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Abstract. We present a radically new indexing approach for approxi-
mate string matching. The scheme uses the metric properties of the edit
distance and can be applied to any other metric between strings. We
build a metric space where the sites are the nodes of the suffix tree of
the text, and the approximate query is seen as a proximity query on that
metric space. This permits us finding the R occurrences of a pattern of
length m in a text of length n in average time O(m log2 n+m2+R), using
O(n log n) space and O(n log2 n) index construction time. This complex-
ity improves by far over all other previous methods. We also show a
simpler scheme needing O(n) space.

1 Introduction and Related Work

Indexing text to permit efficient approximate searching on it is one of the
main open problems in combinatorial pattern matching. The approximate string
matching problem is: Given a long text T of length n, a (comparatively short)
pattern P of length m, and a threshold r, retrieve all the pattern occurrences,
that is, text substrings whose edit distance to the pattern is at most r. The edit
distance between two strings is defined as the minimum number of character in-
sertions, deletions and substitutions needed to make them equal. This distance
is used in many applications, but several other distances are of interest.

In the on-line version of the problem, the pattern can be preprocessed but
the text cannot. There are numerous solutions to this problem [25], but none
is acceptable when the text is too long since the search time is proportional
to the text length. Indexing text for approximate string matching has received
attention only recently. Despite some progress in the last decade, the indexing
schemes for this problem are still rather immature.

There exist some indexing schemes specialized to word-wise searching on
natural language text [21,3]. These indexes perform quite well in that case but
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they cannot be extended to handle the general case. Extremely important ap-
plications such as DNA, proteins, music or oriental languages fall outside this
case.

The indexes that solve the general problem can be divided into three classes.
Backtracking [17,34,11,15] uses the suffix tree [2], suffix array [20] or DAWG [12]
of the text in order to factor out its repetitions. A sequential algorithm on the
text is simulated by backtracking on the data structure. These algorithms take
time exponential on m or r but in many cases independent of n, the text size.
This makes them attractive when searching for very short patterns.

Partitioning [31,30,5] partitions the pattern into pieces to ensure that some
of the pieces must appear without alterations inside every occurrence. An index
able of exact searching is used to detect the pieces and the text areas that
have enough evidence of containing an occurrence are checked with a sequential
algorithm. These algorithms work well only when r/m is small.

The third class [24,6] is a hybrid between the other two. The pattern is
divided into large pieces that can still contain (less) errors, they are searched
for using backtracking, and the potential text occurrences are checked as in the
partitioning methods. The hybrid algorithms are more effective because they
can find the right point between length of the pieces to search for and error
level permitted. Using the appropriate partition of the pattern, these methods
achieve on average O(nλ) search time, for some 0 < λ < 1 that depends on r.
They tolerate moderate error ratios r/m.

We propose in this paper a brand new approach to the problem. We take into
account that the edit distance satisfies the triangle inequality and hence it defines
a metric space on the set of text substrings. We can re-express the approximate
search problem as a range search problem on this metric space. This approach
has been attempted before [8,4], but in those cases the particularities of the
problem made it possible to index O(n) elements. In the general case we have
O(n2) text substrings.

The main contribution of this paper is to devise a method (based on the suf-
fix tree of the text) to meaningfully collapse the O(n2) text substring into O(n)
sets, and to find a way to build a metric space out of those sets. The result is an
indexing method that, at the cost of requiring on average O(n log n) space and
O(n log2 n) construction time, permits finding the R approximate occurrences of
the pattern in O(m log2 n+m2 + R) average time. This is a complexity break-
through over previous work, and it is easier than in other approaches to extend
the idea to other distance functions such as reversals. Moreover, it represents
an original approach to the problem that opens a vast number of possibilities
for improvements. We consider also a simpler version of the index needing O(n)
space and that, despite not involving a complexity breakthrough, promises to be
better in practice.

We use the following notation in the paper. Given a string s ∈ Σ∗ we denote
its length as |s|. We also denote si the i-th character of s, for an integer i ∈
{1..|s|}. We denote si...j = sisi+1 . . . sj (which is the empty string if i > j) and
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si... = si...|s|. The empty string is denoted as ε. A string x is said to be a prefix
of xy, a suffix of yx and a substring of yxz.

2 Metric Spaces

We describe in this section some concepts related to searching metric spaces. We
have concentrated only in the part that is relevant for this paper. There exist
recent surveys if more complete information is desired [10].

A metric space is, informally, a set of black-box objects and a distance func-
tion defined among them, which satisfies the triangle inequality. The problem
of proximity searching in metric spaces consists of indexing the set such that
later, given a query, all the elements of the set that are close enough to the
query can be quickly found. This has applications in a vast number of fields,
such as non-traditional databases (where the concept of exact search is of no
use and we search for similar objects, e.g. databases storing images, fingerprints
or audio clips); machine learning and classification (where a new element must
be classified according to its closest existing element); image quantization and
compression (where only some vectors can be represented and those that cannot
must be coded as their closest representable point); text retrieval (where we look
for documents that are similar to a given query or document); computational
biology (where we want to find a DNA or protein sequence in a database allow-
ing some errors due to typical variations); function prediction (where we want
to search for the most similar behavior of a function in the past so as to predict
its probable future behavior); etc.

Formally, a metric space is a pair (X, d), where X is a “universe” of objects
and d : X × X −→ R

+ is a distance function defined on it that returns non-
negative values. This distance satisfies the properties of reflexivity (d(x, x) = 0),
strict positiveness (x �= y ⇒ d(x, y) > 0), symmetry (d(x, y) = d(y, x)) and
triangle inequality (d(x, y) ≤ d(x, z) + d(z, y)).

A finite subset U of X, of size n = |U|, is the set of objects we search. Among
the many queries of interest on a metric space, we are interested in the so-called
range queries: Given a query q ∈ X and a tolerance radius r, find the set of all
elements in U that are at distance at most r to q. Formally, the outcome of the
query is (q, r)d = {u ∈ U, d(q, u) ≤ r}. The goal is to preprocess the set so as
to minimize the computational cost of producing the answer (q, r)d.

From the plethora of existing algorithms to index metric spaces, we focus on
the so-called pivot-based ones, which are built on a single general idea: Select
k elements {p1, . . . , pk} from U (called pivots), and identify each element u ∈
U with a k-dimensional point (d(u, p1), . . . , d(u, pk)) (i.e. its distances to the
pivots). The index is basically the set of kn coordinates. At query time, map
q to the k-dimensional point (d(q, p1), . . . , d(q, pk)). With this information at
hand, we can filter out using the triangle inequality any element u such that
|d(q, pi)−d(u, pi)| > r for some pivot pi, since in that case we know that d(q, u) >
r without need to evaluate d(u, q). Those elements that cannot be filtered out
using this rule are directly compared against q.
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An interesting feature of pivot-based algorithms is that they can reduce the
number of final distance evaluations by increasing the number of pivots. Define
Dk(x, y) = max1≤j≤k |d(x, pj) − d(y, pj)|. Using the pivots p1, ..., pk is equivalent
to discarding elements u such that Dk(q, u) > r. As more pivots are added
we need to perform more distance evaluations (exactly k) to compute Dk(q, ∗)
(these are called internal evaluations), but on the other hand Dk(q, ∗) increases
its value and hence it has a higher chance of filtering out more elements (those
comparisons against elements that cannot be filtered out are called external). It
follows that there exists an optimum k.

If one is not only interested in the number of distance evaluations performed
but also in the total cpu time required, then scanning all the n elements to filter
out some of them may be unacceptable. In that case, one needs multidimensional
range search methods, which include data structures such as the kd-tree, R-
tree, X-tree, etc. [36,14]. Those structures permit indexing a set of objects in
k-dimensional space in order to process range queries.

In this paper we are interested in a metric space where the universe is the
set of strings over some alphabet, i.e. X = Σ∗, and the distance function is the
so-called edit distance or Levenshtein distance. This is defined as the minimum
number of character insertions, deletions and substitutions necessary to make
two strings equal [19,25]. The edit distance, and in fact any other distance de-
fined as the best way to convert one element into the other, is reflexive, strictly
positive (as long as there are no zero-cost operations), symmetric (as long as the
operations allowed are symmetric), and satisfies the triangle inequality.

The algorithm to compute the edit distance ed() is based on dynamic pro-
gramming. Imagine that we need to compute ed(x, y). A matrix C0..|x|,0..|y| is
filled, where Ci,j = ed(x1..i, y1..j), so C|x|,|y| = ed(x, y). This is computed as

Ci,0 = i, C0,j = j,

Ci,j = if (xi = yj) then Ci−1,j−1 else 1 + min(Ci−1,j , Ci,j−1, Ci−1,j−1)

The algorithm takes O(|x||y|) time. The matrix can be filled column-wise or
row-wise (there are more sophisticated ways as well). For reasons that will be
made clear later, we prefer the row-wise filling. The space required is only O(|y|),
since only the previous row must be stored in order to compute the new one,
and therefore we just keep one row and update it.

3 Text Indexing

Suffix trees are widely used data structures for text processing [2,1]. Any position
i in a text T defines a suffix of T , namely Ti.... A suffix trie is a trie data structure
built over all the suffixes of T . At the leaf nodes the pointers to the suffixes are
stored. Every substring of T can be found by traversing a path from the root.
Roughly speaking, each suffix trie leaf represents a suffix and each internal node
represents a different substring of T .

To improve space utilization, this trie is compacted into a Patricia tree [23]
by compressing unary paths. The edges that replace a compressed path store
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the whole string that they represent (via two pointers to their initial and final
text position). Once unary paths are not present the trie, now called suffix tree,
has O(n) nodes instead of the worst-case O(n2) of the trie. The suffix tree can
be directly built in O(n) time [22,35]. Any algorithm on a suffix trie can be
simulated at the same cost in the suffix tree.

We call explicit those suffix trie nodes that survive in the suffix tree, and
implicit those that are collapsed. Figure 1 shows the suffix trie and tree of the
text "abracadabra". Note that a special endmarker "$", smaller than any other
character, is appended to the text so that all the suffixes are external nodes.
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Fig. 1. The suffix trie, suffix tree and suffix array of the text "abracadabra".

The figure shows the internal nodes of the trie (numbered 0 to 9 in italics
inside circles), which represent text substrings that appear more than once,
and the external nodes (numbered 1 to 11 inside squares), which represent text
substrings that appear just once. Those leaves do not only represent the unique
substrings but all their extensions until the full suffix. In the suffix tree, only
some internal nodes are left, and they represent the same substring as before
plus the prefixes that may have been collapsed. For example the internal node
(7) of the suffix tree represents now the compressed nodes (5) and (6), and hence
the strings "b", "br" and "bra". The external node (1) represents "abrac", but
also "abraca", "abracad", etc. until the full suffix "abracadabra".
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Finally, the suffix array [20] is a more compact version of the suffix tree,
which requires much less space and poses a small penalty over the search time.
If the leaves of the suffix tree are traversed in left-to-right order, all the suffixes of
the text are retrieved in lexicographical order. A suffix array is simply an array
containing all the pointers to the text suffixes listed in lexicographical order, as
shown in Figure 1. The suffix array stores one pointer per text position.

The suffix array can be directly built (without building the suffix tree) in
O(n log n) worst case time and O(n log logn) average time [20]. While suffix
trees are searched as tries, suffix arrays are binary searched. However, almost
every algorithm on suffix trees can be adapted to work on suffix arrays at an
O(log n) penalty factor in the time cost. This is because each subtree of the suffix
tree corresponds to an interval in the suffix array, namely the one containing all
the leaves of the subtree. To follow an edge of the suffix trie, we use binary search
to find the new limits in the suffix array. For example, the internal node (7) in
the suffix tree corresponds to the interval 〈6, 7〉 in the suffix array. Note that
implicit nodes have the same interval than their representing explicit node.

4 Our Algorithm

4.1 Indexing

A straightforward approach to text indexing for approximate string matching
using metric spaces techniques has the problem that, in principle, there areO(n2)
different substrings in a text, and therefore we should index O(n2) objects, which
is unacceptable.

The suffix tree provides a concise representation of all the substrings of a
text in O(n) space. So instead of indexing all the text substrings, we index only
the (explicit) suffix tree nodes. Therefore, we have O(n) objects to be indexed
as a metric space under the edit distance.

Now, each explicit internal node represents itself and the nodes that descend
to it by a unary path. Hence, each explicit node that corresponds to a string xy
and its parent corresponds to the string x represents the following set of strings

x[y] = {xy1, xy1y2, . . . , xy}

where x[y] is a notation we have just introduced. For example, the internal node
(4) in Figure 1 represents the strings "a[bra]" = {”ab”, ”abr”, ”abra”}.

The leaves of the suffix tree represent a unique text substring and all its
extensions until the full text suffix is obtained. Hence, if T = zxy and x is a
unique text substring (whose prefixes are not unique), then the corresponding
suffix tree node is an explicit leaf, which for us represents the set {x} ∪ x[y].
Table 1 shows the substrings represented by each node in our running example.
Note that the external nodes that descend by the terminator character "$", i.e.
e(8–11), represent a substring that is also represented at its parent and hence it
can be disregarded.
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Node Suffix trie Suffix tree Node Suffix trie/tree

i(0) ε ε e(1) abra[cadabra]

i(1) a [a] e(2) bra[cadabra]

i(2) ab e(3) ra[cadabra]

i(3) abr e(4) a[cadabra]

i(4) abra a[bra] e(5) [cadabra]

i(5) b e(6) a[dabra]

i(6) br e(7) [dabra]

i(7) bra [bra] e(8) abra

i(8) r e(9) bra

i(9) ra [ra] e(10) ra
e(11) a

Table 1. The text substrings represented by each node of the suffix trie and
tree of Figure 1. Internal nodes are represented as i(x) and externals as e(x).

Hence, instead of indexing all the O(n2) text substrings, we index O(n) sets
of strings, which are the sets represented by the explicit internal and the external
nodes of the suffix tree. In our example, this set is U = {ε, [a], a[bra], [bra], [ra],
abra[cadabra], bra[cadabra], ra[cadabra], a[cadabra], [cadabra], a[dabra],
[dabra]}.

We have now to decide how to index this metric space formed by O(n) sets
of strings. Many options are possible, but we have concentrated on a pivot based
approach. We select at random k different text substrings that will be our pivots.
For reasons that are made clear later, we choose to select pivots of lengths 0,
1, 2, · · · , k − 1. For each explicit suffix tree node x[y] and each pivot pi, we
compute the distance between pi and all the strings represented by x[y]. From
the set of distances from a node x[y] to pi, we store the minimum and maximum
ones. Since all these strings are of the form {xy1...yj , 1 ≤ j ≤ |y|}, all the edit
distances can be computed in O(|pi||xy|) time.

Following our example, let us assume that we have selected k = 5 pivots
p0 = "", p1 = "a", p2 = "br", p3 = "cad" and p4 = "raca". Figure 2 (left)
shows the computation of the edit distances between i(4) = "a[bra]" and p3 =
"cad". The result shows that the minimum and maximum values of this node
with respect to this pivot are 2 and 4, respectively.

In the case of external suffix tree nodes, the string y tends to be quite long
(O(n) length on average), which yields a very high computation time for all the
edit distances and anyway a very large value for the maximum edit distance (note
that ed(pi, xy) ≥ |xy| − |pi|). We solve this by pessimistically assuming that the
maximum distance is n when the suffix tree node is external. The minimum edit
distance can be found in O(|pi|max(|pi|, |x|)) time, because it is not necessary
to consider arbitrarily long strings xy1...yj : If we compute the matrix row by
row, then after having processed x we have a minimum value seen up to now, v.
Then there is no point in considering rows j such that |x| + j − |pi| > v. Hence
we work until row j = v + |pi| − |x| ≤ |pi|.
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Fig. 2. The dynamic programming matrix to compute the edit distance between
"cad" and "a[bra]" (left) or "abra[cadabra]" (right). The emphasized area is
where the minima and maxima are taken from.

Figure 2 (right) illustrates this case with e(1) = "abra[cadabra]" and the
same p4 = "cad". Note that to compute the new set of edit distances we have
started from i(4), which is the parent node of e(1) in the suffix tree. This can
always be done in a depth first traversal of the suffix tree and saves construction
time. Note also that it is not necessary to compute the last 4 rows, since they
measure the edit distance between strings of length 8 or more against one of
length 3. The distance cannot be smaller than 5 and we have found at that
point a minimum equal to 4. In fact we just assume that the maximum is 11,
so the minimum and maximum value for this external node and this pivot are
4 and 11. In particular, since when indexing external nodes x[y] we always have
ed(pi, x) already computed, they can be indexed in O(|pi|2) time.

Once this is done for all the suffix tree nodes and all the pivots we have a set
of k minimum and maximum values for each explicit suffix tree node. This can
be regarded as a hyperrectangle in k dimensions:

x[y] → 〈 (min(ed(x[y], p0)), . . . ,min(ed(x[y], pk−1))),
(max(ed(x[y], p0)), . . . ,max(ed(x[y], pk−1))) 〉

where we are sure that all the strings in x[y] lie inside the rectangle. In our
example, the minima and maxima for i(4) with respect to p0 to p4 are 〈2, 4〉,
〈1, 3〉, 〈1, 2〉, 〈2, 4〉 and 〈3, 3〉. Therefore i(4) is represented by the hyperrect-
angle 〈(2, 1, 1, 2, 3), (4, 3, 2, 4, 3)〉. On the other hand, the ranges for e(1) are
〈5, 11〉, 〈4, 11〉, 〈3, 11〉, 〈4, 11〉 and 〈2, 11〉 and its hyperrectangle is therefore
〈(5, 4, 3, 4, 2), (11, 11, 11, 11, 11)〉.

4.2 Searching

Let us now consider a given query P searched for with at most r errors. This
is a range query with radius r in the metric space of the suffix tree nodes. As
for pivot based algorithms, we compare the pattern P against the k pivots and
obtain a k-dimensional coordinate (ed(P, p1), . . . , ed(P, pk)).
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Let pi be a given pivot and x[y] a given node. If it holds that

ed(P, pi) + r < min(ed(x[y], pi)) ∨ ed(P, pi) − r > max(ed(x[y], pi))

then, by the triangle inequality, we know that ed(P, xy′) > r for any xy′ ∈ x[y].
The elimination can be done using any pivot pi. In fact, the nodes that are
not eliminated are those whose rectangle has nonempty intersection with the
rectangle 〈(ed(P, p1)− r, . . . , ed(P, pk) − r), (ed(P, p1) + r, . . . , ed(P, pk) + r)〉.

Figure 3 illustrates. The node contains a set of points and we store its min-
imum and maximum distance to two pivots. These define a (2-dimensional)
rectangle where all the distances from any substring of the node to the pivots
lie. The query is a pattern P and a tolerance r, which defines a circle around P .
After taking the distances from P to the pivots we create a hypercube (a square
in this case) of width 2r+1. If the square does not intersect the rectangle, then
no substring in the node can be close enough to P .
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Fig. 3. The elimination rule using two pivots.

We have to solve the problem of finding all the k-dimensional rectangles
that intersect a given query rectangle. This is a classical multidimensional range
search problem [36,14]. We could for example use some variant of R-trees [16,7],
which would also yield a good data structure to work on secondary memory.

Those nodes x[y] that cannot be eliminated using any pivot must be directly
compared against P . For those whose minimum distance to P is at most r, we
report all their occurrences, whose starting points are written in the leaves of
the subtree rooted by the node that has matched. In our running example, if
we are searching for "abr" with tolerance r = 1, then node i(4) qualifies, so we
report the text positions in the corresponding tree leaves: 1 and 8.

Observe that in order to compare P against a given suffix tree node x[y],
the edit distance algorithm forces us to compare it against every prefix of x as
well. Those prefixes correspond to suffix tree nodes in the path from the root to
x[y]. In order not to repeat work, we mark in the suffix tree the nodes that we
have to compare explicitly against P , and also mark every node in their path
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to the root. Then, we backtrack on the suffix tree entering every marked node
and keeping track of the edit distance between P and the node. The new row is
computed using the row of the parent, just as done with the pivots. This avoids
recomputing the same prefixes for different suffix tree nodes, and incidentally is
similar to the simplest backtracking approach [15], except that in this case we
only follow marked paths. In this respect, our algorithm can be thought of as a
preprocessing to a backtracking algorithm, which filters out some paths.

As a practical matter, note that this is the only step where the suffix tree is
required. We can even print the text substrings that match the pattern without
the help of the suffix tree, but we need it in order to report all their text positions.
For this sake, a suffix array is much cheaper and does a better job (because all
the text positions are listed in a contiguous interval). In fact, the suffix array
can also replace the suffix tree at indexing time.

5 Analysis

Let us first consider the construction cost. The maximum length of a repeated
text substring, or which is the same, the average height of the suffix trie, is
O(log n) [32,29]. Recall also that our pivots are of length O(k). Hence comput-
ing all the kn minima and maxima takes time O(kn × k logn) = O(k2n logn),
where O(k logn) is the time to compute each distance. However, we start the
computation of the edit distances of a node from the last row of its parent. This
reduces the average construction cost to O(k2n), since for each pivot we compute
one dynamic programming row per suffix trie node, and on average the number
of nodes in the suffix trie is O(n) [32,29]. The n leaves are also computed in
O(|pi|2n) = O(k2n) time.

The total space required by the data structure is O(kn), since we need to
store for each explicit node a pointer to the suffix tree and its k coordinates.
The suffix tree itself takes O(n) space.

It remains to determine the average search time. A key element of the anal-
ysis is a constant α, which is the probability that, for a random hyperrectangle
of the set, along some fixed coordinate, the corresponding segment of the query
hypercube intersects with the corresponding segment of the hyperrectangle. An-
other way to put it is that, along that coordinate, the query point falls inside
the hyperrectangle projection onto that coordinate after it is enlarged in r units
along each dimension. In operational terms, α is the probability that some given
pivot (that corresponding to the selected coordinate) does not permit discarding
a given element. Note that α does not depend on k, only on r.

The first part of the search is the computation of the edit distances between
the k pivots and the pattern P of length m. This takes O(k2m) time.

The second part is the search for the rectangles that intersect the query
rectangle. Many analyses of the performance of R-trees exist in the literature
[33,18,26,27,13]. Despite that most of them deal with the exact number of disk
accesses, their abstract result is that the expected amount of work on the R-tree
(and variants such as the KDB-tree [28]) is O(nαk log n).
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The third part, finally, is the direct check of the pattern against the suffix
tree nodes whose rectangles intersect the query rectangle. Since we discard using
any of k random pivots, the probability of not discarding a node is αk. As there
are O(n) suffix tree nodes, we check on average αkn nodes, with a total cost of
O(αkn×m2). The m2 is the cost to compute the edit distance between a pattern
of length m and a candidate whose length must be between m − r and m + r.
This is because the pivot ε removes all shorter or longer candidates.

At the end, we report the R results in O(R) time using a suffix tree traversal.
Hence our total average cost is bounded by k2m + nαk logn+ nαkm2 +R for
0 ≤ α ≤ 1. This is optimized for k∗ = log1/α n + O(log log n) ≥ log1/α n =
Θ(log n).

If we use log1/α n pivots the search cost becomes O(m log2 n +m2 + R) on
average. Note that the influence of the search radius r is embedded in α. This
is much better complexity than all previous work, which obtains O(mnλ) time
for some 0 < λ < 1. Moreover, much of previous work requires m = Ω(log n) to
obtain sublinearity, while our approach does not.

The price is in the construction time and space, which become O(n log2 n)
and O(n log n), respectively. Especially the latter can be prohibitive and we may
have to content ourselves with a smaller k. There seems to be no good tradeoff
between space and time, e.g., to obtain O(nλ) time we also need Θ(log n) pivots.
Most other indexes require O(n) space and construction time.

Finally, it is worth mentioning that, since we automatically discard any in-
ternal node not in the length [m− r,m+ r] thanks to the pivot p0 = ε, there is
a worst-case limit σm+r on the number of suffix tree nodes to consider for the
last phase. Although this limit is exponential on m and r, it is independent of
n. Other indexing schemes based on the suffix tree share the same property.

6 Towards a Practical Implementation

Despite that we have obtained an important reduction in time complexity with
respect to n and m, our result is hiding a multiplying factor that depends on the
search radius. It is possible that this constant is too large (that is, α too close
to 1) and makes the whole approach useless. Also, the extra space requirement
(which also increases as α tends to 1) can be unmanageable. In this section
we consider an alternative approach that is simpler and likely to obtain better
results in practice, despite not involving a complexity breakthrough.

6.1 Indexing Only Suffixes

A simpler index that derives from the same ideas of the paper considers only the
n text suffixes and no internal nodes. Each suffix [Tj...] represents all the text
substrings starting at i, and it is indexed according to the minimum distance
between those substrings and each pivot.

The good point of the approach is reduced space. Not only the set U can have
up to half the elements of the original approach, but also only k values (not 2k)
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are stored for each element, since all the maximum values are the same. This
permits using up to four times the number of pivots of the previous approach at
the same memory requirement. Note that we do not even need to build or store
the suffix array: We just read the suffixes from the text and index them. Our
only storage need is that of the metric index.

The bad point is that the selectivity of the pivots is reduced and some redun-
dant work is done. The first is a consequence of storing only minimum values,
while the second is a consequence of not factoring out repeated text substrings.
That is, if some substring P ′ of T is close enough to P and it appears many
times in T , we will have to check all its occurrences one by one.

Without using a suffix tree structure, the construction of the index can be
done in time O(k|pi|n) as follows. The algorithm depicted in Section 2 to compute
edit distance can be modified so as to make C0,j = 0, in which case Ci,j becomes
the minimum edit distance between x1...i and a suffix of y1...j . If x is the reverse
of |pi| and y the reverse of T , then C|pi|,j will be the minimum edit distance
between |pi| and a prefix of Tn−j+1..., which is precisely min(ed(pi, Tn−j+1...)).
So we need O(|pi|n) time per pivot. The space to compute this is just O(|pi|) by
doing the computation column-wise.

6.2 Using an Index for High Dimensions

The space of strings has a distance distribution that is rather concentrated
around its mean µ. The same happens to the distances between a pivot pi

and suffixes [Tj...] or the pattern P . Since we can only discard suffixes [Tj...]
such that ed(pi, P ) + r < min(ed(pi, [Tj...])), only the suffixes with a large
min(ed(pi, [Tj...])) value are likely to be discarded using pi. Storing all the other
O(n) distances to pi is likely to be a waste of space. Moreover, we can use that
memory to introduce more pivots. Figure 4 illustrates.

The idea is to fix a number s and, for each pivot pi, store only the s largest
min(ed(pi, [Tj...])) values. Only those suffixes can be discarded using pivot pi.
The space of this index is O(ks) and its construction time is unchanged. We
can still use an R-tree for the search, although the rectangles will cover all the
space except on s coordinates. The selectivity is likely to be similar since we have
discarded uninteresting coordinates, and we can tune number k versus selectivity
s of the pivots for the same space usage O(ks).

One can go further to obtain O(n) space as follows. Choose the first pivot
and determine its s farthest suffixes. Store a list (in increasing distance order)
of those suffixes and their distance to the first pivot and remove them from
further consideration. Then choose a second pivot and find its s farthest suffixes
from the remaining set. Continue until every suffix has been included in the
list of some pivot. Note that every suffix appears exactly in one list. At search
time, compare P against each pivot pi, and if ed(P, pi) + r is smaller than the
smallest (first) distance in the list of pi, skip the whole list. Otherwise traverse
the list until its end or until ed(P, pi)+ r is smaller than the next element. Each
traversed suffix must be directly compared against P . A variant of this idea has
proven extremely useful to deal with concentrated histograms [9]. It also permits



A Metric Index for Approximate String Matching

ed(p,P)

ed(p,[T(j...)])

+r

Fig. 4. The distance distribution to a pivot p, including that of pattern P . The
grayed area represents the suffixes that can be discarded using p.

efficient secondary storage implementation by packing the pivots in disk pages
and storing the lists consecutively in the same order of the pivots.

Since we choose k = n/s pivots, the construction time is high, namely
O(n2|pi|/s). However, the space is O(n), with a low constant (close to 5 in
practice) that makes it competitive against the most economical structures for
the problem. The search time is O(|pi|mn/s) to compare P against the pivots,
while the time to traverse the lists is difficult to analyze.

The pivots chosen must not be very short, because their minimum distance
to any [Tj...] is at most |pi|. In fact, any pivot not longer than m+ r is useless.

6.3 Using Specific Strings Properties

We can complement the information given by the metric index with knowledge
of the string properties we are indexing. For example, if suffix [Tj...] is proven
to be at distance r + t from P , then we can also discard suffixes starting in the
range j − t+ 1 . . . j + t− 1.

Another idea is to compute the edit distance between the reverse pivot and
the reverse pattern. Although the result is the same, we learn also the distances
between the pivot and suffixes of the pattern. This can also be useful to discard
suffixes at verification time: If d′ = ed(P1...�, Ti...i′) and we know from the index
that ed(P�+1..., Ti′+1...) > r − d′, then a match is not possible.

Other ideas, such as hybrid algorithms that partition the pattern and search
for the pieces permitting less errors [6], can be implemented over our metric
index instead of over a suffix tree or array. Indeed, our data structure should
compete in the area of backtracking algorithms, as the others are orthogonal.
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7 Conclusions

We have presented a novel approach to the approximate string matching prob-
lem. The idea is to give the set of text substrings the structure of a metric
space and then use an algorithm for range queries on metric spaces. The suffix
tree is used as a conceptual device to map the O(n2) text substrings to O(n)
sets of strings. We show analytically that the search complexity is better than
that obtained in previous work, at the price of slightly higher space usage. More
precisely we can search at an average cost of O(m log2 n +m2 + R) time using
O(n log n) space, while by using a suffix tree (the best known technique) one
can search in O(mnλ) time for 0 ≤ λ ≤ 1 using O(n) space. Moreover, our
technique can be extended to any other distance function among strings, some
of which, like the reversals distance, are problematic to handle with the previous
approaches.

The proposal opens a number of possibilities for future work. We plan to
explore other methods to reduce the number of substrings (we have used the
suffix tree nodes and the suffixes), other metric space indexing methods (we have
used pivots), other multidimensional range search techniques (we have used R-
trees), other pivot selection techniques (we took them at random), etc. A more
practical setup needing O(n) space has been described in Section 6.

Finally, the method promises an efficient implementation on secondary mem-
ory (e.g., with R-trees), which is a weak point in most current approaches.
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