Now showing items 1-3 of 3

    • Additive representation of symmetric inverse M-matrices and potentials 

      Dellacherie, Claude; Martínez Aguilera, Servet; San Martín Aristegui, Jaime (Academic Press-Elsevier, 2016)
      In this article we characterize the closed cones respectively generated by the symmetric inverse M-matrices and by the inverses of symmetric row diagonally dominant M-matrices. We show the latter has a finite number of ...
    • THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS 

      Dellacherie Lefebvre, Claude; Martínez Aguilera, Servet; San Martín Aristegui, Jaime (Society for Industrial and Applied Mathematics, 2013)
      Given W = M−1, with M a tridiagonal M-matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row ...
    • Potentials of random walks on trees 

      Dellacherie, Claude; Martínez Aguilera, Servet; San Martín Aristegui, Jaime (Elsevier, 2016)
      In this article we characterize inverse M-matrices and potentials whose inverses are supported on trees. In the symmetric case we show they are a Hadamard product of tree ultrametric matrices, generalizing a result by ...