Show simple item record

Authordc.contributor.authorLouvet, Fabien 
Authordc.contributor.authorMotte, F. 
Authordc.contributor.authorGusdorf, A. 
Authordc.contributor.authorLu'o'ng, Q. Nguyen 
Authordc.contributor.authorLesaffre, P. 
Authordc.contributor.authorDuarte Cabral, A. 
Authordc.contributor.authorMaury, A. 
Authordc.contributor.authorSchneider, N. 
Authordc.contributor.authorHill, T. 
Authordc.contributor.authorSchilke, P. 
Authordc.contributor.authorGueth, F. 
Admission datedc.date.accessioned2017-12-21T13:56:59Z
Available datedc.date.available2017-12-21T13:56:59Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationA&A 595, A122 (2016)es_ES
Identifierdc.identifier.issn1432-0746
Identifierdc.identifier.other10.1051/0004-6361/201629077
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/146225
Abstractdc.description.abstractAims. Previous literature suggests that the densest structures in the interstellar medium form through colliding flows, but patent evidence of this process is still missing. Recent literature proposes using SiO line emission to trace low-velocity shocks associated with cloud formation through collision. In this paper we investigate the bright and extended SiO(2 1) emission observed along the similar to 5 pc-long W43-MM1 ridge to determine its origin. Methods. We used high angular resolution images of the SiO(2 1) and HCN(1 0) emission lines obtained with the IRAM plateau de Bure (PdBI) interferometer and combined with data from the IRAM 30m radiotelescope. These data were complemented by a Herschel column density map of the region. We performed spectral analysis of SiO and HCN emission line profiles to identify protostellar outflows and spatially disentangle two velocity components associated with low-and high-velocity shocks. Then, we compared the low-velocity shock component to a dedicated grid of one-dimensional (1D) radiative shock models. Results. We find that the SiO emission originates from a mixture of high-velocity shocks caused by bipolar outflows and low-velocity shocks. Using SiO and HCN emission lines, we extract seven bipolar outflows associated with massive dense cores previously identified within the W43-MM1 mini-starburst cluster. Comparing observations with dedicated Paris-Durham shock models constrains the velocity of the low-velocity shock component from 7 to 12 km s(-1). Conclusions. The SiO arising from low-velocity shocks spreads along the complete length of the ridge. Its contribution represents at least 45% and up to 100% of the total SiO emission depending on the area considered. The low-velocity component of SiO is most likely associated with the ridge formation through colliding flows or cloud-cloud collisiones_ES
Patrocinadordc.description.sponsorshipINSU/CNRS (France) MPG (Germany) IGN (Spain)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherEDP Scienceses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstronomy & Astrophysicses_ES
Keywordsdc.subjectISM: jets and outflowses_ES
Keywordsdc.subjectISM: kinematics and dynamicses_ES
Keywordsdc.subjectStars: formationes_ES
Keywordsdc.subjectStars: massivees_ES
Keywordsdc.subjectISM: cloudses_ES
Títulodc.titleTracing extended low-velocity shocks through SiO emission Case study of the W43-MM1 ridgees_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile