking for the differential of each function
to be bounded (in the sense of Definition 3.4).

Given that, in general, the cone SC1
b (X ) fails to be a linear space, we cannot expect

SC1
b (X ) to be an algebra in the usual sense. Moreover, the lack of additive inverses makes it

impossible for SC1
b (X ) to be closed under multiplication.

Remark 5.3 In general, SC1
b (X ) is not closed under pointwise multiplication.

Proof. Consider a function f ∈ SC1
b (X ) such that −f does not belong to SC1

b (X ) (as in
Example 3.8). Then, the product of the constant function of value (−1) and f does not
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belong to SC1
b (X ).

Despite this negative result, we can avoid this problem by restricting ourselves to functions
with non negative values.

Proposition 5.4 Let (X , F ) be a Finsler manifold. The set SC1
b (X )+ is closed under point-

wise multiplication. Moreover, for any f, g ∈ SC1
b (X )+, we have

∥fg| ≤ 2∥f |∥g|. (5.1)

Proof. It is clear that inequality (5.1) implies that the function fg belongs to SC1
b (X )+.

Moreover, it is also clear that ∥fg∥∞ ≤ ∥f∥∞∥g∥∞ ≤ ∥f |∥g|, so we only need to prove that
∥fg|S ≤ 2∥f |∥g|. To this end, let x, y ∈ X , and recall the notation u(t) = max{t, 0} for
t ∈ R.

f(x)g(x)− f(y)g(y) = f(x) (g(x)− g(y)) + g(y) (f(x)− f(y))

≤ f(x)u (g(x)− g(y)) + g(y)u (f(x)− f(y))

≤ ∥f∥∞u (g(x)− g(y)) + ∥g∥∞u (f(x)− f(y))

≤ ∥f∥∞∥g|SdX (y, x) + ∥g∥∞∥f |SdX (y, x)
= (∥f∥∞∥g|S + ∥g∥∞∥f |S)dX (y, x)
≤ 2(∥f∥∞∥g|S ∨ ∥g∥∞∥f |S)dX (y, x)
≤ 2dX (y, x) [(∥f∥∞ ∨ ∥f |S)∥g|S] ∨ [(∥g∥∞ ∨ ∥g|S)∥f |S]
= 2 (∥f |∥g|S) ∨ (∥g|∥f |S) dX (y, x)
≤ 2∥f |∥g|dX (y, x).

Note that the first inequality above may not hold if either f or g were allowed to take
negative values.

Therefore, the set SC1
b (X )+ is:

(i) A cone for the operations of addition and scalar multiplication (using non negative
scalars).

(ii) Closed under the operation of pointwise multiplication, which distributes over addition
and scalar multiplication.

(iii) A normed cone when endowed with ∥ · |, with the property that ∥fg| ≤ 2∥f |∥g| for all
f, g ∈ SC1

b (X )+.

Inspired by this properties, we introduce a new definition.
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5.1.2 New asymmetric structures

First, we recall the algebraic definition of a semiring: a semiring is a commutative monoid
endowed with a compatible multiplication operation that distributes over the addition of the
monoid.

Definition 5.5 (Conic-semiring) A conic-semiring is an abstract cone (as per Definition 2.14)
endowed with a multiplication that makes it a semiring. If the cone is endowed with a conic
for which there exists a constant K ≥ 0 such that ∥fg| ≤ K∥f |∥g| for all f, g in the cone, we
will call it a normed conic-semiring. A normed conic-semiring will be called unital if it has
a multiplicative unit.

Using this definition, we have that SC1
b (X )+ is a normed conic-semiring when endowed

with its natural operations and conic-norm.

Just like the notion of abstract cone is the asymmetric version of real linear spaces (by
using monoids instead of groups and R+ instead of R for scalars), the notion of semiring can
be seen as the asymmetric version of rings (replacing the additive group with a monoid). By
combining these two ideas, we can view conic-semirings as an asymmetric version of algebras.

Let us recall that our objective here was to find a suitable asymmetric version of normed
algebras, which is a notion that involves both algebraic and metric structures. With this
in mind, we can see Definition 5.5 as a generalization which forgoes the former (linear and
ring structure) in order to preserve the latter (having a well defined norm). We will also
explore the opposite idea, that is, sacrificing properties of the norm in order to preserve the
algebraic structure. Recall that an extended asymmetric norm has the same properties as
an asymmetric hemi-norm (see Definition 2.2), but is allowed to take the value +∞. We
emphasize that extended (symmetric) normed spaces have been studied in the literature (for
example, in [10]) but, to the best of our knowledge, it has not yet been combined with
asymmetric structures. This relaxation of asymmetric normed spaces will allow us to study
linear spaces where the asymmetric norm is not always well defined (in the sense of taking
finite values).

Definition 5.6 (Finite subcone) Let (E, ∥· |) be an extended asymmetric normed space. The
subset F = {x ∈ E : ∥x| < +∞} (which is always a cone) is called the finite subcone of E.

Definition 5.7 (Extended asymmetric normed algebra) An algebra A endowed with an
extended asymmetric norm ∥ · | will be called an extended asymmetric normed algebra if the
finite subcone satisfies a submultiplicative condition for the norm, i.e., there exists K ≥ 0
such that ∥fg| ≤ K∥f |∥g| for all f, g ∈ A such that ∥f |, ∥g| <∞.

This new definition is clearly connected with conic-semirings:

Proposition 5.8 Let (A, ∥ · |) be an extended asymmetric normed algebra. Then, the finite
subcone of A is a normed conic-semiring when endowed with the norm of A.

One can also define an extended asymmetric normed algebra from a given normed conic-
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semiring, but an additional assumption is needed, as not every abstract cone can be linearly
embedded into a linear space (see Example 2.17). A sufficient condition to ensure that an
abstract cone can be embedded into a (real) linear space is that the cone is cancellative (see
Definition 2.16). When working with a cancellative cone C that linearly embeds into RX for
some set X, span(C) will denote the linear span of the image of C in RX .

Proposition 5.9 Let (C, ∥ · |) be a cancellative normed conic-semiring that linearly embeds
into RX for a set X. Set A = span(C), and for any a ∈ A, define

∥a|A =

{
∥a| if a ∈ C

+∞ if a /∈ C
.

Then, (A, ∥ · |A) is an extended asymmetric normed algebra, and the finite subcone of A
coincides with C. In this case, we will say that the extended asymmetric normed algebra A
is generated by the normed conic-semiring C.

Proof. Let us verify that A is an algebra. Since it is by definition a linear space, we only
need to check that it is closed under multiplication. Let x, y ∈ A. Since C is a cone, span(C)
can be written as C − C = {c1 − c2 : c1, c2 ∈ C}, so we can write

xy = (x1 − x2)(y1 − y2) = x1y1 − x1y2 − x2y1 + x2y2 = (x1y1 + x2y2)− (x1y2 + x2y1),

with xi and yi in C, for i = {1, 2}. It follows that xy ∈ C − C = A. The remaining of the
properties hold by definition.

Following Proposition 5.9, we will work with the following space.

Definition 5.10 Let (X , F ) be a connected Finsler manifold. We define A(X ) to be the
extended asymmetric normed algebra generated by the conic-semiring SC1

b (X )+,

A(X ) = span
(
SC1

b (X )+
)
.

The extended asymmetric norm of an element f of this algebra is given by ∥f | = ∥f∥∞∨∥f |S
if f ∈ SC1

b (X )+, and +∞ otherwise.

Remark 5.11 Notice that, since every function in SC1
b (X ) is bounded, we can always write

f = (f + ∥f∥∞)−∥f∥∞, which belongs to A(X ). Therefore, SC1
b (X ) and SC1

b (X )+ have the
same linear span (although they do not induce the same norm on A(X )). It follows that if
X is a reversible Finsler manifold (in particular, if X is Riemannian), then A(X ) = C1

b (X ).

Definition 5.12 A linear function T between two extended asymmetric normed algebras
(A2, ∥ · |2) and (A1, ∥ · |1) is said to be forward continuous (or simply continuous) if there
exists a constant K ≥ 0 such that

∥Tf |1 ≤ K∥f |2,

for all f ∈ A2. The least constant K satisfying the inequality above is called the norm of T ,
denoted by ∥T |.
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Note that a continuous linear function necessarily sends the finite subcone of its domain
into the finite subcone of its range.

Definition 5.13 Given two extended asymmetric normed algebras (A1, ∥ · |1) and (A2, ∥ · |2),
a mapping T : A2 → A1 is called an extended asymmetric normed algebra isomorphism
provided:

(i) T is linear and bijective,

(ii) T is bicontinuous, i.e., T and T−1 are continuous in the sense of Definition 5.12.

(iii) T (fg) = Tf · Tg for all f, g ∈ A2.

The isomorphism T is called an extended asymmetric normed algebra isometry if

∥Tf |1 = ∥f |2

for all f ∈ A2, or equivalently, if ∥T | = ∥T−1| = 1.

In what follows, we will work with extended asymmetric normed algebras associated with
Finsler manifolds. Whenever we mention the dual A∗ of an extended asymmetric normed
algebra A, it will be its dual cone when viewing A as an extended asymmetric normed space.
Given a functional φ ∈ A∗, we say φ is multiplicative if φ(ab) = φ(a)φ(b) for all a, b ∈ A. If
the algebra A is contained in RX for some set X (i.e., A is an algebra of functions over X),
we will say a functional φ ∈ A∗ is positive if φ(f) ≥ 0 whenever f ≥ 0 as a function.

5.1.3 Main result

Our aim is to prove that for every pair of connected, second countable and forward complete
Finsler manifolds X and Y , every extended asymmetric normed algebra isometry between
A(Y) and A(X ) induces an isometry between X and Y .

Definition 5.14 Let (X , F ) be a Finsler manifold. We define the structure space of X as

S(X ) := {φ : A(X ) → R : φ is linear, multiplicative and forward continuous} ⊂ A(X )∗.

Remark 5.15 Every φ ∈ S(X ) is actually continuous. Indeed, to see that −φ is upper
semicontinuous, we need to given a bound for −φ(f) for any f ∈ A(X ). By denoting the
constant function of value 1 as 1, we have

−φ(f) = φ(−1)φ(f) ≤ φ(−1)∥f |∥φ|∗ ≤ K∥f |.

As a consequence, an equivalent definition of the structure space S(X ) could be given by
requiring each functional to be continuous instead of usc.

Proposition 5.16 Every φ ∈ S(X ) is positive.
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Proof. We will use the fact that A(X ) is closed under bounded inversions, that is, whenever
f ∈ A(X ) satisfies f ≥ 1, then f−1 ∈ A(X ). Indeed, if we take f ∈ A(X ) such that
f ≥ 1, then it is clear that f−1 is of class C1. Moreover, we have that the derivative of −f−1

at a point x equals f(x)−2df(x), so by Proposition 3.5, we have that the function −f−1 is
semi-Lipschitz. It follows that f−1 ∈ −SC1

b (X ) ⊆ A(X ).

Using this, and the fact that φ(1) = 1, we can show that α = φ(f) belongs to f(X )
|·|

for every f ∈ A(X ). Otherwise, there would exist ε > 0 such that no sequence in f(X )
accumulates in B(α, ε), which implies (f − α) ≥ ε. Noting that both (f − α) and (f − α)2

belong to A(X ), we arrive at a contradiction:

1 = φ((f − α)2) · φ((f − α)−2) = 0.

Proposition 5.17 The set of evaluation mappings δ(X ) = {δx : x ∈ X} is dense in S(X )
for the w∗ topology of A(X )∗.

Proof. Let φ ∈ S(X ), and consider a basic w∗-neighborhood of φ:

W = {ψ ∈ S(X ) : |φ(fi)− ψ(fi)| < ε ∀i ∈ {1, ..., n}},

with ε > 0, n ∈ N and f1, ..., fn ∈ A(X ). Suppose that δx /∈ W for every x ∈ X . Then,
the function g =

∑n
i=1(fi − φ(fi))

2 satisfies g ≥ ε2, but φ(g) = 0, which contradicts the
positivity of φ, as φ(g − ε2) = −ε2 < 0, since φ(1) = 1.

From this point forward, we will assume (X , F ) to be a connected, forward complete and
second countable Finsler manifold with Finsler distance dX .

Proposition 5.18 The mapping δ−1 : δ(X ) → X that maps each δx to its corresponding
x ∈ X is w∗ continuous.

Proof. Consider a net (δxλ) ⊂ δ(X ) converging to δx0 in the weak star topology of A(X )∗,
and consider the function f(x) = min{d(x0, x), 1}, which is semi-Lipschitz and bounded, but
it fails to be of class C1. To remedy this, for ε > 0, consider a smooth approximation g of f
obtained using Corollary 3.11, such that |min{d(x0, x), 1}− g(x)| ≤ ε . Then, if we evaluate
the net (δxλ) on the function g ∈ A(X ), we obtain that δxλ(g) = g(xλ) converges (in absolute
value) to δx0(g) = g(x0) ≤ ε, and since |min{dX (x0, x), 1} − g(x)| ≤ ε, we conclude that
dX (x0, xλ) converges to 0.

Proposition 5.19 Consider the structure space φ ∈ S(X ). Then, the following are equiva-
lent:

1. φ has a countable neighborhood basis in S(X ) for the w∗ topology of A(X ).

2. There exists x ∈ X such that φ = δx.
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Proof. (1) =⇒ (2) Since (X , F ) is forward complete, the Hopf-Rinow theorem (see Theorem
6.6.1 of [8]) asserts that forward bounded and closed subsets of X are compact, which implies
that the function f(x) = dX (p, x) is proper for any p ∈ X . By taking a C1-smooth semi-
Lipschitz approximation by above of f (using Corollary 3.11), we obtain a proper function
g ∈ SC1

b (X )+. Suppose now that φ ∈ S(X ) \ δ(X ) has a countable neighborhood basis
in S(X ) for the w∗ topology. Then by Proposition 5.17, there exists a sequence (xn)n∈N ⊂
X , with no convergent subsequences, such that δxn → φ in the w∗ topology. Since g is
proper, lim g(xn) = +∞, so there exists a subsequence xnk

such that g(xnk
) + 1 < g(xnk+1

).
Now we can choose a C1-smooth function θ : R → [0, 1], with bounded derivative (so that
θ ◦ g ∈ SC1

b (X )+), such that θ(g(xn2k+1
)) = 1 and θ(g(xn2k

)) = 0 for every k ∈ N, which is a
contradiction, as the sequence δxnk

(g) is not convergent.
(2) =⇒ (1) If φ = δx for some x ∈ X , then consider any countable neighborhood basis (Vn)
of x in X . Then the family of closures {clS(X )(Vn) : n ∈ N} is a countable neighborhood
basis of δx in S(X ).

Lemma 5.20 For each x, y ∈ X ,

min{dX (x, y), 1} ≤ ∥δy − δx|∗ ≤ dX (x, y)

where ∥ · |∗ is the norm on A(X )∗.

Proof. First, let us note that δy − δx belongs to the dual cone A(X )∗, as every evaluation
functional is Lipschitz. Indeed, |δx(f)| = |f(x)| ≤ ∥f |∞ ≤ ∥f | for all f ∈ A(X ), and therefore
both δx and −δx belong to A(X )∗. As any function f ∈ A(X ) with finite norm is semi-
Lipschitz, we immediately have that ∥δy − δx|∗ ≤ dX (x, y) (by definition of dual norm). On
the other hand, fix x, y ∈ X and for ε > 0, consider the function f(u) = min{dX (x, u), 1} and
a C1-smooth and semi-Lipschitz approximation by above g of f , such that 0 ≤ g(u)−f(u) ≤ ε
and ∥g|S ≤ ∥f |S + ε = 1 + ε. Replacing g with g̃ = (1/(1 + ε))g, we have that ∥g̃| ≤ 1, so

∥δy − δx|∗ ≥ (δy − δx)(g̃) =
1

1 + ε
(g(y)− g(x))

≥ 1

1 + ε
(f(y)− g(x))

≥ 1

1 + ε
(f(y)− f(x)− ε)

=
1

1 + ε
(min{dX (x, y), 1} − ε),

for every ε > 0, and therefore ∥δy − δx|∗ ≥ min{dX (x, y), 1}.

Theorem 5.21 Let (X , FX ) and (Y , FY) be connected, second countable and forward com-
plete Finsler manifolds, and T : A(Y) → A(X ). Then, the following are equivalent:

1. T is an extended asymmetric normed algebra isomorphism.
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2. There exists a bi-semi-Lipschitz diffeomorphism h : (X , dX ) → (Y , dY) such that Tf =
f ◦ h for all f ∈ A(Y), and the semi-Lipschitz constants of h and h−1 are bounded by
∥T ∗| and ∥(T ∗)−1|, respectively.

Proof. (1) =⇒ (2) Suppose T : A(Y) → A(X ) is an extended asymmetric normed algebra
isomorphism, and consider the dual map T ∗ : A(X )∗ → A(Y)∗, defined in the usual way,
so that ⟨T ∗φ, f⟩ = ⟨φ, Tf⟩ for all f ∈ A(Y) and φ ∈ A(X )∗. Clearly, T ∗ maps continuous
multiplicative functionals into continuous multiplicative functionals, and since T ∗ is by defi-
nition w∗ to w∗ continuous, it follows that T ∗ restricts to an homeomorphism between S(X )
and S(Y). Consider now the natural embeddings δX : X → S(X ) and δY : Y → S(Y). By
Lemma 3.4, T ∗(δX (X )) = δY(Y). Now, we can define h(x) = (δY)

−1 ◦ T ∗ ◦ δX : X → Y ,
which is an homeomorphism from X onto Y . Moreover, for any f ∈ A(Y), and any x ∈ X

Tf(x) = ⟨δx, T f⟩ = ⟨T ∗δx, f⟩
= ⟨δh(x), f⟩ = f(h(x)) = (f ◦ h)(x).

Note that since f ◦h is C1-smooth for any non negative and compactly supported f ∈ C1(Y),
we can deduce that h is a diffeomorphism, and the same can be said about h−1.
To see that h is bi-semi-Lipschitz, it suffices to prove that it is locally bi-semi-Lipschitz
(see Proposition 3.12). To this end, fix p ∈ X . Consider the open neighborhood of p
Up = Bs(p, 1) ∩ h−1(Bs(h(p), 1)), where Bs(q, r) denotes a symmetrized ball of center q and
radius r. Then, for any x1, x2 ∈ Up, we have dX (x1, x2) < 1 and dY(h(x1), h(x2)) < 1. Then,
using Lemma 5.20 we have that

dY(h(x1), h(x2)) ≤ ∥δh(x2) − δh(x1)|∗ = ∥T ∗δx2 − T ∗δx1|∗ ≤ ∥T ∗|∥δx2 − δx1 |∗ ≤ ∥T ∗|dX (x1, x2).

The same argument can be used for h−1, obtaining that h is bi-semi-Lipschitz. The remaining
implication is direct.

Theorem 5.22 (Non reversible Myers-Nakai Theorem) Let (X , FX ) and (Y , FY) be con-
nected, second countable and forward complete Finsler manifolds. Then, (X , FX ) and (Y , FY)
are Finsler isometric if and only if there exist an extended asymmetric normed algebra isom-
etry T : A(Y ) → A(X ). Moreover, every extended asymmetric normed algebra isometry
between A(Y ) and A(X ) is of the form Tf = f ◦ h, where h : X → Y is a Finsler isometry.
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5.2 An abstract Banach-Stone type theorem

Many of the ideas used in Section 5.1 do not seem to rely on specific properties of Finsler
manifolds and semi-Lipschitz functions. In fact, many of the key notions used to prove
Theorem 5.22, such as, the definition of the structure space, the weak star topology of the
dual of an asymmetric normed space and the embedding δ : X → S(X), make sense for a
general extended asymmetric normed algebra A of functions over X. This Section presents
a modified, more general version of Theorem 5.22, which can be applied to many spaces of
continuous functions over metric spaces, provided some hypothesis are met.

We will start this section by introducing two known classes of functions with Lipschitz-
like behavior, pointwise Lipschitz functions and functions with bounded metric slope. The
latter turns out to be an asymmetric object, and can be studied using the tools developed
in Subsection 5.1.2. After that, we prove the more general version of the main result of
this Section, which has the weaker conclusion, as expected. After proving this version in
Subsection 5.2.2, we deduce a version with a stronger conclusion, which requires additional
requirements on the functions spaces to be used. Finally, we present an intermediate version,
which can be applied to the classes of functions introduced in Subsection 5.2.1.

5.2.1 Point-wise Lipschitz functions and metric slopes

Let (X, d) be a metric space. For a given continuous function f : X → R, the pointwise
Lipschitz constant at a non-isolated point x0 ∈ X is

Lipf(x0) := lim
r→0

sup
0<s<r

sup
d(x,x0)<s

|f(x0)− f(x)|
s

= lim sup
x→x0
x ̸=x0

|f(x0)− f(x)|
d(x, x0)

,

and the asymptotic Lipschitz constant at a point x0 ∈ X is

Lipaf(x0) := lim sup
y,z→x0

|f(z)− f(y)|
d(z, y)

.

If f is a differentiable function, then Lipf(x0) = ∥∇f(x0)∥. However, the pointwise Lipschitz
constant is always non-negative, so it is not so useful if we want to determine descent or
ascent directions (and detect minima or maxima). To this end, an asymmetric object is
needed.

Definition 5.23 (Metric slope) For a function f : X → R, the metric slope at a point
x0 ∈ X is

|∂f |−(x0) := lim sup
x→x0
x ̸=x0

max{f(x0)− f(x), 0}
d(x0, x)

=


0 if x0 is a local minimizer of f ,

lim supx→x0
x̸=x0

f(x0)−f(x)
d(x0,x)

otherwise.

Notice that, if x0 is a local minimizer of f , then |∂f |−(x0) = 0. However, |∂f |−(x0) = 0 at
a point x0 = 0 does not necessarily imply that x0 is a minimum of f (for example, f(x) = −x2
on R).
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An ascendent metric slope, denoted by |∂f |+(x0), can be defined in a similar manner,
replacing f(x0)− f(x) by f(x)− f(x0) in the numerator, and

|∂f |+(x0) = |∂(−f)|−(x0).

The metric slope, also called local slope, descendent slope or calmness rate, was introduced in
[19] (see also [5]) in connection with steepest descent evolutionary problems. The notation
should not be confused with the relaxed slope |∂−f | defined in [5, Section 2.3].

The following Figure shows how the notion of metric slope can differ from the pointwise
Lipschitz constant.

Figure 5.1: Lipschitz function for which 0 = |∂f |+(0) < Lipf(0) = +∞.

If f : [a, b] → R is differentiable at x0 ∈ [a, b], then |f ′(x0)| = |∂f |−(x0) = |∂f |+(x0). We
shall make use of the following proposition, which proof follows directly from the definitions
involved.

Proposition 5.24 Let (X, d) be a metric space and f : X → R a function. Then,

Lipf(x0) = max{|∂f |−(x0), |∂f |+(x0)}. (5.2)

For a Lipschitz function f : X → R defined on a metric space, with Lipschitz constant
Lip(f), we have

|∂f |−(x) ≤ max
{
|∂f |+(x), |∂f |−(x)

}
= Lipf(x) ≤ Lipaf(x) ≤ LIP(f), (5.3)

where all inequalities might be strict. See Figure 5.2 for |∂f |−(x) ̸= Lipf(x) and [21,
Example 2.7] for Lipf(x) ̸= Lipaf(x).

These notions can be easily brought to the general context of quasi-metric spaces. The
objects defined above will appear as particular cases of this general setting.

Recall that a sequence (xn) on a quasi-metric space (X, d) converges to x in the forward
topology if and only if d(x, xn) converges to 0 in (R, | · |).
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Figure 5.2: Lipschitz function for which 0 < |∂f |−(0) = 1 < Lipf(0) = a = |∂f |+(0).

Definition 5.25 (Pointwise Semi-Lipschitz functions) Let (X, d) and (Y, ρ) be quasi-metric
spaces and f : X → Y be a function. f is said to be pointwise semi-Lipschitz at a non-isolated
point x0 ∈ X if there exists α ≥ 0 and δ > 0 such that

d(x0, x) < δ =⇒ ρ(f(x0), f(x)) ≤ αd(x0, x). (5.4)

The least constant satisfying inequality (5.4) is called the pointwise semi-Lipschitz con-
stant of f at x0, and will be denoted by SLipf(x0). If x0 is an isolated point, we define
SLipf(x0) = 0. A function f : X → Y is called pointwise semi-Lipschitz if SLipf(x) < +∞
for every x ∈ X.

Remark 5.26 It is easy to check that this definition encompasses both, the definitions of the
pointwise Lipschitz constant and the metric slope in the following way:

• If (X, d) is a metric space and (Y, ρ) = (R, | · |), then

SLipf(x) = Lipf(x)

for any x ∈ X.

• If (X, d) is a metric space and (Y, ρ) = (R, du), then

SLipf(x) = |∂f |+(x) = |∂(−f)|−(x)

for any x ∈ X. Then, for f : X → R, the formula (5.2) can be rewritten as

Lipf(x) = max{SLipf(x), SLip(−f)(x)}.

In what follows, if we consider real-valued functions f : X → R, when computing SLipf
we will assume that R is endowed with the quasi-metric du.
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Remark 5.27 Any locally flat semi-Lipschitz function f (see Definition 4.50) has SLipf = 0
at all points.

Definition 5.28 We say a bijection τ : X → Y is a pointwise semi-Lipschitz homeomor-
phism if both τ and τ−1 are pointwise semi-Lipschitz. An analogous definition is used for
pointwise Lipschitz homeomorphisms.

Remark 5.29 For a function f : X → R on a quasi-metric space X, a straightforward
computation shows that f is upper semicontinuous at any point x ∈ X where SLipf(x) <∞.
This is also true for a function τ between two quasi-metric spaces (X, d) and (Y, ρ), in which
case τ is forward-forward continuous at every point where SLip τ(x) < +∞.

The fact that pointwise semi-Lipschitz functions do not need to be continuous shows us
that this notion does not coincide with the one of pointwise Lipschitz functions.

Example 5.30 Let us consider the function f : (R, | · |) → R

f(x) =

{
1 if x ≥ 0

0 if x < 0.
(5.5)

In this case, Lipf(0) = +∞, while SLipf(x) = 0 at every x ∈ R. In other words, pointwise
semi-Lipschitz functions need not be pointwise Lipschitz.

Remark 5.31 Example 5.30 shows that the notions of pointwise semi-Lipschitz functions
and pointwise Lipschitz differ even when the domain is a metric space, as opposed of what
happens with (globally) semi-Lipschitz functions, which are always Lipschitz when the domain
is a metric space.

Remark 5.32 For a function f : (X, dX) → (Y, dY ) between quasi-metric spaces, the fol-
lowing inequalities hold.

• SLipdsX ,dY f(x) ≤ SLipdX ,dY f(x) ≤ SLipdX ,dsY f(x), where SLipd1,d2 is computed using
the quasi-metric d1 on X and the quasi-metric d2 on Y .

• SLipd1,d2f(x) ≤ SLIPd1,d2f, for d1 = {dX , dsX} and d2 = {dY , dsY }.

We recall the definition of the space D(X) of pointwise Lipschitz functions, which was
studied in [21]. For metric spaces (X, dX) and (Y, dY ), consider

D(X) = {f : X −→ R : sup
x∈X

Lipf(x) < +∞},

D(X, Y ) = {f : X −→ Y : sup
x∈X

Lipf(x) < +∞}.

For the asymmetric cases, we can define the following functional spaces.

Definition 5.33 Let (X, dX) and (Y, dY ) be quasi-metric spaces. Consider
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DSL(X, Y ) = {f : X −→ Y : sup
x∈X

SLipf(x) < +∞}.

If (X, d) is a metric space and Y = R we denote

⋄ D∞(X) = {f ∈ D(X) : supx∈X |f(x)| < +∞}.

⋄ DSL(X) = {f : X −→ R : supx∈X SLipf(x) = supx∈X |∂f |+(x) < +∞}.

⋄ D∞
SL(X) = {f ∈ DSL(X) : supx∈X |f(x)| < +∞}.

We remark the convention that, when computing Lipf(x), R is assumed to carry the usual
metric, and when computing SLipf(x), R is endowed with the quasi-metric du.

With these definitions, the conclusion of Example 5.30 can be restated as “DSL(X) is not a
vector space, even when X is a metric space”. However, the function used in Example 5.30 is
not continuous. It is natural to ask whether such an example of a function in DSL(X)\D(X)
must be discontinuous. In what follows we provide an example of a metric space X and a
continuous function f : X → R such that f ∈ DSL(X) \D(X).

Example 5.34 Consider on the interval X = [0, 1] the snowflake distance d(x, y) = |x−y|1/2.
Select a point a ∈ X, and choose a sequence of different points (an) in X converging to a, and
a sequence of small enough radii (rn), such that 0 < rn <

1
n
d(an, a), the open balls Bd(an, rn)

are pairwise disjoint, and each x ̸= a has a neighborhood V x which meets only a finite number
of balls Bd(an, rn).

Note that any Lipschitz function f : ([0, 1], | · |) → R satisfies that Lipdf(x) = 0 for every
x ∈ X. Indeed, if

|f(x)− f(y)| ≤ K|x− y|

Then

lim sup
y→x

|f(x)− f(y)|
d(x, y)

≤ lim sup
y→x

K|x− y|
|x− y|1/2

= 0.

Then, if for each n we fix some kn > 0, we can select a continuous function fn : X → R,
which is Lipschitz for the euclidean distance in X, such that 0 ≤ fn ≤ knd(an, a) on X,
fn(an) = knd(an, a), and the support of fn is contained into Bd(an, rn). Now consider

f =
∞∑
n=1

fn.

The function f is well-defined and continuous on X \ {a}, since the sum is locally finite. If
we assume in addition that

lim
n→∞

= knd(an, a) = 0

we obtain that f is continuous on X. Furthermore, we have that Lipf(x) = 0 for each x ̸= a.
Thus |∂f |+(x) = 0 for x ̸= a. Since a is a local (and global) minimum of f , we see that also
|∂f |+(a) = 0.
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On the other hand,

Lipf(a) = lim sup
n→∞

|f(a)− f(an)|
d(an, a)

= sup
n
kn.

If we choose a constant sequence kn = k we obtain an example where

sup
x∈X

SLipf(x) = 0 < k = sup
x∈X

Lipf(x) < +∞.

On the other hand, if we choose a sequence (kn) tending to infinity, for example kn = 1√
d(an,a)

,

we obtain an example where SLipf(x) = 0 and Lipf(x) < +∞ for every x ∈ X, but

sup
x∈X

Lipf(x) = +∞.

Before continuing, we recall the Banach-Stone type theorem obtained in [21, Theorem
4.6]. We need a definition first.

Definition 5.35 A metric space (X, d) is said to be locally radially quasi-convex if for every
x ∈ X, there exists a neighborhood Ux of x and a constant Kx > 0 such that for each y ∈ Ux
there exists a rectifiable curve γ in Ux connecting x and y and such that ℓ(γ) ≤ Kxd(x, y).

Theorem 5.36 Let (X, dX) and (Y, dY ) be complete locally radially quasi-convex metric
spaces. The following are equivalent.

• (X, dX) and (Y, dY ) are pointwise Lipschitz homeomorphic.

• D∞(X) and D∞(X) are isomorphic as algebras.

If one wanted a result in the same line, but using D∞
SL(X) instead, major adjustments

would have to be made, as D∞
SL(X) is not a linear space. But, as we saw in Theorem 5.22, this

obstacle can be overcome. The following subsections deal with the issue of formulating such
a result in an abstract way, making use of the definitions and tools learned from Section 5.1.

5.2.2 Topological version

Definition 5.37 Let A(X) and A(Y ) be extended asymmetric normed algebras of real-valued
functions over X and Y , respectively. An isomorphism T : A(Y ) → A(X) is called positive
if Tf ≥ 0 whenever f ≥ 0.

We shall start by stating the main result.

Theorem 5.38 Consider the real line R endowed with its usual metric. Let (X, dX) and
(Y, dY ) be complete metric spaces, let F(X, Y ) be a subset of C(X, Y ), and let G(X) and
G(Y ) be subcones of C(X,R) and C(Y,R), respectively, such that:
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(i) The subcones G∞
+ (X) := G(X)∩L∞(X)∩[0,∞)X and G∞

+ (Y ) := G(Y )∩L∞(Y )∩[0,∞)Y

are endowed with conic norms, which are finer than ∥·∥∞, and which make G∞
+ (X) and

G∞
+ (Y ) into unital normed conic-semirings under the usual addition and multiplication

of real-valued functions.

(ii) h ∈ F(X, Y ) if and only if f ◦ h ∈ G∞
+ (X) for all f ∈ G∞

+ (Y ).

(iii) G∞
+ (X) (respectively G∞

+ (Y )) is uniformly separating for (X, dX) (respectively (Y, dY )),
in the sense that, for every pair of subsets A and B of X, with dX(A,B) > 0, there

exists some f ∈ G∞
+ (X) such that f(A)

|·|
∩ f(B)

|·|
= ∅.

Denote A(X) = span(G∞
+ (X)), endowed with the extended asymmetric norm induced by

G∞
+ (X), and its natural algebra structure, and let T : A(Y ) → A(X) be a positive iso-

morphism of extended asymmetric normed algebras. Then, there exists τ ∈ F(X, Y ), with
τ−1 ∈ F(Y,X), and such that

Tf = f ◦ τ
for all f ∈ A(Y ).

Remark 5.39 In this result, the set F(X, Y ) has the role of “space of morphisms” between X
and Y . The functional spaces G(X) and G(Y ) need not be of the “same nature” as F(X, Y ),
and this will often be the case in our examples (see forthcoming Corollary 5.46).

Let us begin with the proof of Theorem 5.38. Thanks to Proposition 5.9, we know that
A(X) and A(Y ) are extended asymmetric normed algebras. Therefore, we can readily define
the structure space.

S(X) := {φ : A(X) → R : φ is linear, multiplicative, continuous and positive} ⊂ A(X)∗.

Notice that, unlike in Section 5.1, we include positivity in the definition of the structure
space.

Proposition 5.40 The set of evaluation functionals δ(X) = {δx : A(X) → R : x ∈ X} is
contained in S(X).

Proof. It is clear that every δx is linear and positive on A(X). Upper semi continuity
is deduced from the fact that the extended asymmetric norm on A(X) is finer than the
supremum norm, and continuity follows from the same argument used in Remark 5.15.

Proposition 5.41 (X, dX) is homeomorphic to (δ(X), w∗).

Proof. We start by noting that this proposition can be reduced to a well known result
in general topology, as the weak-star topology coincides with the product topology of RX

(see for instance Theorem 8.16 of [43]). Nevertheless, we include the proof for the sake of
completeness. We start by proving that δ : X → δ(X) is open. Let U ⊆ X be an open set,
and fix a point δx ∈ δ(U). Since x does not belong to the closed set U c, and we can use
hypothesis (iii) of Theorem 5.38 to obtain a function f ∈ G∞

+ (X) that separates {x} from U c,

that is, f(x) /∈ f(U c), which implies the existence of ε > 0 such that B(f(x), ε)∩ f(U c) = ∅.
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Consider now the weak-star neighborhood of 0 defined by the separating function f and the
radius ε of the ball, that is, W = {δz ∈ S(X) : |δz(f)| < ε}. Then, the set δx + W is
a weak-star neighborhood of δx contained in δ(U). On the other hand, continuity of the
mapping δ follows directly from the fact that the functions in G(X) (and therefore A(X))
are continuous.

Remark 5.42 It is worth noting that an asymmetric normed space E is not in general a
topological vector space, as multiplication by scalars may fail to be continuous at points of the
form (0, x) ∈ R × E. Fortunately, addition remains continuous, and therefore, translations
of open sets are still open.

Proposition 5.43 δ(X) is weak-star dense in S(X).

Proof. Consider a basic weak-star neighborhood of a function φ ∈ S(X) :

W = {ψ ∈ S(X) : |ψ(fi)− φ(fi)| < ε, i = 1, ..., n}.

Assume that W ∩ δ(X) = ∅, and consider the function g =
∑n

i=1(fi−φ(fi))2 ∈ A(X). Then,
g(x) ≥ nε2 > 0 and φ(g) = 0, which contradicts the positivity of φ. Therefore, W ∩δ(X) ̸= ∅
and δ(X) is weak star dense in S(X).

Lemma 5.44 The following are equivalent:

(i) φ ∈ S(X) has a countable neighborhood basis.

(ii) There exists x ∈ X such that φ = δx

Proof. Assume (ii), and consider a countable neighborhood basis (Vn) for x ∈ X such that

φ = δX . Proposition 5.41 implies that (δ(Vn)
w∗

) is a weak-star neighborhood basis for φ.
Conversely, assume φ ∈ S(X) \ δ(X) has such a neighborhood basis. By Proposition 5.43,
there exist a sequence (xn) in X such that δxn converges to φ in the weak-star topology
of S(X). This implies, by completeness of (X, d), that (xn) has no Cauchy sub-sequence,
otherwise such a sub-sequence would be convergent to x ∈ X, which would contradict the fact
that φ /∈ δ(X), as the weak-star topology of the dual cone of an extended asymmetric normed
space is T1. Therefore, there exists ε > 0 and a sub-sequence (xnk

) such that d(xnk
, xnj

) ≥ ε
whenever k ̸= j. Define A = {xnk

: k is odd} and B = {xnk
: k is even}. Since G∞

+ (X) is

uniformly separating, we can find f ∈ G∞
+ (X) such that f(A) ∩ f(B) = ∅, but, since (xn)

converges to φ in the weak star topology, we have that f(xn) converges (in the | · |-topology
of R) to φ(f), which then must belong to ∈ f(A) ∩ f(B).

We can now proceed to the proof of Theorem 5.38.

Proof. Let T : A(Y ) → A(X) be a positive isomorphism of extended asymmetric normed
algebras, and consider the dual mapping T ∗ : A(X)∗ → A(Y )∗ defined by the formula

⟨T ∗φ, f⟩ = ⟨φ, Tf⟩ for all f ∈ A(Y ).
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This definition automatically yields that T ∗ is well defined, linear, bijective and w∗-w∗ con-
tinuous. The algebraic properties of T , along with the assumed positivity, guarantee that
T ∗ sends positive and multiplicative functionals to positive and multiplicative functionals.
Moreover, Lemma 5.44 ensures that T ∗ sends δ(X) into δ(Y ). Then, we can define τ : X → Y
as τ(x) = δ−1

Y T ∗(δX(x)), where δX and δY are the corresponding embeddings of X and Y into
A(X) and A(Y ). Injectivity of τ follows from the fact that T is surjective and that G∞

+ (X)
is separating for dX , and surjectivity follows directly from the properties of T ∗. Finally,
hypothesis (ii) guarantees that τ ∈ F(X, Y ). The same argument for the isomorphism T−1

yields that τ−1 ∈ F(Y,X). The formula Tf = f ◦ τ follows from the definition of τ .

Before we can apply this result to the spaces D∞(X) and D∞
SL(X) ∩ C(X), we need

to ensure that hypothesis (ii) of Theorem 5.38 is satisfied. Let us denote by D∞
+ (X) and

D∞
SL+(X) the respective cones of non-negative functions.

Lemma 5.45 Let (X, dX) and (Y, dY ) be metric spaces and h : X → Y . The following are
equivalent:

(1) h : X → Y is pointwise Lipschitz.

(2) For every f ∈ D∞
+ (Y ), f ◦ h ∈ D∞

+ (X).

(3) For every f ∈ D∞
SL+(Y ), f ◦ h ∈ D∞

SL+(X).

Proof. We start with (1) implies (3). Fix f ∈ D∞
SL+(Y ), x0 ∈ X and let y0 = h(x0). Since

f ∈ DSL(Y ), there exists α > 0 and δ > 0 such that, whenever dY (y0, y) < δ, we have

du(f(y0), f(y)) ≤ αdY (y0, y).

As h ∈ D(X, Y ), there exists β > 0 and δ′ > 0 such that, whenever dX(x0, x) < δ′, we have

dY (h(y0), h(y)) ≤ βdX(x0, x) ≤ βδ′.

Now, we take δ′′ such that 0 < δ′′ < min{δ′, δ
β
}. It follows that if dX(x0, x) < δ′′, then

dY (h(x0), h(x)) ≤ βdX(x0, x) < βδ′′ ≤ δ,

which implies that
du(f(h(x0)), f(h(x))) ≤ αβdX(x0, x),

so f ◦ h ∈ DSL(X). Since f ◦ h is clearly bounded and non-negative, we conclude f ◦ h ∈
D∞

SL+(X). The same argument can be used to prove that (1) implies (2).
To see that (3) implies (1), for every q ∈ Y consider the function fq(y) = min{dY (q, y), 1},
which is Lipschitz of constant 1, which implies that SLipfq(y) ≤ 1 for all y ∈ Y (see
inequality (5.3)). In particular, for every x0 ∈ X, we can take y0 = h(x0), and have
SLipfy0(h(x0)) ≤ 1, which implies fy0 ◦ h belongs to D∞

SL+(X) and therefore,

SLip(fy0 ◦ h)(x0) = lim sup
x→x0

du(fy0 ◦ h(x0), fy0 ◦ h(x))
dX(x0, x)

< +∞.
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On the other hand, when x is close enough to x0:

du(fy0 ◦ h(x0), fy0 ◦ h(x)) = du(0, dY (h(x0), h(x))) = dY (h(x0), h(x)).

It follows that

lim sup
x→x0

dY (h(x0), h(x))

dX(x0, x)
= SLip(fy0 ◦ h)(x0) < +∞.

Corollary 5.46 Theorem 5.38 can be applied to the following classes of spaces of real-valued
functions G∞(X).

(a) Cb(X) of bounded, continuous functions on a completely metrizable topological space
X, endowed with the supremum norm. In this case, τ will be an homemorphism.

(b) D∞(X), of bounded pointwise Lipschitz functions with bounded pointwise Lipschitz con-
stant on a complete metric space X, endowed with the norm ∥f∥ = max{∥f∥∞, ∥Lip(f)∥∞}.
In this case, τ will be a pointwise Lipschitz homeomorphism.

(c) D∞
SL(X) ∩ C(X), of bounded continuous functions with bounded metric slope on a

complete metric space X, endowed with the norm ∥f∥ = max{∥f∥∞, ∥SLip(f)∥∞}. In
this case, τ will be a pointwise Lipschitz homeomorphism.

(d) C1
b (X ), of bounded functions with bounded derivative on a connected, reversible and

complete Finsler manifold X , endowed with the norm ∥f∥ = max{∥f∥∞, ∥df∥∞}. In
this case, τ will be a bi-Lipschitz diffeomorphism.

(e) SC1
b (X ), of bounded semi-Lipschitz functions of class C1 on a connected and bicomplete

Finsler manifold, endowed with the norm ∥f∥ = max{∥f∥∞, ∥df |∞}. In this case, τ will
be a semi-Lipschitz diffeomorphism. (To apply Theorem 5.38, the metric dX has to be
the symmetrization of the Finsler quasi-metric. We remark that the separation property
holds due to every semi-Lipschitz function on a Finsler manifold being continuous.)

(f) LIP∞(X)}, of bounded Lipschitz functions on a complete metric space, endowed with
the norm ∥f∥ = max{∥f∥∞,LIP(f). In this case, τ will be a Lipschitz homeomorphism.

(g) lip(X) of little Lipschitz functions on a compact and purely 1-unrectifiable metric space
X (see Theorem 2.82), endowed with the norm ∥f∥ = max{∥f∥∞,LIP(f)}. In this
case, τ will be a Lipschitz homeomorphism.

5.2.3 Lipschitz version

Several of the examples of Corollary 5.46 could be improved upon, for example, adding
some form of quantitative control over the homeomorphism τ . This approach makes sense
when τ is, for instance, a Lipschitz homeomorphism, but not when τ is only a topological
homeomorphism. In order to refine these results, we need to add stronger hypothesis that
will yield stronger conclusions, at the expense of reducing the scope of the result.
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Theorem 5.47 Let (X, dX) and (Y, dY ) be complete metric spaces, let F(X, Y ) be a subset
of C(X, Y ), and let G(X) and G(Y ) be subcones of LIP(X) and LIP(Y ), respectively, such
that:

(i) For Z ∈ {X, Y }, the subcone G∞
+ (Z) := G(Z)∩L∞(Z)∩[0,∞)Z is endowed with a conic

norm ∥ · |Z which satisfies ∥ · |Z ≥ max{LIP(·), ∥ · ∥∞}, and which makes G∞
+ (Z) into a

unital normed conic-semiring under the usual addition and multiplication of real-valued
functions.

(ii) h ∈ F(X, Y ) if and only if f ◦ h ∈ G∞
+ (X) for all f ∈ G∞

+ (Y ).

(iii) G∞
+ (X) (respectively G∞

+ (Y )) is uniformly separating for (X, dX) (respectively (Y, dY )),
in the sense that, for every pair of subsets A and B of X, with dX(A,B) > 0, there

exists some f ∈ G∞
+ (X) such that f(A)

|·|
∩ f(B)

|·|
= ∅.

(iv) There exists a constant C ≥ 1 such that for every pair of points w, z ∈ Y , there exists
a function f ∈ G∞

+ (Y ) with ∥f | ≤ C such that f(z)− f(w) = dY (w, z).

Denote A(X) = span(G∞
+ (X)), endowed with the extended asymmetric norm associated with

G∞
+ (X), and its natural algebra structure, and let T : A(Y ) → A(X) be a positive iso-

morphism of extended asymmetric normed algebras. Then, there exists τ ∈ F(X, Y ), with
τ−1 ∈ F(Y,X), and such that

Tf = f ◦ τ

for all f ∈ G∞(Y ), and such that LIP(τ) ≤ C∥T|.

Proof. Clearly, all hypothesis for Theorem 5.38 are met. It only remains to prove the bound
on the Lipschitz constant of τ . Take two points a, b ∈ X, and let us estimate dY (τ(a), τ(b)).
Condition (iv) allows us to take f ∈ G∞

+ (Y ) with LIP(f) ≤ C such that f(τ(a))− f(τ(b)) =
dY (τ(a), τ(b)). The composition formula yields that

dY (τ(a), τ(b)) = Tf(a)− Tf(b).

Since the function Tf is Lipschitz and LIP(Tf) ≤ ∥Tf | (by hypothesis (i)), we have that

dY (τ(a), τ(b)) ≤ ∥Tf |dX(a, b) ≤ ∥f |∥T |dX(a, b) ≤ C∥T |dX(a, b),

which implies τ is C∥T |-Lipschitz.

Remark 5.48 In what follows, the least constant C satisfying condition (iv) of Theorem 5.47
will be called the separation constant of the family G∞

+ (Y ).

Corollary 5.49 For the following classes of spaces of real-valued functions G∞(X), we
can obtain a quantitative bound on the homeomorphism τ : X → Y obtained in terms
of the separation constant C and the norm of the isomorphism T . Let us denote K =
Cmax{∥T |, ∥T−1|}.
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(a) C1
b (X ), of bounded functions with bounded derivative on a connected, complete and

reversible Finsler manifold X , endowed with the norm ∥f∥ = max{∥f∥∞, ∥df∥∞}, ob-
taining a Lipschitz diffeomorphism τ satisfying

max{∥dτ∥∞, ∥dτ−1∥∞} ≤ K.

(b) LIP∞(X), of bounded Lipschitz functions on a complete metric space, endowed with the
norm ∥f∥ = max{∥f∥∞,LIP(f)}, obtaining a Lipschitz homeomorphism τ satisfying

max{LIP(τ),LIP(τ−1)} ≤ K.

(c) lip(X) of little Lipschitz functions on a compact and purely 1-unrectifiable metric space
X, endowed with the norm ∥f∥ = max{∥f∥∞,LIP(f)}, obtaining a Lipschitz homeo-
morphism τ satisfying

max{LIP(τ),LIP(τ−1)} ≤ K.

In all the examples above the separation constant is C = 1. In the Lipschitz case, this
can be proved using distance functions. For the case of Riemannian and Finsler manifolds,
this can be achieved by using smooth approximations. For locally flat Lipschitz functions,
it can be deduced from the fact that, for boundedly compact metric spaces, the separation
factor (in the sense of Definition 2.80) is always 1 (see [42, Corollary 4.40]).

It follows that in all three cases of Corollary 5.49, we have K = 1 whenever the isomor-
phism T is in fact an isometry, which implies τ is also an isometry.

Remark 5.50 In all cases mentioned in Corollary 5.49, the hypothesis of positivity of T
is unnecessary. Indeed, all algebras mentioned above are known to be closed under bounded
inversions (see Proposition 2.79 for the case of little Lipchitz functions). This can be used
to prove that every φ in the structure space S(X) is positive (using the same argument as in
Proposition 5.16), which guarantees that the dual operator T ∗ sends S(X) into S(Y ), thus
eliminating the need for positivity of T .

5.2.4 Pointwise Lipschitz version

Our last result deals with pointwise Lipschitz functions and functions with bounded metric
slopes. In order to obtain a bound on the pointwise Lipschitz constant of the desired homeo-
morphism between metric spaces (X, dX) and (Y, dY ), we will need an additional hypothesis.

Definition 5.51 A metric space (X, d) is called uniformly locally radially quasi-convex
if there exists a constant K > 0 such that for every x0 ∈ X there exists a neighborhood Ux0
of x0 such that for every y ∈ Ux0 there exists a rectifiable curve γ in Ux connecting x and y
and such that ℓ(γ) ≤ Kd(x, y).

Notice that, unlike in Definition 5.35, Definition 5.51 requires for the constant K to be
uniform over X.
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Finally, we will use the following lemma, which is an adaptation of the one presented in
[21, Lemma 2.3] for functions with bounded pointwise Lipschitz constant. The statement
and proof of the lemma have been modified in order to work with continuous functions with
bounded pointwise semi-Lipschitz constant.

Lemma 5.52 Let (X, d) be a metric space and let f ∈ DSL(X) ∩ C(X). Let x, y ∈ X and
suppose there exists a rectifiable curve γ : [a, b] → X such that γ(a) = x and γ(b) = y. Then,

f(y)− f(x) ≤ ∥SLip(f)∥∞ℓ(γ),

where ℓ(γ) denotes the length of the curve γ.

Proof. Let K = ∥SLip(f)∥∞ < +∞. For ε > 0, let us denote K ′ = K + ε. Since
SLip f(γ(a)) < K ′, there exists δ > 0 such that, whenever d(γ(a), x) < δ, we have that

f(γ(a))− f(x) ≤ K ′d(γ(a), x).

By continuity of γ, there exists t∗ ∈ (a, b] such that d(γ(a), γ(t∗)) < δ, and therefore

f(γ(a))− f(γ(t∗)) ≤ K ′d(γ(a), γ(t∗)) ≤ K ′ℓ(γ|[a,t∗]).

Let us consider the set

A = {t ∈ (a, b] : f(γ(a))− f(γ(t)) ≤ K ′ℓ(γ|[a,t])},

which is clearly non empty (as t∗ ∈ A) and bounded by above, so we can consider s = sup(A).
Let us check that s belongs to A. By definition of s, there exists a sequence (tn) ⊂ A such
that (tn) → s and f(γ(a)) − f(γ(tn)) ≤ K ′ℓ(γ|[a,tn]). By continuity of f , we conclude that
f(γ(a)) − f(γ(s)) ≤ K ′ℓ(γ|[a,s]). Next, we shall prove that s = b. If this were not the case,
we would have a < s < b, and since SLip f(γ(s)) < K ′, we can take t∗ ∈ (s, b] satisfying

f(γ(s))− f(γ(t∗)) ≤ K ′ℓ(γ|[s,t∗]).

Then,

f(γ(a))− f(γ(t∗)) = f(γ(a))− f(γ(s)) + f(γ(s))− f(γ(t∗))

≤ K ′ℓ(γ|[a,s]) +K ′ℓ(γ|[s,t∗])
= K ′ℓ(γ|[a,t∗]),

which implies t∗ ∈ A, contradicting the fact that s = sup(A). Having proved that s = b, the
fact that s ∈ A yields the desired result.

Theorem 5.53 . Let (X, dX) and (Y, dY ) be complete uniformly locally radially quasi-
convex metric spaces, and let G(X) and G(Y ) be subcones of C(X) ∩DSL(X) and C(Y ) ∩
DSL(Y ), respectively, such that:

(i) For Z ∈ {X, Y }, the subcone G∞
+ (Z) := G(Z) ∩ L∞(Z) ∩ [0,∞)Z is endowed with

a conic norm ∥ · |Z which satisfies ∥ · |Z ≥ max{∥SLip(·)∥∞, ∥ · ∥∞}, and which make
G∞
+ (Z) into a unital normed conic-semiring under the usual addition and multiplication

of real-valued functions.
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(ii) h : X → Y is pointwise Lipschitz if and only if f ◦ h ∈ G∞
+ (X) for all f ∈ G∞

+ (Y ).

(iii) G∞
+ (X) (respectively G∞

+ (Y ))) is uniformly separating for (X, dX) (respectively (Y, dY )),
in the sense that, for every pair of subsets A and B of X, with dX(A,B) > 0, there

exists some f ∈ G∞
+ (X) such that f(A)

|·|
∩ f(B)

|·|
= ∅.

(iv) There exists a constant C ≥ 1 such that for every pair of points w, z ∈ Y , there exists
a function f ∈ G∞

+ (Y ) with ∥f | ≤ C such that f(z)− f(w) = dY (w, z).

Denote A(X) = span(G∞
+ (X)), endowed with the extended asymmetric norm associated with

G∞
+ (X), and its natural algebra structure, and let T : A(Y ) → A(X) be a positive isomor-

phism of extended asymmetric normed algebras. Then, there exists a pointwise Lipschitz
homeomorphism τ : X → Y such that

Tf = f ◦ τ

for all f ∈ G∞(Y ), and such that

∥Lip(τ)∥∞ ≤ KXC∥T |,

where KX > 0 is the constant associated with he uniform local radial quasi-convexity of X.

Proof. Clearly, all hypothesis for Theorem 5.38 are met. It only remains to prove the bound
on the pointwise Lipschitz constant of τ . Fix a non isolated point x0 ∈ X, and let Ux0 and
K be the neighborhood and constant given by the uniform local radial quasi-convexity of X.
Then, for any point x ∈ Ux0 , let γx : [a, b] → Ux0 be a rectifiable curve such that γx(a) = x0
and γx(b) = x. Using hypothesis (iv) of Theorem 5.53, take f ∈ G∞

+ (Y ) with ∥f | ≤ C such
that f(τ(x))− f(τ(x0)) = dY (τ(x0), τ(x)). Using the composition formula, we get

dY (τ(x0), τ(x)) = Tf(x0)− Tf(x)

Next, we apply Lemma 5.52 to the function Tf and the curve γx connecting x0 and x,
obtaining that

dY (τ(x0), τ(x)) ≤ ∥SLip(Tf)∥∞ℓ(γx).

Since ∥SLip(Tf)∥∞ ≤ ∥Tf | ≤ ∥T |∥f | ≤ C∥T | and ℓ(γx) ≤ KdX(x0, x), we conclude that

dY (τ(x0), τ(x)) ≤ KC∥T |dX(x0, x) for any x ∈ Ux0 ,

which implies Lip(τ)(x0) ≤ KC∥T |.

Remark 5.54 This result is valid for functions with values in R with either the usual metric
d or the quasi-metric du, in which cases SLip(·) = Lip(·) and SLip(·) = |∂(·)|+, respectively.

Corollary 5.55 Theorem 5.53 can be applied to the following spaces, provided X is a com-
plete and uniformly locally radially quasi-convex:
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(a) G(X) = D(X) of functions with bounded pointwise Lipschitz constant.

(b) G(X) = DSL(X) ∩ C(X) of continuous functions with bounded metric slope.

In both cases, the homeomorphism τ is pointwise Lipschitz, with

∥Lip(τ)∥∞ ≤ KXC∥T |,

where KX > 0 is the constant associated with he uniform local radial quasi-convexity of X.

Remark 5.56 In all cases mentioned in Corollary 5.55, the hypothesis of positivity of T is
unnecessary. It was shown in [21] that the algebra D∞(X) is closed under bounded inversions,
which is also known for LIP∞(X). Following the arguments of Proposition 5.16, it can be
proven that every φ in the structure space S(X) is positive which guarantees that the dual
operator T ∗ maps S(X) into S(Y ), thus eliminating the need for positivity of T . The same
argument works for DSL(X).

Corollary 5.57 If the separation constant C in hypothesis (iv) of Theorem 5.47 is 1 and T is
an isometric isomorphism of extended asymmetric normed algebras, then τ is an isometry. If
the separation constant C in hypothesis (iv) of Theorem 5.53 is 1, as well as the constants KX

and KY associated with the uniform local radial quasi-convexity of X and Y , respectively, and
T is an isometric isomorphism of extended asymmetric normed algebras, then τ is a pointwise
isometry.
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1-unrectifiable metric spaces and locally flat lipschitz functions. Transactions of the
American Mathematical Society, 375(05):3529–3567, 2022.

[4] Ramón J Aliaga, Colin Petitjean, and Antońın Procházka. Embeddings of lipschitz-free
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[25] M Isabel Garrido, Jesús A Jaramillo, and Yenny C Rangel. Smooth approximation of
lipschitz functions on finsler manifolds. Journal of Function Spaces and Applications,
2013, 2013.

[26] Stéphane Gaubert and Guillaume Vigeral. A maximin characterisation of the escape rate
of non-expansive mappings in metrically convex spaces. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 152, pages 341–363. Cambridge University
Press, 2012.

[27] Alexandre Godard. Tree metrics and their lipschitz-free spaces. Proceedings of the
American Mathematical Society, 138(12):4311–4320, 2010.

[28] Gilles Godefroy. A survey on lipschitz-free banach spaces. Commentationes Mathemat-
icae, 55(2), 2015.

104



[29] Gilles Godefroy and Nigel J Kalton. Lipschitz-free banach spaces. Studia Mathematica,
159:121–141, 2003.

[30] Miguel Angel Javaloyes, Leandro Lichtenfelz, and Paolo Piccione. Almost isometries of
non-reversible metrics with applications to stationary spacetimes. Journal of Geometry
and Physics, 89:38–49, 2015.

[31] Klaus Keimel and Walter Roth. Ordered cones and approximation. Lecture Notes in
Mathematics, 1992.

[32] Djuro R Kurepa. Tableaux ramifiés d’ensembles. espaces pseudo-distanciés. CR Acad.
Sci. Paris, 198:1563–1565, 1934.
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d’analyse numérique et de théorie de l’approximation, 30(1):61–67, 2001.

[34] Sumner B Myers. Algebras of differentiable functions. Proceedings of the American
Mathematical Society, 5(6):917–922, 1954.

[35] Sumner B Myers and Norman Earl Steenrod. The group of isometries of a riemannian
manifold. Annals of Mathematics, pages 400–416, 1939.

[36] Mitsuru Nakai. Algebras of some differentiable functions on riemannian manifolds. In
Japanese journal of mathematics: transactions and abstracts, volume 29, pages 60–67.
The Mathematical Society of Japan, 1959.

[37] Sandra Oltra and Oscar Valero. Isometries on quasi-normed cones and bicompletion.
New Zealand Journal of Mathematics, 33:83–90, 2004.

[38] Walter Rudin. Functional Analysis. Higher mathematics series. McGraw-Hill, 1973.

[39] Yi-Bing Shen and Wei Zhao. Gromov pre-compactness theorems for nonreversible finsler
manifolds. Differential Geometry and its Applications, 28(5):565–581, 2010.

[40] Lynn A. Steen and J Arthur Seebach. Counterexamples in topology, volume 1. Springer,
1978.

[41] Oscar Valero. Quotient normed cones. In Proceedings of the Indian Academy of Sciences-
Mathematical Sciences, volume 116, pages 175–191. Springer, 2006.

[42] Nik Weaver. Lipschitz algebras. World Scientific, 2018.

[43] Stephen Willard. General topology. Courier Corporation, 2012.

[44] Wallace A Wilson. On quasi-metric spaces. American Journal of Mathematics,
53(3):675–684, 1931.

105


	Introduction
	Preliminaries
	Quasi-metric spaces
	Basic definitions
	Topologies of a quasi-metric space
	Cones and conic norms
	Completeness in quasi-metric spaces
	Index of symmetry

	Semi-Lipschitz functions
	Duality on normed cones and asymmetric normed spaces
	Finsler Manifolds
	Lipschitz-free spaces

	Almost isometries between Finsler manifolds
	Smooth semi-Lipschitz functions and almost isometries
	Main result
	Order and topology
	Pointwise behaviour of the isomorphism
	Proof of the main result
	Characterizations of isometries and strict almost isometries


	The semi-Lipschitz free space
	Additional results regarding duality in asymmetric normed spaces
	Construction of the semi-Lipschitz free space
	Main properties
	Linearization of semi-Lipschitz functions: a universal property
	Preservation of index of symmetry
	Relation with molecules and the Kantorovich-Rubinstein norm

	Canonical asymmetrizations and free spaces
	Relation with the semi-Lipschitz free space
	Properties (S) and (S*)

	Examples of semi-Lipschitz free spaces
	A 3-point quasi-metric space
	N as a quasi-metric space
	The quasi-metric space (R,u)
	Canonic asymmetrization of subsets of R-trees.

	Locally flat semi-Lipschitz functions

	Asymmetric structures and Banach-Stone type results
	A Myers-Nakai theorem for non reversible Finsler manifolds
	Algebraic challenges
	New asymmetric structures
	Main result

	An abstract Banach-Stone type theorem
	Point-wise Lipschitz functions and metric slopes
	Topological version
	Lipschitz version
	Pointwise Lipschitz version


	Bibliography

