Show simple item record

Calcium carbonate crystallization in tailored constrained environments

Authordc.contributor.authorBeato, C. 
Authordc.contributor.authorFernández, M. S. 
Authordc.contributor.authorFermani, S. 
Authordc.contributor.authorReggi, M. 
Authordc.contributor.authorNeira Carrillo, Andrónico 
Authordc.contributor.authorRao, A. 
Authordc.contributor.authorFalini, G. 
Authordc.contributor.authorArias, J. L. 
Admission datedc.date.accessioned2015-10-15T14:07:45Z
Available datedc.date.available2015-10-15T14:07:45Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationCrystengcomm Vol. 17 No. 31 2015en_US
Identifierdc.identifier.otherDOI: 10.1039/c5ce00783f
Identifierdc.identifier.urihttp://repositorio.uchile.cl/handle/2250/134385
General notedc.descriptionArtículo de publicación ISIen_US
General notedc.descriptionSin acceso a texto completo
Abstractdc.description.abstractSynthesis of inorganic particles using routes inspired by biomineralization is a goal of growing interest. Recently it was demonstrated that the size and geometry of crystallization sites are as important as the structure of charged templating surfaces to obtain particles with controlled features. Most biominerals are formed inside restricted, constrained or confined spaces where at least parts of the boundaries are cell membranes containing phospholipids. In this study, we used a gas diffusion method to determine the effect of different lecithin media on the crystallization of CaCO3 and to evaluate the influence of the spatial arrangement of lecithin molecules on templating CaCO3 crystal formation. By using inorganic synthesis, Raman spectroscopy, dynamic light scattering, electrochemical methods and scanning electron microscopy, we showed that the occurrence of surface-modified calcite crystals and diverse textured vaterite crystals reflects the geometry and spatial distribution of aqueous constrained spaces due to the lecithin assembly controlled by lecithin concentration in an ionized calcium chloride solution under a continuous CO2 diffusion atmosphere. This research shows that by tailoring the assembly of lecithin molecules, as micelles or reversed micelles, it is possible to modulate the texture, polymorphism, size and shape of calcium carbonate crystals.en_US
Patrocinadordc.description.sponsorshipFONDECYT - Chilean Council for Science and Technology (CONICYT) 1120172 Agreement University of Bologna-University of Chile 5788en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherRoyal Soc Chemistryen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectRaman-Spectroscopyen_US
Keywordsdc.subjectReverse- Micellesen_US
Keywordsdc.subjectBiomineralizationen_US
Keywordsdc.subjectPrecipitationen_US
Keywordsdc.subjectModelen_US
Keywordsdc.subjectPhosphatidylcholineen_US
Keywordsdc.subjectNucleationen_US
Keywordsdc.subjectMembranesen_US
Keywordsdc.subjectTemplateen_US
Keywordsdc.subjectProteinsen_US
Títulodc.titleCalcium carbonate crystallization in tailored constrained environmentsen_US
Document typedc.typeArtículo de revistaen_US


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile