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CONTROL PARA SISTEMAS DE REGULACIÓN BIOLÓGICA

INTRACELULAR

Esta tesis se centra en el marco de los sistemas dinámicos biológicos. Su objetivo central

radica en el hecho de que a partir de un estudio matemático formal es posible inferir y

responder interesantes preguntas biológicas.

El primer problema abordado son las conjeturas de Thomas, las cuales establecen que

una condición necesaria para la existencia de ciclos atractores (resp. multiestabilidad) es

la presencia de circuitos negativos (resp. positivos) en el grafo regulatorio. Se comienza

probando una serie de lemas con el fin de dar condiciones sobre el grafo de transición, junto

con una formula general para el signo. Con ello es posible dar una prueba alternativa a

un teorema de Remy et al. basada en la segunda conjetura en el caso booleano. En el

segundo caso, encontramos condiciones para la existencia general de ciclos. Además se define

el “grafo de transición extendido”, el cual contiene no solo información de la dinámica sino

que también de la estructura del grafo regulatorio.

En el segundo problema se muestra que el método de desincronización propuesto por Pécou

se puede simular de forma numérica estable. En esta dirección, se aplica con éxito el algo-

ritmo al modelo de Goodwin con función de regulación positiva y negativa, mostrándose

teóricamente cómo inducir comportamiento periódico mediante la adición de una nueva

ecuación. La inducción del caos del tipo Shilnikov o Lorenz, según la naturaleza de los valores

propios, se muestra mediante la construcción de las órbitas homocĺınicas y la sensibilidad a

las condiciones iniciales.

Finalmente, se propone un modelo matemático para los procesos de incorporación, flujo,

almacenamiento y tráfico de metales pesados Cu, Zn, Mn y Fe en Halobacterium NRC-1. Se

muestra formalmente la existencia de estados estacionarios. Además, se derivan condiciones

de monotońıa para la existencia de respuestas globales en estado estacionario, independiente

de la elección de los parámetros. Junto con los resultados teóricos, se desarrollan simula-

ciones para responder preguntas biológicas centrales sobre el crecimiento y la muerte de la

archaea a altas concentraciones de metales, y la respuesta celular ante el estrés producido

por incrementos sucesivos y alternados de metales.
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1 General Introduction

During the past years science has evolved into a more complex state where in order to

understand key phenomena it is necessary to integrate the knowledge from different areas

such as mathematics, biology, computer science, chemistry and physics. Nowadays it is better

to understand the whole picture rather than the sum of pieces (holism instead of reduction);

and at this scenario it is mandatory the existence of interdisciplinary groups working together

on the study of complex biological processes, moving away the frontiers of knowledge.

The need to give sense to complex interactions has led some researchers to shift from a

component-level to a system-level perspective. With the progress in high-throughput tech-

nologies and bioinformatics in recent years, it is possible to determine to what extent genetic

or environmental manipulation of a biological system affects the expression of thousands

of genes and proteins. This form of study requires a shift from a conventional individual

approach (divide-and-conquer approach) towards an integrated approach. The integrated

approach led to an emerging field called Systems biology.

For our purposes, we can define Systems biology as a biology-based inter-disciplinary study

field that focuses on complex interactions in biological systems. Mathematical models are be-

ing used in support of this, continuing a long tradition inherited from genetics, biochemistry,

evolutionary biology and ecology. Systems biology has been created to reveal the dynamic in-

terrelationship between system components, in order to enable the discovery of novel biology

[SB07]. Moreover, it tries to understand biological systems within the consistent framework

of knowledge built up from the molecular level to the system level [K01]. Even, from a math-

ematical point of view, we can understand Systems biology as the application of dynamical

systems theory to molecular biology, in order to obtain theoretical results for the cellular

behavior. For that reason, Systems biology have had in the last twenty years a tremendous

importance and development, as well as the scientific disciplines associated with it.

Several topics where Systems biology has made its contribution can be found in the litera-

ture: metabolic pathways, microarray analysis, cell development and differentiation, or target

drugs design, among others are novel examples [Ka06]. One of the first and most important

discoveries was the model explaining the lac operon [JM61]. Thanks to the system point of
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view it was possible to understand in a simpler form the central mechanism at which the cell

can transform the lactose into glucose as a way to survive in environments with low sugar

concentrations. Along with the above, several organisms, such as bacteria and archaea mainly

(E. coli, S. cerevisiae and P. aeruginosa), have been studied as toy experimental models in

order to understand their central mechanisms, searching similarities and differences between

them.

Finally, the Systems biology approach often involves the development of mechanistic mod-

els, such as the reconstruction of dynamical systems from the quantitative properties of their

elementary building blocks. For instance, some cellular processes and interactions can be

modelled as a graph, which can be analyzed mathematically using methods coming from

chemical kinetics and control theory, for example. However, due to the large number of

parameters, variables and constraints, these mathematical models often need to be solved

using numerical and computational techniques. In Figure 1.1 we can observe a schematic

representation for Systems biology interactions.

Model 
Analysis

Biological
  Insight

New
Hypotheses

Experiments

New
Data

Model
Construction

Figure 1.1: Systems biology diagram of research.

1.1 Models as dynamical systems

Most mechanistic models in Systems biology can be regarded as some form of dynamical

system. A dynamical system describes the states of a biological system and how these states

change in time. It can be abstractly visualized as a state space, upon which is imposed a

temporal dynamics: given a particular state as an initial condition, the dynamics defines the

trajectory taken over time from that starting point.

Dynamical systems usually depend on parameters. In abstractly visualizing a dynamical

system, therefore, one should always keep in mind the parameter space that accompanies the
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state space, the dynamics on the state space cannot be defined without first specifying the

parameter values, thereby fixing a point in the parameter space. As this point varies, so do

the dynamics.

1.1.1 Continuous models

A type of model that is frequently used is one in which the state of a molecular component,

x, is its concentration in some cellular compartment (cytoplasm, membrane, biofilm, etc),

which we will also denote by x and treat as a function of time, x(t). The temporal dynamics

are then described by an ordinary differential equation (ODE) for the rate of production of

x. This is how the biochemistry of enzymes has been modelled, which provides a foundation

for models of molecular networks [A07].

For example, if x is produced at a (zero order) rate of b units per second and consumed at

a (first order) rate of c per second, then

dx

dt
= b− cx.

In this case, the dynamical system has a one dimensional state space, consisting of the single

state variable x, and a two dimensional parameter space, consisting of the two parameters b

and c, which can be readily solved.

Most dynamical systems arising in Systems biology are nonlinear (complex regulatory func-

tions following Michaelis-Menten scheme) and cannot be solved explicitly (except possibly at

steady state). They have to be studied by simulation, for which parameter values must be

specified (the parameter problem).

More recently, it has been possible to measure noise in individual cells, revealing the im-

pact of both molecular stochasticity (“intrinsic noise”) and cell-to-cell variability (“extrinsic

noise”) [PB06]. Extrinsic noise can sometimes be modelled as a probability distribution on

the initial conditions of a deterministic model or by adding external noise terms, as in the

Langevin approach. Molecular stochasticity, however, requires some form of stochastic mas-

ter equation in which the state of a component is described by the probability distribution

of the number of molecules of component x, as a function of time, and the dynamics are

described by stochastic differential equations.
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1.1.2 Discrete models

Differential equation models are familiar in the physical sciences, biochemistry and physi-

ology. Biologists, however, often find it convenient to describe gene expression in terms of

discrete states (on/off or low/high) and the development of microarray technology allows

mRNA levels to be quantified into multiple discrete levels.

Genetic manipulations also lead naturally to causal inferences expressed in Boolean logic:

“in the absence of X, Y becoming low leads to high Z”. These kinds of data and reasoning

can be modelled by dynamical systems with discrete states, where the temporal dynamics are

given by discrete transitions between states, rather than being parametrised by a global clock,

t. When states are composed of many discrete variables (for example, many genes), state

transitions may take place synchronously, with each variable being updated simultaneously,

or asynchronously, with variables being updated independently of each other.

Thinking in terms of dynamical systems draws attention to the state of the system. Decid-

ing how the state should be represented, whether coarsely as Boolean levels or at fine grain

in an agent-based description or somewhere in between as concentrations, and how time and

space should be modelled, should depend not on the disciplinary prejudices of the modeler

but on the nature of the experimental data and the kinds of biological questions that are

being asked [A07].

1.2 Analysis, control and simulations of biomolecular

systems

Theoretical Systems biology has worked in the conceptual basis of complicated biological

problems in order to find novel solutions. In this searching, other areas of the knowledge as

the mathematics has been raised as fundamental pieces in the modelling and understanding

of biological processes such as homeostasis, robustness, differentiation and regulation.

If we focus only on the mathematical point of view, there emerge three fundamental topics

about cellular modelling: (1) The development of models for the analysis of experimental

data in order to prove conjectures; (2) Robustness and network motifs for the control of

biological systems; (3) Computational methods and simulations to corroborate theoretical

results. In the following we are going to explain each one of these areas.

The analysis of the dynamical behavior is essential to understand the mechanisms behind
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the stability and robustness of the system, and the functionalities of the circuits. Fundamen-

tal questions about cellular response to environmental perturbations, or why certain network

motifs explain observed functions need to be answered.

In general, it is common that biologists represent their results in terms of graphs. These

graphs can contain information about genes (genetic networks), proteins structures (amino

acid conformation), metabolic fluxes or species interactions (trophic networks). Recently,

the study of graphs structures as motifs have received great attention because they can be

viewed as biological properties emerging from real systems [A07]. In this line, the comparison

between random graphs and regulatory networks confirm the existence of predominant struc-

tures that are preserved under the evolution, and the functional analysis of these structures

(motifs) are essential in order to obtain results over dynamical properties which permits to

compare different organisms [T81].

For that reason, one of the first natural problems lie in how we are able to obtain this graph

structure. In general, biological experiments give us as a result biochemical interactions

or expression profiles (microarrays). In the first case, it is possible to construct a set of

differential deterministic or stochastic equations using the polynomial law formalism. Once

we have the system of equations it is not complicated to deduce the Jacobian matrix, even

in the discrete case there exists a formula for a discrete Jacobian matrix obtained from the

discrete regulatory functions. In the second case, maximal entropy methods are used to infer

correlations matrices and with them adjacency matrix can be obtained [L06].

Obviously, the use of regulatory graphs as mathematical objects enables us to find and

explore more complex properties that cannot be concluded using only partial biological in-

formation. Additionally, since graph theory has been widely studied, different specific results

from random graph or small world networks (social networks) among others can be used,

implying new information in biological networks and vice-versa.

As we have mentioned before robustness to fluctuations and stability are important prop-

erties in biological systems, and in order to study this kind of challenging problems it is

crucial to describe them in the language of control theory, so that we can abstract essential

parts of the system within the common language of biology and engineering [K01]. Moreover,

the importance of the control scheme lies in two facts: complex engineering systems can be

found in biological systems, and questions about cellular response to environmental changes,

cellular mechanisms to modulate stochastic perturbations, or if it is possible to destroy in

some sense the natural stability creating chaos and implying apoptosis can be answered.

During the last years the mathematical study of control systems in biology has reached

great interest. Novel works of Uri Alon [A07] and Eduardo Sontag [S05] have shed some
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new lights on the problematic, specially in the control of feed-forward and feedback circuits

motifs, and in the input/output control of monotone and near monotone systems.

In general, if we compare random networks with real regulatory networks we can observe

that from the latest emerge special structures that made it different. Particularly, special

interest has acquired three nodes circuits (triangles) called feed-forward circuits, in which

two genes regulates a third, and feedback circuits or single loops as a factor stabilizing the

systems.

These two types of regulatory circuits have been extensively studied, because they recur-

rently appear in several networks as patterns (E. coli and yeast). A possible explanation

of the phenomena is that in some sense evolution may have been selected them by their

specific dynamical function. In this line it can be proved for example that negative feedback

(negative auto-regulation) has an speed up in the time response implying robustness to ex-

ternal changes, meanwhile positive feedback slows the response and tends to increase cell-cell

variability. For the other side, the feed-forward loops produces changes in the time delay,

filtering out brief spurious pulses of signal.

By contrast, Sontag [S07] has proved that intracellular regulatory systems are essentially

monotone or close to be monotone. Again the dynamical property is related with graph

structures, in this case positive circuits in the regulatory graph (spin sign assignment) imply

monotonicity of the system. Dynamical behavior of monotone systems is ordered and non

chaotic, and as a consequence the trajectories of the solutions (evolution of the states) con-

verge to the steady states independent of the parameters for the model, besides consistent

response to perturbations.

As we have seen before, the mathematical study of biological systems plays an important

role in the discovery of emerging properties such as the biological organization of life, which

is the intrinsic and ultimate core of Systems biology. However, this is not always possible,

there exists systems where the mathematical formalization could not be solved analytically

due to the large number of components or the intrinsic complexity by itself. In this scenario

an important tool is the computational simulation of the mathematical models.

One of the best and novel examples of computational simulation of mathematical models

have to do with the stochastic simulation algorithm. Stochastic modelling has been recently

used since it is a more plausible model for real interacting particle systems. In this case,

stochastic chemical kinetics describes the time evolution of a well stirred chemically reacting

system from where we can derive, by applying probabilistic laws, the chemical master equa-

tions (CME). CME can be solved analytically for only a few simple cases, and even numerical

solutions are prohibitively difficult in other cases so special simulations techniques, as the
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application of the Gillespie algorithms, need to be used in order to solve efficiently the master

stochastic equations.

But the simulation is not only used as a testing for mathematical results, in general molec-

ular experiments in biology are extremely expensive as a cause of the repeatability, the

technology and the materials employed. In this direction, the design of in-silico experiments

for the prediction of the behavior under different environmental conditions is crucial to reduce

the number of experiences.

Additionally, the use of special softwares and programs solving problems in database storing

data, parameter optimization, hypotheses generator, bifurcation analysis, and data visual-

ization are needed.

As a resume, the system level understanding, specially simulation, control and analysis

may lead us to a more complete knowledge of the cellular behavior.

1.3 Main results of the thesis

This thesis is focused in the framework of biological dynamical systems, more specifically in

the study, analysis and development of control methods for intracellular regulatory networks.

For that reason the aim of this work lies in the fact that from an abstract mathematical study

it is possible to infer basic molecular properties and with them answer biological questions.

Mainly three different problems have been studied. The first problem has to deal with

the study of Boolean regulatory networks and the Thomas conjecture, the second prob-

lem is centered in control methods for non-linear homeostatic systems, more specifically

the desynchronization of the Goodwin model, and the third problem is concerned with the

mathematical modelling and analysis of metal stress response in Halobacterium NRC-1 using

differential equations. To facilitate access to the individual topics, the chapters are rendered

as self-contained as possible. In the following we describe in more details each chapter.

In Chapter 2, we have centered our attention in the study of the Thomas conjecture in

Boolean regulatory networks. Boolean networks are defined by the dynamic of a Boolean

function f : {0, 1}n → {0, 1}n, represented by the Transition graph, where n corresponds to

the number of components (genes and proteins) and 0, 1 are the states of these components,

that is, restriction 0 means that the gene is “off” and 1 that the gene is “on”.

The Thomas conjecture relates dynamical properties of the Transition graph, with asyn-
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chronous updating, and topological structures or motifs in the regulatory network deduced

from the discrete version of the Jacobian matrix. In this scenario, it can be proved for ex-

ample that negative circuits in the regulatory graph are necessary for the existence of an

attractive cycle in the transition graph for f (Homeostasis), and positive circuits are neces-

sary for the existence of multi-stability (cell differentiation). Basically, we are interested in

both, find general conditions over the circuits in the graph and give an alternative proof to

the first conjecture.

In particular, we have obtained some conditions for the existence of cycles in the Transition

graph. In this direction, we studied two cases: attractive cycles and arbitrary cycles. In the

first case we made an alternative proof for a theorem of Remy et al. [RRT05] based in the

second conjecture. In the second case, we found two conditions for the existence of general

cycles. In both cases we derived an interesting formula for the sign function of cycles. Using

these conditions we have defined a new graph for the dynamic called Extended Transition

graph, which incorporates more information in the vertices, implying a nice method for the

partial construction of circuits in the regulatory graph.

Additionally, we have studied necessary and sufficient conditions for both conjectures in a

special case when the regulatory graph is composed basically by an isolated circuit. Under

these assumptions we have proved, in a constructive way, that if the isolated circuit is positive

then there are at least two fixed points and if the isolated circuit is negative then there exists

a trap cycle.

In the case of a positive isolated circuit we used a relation between positive circuits in

the regulatory graph and the existence of an spin sign assignment for the vertices. This

assignment gives us information about the values of the positions for the state x ∈ {0, 1}n,

and as we have two possible assignments then we have two different states that correspond

to the fixed points. Besides, a well known result of Sontag et al. [ESS06] established that the

existence of positive circuits imply that the function f is monotone, property related with

global convergence of the trajectories.

Chapter 3 is devoted to the study of non-linear effects in the desynchronization of homeo-

static systems. One of the motivation of this work can be explained as follows, let us consider

a therapeutic context where the objective is to perturb a hostile organism to kill it. A possible

method consists in poisoning the organism by provocating the increase in the concentration

of a metabolite up to a lethal level. However this method is difficult to implement because the

metabolism has many mechanisms precisely intended to moderate “excesses” (by saturation

or homeostatic mechanisms for example). In this context, the central idea is to propose a

method in order to disorganize the metabolism.
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Inspired in a paper of Pecora and Carroll about master slave synchronization (early 90s)

[PC90], where in order to stabilize a chaotic system of non-linear differential equations, it is

possible to eliminate one of the equations and take the respective variable as a constant in

the others. As a result the reduced system presents stability to the initial conditions loosing

the chaotic behavior.

In the opposite direction, our idea is to take a system, known to be stable, and induce

the chaotic behavior by adding a new differential equation for one of its constants. The

main theorem in this chapter establishes a method to induce chaos in stable systems by

periodic orbits. Moreover, since the proof of the theorem is constructive, it is possible to

formulate explicitly the new general equation, with the advantage that our method can be

programmable.

We start the chapter by introducing the most important ideas of homeostatic systems,

desynchronization of stable vector fields and chaos by periodic orbits. Then, we study the

construction of the theoretical method in order to prove that the desynchronization can be

realized in a stable way on the numerical context. At this point and for illustrative purposes

we have chosen the Goodwin model with negative and positive feedback, because of its global

stability property, and the synchronized Lorenz model.

The second part contains the spectral and the stability analysis of the desynchronization

method applied to the Goodwin model and to the reduced two dimensional Lorenz model,

which has lost its chaotic behavior. In both models we have used the proposed method, pro-

grammed in C++, to induce chaos of Shilnikov or Lorenz type, although the method depends

on the nature of the eigenvalues, complex or real. In both scenarios conditions ensuring the

chaotic behavior are stated, finding relations between the real or complex eigenvalues and the

stable or unstable periodic orbits. Additionally the algorithm is tested in the simplified stable

Lorenz model, as an application about how it is possible to recover the chaotic behavior of

the original Lorenz model.

With regards to the biological implementation of the method, as a form to design specific

drugs, we can say that we are far away to find a solution to the complete problem because of

the complexity of the real model. However, we believe that the problem itself deserves our

attention in the future, maybe with other classes of models, or maybe integrating intercon-

nected systems.

Finally, Chapter 4 is about metal stress response in Halobacterium NRC-1, an extremophile

archaea which lives in hyper-salinity environments. The major goal is to study and under-

stand mathematically how the cellular mechanism works allowing the archaea to survive

under these extreme conditions. Inspired in biological knowledge extracted from the top
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down study of Baliga et al. [B06] we constructed a mathematical model in order to un-

derstand the key role of each one of the genes and proteins involved in the mechanisms for

traffic, storage, efflux, extrusion and uptake of heavy metals.

Based in the continuous framework of differential equations and the power law formalisms,

we are able to propose an ordinary differential equations system describing the four essential

processes which are described by two modules, one dealing with the traffic and extrusion

(copper-zinc), and the other with the uptake and storage of metal ions (manganese-iron).

From the biological point of view many different questions are relevant. In particular, we deal

with the question of cellular growth and death at high metal concentrations, and the question

of cellular response under successive and alternate metal stress attack. Both questions have

been formulated in a personal communication with professor Baliga, and they are essential

in order to understand the adaptability of the system to the medium. For that reason we

used our proposed model, with an additional equation for the growth, in order to answer this

type of biological questions.

We prove in a formal way that both modules, E(I) (copper-zinc extrusion) and U(I)

(manganese-iron uptake), present a unique equilibrium state depending on the initial amount

of external metal ions. Meanwhile, in the other two cases with recycling, E(II) and U(II),

we found a finite number of steady states. In addition, a comment on homeostatic behavior is

realized, according to the various kinetic parameters (degradation, synthesis and affinity), by

the existence of negative circuits in the associated regulatory graph (Thomas conjecture), and

it is determined either by the convergence to the steady state or small oscillations around a

given value, independent of the considered parameters (or little, weak homeostasis condition).

To conclude, we derived monotonicity conditions for the existence of global convergence

to the steady states. The problem is that in general biological models are not monotone

because the associated regulatory graphs have inconsistent arcs (negative circuits). For that

reason, in both modules E(I) and U(I), we have used a decomposition technique proposed

by Sontag et al. [ESS06] for near monotone systems (engineering perspective). This implies

that the controlled system with fixed control variables induces a globally asymptotically

stable equilibrium depending on the external metal ions concentrations. Concluding that

the trajectories for the autonomous systems (without control) in both modules are globally

attractive to its unique equilibrium (robustness).
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2 Study of circuits in Boolean

regulatory networks.

In this chapter we revisit a well known conjecture proposed by the biologist R. Thomas

relating the structure of signed regulatory graphs with its dynamical asymptotic behavior.

The conjecture establishes that a necessary condition for the existence of an attractive cycle

(resp. multistability) is the presence of a negative (resp. positive) circuit in this graph.

Both properties are commonly associated to the biological phenomena of homeostasis and

cell differentiation respectively.

Different proofs have been proposed in different contexts and mathematical formalisms:

continuous case ([G98], [S03], [S05]), Boolean case [RRT05] and general discrete case ([R07],

[RC07]). In particular, we will focus on regulatory models described by Boolean maps f :

{0, 1}n → {0, 1}n, and for these we revisited both conjectures. Our purpose is to give

alternatives simple and elementary proofs to some of these old conjectures.

Following the definitions and notations in [RRT05] we first prove a series of lemmas in

order to give conditions on the transition graph for the existence of signed edges in the

regulatory graph, which includes a new sign formula. These general properties allow us to

provide another proof for the second Thomas conjecture in the Boolean case that we think is

very simple and make appear a kind of “cohomological idea” behind the sign assignment in

the regulatory graph. It is also shown that in a particular case of an isolated circuit, that is,

a regulatory graph consisting purely of a circuit, both Thomas conjectures are also sufficient.

This last case was motivated in [RMCT03].

Additionally, we study general properties relating cycles in the transition graph to circuits

in the regulatory graph. In this direction, we have proved, under some assumptions, a path

reduction lemma which permit us to show that the existence of cycles in the transition graph

implies the existence of circuits in the regulatory graph.

Finally, using these conditions, we propose a formal method to construct an extended

transition graph from the Boolean map f . This new graph takes into account not only the

13



2.1. INTRODUCTION

information of the dynamics of f , but also the structure of the signed regulatory graph,

combining both. The spirit is to avoid the “problem” of changing from one graph to the

other and produce conditions “à la Thomas” on this graph. For the moment this is just a

discussion.

2.1 Introduction

Nowadays, genetic regulatory networks are typical instances of what is now commonplace to

call a complex system. This term can be described in abstract as a set of elements of the

same nature, called entities, related by interactions that create a graph, eventually oriented

or labeled by a sign. Other similar systems include metabolic networks, ecological networks,

neural networks, social networks, etc.

From a mathematical point of view a regulatory network is constructed from a dynamical

system that represents the evolution in time of the values of the entities in such network.

From a biological point of view the notion of regulatory network “even if is more intuitive”

is classical in modelling and is less formal.

The dynamical systems considered in the literature to model biological systems range

from continuous models (formalism of differential equations) to Boolean systems (maps in

the discrete Boolean hypercube). Also the way the dynamical system evolves is part of

the problem and at least two types of evolution has been considered: asynchronous and

synchronous, being the first one considered more “biological” or “realistic”. In this section

we just comment on all previous models but we concentrate on Boolean systems. We avoid

the discussion about the construction of such dynamical systems, but we have to mention

that it is a big area of research nowadays.

Once a biological situation is transformed into a dynamical system, several questions are

natural. In particular, its asymptotic behavior and thus the existence of periodic orbits and

fixed points. At the same time it is relevant to relate such behavior with the biological features

of the modelled system. For instance, one associates stable periodic orbits to homeostatic

behavior in biology and the existence of several stable orbits to cell differentiation.

In this direction, the biologist René Thomas in 1981 [T81] go further. He proposes that

the “topological structure” of the regulatory signed graph(s) can serve as a source of infor-

mation to know whether a particular asymptotic behavior occurs. We will explain below his

conjectures.
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The ideas of René Thomas have inspired several mathematicians in the last 30 years,

but essentially his intuition is still not deeply understood mathematically, even if several

progresses exist in different cases, some of them quite general. Our motivation is to revisit his

conjecture in the Boolean case trying to build a mathematical framework to relate “dynamics

with topological structure” of the associated signed regulatory graph(s).

2.2 Biological regulatory networks

Often biological interactions are represented by using graphs, essentially because this class

of models fits well with experimentation. Therefore, a common problem in biology and a

mathematical challenge is to understand these kind of graphs and in some cases the dynamical

properties that can be deduced from them when elements of the graph evolve with time

Formally a graph G = (V,E) consists of two sets, vertices V and edges E. The vertices or

nodes represent biological entities like genes or products of them as proteins, and the edges

represent interactions between them. Moreover, in the case of regulatory interactions the

graph can be directed and signed (+1,−1), which indicates activatory or inhibitory effect

respectively.

To a biological network one seldom associates a dynamical model, explaining the behavior

of the system in time. One uses either differential equations ẋ = f(x), Boolean maps f :

{0, 1}n → {0, 1}n or other discrete, continuous or stochastic models. In both frameworks the

concentration or absolute quantities of the elements are measured by the value of x in the

face space that depends on the model. An important question that remains is if it is possible

to obtain or infer dynamical information from the graph structure.

The biochemical processes are known to be marked by the effect of noise and uncertainty,

which justify the use of stochastic tools. The use of partial differential equations and delay

is particularly justified for eukaryotic cells, in which the organized structures are sensible to

diffusion phenomena and non instantaneous molecular transport. The prokaryotic cells are

also described more exactly for models including this type of aspects.

The main limitation of all these approaches come from their precision degree. Making the

models extremely difficult to handle analytically and expensive in calculation time in order

to make numerical simulations. They are useful for systems of low dimension. This is in

particular why the ordinary differential equations formalism and discrete formalism are still

useful to handle biological systems like regulatory networks.
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Each one of these models have some advantages, however we can classify them in three

groups: continuous models, discrete models and stochastic models. The latest have received

great attention because many recent works on gene expression insist on the importance of

stochastic effects, these are manifested in the variation of expression levels from one cell to

another. However, in this thesis we will only use deterministic models.

2.2.1 Continuous model

The continuous modelling of biological interaction networks is commonly related to a system

of ordinary differential equations of the type:

(2.2.1)
dx

dt
= F (x)

where x = (x1, . . . , xn) represents concentrations of different biological entities in the network

(typically concentrations of genes, proteins or metabolites) and F : Rn → Rn is a non linear

function taking into account the interactions of such entities. Oftenly, F (x) = G(x) − Γx,

where Γ is a diagonal matrix containing degradation rates.

The solutions of (2.2.1) starting from different initial conditions must reflect the dynamics

of such biological entities in the underlying process (under modelling). The underlying as-

sumption is that the biological variables are continuous and evolve “deterministically”. One

of the main problems, us stated before, in analyzing such system are on one hand the size

of the system (nowadays n >> 200 for metabolic modelling) and on the other the impos-

sibility to have exact values of parameters of the map F . Among others, this reason has

forced the community interested in this area to develop strategies of analysis that rely on the

“topological properties” of the interactions [Sg07].

The interaction signed directed graph associated with the system (2.2.1) at point x ∈ Rn,

that we call “regulatory graph”, is constructed as follows: its vertices are V = {1, . . . , n}
or generically V = {g1, . . . , gn}, where gi represents the i-th biological entity (g is used for

gene). There is an arrow from gj to gi if ∂Fi
∂xj

(x) 6= 0. Denote this graph by G(x). Moreover,

one associates to each arrow a sign given by the sign of the partial derivative.

Most of modern efforts to understand the asymptotic behavior of solutions of (2.2.1) are

based on the study of topological properties of G(x). We will describe later in this section

the conjectures about this kind of dynamics and the graph.

Continuous models are also those using partial differential equations or even piecewise

linear equations, we do not consider them here. For a review on them see [J02].
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2.2.2 Discrete model

Another approach to model the dynamics of biological interaction networks is to think that

each biological entity can take a finite number of states and that during the process it evolves

depending on its own state and the state of some other entities in the network or neighbors

(all of them are possible). This approach has been extensively studied (see for example

[A01], [RMCT03], [RRT05], [RR08], [R07], [RC07]) principally due to the nature of available

biological information (microarrays data for example).

Formally a “discrete dynamical system” is given by:

f : Ω→ Ω

where Ω ⊂ E1 × . . . × En and each Ei represents the state space for the i-th entity xi, for

x ∈ Ω, f(x) = (f1(x), . . . , fn(x)) with fi : Ω → Ei. A classical state space is Ω = {0, 1}n,

where 0 is interpreted as inactive and 1 as active.

As in the continuous case to each x ∈ Ω one can associate a signed directed interaction

graph G(x) that will be defined in 2.3 for Boolean networks (where Ω = {0, 1}n).

A particular feature in the discrete case is the way the dynamics evolves. It can be defined

“synchronously”, that is, starting from x ∈ Ω one goes to f(x) ∈ Ω; or “asynchronously”:

at each time one chooses by some mechanism a position i ∈ {1, . . . , n} and moves x =

(x1, . . . , xn) to (x1, . . . , xi−1, fi(x), xi+1, . . . , xn). That is, one only changes coordinate i of x

according to f .

As we will observe later, the most natural type of dynamics modelling biological networks

is the asynchronous one.

2.2.3 Biological motivation: Thomas conjectures

Either in the continuous or discrete case, as we mentioned before, when the size of the

network is large, it is very difficult to deduce any property of the asymptotic behavior of the

dynamics. In particular, the characterization of limit cycles. This last question has become

very relevant in studying biological networks since one can relate “intuitively” such behavior

to particular biological phenomena. For example, the coexistence of multiple stable limit

cycles (called multi-stationary) is related with “cell differentiation”; and the “homeostasis

phenomenon” is oftenly associated to the existence of a unique stable or globally stable limit
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cycle.

In this framework, in the early 80s, the biologist René Thomas [T81] enounced two con-

jectures relating the structure of a signed graph with its dynamical asymptotic behavior:

1. First Thomas conjecture: A necessary condition for multistability (i.e., the existence

of several stable fixed points) in the dynamics (transition graph) is the existence of a

positive circuit in the regulatory graph (the sign of a circuit being the product of the

signs of its edges);

2. Second Thomas conjecture: A necessary condition for the existence of an attractive

cycle in the dynamics (transition graph) is the existence of a negative circuit in the

regulatory graph (odd number of negative edges).

These conjectures have been proved to be true by many authors, starting by considering

some special cases and hypotheses in the network (see [R95], [P95], [G98], [CD02]) and finally

during the last five years more general answers to the conjectures have been proved.

In the continuous case C. Soulé [S03] has proved the first conjecture using a fixed point

theory approach (Gale-Nikaidô Theorem). The proof of Soulé Theorem is certainly elegant

but we should note that it gives no information about a sufficient condition for the first

conjecture.

In the discrete case Remy et al. [RRT05] have proved both conjectures in the Boolean case

using the Jacobian matrix conjecture and ideas in its proof [SD05]. Meanwhile Richard et al.

([R07], [RC07]) have proved the general discrete case (not only Boolean). Particular results

for the necessary and sufficient conditions in the discrete case were proved in special cases

such as when the function f is monotone [A01] and when the regulatory graph is composed

of an isolated circuit [RMCT03].

Main efforts nowadays are to understand sufficient conditions for the two cases in Thomas

conjectures. In the rest of this chapter, our intention is to explore new proofs to the conjec-

tures in the Boolean case that can provide ideas about the conditions to be used as “sufficient

conditions”.

In Section 2.3 we introduce some basic notations and definitions about the dynamics,

transition graphs, regulatory graphs, attractors, circuits, cycles and the sign functions. In

Section 2.4 we will restrict our attention to elementary properties about the existence of edges

and a sign formula for circuits in the regulatory graph. Section 2.5 is devoted to the study

of the second Thomas conjecture, we give an alternative proof using the developed tools and

18



2.3. BOOLEAN NETWORKS MODEL

we study sufficient conditions in the case where the regulatory graph is an isolated circuit.

Finally, in Section 2.6.1 we study the relation between cycles in the transition graph and

circuits in the regulatory graph, giving several conditions in order to construct an extended

transition graph with signs for the Boolean map f .

2.3 Boolean Networks model

In this section we restrict our attention to basic discrete models, where Ω = {0, 1}n, called

Boolean networks. In this context we will study Thomas conjectures.

2.3.1 Definitions

Now we proceed to introduce formally the main definitions used in the rest of this chapter,

we follow mainly the notations in [RRT05]. For a number α ∈ {0, 1}, we denote by α its

negation or equivalently by α = α + 1, where the sum is modulo 2.

Definition 2.3.1. [Set negation] For a vector x = (x1, . . . , xn) ∈ {0, 1}n and a set I ⊆
{1, . . . , n}, xI is defined by

xi
I =

{
xi if i /∈ I
xi if i ∈ I

for all i ∈ {1, . . . , n}.

In other words,

xI = x+ ej1 + . . .+ ejr ,

where I = {j1, . . . , jr}, ej is the canonical n-vector with a 1 in position j, and the sums are

modulo 2. If the set I = {j} (singleton) we write xj instead of x{j}.

The distance d on {0, 1}n is the usual Hamming distance, that counts the number of

mismatches between two vectors x and y. Another way to do that is to sum (modulo 2) the

two vectors and then count the number of nonzero positions.

We are interested in the dynamics of a map f : {0, 1}n → {0, 1}n where f(x) = (f1(x), . . . , fn(x))

and x = (x1, . . . , xn) ∈ {0, 1}n. In biological systems one possible interpretation is that each

xi is the state (1 = active, 0 = inactive) of a gene or a regulatory product. This is why we

write g1, . . . , gn to mention the entities associated to variables x1, . . . , xn respectively.
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2.3.2 Asynchronous dynamics

In what follows we fix f : {0, 1}n → {0, 1}n. For x ∈ {0, 1}n we denote by Com(x) the set of

positions which may switch or commute their values, i.e.,

Com(x) = {i : fi(x) 6= xi}.

Clearly, Com(x) = ∅ means that x is a fixed point of f (f(x) = x). We will differentiate

later when this set has one or various points. As we have mentioned before, the asynchronous

dynamics of a Boolean network induced by f is not unique. Several rules for updating the

states are possible.

The synchronous dynamics is given by the iteration of f , that is, one goes from x ∈ {0, 1}n

to f(x) = (f1(x), . . . , fn(x)) in one step. From a biological point of view, the synchronous

hypothesis is not desirable because for example the change in the expression levels arises from

the phenomena of synthesis and degradations that are not instantaneous and synchronized

processes. So, it is necessary a delay in order to allow the correct change of concentrations.

For that reason, René Thomas in [T81] introduced the asynchronous dynamics associated

to f . The idea is that only one position of a given x ∈ {0, 1}n changes at each step. Formally

choose i ∈ Com(x) and change x by xi. As many states can be a successor of the state x,

we cannot describe the dynamics by a simple iteration. For that reason the asynchronous

dynamics is represented by a graph called the transition graph of f .

Definition 2.3.2. [Transition graph] Let f : {0, 1}n → {0, 1}n be a map. The transition

graph T (f) associated to the asynchronous dynamics of f is defined as a directed graph

where the nodes or vertices correspond to the states of the network {0, 1}n, and the edges are

defined by the set {(x, xi) : x ∈ {0, 1}n, i ∈ Com(x)}.

Remark 2.3.3. By definition of Com(x), in the transition graph T (f) loops are forbidden,

that is transitions of the form (x, x). Generally, the fact that Com(x) = ∅ indicates steady

states of the system.

2.3.3 Types of attractors

One of the essential aspects in the mathematical study of the dynamics of Boolean networks

is the analysis of attractors or more generally the asymptotic behavior of such systems. As

usual, we will distinguish three types of attractors: stationary states, periodic orbits and

aperiodic orbits. In the last one we generally make a distinction between the chaotic and non
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chaotic orbits (some details in the continuous case are given in Chapter 3). In the following,

we will make the formal definition of the first two types of attractors.

In the Boolean framework, a stationary state of the network is a fixed point of f , i.e. a

point x ∈ {0, 1}n such that f(x) = x. We observe that f(x) = x is not formally allowed in

the asynchronous dynamics.

In order to define periodic orbits we need to state previously the concept of path. A path

in the transition graph of f is a sequence of states (x1, . . . , xr) in {0, 1}n such that for each

i = 1, . . . , r − 1 there exists ϕ(i) ∈ {1, . . . , n} such that

ϕ(i) ∈ Com(xi) and xi+1 = xi
ϕ(i)

A path is completely described by an initial state x1 and a function ϕ : {1, . . . , r − 1} →
{1, . . . , n}, called the strategy of the path, verifying the condition ϕ(i) ∈ Com(xi).

A path (x1, . . . , xr, x1) with r ≥ 2 is called a cycle (for f) and is denoted by (x1, . . . , xr).

A cycle C is completely described by one of its points and its strategy ϕ, which satisfies

xr
ϕ(r)

= x1, so we write C = (x1, . . . , xr, ϕ).

A cycle C = (x1, . . . , xr, ϕ) is said to be attractive if for all i ∈ {1, . . . , r}, Com(xi) =

{ϕ(i)}. Equivalently, the distance between xi and f(xi) is 1 or f(xi) = xi
ϕ(i)

. In other words,

when you reach an attractive cycle you cannot escape anymore. Using this last definition of

attractive cycle, we will redefine stationary states for f as those without successors in the

transition graph of f .

We are interested in properties involving these two types of attractors, because both are

related with the Thomas conjectures. For that reason in the following we will introduce the

concept of circuits in the regulatory graph (defined in Subsection 2.3.4).

2.3.4 Discrete Jacobian matrices

As we have mentioned in 2.2.1, in the continuous model, to each x in the face space Ω we

can associate in a natural way an interaction graph G(x) using the Jacobian matrix related

to the map F (x). A similar construction can be used in the discrete Boolean case. In this

purpose we define the discrete version of the Jacobian matrix associated to f as follows,
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Definition 2.3.4. The discrete Jacobian matrix J(x) of f at point x ∈ {0, 1}n is given by,

Ji,j(x) =

{
1 if fi(x) 6= fi(x

j)

0 otherwise

where i, j ∈ {1, . . . , n}.

Now it is possible to associate to the dynamics of f a signed directed graph, whose adja-

cency matrix is the transpose of J(x). More precisely,

Definition 2.3.5. [Regulatory graph associated to f ] Given x ∈ {0, 1}n, we define the regula-

tory graph G(x) at point x as follows. Its set of vertices is denoted by {g1, . . . , gn} (reflecting

the fact that they are genes or other regulatory objects) and there exists an edge from gj to

gi if and only if Ji,j(x) 6= 0. The sign of the edge from gj to gi, denoted by εj,i, will be 1 if

xj = fi(x), and −1 otherwise.

A path, in the regulatory graph is a sequence of connected vertices of G(x)

gi1
εi1,i2−−−→ gi2

εi2,i3−−−→ . . .
εik−1,ik−−−−→ gik

εik,ik+1−−−−→ gik+1

and the sign of such path is the product of the signs of the corresponding edges: Πk
j=1εij ,ij+1

.

If ik+1 = i1 one speaks about a circuit and the sign of the circuit.

To avoid confusions with definitions in Subsection 2.3.3, we mention that in general we

manage two graphs. The first one (transition graph) represents the dynamics of f and

its vertices correspond to the different states in {0, 1}n. Meanwhile, the regulatory graph

represents the interaction between variables.

Example 2.3.6. Let f : {0, 1}2 → {0, 1}2 be the Boolean map given by the following table:

x f(x) Com(x)

(0, 0) (1, 1) {1, 2}
(0, 1) (0, 1) ∅
(1, 0) (1, 0) ∅
(1, 1) (0, 0) {1, 2}

In Figure 2.1 we show the transition graph for both asynchronous and synchronous dy-

namics, and, the corresponding regulatory graph.
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(0, 0)

(a)

(1, 0)

(1, 1)(0, 1)

(1, 0)(0, 0)

(1, 1)(0, 1)

−

−

g2

(b)

(a”)(a’)

g1J(0, 0) =

(
0 1
1 0

)

Figure 2.1: (a) Transition graph for asynchronous dynamics of f . (b) Synchronous dynamics
of f . (a’) The Jacobian matrix associated to f . (a”) Regulatory graph associated
to f in the state x = (0, 0)

In general, we know that if Ji,j(x) 6= 0 then there exists an edge from the vertex gj to

gi in the regulatory graph, and from the definition of the Jacobian matrix we have that

fi(x
j) 6= fi(x). Rewriting the function fi in terms of the elements in the set Com(x) as

fi(x) = (x+ er1 + . . .+ erk)i

where Com(x) = {r1, . . . , rk}, we can conclude that the previous differences can be expressed

as follows

fi(x
j) = (x+ ej + es1 + . . .+ esl)i 6= (x+ er1 + . . .+ erk)i = fi(x)

where Com(xj) = {s1, . . . , sl}. We recall that all sums are modulo 2.

To conclude this section, we will define the global regulatory graph for a map f , as the

union of all the local regulatory graphs G(x), x ∈ {0, 1}n, associated to f .

Definition 2.3.7. [Union of graphs] Let G = (V,E) and G′ = (V,E ′) be two directed graphs

with the same set of vertices. We call the union of G and G′ to the graph (V,E∪E ′), denoted

by G ∪G′.

Now, we define the global regulatory graph as follows:

Definition 2.3.8. [Global regulatory graph associated to f ] For a map f : {0, 1}n → {0, 1}n
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we define the regulatory graph G(f) of f as,

G(f) = ∪x∈{0,1}nG(x)

Given a cycle C = (x1, . . . , xr, ϕ) in the transition graph T (f), we denote by G(C) the

regulatory graph associated to the union of the regulatory graphs of points in the cycle, i.e.,

G(C) = G(x1) ∪ . . . ∪ G(xr). In the same context, given a path P = (x1, . . . , xr, ϕ) in T (f)

we denote by G(P ) = G(x1) ∪ . . . ∪ G(xr) to the associated regulatory graph.

Observation 2.3.9. Note that the global regulatory graph G(f) or the graphs associated to

paths or cycles in T (f) can contain positive and negative interactions from a node i to a node

j (so it is a multigraph). The notions of sign of paths and circuits in G(f), G(C) or G(P )

extend naturally.

2.4 Sign formula for circuits in a regulatory graph

As we have seen before, the Thomas conjectures establish relations between the dynamics

of f or its transition graph and the structure of its associated regulatory graph G(f). More

specifically the sign of its circuits. In this direction, the next lemma provides a general

formula for the sign function, which will be useful to study the second Thomas conjecture.

Lemma 2.4.1. Given a Boolean map f : {0, 1}n → {0, 1}n. If Ji,j(x) 6= 0 then the following

expression holds:

(2.4.1) εj,i = sgn(xj − xj)sgn(fi(x
j)− fi(x))

where

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

Proof. We need to analyze two cases, positive edges and negative edges. If we are in the

presence of a positive edge, i.e. xj = fi(x), we must have that xj = fi(x
j) because Ji,j(x) 6= 0.

Thus, xj − xj = fi(x
j)− fi(x) and the desired expression for εj,i holds.

In the other case, if we are in the presence of a negative edge, i.e. xj 6= fi(x), we have that

fi(x
j)− fi(x) = xj − xj. Thus, the product of signs in the formula is −1.
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So the value of εj,i in (2.4.1) gives us another way to describe the sign of an edge. �

In the previous section we have seen that the sign of a circuit is defined as the product of

the signs of the edges it contains. In order to simplify the computations, we would like to

have in certain cases an annihilation property. For that reason it would be better to eliminate

f from the formula of εj,i given in previous lemma and write all the expressions in terms of

x and the strategy ϕ. Before we need a preliminary lemma.

Lemma 2.4.2. Let f : {0, 1}n → {0, 1}n be a Boolean map. Let x ∈ {0, 1}n and j ∈ Com(x).

Denote y = xj and take i ∈ Com(y). We have Ji,j(x) 6= 0 if and only if i /∈ Com(x)\{j}.
This is, a condition for the existence of an edge between gj and gi in G(x).

Proof. In order to prove the result we consider two cases:

1. i = j:

Ji,j(x) = Jj,j(x) 6= 0 iff fj(x) 6= fj(x
j)(2.4.2)

(y)j 6= fj(y)(2.4.3)

(y)i 6= fi(y)(2.4.4)

where (2.4.3) is true since j ∈ Com(x) and y = xj, (2.4.4) is always true since i ∈
Com(y) and is also true that j /∈ Com(x)\{j}, so the equivalence holds.

2. i 6= j:

Ji,j(x) 6= 0 iff fi(x) 6= fi(x
j)(2.4.5)

fi(x) 6= fi(y)(2.4.6)

fi(x) 6= yi(2.4.7)

fi(x) 6= xi,(2.4.8)

where (2.4.6) and (2.4.8) come from y = xj, and (2.4.7) from the assumption i ∈
Com(y). Using the above characterization, we shall have established the lemma if we

prove that fi(x) 6= xi iff i /∈ Com(x). For the first implication since fi(x) 6= xi we

have fi(x) = xi, which implies that i /∈ Com(x). In the opposite direction if we assume

i /∈ Com(x) then fi(x) = xi 6= xi which completes the proof.

�

In particular if we have an attractive cycle C = (x1, . . . , xr, ϕ) in T (f), where by definition
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Com(xi) = {ϕ(i)}, then either for some i ∈ {1, . . . , r}, ϕ(i) = ϕ(i + 1) and thus xj = xj+2

for any j ∈ {1, . . . , r} (here the sums of indices are in the cycle), or for any i ∈ {1, . . . , r},
ϕ(i) 6= ϕ(i+ 1), which means that ϕ(i+ 1) /∈ Com(xi). One deduces from Lemma 2.4.2 that

Jϕ(i+1),ϕ(i)(x
i) 6= 0 for any i ∈ {1, . . . , r}. In other words, there is a circuit in G(f).

A second consequence of previous two lemmas is that given a path P = (x1, . . . , xr, ϕ) in

T (f) with ϕ(i + 1) /∈ Com(xi)\{ϕ(i)} for i ∈ {1, . . . , r − 2}, then there is a path in G(f)

induced by P given by:

• Vertices: gϕ(1), . . . , gϕ(r−1).

• There is an edge from gϕ(i) to gϕ(i+1) and the sign is determined from the one in G(xi).

We will call this signed path P(P ). Analogously one induces a circuit C(C) from a cycle

C in T (f). The next proposition allows to compute the sign of P(P ).

Proposition 2.4.3. Let P = (x1, . . . , xr, ϕ) be a path in the transition graph T (f). If for

all i ∈ {1, . . . , r− 2}, ϕ(i+ 1) /∈ Com(xi)\{ϕ(i)}, then the sign of the edge between gϕ(i) and

gϕ(i+1) in G(xi) is given by the following expression:

εϕ(i),ϕ(i+1) = sgn[(xi
ϕ(i) − xi)ϕ(i)]sgn[(xi+1

ϕ(i+1) − xi+1)ϕ(i+1)]

and the sign of P(P ) is given by

sgn(P(P )) = s1sr−1

where si = sgn[(xi
ϕ(i) − xi)ϕ(i)] for i ∈ {1, . . . , r − 1}.

Proof. Let i ∈ {1, . . . , r − 2}. From Lemma 2.4.1 and Lemma 2.4.2 the expression for the

sign εϕ(i),ϕ(i+1) in G(xi), under the hypothesis Jϕ(i+1),ϕ(i)(x
i) 6= 0 is:

εϕ(i),ϕ(i+1) = sgn[(xi
ϕ(i) − xi)ϕ(i)]sgn[fϕ(i+1)(xi

ϕ(i)
)− fϕ(i+1)(x

i)].

We only need to prove that fϕ(i+1)(xi
ϕ(i)

) = (xi+1
ϕ(i+1)

)ϕ(i+1) and fϕ(i+1)(x
i) = (xi+1)ϕ(i+1).

Since xi ∈ P , xi+1 = xi
ϕ(i)

, so

fϕ(i+1)(xi
ϕ(i)

) = fϕ(i+1)(x
i+1) = (xi+1 + eϕ(i+1) + ej1 + . . .+ ejm)ϕ(i+1) = (xi+1

ϕ(i+1)
)ϕ(i+1)

where Com(xi+1) = {ϕ(i+ 1), j1, . . . , jm}.
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For the second equality, we analyze two cases. Assume ϕ(i) 6= ϕ(i+ 1), then the dynamics

from xi to xi+1 does not move coordinate ϕ(i+ 1), thus we have

fϕ(i+1)(x
i) = (xi + eϕ(i) + er1 + . . .+ ers)ϕ(i+1) = (xi)ϕ(i+1) = (xi+1)ϕ(i+1),

where Com(xi) = {ϕ(i), r1, . . . , rs}. If ϕ(i) = ϕ(i+ 1), then

fϕ(i+1)(x
i) = fϕ(i)(x

i) = (xi
ϕ(i)

)ϕ(i) = (xi+1)ϕ(i) = (xi+1)ϕ(i+1).

This proves the desired formula.

Using the above formula, the sign in P(P ) of the edge from gϕ(i) to gϕ(i+1) is given by

εϕ(i),ϕ(i+1) = sisi+1, for i ∈ {1, . . . , r − 2}. Then, by cancelation, one gets:

sgn(P(P )) = Πr−2
i=1 sisi+1 = s1sr−1.

�

Moreover, this annihilation sign property is similar to the rule for the consistent spin

assignment problem, which establishes a relation between monotone functions and positive

circuits [Sg07].

2.5 Negative circuits: the second Thomas conjecture

In this section we give a simple proof for the second Thomas conjecture in the Boolean case.

In a particular case (isolated circuit) we show that the condition for this conjecture is also

sufficient.

There exist several proofs to this conjecture with different additional hypotheses, see for

example [A01], [CD02], and also in the general case, see [RMCT03], [RRT05]. Here we

provide another proof that we think is very simple and explores a kind of “cohomological

idea” behind the sign assignment in G(f).
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2.5.1 Proof of the second Thomas conjecture

Let f : {0, 1}n → {0, 1}n be a Boolean map and C = (x1, . . . , xr, ϕ) an attractive cycle in

T (f). Thomas conjecture states that a necessary condition for the existence of an attractive

cycle in T (f) is the existence of a circuit in G(f) with negative sign. Recall that G(f) is the

superposition of all signed graphs G(x) for x ∈ {0, 1}n, then the desired circuit comes from

the combination of edges in different G(x)′s.

Theorem 2.5.1. Let f : {0, 1}n → {0, 1}n be a Boolean map. Suppose f has an attractive

cycle C = (x1, . . . , xr, ϕ) in T (f), then G(C) = G(x1) ∪ . . . ∪ G(xr) has a negative circuit.

Proof. Consider the attractive cycle C = (x1, . . . , xr, ϕ). In order to prove the theorem we

need to analyze two cases.

If ϕ(i) = ϕ(i+ 1) for some i ∈ {1, . . . , r} then from Lemma 2.4.2 there exists an edge from

gϕ(i) to gϕ(i+1), whose sign is given by the formula in Proposition 2.4.3

εϕ(i),ϕ(i+1) = sgn[(xi
ϕ(i) − xi)ϕ(i)]sgn[(xi+1

ϕ(i+1) − xi+1)ϕ(i+1)]

which is always −1 because

xi+1
ϕ(i+1)

= xi
ϕ(i)

ϕ(i+1)

= xi
ϕ(i)

ϕ(i)

= xi.

Concluding the existence of a negative self loop in G(C) with vertex gϕ(i).

If ϕ(i) 6= ϕ(i+1) for all i ∈ {1, . . . , r} then there exist k, l ∈ {1, . . . , r} with k < l, such that

ϕ(k) = ϕ(l) and ϕ(j) 6= ϕ(k) for j ∈ {k + 1, . . . , l − 1}. The last statement is a consequence

of the fact that, since C is a cycle, after one complete turn of the cycle the ϕ(i)-coordinate

of xi must change at least two times, one to move from xi to xi+1 and another to come back.

In the following we will prove that the path P = (xk, . . . , xl, xl+1, ϕ) ⊂ C in T (f) induces a

negative circuit C in G(C):

gϕ(k) → gϕ(k+1) → . . .→ gϕ(l) = gϕ(k).

Since C is an attractive cycle and ϕ(i+1) 6= ϕ(i) one has that ϕ(i+1) /∈ Com(xi)\{ϕ(i)} =

∅. Therefore, from Lemma 2.4.2 there exists an edge from gϕ(j) to gϕ(j+1) for every j ∈
{k, . . . , l − 1}, where ϕ(l) = ϕ(k). Then the circuit C is well defined and its sign is given by
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the formula in Proposition 2.4.3:

sgn(C) = Πl−1
j=kεϕ(j),ϕ(j+1) = Πl−1

j=ksjsj+1 = sksl

= sgn[(xk
ϕ(k)
− xk)ϕ(k)]sgn[(xl

ϕ(l)
− xl)ϕ(l)]

= sgn[(xk
ϕ(k)
− xk)ϕ(k)]sgn[(xl

ϕ(k)
− xl)ϕ(k)]

But, since ϕ(j) 6= ϕ(k) for any j ∈ {k + 1, . . . , l − 1} it follows that coordinate ϕ(k) of

xl is the same as coordinate ϕ(k) of xk+1 = xk
ϕ(k)

. So, (xl)ϕ(k) 6= (xk)ϕ(k) which implies

sgn(C) = −1. We have found a circuit in G(f) with negative sign, which completes the

proof.

�

Example 2.5.2. Consider the Boolean map f : {0, 1}3 → {0, 1}3,

x 000 100 110 010 001 101 111 011

f(x) 001 110 010 000 101 100 111 011

whose transition graph T (f) has an attractive cycle

C = (100, 110, 010, 000, 001, 101, (2, 1, 2, 3, 1, 3)︸ ︷︷ ︸
ϕ

)

and two fixed points at 011 and 111.

From Theorem 2.5.1 there exists a negative circuit in G(C). In fact, as ϕ(1) = ϕ(3) = 2,

ϕ(2) = ϕ(5) = 1 and ϕ(4) = ϕ(6) = 3 then the respective circuits

g2 → g1 → g2, g1 → g2 → g3 → g1 and g3 → g1 → g3

are negatives. In Figures 2.2 and 2.3 we can see an illustration of graphs T (f) and G(C)

respectively.

Example 2.5.3. Consider the following Boolean map f : {0, 1}3 → {0, 1}3,

x 000 100 110 010 001 101 111 011

f(x) 001 101 100 000 001 111 110 000
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(0,0,0) (1,0,0)

(1,1,0)

(0,1,1)

(0,1,0)

(1,1,1)

(0,0,1) (1,0,1)

Figure 2.2: Transition graph associated to f in Example 2.5.2.

g_3g_2

g_1

+
!

+

!

!

!

Figure 2.3: Regulatory graph G(C) associated to f in Example 2.5.2.

The transition graph of f , T (f), can be seen in Figure 2.4. This graph has one attractive

cycle

C = (100, 101, 111, 110, (3, 2, 3, 2)︸ ︷︷ ︸
ϕ

)

and one fixed point at 001. In Figure 2.5 we can see the regulatory graph G(f), which consists

of one negative circuit and one positive loop.

(1,0,1)

(1,0,0)

(1,1,0)

(1,1,1)

(0,0,1)

(0,1,1)

(0,1,0)

(0,0,0)

Figure 2.4: Transition graph associated to f in Example 2.5.3.
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g_1

g_3g_2

+

+

+

!

Figure 2.5: Regulatory graph associated to f at point (111) in Example 2.5.3.

2.5.2 Sufficient condition for isolated circuits

Nowadays, it would be desirable to understand completely the relation between the dynamics

of f and the structure of its regulatory graph. In order to understand the sufficient condition

for both Thomas conjectures we restrict our attention to the simplest case of regulatory

graphs consisting of one isolated circuit C. That is, for a Boolean map f , the regulatory

graph associated to f , G(f), has no other edge between the vertices of C than the edges of C
itself. Under this assumption, we reformulate a discussion of Remy et al. [RMCT03] about

the dynamical study of isolated circuits.

In [RMCT03], the authors have first proposed a graph-based representation of the discrete

dynamics of genetic regulatory networks. Additionally, they have shown how the structure

of the synchronous dynamical graphs can be analytically computed in terms of elementary

cycles. From them, they could then derive the structure of the corresponding asynchronous

dynamical graphs.

The main idea behind the proof is to discover the Boolean map f from G(f). In this

direction, we will find a rule to calculate either the fixed points of f when the isolated

circuit is positive or the attractive cycle when the isolated circuit is negative. That is, in

a constructive way, the converse (sufficient condition) of the Thomas conjectures will be

proved. We begin with a lemma which gives us a general characterization.

Lemma 2.5.4. Let f be a Boolean function and x ∈ {0, 1}n. If Ji,j(x) 6= 0 then the following

equivalences are satisfied:

i /∈ Com(x) ⇐⇒ fi(x) = xi ⇐⇒

{
xi = xj if εj,i = +1

xi 6= xj if εj,i = −1

Proof. In order to prove both equivalences the proof splits naturally into three parts.
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(1) i /∈ Com(x) =⇒ fi(x) = xi.

(2) fi(x) = xi =⇒

{
xi = xj if εj,i = +1

xi 6= xj if εj,i = −1
.

(3)

{
xi = xj if εj,i = +1

xi 6= xj if εj,i = −1
=⇒ i /∈ Com(x).

The first implication follows directly from the definition of Com(x).

For the second implication, since Ji,j(x) 6= 0, it follows from Lemma 2.4.1 that the sign of

the edge between gj and gi is given by the expression

εj,i = sgn[(xj)j − xj]sgn[fi(x
j)− fi(x)].

Assuming xi = fi(x), the last term in the sign formula is transformed into sgn[fi(x
j) − xi].

Moreover, since Ji,j(x) 6= 0 we have that fi(x
j) 6= fi(x) = xi, which implies that fi(x

j) = xi.

We thus get

(2.5.1) εj,i = sgn[xj − xj]sgn[xi − xi].

Applying (2.5.1) we conclude that if the sign is +1 then xj = xi and if the sign is −1 then

xj 6= xi.

Finally, to prove (3) we proceed by contradiction. Suppose that i ∈ Com(x), that is,

xi 6= fi(x). As before, from the sign formula if we assume that xj = xi then xj 6= fi(x) and

εj,i = −1, a contradiction. In the same manner, if we assume that xj 6= xi then xj = fi(x)

and εj,i = +1. This contradicts our assumption, and the proof is complete. �

The main feature of Lemma 2.5.4 is that it allows one to prove the sufficient condition for

both Thomas conjectures on the special case of isolated circuits. Thus, the following result

can be established.

Proposition 2.5.5. Let f : {0, 1}n → {0, 1}n be a Boolean map. Assume G(f) = G(x) for

all x ∈ {0, 1}n and that it consists of an isolated circuit C with vertex set {g1, . . . , gn} and an

edge from gi to gi+1 for i ∈ {1, . . . , n}, gn+1 = g1. If the isolated circuit is positive then f has

more than one fixed point; and if the isolated circuit is negative then f contains an attractive

cycle (that is not a fixed point).

Proof. The proof consists in the construction of the fixed points and the attractive cycle. By
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hypotheses, for all x ∈ {0, 1}n, G(x) has the following form:

C = g1
ε1,2−−→ g2

ε2,3−−→ . . .
εn−1,n−−−→ gn

εn,1−−→ g1,

which implies Ji+1,i(x) 6= 0 for all i ∈ {1, . . . , n− 1} and J1,n(x) 6= 0.

We begin by constructing iteratively two points x̂1 and x̂2 as follows:

(x̂1)1 = 0 and (x̂2)1 = 1

as initial conditions and for k ∈ {1, 2} and 1 < i < n− 1{
(x̂k)i+1 = (x̂k)i if εi,i+1 = +1

(x̂k)i+1 6= (x̂k)i if εi,i+1 = −1

1. Assume the isolated circuit C is positive. We will prove that x̂1 and x̂2 are fixed points.

By hypotheses, Ji+1,i(x) 6= 0 for all x ∈ {0, 1}n and i ∈ {1, . . . , n − 1}. In particular

for x̂1 we have Ji+1,i(x̂
1) 6= 0. According to Lemma 2.5.4 and by construction of the

points, it follows that fi+1(x̂1) = (x̂1)i+1. Therefore, it only remains to prove that

f1(x̂1) = (x̂1)1.

As the circuit is positive, we have an even number of negative edges, which implies by

construction that there exist an even number of changes in the positions of x̂1, so we

need to consider two cases: If εn,1 = +1, the even number of changes happen between

positions 1 to n−1 then (x̂1)1 = (x̂1)n and Lemma 2.5.4 implies that f1(x̂1) = (x̂1)1. On

the other hand, if εn,1 = −1, between positions 1 and n−1 have occurred an odd number

of changes then (x̂1)1 6= (x̂1)n and again Lemma 2.5.4 implies that f1(x̂1) = (x̂1)1. The

same reasoning applies for x̂2, thus we get the desired fixed points.

2. Assume the isolated circuit C is negative. We will prove that the following cycle C

starting from x̂1 is attractive:

C = {x̂1, x̂1
{1}
, x̂1
{1,2}

, . . . , x̂1
{1,...,n}︸ ︷︷ ︸
x̂2

, x̂2
{1}
, x̂2
{1,2}

, . . . , x̂2
{1,...,n}︸ ︷︷ ︸
x̂1

}.

Since the circuit is negative, we have an odd number of negative edges which implies,

by construction, that there exist an odd number of changes in the positions of x̂1. The

proof runs inductively over the points of the cycle.

Basis: We will show that f(x̂1) = x̂1
1
. As before we need to consider two cases:

If εn,1 = +1, the odd number of changes occur between positions 1 to n − 1 then
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(x̂1)1 6= (x̂1)n. By the negation of Lemma 2.5.4 we get f1(x̂1) 6= (x̂1)1. For the second

case, if εn,1 = −1, between positions 1 and n − 1 have occurred an even number

of changes so (x̂1)1 = (x̂1)n and again using the negation of Lemma 2.5.4 we get

f1(x̂1) 6= (x̂1)1. It is important to note that since positions 2 to n of x̂1 are consistent

with their signs, they do not change when f is applied, concluding that f(x̂1) = x̂1
1
.

Inductive step: Suppose the assertion is true until position i, that is, f(x̂1
{1,...,i−1}

) =

x̂1
{1,...,i}

. We will show that f(x̂1
{1,...,i}

) = x̂1
{1,...,i+1}

. By induction hypotheses we have

changed the first i positions of x̂1 consistently with its sign εk,k+1, k ∈ {1, . . . , i}. In

the same way, positions i + 2 to n are consistent with its sign so they do not change,

concluding that fk(x̂1
{1,...,i}

) = (x̂1
{1,...,i}

)k, k ∈ {1, . . . , i, i + 2, . . . , n}. Therefore, we

only need to study position i+ 1.



x1

...

xi−1

xi
...

xn



εn,1−−→



x1

...

xi−1

xi
...

xn


· · ·



x1

...

xi−1

xi
...

xn


εi−1,i−−−→



x1

...

xi−1

xi
...

xn


· · ·



x1

...

xi−1

xi
...

xn


εn−1,n−−−→



x1

...

xi−1

xi
...

xn



As before, we consider two cases: If εi,i+1 = +1, we have by construction that (x̂1)i+1 =

(x̂1)i, but (x̂1)i 6= (x̂1
{1,...,i}

)i and (x̂1)i+1 = (x̂1
{1,...,i}

)i+1, then (x̂1
{1,...,i}

)i 6= (x̂1
{1,...,i}

)i+1.

Hence, by the negation of Lemma 2.5.4 we conclude that fi+1(x̂1
{1,...,i}

) 6= (x̂1
{1,...,i}

)i+1.

In an equivalent way we prove that if εi,i+1 = −1 then (x̂1
{1,...,i}

)i = (x̂1
{1,...,i}

)i+1 and

using the negation of Lemma 2.5.4 we get fi+1(x̂1
{1,...,i}

) 6= (x̂1
{1,...,i}

)i+1. That is,

f(x̂1
{1,...,i}

) = x̂1
{1,...,i+1}

.

Finally, we apply again previous inductive argument, with x̂1 replaced by x̂2, to obtain

that i+ 1 ∈ Com(x̂2
{1,...,i}

) for i ∈ {1, . . . , n− 1}. Thus, we have proved that the cycle

C is attractive, and the proof is complete.

�

Observation 2.5.6. Notice that in the last proof we use, even if it appears to be hidden, all

the hypotheses: C has n vertices and the signs are constant independently of x.

In order to illustrate the last result we will show some examples:
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Example 2.5.7. (n = 3) Suppose that the regulatory graph is composed by a positive isolated

circuit which has the following form:

g1
+1−→ g2

+1−→ g3
+1−→ g1

If we apply the construction proposed in Proposition 2.5.5, we can obtain two fixed points,

(0, 0, 0) and (1, 1, 1). This is because the edges are positive and Lemma 2.5.4 says that xi =

xi+1.

Additionally, from the structure of the regulatory graph we can deduce the other values of

the function f . In fact, it is not hard to prove that since all the edges have the form gi
+1−→ gi+1,

the Jacobian matrix satisfies Ji+1,i(x) 6= 0, which finally implies that fi+1(x) 6= fi+1(xi).

If we choose the point x as (0, 0, 0) and (1, 1, 1), we conclude that the function f is defined

as:

x 000 100 010 001 111 011 101 110

f(x) 000 010 001 100 111 101 110 011

Example 2.5.8. (n = 2) In this case the regulatory graph consists of an isolated positive

circuit having the form

g1
−1−→ g2

−1−→ g1.

Again by the construction used in Proposition 2.5.5, the two fixed points are (0, 1) and

(1, 0), because both edges are negative and Lemma 2.5.4 says that xi 6= xi+1. Besides, as

before Ji+1,i(x) 6= 0 which implies that fi+1(x) 6= fi+1(xi). Then using the points (0, 1) and

(1, 0) the function f has the following form:

x 00 10 01 11

f(x) 11 10 01 00

Example 2.5.9. (n = 3) Suppose we have a regulatory graph composed by a negative isolated

circuit

g1
+1−→ g2

−1−→ g3
+1−→ g1.

In this case since the circuit is negative we expect that f presents an attractive cycle. From

Proposition 2.5.5 we can generate the starting point x̂1 = (0, 0, 1), because the edge between

g2 and g3 is negative so (x̂1)2 6= (x̂1)3. In the same way we obtain that x̂2 = (1, 1, 0). Then
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we conclude that the attractive cycle has the following form:

x̂1 = 001, x̂1
{1}

= 101, x̂1
{1,2}

= 111, x̂1
{1,2,3}

= 110 = x̂2

x̂2
{1}

= 010, x̂2
{1,2}

= 000, x̂2
{1,2,3}

= 001 = x̂1

Moreover, it is not difficult to see that the function f satisfying the condition has the

following form:

x 000 100 010 001 111 011 101 110

f(x) 001 011 000 101 110 100 111 010

Observation 2.5.10. The main problem of this strategy is that in the general case it does

not apply. However, it is possible to prove a weaker result for regulatory graphs with minimal

circuits and restricted fixed points. That is, both Thomas conjectures are stable under projec-

tion, and this enables to relax the assumptions under which they are valid (for more details

see [RR08]).

2.6 From the transition to the regulatory graphs

In the previous sections we have shown a series of lemmas and propositions in order to prove

that the existence of an attractive cycle in the transition graph implies the existence of a

negative circuit in the regulatory graph. Moreover, from the first Thomas conjecture we

know that multistability implies the existence of a positive circuit in the regulatory graph

[RRT05].

In general, different examples (examples 2.5.2, 2.5.3, 2.5.9) illustrate that under the pres-

ence of a cycle in T (f), there exists a circuit in G(f). This empirical result, together with the

fact that in general the hypothesis of attractivity is too strong, motivates the study of general

cycles and the idea of an extended transition graph which incorporates the information of the

signed regulatory graph. Therefore, the main objective of this section is to find conditions

that permit us to understand the relation of general cycles in T (f) with circuits in G(f).

2.6.1 Cycles: general framework

Let f : {0, 1}n → {0, 1}n be a Boolean map and C = (x1, . . . , xr, ϕ) a cycle in the transition

graph T (f). Since C is not necessarily attractive we cannot assume that the sets Com(xi)
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has a unique point as before. So, |Com(x)| ≥ 1.

From the definition of a cycle, we have that for all i ∈ {1, . . . , r} it is satisfied that

ϕ(i) ∈ Com(xi) and xi+1 = xi
ϕ(i)

. For that reason, if we use Lemma 2.4.2 for xi, ϕ(i), xi+1

and ϕ(i + 1), one deduces that the condition for the existence of an edge between vertices

gϕ(i) and gϕ(i+1) is

(2.6.1) ϕ(i+ 1) /∈ Com(xi)\{ϕ(i)}.

In Section 2.5 we have proved that when the cycle is attractive the expression (2.6.1)

is always satisfied because Com(xi) has a single element ϕ(i), so the desired edge exists.

However, in general we do not know if there exists an edge between two nodes generated by

the strategy ϕ.

The main result of this section shows that a cycle in the transition graph implies the

existence of a circuit in the regulatory graph. In order to prove the last assertion, we have

divided the proof into a sequence of lemmas: (i) a reduction lemma for cycles in T (f) and

(ii) a lemma for the existence of edges in G(f) with vertex set {gϕ(1), . . . , gϕ(r)}.

Lemma 2.6.1. Let f : {0, 1}n → {0, 1}n be a Boolean map and consider a cycle C =

(x1, . . . , xr, ϕ) of length r > 2 in T (f). If there exists ϕ(j) such that for all i ∈ {ϕ(1), . . . , ϕ(r)}
and x ∈ {x1, . . . , xr}

(2.6.2) Ji,ϕ(j)(x) = 0 or equivalently fi(x) = fi(x
ϕ(j)),

then C can be reduced to another cycle C̄ of length r − 2.

Proof. The proof consists in the construction of a reduced cycle C̄. Let ϕ(j) be as in the

hypotheses and k ∈ {1, . . . , r}\{j} such that ϕ(k) = ϕ(j) (it exists since in the cycle such

component changes at least twice).

In what follows we will show that the path starting from xj with strategy {ϕ(j+1), . . . , ϕ(k−
1), ϕ(k + 1)} is well defined. Using Lemma 2.4.2 for xj, ϕ(j), xj+1 and ϕ(j + 1) and (2.6.2)

one deduces that ϕ(j + 1) ∈ Com(xj)\{ϕ(j)}, since Jϕ(j+1),ϕ(j)(x
j) = 0, which implies that

the state y1 = xj
ϕ(j+1)

is in the dynamics. Let y2 = y1
ϕ(j+2)

be the next state. To continue,

it is also necessary to prove that y2 is in the dynamics, that is, ϕ(j + 2) ∈ Com(y1) or

equivalently (y1)ϕ(j+2) 6= fϕ(j+2)(y
1).
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From (2.6.2), taking x = xj+2 ∈ C and i = ϕ(j + 2), it follows that

fϕ(j+2)(x
j+2) = fϕ(j+2)(xj+2

ϕ(j)
) = fϕ(j+2)(xj

{ϕ(j),ϕ(j+1)}ϕ(j)

) = fϕ(j+2)(xj
ϕ(j+1)

) = fϕ(j+2)(y
1).

Moreover, we have that fϕ(j+2)(x
j+2) 6= (xj+2)ϕ(j+2), because ϕ(j + 2) ∈ Com(xj+2), and

(xj+2)ϕ(j+2) = (xj
{ϕ(j),ϕ(j+1)}

)ϕ(j+2) = (y1)ϕ(j+2), concluding that ϕ(j + 2) ∈ Com(y1).

In the same way, it is possible to prove in the general case that for yl = xj
{ϕ(j+1),...,ϕ(j+l)}

,

l ∈ {1, . . . , k − j − 1}, we have that ϕ(j + l + 1) ∈ Com(yl). In fact, it is only necessary to

use (2.6.2) with x = xϕ(j+l+1) and i = ϕ(j + l + 1), which implies that

fϕ(j+l+1)(x
j+l+1) = fϕ(j+l+1)(xj+l+1

ϕ(j)
) = fϕ(j+l+1)(xj

{ϕ(j),...,ϕ(j+l)}ϕ(j)

)

= fϕ(j+l+1)(xj
{ϕ(j+1),...,ϕ(j+l)}

) = fϕ(j+l+1)(y
l).

That is, we can conclude as before that since fϕ(j+l+1)(x
j+l+1) 6= (xj+l+1)ϕ(j+l+1) = (yl)ϕ(j+l+1),

we have ϕ(j + l + 1) ∈ Com(yl), for l ∈ {1, . . . , k − j − 1}.

To finish the construction of the reduced path, we have that xk+1 = xk
ϕ(k)

= xj
{ϕ(j),...,ϕ(k)}

,

but since ϕ(j) = ϕ(k), it follows that xk+1 = xj
{ϕ(j+1),...,ϕ(k−1)}

= yk−j−1. Additionally,

from the definition and the last assertion we have that xk+2 = xk+1
ϕ(k+1)

= yk−j−1
ϕ(k+1)

,

that is, ϕ(k + 1) ∈ Com(yk−j−1). Summarizing, the path P1 from xj to xk+2 with strategy

{ϕ(j + 1), . . . , ϕ(k − 1), ϕ(k + 1)} (without ϕ(j) and ϕ(k)) is in T (f).

It is important to note that since C is well defined, the paths P2 from x1 to xj with strategy

{ϕ(1), . . . , ϕ(j − 1)} and P3 from xk+2 to x1 with strategy {ϕ(k + 2), . . . , ϕ(r)} are also well

defined. Therefore, if we define the cycle C̄ as

C̄ = (x1, {ϕ(1), . . . , ϕ(j − 1), ϕ(j + 1), . . . , ϕ(k − 1), ϕ(k + 1), . . . , ϕ(r)}),

then we conclude that C̄ is in T (f) and has length r − 2. This is because the new strategy

does not take into account ϕ(j) and ϕ(k), which completes the proof. �

In what follows it is necessary the following definition. A cycle (x1, . . . , xr, ϕ) in T (f) is

of minimal length if there is no other cycle in T (f) of length strictly smaller than r.

Lemma 2.6.2. Let f : {0, 1}n → {0, 1}n be a Boolean map. If there exists a cycle C =

(x1, . . . , xr, ϕ), r ≥ 2, of minimal length (not necessarily attractive) in T (f) then for all

j ∈ {ϕ(1), . . . , ϕ(r)}, there exist i ∈ {ϕ(1), . . . , ϕ(r)}, i 6= j, and x ∈ {x1, . . . , xr} such that

Ji,j(x) 6= 0. That is, there exists an edge from gj to gi.
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Proof. We remark that if C = (x1, x2, ϕ) then ϕ(1) = ϕ(2) and by Lemma 2.4.2 there is an

edge from gϕ(1) to gϕ(1) since ϕ(1) /∈ Com(x1)\{ϕ(1)}.

Now we proceed by contradiction. Thus assume there is ϕ(j) ∈ {ϕ(1), . . . , ϕ(r)} such that

for all i ∈ {ϕ(1), . . . , ϕ(r)} and x ∈ {x1, . . . , xr}, Ji,ϕ(j)(x) = 0. Using Lemma 2.6.1 there

exists a cycle,

C̄ = (x1, {ϕ(1), . . . , ϕ(j − 1), ϕ(j + 1), . . . , ϕ(k − 1), ϕ(k + 1), . . . , ϕ(r)}),

which is well defined and has length r − 2 , which contradicts the minimality hypothesis. �

Using both previous lemmas, we get the following theorem:

Theorem 2.6.3. Let f : {0, 1}n → {0, 1}n be a Boolean map. Suppose there is a cycle

C = (x1, . . . , xr, ϕ) in T (f), r ≥ 2, then G(C) = G(x1) ∪ . . . ∪ G(xr) has a circuit.

Proof. The proof is divided into three cases:

(i) If C = (x1, x2, ϕ) then ϕ(1) = ϕ(2) and from Lemma 2.4.2 there is a self loop in gϕ(1)

since ϕ(1) /∈ Com(x1)\{ϕ(1)}.

(ii) If C has minimal length then by Lemma 2.6.2 for all j ∈ {ϕ(1), . . . , ϕ(r)} there exist

i ∈ {ϕ(1), . . . , ϕ(r)}, i 6= j, and x ∈ {x1, . . . , xr} such that Ji,j(x) 6= 0. That is, since sets

are finite there exists a circuit in G(f) with vertex set {gϕ(1), . . . , gϕ(r)}.

(iii) Finally, if C has no minimal length then Lemma 2.6.1 gives a reduction scheme for

the cycle until one of the following happens: the resulting cycle has minimal length r > 2

and we apply Lemma 2.6.2 or it has the form C̄ = (x1, x2, ϕ). Whatever the case there exists

a circuit in G(C), which proves the proposition �

In order to illustrate the last results we will show an example of a regulatory graph deduced

from a cycle.

Example 2.6.4. Let f : {0, 1}3 → {0, 1}3 be the following Boolean map,

x 000 100 010 001 111 011 101 110

f(x) 000 010 001 100 111 101 110 011

39



2.6. FROM THE TRANSITION TO THE REGULATORY GRAPHS

whose transition graph T (f) is defined in Figure 2.6. It is not difficult to see that f induces

a non attractive cycle C = {100, 110, 010, 011, 001, 101} and two fixed points 000 and 111.

(0,0,0) (1,0,0)

(1,1,0)

(0,1,1)

(0,1,0)

(1,1,1)

(0,0,1) (1,0,1)

Figure 2.6: Transition graph T (f) in Example 2.6.4.

Since the transition graph has a cycle, it follows from Proposition 2.6.3 that the regulatory

graph G(f) has a circuit. Additionally, the sign of the circuit is given by the existence of the

two fixed points, as we can see in Figure 2.7.

g_2

+ +

+
g_3

g_1

Figure 2.7: Regulatory graph at the point (1, 0, 0), G((1, 0, 0)) in Example 2.6.4.

The last example shows that the attractiveness hypothesis is essential for the presence

of a negative circuit in the regulatory graph. In general, we only have a “correspondence”

between cycles in T (f) and circuits in G(f).

2.6.2 Extended transition graph

The last subsection motivates the idea of an “extended transition graph”, which takes into

account not only the information of the states and the dynamics of the system (transition

graph) but also information on the existence of signed edges in the regulatory graph. That

is, an extended graph combining both dynamics and structure.

In this direction, we will start by recalling previous general results for the existence of

edges in the regulatory graph and their corresponding signs. In fact, combining the edge
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2.6. FROM THE TRANSITION TO THE REGULATORY GRAPHS

condition with the previous characterization for the sign, we are able to obtain a simplified

expression for the sign formula depending only on the states.

In what follows, we use Lemma 2.4.2 to find a simplified version for the sign formula in

Lemma 2.4.1, based on the equivalences of Lemma 2.5.4.

Lemma 2.6.5. Let f : {0, 1}n → {0, 1}n be a Boolean map, x ∈ {0, 1}n and j ∈ Com(x).

Denote y = xj. For i ∈ Com(y), if Ji,j(x) 6= 0 then the following expression holds for the

sign:

(2.6.3) εj,i = (−1)xj+x
j
i = (−1)xj+yi

where the operations are modulo 2.

Proof. In order to prove the result we consider two cases:

1. i 6= j: By hypotheses, since Ji,j(x) 6= 0 and using Lemma 2.4.2 for x, j ∈ Com(x),

y = xj and i ∈ Com(y) one deduces that i /∈ Com(x)\{j}. More specifically, it follows

that i /∈ Com(x) because we are in the case i 6= j. Then, Lemma 2.5.4 implies that:

(2.6.4)

{
xi = xj if εj,i = +1,

xi 6= xj if εj,i = −1.

We are now in position to prove the sign formula. If εj,i = +1 then xi = xj, it follows

directly that xj + xi = xj + yi is always 0. On the other hand, if εj,i = −1 then xj 6= xi

and as before the sum xj +xi = xj + yi is always 1. That is, the expression for the sign

holds:

εj,i = (−1)xj+yi

2. i = j: By hypotheses, since Ji,i(x) 6= 0, it follows by the sign formula in Lemma 2.4.1

that

εi,i = sgn(xii − xi)sgn(fi(x
i)− fi(x)) = sgn(yi − xi)sgn(fi(y)− fi(x)).

The last expression is always −1 because i ∈ Com(x) and i ∈ Com(y), then it follows

that xi 6= fi(x) and yi 6= fi(y) respectively.

To conclude, it is sufficient to show that the new formula for the sign gives the same

result. Since xi + xii = xi + yi is always 1, we have that εi,i = (−1)xi+yi = −1. That is,

the sign expression holds and the proof is complete
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�

Finally, the previous lemma and Lemma 2.4.2 allow us to define a signed transition graph

Ḡ which incorporates the dynamics of the Boolean map f and the signed regulatory graph.

Definition 2.6.6. [Extended transition graph] Let f : {0, 1}n → {0, 1}n be a Boolean map.

We define the extended transition graph Ḡ = (V̄ , Ē) as follow:

• A node v ∈ V̄ is defined as a 3-tuple (x, y, Com(x)), where x ∈ {0, 1}n and y = xj with

j ∈ Com(x).

• Given two nodes vj = (x, y, Com(x)), y = xj, j ∈ Com(x), and vi = (y, z, Com(y)),

z = yi and i ∈ Com(y). Then, there exists an edge in Ē between vj and vi if and only

if i /∈ Com(x)\{j}.

Finally, the sign of the edge from vj to vi is calculated by the formula εj,i = (−1)xj+yi

Remark 2.6.7. It is important to note that from Definition 2.6.6 we build the extended

transition graph using exclusively the dynamical information of the Boolean map f .

The following example illustrates the construction of the extended transition graph Ḡ.

Example 2.6.8. Let f : {0, 1}3 → {0, 1}3 be a Boolean map, which is defined by the following

table:

x 000 100 010 001 111 011 101 110

f(x) 011 000 111 011 100 111 000 100

In what follows, we will describe in details the construction of the extended transition

graph choosing two different points for which we generate their corresponding edges.

Consider x1 = 100. Since f(100) = 000, it follows that Com(100) = {1}. As |Com(100)| =
1, it is possible to define y1 = x1 = 000 and conclude that the first node of the extended

transition graph is (100, 000, {1}). In order to define the second node we take y1 = 000 and

compute f(000) = 011. As Com(000) = {2, 3}, there exist two possibilities to choose the

second node, z1 = 010 or z2 = 001. If we consider the first choice the second node will be

(000, 010, {2, 3}) and from the second choice the third node will be (000, 001, {3, 2}).

Once we have the nodes, we proceed to verify the existence of a signed edge between them:

(i) (100, 000, {1}) and (000, 010, {2, 3}). Since 2 /∈ Com(100)\{1}, it follows that there exists

42



2.7. CONCLUSIONS AND DISCUSSIONS

an edge between the nodes with sign ε1,2 = (−1)x
1
1+y12 = (−1)1+0 = −1. (ii) (100, 000, {1})

and (000, 001, {3, 2}). Again, since 3 /∈ Com(100)\{1}, it follows that there exists an edge

between the nodes with sign ε1,3 = (−1)x
1
1+y13 = (−1)1+0 = −1. That is,

(100, 000, {1}) −1−→ (000, 010, {2, 3}) and (100, 000, {1}) −1−→ (000, 001, {3, 2})

Consider x2 = 101. Since f(101) = 000, we have Com(101) = {1, 3}, which implies

that there exist two possibles nodes in the extended transition graph (101, 001, 1, 3) and

(101, 100, {3, 1}). From the first election, if we define y2 = 001 and since f(001) = 011, we

have Com(011) = {2}. It follows that the third node will be (001, 011, {2}). Meanwhile,

for the second node election, if we consider y3 = 100 and since f(100) = 000, we have

Com(100) = {1}. Hence, the fourth node will be (100, 000, {1}).

As before, we need to verify the existence of the edges between the nodes: (iii) (101, 001, 1, 3)

and (001, 011, {2}). Since 2 /∈ Com(101)\{1}, there exists an edge with sign ε3,1 = (−1)x
2
1+y22 =

(−1)1+0 = −1. (iv) (101, 100, {3, 1}) and (100, 000, {1}). Since 1 ∈ Com(101)\{3}, it follows

that there exists no edge. That is,

(101, 001, {1, 3}) −1−→ (001, 011, {2})

In Figure 2.8 we can see the usual transition graph (a) and the complete illustration about

the construction of the extended transition graph (a’), which contains the information of the

regulatory graph (b).

Finally, although the number of nodes in the extended transition graph is bigger than

in the original, for higher dimensions it should be still possible to develop the systematic

construction in order to infer the corresponding regulatory graph.

2.7 Conclusions and discussions

As we have mentioned before in the introduction, our motivation has been to explore the

Thomas intuition in the Boolean case, trying to find a good mathematical framework to

relate “dynamics with topological structure” of the associated signed regulatory graph(s), as

source of information to know whether a particular asymptotic behavior occurs.
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(0,0,0) (1,0,0)

(1,1,0)(0,1,0)

(1,1,1)

(1,0,1)

(0,1,1)

(a)

(0,0,1)

g_2

(b)

g_3

g_1
!

+

!

111,101,{3,2}

100,000,{1}

111,101,{2,3}
001,011,{2}

011,111,{1}

000,010,{2,3}

010,110,{1,3}

110,100,{2}
000,001,{3,2}

101,100,{3,1} 010,011,{3,1}

101,001,{1,3}

(a’)

+1 !1

+1

!1

!1

!1

!1

!1

+1

+1

+1

Figure 2.8: (a) Transition graph T (f). (a’) Extended transition graph associated to f . (b)
Associated Regulatory graph. In Example 2.6.8.

Following definitions and notations described in [RRT05], we have shown a series of prop-

erties in order to give conditions in the transition graph for the existence of signed edges in

the regulatory graph, which include a new sign formula for the circuits. These properties

allow us to provide an elementary proof for the second Thomas conjecture in the Boolean

case that we think is very simple and make appears a kind of “cohomological idea” behind

the sign assignment in the regulatory graph. It is also shown, in a constructive way, that

in the particular case of an isolated circuit (regulatory graph consisting purely of a circuit)

both Thomas conjectures are also sufficient.

Inspired by the proof of the second Thomas conjecture, we have studied the relation be-

tween cycles in the transition graph and circuits in the regulatory graph. In this direction,

we have proved that the existence of a cycle C = (x1, . . . , xr, ϕ) in the transition graph (not

necessarily attractive) implies the existence of a circuit in the regulatory graph. In order

to show the last assertion, we have proved a path reduction lemma for cycles in T (f) and

a lemma for the existence of edges in G(f) with vertex set {gϕ(1), . . . , gϕ(r)}. This confirms

that the attractiveness hypothesis is essential for the presence of a negative circuit in the

regulatory graph.

Finally, from Lemmas 2.4.2, 2.4.1 and 2.5.4, we are able to propose a formal method for

the construction of an extended signed transition graph from the Boolean map f . This new
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graph takes into account not only the information of the dynamics of f (transition graph),

but also the structure of the signed regulatory graph, combining both. The spirit behind this

new graph is to avoid the “problem” of changing from one graph to the other and produce

conditions “à la Thomas”.

Several aspects can be addressed in future work. Stronger results are certainly possible in

order to completely understand the relation between the dynamics and the structure of the

regulatory graph. In fact, the crucial problem about sufficient conditions in both Thomas

conjectures has not yet proved even in the particular case of Boolean maps. Some efforts

have been made on the study of positive and negative circuits of the regulatory graph and

the fixed points in the case of discrete neural networks [A04], where necessary and sufficient

conditions have been proved.

Further results seem possible when focussing on particular classes of Boolean maps. For

that reason, our next challenge will be the study of possible relationships between the number

of fixed points and the structure of circuits of the regulatory graph under the additional

hypothesis of monotonicity for the Boolean map (among others). The objective is to find

restrictions where sufficient conditions can be obtained for both Thomas conjectures.

In this direction, we think that the use of the extended transition graphs together with

the interpretation of the cohomological equation relating cycles in the transition graph and

circuits in the regulatory graph could help to understand dynamically the complete theoretical

framework.
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3 Numerical implementation of a

Desynchronization method on

Homeostatic systems: The Goodwin

model

We show that the method of desynchronization proposed in [P06] can be simulated in a

numerical stable way. We apply with success the algorithm to the simplest differential equa-

tions model of a feedback loop regulatory structure, namely the Goodwin model. Moreover,

we show theoretically how to induce periodic behavior by adding a negative feedback, we

propose a simulation algorithm and apply it to the Goodwin model with positive or negative

regulatory function, inducing a Shilnikov or Lorenz type of chaos by building of homoclinic

orbits.

The algorithm is robust against variations of parameters and numerical uncertainty. One

outcome is, for instance, in the Lorenz type situation, trajectories visiting, in a chaotic order,

neighborhoods of four given stable states of the initial system. We illustrate the results

by applying with success the algorithm to the simplest differential equations model of a

feedback loop regulatory structure, namely the Goodwin model, as well as to the master-

slave synchronized Lorenz equations as an illustrative example.

In this context, the Goodwin model is the simplest differential equations modelling the

dynamics of a regulatory negative feedback circuit. The model has been fundamentally

important in biology, because it has explained the working mechanism of the circadian clock

and other types of biological phenomena.

Additionally, from a mathematical point of view, we have done an spectral analysis on

the desynchronized Goodwin model in order to obtain a relation between the eigenvalues of

the differential model and the stability of the model. In this direction, we have naturally

classified the eigenvalues into two classes, purely real or complex, depending ultimately on

the choice of the parameters: synthesis (Ki) and degradation (γi). Finally, we use this
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eigenvalue classification in the construction of the Poincaré map which allows us to find some

inequalities between the model parameters in the stability analysis, which implies different

types of attractors: sink, saddle or source.

3.1 Introduction

In this chapter we introduce, compute and analyze the numerical implementation of a desyn-

chronization method on homeostatic systems, which has been developed by E. Pécou. In

[P06] it was showed how to induce self-disorganization inside a stable, parameter-dependent,

system by adding a feedback on the parameter.

For a long time, in biology, the study of stable systems has reached great attention and

in particular the study of homeostatic systems, which are stable under the change of the pa-

rameters (external cellular stress condition). However, our motivation moves on an opposite

direction, the possibility of inducing chaos from the initial conditions in order to do unstable

the system.

For example, let us consider a therapeutic context where the objective is to perturb a hostile

organism to kill it. A possible method consists in poisoning the organism by provoking the

increase in the concentration of a metabolite up to a lethal level. However, this method is

difficult to implement because the metabolism has many mechanisms precisely intended to

moderate “excesses” (by saturation or homeostatic mechanisms for example).

In this context, E. Pécou has proposed a novel method in order to disorganize the metabolism

by introducing a new differential equation into the original system. In [P06], it was proved

that given a parametrized system of differential equations, that is a smooth family of smooth

vector fields
dx

dt
= Fλ(x) x ∈ Rn, n ≥ 2, λ ∈]a, b[,

having a globally stable equilibrium state xλ, it is possible to build a differential equation

for the parameter dλ
dt

= g(λ, x), such that the vector field G = (g(λ, x), Fλ(x)) defined on

]a, b[×Rn exhibits Lorenz-type or Shilnikov-type of chaos depending on the nature of the

eigenvalues.

The precise statement is recalled in Theorem 3.2.1. Since the proof gave a constructive

method for the feedback equation, a natural question, addressed in this chapter, is to provide

the corresponding numerical algorithm (Section 3.3). In this direction, we show that the

construction is structurally stable, and thus numerically observable.
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RESULTS

In Sec. 3.4.1, we illustrate our methods on the classical dynamical model of biomolecular

regulatory networks, namely the Goodwin equations. Those equations (Eq. 3.4.1) model

the dynamics of a sequence of biochemical reactions in which one product at one step is

consumed at the following step and the last product regulates (inhibits or activates) the

first chemical reaction (typically, the transcription of a gene). Regulation is modelled by a

non-linear sigmoid function characterized by a threshold parameter θ. To understand why

this sigmoid function appears, one can consult [TO78], where a derivation of those equations,

starting with the biological processes, is made. We have chosen as control parameters, first,

the threshold θ, and, second, the maximum reaction rate Vmax of the regulated variable.

The Goodwin model with negative regulation function is well known for having a unique

equilibrium point which is stable for a wide range of parameter values. At first sight, we

choose a set of parameters which set the system in the Lorenz type of situation, and ap-

ply the algorithm. The results show trajectories which oscillate between four states in an

unpredictable order, and moreover, this order is sensitive to initial conditions.

Another numerical experiment consists in applying the algorithm by adding a feedback on

the parameter Vmax, we create sustained oscillations with cooperativity index 4. This result is

interesting since it is known that the Goodwin model with negative regulation cannot exhibit

oscillations when it applies to a three-variable system with low “cooperativity index” (less

than 8) (See [C99] for instance for a detailed review on necessary conditions for oscillations

in negative feedbacks).

3.2 Inducing chaos in stable systems: Mathematical results

3.2.1 Master-slave synchronization

At the beginning of the 90s Pecora and Carroll [PC90] introduced a novel notion of synchro-

nization for dynamical systems. Roughly speaking, this notion established that two identical

systems can be coupled in such a way that the solution of one always converges to the solution

of the other, independently of the initial conditions. This property was called Master-slave

(M-S) synchronization to avoid confusion to other well studied types of synchronization.

In what follows and in order to motivate the main concepts we introduce the celebrated
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Lorenz model:

(L)


ẋ = σ(y − x)

ẏ = (τ − z)x− y
ż = xy − bz

This system is known for exhibiting chaotic behavior for some values of σ, τ and b (for

instance 10, 28 and 8/3 respectively). Pecora and Carroll ([PC90], [PC91]) proved that given

any solution (x(t), y(t), z(t)) of the Lorenz model, the following reduced subsystem of two

variables

(Lx)

{
Ẏ = (τ − Z)x(t)− Y
Ż = x(t)Y − bZ,

has all its trajectories (Y (t), Z(t)) asymptotically converging to (y(t), z(t)), that is:

lim
t→+∞

||Y (t)− y(t)|| = 0; lim
t→+∞

||Z(t)− z(t)|| = 0

They referred to this property as synchronization of (L) by the x-variable. Moreover, they

described a more surprising fact for this particular system when any function is substituted by

x(t) inside the equations in the reduced system (Lx), any two solutions (Y1, Z1) and (Y2, Z2)

would eventually converge one to the other, that is:

lim
t→+∞

||Y1(t)− Y2(t)|| = 0; lim
t→+∞

||Z1(t)− Z2(t)|| = 0,

and this property was called absolute M-S synchronization.

Additionally, in the same paper, Pecora and Carroll also reported that z is not a synchro-

nizing coordinate, and they have discriminated between synchronizing and non-synchronizing

coordinates by a criterion of non positivity of the Lyapunov exponents which gives finally a

necessary condition (for a full treatment we refer the reader to [BT97]).

3.2.2 Desynchronization of stable vector fields

Taking the reverse point of view, suppose we have a system of differential equations showing

global asymptotic stability, and which depends on a parameter λ. Is it possible to break

the asymptotic stability by adding a differential equation for the parameter? In the M-S

synchronized Lorenz example the answer is yes because we only need to restore the differential

equation for x to get chaos.

In [P06], Pécou has proved the previous situation in a more general case and the author has
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explained in a constructive way how to create a function g for the new differential equation. In

general: given n ≥ 2 and a one-parameter family of vector fields on Rn, Fλ(x), λ ∈ I interval

subset of R, such that for each λ, Fλ has a global asymptotically stable equilibrium point xλ,

it is possible to construct a vector field on Rn+1 of the form G(λ, x) = (g(λ, x), Fλ(x)) which

exhibits chaotic behavior. More precisely,

Theorem 3.2.1. [Theorem 1, [P06]] Let ]a, b[⊂ R and U ⊂ Rn (n ≥ 2) be open sets and

let {Fλ , λ ∈]a, b[ } be a Ck-family of Ck-vector fields defined on U (k ≥ 1, or k = +∞).

Assume that for each λ ∈ I, there exists x∗λ ∈ U which is a hyperbolic, globally attracting

singularity for the differential equation:

dx

dt
= Fλ(x),

that is Fλ(x
∗
λ) = 0, the Jacobian Jλ = Dx∗λ

Fλ has all its eigenvalues with negative real parts,

and the basin of x∗λ contains U . Assume furthermore that

(i) Jλ has only one real eigenvalue ρ with maximum negative real part or only one pair of

complex conjugate eigenvalues ρ± iω with maximum real part and

(ii) there exists λ0 such that

∂λFλ(x
∗
λ)|λ=λ0 6= 0.

Then, there exists a C∞-map g : I×U → R such that the vector field G(λ, x) = (g(λ, x), Fλ(x))

is chaotic. More precisely, the flow of G has a homoclinic orbit and the first return map in a

local section to the homocline has a countable set of horseshoes, and thus, a positive topological

entropy.

Condition (i) is generic, and condition (ii) says that the vector field has an order 1 depen-

dence on the parameter. Before to start the proof we recall the definition of a homoclinic

orbit

Definition 3.2.2 (Homoclinic orbit). A homoclinic orbit is a trajectory of a flow of a dynam-

ical system which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit

lies in the intersection of the stable manifold and the unstable manifold of an equilibrium.

Sketch of the proof: The substance of the proof lies in the construction of a homoclinic

orbit in the (λ, x)-phase space: we perturb the degenerated vector field G0 = (0, Fλ) so that

a chosen stable singular point M0 = (λ0, x
∗
λ0

) becomes a saddle singular point with a one-

dimensional unstable manifold. Then, either one (or two) separatrix (separatrices) of M0
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are transformed into one or two homoclinic curve(s). Details can be found in [P06], and the

numerical building is explained below.

Once we have shown how to build a homoclinic orbit, the proof splits into two parts:

(a) when the less contracting eigenvalue of the Jacobian Jλ0 is not real and has a complex

conjugate eigenvalue (referred to as the “complex” case, or the Shilnikov-like situation); (b)

when the less contracting eigenvalue of Jλ0 is real (this is the “real” case, or the Lorenz-like

situation).

In the complex case, the existence of one homoclinic orbit directly implies the existence of

chaos, like in the Shilnikov model of chaos (see [S65],[S70],[W88]): the first return map to a

cross section of the homoclinic orbit is shown to have an infinite number of horseshoes. In

the real case, two homoclinic orbits are necessary, and after an arbitrary small perturbation,

we get a Lorenz type of chaos with a strange attractor in the vicinity of the union of the

homoclinic orbits ([R89], [R92]). �

Notation: A vector in Rn is usually denoted by x. A vector in Rn+1 is denoted by (λ, x)

to emphasize the role of the λ-axis. Given a set A ⊂ Rn, we denote Cl(A), its topological

closure, Int(A), its topological interior, and ∂A, its topological boundary. Br(x) is the

standard notation for the open n-ball with radius r > 0 centered at a point x. Its boundary

is the n-sphere, denoted by Sr(x).

Additionally, to simplify the notations we assume that I × U =] − 1, 1[×B1(0) and Γ =

{(λ, x∗λ), λ ∈ I} is a straight line through (0, 0) which does not intersect {−1} × Cl(U) nor

{1}×Cl(U), is not parallel to the λ-axis, Fλ(x
∗
λ) = 0 and DFlambda(x

∗
λ) has eigenvalues with

negative real parts, that is, Γ is a straight line with non zero slope in the direction of λ. We

denote by F the vector field in I × U defined by F (λ, x) = (0, Fλ(x)).

3.2.3 Construction of the homoclinic orbit

According to hypothesis (i) of Theorem 3.2.1, two situations can occur: either there exists

a unique real eigenvalue with a maximal real part or a unique pair of complex conjugate

eigenvalues with a maximum real part. Our proof runs differently according to each situation:

in the complex case, we construct a homoclinic connection to find the Shilnikov classical

situation ([S65], [S70]). The real case is a reconstruction of the Lorenz situation ([BT97],

[MP02]). Nonetheless, in both cases, we use the following construction of a homoclinic curve.

Proposition 3.2.3 (Proposition 1, [P06]). There exists a C∞-map g : I ×U → R such that
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the vector field G defined on I × U by

G(λ, x) = (g(λ, x), Fλ(x))

has a saddle singular point at (0, 0) and one separatrix of its one-dimensional unstable man-

ifold is a homoclinic curve.

In the following we explain how the function g is built. The global picture to have in mind

is that g is 0 (and so the vector field G is vertical), except in two disjoint cylindrical domains

with axes parallel to the λ direction. Inside these domains g is constructed so as to satisfy

the following definition of elementary dynamical block.

a b

M

Q− I−

Q+
I+

Bδ(xM)

λM b− εa+ ε

Γ

Figure 3.1: Elementary dynamical block B.

Definition 3.2.4 (Elementary block). Let M = (λM , xM) ∈ Γ, the set of singular points.

Consider a and b such that −1 < a < λM < b < 1 and choose ε > 0 such that a+ ε < λM <

b− ε.

We call elementary dynamical block the cylinder Cδ = [a, b]× B̄δ(xM) (δ < 1) together with

a vector field

G :
Cδ → Rn+1

(λ, x) → (g(λ, x), Fλ(x))

satisfying:

• M is a saddle singular point for G with a 1 dimensional unstable manifold.

• g|∂Cδ ≡ 0.

• The connected component of the unstable manifold of M containing M in Cδ intersects

the boundary of Cδ at two points Q− and Q+ such that Q− ∈]a, a + ε[×Sδ(xM) and

Q+ ∈]b− ε, b[×Sδ(xM)
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See Figure 3.1.

Given µ, δ, let

hµ,δ(r) =

{
µ if r < δ

µ
2
(1 + cos(πr

2

δ2
)) else

,

and

Λ(λ) =
(λ− λM)(b− λ)2(λ− a)2

(b− λM)2(λM − a)2
.

Finally, we can conclude the following expression for the function gµ,δ:

gµ,δ(λ, x) = Λ(λ)h(||x− xM ||),

where δ and µ are two positive real numbers respectively, called the radius of the block and

the injection speed.

Now, for a suitable choice of parameters a, b, δ and µ, one can render the singular point M

unstable, with an unstable manifold almost parallel to the direction λ in the neighborhood of

M , and the vector field projection on this direction is quite larger than the projection on the

other directions. Therefore, a small perturbation about M is driven by the flow away from

M with a speed almost parrallel to the λ axis. By construction, the amplitude of this speed

decreases when moving away from M , and it vanishes at the boundaries of the cylinder, where

the flow is orthogonal to the direction (0, λ). Constructing gµ,δ as an assembly of suitable

blocks one can manage that M is a homoclinic point for the modified vector field.

Observation 3.2.5. Notice that the map gµ,δ is C1, positive in ]λM , b[×Bδ, negative in

]a, λM [×Bδ and null on ∂(]a, b[×Bδ). Moreover, the differential of gµ,δ with respect to λ at

the point (λM , xM), singular point of (G), is µ.

Example 3.2.6. In order to explain the construction of the different blocks and the homo-

clinic orbit we will consider as an illustrative example the following dynamical system:

(3.2.1)

{
dY
dt

= (−1 + λ) (α(Y − λ) + βZ)
dZ
dt

= (−1 + λ) (−β(Y − λ) + αZ)

It is linear, with a fixed point (Y, Z) = (λ, 0). It is stable if λ < 1, α > 0, and this is a focus

if β < 0.

We would like to desynchronize this system, with the block construction discussed above.
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We thus consider the modified vector field:

(3.2.2)


dλ
dt

= gµ,δ(λ, Y, Z)
dY
dt

= (−1 + λ) (α(Y − λ) + βZ)
dZ
dt

= (−1 + λ) (−β(Y − λ) + αZ)

In the sequel we fix α = 1, β = −4. Call Γ = {λ, λ, 0}. This is the set of fixed points for

(3.2.1) when λ varies.

We choose M0 = (0, 0, 0), M1 = (0.25, 0.25, 0), δ = 0.05, µ = 100. Then, a = b = 0.25 and

the explicit formula for g inside C0 is:

gC0(λ, y, z) = 12800λ(0.0625− λ2)2(1 + cos(400π(y2 + z2))).

Figure 3.2 illustrates the behavior of one orbit which starts close to M0, before the con-

struction of the second block (that is g is still 0 in the second cylinder C1).
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Figure 3.2: A trajectory starting in a neighborhood of M0 for the first dynamical block

We choose some arbitrary l > 0, for instance l = 0.01, and the parameter µ1 = µ for the

second dynamical block. Then, the second dynamical block centered at M1 is defined by the
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following function g:

gC1(λ, y, z) =
(λ− 0.25)(0.5− λ)2(λ+ 0.01)2

0.0625 ∗ 0.063001
(1 + cos(400π((y − 0.25)2 + z2)).

Figure 3.3 sketches an orbit of the complete flow.
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Figure 3.3: A trajectory starting in a neighborhood ofM0 for the extended dynamical system.

3.2.4 Periodic behavior

In the following, we show a new mathematical result.

Theorem 3.2.7. Let I ⊂ R and let {Fλ , λ ∈]a, b[ } be a Ck−family of Ck-vector fields

defined on Rn (n ≥ 2, k ≥ 1, or k = +∞). Assume that there exist λ0 and λ1 in ]a, b[ such

that Fλi has a hyperbolic globally attracting singularity x∗i ∈ Rn (i = 0, 1). Let M0 = (λ0, x
∗
0)

and M1 = (λ1, x
∗
1).

Then, there exist a C∞-map g : I × Rn → R, such that M0 and M1 are hyperbolic saddle

fixed points for the vector field G(λ, x) = (g(λ, x), Fλ(x)) and for arbitrarily small invariant

neighborhoods U0 and U1 of M0 and M1 respectively such that all orbits of G crossing U+
0 =

U0∩]λ0, λ1[×Rn or U−1 = U1∩]λ0, λ1[×Rn visit alternatively U+
0 and U−1 for all time.

Proof. To simplify the notations, let (λ0, x
∗
0) = (0, 0). Choose δ > 0 such that both cylinders
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C0 = [0, λ1]×Bn(0, δ) and C1 = [0, λ1]×Bn(x∗λ1
, δ) do not intersect.

Since the property of having a hyperbolic globally attracting singularity is structurally

stable, there exists ε > 0 so that for each λ ∈] − ε, ε[ or λ ∈]λ1 − ε, λ1 + ε[, Fλ keeps this

property.

First step. Suppose that there exists a map g defined for (λ, x) ∈ [0, λ1]× Rn such that:

(H1) M0 and M1 are saddle hyperbolic fixed points for G = (g, Fλ) and W s(Mi) = {λi}×Rn.

Let ψt be the flow of G.

Like in the previous section (proof of Proposition ??), we construct “half-neighborhoods”

U+
0 and U−1 of the saddle points M0 and M1.

Consider, for ε0 ≤ ε small enough and η0 < δ, the n−disc D+ = {ε0} ×Bn(0, η0). Let

V +
0 =

⋃
t>0

ψ−t(D
+),

U+
0 = V +

0 ∩ C0 and Π+ = V +
0 ∩ ∂C0.

In a similar way, we define, for ε1 ≤ ε small enough and η1 < δ, D− = {λ1−ε1}×Bn(x∗1, η1).

Let V −1 =
⋃
t>0 ψ−t(D

−), U−1 = V −1 ∩ C1 and Π− = V −1 ∩ ∂C1.

The following lemma holds readily.

Lemma 3.2.8. The vector field G is tangent to the boundary of U+
0 and U−1 . G is transverse

to Π+ ∪ D+ and to Π− ∪ D− and the flow ψt enters U+
0 (resp. U−1 ) through Π+ (resp Π−)

and leaves U+
0 (resp. U−1 ) through D+ (resp D−). Finally, each orbit crossing Π+ (resp Π−)

has to cross next D+ (resp D−).

For ζ1 > 0 small enough, V −1 ∩ C0 contains a cylinder ]λ1 − ζ1, λ1[×Bn(0, δ). Consider a

conic hyper-surface K0 with axis {x = 0, λ ∈ [ε0, λ1− ζ1]}, and bounded by the n−discs D+

and {λ1 − ζ1} ×Bn(0, δ).

Similarly, there exists ζ0 > 0 small enough such that V +
0 ∩ C1 contains ]0, ζ0[×Bn(x∗1, δ).

We let K1 be a conic hyper-surface with axis {x = x∗1, λ ∈ [ζ0, λ1− ε1]}, and bounded by the

n−discs D− and {ζ0} ×Bn(x∗1, δ).

We define Ki the volume bounded by Ki, i = 0, 1.Suppose that g satisfies moreover that
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(H2) G is transverse and in-going to K0 and K1.

Consider a point of D+. Its future orbit by ψt stays in K0, then crosses {λ1− ζ1}×Bn(0, δ),

enters V −1 , crosses Π− and finally intersects D−. Since the previous construction is symmetric,

it is clear that the flow ψt induces a map from D− to D+. By composing both maps we get a

well defined first return map on D+. Moreover, the orbit of a point in U+
0 crosses alternatively

D+ and D− for all future time.

Figure 3.4: Trapping region

Second step Let us construct a map g that satisfies hypotheses (H1) and (H2).

Let us define the family of step functions:

σa,k(r) =
ak − rk

ak + rk
, a > 0, k ∈ N, r > 0

Those functions decrease from 1 to −1 and vanish at r = a. The derivative is 0 at r = 0 and

tend to 0 when r → +∞. The steepness of the curve at r = a increases with k.

Lemma 3.2.9. There exist k and µ such that one can choose a = ||x∗1||/2 and

g(λ, x) =

{
µλ(λ1 − λ)σa,k(||x||) if λ ∈ [0, λ1]

0 ∼

g satisfies (H1): Notice that g(0, 0) = g(λ1, x
∗
1) = 0, and thus M0 and M1 are equilibrium

points of the vector field G. A straightforward computation gives:

∂g

∂λ
(0, 0) = µλ1

∂g

∂λ
(λ1, x

∗
1) = µλ1

2k − 1

2k + 1
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and

Dxg(0, 0) = 0 Dxg(λ1, x1) = 0.

As a consequence, the eigenvalues of D(λ,x)G(M0) are those of DxF0(0) and µλ1. Similarly,

the eigenvalues of D(λ,x)G(M1) are those of DxFλ1(x
∗
1) and µλ1

2k−1
2k+1

. Thus M0 and M1 are

hyperbolic points with a one dimensional unstable manifold. Moreover, since g = 0 on

{0} × Rn, the stable manifold of M0 is Ws(M0) = {0} × Rn. For the analogous reason,

Ws(M1) = {λ1} × Rn.

For µ large enough, g satisfies (H2): We show that there exists µ > 0 large enough so

that G is transverse to the boundary of the cone K0 and directed inside the cone. Denoting

α the slope of K0, this condition is satisfied as soon as for any (λ, x) ∈ K0,

αg(λ, x) > ||Fλ(x).||

Let λ̄ = min(ε0, ζ1); then for λ ∈ [ε0, λ1− ζ1] we have λ(λ1− λ) ≥ λ̄(λ1− λ̄). On the other

hand, for x ∈ Bn(0, δ),

σ||x∗1||/2,k(||x||) ≥ σ||x∗1||/2,k(||δ||).

Thus g is minored on K0 by:

g(λ, x) ≥ Cµ,

where

C = λ̄(λ1 − λ̄)σ||x∗1||/2,k(||δ||).

By letting

µ ≥ 1

αC
sup{||Fλ(x)|| , (λ, x) ∈ K0}

the corresponding vector field G points inward the cone K0.

In the same way, there exist µ such that G points inward the cone K1 and hypothesis (H2)

is satisfied. �

3.2.5 Lorenz model: switching master-slave synchronization

Consider the following system of equations which is the x-slave system derived from the

Lorenz equations ([PC90], [PC91], [MP02])
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(Lx)

{
Ẏ = (τ − Z)x(t)− Y
Ż = x(t)Y − bZ

It is obvious that if we introduce a differential equation for the constant variable x(t)

having the form of the original in the Lorenz model we will recover the chaotic behavior. We

tested our method of desynchronization by comparing L̂ to the Lorenz system. That is,

(L̂)


λ̇ = gµ,δ(λ, Y, Z)

Ẏ = (τ − Z)λ− Y
Ż = λY − bZ

In this case the function gµ,δ(λ, Y, Z) is given by the desynchronization method.

Remark 3.2.10. In the real case two homoclinic orbits must be built and controlled. Tech-

nically it means that we need to adjust the four dynamical blocks (real case) in the right

way.

The most difficult problem was the election of the block size. This is due to the nature of

the real eigenvalues and because the Lorenz model exhibits symmetries with respect to the

Z variable, so we need different values for the right and left side to avoid superposition of

the orbits.

For the simulation we have chosen λ = 0 as initial point for the first block, the length of the

blocks are a = 0.18 for the left side and b = 0.15 for the right side, δ = 0.14, ε = 0.005 and

l = 0.003. The value of the first eigenvalue associated to the control equation was µ = 27.

In Figure 3.5 we can see the result of the simulation. In first place we have the classical

drawing of the chaotic behavior of the Lorenz model, and in the second we have the homoclinic

orbit between the blocks obtained from the equation (L̂).

On the other hand, in Figure 3.6 we can see the transition between the blocks and the

sensitivity to the initial condition, in the picture we have three different curves produced by

the starting points λ1 = 0.0 (brown), λ2 = −0.01 (green) and λ3 = 0.001 (orange).
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Figure 3.5: Lorenz Model: the real versus the desynchronization for the M-S Lorenz equation.
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Figure 3.6: Sensitivity to the initial conditions. Chaos in the M-S Lorenz system

3.3 Desynchronization algorithm

As we have said in previous section, the main objective of this chapter is to develop a

structurally stable algorithm of desynchronization which could be applied with success to

different types of stable dynamical systems, in order to induce chaotic behavior by periodic

orbits (numerically observable).

For that reason, in this section we explain the main features and sub-routines of the

algorithm, as well as also explain the different stages from the input data to the construction

of the gµ,δ(λ, x) function.

Later, we apply the method to the most simple homeostatic system namely the Goodwin

model in order to break this homeostatic condition of stability. However, in order to illustrate

and corroborate the algorithm, we also apply the method to the M-S Lorenz model in order

to recover the chaotic behavior (sensitivity to initial conditions).

The algorithm also uses several known methods to find fixed points and solve systems of

differential equations (as fourth order Runge-Kutta method for example). But, the principal

new tool is the construction of the elementary dynamical blocks. Additionally, we have made

several sub-routines in order to determine:

• The eigenvalues and to fit the constants of the model following Subsection 3.5.1.

• The first return map to exhibit chaos.
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• The Lyapunov exponents that characterizes the rate of separation of infinitesimally

close trajectories.

• Sensitivity to the inital conditions, where a graph shows variations with respect to the

starting point close to the origin.

We recalled from [P06] that the method for creating chaos is based on the building of a

homoclinic orbit, and therefore in the construction of the elementary dynamical blocks. More

precisely, the task consists in finding a function g(λ, x), such that the following extended

dynamical system (3.3.1) has a homoclinic orbit.

(3.3.1)

{
dλ
dt

= g(λ, x)
dx
dt

= Fλ(x)

Initial data Our data consist in the knowledge of two equilibrium states corresponding to

two parameter values:

M0 = (λ0, x
∗
λ0

) and M1 = (λ1, x
∗
λ1

)

for sake of simplicity, we write xi for x∗λi , for i = 0, 1. We suppose that λ0 < λ1.

Notice that we do not require the knowledge of the vector field Fλ. We only need to know

that it satisfies the hypotheses of Theorem 3.2.1.

Cylinders Let us consider a horizontal cylinder C0 = Bn(x0, δ) × [2λ0 − λ1, λ1], such that

the radius δ is strictly smaller than the half-distance between x0 and x1. For instance, we

choose δ = ||x1 − x0||/4.

Next, for a given small l > 0, to be fixed later, we define another horizontal cylinder

C1 = Bn(x1, δ)× [λ0 − la, 2λ1 − λ0].

Claim: The function g is 0 outside from the cylinders C0 and C1.

Dynamical block Let M = (λM , xM) such that xM is the stable equilibrium state of FλM ,

and let C = Bn(xM , δ)× [a, b], where δ > 0 and a < λM < b. We give a general formula for

g inside C, denoted gC .
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Let µ > 0. For all (λ, x) ∈ C, we set:

(3.3.2) gC(λ, x) =
(λ− λM)(b− λ)2(a− λ)2

(b− λM)2(a− λM)2
hµ,δ(||x− xM ||)

where the function hµ,δ is given by:

(3.3.3) hµ,δ(r) =

{
µ
2

[
1 + cos

(
πr2

δ2

)]
if r ≤ δ

0 if r > δ

Finally, we set gC(λ, x) = 0 if (λ, x) /∈ C.

A system Eq. 3.3.1 with g = gC is called a dynamical block. It has a saddle fixed point

at M with a one-dimensional unstable manifold. The parameter µ is the derivative of gC

at M in the λ-direction. In [P06], it was proved that for any ε > 0, there exists µ large

enough, such that both unstable separatrices intersect the n−balls {b − ε} × Bδ(xM) and

{a+ ε} ×Bδ(xM), before leaving the cylinder C.

Claim: We let g = gC0 + gC1 . There exist a parameter l, such that the system Eq. 3.3.1 has

a homoclinic orbit.

3.3.1 Pseudo code: construction of the elementary dynamical blocks

In what follows, we will assume that we know the values of the eigenvalues µ, α2, α3 and

α4 (see Section 3.5.1 for a more detailed discussion). This is because they are useful for the

study of the stability (as we can see the the following section).

The construction of the elementary blocks depends on the variables a, b for the length of

the blocks, δ for the radius (block), µ for the injection speed and ε as an error tolerance.

The output of the program will be the block function P , which contains all the previous

information.

Const_blocks(P, a, b, delta, mu, epsilon, Goodwin, GoodwinPert) {

for (k=1;k<N;k++) X[k]=drand48();

X[0]=lambda_initial;

For each fixed point

do {
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H=tetan/(tetan+pow(z1,nc)) - e*z1/C;

DH=-(double)nc*K1*C*tetan*pow(z1,nc-1)/pow(tetan+pow(z1,nc),2) - e;

if (DH != 0) aux= z1 - H/DH;

else aux= z1+0.5;

z1=aux;

Y[3]=z1;

Y[2]=gamm3*Y[3]/K3;

Y[1]=gamm2*Y[2]/K2;

H=tetan/(tetan+pow(z1,nc)) - e*z1/C;

} while (fabs(H)>eta);

numbloc=i;

for (k=0;k<N;k++) {

P.CM[numbloc][k]=Y[k];

P.bg[numbloc]=P.CM[numbloc][0]-a;

P.bd[numbloc]=P.CM[numbloc][0]+b;

P.eps[numbloc]=epsilon;

P.mub[numbloc]=mu;

P.deb[numbloc]=delta;

P.amp[numbloc]=1.0;

}

}

One of the biggest problems was to keep the homoclinic orbit inside the elementary block.

In order to solve this problem, we first draw a cone inside the block with an angle α and we

check the inequality condition between Fλ and gµ.δ (for more details see [P06]),

||Fλ|| ≤ α|gµ,δ|.

It is important to note that we only check the condition when we have assigned a value to

the function gµ,δ, because outside the block its value is zero. For that reason we use the sub-

functions Λ and hµ,δ. These two sub-functions have several restrictions to maintain the curve

inside the cone, and they depend on the parameters M (center of the block) a, b, ε, µ, δ and

x the iteration point. In what follows, we present in details the pseudo-codes that construct

these auxiliary functions:

Function g(X) {
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for (i=0;i<P.nb;i++) {

gdex+=B(P.CM[i],P.bg[i],P.bd[i],P.eps[i],P.mub[i],P.deb[i],X);

}

}

Function B(M, a, b, epsilon, mu, delta, X) {

double lambda,lambdaM,z;

lambda=X[0];lambdaM=M[0];

if ((lambda>a) && (lambda<b)) {

Lambda=(lambda-lambdaM)*pow((lambda-a),2)*pow((b-lambda),2)*

h(M,a,b,epsilon,mu,delta,X)/(pow((lambdaM-a),2)*pow((b-lambdaM),2));

return z;

}

}

Function h(M, a, b, epsilon, mu, delta, X) {

lambdaM=M[0];

if ( X[0]>=lambdaM ) {

deltabar1=(X[0]-lambdaM)*delta/((bord-lambdaM)-epsilon); //right condition

epsilon2=epsilon*delta/((bord-lambdaM)-epsilon);

} else {

deltabar1=(lambdaM-X[0])*delta/((lambdaM-borg)+epsilon); //left condition

epsilon2=epsilon*delta/((lambdaM-borg)+epsilon);

}

if (R<delta) {

if (fabs(X[0]-M[0])<=epsilon) {

if (fabs(X[1])>1.0) {

if (R<=delta/2.0) {

z=mu;//*(1.0+cos(M_PI*pow((R/delta),2)))/2.0;

} else {

if (fabs(X[0]-M[0])>=epsilon) z=mu;

else z=0.0;

}

}

if (fabs(X[1])<1.0) {
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if (R<=delta/2.0) {

z=mu;//*(1.0+cos(M_PI*pow((R/delta),2)))/2.0;

} else {

if (fabs(X[0]-M[0])>=epsilon) z=mu;

else z=0.0;

}

}

}

if ((X[0]>M[0]+epsilon) || (X[0]<M[0]-epsilon)){

if ((R>deltabar1) && (R<=delta)){

z=mu;

}

if ((R<=deltabar1)) {

z=mu*(1.0+cos(M_PI*pow((R/delta),2)))/2.0;

}

}

if ((X[0]>bord-epsilon) || (X[0]<borg+epsilon)){

z=0.0;

}

}

return z;

}

Remark The algorithm has been implemented using a code in C++ language. Codes are

available upon request.

3.4 Homeostatic systems

In [T81], René Thomas conjectured that any dynamical system displaying stable oscillations

must have at least one negative circuit, while any system with multiple steady states must

contain a positive circuit. In the differential case, C. Soulé [So03] presented a full proof for

the first part of the conjecture. However, he does not give any information about sufficient

conditions in the case of positive circuits. This implies that certain other conditions are

necessaries and need to be considered as the network topology or the ranges of values on

specific state variables or parameters.

It is possible to rewrite the conjecture in such a way that two special biological processes

68



3.4. HOMEOSTATIC SYSTEMS

appear: homeostasis related with negative circuits and cellular differentiation related with

positive circuits. We are particularly interested in the concept of homeostasis or how an

organism regulates its internal environment so as to maintain a stable constant condition.

Intuitively, these biological associations make sense. For example suppose the following

toy model that consists of three genes:

A
−1−→ B

−1−→ C
−1−→ A

In this case we have a negative circuit between the genes A, B and C (odd number of nega-

tive edges). If the concentration of A increases, then the concentration of B decreases, which

in turn will produce the increasing of the concentration of C, which finally will cause that

the concentration of A decreases. Since we initially assumed A to be increasing, then we can

conclude that the negative circuit promotes oscillatory behavior in the genes concentrations.

In the remainder, we will focus on homeostatic systems. It is known that homeostasis is

characterized by the existence of a global stable equilibrium state. In general we can classify

steady states and trap cycles as attractors. Attractors represent regions of predictability

and stability in the behavior of the system. We are interested in attractors of cardinality

greater than one implying cyclic behavior, which can often be identified with homeostasis of

sustained oscillatory activity, as can be found in the cell cycle or circadian rhythm.

In order to apply the desynchronization method, we will restrict our attention to the three

dimensional Goodwin model, which describes a transcriptional negative or positive feedback

exhibiting homeostatic behavior.

3.4.1 The Goodwin model

The Goodwin model was proposed by Brian C. Goodwin at the beginning of the 60s, as

a negative feedback oscillator, in order to explain via the differential equations formalism

important biological processes. Roughly speaking, he described rather closely the putative

molecular mechanism of the circadian clock ([G63], [G65]), and until today it has been the

best and simplest example of the homeostatic behavior at cellular level. This is because the

main characteristic feature in the Goodwin model is that degradation of clock-mRNA and

clock protein species plays an important role in the control of the oscillator’s period.

In fact, the Goodwin model has been the earliest model predicting oscillations due to

negative feedback on gene expression, at a time when the part played by such regulatory
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Figure 3.7: Scheme of the Goodwin model.

mechanism in the origin of circadian rhythms was not yet known. Moreover, the model has

the property to be the simplest homeostatic system.

Now we proceed with an overview of the biological model: the model used here is a

simplification of the originally. We have only considered 3 variables because instead of a

direct regulation there exists a cascade of reactions such that the last product is the co-

repressor. Hence, the submodel describes one of the most basic regulatory systems: the

feedback inhibition by products of a gene.

The main components are the following: E (enzyme) and R (repressor) represent the

proteins, and F and G represent the metabolites (molecules that participate as final products

or intermediaries). The association between the repressor (in form of a dimmer) to the

metabolite G permits the fixation of the complex to the region upstream of the coding gene

for the enzyme E and then it blocked its own transcription. In Figure 3.7 we can see a

graphical representation of the biological model.

From the theoretical point of view it is necessary to associate thus biological mechanism

with a mathematical model. As we have exposed before there exist a lot of mathemati-

cal models describing biological processes like differential equations, boolean functions or

stochastic equations, in this case we will use the first one.

The starting point is to define the variables of the system of differential equations. In our

case the variables x, y and z represent the concentration of mRNA M , the enzymatic protein

E, and the metabolite G (co-repressor) respectively. As a result it is not complicated to
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see that the equations representing the biological model have the following form (power law

formalism):

(3.4.1) (Gλ) =


dM
dt

= VmaxK1R
±
λ (G)− γ1M

dE
dt

= K2M − γ2E
dG
dt

= K3E − γ3G

where the constants Ki are rates of synthesis and the constants γi are rates of degradation.

In the previous system R±λ (z) represents the regulatory function for the feedback circuit,

and the sign indicates the type of regulation (positive or negative). Basically, it describes in a

quantitative way how transcription depends on the co-repressor. It has been experimentally

observed that this function has a sigmoidal shape and the standard analytical expression for

the function is:

R−λ (z) =
λn

λn + zn
; R+

λ (z) =
1 + zn

λn + zn

where λ is a threshold parameter and n is the cooperative index.

In order to apply the desynchronization method to the Goodwin model we need to choose

a constant parameter as a new variable. In the previous system we have three alternatives

Ki, γi and λ, but the first two are not too relevant from the biological point of view. For

that reason we have chosen the constant λ as the new variable. This election implies that

the following differential equation needs to be added (see Subsection 3.2.3):

dλ

dt
= gµ,δ(λ, x, y, z).

In general, we know that the system evolves by damping equations and then we obtain an

stable stationary state. Hence, in the rest of the chapter we will tackle the problem of how

applying the desynchronization method to the Goodwin model. In this direction, it is not

complicated to prove that all the hypotheses in Theorem 3.2.1 are satisfied. Finally we will

analyze the spectrum of the Jacobian associated matrix. Besides a local stability analysis

and a classification of different types of attractors will be realized.
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3.5 Inducing chaos in the Goodwin model

As we have seen in previous in Section 3.2 the desynchronization method depends on some

parameters like the size of the blocks and the injection speed µ. However, in order to apply

the method with success, it is necessary to determine the spectrum of the system. This is

because the number of blocks that need to be constructed for inducing a Lorenz (4 blocks)

or Shilnikov (2 blocks) type of chaos depend on whether the eigenvalues associated to the

system are purely real or complex, respectively.

For that reason, in the rest of the chapter we focus on determining conditions between

the parameters of the Goodwin model in order to obtain the transition from purely real to

complex eigenvalues. In Proposition 3.5.1 we get a geometrical description for the transition

in the case of a Goodwin model with linear degradation. Meanwhile, in Proposition 3.5.4

and under the same restrictions we get a numerical description of the transition.

3.5.1 Spectral analysis

Consider the Goodwin equation with negative feedback (3.4.1). The desynchronization

method is different according to the nature of the less contracting eigenvalues, real or com-

plex. This property depends on the parameters Ki and γi. Our objective is to analyze this

dependency in

(3.5.1) (G) =


dλ
dt

= gµ,δ(λ, x, y, z)
dx
dt

= VmaxK1R
−
λ (z)− γ1x

dy
dt

= K2x− γ2y
dz
dt

= K3y − γ3z

where µ and δ are constant parameters, which correspond to the first eigenvalue and the

block diameter, respectively.

To begin the spectral analysis of the 4-dimensional vector field, we need to find all the

eigenvalues of the previous system, and study the orbit structure in the neighborhood of

the homoclinic orbits. In order to do that we will first compute the Jacobian matrix DG

associated to the model (G). In our case DG has the following expression:
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DG(λM , xM) =


µ 0 0 0

K1
∂R
∂λ
−γ1 0 VmaxK1

∂R
∂z

0 K2 −γ2 0

0 0 K3 −γ3


To continue with the analysis, we need to compute the characteristic polynomial P (α)

associated to the Jacobian matrix DG(λM , xM),

P (α) = det(DG− αI) = (α− µ)

[
(−γ1 − α)(−γ2 − α)(−γ3 − α) + VmaxK1K2K3

∂R

∂z

]
.

It is not complicated to see that α1 = µ > 0 is the first real eigenvalue. The other three

eigenvalues can be obtained as the solution of the following equation:

(3.5.2) (γ1 + α)(γ2 + α)(γ3 + α)− VmaxK1K2K3
∂R

∂z
= 0

whose expansion is

α3 + (γ1 + γ2 + γ3)α2 + (γ1γ2 + γ2γ3 + γ1γ3)α + γ1γ2γ3 −K1K2K3
∂R

∂z
= 0.

Geometrical solution of P (α):

Let us consider the following polynomial

Q(α) = (α + γ1)(α + γ2)(α + γ3),

and the constant

C = VmaxK1K2K3
∂R

∂z
.

The problem of finding the roots of the characteristic polynomial, P (α) = 0, is equivalent

to solve Q(α) = C, which can be solved geometrically. In this direction, if we plot the

polynomial Q(α) (Figure 3.8) we can observe two points where the function reaches its

maximum α1 and its minimum α2.
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Cmax

M̄

m̄

α1 α2
−γ2−γ1 −γ3 α

C

Figure 3.8: Plot of the polynomial Q(α).

Using the first derivative of Q(α)

dQ(α)

dα
= (α + γ2)(α + γ3) + (α + γ1)(α + γ3) + (α + γ1)(α + γ2),

we can show that

α1 =
−(γ1 + γ2 + γ3)−

√
γ2

1 + γ2
2 + γ2

3 − γ1γ2 − γ1γ3 − γ2γ3

3

and

α2 =
−(γ1 + γ2 + γ3) +

√
γ2

1 + γ2
2 + γ2

3 − γ1γ2 − γ1γ3 − γ2γ3

3
.

If we evaluate both values α1 and α2 in Q(α) we get

Q(α1) =
2

27
b3−1

9
b2a− 2

27
b2
√
b2 − ab+ a2+

2

27
ab
√
b2 − ab+ a2−1

9
a2b+

2

27
a3− 2

27
a2
√
b2 − ab+ a2,

and

Q(α2) =
2

27
b3−1

9
b2a+

2

27
b2
√
b2 − ab+ a2− 2

27
ab
√
b2 − ab+ a2−1

9
a2b+

2

27
a3+

2

27
a2
√
b2 − ab+ a2.

Since the expressions for α1, α2, Q(α1) and Q(α2) are not so simple, we have assumed

some restrictions and simplifications in the form of the γ′s. That is, we have assumed the

following two cases:
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• Constant degradation: γ = γ1 = γ2 = γ3.

• Linear degradation: γ1 = γ, γ2 = γ + a and γ3 = γ + b.

In what follows we analyze the second case (linear degradation) because the first one can

be deduced from it with a = b = 0. Hence, under the above assumption we can obtain the

new values for α1 and α2,

α1 =
−(3γ + a+ b)−

√
a2 + b2 − ab

3

and

α2 =
−(3γ + a+ b) +

√
a2 + b2 − ab

3
,

implying that the values M̄ = Q(α1) and m̄ = Q(α2) are:

M̄ =
2

27
b3−1

9
b2a+

2

27
b2
√
b2 − ab+ a2− 2

27
ab
√
b2 − ab+ a2−1

9
a2b+

2

27
a3+

2

27
a2
√
b2 − ab+ a2

and

m̄ =
2

27
b3−1

9
b2a− 2

27
b2
√
b2 − ab+ a2+

2

27
ab
√
b2 − ab+ a2−1

9
a2b+

2

27
a3− 2

27
a2
√
b2 − ab+ a2.

Summarizing, we can obtain the following inequalities for the existence of complex and

real solutions for P (α):

Proposition 3.5.1. Assuming the case of linear degradation, the solutions of equation (3.5.2)

can be classified in terms of M̄ and m̄ as follows:

(3.5.3)


if m̄ < C < M̄ P (α) has 3 real eigenvalues

if C < m̄ P (α) has 2 complex eigenvalues with maximal real part

if M̄ < C < Cmax P (α) has 1 real eigenvalue with maximal real part

where m̄ = Q(α2) and M̄ = Q(α1) correspond to the minimum and maximum values of Q

respectively, and Cmax = γ1γ2γ3 to the value Q(0). Moreover, all these values can be computed

as functions of γi and Ki.

Observation 3.5.2. In the special case γ1 = γ2 = γ3, we will obtain that the characteristic

polynomial always has two complex eigenvalues, because the function Q(α) only has one zero,

which at the same time corresponds to a zero for the derivative. On the other hand, the

discriminant (term inside the square root) will always be non negative independently of the

values of γi.
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Numerical solution of P (α):

Let us define the following constants: B = (γ1 + γ2 + γ3), C = (γ1γ2 + γ2γ3 + γ1γ3) and

D = γ1γ2γ3−VmaxK1K2K3
∂R
∂z

. Using these constants we can obtain a new representation for

the characteristic polynomial P (α):

(3.5.4) α3 +Bα2 + Cα +D = 0.

Since the polynomial has three eigenvalues, we conclude that at least one of them need

to be real. Hence, we can use numerical or exact methods in order to compute the other

eigenvalues.

In order to solve numerically the above problem we use the Newton’s method to find

approximately one real eigenvalue with a method of localization to find the starting point of

the iteration. As a result we can compute the value of α2 ∈ R and we can obtain a reduced

polynomial depending on it:

α2 + (B + α2)α + [C + (B + α2)α2] = 0

Now it is easy to compute the last two eigenvalues using the explicit formula for the second

order polynomial. The problem is that we need the exact value because the method of

desynchronization is so tie that any small change in the parameters propagates the error.

On the other hand, to find a relation between the parameters of the model and an exact

formula for the eigenvalues is necessary. In general, it is not difficult to compute the solutions

of a third degree polynomial. In first place, we need to define the following change of variables

α = y + h in order to eliminate de quadratic term in (3.5.4). In our case, this is possible if

we use h = −B/3, obtaining

y3 + (C − B2

3
)y − CB

3
+

2B3

27
+D = 0.

To continue with the reduction, we apply a second change of variables y = u+ v to find a

new system of equations. Finally we obtain that the real root of the characteristic polynomial

is given by the following expression:

(3.5.5) α2 =
−B
3

+

(
q −

√
q2 − 4(p

3
)3

2

)1/3

+
p

3

(
q−
√
q2−4( p

3
)3

2

)1/3
,
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where p = −(−B2/3+C) and q = −(2B3/27−CB/3+D) are deduced from the above exact

method.

The last simplifications allow us to define the first discriminant ∆1, that is,

∆1 = q2 − 4
(p

3

)3

.

It is not complicated to see that it is impossible for ∆1 to be negative, because all the

parameters in our model are positive. This implies that the restriction for the complex

eigenvalues must be found in the following second degree polynomial:

λ2 + (B + α2)λ+ [C + (B + α2)α2],

which have the following roots:

(3.5.6) α3,4 =
(B + α2)±

√
∆2

2
,

where the expression for the second discriminant ∆2 is given by

∆2 = (B + α2)2 − 4[C + (B + α2)α2].

At this point, it is important to note that unfortunately previous expressions for both

∆1 and ∆2 have different constants which make difficult a good choice for the parameters,

specifically the transition between the purely real case and the complex case. For that

reason, we have first obtained numerical and graphical results for the election of the definitive

parameters in the model, as we can see in Figure 3.9.

Despite the last assertion about numerical results, we want to find an analytic expression

that relates the parameters of the model with the nature of the complex or real eigenval-

ues (transition). In this direction, we have made some restrictions for the choice of the

parameters, that is, we have sub-divided the study in two cases (as before):

• Constant degradation: γ = γ1 = γ2 = γ3

• Linear degradation: γ1 = γ, γ2 = γ + a and γ3 = γ + b

It is only necessary to study the case of linear degradation (constant degradation can be

deduced using a = b = 0). The following proposition established this simplification for the

values of p and q introduced in equation (3.5.5).
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Figure 3.9: Transition of the discriminant versus constants Ki and γi.

Lemma 3.5.3. Assuming the case of linear degradation we obtain that

p =
(a+ b)2

3
− ab ≥ 0(3.5.7)

q = −(a+ b)

3

(2a− b)
3

(a− 2b)

3
+ VmaxK1K2K3

∂R

∂z
(3.5.8)

Proof. We first recall some previous notation: B = (γ1+γ2+γ3), C = (γ1γ2+γ2γ3+γ1γ3) and

D = γ1γ2γ3 − VmaxK1K2K3
∂R
∂z

are the constants deduced from the characteristic polynomial

P (α).

From these constants we can deduce the value of the parameters p = −(−B2/3 + C) and

q = −(2B3/27− CB/3 +D) from the explicit formula for third degree polynomial. In what

follows we find a reduction for the values of p and q in the linear degradation case. We begin

with the value of p:

p =
B2

3
− C

=
(γ1 + γ2 + γ3)2 − 3(γ1γ2 + γ2γ3 + γ3γ1)

3

=
(γ1 − γ2)2 + (γ2 − γ3)2 + (γ3 − γ1)2

6
,(3.5.9)
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but since γ1 = γ, γ2 = γ + a and γ3 = γ + b, we have that

p =
a2 + (a− b)2 + b2

6
=

(a+ b)2

3
− ab > 0,

whose value is zero in the case of constant degradation.

Now we find an expression for q:

q = −
(

2B3

27
− BC

3
+D

)
=
−B
3

(
2B2

9
− C

)
−D

=
−B
3

[
−γ2 − 2γ

3
(a+ b) +

2

9
(a+ b)2 − ab

]
−D

= −
[
γ +

(a+ b)

3

]{
−[γ +

(a+ b)

3
]2 +

(a2 + b2 − ab)
3

}
− γ(γ2 + γ(a+ b) + ab)

+ VmaxK1K2K3
∂R

∂z

= −2(
a+ b

3
)3 +

ab(a+ b)

3
+ VmaxK1K2K3

∂R

∂z
.(3.5.10)

So, from (3.5.10) we conclude that

q = −(a+ b)

3

(2a− b)
3

(a− 2b)

3
+ VmaxK1K2K3

∂R

∂z
,

where ∂R
∂z

= −nzn−1λn/(λn + zn)2 ≤ 0. �

From Lemma 3.5.3 we can conclude a simple formula for ∆1 and ∆2 in the case of constant

degradation (a = b = 0), because the value p = 0 gives us that B2 = 3C, which implies that

∆1 = (q)2 =

(
VmaxK1K2K3

∂R

∂z

)2

≥ 0

To obtain a formula for the second discriminant we first need the value of α2. It is not

complicated to deduce using the previous information that

α2 =
−B
3

+ (
q

2
)1/3,
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which allows us to compute the following expression for ∆2

∆2 = (B + α2)(B − 3α2)− 4C

= −3(
q

2
)2/3

= −3(
(VmaxK1K2K3

∂R
∂z

)

2
)2/3.(3.5.11)

As a consequence, in the case of constant degradation we typically have two complex

eigenvalues. The unique possibility to be in the purely real case is ∂R
∂z

= 0, which is true

when the value of z >> λ or λ >> z.

In the case of linear degradation (a, b 6= 0), we can obtain another equation between the

parameters using the previous expressions for p and q. Moreover, we can deduce the sign of

q, which will be greater than zero if a ∈ (b/2, b) and γi ≥ Ki. In this context, the following

proposition shows the transition between purely real and complex eigenvalues.

Proposition 3.5.4. For the parameters of degradation γ, γ+a, γ+b and synthesis K1, K2, K3,

the inequalities for the sign of the discriminant have the following form:

∆1 ≥ 0 if

∣∣∣∣9VmaxK1K2K3
∂R

∂z

∣∣∣∣ ≥ (a+ b)

[
(
a√
2
− b√

2
)2 + a2 + b2

]
and

∆2 ≥ 0 if p ∈
[
(15− 6

√
6)(

q

2
)2/3, (15− 6

√
6)(

q

2
)2/3
]
.

Proof. First we solve de inequality for ∆1. From the general formula we have that

∆1 = q2 − 4(
p

3
)3.

We need to find an expression for ∆1 ≥ 0, then using the values of q and p we have

|q| ≥ 2

3
√

3
(p)3/2.
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Solving in the case a ∈ (b/2, b),

(a+ b)

3

(2a− b)
3

a− 2b

3
+ |VmaxK1K2K3

∂R

∂z
| ≥ 2

27
(a+ b)3

27|VmaxK1K2K3
∂R

∂z
| ≥ (a+ b)

[
(a+ b)2 + (2a− b)(a− 2b)

]
9|VmaxK1K2K3

∂R

∂z
| ≥ (a+ b)(a2 − ab+ b2)

9|VmaxK1K2K3
∂R

∂z
| ≥ (a+ b)

[(
a√
2
− b√

2

)2

+
a2

2
+
b2

2

]

For the second inequality, ∆2 ≥ 0, we can conclude

∆2 = (B − 3α2)(B + α)− 4C,

but in this case

α2 =
−B
3

+
(q

2

)1/3

+
p

3( q
2
)1/3

.

So as we did in the other case, we can find the next expression,

∆2 =
4

3
B2 −

[(q
2

)1/3

+
p

3( q
2
)1/3

]2

− 4C

= 4p−
[(q

2

)1/3

+
p

3( q
2
)1/3

]2

= −
[

p

3( q
2
)1/3
− 5

(q
2

)1/3
]2

+ 24(
q

2
)2/3

and the corresponding inequality is

4
(q

2

)2/3

≥
[

p

3( q
2
)1/3
− 5

(q
2

)1/3
]2

.

Finally, we prove the relation

24
(q

2

)2/3

≥

[
p− 15( q

2
)2/3

3( q
2
)1/3

]2

216
(q

2

)4/3

≥
[
p− 15

(q
2

)2/3
]2

6
√

6
(q

2

)2/3

≥ |p− 15
(q

2

)2/3

|.
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Solving the inequality, we have

p ∈
[
(15− 6

√
6)
(q

2

)2/3

, (15 + 6
√

6)
(q

2

)2/3
]
.

�

3.6 Stability condition: real eigenvalues in the Goodwin

model

The study of homoclinic equations was begun by L.P. Shilnikov in a series of papers in the 60s

([S65], [S70],). However, the subject was largely left untouched in the West until the recent

upsurgence of interest in the study of chaos [W88]. Most of the early work on the subject

considered systems of ordinary differential equations of low dimension, proving results about

homoclinic systems in n = 2, 3 dimensions.

The main idea behind the proofs of the classical theorems is the construction of a Poincaré

return map on a suitable surface near the fixed point. This map is the composition of

two components. Near to the fixed point, we assume that the behaviour is governed by

the linearization of the system about the fixed point. Away from the fixed point, we only

consider those trajectories that remain close to the homoclinic orbit (in both phase space and

parameter space) and thus approximate this part of the map with an affine map near to the

homoclinic orbit. We will not consider this in detail here, but the method used is extended

to general ordinary differential equation systems (for more details see [W88]).

In this direction, in Section 3.4.1, using the Jacobian matrix deduced from the desynchro-

nized Goodwin model, we found a condition between the model parameters to get four real

eigenvalues: µ, which is the control parameter for the injection speed and the eigenvalue

associated to the new differential equation, and α2, α3, α4, which are the other three real

eigenvalues satisfying the first inequality in (3.5.3).

Here, we use these eigenvalues in order to analyze and characterize mathematically the

stability of the desynchronized Goodwin model. For that reason, we will first show the con-

struction of the Poincaré map. Later, we will explain some numerical results to corroborate

the existence of chaos. Finally, we will study how to find a relation between the four real

eigenvalues and the stable or unstable periodic orbits.
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Figure 3.10: Homoclinic orbit associated to a saddle point, together with Poincaré surfaces.

3.6.1 Construction of the Poincaré map for the Goodwin model with

real eigenvalues

In general, in the construction of the Poincaré map we can distinguish two cases for the

analysis (the other cases can be obtained by translation and time reversal):

H1 : µ, α4 > 0;α2, α3 < 0

H2 : µ > 0;α2, α3, α4 < 0.

In this section we will work under hypothesis H2, because we need that the stable man-

ifold lies outside the unstable manifold. However, all the main techniques work under both

conditions and there only exist differences in the stability analysis conclusion.

Consider the linearized system of differential equation for the four real eigenvalues µ, α2, α3, α4,

dx

dt
= α2 + f2(λ, x, y, z; ν)(3.6.1)

dy

dt
= α3 + f3(λ, x, y, z; ν)(3.6.2)

dz

dt
= α4 + f4(λ, x, y, z; ν)(3.6.3)

dλ

dt
= µ+ f1(λ, x, y, z; ν),(3.6.4)

where the functions fi are C2 and vanish along with their first derivative at the origin. The

previous system has a fixed point at the origin with eigenvalues µ, α2, α3 and α4. Moreover, we
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can compute the exact solution from the above system, λ(t) = λ0 exp(µt), x(t) = x0 exp(α2t)

y(t) = y0 exp(α3t) and z(t) = z0 exp(α4t).

In general the analysis have the following steps: We set up the domains for the Poincaré

map, then we compute PL
0 and PL

1 , and finally we examine the dynamics of PL = PL
1 ◦ PL

0 .

PL
0

PL
1

Π1

Π0

z

y

x

z

x

λ

Figure 3.11: Construction of the Poincaré map PL = PL
1 ◦ PL

0 .

We define the two domains in which the functions P0 and P1 are constructed (see Fig-

ure 3.11):

Π0 = {(λ, x, y, z) ∈ R4/|x| ≤ ε, |z| ≤ ε, y = ε, 0 < λ < ε}(3.6.5)

Π1 = {(λ, x, y, z) ∈ R4/|x| ≤ ε, |y| ≤ ε, |z| ≤ ε, λ = ε}(3.6.6)

The time of flight T from Πo to Π1 is given by the equation

ε = λ0 exp(µt)

then we have that

T =
1

µ
log(

ε

λ0

).

The first map that we construct is PL
0 : Π0 → Π1 such that:


x

ε

z

λ

→


x( ε
λ
)
α2
µ

ε( ε
λ
)
α3
µ

z( ε
λ
)
α4
µ

ε


where we replace the value of the time by T to obtain the second expression.
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From Section 3.2a in [W88], and the definition of Π1 on some open set U ⊂ Π1, we compute

the map PL
1 : U ⊂ Π1 → Π0 in the following way:

x

y

z

ε

→


0

0

0

ε

+


a b c 0

0 0 0 0

d e f 0

g h i 0




x

y

z

0

+


jν

0

kν

lν

 .

where all the variables in the matrix are real constants and ν is the parameter of control.

Finally the Poincaré map defined by PL = PL
1 ◦ PL

0 : V ⊂ Π0 → Π0 is obtained: x

z

λ

→
 ax( ε

λ
)
α2
µ + bε( ε

λ
)
α3
µ + cz( ε

λ
)
α4
µ + iν

dx( ε
λ
)
α2
µ + eε( ε

λ
)
α3
µ + fz( ε

λ
)
α4
µ + kν

gx( ε
λ
)
α2
µ + hε( ε

λ
)
α3
µ + iz( ε

λ
)
α4
µ + ν

 ,

where V = (PL
0 )−1(U).

To simplify the system we define the following new variables:

A = a( ε
λ
)
α2
µ , B = b( ε

λ
)
α3
µ

+1, C = x( ε
λ
)
α4
µ ,

D = d( ε
λ
)
α2
µ , E = e( ε

λ
)
α3
µ

+1, F = f( ε
λ
)
α4
µ ,

G = x( ε
λ
)
α2
µ , H = h( ε

λ
)
α3
µ

+1, I = i( ε
λ
)
α4
µ .

As a result, we have now a new reduced system of equations with three variables,

x = Axλ
|α2|
µ +Bλ

|α3|
µ + Czλ

|α4|
µ + iν

z = Dxλ
|α2|
µ + Eλ

|α3|
µ + Fzλ

|α4|
µ + kν

λ = Gxλ
|α2|
µ +Hλ

|α3|
µ + Izλ

|α4|
µ + ν

and it is possible to find the solution as a function of ν, with some restrictions over the

parameters.

In the rest of the section we assume that the value of λ is small (close to the origin). We

first solve the equations and find the singular points for PL,

(3.6.7) x =
Bλ

|α3|
µ + Czλ|α4|µ+ iν

1− Aλ|α2|µ
.

We assume that λ is small enough such that the denominator in (3.6.7) is one,
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(3.6.8) z =
DBλ

|α2+α3|
µ +Diνλ

|α2|
µ + Eλ|α3|µ+ kν

1−DCλ
|α4|
µ − Fλ|α4|µ

.

Again we assume that the value of λ is small enough such that the denominator in (3.6.8)

can be taken to be 1. Finally we can obtain a fixed point expression in terms of λ for the

equation (3.6.7), replacing the previous values of x and z.

λ− µ = G
[
Bλ

|α3|
µ + C(DBλ

|α2+α3|
µ +Diνλ

|α2|
µ + Eλ|α3|µ+ kν)λ

|α4|
µ + iν

]
λ
|α2|
µ

+Hλ
|α3|
µ + I

[
DBλ

|α2+α3|
µ +Diνλ

|α2|
µ + Eλ|α3|µ+ kν

]
λ
|α4|
µ (?)(3.6.9)

Graphically we can show the solutions of (3.6.9) for µ sufficiently small and near zero. In

contrast, for the analytic analysis we need to examine the slope of the right hand side of

(3.6.9) at λ = 0, which is given by the expression:

d(?)

dλ
= GB

2|α2|
µ

λ
2|α2|
µ
−1 +GCBD

|2α2 + α3 + α4|
µ

λ
|2α2+α3+α4|

µ
−1 +GCDiν

|2α3 + α4|
µ

λ
|2α3+α4|

µ
−1

+ GEC
|α2 + α3 + α4|

µ
λ
|α2+α3+α4|

µ
−1 +GCkν

|α2 + α4|
µ

λ
|α2+α4|

µ
−1 +Giν

|α2|
µ
λ
|α2|
µ
−1

+ H
|α3|
µ
λ
|α3|
µ
−1 + IBD

|α2 + α3 + α4|
µ

λ
|α2+α3+α4|

µ
−1 + IDiν

|α2 + α4|
µ

λ
|α2+α4|

µ
−1

+ IE
|α3 + α4|

µ
λ
|α3+α4|

µ
−1 + Ikν

|α4|
µ
λ
|α4|
µ
−1.(3.6.10)

We know that PL
1 is invertible so that the determinant is different from zero, i.e., I(AE −

BD) +G(BF −CE) +H(CD−AF ) 6= 0. This implies that I, G and H cannot be all three

equal to zero. Therefore, at λ = 0, (3.6.10) takes the values:

d(?)

dλ
=

{
0 if 2|α2| > µ, |α3| > µ and |α4| > µ

∞ if 2|α2| < µ or |α3| < µ or |α4| < µ
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3.6.2 Existence of chaos: computational results for Goodwin model

We first show the results for the simulation in the “real” case (model with real eigenvalues)

using the algorithm of desynchronization, as we can see in Figure 3.12. In the first plot we

can see the homoclinic orbits between the four blocks, in a 2D view, meanwhile in the second

plot we have the 3D representation. We have chosen λ, x and z as variables.

The parameters used in the simulation are the following: n = 4, µ = 20, ε = 0.03,

δ = 0.006, l = 0.02, a = b = 0.25, K1 = K2 = K3 = 0.32, and γ1 = 0.17, γ2 = 0.18,

γ3 = 0.19.

An easy way to observe and measure the effect of chaos in the Poincaré map is realizing

perturbations on the initial conditions. That is, inside a ball of size ε choose different points

describing different orbits. In Table 3.1 we can see that small differences on the initial

conditions create different trajectories for the homoclinic orbits.

Since we are in the real case and we have four blocks, in two different quadrants, we can

describe all the trajectories by a code where 0 (resp. 1) means that we are in the first (resp.

second) part. Differences in the code imply different trajectories, being a numerical proof for

the existence of Chaos of Lorenz type. Here we show the graphical results in Figure 3.13.

We have chosen three different but close starting points to show the chaotic effect. In the

graph we can see three curves with different transitions between the block, so as a consequence

of the chaos we have sensitivity. It is the same if we show the code generated by the orbits.

Code x value y value z value
001101 1.15501 5.85506 19.5635
001010 1.16001 5.86006 19.5685
001010 1.16501 5.86506 19.5735
001010 1.17001 5.87006 19.5785

00100100 1.17501 5.87506 19.5835
01001001 1.18001 5.88006 19.5885
01001001 1.18501 5.88506 19.5835

Table 3.1: Code 0, 1 describing different trajectories for x, y, z perturbed starting points

Finally, the geometry of the Poincaré map and the Möbius effect can be seen in Figure

3.14. In the simulation we can see numerical results about the structural stability of the

chaotic orbit. In fact, in the second plot we can see how the cube is deformed by the effect

of the homoclinic orbit, in this case the torsion is a consequence of the Möbius strip.

87



3.6. STABILITY CONDITION: REAL EIGENVALUES IN THE GOODWIN
MODEL
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Figure 3.12: Real Case: Orbits generated by the program for the desynchronization of Good-
win model with 4 blocks.
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Figure 3.13: Sensitivity to the initial conditions, chaos in the real case

3.6.3 Stability analysis of the periodic orbits for the Goodwin model

At this point, we have information about the Poincaré map and some computational sim-

ulations reenforcing the idea of chaotic behavior of the synchronized Goodwin model. For

that reason in this section we analyze the stability of the periodic orbits. We start by the

construction of the Jacobian matrix related to the Poincaré map PL.

From equation (3.6.7) we can obtain the values for the following Jacobian matrix:

(3.6.11) DPL =


Aλ

|α2|
µ Cλ

|α4|
µ Ax |α2|

µ
λ
|α2|
µ
−1 +B |α3|

µ
λ
|α3|
µ
−1 + Cz |α4|

µ
λ
|α4|
µ
−1

Dλ
|α2|
µ Fλ

|α4|
µ Dx |α2|

µ
λ
|α2|
µ
−1 + E |α3|

µ
λ
|α3|
µ
−1 + Fz |α4|

µ
λ
|α4|
µ
−1

Gλ
|α2|
µ Iλ

|α4|
µ Gx |α2|

µ
λ
|α2|
µ
−1 +H |α3|

µ
λ
|α3|
µ
−1 + Iz |α4|

µ
λ
|α4|
µ
−1



The stability is determined by considering the nature of the eigenvalues of DPL. First we

compute the characteristic polynomial P (γ):

det(DPL − γI).

Solving the equation for γ we obtain the following polynomial:

P (γ) = −γ3 + tr(DPL)γ2 − [ae+ ai+ ei+ hf + db+ gc]γ + det(DPL) = 0.
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Figure 3.14: First return map for the Goodwin model with real eigenvalues.
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We want to find the solutions γ of the previous equation or at least a formula that governs

the size of the solutions depending on λ and the eigenvalues. For that reason we compute

the discriminant of the polynomial. It is known that if the polynomial has the form p(x) =

ax3 + bx2 + cx+ d, then the discriminant will be:

∆ = b2c2 − 4ac3 − 4b2d− 27a2d2 + 18abcd.

In our case, if we use the previous formula we can deduce that the discriminant is

∆ = tr(DPL)2C − 4C3 − 4tr(DPL)2det(DPL)− 27det(DPL)2 + 18Ctr(DPL)det(DPL)

where C = ae+ ai+ ei+ hf + db+ gc, tr(·) is the trace function of a matrix and det(·) is the

determinant.

We need to compute the expression for tr(DPL) and det(DPL), using the matrix (3.6.11)

and the values for x (3.6.7) and z (3.6.8):

tr(DPL) = Aλ
|α2|
µ + Fλ

|α4|
µ +G

|α2|
µ

[
Bλ

|α2+α3|
µ

−1 + CDiνλ
|2α2+α4|

µ
−1 + CEλ

|α2+α3+α4|
µ

−1

+ Ckνλ
|α2+α4|

µ
−1 + iνλ

|α2|
µ
−1
]

+H
|α3|
µ
λ
|α3|
µ
−1 + I

|α4|
µ

[
DBλ

|α2+α3+α4|
µ

−1

+ Diνλ
|α2+α4|

µ
−1 + Eλ

|α3+α4|
µ

−1 + kνλ
|α4|
µ
−1
]
.(3.6.12)

For the matrix determinant, it is easy to see that, no matter the value of the constants,

the final expression is equivalent to

det(DPL) = AFG
|α2|
µ

[
Bλ

|2α2+α3+α4|
µ

−1 +BCDλ
|3α2+α3+2α4|

µ
−1 + CDiνλ

|3α2+2α4|
µ

−1

+ CEλ
|2α2+α3+2α4|

µ
−1 + Ckνλ

|2α2+2α4|
µ

−1 + iνλ
|2α2+α4|

µ
−1
]

+ AFH
|α3|
µ
λ
|α2+α3+α4|

µ
−1

+ AFI
|α4|
µ

[
BDλ

|2α2+α3+2α4|
µ

−1 +Diνλ
|2α2+2α4|

µ
−1 + Eλ

|α2+α3+2α4|
µ

−1

+ kνλ
|α2+2α4|

µ
−1
]
.(3.6.13)

Using equations (3.6.12) and (3.6.13), we can do the analysis for the size of the trace

and the determinant, when λ is small. In general, we can find different inequalities for the
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eigenvalues if we know the values of the exponents.

tr(DPL) =

{
small |α2| > µ ∧ |α3| > µ ∧ |α4| > µ

large |2α2 + α3 + α4| < µ.

and

det(DPL) =

{
small |α2 + α3 + α4| > µ

large |3α2 + α3 + 2α4| < µ.

In resume, we have the following result for the stability of periodic orbits in the desyn-

chronized Goodwin model with real eigenvalues.

Theorem 3.6.1. In the desynchronized Goodwin model with real eigenvalues µ, α2, α3 and

α4, and under the hypothesis H2. When the value of λ is small enough we can conclude that

the eigenvalues can be made arbitrarily small or large, so the singular point in the Poincaré

map can be of three different forms:

Sink: if |α2| > µ, |α3| > µ, |α4| > µ.

Saddle: if |α2|+ |α3|+ |α4| > µ and |2α2|+ |α3|+ |α4| < µ.

Source: if |3α2|+ |α3|+ |2α4| < µ.

3.7 Stability condition: complex eigenvalues in the

Goodwin model

In the last section we have studied stability conditions in the Goodwin model with purely real

eigenvalues. However, we know that for a certain range in the parameters there exist complex

eigenvalues, more specifically two purely complex and two real. That is, using the equations

of the desynchronized Goodwin model we can deduce the Jacobian matrix, and from this

matrix we can obtain four eigenvalues, in our case denoted by µ, α2 ∈ R and ρ± iw ∈ C.

As before, here we develop the mathematical analysis of the complex desynchronized Good-

win model. For that reason, we will first show the construction of the Poincaré map. Later,

we will explain some numerical results to corroborate the existence of chaos. Finally, we

will study how to find a relation between the complex eigenvalues and the stable or unstable

periodic orbits.
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3.7.1 Construction of the Poincaré map for the Goodwin model with

complex eigenvalues

Consider the following linearized system of differential equations:

dx

dt
= ρx− wy + f1(λ, x, y, z; ν)(3.7.1)

dy

dt
= wx+ ρy + f2(λ, x, y, z; ν)(3.7.2)

dz

dt
= α2 + f3(λ, x, y, z; ν)(3.7.3)

dλ

dt
= µ+ f4(λ, x, y, z; ν)(3.7.4)

where the functions fi are C2 and vanish along with their first derivative at the origin. Here

(λ, x, y, z) = (0, 0, 0, 0) is an hyperbolic fixed point with the eigenvalues of the vector field

linearized about the origin, hence, the origin has a three dimensional stable manifold and

one dimensional unstable manifold. Additionally, we make the following assumptions,

H1 : µ, α2 > 0; ρ < 0;w 6= 0.

H2 : µ > 0;α2, ρ < 0;w 6= 0;µ > −ρ > 0.

In the rest of the section we will work under the hypothesis H2, and the additional condition

ρ > α2. Because, we need that the stable manifold lies outside the unstable manifold.

As we did before in the real case, we first define the sets Π0 and Π1

Π0 = {(λ, x, y, z) ∈ R4/ε exp(
2πρ

w
) ≤ x ≤ ε, |z| ≤ ε, y = 0, 0 < λ < ε}(3.7.5)

Π1 = {(λ, x, y, z) ∈ R4/λ = ε}(3.7.6)

The linearized flow generated by the solution is given by:

x(t) = exp(ρt)(x0coswt− y0senwt)

y(t) = exp(ρt)(x0senwt+ y0coswt)

z(t) = z0 exp(α2t)

λ(t) = λ0 exp(µt).

The time of flight T from Πo to Π1 is found solving the equation

ε = λ0 exp(µt)

93



3.7. STABILITY CONDITION: COMPLEX EIGENVALUES IN THE
GOODWIN MODEL

then we have that

T =
1

µ
log(

ε

λ0

).

We need to compute the Poincaré function PL in the complex case and we need to compute

PL
0 and PL

1 . First PL
0 : Π0 → Π1 is defined by


x

0

z

λ

→


x( ε
λ
)
ρ
µ cos(w

µ
ln( ε

λ
))

x( ε
λ
)
ρ
µ sin(w

µ
ln( ε

λ
))

z( ε
λ
)
α2
µ

ε

 .

Now we make the computation of PL
1 : Π1 → Π0

x

y

z

ε

→


a b c 0

d e f 0

g h i 0

0 0 0 0




x

y

z

0

+


x̄

0

0

0


where x̄ = ε(1 + exp(2πρ))/2.

With the previous information we obtain the map PL defined as the composition of the

other two, i.e. PL = PL
1 ◦ PL

0 : V ⊂ Π0 → Π0.

 x

z

λ

→
 ax( ε

λ
)
ρ
µ cos(w

µ
ln ε

λ
) + bx( ε

λ
)
ρ
µ sin(w

µ
ln ε

λ
) + cz( ε

λ
)
α2
µ + x̄

dx( ε
λ
)
ρ
µ cos(w

µ
ln ε

λ
) + ex( ε

λ
)
ρ
µ sin(w

µ
ln ε

λ
) + fz( ε

λ
)
α2
µ

gx( ε
λ
)
ρ
µ cos(w

µ
ln ε

λ
) + hx( ε

λ
)
ρ
µ sin(w

µ
ln ε

λ
) + iz( ε

λ
)
α2
µ

 .

In order to study the trajectories of the Poincaré map, it is necessary to solve the equations

in ( 3.7.1). However, it is not hard to see that the system is unsolvable, so we need to realize

a simplification to study another equivalent problem.

To begin we first make a simplification such that the term sin(·) is eliminated. Additionally,

we introduce a control variable ν and constants j, k, x

z

λ

→
 x( ε

λ
)
ρ
µpcos(w

µ
ln ε

λ
+ φ1) + cz( ε

λ
)
α2
µ + jν + x0

x( ε
λ
)
ρ
µ qcos(w

µ
ln ε

λ
+ φ2) + fz( ε

λ
)
α2
µ + kν

x( ε
λ
)
ρ
µ rcos(w

µ
ln ε

λ
+ φ3) + iz( ε

λ
)
α2
µ + ν

 .
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Defining new variables we can obtain a second simplification

δ =
−ρ
µ

; γ =
−α2

µ
; ξ =

−w
µ

α = pε−δ; ᾱ = cε−γ

β = qε−δ; β̄ = fε−γ

ζ = rε−δ; ζ̄ = iε−γ

Φi =
w

µ
lnε+ φi.

So finally the Poincaré map can be defined as: x

z

λ

→
 αxλδcos(ξlnλ+ Φ1) + ᾱzλγ + jν + x0

βxλδcos(ξlnλ+ Φ2) + β̄zλγ + kν

ζxλδcos(ξlnλ+ Φ3) + ζ̄zλγ + ν



The next step is to compute the singular points of the Poincaré map. We start by calcu-

lating the variables x, z and λ in the equation (3.7.1).

x =
ᾱzλγ + jν + x0

1− αλδ
cos(ξlnλ+ Φ1).

Since λ is small enough as we want, then the denominator is 1,

z =
β(jν + x0)λδcos(ξlnλ+ Φ2) + kν

1− βᾱλδ+γ − β̄λγ
.

Again assuming the simplification the denominator is 1, and we get

λ = ζ[ᾱ(β(jν + x0)λδcos(ξlnλ+ Φ2) + kν)λγ + jν + x0)λδcos(ξlnλ+ Φ3)]

+ ζ̄[β(jν + x0)λδcos(ξlnλ+ Φ2) + kν]λγ + ν.

Since the previous problem is in general hard to solve, it is possible to write a program in

order to find the solution for λ to be a fixed point and then we can obtain the values of z

and x.
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Figure 3.15: Complex Case: Orbits generated by the method for the desynchronization of
Goodwin model with 2 blocks.

3.7.2 Existence of chaos: Computational results

As we have explained in Section 3.3 about the program of desynchronization, we have used

it to realize several simulations.

We first show the results for the simulation in the “complex” case using the program of

desynchronization, as we can see in Figure 3.15. In the first plot we can see the homoclinic

orbits between the two blocks, in a 2D view, meanwhile in the second plot we have the 3D

representation. We have chosen λ, x and z as variables.

The parameters used in the simulation are the following: n = 3, µ = 20, ε = 0.05, δ = 0.1,

a = b = 1.0, K1 = K2 = K3 = 1.0, and γ1 = 0.1, γ2 = 0.2, γ3 = 0.3.
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Figure 3.16: The global effect of the stable manifold.

In the “complex” case we can prove numerically the existence of chaos by the geometry of

the Poincaré map and its circular effect (for more details see [W88]).

In general the idea is to show that PL contains an invariant Cantor set on which it is

topologically conjugate to the shift map. In this case we have considered a cube Π0 near the

origin as we can see in Figure 3.16, then we have applied the function PL to all the points

inside the cube at the same interval of time. Finally we have plotted the image of the set Π1

concluding spiral behavior.

In the first plot we have a cube near the origin of the x, y, z system where the value of λ is

constant and equal to ε. After iterate the program between Π0 and Π1 by the time of flight.
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In the second plot we can see how the cube is deformed by the effect of the homoclinic

orbit, the torsion is a consequence of the Möbius strip.

Finally, following the same principle, it is also possible to create a feedback on the pa-

rameter Vmax, instead of θ. The result is illustrated in Fig. 3.18. Recall that the method

sustaining algorithm is based on the principle of creating a trapping region in phase space

which is toroidal. Inside, orbits are forced to ”turn around” indefinitely. This fact explains

why the trajectories have a periodic behavior. Nonetheless, they are not exactly periodic,

and might exhibit irregularities, as exhibited in the figure.

Figure 3.17: Phase space of the negative Goodwin model with 3 variables and cooperativity
index n = 4. (left) simulation of the original system; (right) simulation of the
system with a feedback on θ, as constructed with the algorithm. Parameters
are: Vmax = 80 Mol.l−1t−1, K2 = K3 = γ1 = γ2 = γ3 = 10 t−1. The algorithm
runs with µ between 29 (picture) and 35.

3.7.3 Stability analysis of the periodic orbits for the Goodwin model

We continue with the stability analysis of the periodic orbits. We will prove that the system

presents a Shilnikov type condition.
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Figure 3.18: Time series showing a periodic behavior created in the negative Goodwin model
with 3 variables and cooperativity index n = 4 by a feedback on Vmax. Other
parameters are:θ = 7 Mol.l−1, K2 = K3 = γ1 = γ2 = γ3 = 10 t−1. The algorithm
runs with µ between 409 and 608. The simulation shown is for µ = 600 (down).

From equation (3.6.7) we can obtain the values of the Jacobian matrix for the system PL:

DPL =

 αλδcos(ξlnλ+ Φ1) ᾱλγ αxδλδ−1cos(ξlnλ+ Φ1)− αxξλδ−1sin(ξlnλ+ Φ1) + ᾱγzλγ−1

βλδcos(ξlnλ+ Φ2) β̄λγ βxδλδ−1cos(ξlnλ+ Φ2)− βxξλδ−1sin(ξlnλ+ Φ2) + β̄γzλγ−1

ζλδcos(ξlnλ+ Φ3) ζ̄λγ ζxδλδ−1cos(ξlnλ+ Φ3)− ζxξλδ−1sin(ξlnλ+ Φ3) + ζ̄γzλγ−1

 .

The stability is determined by considering the nature of the eigenvalues of the Jacobian

matrix DPL. In our case, it is only necessary to compute the determinant of the matrix,

because it is the expression that governs the eigenvalues.

For time-continuous systems, the question about local stability can be answered without

explicitely computing the eigenvalues of the Jacobian matrix, using the theorem of Routh

and Hurwitz [H64]. This theorem establishes that the real parts of all roots of a polynomial

are negative if and only if certain conditions (inequalities) are fulfilled, which in general can

be easily tested. The procedure involves the construction of an special array with n+ 1 rows

which are computed from the constants coefficients and a posteriori analysis on its values.

In our case we have a polynomial of third degree so the conditions for local stability, that
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is, to have eigenvalues with negative real part are:{
−tr(DPL) > 0

−tr(DPL)C + det(DPL) > 0

where C is a value depending on the matrix.

It is not complicated to prove that the stability only depends on the value of det(DPL).

However, for general high order systems, the analytical expression for the determinant is

extremely complicated. In these cases it is only necessary to compute the order of λ in the

previous expression. Finally in the desynchronized Goodwin model we have:

det(DPL) ≈ λ3δ+2γ−1.

Summarizing, we have the following result for the system stability:

Theorem 3.7.1. In the desynchronized Goodwin model with complex eigenvalues µ, α2 and

ρ ± iw, and under the hypothesis H2, if λ is sufficiently small, we can conclude that the

Shilnikov condition for the periodic orbits is:

stable periodic orbit −3ρ− 2α2 > µ

unstable periodic orbit −3ρ− 2α2 < µ
.

In Theorem 3.7.1 we can see that the value of µ, for stable periodic orbits, depends on

the other eigenvalues α2 and ρ (real part of both complex eigenvalues). Hence, the previous

result is a generalization for the second order system case [W88].

3.7.4 Relation between the model parameters

As we have seen before, in our desynchronized model we have the presence of various pa-

rameters related with: the block size (a, b, δ), constants of the original Goodwin model (γ1,

γ2, γ3, K1, K2, K3); and the control value µ, eigenvalue associated to the new differential

equation for λ.

In order to study the existence of a relation between the parameters, we want to get an

idea about the size of the “wiggles”. In general, we know that if the wiggles are small then

the 1-loop periodic orbits are only visible for a narrow range of parameters. In contrast, if the

size of the wiggles are large enough, we might expect to have greater likelihood of observing

the periodic orbits.
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First we remain some of the notations:

δ =
−ρ
µ
, γ =

−α2

µ
, ξ =

−w
µ

where µ, α2, ρ± iw are the eigenvalues of the desynchronized Goodwin model.

From the solution (3.7.7) of the singular points for the Poincaré map we have that

λ− ν = ζᾱ(β(jν + x0)λδcos(ξlnλ+ Φ2) + kν)λγ + jν + x0)λδcos(ξlnλ+ Φ3)

+ζ̄(β(jν + x0)λδcos(ξlnλ+ Φ2) + kν)λγ.

In general, if we omit the constants, we can say that the order of the previous expression

is:

λ− ν ≈ λ2δ+γ + λδ+γ

Now we impose the following condition for the expression in the cos function:

ξlnλi+1 − ξlnλi = π

which implies that the quotient between λ′s is:

λi+1

λi
= exp(

π

ξ
).

The principal idea to find the limit when i goes to infinity for the quotient between ν’s,

which give us the size of the oscillations in the periodic orbits. That is,

lim
i→∞

νi+1

νi
≈ − lim

i→∞

λ2δ+γ
i+1

λ2δ+γ
i

= −exp
(
π

ξ

)2δ+γ

and we can conclude that

lim
i→∞

νi+1

νi
≈ −exp

(
2ρ+ α2

w

)
where ρ, α2 < 0;w 6= 0.

Proposition 3.7.2. The size of the oscillations, computed as the limit between consecutive

ν’s, can be expressed in terms of the eigenvalues in the following way

lim
i→∞

νi+1

νi
= −exp

(
2ρ+ α2

w

)
where ρ, α2, w depend on the values of the constants γ1, γ2, γ3, K1, K2, K3 of the original Good-
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win model.

If we define the quantity η = 2ρ+α2/w, we would be able to see that when the values γi’s

increases or the values Ki’s decreases, the value of η goes to −∞, so it is more probable to

observe periodic orbits.

3.8 Conclusions and future work

In this chapter we have developed an algorithm for the desynchronization of stable systems

following the structure described in the constructive proof of the main theorem in [P06]

(Theorem 3.2.1).

Since the algorithm depends on certain parameters of the model and the nature of the

eigenvalues (purely real or complex), we have done both the spectral and the stability analysis

in order to obtain the best election for the model’s parameters, which generate and maintain

the periodicity of the homoclinic orbits and the sensitivity to the initial conditions (the

chaotic behavior).

As a first control example we made the desynchronization of the M-S Lorenz model with

the aim of testing the method against the well known chaotic behavior. In the Lorenz case we

have always real eigenvalues, independent of the parameters hence, we have applied the four

block method in order to create two homoclinic orbits with an additional problem related to

the magnitude of the eigenvalues for the simulation. Finally we have obtained similar results

to compare the method with the right choice of parameters.

However, we have center our attention in the most simple homeostatic biological system,

the Goodwin model, in which we induce periodicity and chaos by negative feedback. As a

first task, in the Goodwin model was necessary to differentiate between the nature of the

eigenvalues, purely real or complex, in order to realize the formal block construction: four

blocks in the real case and two in the complex case. Additionally, we found a relation between

the parameters of the model, and depending on the case, we have constructed the homoclinic

orbit. Finally, we made the stability analysis showing Shilnikov and Lorenz type condition

of chaotic behavior by the construction of the respective Poincaré map.

Another numerical experiment consists in applying the algorithm by adding a feedback on

the parameter Vmax, we create sustained oscillations with cooperativity index 4 (Figure 3.17).

This result is interesting since it is known that the Goodwin model with negative regulation
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cannot exhibit oscillations when it applies to a three-variable system with low “cooperativity

index” (less than 8) as noted in [C99].

The originality of our method relies on the fact that 1) it targets the dynamics of regulation

and 2) it acts on the ”software” of the organism, inducing a self-disorganization. Moreover,

from the work presented here we have learnt that the type of feedback proposed by the

method might be very simple: essentially, alternatively positive and negative action on the

parameter. This type of action is encountered in natural regulatory systems.

With regards to the biological implementation of the algorithm, as a form to design specific

drugs, we can say that we are far away to find a solution to the complete problem because of

the complexity of the real model. However, we believe that the problem itself deserves our

attention in the future, maybe with other class of models, or maybe integrating interconnected

system.
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4 A mathematical model for metal

stress response in Haloarchaeal.

In [B06], Baliga and coworkers reconstructed the physiological behaviors of Halobacterium

NRC-1, an extremophile archaea which lives in hypersaline environments. Using a system

level study (top-down approach) they proposed a biological model identifying four mecha-

nisms that play a central role in conferring resistance to excess of heavy metals.

In this chapter we propose a mathematical model accounting for the dynamics of uptake,

efflux, storage and traffic of transition heavy metals Cu(II), Zn(II), Mn(II) and Fe(II)

in Halobacterium NRC-1 based on the framework of differential equations and the power

law formalism. Since there are a lot of variables and parameters, we have sub-divided the

whole system in two independent modules, one solving the traffic and extrusion of Cu(II)

and Zn(II), and the other dealing with the uptake and storage of Mn(II) and Fe(II).

Moreover, each one of the modules have been divided in two classes: (I) without and (II)

with re-utilization of exported metal ions.

For both modules and their respective classes we prove in a formal way that the systems

present stable stationary states. The homeostatic behavior is characterized, according to

the various kinetic parameters (degradation, synthesis and affinity). Additionally, we derive

monotonicity conditions for the existence of global steady state responses, independently

of the choice of the parameters. Together with the theoretical results, we develop several

simulations to obtain numerical solutions for the system of differential equations and graphical

representations for the trajectory of each element in the modules.

Finally, from the biological point of view many particular questions are relevant to be

tested with the model. In particular, we address the question of cellular growth and death

at high metal ions concentrations, and the question of cellular response under successive

and alternate metal stress attacks. Both questions are essential in order to understand the

adaptability of the system to the medium. In this direction, we extend and simulate our

model with an additional equation for the growth. Additionally, this work try to extend

a previous model developed in [P06] for the behavior of the cop operon, which takes into
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account only information about copper mechanisms in bacteria showing that homeostasis is

a result of transient dynamics.
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4.1 Introduction

Transition heavy metals such as Mn(II), Cu(II), Zn(II), Fe(II), Co(II) and Ni(II) are

important for essential biological processes in all organisms. They are effective in trace

amounts, nonetheless, when their concentrations abnormally increase, for instance because

of a sudden change in the environment or a failure of the regulatory mechanisms, severe

damages can occur to the cell. For these reasons there is an increasing interest in the different

molecular processes that the cell uses to regulate the metal stress response, and maintain

homeostasis. However, they are not completely known yet.

Organisms usually avoid metal toxicity through selective uptake, traffic and efflux of metal

ions and enzymatic conversion of metals into non or less toxic redox states. Defects in metal

traffic can cause serious illness such as Menkes and Wilson diseases ([H99], [F99], [L99], [M01]).

In order to decipher metal-protein specialization from transcriptional responses, one re-

quires the knowledge of genes that respond to a specific metal as well as the proteins that

mediate the metal regulation. In general, we can use a reductionist approach and analyze

the effect of each transition metal in the cell, but a top-down level system approach enables

full appreciation of a global stress response of this type, thereby helping in distinguishing

putative direct changes from indirect responses ([Ha01], [B02], [B04]).

The deepening of the system level understanding eventually leads to mathematical models

of corresponding degree of precision, that are useful in the re-engineering of microbes in view

of industrial, environmental and medical purposes [B07].

In a system approach, measurements and analysis of all the components at the same time

provide integral information about how the different transition metal ions with the proteins

act inside the cell to regulate and to control the metal stress response. However, when we need

to solve conflicts of biological hypotheses or to provide precise interpretation of non-intuitive

data, the mathematical modeling approach can be useful.

The main objective of this chapter is to understand how homeostasis is achieved and show

some theoretical properties related with the steady states such as robustness, monotonicity

and convergence to equilibrium by building a mathematical model, accompanied by simu-

lations, based on the most complete description at the biomolecular level of metal stress

response done for Haloarchaeal NRC-1 [B06].

In the simulations we do not use real values for concentrations, affinities and degrada-

tion rates because only few of them have been measured and the others are still unknown.
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However, we have considered qualitative relationships between them and some restrictions

compatible with biological reality. Therefore, we have been able to establish qualitatively

similar results as those obtained in [B06] by experiments (see Figure 4.1).

The chapter is organized as follows: Section 4.2 contains a brief summary of the biological

model under study built by Baliga et al. Section 4.3 provides a detailed exposition about

how we have constructed the mathematical model. Sections 4.4 is devoted to the mathe-

matical analysis of the steady states and homeostasis behavior, and Section 4.5 deals with

monotonicity and the global stability analysis. Finally Section 4.6 contains the main results

and simulations obtained by the programs xDim ([MM], differential equation solver) and Cell

Designer ([K03], [K07]).

Moreover, two important biological questions dealing with cellular growth and death under

different metal stress, and the cellular response under successive and alternate stress of metals

are treated. In order to answer these two questions we have simulated how the Cu/Zn module

responds to successive and alternative external stress of copper and zinc ions. In the other

case, we have added to our model an additional equation. This equation introduces a new

variable, which is constant in the original model, dealing with the cellular growth problem.

Our point of view sheds some new lights on the way a cell would react to environmental

perturbations such as cellular stress by subletal metal concentrations.

Figure 4.1: Picture from Baliga et al. work [B07]: At higher concentrations all metal were
growth inhibitory.
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4.2 Overview of the biological model

In [B06], using microarray analysis, the authors investigated transcription level changes for

2, 400 genes exposed for 5 hours to at least three different metal concentrations, and they

reconstructed both the physiological behaviors and the regulatory interaction networks of

Halobacterium NRC-1, in subletal levels of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and

Zn(II).

Halobacterium NRC-1 is an extremophile archaea, which requires environments with nearly

saturated salt conditions (∼ 4.5M) and an optimal temperature observed at 37oC to survive

and grow. Typical habitats comprise marine salterns, salt evaporation ponds and hypersaline

lakes, where high cells densities and rapid evaporation can lower oxygen tension and deplete

nutrient concentrations [B07].

In what follows we briefly discuss the main biological results obtained from the top-down

system level approach in [B06]. In order to explain the generalities of the model we separate

the global metal stress response structure into four modules: Cu(II), Zn(II), Mn(II),

Fe(II), each one of them representing an important regulatory mechanism for metal uptake,

efflux and traffic. However, later in the mathematical model and the corresponding analysis

we take into account the interactions between them.

DNA microarrays were used to assess global transcriptional responses to environmental

and genetic perturbations in Halobacterium NRC-1. We know that at abnormally high con-

centrations all metals are growth-inhibitory. This growth-arrest phenotype is perhaps one

of the resistance mechanisms to the regular occurrence of stressful conditions in its dynamic

hypersaline environment.

The physiological response reconstruction was made through simultaneous analysis of tran-

script level changes, along with a variety of independent databases. In general, over 20% of all

genes responded transiently within minutes of exposure to heavy metals, perhaps reflecting

immediate large-scale physiological adjustments to maintain homeostasis.

Moreover, 1/3 transcriptional changes elicited by the various transition metals were re-

lated to oxidative stress managements, including deshydrogenases activation, ion scavenging,

protein turnover, DNA replication and repair. These observations are consistent with the

property of transition metals to catalyze production of reactive oxygen species (ROS).

While several of these phenomena constitute a general stress response, up-regulator of

active efflux of Co, Ni, Cu and Zn, down-regulation of Mn uptake and up-regulation of Fe
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chelation, confer resistance to the respective metals.

Finally it is hypothesized that at least four mechanisms play a central role in conferring

resistance to the six transition metals, and for the convenience of the reader we repeat the

relevant material from [B06] and other articles (an example for Bacillus Subtilis can be seen

in [Mo05]), thus making our work self-contained.

In the following we will use the standard notation for genes and proteins. The genes will

be denoted with their first letter name in minuscule, e.g. yvgX, and the proteins will be

denoted with their first letter name in majuscule, e.g. Y vgX.

4.2.1 Cu(II) resistance

The regulatory mechanism of resistance to Cu(II) excess involves:

• Two P1 ATPase transporters Y vgX and ZntA, which pump copper ions out of the cell.

• Two metallochaperones V NG0702H and V NG2581H, which safely transport copper

(and also zinc) inside the cell. In what follows the metallochaperones will be denoted

by Ch.

• A regulator V NG1179C from a Lpr family regulator with a putative metal binding

TRASH (traffic, resistance and sensing of heavy metals) domain, which up-regulates

the transcription of V NG0702/2581H and Y vgX. We observe that the regulator of

ZntA will be analyzed in Section 4.2.2.

TRASH domain [E03] is a well conserved cysteine motif (signature CxCxC) that is involved

in metal coordination. TRASH is encoded by multiple prokaryotic genomes and is present

in transcriptional regulators. The domain constitutes a novel component in metal traffic and

heavy metal resistance. However the regulation of V NG1179C is unknown.

Observation 4.2.1. In the literature we have not found evidence about the presence of an

operon in the regulation of the system, so in our model we have assumed that the genes are

not co-regulated in the genome.

Now we describe the model in details (see Figure 4.2 for a graphical description). The

mechanism that the cell uses to import the copper from the exterior is not known. We have

assumed the existence of a regulatory function with a threshold parameter which traduces

the fact that a minimal external pressure is necessary to allow permeability. On the other
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hand, we have assumed that the chemical reaction is irreversible, as in the copper model

described in [Sz03]. In summary, uptake is represented by the following equation:

Cuext → Cuint.

Once copper ions are inside the cell, they bind to the putative metallochaperones Ch

producing the complex ChCu. The special behavior of this archaea is characterized in the

copper mechanism because the chaperones can bind to both copper and zinc ions, and in

general the presence of zinc activates all the regulatory machinery for the copper traffic, so

we include here the zinc reaction too,

Cuint + Ch→ ChCu,

Znint + Ch→ ChZn.

Additionally the model needs a basal concentration of the protein Ch to start the tran-

scription machinery of the copper chaperones and the copper efflux ATPase Y vgX, this fact

was proved experimentally and different simulations of our mathematical model show the

same conclusion (more details in Section 4.6).

The complexes ChCu and ChZn deliver Cu and Zn ions respectively to the protein with

TRASH domains V NG1179C ([To05], [Sz03]), which will be denoted from now as TD,

ChCu+ TD � TDCu+ Ch,

ChZn+ TD � TDZn+ Ch,

which in turn activates transcription of both chaperones Ch,

TDCu→ Ch,

and the Y vgX protein,

TDCu→ Y vgX,

where the complex TDCu produces (positive regulation) chaperone and transport protein.

The regulatory mechanisms that involves the complex TDZn will be analyzed in Subsection

4.2.3.

In the above model, the metal-binding domain works on DNA next to the genes as a Cu(II)

sensor to modulate activity of V NG1179C. This is functionally similar to the modulation of
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the activity of the human Cu(II)-translocating ATPase ATP7B, whose abnormal function

results in Cu(II) accumulation leading to Wilson’s disease ([H99], [L99]).

Efflux of Cu(II) by the P1 ATPase Y vgX is a key mechanism for withstanding Cu(II)

toxicity. Recent experiments realized in absence of this protein have shown poor growth in

presence of Cu(II) and Zn(II). However, we will see in the next subsection that it is not

the only system used by the cell to control the traffic of toxic metals. The main reactions

associated to efflux are:

ChCu+ Y vgX � Y vgXCu+ Ch,

and

Y vgXCu −→ (Cue)
∗ + Y vgX,

where (Cue)
∗ corresponds to external copper ions exported by the cell. In the model we

mainly assumed that (Cue)
∗ cannot be absorbed again by the cell. However we have done

other simulations (see Section 4.6) where, in order to compare this effect, we allow to the

metal ions return into the cell. Additionally, there exists degradation of the complexes which

release copper to the internal medium.

Figure 4.2: Scheme of the Cu(II) resistance model which involves three genes: V NG1179C,
V NG0702H and yvgX. The metallochaperones V NG0702H/2581H (Ch in
scheme) transfer copper ions to V NG1179C, a protein exhibiting TRASH do-
main (TD in scheme), and its complex up-regulates the production of the metal-
lochaperones and Y vgX, which releases Cu from the cell.
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4.2.2 Zn(II) resistance

In terms of oxidative stress, Zn(II) seems to be the most damaging among metals. In

particular, its high toxicity was experimentally proven in Halobacterium NRC-1. For that

reason, intracellular zinc levels are tightly regulated by zinc enzymes expression and zinc

transporters.

As for copper, the zinc uptake mechanism is unknown, for that reason we have used a

regulatory function with a threshold to simulate the process:

Znext → Znint.

As stated in the previous subsection, the chaperones V NG0702H and V NG2581H, com-

mon to Cu and Zn ions, are the transporters:

Znint + Ch→ ChZn.

The traffic system uses ZntA, another P1 ATPase of broad specificity, that confers re-

sistances to Co, Ni, Cu and Zn. Experimental evidence shows that ZntA protein is up-

regulated at steady state only in the presence of Zn(II) [B06], however the regulator involved

is unknown and it has not been characterized in the reference paper.

For that reason and inspired by previous evidence ([Ch07], [Y05]) we assume that transcrip-

tion of zntA gene is activated by ZntR protein, a metal responsive transcriptional regulator.

The binding of Zn(II) ions to ZntR is produced by the action of the metallochaperones Ch,

as in the copper model, i.e.,

ChZn+ ZntR � ZntRZn+ Ch.

As the mechanism of regulation is unknown, the concentration of ZntR needs to be in a

basal level in order to produce the reactions. This process converts the complex ZntRZn

into a strong transcriptional activator of the gene zntA, resulting in the increasing efflux of

zinc ions. The associated reaction is given by:

ZntRZn→ ZntA,

where we have assumed a positive regulation.
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In the experimental test it was investigated how the cell reacts under the elimination of

ZntA protein, and the result was a poor growing in the presence of metals. As a consequence,

it was proved that there exists a correlation between the amount of ZntA and the amount

of heavy metal expulsed from the cell. The associated reaction is:

ZntAZn −→ (Zne)
∗ + ZntA,

where (Zne)
∗ corresponds to external zinc ions exported out of the cell.

Figure 4.3: Scheme of the Zn(II) resistance model with two genes: zntR (unknown regu-
lator) and zntA. Metallochaperones transport zinc ions to both proteins ZntR
and ZntA. ZntR regulates positively the production of ZntA, the traffic protein
which confers resistance to Zn(II), Cu(II), Co(II) and Ni(II).

4.2.3 Link between the Cu(II) and the Zn(II) mechanisms.

In general, it is known that certain organisms require multiple mechanisms for clearing Cu(II)

from the cells in order to reduce its toxicity. For example, this is the case of the Cop operon in

E. Coli [Sz03], where P−type ATPase CopA, Cu-oxidase CueO and multicomponent copper

transport system CusCFBA are related.

In Halobacterium NRC-1, as we have seen before, it was experimentally shown that in

the presence of zinc, the copper mechanism is activated. Thus, the zinc ions need to be

incorporated in the study of the copper mechanism.

For example, the protein ZntA, involved in the zinc extrusion mechanism (Subsection

4.2.2) can export copper out from the cell. The following chemical reactions summarize the
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process:

ZntA+ ChCu −→ ZntACu+ Ch,

and

ZntACu −→ (Cue)
∗ + ZntA.

Moreover, as we have seen before, the internal zinc can bind to the chaperone Ch forming

the complex ChZn, which can interact with TD protein in order to regulate the production

of Ch and Y vgX. That is,

ChZn+ TD � TDZn+ Ch,

TDZn→ Ch,

TDZn→ Y vgX.

It was proved by biological experiments that these additional mechanisms make the release

of copper outside from the cell a more efficient system [B06]. In the simulations of Section

4.6 we will see that the curve for the concentration of external copper grows faster than the

curve for the concentration of external zinc. This behavior is consistent with two biological

forces: zinc is necessary inside the cell from multiple mechanisms and copper is exported by

two different proteins Y vgX and ZntA.

As a consequence, it is necessary to incorporate and study both extrusion mechanisms into

a single module, called Cu/Zn module.

Assumptions:

Baliga and co-authors have assumed that one or both of these putative chaperones are con-

stitutively present in the cell at a basal level, trafficking Cu(II) ions to appropriate ligands.

Moreover, they did not find evidence for the regulation of V NG1179C (TD) and ZntR. How-

ever, the idea of a basal concentration for the chaperones and the regulators with TRASH

domain is not generally accepted in a model with differential equations. In contrast, to con-

struct a more realistic model we have assumed the existence of a negative auto-regulation for

both TD and Ch which is consistent with the empirical evidence. In fact, when the amount

of free TD and Ch is small (as in the case of absent of ion stress or in the case of maximum

stress) then the production of both proteins will increase, in the contrary case the amount

will be relatively constant.
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On the other hand, as it is unknown the existence of an operon (as in the case of Cop

operon in E. Coli) we will omit in the final equation the reaction of the type

X +O � XO → Y,

by considering only reactions of the type

X → Y.

In the last case, we can obtain a regulatory function using the Michaelis-Menten reduction

(quasi-steady state approximation), in order to consider the effect of one protein or complex

in the regulation of the other. This reduction simplifies the model and the mathematical

analysis, however, it will be necessary to consider the effect of the binding regions when we

take into account the growth effect, in which case, the amount ρ0 will depend on the number

n of archaeas present in the medium.

4.2.4 Fe(II) resistance

Iron is an essential micronutrient for almost all organisms, and given its limited bio-availability,

micro-organisms have developed sophisticated mechanisms to scavenge this metal ion from

their environment. In most bacteria, the iron-responsive transcriptional regulator Fur is

responsible for coordinating the expression of iron uptake and storage functions.

In this model we can distinguish two main processes: Fe(II) uptake and detoxification (see

Figure 4.4 for graphical details). In general, the uptake mechanism is not well known, because

the transcriptional regulators have not been identified yet. However, different experiments

[B06] have shown that Mn(II) up-regulates and Zn(II) down-regulates putative siderophore

(an iron chelating compound) biosynthesis and Fe(II) uptake. For that reason we assume

that we have an unknown regulator denoted by FeR. FeR protein can be bound to Mn, Fe

and Zn forming the following compounds:

FeR +Mn→ FeRMn,

FeR + Fe→ FeRFe,

FeR + Zn→ FeRZn.

The complexes FeRMn and FeRZn act over the regulated transcriptional domain of an
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uptake protein that we denote FeU , up-regulating and down-regulating respectively. The

associated reactions are:

(4.2.1) FeRMn+R1 � R1FeRMn→ FeU,

(4.2.2) FeRZn+R1 � R1FeRZn→ ∅ (block the production of FeU),

where R1 represents the regulated transcription domain of FeU . The last arrow in (4.2.1)

means that the complex FeRMn binds to the gene region R1 producing (positive regulation)

the uptake protein FeU . Meanwhile, the last arrow in (4.2.2) implies that complex FeRZn

down regulates the production of the uptake protein. For that reason in our case the symbol

∅ means no production.

Observation 4.2.2. The presence of Fe is not necessary in the regulation of the uptake

protein, hence we can conclude that manganese simulates iron deficiency. For that reason,

to better understand the behavior of the system we study the whole Fe/Mn module

Chelation of Fe(II) by the ferritin DpsA is a mechanism for detoxifying the cell from

Fe(II). Transcription of DpsA is up-regulated in the presence of Co, Fe, Zn and down-

regulated by Mn and Fe deficiency conditions. Increase in dpsA transcription during ferric

stress, on the other hand, in conjunction with its property to store iron in its nontoxic

Fe(III) form, points to a regulatory mechanism that ensures increased abundance of DpsA

to minimize its toxicity in the cell ([R02], [Z04], [Se00]). This can be summarized in the

following reactions:

FeRFe+R2 � R2FeRFe→ DpsA,

FeRZn+R2 � R2FeRZn→ DpsA,

(4.2.3) FeRMn+R2 � R2FeRMn→ ∅ (block the production of DpsA),

where R2 represents the regulated transcription domain of DpsA. Similarly as we have

explained before, FeRFe and FeRZn exert a positive regulation over the production of

DpsA, meanwhile in (4.2.3), FeRMn down regulates it (symbol ∅).

Finally, detoxification and storage can be represented as follow:

DpsA+ Fe −→ DpsAFe,

DpsAFe −→ DpsA+ Fe(III).

Observation 4.2.3. In the description for detoxification and storage, we are not interested
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in what happens with Fe(III). Even in the case that there exists another special mechanisms

dealing with this metal ion, it is not complicated to incorporate the effect in our model. That

is, in our model Fe(III) is not reused.

Figure 4.4: Scheme of the Fe(II) resistance model: Three genes are involved in the cen-
tral mechanism feR, feU and dpsA. We have an unknown regulator protein
FeR working in presence of Mn(II), Fe(II) and Zn(II), regulating the FeU
protein dealing with the iron uptake and DpsA protein dealing with the iron
detoxification.

4.2.5 Mn(II) resistance

In contrast with the iron uptake, before the biological study in [B06] little was known about

manganese uptake system.

The uptake mechanism for minimizing Mn(II) toxicity is composed of the putative Mn-

dependent autorepressor protein SirR, from the MntR family regulator, which can bind to

either Mn(II) or Fe(II),

SirR +Mn � SirRMn,

SirR + Fe � SirRFe,

and three subunits ofMn-uptake ABC transporters ZurA, ZurM and Y cdH (transmenbrane

protein), whose genes are gathered in the zur operon.

In the uptake system, the operation of the zur operon was not clearly established. We

know that the proteins observed are three: ZurA, ZurM and Y cdH [He99]. ZurA is an

ABC transporter and it is in charge of the manganese uptake; the ZurM protein displays
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high similarities with hydrophobic membrane proteins associated with ABC transporters;

and Y cdH is an adhesion protein. We can summarize all the previous information in the

following reaction:

ZurA+Mnext � ZurAMn→ ZurA+Mnint.

At the beginning it was thought that SirR protein in presence of either Mn(II) or Fe(II)

up-regulates the expression of the zur operon (result obtained from regulatory inference pro-

grams cMonkey, Inferelator). However, after multiple experiments it was understood that it

actually down-regulates the expression of the operon. The explanation for this phenomenon,

contradicting previous results that show correlated growing, is the negative regulatory action

of the SirR protein over itself. This explains the behavior and the results previously found

in the biological experiments:

SirRMn+R3 � R3SirRMn,

SirRMn+R4 � R4SirRMn,

R3 −→ SirR,

R4 −→ ZurA+ ZurM + Y cdH,

where R3 and R4 correspond to the regulatory sites of proteins SirR and ZurA respectively.

In this case, the last two pseudo-reactions show the idea of negative regulation, that is, in

normal condition the archaea produces SirR and ZurA−ZurM − Y cdH proteins, however

under the presence of manganese inside the cell and the formation of complex SirRMn, the

production of both proteins are blocked.

Finally, SirR may also impose this regulation upon binding Fe(II), but its function might

be blocked upon binding either Co(II) or Ni(II). However, its transcriptional control seems

to only have impact on conferring resistance to Mn(II) and none of the other metals.

4.3 The mathematical model

In general, it is difficult to construct a model for a global system because we do not have

real biological data. In theory, knowing all the biological actors and all the local interactions

allow to construct a precise and fine tuned mathematical model coherent with reality. Such

a model enables to do in-silico experiments, faster and inexpensive, as in virtual biology for

example. The drawback of this approach is that the model might be too complex to extract
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Figure 4.5: Scheme of the Mn(II) resistance model: In the presence of either Mn(II) or
Fe(II), SirR protein down-regulates itself and the operon zurA/zurM/ycdH as
a mechanism for metal stress resistance. ZurA is the ABC transporter dealing
with the manganese uptake.

relevant information, applicable to other situations. This is the reason why in the literature

we find simple models, even toy models, which reflect only a few aspects of the system which

can be understood.

In this section we construct a mathematical model for Halobacterium NRC-1 based on

the biological information of Section 4.2, which has been translated into chemical equations,

in order to obtain a formal description of the processes and shed new lights on the cellular

behavior.

We use the differential equation formalism, working under the following assumptions: we

have a population of cells and our variables account for a mean behavior. As a result we

can neglect stochastic fluctuations and assume that all the variables of the system evolve

continuously and in a deterministic way. We have neglected the spatial effect, like compart-

mentalization or (spatial) diffusion.

If we analyze the biological network of interactions, it seems natural to divide the whole

system into two modules: one dealing with the uptake regulatory process, which involves

Mn(II) and Fe(II), and the other dealing with the trafficking regulation, with actors Cu(II)

and Zn(II). A key point to be analyzed mathematically is the measure and the comparison

of their influence on the whole system. Since we do not know particular regulatory networks

for cobalt and nickel, we have omitted both metals in the final analysis.

We have supposed that reactions are governed by mass-action kinetics and we have used
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mass balance analysis to build the system of polynomial differential equations governing the

dynamics (see [Sa01] for more details). This is the standard approach in the context of power

law formalism. In the literature we did not find information about the quantity of metal ions

joined to the proteins, so we have made the assumption of one metal ion by protein in all the

equations, but it can be considered as a parameter, that is, we could define q as the number

of metal ions joined to a protein and then use the polynomial formalism.

One exception is made for mass action kinetics, which concerns the uptake process. In fact,

since the precise mechanism is not known in the case of Cu(II) and Zn(II) or the transporter

is not an ABC transporter we adapt the equations to the experimental observation by using

ad-hoc functions. In this direction, to mimic the threshold effect (uptake occurs once external

concentration overpasses a given range), we use positive sigmoid shaped regulatory functions,

satisfying the following properties: (i) Ri(0) = 0; (ii) Ri is small for concentration lower than

a threshold θi; (iii) Ri grows proportionally to the concentration between θi and a second

threshold θ′i; and (iv) Ri saturates for concentrations greater than θ′i. Typically the function

Ri has the following form:

(4.3.1) Ri(x) =
τix

n

xn + θi

where θi is the threshold parameter, n corresponds to the cooperative coefficient and τi is

the saturation constant at high concentrations, x >> θi.

In what follows, we will show in details the equations for both modules: Cu/Zn module

where regulation is mainly achieved by control of the traffic and efflux of metal ions, and

Mn/Fe module where regulation is mainly achieved by the control of uptake and storage of

metal ions. We have analyzed separately each of the individual control processes for metal

ions following the differential approach, in order to calibrate and find the value of some

parameters.

In both modules, Cu/Zn and Mn/Fe, we have assumed an external source of metal ions

with concentrations σi(t), i = 1, . . . , 4, for Cu(II), Zn(II), Mn(II) and Fe(II), respectively.

This value corresponds to the derivative of the sum of total intracellular and extracellular

metal concentrations. That is, they represent the velocity at which the metal ions from the

external source enter into the system (open system) and enrich the medium.
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4.3.1 Cu/Zn resistance module

Variables and parameters

The module constructed in this subsection has a lot of components, for that reason we use

several variables to refer us to each one of them. Before introducing the variables, we define

abbreviations of the nomenclature to denote some components.

Let us denote by Cuext and Znext the metal ions available at the extracellular medium,

Cuint and Znint internal free metal ions, and Cu∗ and Zn∗ the exported metal ions. The

variables Cuint and Znint are unreal because it is not possible to find free copper or zinc

inside the cell, however for us they will play the role of storage or internal cellular use.

In the analysis we distinguish two classes of models: (i) class E(I), where extruded metals

are not reused. (ii) Class E(II), where recapture of Cu∗ and Zn∗ is allowed. In class E(II),

we simple make a change in the system of differential equations removing the two equations

for Cu∗ and Zn∗. Other authors use variables with time delay in order to exhibit the previous

property.

Table 4.1 summarizes the abbreviations and Table 4.2 introduces the variables xi used in

the construction of the first module:

Table 4.1: Abbreviation in the Cu/Zn module.

Name Abbreviation Name Abbreviation
Internal copper Cuint Internal zinc Znint

Exported copper (Cu)∗ Exported zinc (Zn)∗

External copper Cuext External zinc Znext
Copper regulator TD Copper traffic protein Y vgX

Zinc regulator ZntR Zinc traffic protein ZntA
Chaperone Ch Chaperone bound copper ChCu

Chaperone bound zinc ChZn TD bound copper TDCu
TD bound zinc TDZn Y vgX bound copper Y vgXCu
ZntR bound zinc ZntRZn ZntA bound copper ZntACu
ZntA bound zinc ZntAZn

The second important part of the module corresponds to the parameters used in the

reactions. Degradation rates of the proteins are denoted δ̄, while δ represents degradation

rates of the protein-metal complexes. We have affinity reactions constants: KX between

proteins, CCX from internal free metal to protein X. Finally, for the proteins with unknown

regulators we have assumed that it production is proportional to the amount of internal metal

ions. For example, the amount of TD is assumed to be auto-regulated in presence of copper.
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Table 4.2: Variables for the Cu/Zn module.

Variable Abbreviation Variable Abbreviation
x1 Cuint x2 Znint
x3 ChCu x4 ChZn
x5 TDCu x6 TDZn
x7 Y vgXCu x8 ZntRZn
x9 ZntACu x10 ZntAZn
x11 Ch x12 TD
x13 Y vgX x14 ZntR
x15 ZntA x16 (Cu)∗

x17 (Zn)∗ x18 Cuext
x19 Znext

In the same way this mechanism is applied to the chaperone protein production Ch and the

regulatory proteins TD and ZntR.
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4.3.2 Cu/Zn module equations

Using the previous scheme we can derive the equations for the model. The reactions involved

in the biological model have been constructed. Notice that the dot over the variables means

time derivative.

Class E(I)

˙x18 = σ1(t)−R1(x18)

˙x19 = σ2(t)−R2(x19)

}
external copper ions

external zinc ions

˙x16 = R3(x7) + R4(x9)

˙x17 = R5(x10)

}
extrusion

ẋ1 = R1(x18) + δChx3 + δTDx5 + δY x7 + δZAx9 − CCCh(x11 − x3 − x4)x1

ẋ2 = R2(x19) + δChx4 + δTDx6 + δZRx8 + δZAx10 − CCCh(x11 − x3 − x4)x2

}
internal ions

ẋ3 = CCCh(x11 − x3 − x4)x1 −KTD(x12 − x5 − x6)x3 −KY (x13 − x7)x3

− KZA(x15 − x9 − x10)x3 − δChx3

ẋ4 = CCCh(x11 − x3 − x4)x2 −KTD(x12 − x5 − x6)x4 −KZR(x14 − x8)x4

− KZA(x15 − x9 − x10)x4 − δChx4

ẋ5 = KTD(x12 − x5 − x6)x3 − δTDx5

ẋ6 = KTD(x12 − x5 − x6)x4 − δTDx6

ẋ7 = KY (x13 − x7)x3 −R3(x7)− δY x7

ẋ8 = KZR(x14 − x8)x4 − δZRx8

ẋ9 = KZA(x15 − x9 − x10)x3 −R4(x9)− δZAx9

˙x10 = KZA(x15 − x9 − x10)x4 −R5(x10)− δZAx10



transport

and

efflux

˙x11 = G
1+α1(x11−x3−x4)

+ Ax5+Bx6

AB+Ax5+Bx6
− δ̄Ch(x11 − x3 − x4)− δChx3 − δChx4

˙x12 = G
1+α2(x12−x5−x6)

− δ̄TD(x12 − x5 − x6)− δTDx5 − δTDx6

˙x13 = Ax5+Bx6

AB+Ax5+Bx6
− δ̄Y (x13 − x7)− δY x7 + R3(x7)

˙x14 = G
1+α3(x14−x8)

− δ̄ZR(x14 − x8)− δZRx8

˙x15 = x8

β+x8
− δ̄ZA(x15 − x9 − x10)− δZAx9 − δZAx10 + R4(x9) + R5(x10)


protein

generation

where A, B, G, α1, α2, α3 and β are the constants inside each regulatory function.
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Class E(II)

Equations ˙x16 and ˙x17 are removed and the extruded metal ions are incorporated into the

external concentrations as follows:

˙x18 = σ1(t)−R1(x18) + R3(x7) + R4(x9)

˙x19 = σ2(t)−R2(x19) + R5(x10)

}
external ions

126



4.3. THE MATHEMATICAL MODEL

The diagram

Figure 4.6 depicts all interactions between proteins, metal ions and genes of the respective

module with their abbreviations. In the model we have three genes and five proteins related

with the trafficking. Both regulatory proteins, V NG1179C (TD) and ZntR, have production

rates depending on the amount of free proteins because the exact regulatory mechanism is

unknown. Hence, we assume that at high concentrations of free proteins the production is

blocked and when the amount of free protein is small we get a basal production.

4.3.3 Mn/Fe resistance module

Variables and parameters

As before, let us denote by Mnext and Feext the metal ions available at the extracellular

medium, and Mnint and Feint the free internal metal ions. As in the Cu/Zn module, here

the variables Mnint and Feint mean internal cellular use or storage.

The module has been divided in two classes: (i) class U(I), where we do not have metal

exportation mechanisms, even in a passive way, (ii) class U(II), where we assume metal ions

extrusion in a passive way. In the second case, we use regulatory functions with threshold

parameters in order to model the unknown mechanism.

We introduce some preliminary notations in the Mn/Fe uptake regulatory mechanism. We

will denote by FeR the general ferric uptake regulator, because according to the study there

exists different types of regulators, such as DtxR with 68.4% identity in a 19 nucleotides

overlap, additionally the protein for the ferric uptake will be denoted by FeU . Table 4.3

summarizes all the abbreviations and Table 4.4 defines the variables, with their corresponding

names, used in the construction of the second module.

For consistency between the modules we have assumed the same parameters for degrada-

tions, affinity reactions constants and reversible reactions with DNA.
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Figure 4.6: Complete module for the Cu/Zn traffic and efflux mechanism. To draw the
biological network we use CellDesigner (Kitano et al. [K07]) for the graphical
representation. In the picture, the yellow squares represent the genes, the blue
squares represent the proteins and the white squares represent the intermediary
interactions such as, protein-protein, protein-ion or protein joined to regulatory
sites. Meanwhile in circles have been represented the metal ions, and the yellow
line represents the limit between extracellular and intracellular environments.
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Table 4.3: Abbreviation in the Mn/Fe module.

Name Abbreviation Name Abbreviation
Internal manganese Mnint Internal iron Feint
External manganese Mnext External iron Feext
Mn uptake protein ZurA protein regulator SirR
Fe detoxification DpsA Fe uptake protein FeU
protein regulator FeR ZurA bound manganese ZurAMn
FeU bound iron FeUFe SirR bound manganese SirRMn
SirR bound iron SirRFe FeR bound manganese FeRMn
FeR bound iron FeRFe DpsA bound iron DspAFe

Table 4.4: Variables for the Mn/Fe module

Variable Name Variable Name
x1 Mnint x2 Feint
x3 ZurAMn x4 FeUFe
x5 SirRMn x6 SirRFe
x7 FeRMn x8 FeRFe
x9 DspAFe x10 ZurA
x11 SirR x12 DpsA
x13 FeU x14 FeR
x15 Mnext x16 Feext

4.3.4 Mn/Fe module equations

Class U(I)

˙x15 = σ3(t)−KZA(x10 − x3)x15

˙x16 = σ4(t)−KFU(x13 − x4)x16

}
external manganese ions

external ferric ions

ẋ1 = DZAx3 + δZAx3 + δSRx5 + δFRx7

− CCSR(x11 − x5 − x6)x1 − CCFR(x14 − x7 − x8)x1

ẋ2 = DFUx4 + δFUx4 + δSRx6 + δFRx8 + δDAx9

− CCSR(x11 − x5 − x6)x2 − CCFR(x14 − x7 − x8)x2 − CCDA(x12 − x9)x2

 internal ions

ẋ3 = KZA(x10 − x3)x15 − δZAx3 −DZAx3

ẋ4 = KFU(x13 − x4)x16 − δFUx4 −DFUx4

}
uptake

ẋ5 = CCSR(x11 − x5 − x6)x1 − δSRx5

ẋ6 = CCSR(x11 − x5 − x6)x2 − δSRx6

ẋ7 = CCFR(x14 − x7 − x8)x1 − δFRx7

ẋ8 = CCFR(x14 − x7 − x8)x2 − δFRx8

ẋ9 = CCDA(x12 − x9)x2 − δDAx9


transport

and

efflux
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˙x10 = G
1+γ1(x11−x5−x6)

− δ̄ZA(x10 − x3)− δZAx3

˙x11 = G
1+γ2(x11−x5−x6)

− δ̄SR(x11 − x5 − x6)− δSRx5 − δSRx6

˙x12 = C1

1+x7
+ x8

A1+x8
− δ̄DA(x12 − x9)− δDAx9

˙x13 = x7

A2+x7
− δ̄FU(x13 − x4)− δFUx4

˙x14 = G
1+α(x14−x7−x8)

− δ̄FR(x14 − x7 − x8)− δFRx7 − δFRx8


protein generation

Class U(II)

Equations ˙x15 and ˙x16 are modified with the incorporation of regulatory functions for the

extruded metal ions in a passive way.

˙x15 = σ3(t) + R6(x1)−KZA(x10 − x3)x15

˙x16 = σ4(t) + R7(x2)−KFU(x13 − x4)x16

}
external ions

ẋ1 = −R6(x1) +DZAx3 + δZAx3 + δSRx5 + δFRx7

− CCSR(x11 − x5 − x6)x1 − CCFR(x14 − x7 − x8)x1

ẋ2 = −R7(x2) +DFUx4 + δFUx4 + δSRx6 + δFRx8 + δDAx9

− CCSR(x11 − x5 − x6)x2 − CCFR(x14 − x7 − x8)x2 − CCDA(x12 − x9)x2

 internal ions

130



4.3. THE MATHEMATICAL MODEL

The diagram

Figure 4.7 depicts the interaction network for the Mn/Fe module. We put all the interactions

between the protein and the metal ions, including these among the intermediary compounds.

In the model we can see the double negative circuit for SirR and ZurA, and the storage

regulation mechanism by DpsA protein.

Figure 4.7: Complete module for Mn/Fe uptake mechanism. We use the same box notation
to denote the genes, proteins and intermediary states as in Figure 4.6
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4.4 Mathematical analysis

One of the advantages of the differential approach is that there exists a mathematical ma-

chinery to prove biological properties like existence of equilibrium states, convergence and

homeostasis. In fact, the cellular metal resistance to external stress is a phenomenon of

“equilibrium” in which the cellular growth and death are involved.

In Section 4.3 we have constructed two modules for the metal stress response in Halobac-

terium NRC-1, one dealing with the extrusion and the other with the uptake of metal ions,

with more than 50 differential equations. In what follows, we use both modules in order to

deduce mathematical properties that improve biological knowledge. This will be discussed

later in Sections 4.6 and 4.7.

4.4.1 Steady state analysis

The steady state analysis consists in determining the existence of equilibrium states. In

Chapter 2, we have defined different types of attractors in the continuous and discrete frame-

work. It is important from the biological point of view to know in which parameters the

stable state depends, especially to analyze the homeostatic behavior, which allows to un-

derstand how the equilibrium state evolves when some parameters like the external metal

concentrations change.

Because we are concerned with steady states, we analyze the case when there is no external

source of metal, that is σi(t) = 0, i = 1, . . . , 4, for all time t > 0. So, we have a constant

amount of metals introduced at time t = 0.

Suppose we have the following system of differential equations ẋ = F (x). The steady

states are the points x̄ where all the derivatives are zero, that is F (x̄) = 0. Since we have

divided the complete model into two modules and each module in two classes, we have made

the analysis for each one separately.

Cu/Zn module:

1. Class E(I):

From the first two equations (external ions) we get that the amount of extracellular

metal ions, x18 = Cuext and x19 = Znext, are zero because the form of functions
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describing the trajectories of the metal ions in 4.3.1.

Let Cint be the total amount of internal copper ions, i.e. the sum of internal free

copper with the copper bound to the different proteins. In our case, the expression

for this quantity is Cint = Cuint + ChCu + TDCu + Y vgXCu + ZntACu. Using the

corresponding equations, we can conclude that the derivative for the total intracellular

copper is:

(4.4.1) ˙Cint = R1(x18)−R3(x7)−R4(x9).

At the equilibrium, the previous equation will be zero. However, we know that Cuext =

x18 = 0 and since the regulatory functions are positive, we get that the unique possi-

bility at steady state will be x7 = x9 = 0.

Using the same arguments we can define Zint = Znint + ChZn+ TDZn+ ZntRZn+

ZntAZn, the intracellular free zinc plus protein-ion compounds, and we have

(4.4.2) ˙Zint = R2(x19)−R5(x10),

which is equal to zero at the equilibrium, concluding that x10 = 0.

Equation ẋ7 = 0 reads:

KY (x13 − x7)x3 −R3(x7)− δY x7 = 0

which implies x3 = 0 or x13 = 0. In the same way equations ẋ9 = 0 and ˙x10 = 0 read:

KZA(x15 − x9 − x10)x3 −R4(x9)− δZAx9 = 0

which implies x3 = 0 or x15 = 0, and ˙x10 = 0 leads to

KZA(x15 − x9 − x10)x4 −R5(x10)− δZAx10 = 0

which implies x4 = 0 or x15 = 0. Let us examine all different possibilities.

a) If Y vgX = x13 = 0. By equation ẋ13 = 0, it follows that

Ax5 +Bx6

AB + Ax5 +Bx6

= 0,
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then we deduce that x5 = x6 = 0, since A,B > 0. From equation ˙x12 = 0, we

get immediately that x12 is the positive solution of a second degree polynomial

α2δ̄TDx
2
12 + δ̄TDx12 −G = 0, whose solution is

x12 =
−δTD +

√
δ̄2
TD + 4Gα2δ̄TD

2α2δ̄TD
> 0,

because all the constants are positive.

On the other hand, equation ẋ5 = 0 implies x3 = 0. Equally, ẋ6 = 0 gives x4 = 0.

We conclude from equation ˙x11 = 0 that x11 is the positive solution of a second

degree polynomial α1δ̄Chx
2
11 + δ̄Chx11 −G = 0, whose solution is

x11 =
−δ̄Ch +

√
δ̄2
Ch + 4Gα1δ̄Ch

2α1δ̄Ch
> 0.

As x4 = 0, we easily derive that x8 = 0 and as we have done before from ˙x14 = 0

x14 =
−δ̄ZR +

√
δ̄2
ZR + 4Gα3δ̄ZR

2α3δ̄ZR
> 0.

From equation ẋ3 = 0 we obtain x1 = 0 and, in parallel, x2 = 0 since x11 6= 0.

Finally, we get x15 = 0, and x16 = Cu∗ and x17 = Zn∗ (external amount of

extruded copper and zinc) are constant and equal to the initial external amount

of metal ions C̃u and Z̃n, respectively.

b) If x13 6= 0, then x3 = 0. Using equation ẋ5 = 0, we find x5 = 0.

• First step: Using the last five equations, we express x11, x12, x13, x14 and x15

in terms of the other variables. We find:

x15 =
1

δ̄ZA

x8

β + x8

; x13 =
1

δ̄Y

x6

A+ x6

;

x14 =
−(δ̄ZR + α3δZRx8) +

√
(δ̄ZR + α3δZRx8)2 + 4α3δ̄ZR[(δ̄ZR − δZR)x8 + (δZR − δ̄ZR)α3x2

8 +G]

2α3δ̄ZR
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x12 =
−(δ̄TD + α2δTDx6) +

√
(δ̄TD + α2δTDx6)2 + 4α2δ̄TD[(δ̄TD − δTD)x6 + (δTD − δ̄TD)α2x2

6 +G]

2α2δ̄TD

G−
[
− x6

A+ x6

+ δ̄Ch(x11 − x4) + δChx4

]
(1 + α1(x11 − x4)) = 0

• Last step: The only non trivial remaining equations are ẋ1 = ẋ2 = ẋ4 = ẋ6 =

ẋ8 = 0. Equation ẋ1 = 0 gives x1 = 0 or x11 = x4. But if the second option

holds, then, by equation ẋ2 = 0, we have x4 = x6 = x8 = 0 and consequently

x13 = 0, which is excluded. Thus x1 = 0.

The next four equations are not independent and they have the following

form:

0 = δCHx4 + δTDx6 + δZRx8 − CCCh(x11 − x4)x2

0 = CCCh(x11 − x4)x2 −KTD(x12 − x6)x4 −KZR(x14 − x8)x4 −KZAx15x4 − δChx4

0 = KTD(x12 − x6)x4 − δTDx6

0 = KZR(x14 − x8)x4 − δZRx8,

and if we sum them we obtain that KZAx15x4 = 0, which implies either that

x15 = 0 or x4 = 0.

If x4 = 0, then from ẋ8 = 0 we get that x8 = 0. Additionally, since x7 = x9 =

x10 = 0, from ˙x15 = 0 we have that x15 = 0.

In the other case, if x15 = 0 again from ˙x15 = 0 we get that x8 = 0, and as

x14 = Y vgX 6= 0 from ẋ8 = 0 we have that x4 = 0. Hence, whatever the case,

the only possible solutions are x6 = 0, because x12 = TD 6= 0, x8 = 0 and

x13 = 0.

�

Proposition 4.4.1. The class E(I) for the Cu/Zn module admits a unique equilibrium

state. In this state, all concentrations are zero, except the variables for proteins with basal

rate production (Ch) or with unknown regulator (TD, ZntR):

Ch = x11 =
−1 +

√
1 + 4Gα1

δ̄Ch

2α1

> 0,
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TD = x12 =
−1 +

√
1 + 4Gα2

δ̄TD

2α2

> 0,

ZntR = x14 =
−1 +

√
1 + 4Gα3

δ̄ZR

2α3

> 0,

where all the constants α1, α2, α3, δ, δ̄ and G are positive.

Additionally, since Cint + x16 + x18 = C̃u and Zint + x17 + x19 = Z̃n, we have that the

external amount of extruded metal ions, x16 = C̃u and x17 = Z̃n, where C̃u = Cuext(0) and

Z̃n = Znext(0), respectively.

Observation 4.4.2. One of the consequences of Proposition 4.4.1 is that at steady state the

Cu/Zn module maintains the chaperone Ch and regulatory proteins, TD and ZntR, in a

basal concentration different from zero, which can be understood as a form to be prepared for

another “cycle”. This is useful for the archaea when it is submitted to different pulses of

external metal ions (stress condition), as we can observe in Section 4.6, Figure 4.25.

Observation 4.4.3. In the case when the constant value σ1 is different from zero the home-

ostatic condition ˙Cint = 0 cannot be verified with an equilibrium at the interior of the cell.

That is, in order to satisfy the equation ˙Cint = 0, it must be kept a movement of metal ions

inside the cell. Result that could be interesting from the biological point of view.

Observation 4.4.4. Continuing with the equation ˙Cint = 0, and using x18 = 0 with σ1

constant but different from zero, we deduce the following equation σ1 = R3(x7) + R4(x9) =
τ3xn7
θ3+xn7

+
τ4xn9
θ4+xn9

. A necessary condition for the existence of a solution is that 0 ≤ σ1 ≤ τ3 + τ4,

because the regulatory functions R3 and R4 are limited by the constants τ3 and τ4, respectively.

Hence, the idea of extremal homeostatic capabilities of the system can be explored.

Class E(II):

Unlike the previous analysis, in this case we can only deduce from equations ˙x18 = 0 and

˙x19 = 0 that there exist solutions, different from zero, for the variables x18, x19, x7, x9 and

x10. For these variables the steady state can be obtained numerically and only depends on

the external amount of metal ions, i.e.

(4.4.3) x7 = f7(x18), x9 = f9(x18), x10 = f10(x19).corcho

However, we can reduce significantly the difficulty of the above problem assuming that the

regulatory functions Ri(·) are linear functions depending on some threshold parameter, that
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is:

Ri(x) =
τix

n

θi + xn
∼

{
τi if x ≥ θi
τi
θi
x if x < θi

,

where θi is the constant threshold parameter and τi is the saturation constant for high

concentrations, x >> θi. This simplification seems natural if we assume that the extruded

metal ions need to be proportional to the concentration of the protein-ion complex Y vgXCu,

ZntACu or ZntAZn.

Under the previous assumption we get the following regulatory functions at small concen-

trations:

R1(x18) =
τ1

θ1

x18, R2(x19) =
τ2

θ2

x19,

R3(x7) =
τ3

θ3

x7, R4(x9) =
τ4

θ4

x9 and R5(x10) =
τ5

θ5

x10,

which are replaced in eqs. ˙x18 and ˙x19. We get:

(4.4.4) ˙x18 = −τ1

θ1

x18 +
τ3

θ3

x7 +
τ4

θ4

x9 = 0

and

(4.4.5) ˙x19 = −τ2

θ2

x19 +
τ5

θ5

x10 = 0.

Meanwhile, at high concentrations we found the following restrictions between the satura-

tion constants:

−τ1 + τ3 + τ4 = 0

and

−τ2 + τ5 = 0.

In what follows we compute the value for the other variables. We first define the artificial

variables Cint = Cuint +ChCu+ TDCu+ Y vgXCu+ZntACu and Zint = Znint +ChZn+

TDZn + ZntRZn + ZntAZn for the total amount of intracellular copper and zinc, respec-

tively. From equations (4.4.8) and (4.4.2) we can deduce the existence of two conservation

equations where the following relations for x18 and x19 are satisfied:

Cint + x18 = Cuext(0) = C̃u,(4.4.6)

Zint + x19 = Znext(0) = Z̃n(4.4.7)

where the constants C̃u and Z̃n correspond to the initial external condition for copper and

zinc, respectively.
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Now, we proceed to deduce the values for x5 and x6. It is not hard to see that the expression

x4ẋ5 − x3ẋ6 = 0 gives us the relation

(4.4.8)
x5

x6

=
x3

x4

= C,

where C is a constant. So, we have that x5 = Cx6 and x3 = Cx4.

From ẋ5 = 0 we get that

(x12 − x3 − x4) =
δTDx5

KTDx3

,

and if we replace this value in ˙x17 = 0 we deduce that x5 is the positive real solution of a

second degree polynomial

−G+

(
δ̄TDδTD
KTDx3

+ δTD(1 +
1

C
)

)
x5 +

(
δ̄TDδTD
KTDx3

+ δTD(1 +
1

C
)

)
α2δTD
KTDx3

x2
5 = 0,

concluding that

x5 =
KTDx3

2α2δTD

{
−1 +

√
1 +

4Gα2

δ̄TD +KTDx3(1 + 1
C

)

}
> 0.

In the same form, we can compute x6 as the positive real solution of a second degree poly-

nomial depending on x4, concluding that

x6 =
KTDx4

2α2δTD

{
−1 +

√
1 +

4Gα2

δ̄TD +KTDx4(1 + C)

}
> 0,

where G is the constant inside the regulatory function used for protein with unknown regu-

lation and basal concentration.

The expression x4ẋ9 − x3 ˙x10 = 0 gives the equation:

x3R5(x10) + δZAx3x10 = x4R4(x9) + δZAx4x9.

However, since x3

x4
= C, we conclude the following identity between x9 and x10

C =
R4(x9) + δZAx9

R5(x10) + δZAx10

.

The last expression can be simplified if we assume the reduction for the regulatory functions
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at small or high concentrations. In this way, we can obtain that

(4.4.9) C =

(
τ4
θ4

+ δZA
τ5
θ5

+ δZA

)
x9

x10

or

(4.4.10) C =
τ4 + δZAx9

τ5 + δZAx10

,

respectively.

In order to obtain an expression for x9 and x10 from equation ˙x15 = 0 we first need an

explicit formula for x8. As we have done before, from equation ẋ8 = 0 we have that

(x14 − x8) =
δZRx8

KZRx4

,

and from ˙x14 = 0 we conclude that x8 is the positive real solution of the following second

degree polynomial

−G+

(
δ̄ZRδZR
KZRx4

+ δZR

)
x8 +

(
δ̄ZRδZR
KZRx4

+ δZR

)
α3δZR
KZRx4

x2
8 = 0.

That is,

x8 =
KZRx4

2α3δZR

{
−1 +

√
1 +

4Gα3

δ̄ZR +KZRx4

}
> 0.

Now, we return over x9 and x10. From equation (4.4.9) for small concentrations we get

that

x10 =
x9( τ4

θ4
+ δZA)

C( τ5
θ5

+ δZA)
.

Moreover, from ẋ9 = 0 we deduce that (x15 − x9 − x10) = R4(x9)+δZAx9

KZAx3
, and using ˙x15 = 0 we

obtain that

x9 =

x8

β+x8

δ̄ZA(
τ4
θ4

+δZA)

KZAx3
+ (δZA − τ4

θ4
) +

(
τ5
θ5
−δZA)(

τ4
θ4

+δZA)

C(
τ5
θ5

+δZA)

.

From equation ẋ7 = 0 we have that

(x13 − x7) =
( τ3
θ3

+ δY )x7

KY x3

,
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and replacing this value in ˙x13 = 0 we get a polynomial expression for x7, that is

x7 =

(
(A+ B

C
)x5

AB + (A+ B
C

)x5

)(
KY x3

δ̄Y ( τ3
θ3

+ δY + (δY − τ3
θ3

)KY x3)

)

At this point, it is important to note that all the other variables depend exclusively on x3

and x4.

Finally from the last equations, ˙x12 = 0 to ˙x15 = 0, we can deduce that

x12 = x3

(
1 +

1

C

)
+

1

2α2

{
−1 +

√
1 +

4Gα2

δ̄TD +KTDx3(1 + 1
C

)

}
,

x13 = x7 +
( τ3
θ3

+ δY )x7

x3

,

x14 = x8 +
δZRx8

KZRx4

,

x15 =
x8

β + x8

+ (δ̄ZA − δZA)(x9 + x10) +
τ4

θ4

x9 +
τ5

θ5

x10,

and from equation ˙x11 = 0, the variable x11 is the positive real solution of the following

polynomial

G

1 + α1(x11 − (1 + 1
C

)x3)
+

(A+ B
C

)x5

AB + (A+ B
C

)x5

− δ̄Ch(x11 − (1 +
1

C
)x3)− δCh(1 +

1

C
)x3 = 0,

where G, A, B are constants inside the regulatory functions with unknown regulator and C

is the constant defined in (4.4.8).

Using all the previous results it is possible to obtain the value of x1 and x2 in terms of the

external metal ions concentrations.

x1 =
δ̄Ch

(
τ1
θ1
x18 + δChx3 + δTDx5 + δY x7 + δZAx9

)
CCCh(x11 − δCh(1 + C)x3)

,

x2 =
δ̄Ch

(
τ2
θ2
x19 + δChx4 + δTDx6 + δZRx8 + δZAx10

)
CCCh(x11 − δCh(1 + 1

C
)x4)

.

However, as we have seen before Cint and Zint are calculated as the sum of all internal
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complexes with copper and zinc. Hence, we can rewrite

Cint =
3∑
i=0

x2i+1 =
6∑
i=0

f2i+1(x18, x19),

Zint =
4∑
i=1

x2i =
7∑
i=1

f2i(x18, x19),

where the functions fi correspond to the expressions, previously calculated, for the variables

depending on x18 and x19. These last two expressions imply that we can find the values of

x18 and x19 as the solution of a polynomial system of two equations as follows

{
x18 +

∑4
i=0 f2i+1(x18, x19) = C̃u

x19 +
∑5

i=1 f2i(x18, x19) = Z̃n

As a conclusion we obtain the existence of a finite number of equilibriums depending on

C̃u and Z̃n, initial external condition of metal ions concentration, which correspond to the

positive real solutions of the above system. Summarizing we have the following proposition:

Proposition 4.4.5. The class E(II) for the Cu/Zn module satisfies:

1. At the equilibrium, x18 and x19 correspond to the positive real solutions of the following

polynomial system: {
x18 +

∑3
i=0 f2i+1(x18, x19) = C̃u

x19 +
∑4

i=1 f2i(x18, x19) = Z̃n
,

where C̃u and Z̃n correspond to the initial external conditions for metal ions of copper

and zinc, respectively, and the functions fi(·, ·) correspond to the expressions for the

other variables depending on x18 and x19.

2. For each couple of values of the initial external metal ions concentrations for copper and

zinc (C̃u and Z̃n) there exists a finite number of possible equilibrium states.

Observation 4.4.6. From the last proposition we conclude that the number of steady states

is finite and that eventually, depending on the real parameters, is unique.

Observation 4.4.7. In Figures 4.22 and 4.23 we can observe that the trajectories converge

to the stationary state depending on the initial external condition.
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Mn/Fe module:

1. Class U(I):

The analysis for the Mn/Fe module is different because of the nature of the differential

equations. As we have done before in the steady state analysis for the Cu/Zn module,

we take the first two equations, ˙x15 and ˙x16, for the external amount of manganese and

iron ions respectively. So, at the steady state we conclude that x15 = 0 or x10 = x3 and

x16 = 0 or x13 = x4.

Independently of the previous case, from the equations ẋ3 = 0 and ẋ4 = 0 we conclude

that the values of x3 and x4 are also zero.

Since x3 = x4 = 0 the solutions x10 = x3 and x13 = x4 both zero are not allowed. In

fact, from equations ˙x10 = 0 the unique possibility would be that the constant G = 0

and from equations ˙x13 = 0 we could conclude that x7 = 0 which implies from ẋ7 = 0

that x14 = x8 (because we assume that x1 6= 0), and combined with ẋ8 = 0 we conclude

that x8 = x14 = 0, concluding as before from ˙x14 = 0 that the unique possibility would

be constant G = 0. For that reason, in what follows we will assume that x10x3 = 0 and

x13 6= x4 = 0.

As we have done before in the analysis of steady states for the Cu/Zn module, we

define the total amount of intracellular manganese, denoted by Mint, as the sum of

Mnint (free manganese), ZurAMn, SirRMn and FeRMn. That is, in terms of the

variables we have that Mint = x1 + x3 + x5 + x7 and we obtain that:

(4.4.11) ˙Mint = KZA(x10 − x3)x15 = − ˙x15.

Hence, we deduce that the total amount of intracellular manganese plus the total

amount of extracellular manganese will be constant:

Mint + x15 = Mnext(t = 0) = M̃n,

which implies that at steady state we have

(4.4.12) x1 + x5 + x7 = M̃n.

Moreover, we obtain the same result when we want to calculate ˙Fint for the total

amount of intracellular iron ions. Fint is equal to the sum of Feint (free iron), FeUFe,

SirRFe, FeRFe, DpsAFe, whose derivative is ˙Fint = ẋ2 + ẋ4 + ẋ6 + ẋ8 + ẋ9. As for
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the manganese, we can deduce the following expression:

(4.4.13) ˙Fint = KFU(x13 − x4)x16 = − ˙x16.

Again, we deduce that the total amount of intracellular iron plus the total amount of

extracellular iron will be constant:

Fint + x16 = Feext(t = 0) = F̃ e,

which implies that at steady state we have

(4.4.14) x2 + x6 + x8 + x9 = F̃ e.

In what follows, our idea is to deduce minimal relations between the variables, more

specifically in terms of x1 and x2, internal metal ion concentrations, which are assumed

to be different from zero. The last assumption is consistent with the necessity of control

internal metal ions in order to activate diverse essential processes.

We recall the equations for x5, x6, x7, x8, x9:

ẋ5 = CCSR(x11 − x5 − x6)x1 − δSRx5(4.4.15)

ẋ6 = CCSR(x11 − x5 − x6)x2 − δSRx6(4.4.16)

ẋ7 = CCFR(x14 − x7 − x8)x1 − δFRx7(4.4.17)

ẋ8 = CCFR(x14 − x7 − x8)x2 − δFRx8(4.4.18)

ẋ9 = CCDA(x12 − x9)x2 − δDAx9(4.4.19)

If we apply the cross multiplication x2·(4.4.15)−x1·(4.4.16), we deduce that −δSRx5x2+

δSRx6x1 = 0 which implies the conservation relation:

x5

x1

=
x6

x2

.

In the same way, we can obtain applying x2(4.4.17)−x1(4.4.18) that −δFRx7x2 +

δFRx8x1 = 0, which implies the relation:

x7

x1

=
x8

x2

.

Both relations are true in the case that all variables are different from zero. It is

obvious that since we have assumed that x1 6= 0 and x2 6= 0, it is not possible that

x5, x6, x7, x8, x9 to be zero. This is because in that hypothetical case x11, x12, x14 would
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need to be zero, which is not possible. On the other hand, from both conservation

relations we can conclude that

(4.4.20)
x1

x2

=
x5

x6

=
x7

x8

= C,

where C is a positive constant.

It is not complicated to deduce the other values as functions of x1 and x2. From

equation (4.4.15) we obtain that

(x11 − x5 − x6) =
δSRx5

CCSRx1

,

and if we combine the last expression with (4.4.20) and ˙x11 = 0, we get that x5 is the

positive solution of the following second degree polynomial(
δ̄SR

CCSRx1

+ C + 1

)
γ2δ

2
SR

CCSRx1

x2
5 +

(
δ̄SR

CCSRx1

+ C + 1

)
δSRx5 −G = 0,

where G is the constant inside the regulatory function for proteins with unknown reg-

ulator and C is the constant defined in (4.4.20). That is,

(4.4.21) x5 =
CCSRx1

2γ2δSR

{
−1 +

√
1 +

4Gγ2

δ̄SR + CCSRx1(1 + 1
C

)

}
> 0,

and since x6 = x5

C
, we get

(4.4.22) x6 =
CCSRx2

2γ2δSR

{
−1 +

√
1 +

4Gγ2

δ̄SR + CCSRx2(1 + C)

}
> 0,

where all the constants G, C, γ2, δSR, δ̄SR and CCSR are positive.

Using the values for x5 and x6, we can obtain from ˙x10 = 0 that

G

1 + γ1
δSRx5

CCSRx1

− δ̄ZAx10 = 0,

which implies that

x10 =
GCCSRx1

δ̄ZA(CCSRx1 + γ1δSRx5)
,

and from ˙x11 = 0 that

x11 = (C + 1)x5 +
δSRx5

CCSRx1

.
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In the same form, we can deduce the values for x7 and x8 at steady state. From equation

(4.4.17) we obtain that

(x14 − x7 − x8) =
δFRx7

CCFRx1

,

and if we combine the last expression with (4.4.20) and ˙x14 = 0, we get that x7 is the

positive solution of a second degree polynomial of the form:(
δ̄FR

CCFRx1

+ C + 1

)
αδ2

FR

CCFRx1

x2
7 +

(
δ̄FR

CCFRx1

+ C + 1

)
δFRx7 −G = 0.

That is,

(4.4.23) x7 =
CCFRx1

2αδFR

{
−1 +

√
1 +

4Gα

δ̄FR + CCFRx1(1 + 1
C

)

}
> 0,

and since x8 = x7

C
, we get

(4.4.24) x8 =
CCFRx2

2αδFR

{
−1 +

√
1 +

4Gα

δ̄FR + CCFRx2(1 + C)

}
> 0,

where all the constant G, C, α, δFR, δ̄FR and CCFR are positive.

Additionally, from ˙x13 = 0, we have that

x13 =
x7

δ̄FU(A2 + x7)
.

At this point it still remains to obtain the values for x9 and x12. We first take equation

ẋ9 = 0 to get

(x12 − x9) =
δDAx9

CCDAx2

,

and replacing this value on ˙x12 = 0 and using x7 = Cx8, we deduce the following

equation,
C1

1 + x7

+
x8

A1 + x8

− δDAδ̄DAx9

CCDAx2

− δDAx9 = 0.

Using the corresponding values for x7 and x8, which depend on x1 and x2 respectively,

we obtain that

x9 =

(
C1A1 + (C1 + 1)x8 + Cx2

8

(1 + Cx8)(A1 + x8)

)
1(

δ̄DAδDA
CCDAx2

− δDA
) .

On the other hand, from the equations (4.4.12) and (4.4.14), and the conservation
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relation in (4.4.20), we have that x2 + x6 + x8 = M̃n
C

. From the last expression we get

the following equation

x9 = F̃ e− M̃n

C
,

where C = Mnint
Feint

= SirRMn
SirRFe

= FeRMn
FeRFe

.

Finally, we construct the following two polynomial depending exclusively on x1 and x2:

(4.4.25)

{
P1(x1) = x1 + x5(x1) + x7(x1)− M̃n,

P2(x2) = x2 + x6(x2) + x8(x2) + x9(x2)− F̃ e.

The values for x1 and x2 at the equilibrium can be calculated from (4.4.25) as the

positive real roots.

Additionally, we only need to find the real solutions for the first polynomial, because

we have the conservation equation (4.4.20) for the variables x2, x6 and x8. Therefore,

we get the expression

x2 + x6(x2) + x8(x2) =
x1 + x5(x1) + x7(x1)

C
=
M̃n

C
,

which implies that

x9 = F̃ e− M̃n

C
.

Thus, we have the following proposition about the existence and unicity of an equilib-

rium state depending on the initial external amount of metal ions.

Proposition 4.4.8. The class U(I) for the Mn/Fe module at the equilibrium satisfies

that x15 = Mnext = 0, x16 = Feext = 0, x3 = ZurAMn = 0 and x4 = FeUFe = 0. The

other variables can be deduced for each couple of constant values M̃n and F̃ e, which

correspond to the initial external amount of metal ions. Mnint = x1 corresponds to the

positive real roots of the polynomial

(4.4.26) P1(x1) = x1 + x5(x1) + x7(x1)− M̃n = 0.

which has a unique positive real solution.

Additionally, x2, x6 and x8 satisfy

x2 + x6(x2) + x8(x2) =
x1 + x5(x1) + x7(x1)

C
=
M̃n

C
,
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implying that

x9 = F̃ e− M̃n

C
.

Proof. Let us first define the following polynomial:

Q(x1) = x1 + x5(x1) + x7(x1).

It follows directly that P1(x1) = Q(x1)−M̃n, therefore the problem of finding the roots

of P1(x1) = 0 is equivalent to solve Q(x1) = M̃n, which can be solved geometrically.

Hence, in what follows we analyze Q.

From (4.4.21) and (4.4.23) we obtain that Q(x1) satisfies:

Q(x1) = x1

{
1 +

CCSR
2γ2δSR

[
−1 +

√
1 +

4Gγ2

δ̄SR + CCSRx1(1 + 1
C

)

]

+
CCFR
2αδFR

[
−1 +

√
1 +

4Gα

δ̄FR + CCFRx1(1 + 1
C

)

]}
,

which can be reduced to

Q(x1) = (1− a1 − a2) + a1

√
1 +

b1

c1 + x1

+ a2

√
1 +

b2

c2 + x1

where a1 = CCSR
2γ2δSR

, b1 = 4Gγ2
CCSR(1+1/C)

, c1 = δ̄SR
CCSR(1+1/C)

, a2 = CCFR
2αδFR

, b2 = 4Gα
CCFR(1+1/C)

and c2 = δ̄FR
CCFR(1+1/C)

are positive constants. That is, we deduce that

Q(x1) = x1 ·Q(x1).

In the rest of the proof, we will study the polynomial Q in order to deduce properties

of Q. It is not complicated to see that Q(x1) intersects the y-axis at the point 1 +

ξ1a1 + ξ2a2, where ξ1 and ξ2 are two positive constants, since both terms inside the root

square (1 + b1
c1+x1

) and (1 + b1
c1+x1

) are bigger than 1 at x1 = 0. Moreover, when x1 goes

to ∞, Q(x1) converges asymptotically to 1, and Q is strictly decreasing because

dQ(x1)

dx1

= − a1b1

2
√

1 + b1
c1+x1

(c1 + x1)2
− a2b2

2
√

1 + b2
c2+x1

(c2 + x1)2
< 0,

concluding that Q has no positive real root. This implies that Q has the form showed

in Figure 4.8 left.
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From the above considerations, the polynomial Q(x1) has the following properties: (i)

Q(0) = 0, (ii) Q(−∞) = −∞ and Q(∞) =∞, (iii) Q is an strictly increasing function

because

dQ(x1)

dx1

= (1− a1 − a2) +

√
1 +

b1

c1 + x1

{
a1 −

x1a1b1

(c1 + b1 + x1)(c1 + x1)

}
+

√
1 +

b2

c2 + x1

{
a2 −

x1a2b2

(c2 + b2 + x1)(c2 + x1)

}
> 0,(4.4.27)

which implies that Q has a unique real root, which is zero (Figure 4.8 right).

Finally, since the values for x1 needs to be positive and real, we have that for each

external manganese input, M̃n, there exists a unique positive real equilibrium state.

x1

M̃n

x1

M̃n Q(x1)

Q(x1)

1 + ξ1a1 + ξ2a2

Figure 4.8: Left: plot of the polynomial Q(x1). Right: plot of the polynomial Q(x1).

�

Class U(II):

In the analysis of the Mn/Fe module class U(II), we proceed similarly as in Cu/Zn

module class E(II). From equations ˙x15 = 0 and ˙x16 = 0 we deduce that

−KZA(x10 − x3)x15 + R6(x1) = 0

and

−KFU(x13 − x4)x16 + R7(x2) = 0.

This implies that the variables Mnint, Feint, Mnext and Feext are different from zero in the

equilibrium and depend on the initial external amount of both metal ions. So, in the rest

of the subsection we will compute their values. Moreover, it is important to note that the

analysis for the other variables remains as before with the exceptions of x10 = ZurA and
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x13 = FeU because both x3 and x4 are now different from zero.

Let Mint be the sum of Mnint (free internal manganese), ZurAMn, SirRMn and FeRMn,

that is, formally we write Mint = x1 + x3 + x5 + x7, and we obtain that:

(4.4.28) ˙Mint = −R6(x1) +KZA(x10 − x3)x15 = − ˙Mnext = − ˙x15.

Let Fint be the sum of Feint (free internal iron), FeUFe, SirRFe, FeRFe, DpsAFe,

whose derivative has the form ˙Fint = ẋ2 + ẋ4 + ẋ6 + ẋ8 + ẋ9. Using the last equation we can

deduce the following expression:

(4.4.29) ˙Fint = −R7(x2) +KFU(x13 − x4)x16 = − ˙Feext = − ˙x16.

Equations (4.4.28) and (4.4.29) imply a conservation equation for the total amount of metal

ions in the system, that is,

Mint + x15 = Mnext(0) = M̃n,(4.4.30)

Fint + x16 = Feext(0) = F̃ e,(4.4.31)

where constants M̃n and F̃ e correspond to the initial conditions for external manganese and

iron respectively. In what follows we will find expressions for the rest of the variables.

If we make the following sum ẋ1 + ẋ5 + ẋ7 = 0, we conclude that

−R6(x1) + (DZA + δZA)x3 = 0,

implying that

x3 =
R6(x1)

DZA + δZA
.

In the same way we can deduce that x4 depends exclusively on x2, making the sum ẋ2 +

ẋ6 + ẋ8 + ẋ9 = 0, that is

x4 =
R7(x2)

DFU + δFU
.

Replacing the previous expressions for x3 and x4 in ˙x10 = 0 and ˙x13 = 0 respectively, we

obtain that

x10 =
1

δ̄ZA

{
G

1 + γ1
δSRx5

CCSRx1

+ (δ̄ZA − δZA)
R6(x1)

δZA +DZA

}
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and

x13 =
1

δ̄FU

{
x7

A2 + x7

+ (δ̄FU − δFU)
R7(x2)

δFU +DFU

}
.

Using the previous values we can compute the external metal ion concentration at the

equilibrium as a function of x1 and x2. It follows that

x15 =
R6(x1)

KZA
δ̄ZA

(
G

1+γ1
δSRx5
CCSRx1

− δZA R6(x1)
δZA+DZA

)
and

x16 =
R7(x2)

KFU
δ̄FU

(
x7

A2+x7
− δFU R7(x2)

δFU+DFU

) .
Finally, from (4.4.30) and (4.4.31) we get the following two polynomial depending exclu-

sively on x1 and x2:

(4.4.32)

{
x1 + x3(x1) + x5(x1) + x7(x1) + x15(x1) = M̃n,

x2 + x4(x1) + x6(x2) + x8(x2) + x9(x2) + x16(x2) = F̃ e.

The values for x1 and x2 at the equilibrium can be calculated from (4.4.32) as the positive

real roots. Summarizing, the following proposition can be established taking into account all

the previous results,

Proposition 4.4.9. The class U(II) for the Mn/Fe module satisfies:

1. At the equilibrium, x1 and x2 correspond to the positive real solutions of the following

two polynomial:{
x1 + x3(x1) + x5(x1) + x7(x1) + x15(x1) = M̃n

x2 + x4(x2) + x6(x2) + x8(x2) + x9(x2) + x16(x2) = F̃ e
,

where constants M̃n and F̃ e are the initial amounts for external manganese and iron

respectively.

2. Since all the variables depend on x1 and x2, we have that for each couple of values of

the initial external metal ions concentrations M̃n and F̃ e there exists a finite number

of possible equilibrium states.

Observation 4.4.10. From the last proposition we conclude that the number of steady states

is finite and that eventually, depending on the real parameters, is unique.
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Observation 4.4.11. In Figure 4.24 we have the simulation that confirm the existence of

the stationary state depending on the initial external condition.

4.4.2 A comment on homeostatic behavior

In the previous subsection we have proved that both systems for metals extrusion and uptake

present a unique steady state in the most simple case without recycling (class E(I) and U(I)).

In this context, we can infer that the dynamical systems reach an equilibrium or balance in

which internal change continuously compensates for external change (adaptive under stress to

environmental conditions) in a feedback control process to keep conditions relatively uniform,

that is, the system present an homeostatic behavior.

The homeostasis phenomenon is particularly important in biological systems [N99]. The

biological term of homeostasis, introduced by Claude Bernard (1813 − 1878) and coined by

Cannon, refers to the organisms ability to maintain steady states of operation in a changing

internal and external environment. It has been formalized by Ross Ashby in his book “Design

for a brain” where he exposed the study of biological systems like homeostatic or adaptative

systems in terms of dynamical systems.

From a purely mathematical point of view, in a system of differential equations as in our

case, the homeostasis phenomenon is determined either by the convergence to a steady state

or small oscillations around a given value, independent of the considered parameters (or little,

weak homeostasis condition [P06]). In our case these parameters correspond to the external

source of metals (σi).

Nevertheless, the nonlinearity of the biological networks under study makes usually very

difficult to prove the existence of such situations and an alternative strategy is used. As we

discussed before, in 1981 René Thomas ([Th81]) has conjectured that a necessary condition

for homeostatic behavior is the existence of negative circuits in the interaction graph.

Negative circuits

Thomas condition about negative circuits in the regulatory graph gives only a necessary

condition and in practice it is a very weak condition. Nevertheless, we will study in the

following the existence of negative circuits in the different modules, in order to determine

what are the key elements that maintain the homeostasis under metal stress.
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ChCu

Ch

YvgXCu Cu_e

Cu_i

TD

YvgX

TDCu

Figure 4.9: Negative circuits in the local interaction graph associated to the Cu/Zn mod-
ule, in the copper section, independent of the x value. The blue and red edges
correspond to the two negative circuits.

Using the system ẋ = F (x) we recall that the local interaction graph G = (V,E) at the

point x̄ is defined in the following way: the set of vertices V is {1, . . . , n}, one for each

variable, and the set of edges E is generated by the following rule: there is an oriented edge

between vertices i to j if and only if the value of
dFj
dxi

(x̄) 6= 0; this edge is labelled with the

sign of the partial derivative at x̄.

In the simplified graph of Figure 4.9 we can see two negative circuits. The first circuit

through Cuint, ChCu, TDCu and Ch, and the second through TDCu, Y vgX and ChCu.

This shows that the regulation of the internal copper model needs the activation of both the

metallo-chaperone Ch and the protein Y vgX. Moreover, we can see in both circuits that it is

strictly necessary the existence of ChCu. This emphasizes the importance of the chaperone

protein to obtain copper homeostasis ([Mo05], [To05]).

A similar situation is observed for the zinc. In Figure 4.10 there exists a negative circuit

between ChZn, ZntRZn and ZntA. Here the negative edge is produced by the relation

between the protein ZntA and the compound ChZn, which implies that for a high concen-

tration of ZntA less will be the quantity of ChZn.

In the Mn/Fe module (uptake system) we can observe the same behavior. In Figure 4.11

there exist two negative circuits. The first negative circuit through SirRMn and SirR, and

the second one through Mnint, SirRMn, ZurA and ZurAMn. In both circuits we can see,

as it was predicted in the biological model, that the SirR protein causes a double negative

regulation in presence of Mn, and for that reason it is the main responsible of the homeostasis

in the Mn section of the module for the metal uptake mechanism.

In Figure 4.12 we can see the existence of a negative circuit between Feint, FeRFe and

DpsA. All the edges in the circuit are positive with the exception of the interaction between
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ZntAZn_i

ZntRZn

ZntAZn

ChZnCh

ZntR

Figure 4.10: Negative circuit in the partial interaction graph associated to the Cu/Zn mod-
ule, in the zinc section, independent of the x value. The red edges correspond
to the negative circuit.

ZurA

Mn_i

Mn_eSirR

ZurAMn

SirRMn

Figure 4.11: Negative circuit in the partial interaction graph associated to the Mn/Fe mod-
ule, in the manganese section, independent of the x value. The blue and red
edges correspond to the two negative circuits.

DpsA and Feint, because of the detoxification process (Fe+3). So if we increase the quantity

of DpsA protein there will be less internal Fe+2, taking care of the excess of the metals.

Finally, it is important to note that this is only a preliminary study about the homeostasis

property in Halobacterium NRC-1 because as we said before Thomas rule gives us only a

necessary condition.

As we have mentioned before in the homeostasis we can observe two types of stabilities.

The first is related with the convergence towards an equilibrium state or eventually small

oscillations around a steady state. In contrast, the second is related with the condition that

the steady state remains the same or suffer variations of small amplitude when an external

parameter is changed, and as we have seen previously this parameter corresponds to the σi

value.

Meanwhile, the local stability of fixed points for non-linear autonomous differential equa-
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Fe_i

Fe_e

FeR DpsA DspAFe

FeUFeFeU

FeRFe

FeRMn

Figure 4.12: Negative circuit in the partial interaction graph associated to the Mn/Fe mod-
ule, in the iron section, independent of the x value. The red edges correspond
to the negative circuit.

tions can be analyzed by linearization of the system. In this case we need to calculate the

associated Jacobian matrix for both modules and analyze the nature of its eigenvalues. In

our case these matrices have a great number of zero values but the size still remains big

enough. An alternative approach is the study of a Taylor development in the neighborhood

of the equilibrium that maybe give us the result more quickly.

Nevertheless, we have decided to study the global stability response. For that reason, in

order to obtain a global stability condition for both modules it is necessary to apply novel

results for monotone and near monotone systems as we will see in the next section.

4.5 Monotonicity, convergence and global stability

In order to study global convergence properties of the metal stress resistance model, we

proceed to the study of its monotonicity. The concept of monotonicity has been studied

by several authors but the latest results obtained belong to novel works of Sontag, Angeli,

Enciso and Smith ([AS03], [ES06], [ESS06], [Sg07]).

Monotonicity in a system is a very important property because it reflects the fact that a

system responds consistently to perturbations on its components (in this case environmental

perturbations). Consider for example a regulatory graph associated to three genes: g1 acti-

vates g2, g2 represses g3 and g1 represses g3 (positive cycle). If we assume that for certain

reasons (external perturbation) gene 1 is activated then it is obvious that the response of the

system will be coherent, because gene 2 will be activated and later gene 3 will be repressed

by both gene 1 and gene 2, and this unambiguous global effect is independent of the constant

parameters of the system.
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For that reason, continuous-time monotone systems have convergent behavior, for example,

they cannot admit any stable oscillation. Moreover, if there is only one steady state, a theo-

rem of Dancer [D98] shows (under some assumptions which are often satisfied for biological

systems) that every solution converges to this unique steady state (monostability).

Another central point with respect to the study of monotonicity is that in many situations

we can characterize the behavior of an entire system, based upon the “qualitative” knowledge

represented by the general network topology. That is, there is no need to know the precise

form of the dynamics or the value of the kinetic or other kind of parameters in order to obtain

global stability conclusions.

In the following we will introduce the main concepts and results for monotone systems.

Then we will show a strategy of decomposition for non-monotone systems using external

control variables in which the new controlled closed system is monotone and satisfies a small

gain condition. Finally, we prove that the modules E(I) (extrusion) and U(I) (uptake) of

Halobacterium NRC-1 verify a global stability condition.

4.5.1 Monotone systems

The main results about convergence in monotone controlled systems described here have

been developed in [AS03] for monotone control systems described by differential equations

and in [ES06] which extends the theory for abstract dynamical systems with a nice strategy

for decomposing systems into subsystems of the required type. Before explaining the main

theorems, we proceed with some notations and definitions.

Definitions

Let K ⊂ Rn be a cone, by which is meant a set that is nonempty, convex, closed under

multiplication by positive scalars and pointed (i.e. K ∩ −K = ∅). K induces three natural

order relations in Rn: a partial order given by x ≤K y ⇐⇒ y − x ∈ K, x <K y ⇐⇒ x ≤K
y and x 6= y, and a stronger order x <<K y ⇐⇒ y − x ∈ intK.

Definition 4.5.1 (Orthant cones). In the case B = Rn, a tuple s = (s1, . . . , sn), where

si = ±1, ∀i ∈ {1, . . . , n}, defines the orthant cone K = Rs1 × . . .×Rsn. The canonic orthant

cone defined by s = (+1, . . . ,+1) is called the cooperative cone.
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The order induced by the tuple s, denoted ≤s, will be defined as

x ≤s y iff sixi ≤ siyi,∀i ∈ {1, . . . , n}.

Definition 4.5.2. Let K1 and K2 be cones in Rn and Rm respectively. A function γ :

Rn → Rm is said to be increasing with respect to the orders (K1, K2) if x ≤K1 y implies

γ(x) ≤K2 γ(y), and it is said to be decreasing with respect to (K1, K2) if x ≤K1 y implies

γ(x) ≥K2 γ(y) (similarly with the other order relations).

In what follows, let X ⊂ Rn and U ⊂ Rm be two open sets. The set U is referred as the set

of input values, and an input is defined as a function u : R+ → U that is Borel measurable

and locally bounded. The set U∞ is defined as the set of all inputs taking values in U . The

set of all constant inputs û(·) ≡ u ∈ U is denoted by Û , and we abuse of notation saying

that Û ⊆ U .

Definition 4.5.3. A controlled dynamical system (or just a dynamical system in the sequel)

is a function

Φ : R+ ×X × U∞ → X(4.5.1)

which satisfies the following hypotheses:

(1) Φ is continuous on its first two variables, and the restriction of Φ to the set R+×X× Û
is continuous.

(2) For every u, v ∈ U∞ such that u(s) = v(s) for almost every s, Φ(t, x0, u) = Φ(t, x0, v)

for all x0 ∈ X, t ∈ R+.

(3) Φ(0, x0, u) = x0 for any x0 ∈ X, u ∈ U∞.

(4) If Φ(s, x, u) = y and Φ(t, y, v) = z, then by appending u|[0,s] to the beginning of v to

form the input w, it holds that Φ(s+ t, x, w) = z.

An autonomous system is a function Φ : R+×X → X such that (1), (3) and (4) are verified

erasing the U points.

Given a controlled dynamical system Φ and a measurable set Y ⊂ Rk, an output function

is any continuous function h : X → Y . The pair (Φ, h) consisting of:

(4.5.2) Φ : R+ ×X × U∞ → X, h : X → Y
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is called a dynamical system with input and output.

Fix Φ a controlled dynamical system (with notations given above). Consider Y = U and

h : X → U a continuous function, and KX ⊆ Rn, KU ⊆ Rm cones.

Definition 4.5.4 (Negative feedback function). The pair (Φ, h) is called a controlled dynam-

ical system with feedback. If h : X → U is decreasing (with respect to the cones KX and KU),

then we say (Φ, h) is a controlled dynamical system with negative feedback.

Definition 4.5.5 (Monotone systems). The dynamical system Φ is said to be monotone

(with respect to the cones KX and KU) if for any u, v ∈ U∞ such that u(t) ≤KU v(t) for

almost all times t, and x1 ≤KX x2 in X we have

Φ(t, x1, u) ≤KX Φ(t, x2, v),∀t ≥ 0.

An autonomous system Φ is monotone if x1 ≤KX x2 implies Φ(t, x1) ≤KX Φ(t, x2),∀t ≥ 0.

Definition 4.5.6 (I/S characteristic). The dynamical system Φ is said to have an input to

state characteristic kX : U → X, denoted I/S, if for every constant input u(·) = ū ∈ Û and

for every initial condition x0 ∈ X,

lim
t→∞

Φ(t, x0, ū) = kX(ū).

Definition 4.5.7 (Feedback characteristic). If Φ has an I/S characteristic function then

k = h ◦ kX : U → U is called the feedback characteristic of the system. Moreover, if the

autonomous system is monotone then kX is an increasing function with respect to the cones.

Definition 4.5.8 (Closed loop trajectory). Given x0 ∈ X and a continuous function x :

R+ → X, it is said that x(·) is a closed loop trajectory of (Φ, h) with initial conditions x0 if

x(0) = x0 and x(t) = Φ(t, x0, h ◦ x(·)) for all t ≥ 0.

Definition 4.5.9 (Closed loop system). Suppose that the controlled system is such that, for

each x0 ∈ X, there is a unique continuous closed loop trajectory x(t) so that x(0) = x0. The

function

Ψ : R+ ×X → X, Ψ(t, x0) := x(t)

will be called the closed-loop behavior associated to (Φ, h). If this function itself constitutes a

dynamical system, then it is denoted as the closed loop system associated to (Φ, h).
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The assumptions

In the following we show the hypotheses used in the main theorem for controlled monotone

systems proved by Sontag et al. We will start by introducing the concept of ε-box property:

Definition 4.5.10 (ε-box property). Consider a subset A of an ordered metric space (T,≤).

If a, b ∈ A, we let [a, b] = {x ∈ A : a ≤ x ≤ b} denote the order interval. A is said to satisfy

the ε-box property if for every ε > 0 and x ∈ A, there are y, z ∈ A such that diam[y, z] < ε

and [y, z] ∩ A is a neighborhood of x.

Let Φ, h, KX , KU as before. Consider the following hypotheses:

(H1) KX and KU are closed cones with nonempty interior.

(H2) U is closed and convex. Moreover, for every bounded set C ⊂ U , there exist a, b ∈ U
such that a ≤KU c ≤KU b, ∀c ∈ C.

(H3) X and U satisfy the ε-box property.

(H4) The dynamical system Φ is monotone, with a completely continuous I/S characteristic

kX . Furthermore, h is a decreasing feedback function w.r.t. KX and KU that sends

bounded sets to bounded sets.

Observation 4.5.11. We recall a function f : C ⊂ Rn → Rn is completely continuous if

and only if it is continuous and f(A) is compact for every bounded set A ⊂ C. Assumption

(H4) implies that the feedback characteristic function k = h ◦ kX is completely continuous as

kX .

4.5.2 Small gain theorem

We will mention the three main theorems used in this section in order to prove global conver-

gence. The first result is about the “converging input converging state property” (CICS).

Theorem 4.5.12 (Enciso, Sontag: Theorem 1, CICS). Consider a monotone system Φ

with a continuous I/S characteristic function kX . Assume hypotheses (H1) and (H3). If

u(·) ∈ U∞ converges to ū ∈ U as t→∞, then Φ(t, x0, u) converges to x̄ := kX(ū) as t→∞,

for any x0 ∈ X.

To study closed loop trajectories we need to introduce the “small gain condition”.
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Definition 4.5.13. For Φ and h as before with I/S characteristic kX and feedback char-

acteristic k = h ◦ kX , the small gain condition is satisfied when the following properties

hold:

1. The sequence un = kn(u0) = k ◦ . . . ◦ k(u0), n ≥ 0, has bounded orbits.

2. The equation k2(u) = k(k(u)) = u has a unique solution.

Theorem 4.5.14 (Enciso, Sontag: Theorem 2, SGT). Let Φ, h, KX , KU as before. Assume

(H1), (H2), (H3), (H4) and the small gain condition are verified. Then all bounded closed

loop trajectories x(t) of (Φ, h) converge towards x̄ = kX(ū), where ū is such that k2(ū) = ū.

That is,

lim
t→∞

x(t) = lim
t→∞

Φ(t, x0, h ◦ x(t)) = kX(ū) = x̄.

4.5.3 Our setting: differential equations

As we have seen before, a controlled dynamical system is specified by a state spaceX, an input

set U , and a mapping Φ : R+×X×U∞ → X such that some continuity properties are required

and the usual semigroup properties hold, i.e. Φ(0, x, u) = x and Φ(t,Φ(s, x, u1), u2) = Φ(s+

t, x, v), where v is the restriction of u1 to the interval [0, s] concatenated with u2 shifted to

[s,∞).

We interpret Φ(t, x, u) as the state at time t obtained if the initial condition is x and the

external input is u(·). Moreover, we write x(t, x0, u) or just x(t) instead of Φ(t, x0, u) when

the context is clear. In this context, when there is no risk of confusion, we use x to denote

states (i.e., elements of X) as well as trajectories. Similarly, u may refer to an input value

or an input function.

From now on, we will specialize to the case of systems defined by ordinary differential

equations of the form:

(4.5.3) ẋ = f(x, u), x(0) = x0 ∈ X.

We make the following technical assumptions. The map f is defined on X × U , where

X ⊆ Rn and U ⊆ Rm are some open sets. We assume that f(x, u) is continuous in (x, u) and

locally Lipschitz continuous in x locally uniformly in u. This last property means that for

compact subsets C1 ⊆ X and C2 ⊆ U there exists a constant k such that |f(ψ, u)−f(ζ, u)| ≤
k|ψ − ζ| for all ψ, ζ ∈ C1 and all u ∈ C2. We will also implicitly assume that f is locally

Lipschitz in (x, u), so that the full system has unique solution.
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In order to obtain a well defined controlled dynamical system on X, we will assume that

the solution x(t) = Φ(t, x0, u) of ẋ = f(x, u) with initial condition x(0) = x0 is defined for all

inputs u(·) and all times t ≥ 0 and is unique. This means that solutions with initial states

in X must be defined for all t ≥ 0.

In what follows, we will adopt the nomenclature we introduced in Subsection 4.5.1 for

controlled systems to the context of ordinary differential equations, using the dictionary

just introduced. Moreover, we will describe the decomposition procedure which is similar

to replacing one of the variables in the autonomous system ẋ = g(x), x(0) = x0, by a real

parameter u producing a controlled system of the form (4.5.3). Roughly speaking, consider

(4.5.3), together with a function h(x), such that ẋ = f(x, h(x)). The main idea is to prove

monotonicity in this new system and the steady state response property: for every constant

function ū ∈ U∞, the system ẋ = f(x, ū) converges globally towards kX(ū) for all t ≥ 0.

The region of attraction of an asymptotically stable equilibrium point refers to the set of

all initial conditions that converge to that equilibrium point. An equilibrium point is said

to be globally asymptotically stable if all initial conditions converge to that equilibrium

point.

4.5.4 Decomposition of non-monotone systems

In order to prove if a dynamical system coming from a biological system is monotone, Sontag

[Sg07] has shown that there exists a relation between the property of monotonicity and the

existence of positive cycles in its associated regulatory graph. As we have seen before, it is

common to associate a signed digraph G to a system of differential equations dealing with

some biological processes, using the Jacobian matrix. In this signed digraph the vertices

represent the species (genes, proteins or complexes) and the edges represent the interaction

between the species that could be positive or negative. The main definitions on regulatory

graphs have been made in Chapter 2.

In what follows we introduce the concepts of spin assignments and consistency to establish

an alternative definition for monotone systems.

Definition 4.5.15 (Spin assignment). A spin assignment Σ for a signed digraph G = (V,E)

is an assignment, to each node v ∈ V , of a number σ equals to −1 or +1. If there is an

edge from node vi to node vj, with sign εij, we say that this edge is consistent with the spin

assignment Σ if:

εij = σiσj.
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We will say that Σ is a consistent spin assignment for the signed digraph G if every edge

of G is consistent with Σ.

It is not complicated to prove that a consistent spin assignment exists if and only if every

undirected loop in the signed digraph G has positive sign [Sg07] (even number of negative

arrows). The proof is similar to the one showed in Chapter 2, Proposition 2.4.3, but for

undirected graphs and it uses an annihilation property for the multiplication of the σ numbers

in the circuit.

Definition 4.5.16 (Monotone system). A dynamical system is said to be monotone if there

exists at least one consistent spin assignment for its associated digraph G = G(f) = ∪G(x)

(see Definition 2.3.8 in Chapter 2).

Nonetheless, in general there is no reason for large biochemical networks to have consistent

sign assignment. For that reason it was developed the concept of near-monotone system.

Let us call the consistency deficit (CD) of a digraph G the smallest possible number of

edges that should be removed from G in order that there exists at least one consistent spin

assignment, and, correspondingly, the system is monotone. In this sense, a near-monotone

system is a system closer to be monotone, and in practice with small CD [Sg07]. In what

follows we will explain a decomposition technique for near-monotone systems.

The decomposition approach for non-monotone systems is a really useful technique since

it permits to locate and characterize the stability of steady states based upon input/output

behaviors of components. In this sense, one may “pull out” inconsistent connections among

monotone components, in such a manner that the original system can then be viewed as a

“negative feedback” loop around an otherwise consistent system (in our case interconnections

of monotone subsystems).

For that reason, it is of interest to know whether one can decompose an autonomous

system, ẋ = f(x), not necessarily monotone, into negative feedback loops of a monotone

controlled system.

Consider the following autonomous system

ẋ = g(x), x ∈ X = (R+)n(4.5.4)

Definition 4.5.17 (Sign definite system). We say that a system of the form (4.5.4) is sign

definite if for each i 6= j, it holds that ∂gi
∂xj

(x)∇0 for all x ∈ X, where the relation ∇ stands

for either >, <, or =, and of course different signs are allowed for different pairs (i, j).
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If the autonomous system (4.5.4) is sign definite with associated regulatory graph G, then

one can find an n-dimensional controlled system

ẋ = f(x, u), h : X → U with X = (R+)n, U = (R+)m,(4.5.5)

such that:

(i) is monotone with respect to some orthant cones in the inputs and the states;

(ii) h is decreasing with respect to such cones (negative feedback);

(iii) its closed loop system is well defined and is (4.5.4).

In what follows we will describe the decomposition method which tries to minimize the num-

ber of inputs and outputs involved, so as to make the reduced model in Theorem 4.5.14 (SGC)

as simple as possible. Additionally, sufficient conditions for a well defined characteristic kX

can be found for controlled systems.

Let A ⊂ {x1, . . . , xn} be an arbitrary set of variables called agonists. These variables may

be unrelated with each other, but it is better to choose them so that their dynamics are

positively correlated, that is, most edges in the regulatory graph connecting two nodes from

A are positive. The remainder variables (Ac) are called antagonists, and they will also be

thought of as being mostly positively correlated to each other.

Definition 4.5.18 (Discordant edges). In the labeled regulatory graph an edge will be called

“discordant” if any of these situations occur: the edge is positive and joins vertices agonists

with antagonists, or the edge is negative and joins two vertices agonists or two antagonists.

Let Dj := {xi/ there is a discordant edge from xi to xj}, and let D := ∪jDj, m := |D|
and U := (R+)m. Now enumerate the elements of D as xl1 , . . . , xlm . Define the function

fj(x, u) as the result of replacing in gj(x) all appearances of xli by ui, for each xli ∈ Dj. The

controlled system (4.5.5) thus defined has a regulatory graph G ′ that can be described as

the result of removing all discordant edges from G, where G is the regulatory graph obtained

from the function g in 4.5.4.

Now we will define the output function h : X → U as hk(x) := xlk and close the loop by

letting u(t) = h(x(t)). Let the vector s be defined as

s(i) =

{
1 if xi ∈ A
−1 if xi /∈ A

,
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and let KX be the orthant cone induced by s, that is KX = Rs := Rs(1) × . . . × Rs(n).

Let p(k) = −s(lk), k = 1, . . . ,m, and let KU be the orthant cone defined by p, that is

KU = Rp := Rp(1) × . . . × Rp(m). Using the above decomposition method the next result

follows.

Theorem 4.5.19 (Ensiso-Sontag Theorem 6). Let h : X → U , u(t) = h(x(t)), KX and KU

be defined as above. Then, the controlled system Φ deduced from the previous construction,

having the form 4.5.5, is monotone, h is a decreasing function respect to the cones, and

the closed loop system is well defined and equal to the autonomous system. Furthermore, if

for each strongly connected component of G ′ with vertices S ⊂ {x1, . . . , xn} the associated

system has a well defined I/S characteristic, then the controlled system Φ allows an I/S

characteristic.

Example of Decomposition method

Consider the following system of differential equations which corresponds to the Goodwin

model, negative feedback oscillator, for circadian rhythms (for a detailed description see

Chapter 3).

(Gλ) =


ẋ = K1R

−
λ (z)− γ1x = g1(x, y, z)

ẏ = K2x− γ2y = g2(x, y, z)

ż = K3y − γ3z = g3(x, y, z)

where the constants Ki are rates of synthesis and the constants γi are rates of degradation,

and R−λ (z) = λn

λn+zn
with n the cooperative index.

It is not difficult to see that the steady states satisfy the polynomial equation:

R−λ (z)− γ1γ2γ3

K1K2K3

z = 0

Moreover, the Jacobian matrix has the following form:

JGλ =

 −γ1 0 K1
dR−λ (z)

dz

K2 −γ2 0

0 K3 −γ3


whose regulatory graph G at (x, y, z) ∈ R3 can be seen in Figure 4.13. The graph corresponds

to an isolated negative circuit, for that reason we have an inconsistent sign assignment,

implying that the autonomous system is not monotone.
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X

Y

Z

Figure 4.13: Regulatory graph G associated to the Goodwin model equations in Example
4.5.4. In this graph we have omitted self-loops

In this model, we have considered as agonist the variables x and y, and as antagonist the

variable z. Using these sets we observe that the edge between y and z is positive and it joins

an agonist with an antagonist, concluding that there exists one discordant edge. It holds that

Dx = Dy = ∅ and Dz = {y}; thus D = {y}. The variable y is replaced by u in the function

g3 to form the function f3(x, u, z). The resulting controlled dynamical system is given by


ẋ = K1R

−
λ (z)− γ1x

ẏ = K2x− γ2y

ż = K3u− γ3z

h(x(t), y(t), z(t)) = (y(t))

which is monotone with respect to the cones defined by s = (+1,+1,−1) and p = (−1), that

is, KX = Rs = R+ × R+ × R− and KU = Rp = R−.

4.5.5 Monotonicity in Halobacterium NRC-1

In the following we will show that the autonomous systems of differential equations related to

Cu/Zn and Mn/Fe modules are near-monotone, because the associated regulatory graphs

present negative circuits. However, using the decomposition technique (Subsection 4.5.4) it

is possible to prove that the controlled dynamical system is monotone and conclude with this

the desired property of global stability.

Finally, for both modules we will only consider the classes E(I) and U(I) without recycling

of extruded metal ions. This is because, in both classes we have proved the existence of a

unique equilibrium point. Therefore, the result about monotonicity in this context will ensure

the global stability and convergence to that point.

Finally, given open sets X ⊆ Rn, U ⊆ Rm and the underlying cones KX , KU , and a mono-

tone system ẋ = f(x, u), u = h(x), with characteristic kX , f continuous and locally Lipschitz

function on x, and h ≤X-decreasing and continuous, conditions (H1), (H2), (H3), (H4) are
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necessarily satisfied. Indeed, the only condition that still needs verification is that kX is

continuous which has been done in [AS03] Proposition 5.

Proposition 4.5.20 (Angeli, Sontag: Proposition 5). Under the previous assumptions, if

(4.5.3) is a monotone system which is endowed with an input to state characteristic kX , then

kX is a continuous map. Moreover for each ū ∈ U , x̄ = kX(ū), the following properties hold:

1. For each neighborhood P of x̄ in X there exist a neighborhood P0 of x̄ in X, and a

neighborhood Q0 of ū in U , such that Φ(t, x0, u) ∈ P for all t ≥ 0, all x0 ∈ X, and all

inputs u such that u(t) ∈ Q0 for all t ≥ 0.

2. If, in addition, the order on the state space X is bounded, then, for each input u all

whose values u(t) lie in some interval [c, d] ⊆ U and with the property that u(t) → ū,

and all initial states x0 ∈ X, necessarily x(t) = Φ(t, x0, u)→ x̄ as t→∞.

Global stability in Cu/Zn module class E(I)

The system of ODE associated to Cu/Zn module in class E(I) is given by:

(4.5.6) ẋ = g(x), x ∈ (R+)19,

where g(x) corresponds to the right hand side functions depending on all the variables and

parameters of the model (Subsection 4.3.2).

Let us associate to this system of ODE a signed graph denoted by G1. In G1 we define the

set of vertices as the variables {x1, . . . , x19} and the edges are defined using the transpose of

the Jacobian matrix J of g, i.e. there is an edge between xi and xj, i 6= j, with positive sign

if Jji > 0 and with negative sign if Jji < 0. In Figure 4.14 we can see an illustration of this

graph.

The discordant edges are associated to inconsistent minimal circuits. In G1 (Figure 4.14),

these edges have been marked with blue color. In order to find the discordant edges we

first made a partition of the set of vertices in agonists and antagonists. Since the graph G1

has a great number of double positive feedback loops, we have that the discordant edges

correspond predominantly to negative edges. In our case, the variables in the antagonists

set are Ac = {x12 = TD, x14 = ZntR} and the other variables belong to the agonists set

A = {x1, . . . , x19}\{x12, x14}.

From this set partition, we can conclude that there are 6 discordant edges, and using

previous definitions we are able to construct the sets Dj. In our case it holds that D1 = {x11},

165



4.5. MONOTONICITY, CONVERGENCE AND GLOBAL STABILITY

TD

YvgX

ChCu

Cu_i

ChZn

ZntA

ZntRZn

ZntR

ZntAZn

Cu_e

Zn_e

YvgXCu

Ch

TDZn

TDCu

Zn_i

Figure 4.14: Regulatory graph associated to the Cu/Zn module class E(I) obtained from the
Jacobian matrix of the differential system. Red arrows correspond to negative
interactions and blue lines to the discordant edges that need to be removed in
order to obtain a graph without negative circuits.

D2 = {x11}, D3 = {x13, x15}, D4 = {x15}, D5 = {x12}, D6 = {x12} and D8 = {x14}, and the

remainder sets Di are empty. Thus D = {x11, x12, x13, x14, x15} and m = |D| = 5.

Finally, to obtain a controlled system with input output feedback function, the variables

x11, x12, x13, x14, and x15 are replaced in functions gj, j ∈ {1, 2, 3, 4, 5, 6, 8}, by the con-

trol variables u1, . . . , u5 to form the functions fj(x, u). As a result we obtain the functions

f1(x, u1), f2(x, u1), f3(x, u3, u5), f4(x, u5), f5(x, u2), f6(x, u2) and f8(x, u4) respectively, which

have the following form:

ẋ1 = f1(x, u1) = R1(x18) + δChx3 + δTDx5 + δY x7 + δZAx9 − CCCh(u1 − x3 − x4)x1

ẋ2 = f2(x, u1) = R2(x19) + δChx4 + δTDx6 + δZRx8 + δZAx10 − CCCh(u1 − x3 − x4)x2

ẋ3 = f3(x, u3, u5) = CCCh(x11 − x3 − x4)x1 −KTD(x12 − x5 − x6)x3 −KY (u3 − x7)x3

−KZA(u5 − x9 − x10)x3 − δChx3

ẋ4 = f4(x, u5) = CCCh(x11 − x3 − x4)x2 −KTD(x12 − x5 − x6)x4 −KZR(x14 − x8)x4

−KZA(u5 − x9 − x10)x4 − δChx4

ẋ5 = f5(x, u2) = KTD(u2 − x5 − x6)x3 − δTDx5

ẋ6 = f6(x, u2) = KTD(u2 − x5 − x6)x4 − δTDx6

ẋ8 = f8(x, u4) = KZR(u4 − x8)x4 − δZRx8
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and the other equations remain as in the original module, that is ẋk = fk(x) = gk(x),

k 6= {1, 2, 3, 4, 5, 6, 8}. Additionally, the function h : X → U has the following form h(x) =

(x11, x12, x13, x14, x15)

Finally, we need to construct the vectors s and p to define the sign of the orthant cones.

From the variables in A and Ac we obtain that

(4.5.7) s = (1, . . . , 1, −1︸︷︷︸
TD

, 1, −1︸︷︷︸
ZntR

, 1, . . . , 1)

with −1 at positions 12 and 14. On the other hand, as D = {x11, x12, x13, x14, x15} we get

that

(4.5.8) p = (−1,+1,−1,+1,−1).

Using the previous equations, the controlled system for the Cu/Zn module class E(I) is

defined by

(4.5.9) ẋ = f(x, u1, . . . , u5), x ∈ (R+)19, u ∈ (R+)5, h : X → U

Proposition 4.5.21. The controlled system (4.5.9) for the Cu/Zn module class E(I) is

monotone with respect to the orthant cones KX = Rs, KU = Rp, and it induces a globally

asymptotically stable equilibrium depending on the control variables u1, . . . , u5.

Proof. By construction (decomposition method), system (4.5.9) is monotone with respect

to the orthant cones KX = Rs and KU = Rp (where vectors s and p have been defined

in equations (4.5.7),4.5.8)) because its associated regulatory graph G1 does not have any

undirected negative cycle. Moreover, the output function h, which is defined as h(x) =

(x11, x12, x13, x14, x15), is a decreasing function with respect to these cones.

In order to characterize the equilibrium, it is necessary to solve

ẋ = f(x, u) = 0

for x = (x1, . . . , x19) and fixed control variables u = (u1, . . . , u5).

Using the new differential equation it is possible to deduce, as we did before for the au-

tonomous system (Subsection 4.4.1), that the variables x18, x19, x7, x9 and x10 are zero.
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From the last assertion, equation ẋ7 = 0 reads:

KY (x13 − x7)x3 −R3(x7)− δY x7 = 0

which implies x3 = 0 or x13 = 0, since x7 = 0. In the same way equations ẋ9 = 0 and ˙x10 = 0

read:

KZA(x15 − x9 − x10)x3 −R4(x9)− δZAx9 = 0

which implies x3 = 0 or x15 = 0, and ˙x10 = 0 leads to

KZA(x15 − x9 − x10)x4 −R5(x10)− δZAx10 = 0

which implies x4 = 0 or x15 = 0. Let us examine all different possibilities.

1. If Y vgX = x13 = 0. By equation ẋ13 = 0, it follows that

Ax5 +Bx6

AB + Ax5 +Bx6

= 0,

then we deduce that x5 = x6 = 0, since constants A,B > 0. From equation ẋ12 = 0,

we get immediately that x12 is the positive solution of a second degree polynomial

α2δ̄TDx
2
12 + δ̄TDx12 −G = 0, whose solution is

x12 =
−1 +

√
1 + 4Gα2

δ̄TD

2α2

> 0,

because all the constants are positive.

On the other hand, equations ẋ5 = 0 implies x3 = 0 or u2 = 0. Equally, ẋ6 = 0 gives

x4 = 0 or u2 = 0.

Assuming u2 6= 0, then x3 = x4 = 0 and we conclude from equation ẋ11 = 0 that x11 is

the positive solution of a second degree polynomial α1δ̄Chx
2
11 + δ̄Chx11 −G = 0, whose

solution is

x11 =
−1 +

√
1 + 4Gα1

δ̄Ch

2α1

> 0.

As x4 = 0, we easily derive that x8 = 0 and as we have done before from ˙x14 = 0

x14 =
−1 +

√
1 + 4Gα3

δ̄ZR

2α3

> 0.
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From equation ẋ3 = 0 we obtain x1 = 0 and, in parallel, x2 = 0 since x11 6= 0. Finally,

we get x15 = 0, and x16 = Cu∗ and x17 = Zn∗ (external amount of extruded copper

and zinc) are constant and equal to the initial external amount of metal ions C̃u and

Z̃n, respectively.

2. If x13 6= 0. Then x3 = 0. Using equation ẋ5 = 0, we find x5 = 0.

• First step: Using the last five equations, we express x11, x12, x13, x14 and x15 in

terms of the other variables. We find:

x15 =
1

δ̄ZA

x8

β + x8

; x13 =
1

δ̄Y

x6

A+ x6

;

x14 =
−(δ̄ZR + α3δZRx8) +

√
(δ̄ZR + α3δZRx8)2 + 4α3δ̄ZR[(δ̄ZR − δZR)x8 + (δZR − δ̄ZR)α3x2

8 +G]

2α3δ̄ZR

x12 =
−(δ̄TD + α2δTDx6) +

√
(δ̄TD + α2δTDx6)2 + 4α2δ̄TD[(δ̄TD − δTD)x6 + (δTD − δ̄TD)α2x2

6 +G]

2α2δ̄TD

G−
[
− x6

A+ x6

+ δ̄Ch(x11 − x4) + δChx4

]
(1 + α1(x11 − x4)) = 0

• Last step: The only non trivial remaining equations are ẋ1 = ẋ2 = ẋ4 = ẋ6 = ẋ8 =

0. Equation ẋ1 = 0 gives x1 = 0 or x4 = u1. But if the second option holds, then,

by equation ẋ2 = 0, we have x4 = x6 = x8 = 0 and consequently x13 = 0, which is

excluded. Thus x1 = 0.

The next four equations are not independent and they have the following form:

0 = δCHx4 + δTDx6 + δZRx8 − CCCh(u1 − x4)x2

0 = CCCh(x11 − x4)x2 −KTD(x12 − x6)x4 −KZR(x14 − x8)x4 −KZAu5x4 − δChx4

0 = KTD(u2 − x6)x4 − δTDx6

0 = KZR(u4 − x8)x4 − δZRx8,
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and if we sum them we obtain that

(4.5.10) −CCCh(x11−u1)x2−KTD(x12−u2)x4−KZR(x13−u4)x4−KZAu5x4 = 0

which implies since all the expressions are negative that x2 = 0 and x4 = 0, or

x11 = u1, x12 = u2, x14 = u4 and u5 = 0.

If x2 and x4 = 0, then from ẋ8 = 0 we get that x8 = 0. Additionally, since

x7 = x9 = x10 = 0, from ˙x15 = 0 we have that x15 = 0.

On the other hand, if u5 = 0, x2 6= 0 and x4 6= 0 again from ˙x10 = 0 we get that

x15 = 0 and then from ˙x15 = 0 we get that x8 = 0. Hence, whatever the case,

the only possible solutions are x6 = 0, because u1 = x11 6= 0, u2 = x12 6= 0 and

u4 = x14 6= 0. Moreover, x13 = 0 and x8 = 0.

Since Cint+x16 +x18 = C̃u and Zint+x17 +x19 = Z̃n, we have that the external amount of

extruded metal ions are x16 = C̃u and x17 = Z̃n, where C̃u = Cuext(0) and Z̃n = Znext(0),

respectively. Concluding that the fixed control (u1, . . . , u5) induces a globally asymptotically

stable equilibrium, because the controlled system is a finite dimensional system.

Finally, the I/S characteristic kX(u1, . . . , u5) = (x1, . . . , x19) is well defined. In fact, we

note that from the previous results it is evident that the state kX(u1, . . . , u5) is a globally

asymptotically stable state.

�

To conclude the main property we prove the following proposition for the autonomous

system.

Proposition 4.5.22. The autonomous system (4.5.6) for the Cu/Zn module class E(I) is

globally attractive to its unique equilibrium.

Proof. In order to prove the proposition we need to check that all the hypotheses in The-

orem 4.5.14 are satisfied. That is, the small gain condition (SGC) and the hypotheses

(H1), . . . , (H4).

Let X ⊆ (R+)19, U ⊆ (R+)5 be the set for initial conditions. From the decomposition

method we have deduced the sets U = (R+)5; X = (R+)19, and the orthant cones KU =

Rp ⊂ R5; KX = Rs ⊂ R19. We note that Proposition 4.5.20 can be directly applied to prove

(H1), (H2), (H3). Additionally, the monotonicity and existence of the characteristic have
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been proved in Proposition 4.5.21, and since function kX : U → X sends bounded sets to

bounded sets (in fact kX is constant) condition (H4) also holds.

For the small gain condition, we need to prove that the discrete system un+1 = k(un) has

bounded orbits and that the equation k ◦ k(u) = u has a unique solution ū ∈ R5. Since

the components of k(u1, . . . , u5) are bounded it is easy to see that the orbits of the discrete

system are bounded, therefore the first part of the SGC is satisfied.

In order to prove the second part of the SGC it is necessary to prove that k(u1, . . . , u5) has

a unique fixed point. From Proposition 4.5.21 we can deduce that the feedback characteristic

function k : U → U of the system is:

(4.5.11)

k(u1, u2, u3, u4, u5) =

−1 +
√

1 + 4Gα1

δ̄Ch

2α1

,
−1 +

√
1 + 4Gα2

δ̄TD

2α2

, 0,
−1 +

√
1 + 4Gα3

δ̄ZR

2α3

, 0


where α1, α2, α3, G and δ̄ are positive constants. It is important to note that the previous

expression proves that k(u1, . . . , u5) has a unique fixed point. Moreover, since k(u1, . . . , u5)

has a unique fixed point, we have that the discrete system is globally attractive.

It follows directly from Theorem 4.5.14 that the autonomous systems (4.5.6) for Cu/Zn

module classE(I) is globally attractive to its unique equilibrium (x1, . . . , x19) = kX(u1, . . . , u5).

�

Global stability in Mn/Fe module class U(I)

As before, using the system of differential equations in Subsection 4.3.4, class U(I),

(4.5.12) ẋ = g(x), x ∈ (R+)16,

we can construct the signed graph G2 (Figure 4.15). In G2 the vertices correspond to the

variables of the Mn/Fe module which have been divided in two groups before defined agonists

and antagonists. The variables x8, x10, x11, x12 and x14 can be labeled as antagonists, that

is Ac = {x8, x10, x11, x12, x14}, and the other variables are labeled as agonists.

From this set partition we can conclude that there are 6 discordant edges, blue boxes in

Figure 4.15, and with them we are able to define the sets Dj. In our case it holds that

D3 = {x10}, D5 = {x11}, D7 = {x14}, D8 = {x2}, D9 = {x12}, D16 = {x13}, and the

remainder Dj are empty sets. Thus D = {x2, x10, x11, x12, x13, x14}.
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ZurA

ZurAMn

FeR

Fe_i

FeU Fe_e

SirR

FeUFe

Mn_e

Mn_i

DpsAFe

FeRFe DpsA

FeRMn

SirRMn

Figure 4.15: Regulatory graph associated to the Mn/Fe module obtained from the Jacobian
matrix of the differential system, independent of the x value. The red arrows
correspond to negative interactions and the blue lines to the discordant edges
that need to be removed, in order to obtain a signed graph without negative
circuits.

Finally, to obtain our controlled system with input output feedback function, the variables

x2, x10, x11, x12, x13 and x14 are replaced by the control variables u1, . . . , u6 to form the

functions f8(x, u1), f3(x, u2), f5(x, u3), f9(x, u4), f16(x, u5) and f7(x, u6) respectively. The

new functions have the following form:

ẋ3 = f3(x, u2) = KZA(u2 − x3)x15 − δZAx3 −DZAx3

ẋ5 = f5(x, u3) = CCSR(u3 − x5 − x6)x1 − δSRx5

ẋ7 = f7(x, u6) = CCFR(u6 − x7 − x8)x1 − δFRx7

ẋ8 = f8(x, u1) = CCFR(x14 − x7 − x8)u1 − δFRx8

ẋ9 = f9(x, u4) = CCDA(u4 − x9)x2 − δDAx9

˙x16 = f16(x, u5) = −KFU(u5 − x4)x16

and the other equations remain as in the original module, that is ẋk = fk(x) = gk(x),

k 6= {3, 5, 7, 8, 9, 16}. Additionally, the function h : X → U has the following form h(x) =

(x2, x10, x11, x12, x13, x14).

Finally, we need to construct the vectors s and p to define the sign of the orthant cones
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KX and KU , respectively. From the variables in A and Ac we obtain that

(4.5.13) s = (+1, . . . ,+1︸ ︷︷ ︸
1...7

,−1,+1,−1,−1,−1,+1,−1,+1,+1) ∈ {−1, 1}16

with −1 at the positions {8, 10, 11, 12, 14}. In contrast, as D = {x2, x10, x11, x12, x13, x14} we

get that

(4.5.14) p = (−1,+1,+1,+1,−1,+1) ∈ {−1, 1}6.

With the previous information the controlled system is defined as

(4.5.15) ẋ = f(x, u1, . . . , u6), x ∈ (R+)16, u ∈ (R+)6, h : X → U.

Proposition 4.5.23. The controlled system for the model U(I) of the Mn/Fe module with

fixed control is monotone with respect to the orthant cones KX = Rs, KU = Rp, and it induces

a globally asymptotically stable equilibrium depending on the control variables u1, . . . , u6.

Proof. By construction (decomposition method), system (4.5.15) is monotone with respect

to the orthant cones KX = Rs and KU = Rp (where vectors s and p have been defined

in equations (4.5.13),4.5.14)) because its associated regulatory graph G2 does not have any

undirected negative cycle. Moreover, the output function h, which is defined as h(x) =

(x2, x10, x11, x12, x13, x14), is a decreasing function with respect to these cones.

Using the new set of differential equations for the controlled system (4.5.15) it is possible to

deduce, as we did before for the autonomous system (Subsection 4.4.1), that the equilibrium

depends on the control variables. In order to characterize the steady states it is necessary to

solve the following system

ẋ = f(x, u) = 0

for x = (x1, . . . , x16) and fixed control variables u = (u1, . . . , u6).

From equations ˙x15 and ˙x16 we conclude that x15 = 0 or x10 = x3 and x16 = 0 or u5 = x4.

As we have done in Subsection 4.4.1, let us assume that x15 = 0, x16 = 0, and x10 6= x3,

u5 6= x4. It follows directly from ẋ3 = 0 and ẋ4 = 0 that

x3 = x4 = 0

Since x3 = 0 and x4 = 0, solutions x10 = x3 = 0 and u5 = x4 = 0 are not allowed. In fact,

from equations ˙x10 = 0 we conclude that the unique possibility would be that the constant
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G equals to zero. This confirm our assumption that x10x3 and u5 6= x4 and with them

x15 = x16 = 0.

As we have done before in the analysis of steady states for the Mn/Fe module class U(I),

we define the total amount of intracellular manganese, denoted by Mint, as the sum of Mnint

(free manganese), ZurAMn, SirRMn and FeRMn. That is, in terms of the variables we

have that Mint = x1 + x3 + x5 + x7 and we obtain that:

(4.5.16) ˙Mint = KZA(u2 − x3)x15 + CCSR(u3 − x11)x1 + CCFR(u6 − x14)x1.

At the equilibrium and assuming x15 = x3 = 0 and x1 6= 0 we conclude from ˙Mint = 0 that

x11 = u3 and x14 = u6.

Now, we define Fint as the total amount of intracellular ferric ions, that is, the sum of Feint

(free iron), FeUFe, SirRFe, FeRFe, DpsAFe. Its derivative is ˙Fint = ẋ2 + ẋ4 + ẋ6 + ẋ8 + ẋ9

and as before we get that

(4.5.17) ˙Fint = KFU(x13 − x4)x16 + CCFR(x14 − x7 − x8)(u1 − x2) + CCDA(u4 − x12).

At the equilibrium and assuming x16 = x4 = 0 and x2 6= 0, we obtain from ˙Fint = 0 that

x12 = u4 and x2 = u1,

because (x14− x7− x8) 6= 0. As we have seen before if (x14− x7− x8) = 0 then from ẋ7 = 0,

x7 = 0, and from ẋ8 = 0, x8 = 0. Both, together with equation ˙x14 = 0 implies that the

constant G needs to be zero, which is not allowed.

Assuming the above results, in what follows we will obtain expressions for x5, x6, x7, x8

and x9. From equation ẋ5 · x2 − ẋ6 · x1 = 0 we get that

x1

x2

=
x5

x6

= C.

Since x2 = u1, we have that x1 = Cu1. Using x5 = Cx6 and replacing this expression in

ẋ6 = 0 we get that

x6 =
CCSRu3u1

CCSRu1(1 + C) + δSR
and x5 =

CCSRu3u1C

CCSRu1(1 + C) + δSR
.
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In the same way, from ẋ7 · x2 − ẋ8 · x1 = 0 we get that

x7

x8

= C.

Using x7 = Cx8 and replacing this expression in ẋ8 = 0 we get that

x8 =
CCFRu6u1

CCFRu1(1 + C) + δFR
and x7 =

CCFRu6u1C

CCFRu1(1 + C) + δFR
.

Additionally, from ẋ9 = 0 we conclude that

x9 =
CCDAu4u1

CCDAu1 + δDA
.

It still remains to compute x10 and x13. From ˙x10 = 0 we obtain that

x10 =
G

δ̄ZA

(
1 + γ1

(
u3 − (1 + C) CCSRu3u1

CCSRu1(1+C)+δSR

)) .
To conclude, from ˙x13 = 0 we get that

x13 =
1

δ̄FU

CCFRu6u1C
CCFRu1(1+C)+δFR

A2 + CCFRu6u1C
CCFRu1(1+C)+δFR

Finally, the above results show that the I/S characteristic kX(u1, . . . , u6) = (x1, . . . , x16)

is well defined. In fact, since x1, . . . , x16 depend on u1, . . . , u6, it is evident that the state

kX(u1, . . . , u6), for a constant input, is a globally asymptotically stable state.

�

To conclude the main property for the autonomous system we prove the following propo-

sition:

Proposition 4.5.24. The autonomous system (4.5.12) for the Mn/Fe module class U(I) is

globally attractive to its unique equilibrium.

Proof. In order to prove the proposition we need to check that all the hypotheses in The-

orem 4.5.14 are satisfied. That is, the small gain condition (SGC) and the hypotheses

(H1), . . . , (H4).

Let X ⊆ (R+)16, U ⊆ (R+)6 be the set for initial conditions. From the decomposition
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method we obtain the sets U = (R+)6; X = (R+)16, and the orthant cones KU = Rp ⊂ R6;

KX = Rs ⊂ R16 (equations (4.5.13),4.5.14))). We note that Proposition 4.5.20 can be directly

applied to prove (H1), (H2), (H3). Additionally, the monotonicity and existence of the I/S

characteristic have been proved in Proposition 4.5.21, and since function kX : U → X sends

bounded sets to bounded sets condition (H4) also holds.

For the small gain condition we need to prove that the system un+1 = k(un) has bounded

orbits and that the equation k◦k(u) = u has a unique solution ū ∈ R6. Since the components

of k(u1, . . . , u6) are bounded it is easy to see that the orbits of the discrete system are bounded,

therefore the first part of the SGC is satisfied.

In order to prove the second part of the SGC it is necessary to prove that k(u1, . . . , u6)

has a unique fixed point. However, from Proposition 4.5.23 we can deduce that the feedback

characteristic function k : U → U of the system is: k(u1, u2, u3, u4, u5, u6) =u1,
G

δ̄ZA

(
1 + γ1

(
u3 − (1 + C) CCSRu3u1

CCSRu1(1+C)+δSR

)) , u3, u4,
1

δ̄FU

CCFRu6u1C
CCFRu1(1+C)+δFR

A2 + CCFRu6u1C
CCFRu1(1+C)+δFR

, u6



It is important to note that the previous expression proves that k(u1, . . . , u6) has a unique

fixed point. Moreover, since k(u1, . . . , u6) has a unique fixed point, we have that the discrete

system is globally attractive.

It follows directly from Theorem 4.5.14 that the autonomous system (4.5.12) for the

Mn/Fe module class U(I) is globally attractive to its unique equilibrium (x1, . . . , x16) =

kX(u1, . . . , u6).

�

Observation 4.5.25. It is important to note that in both modules Cu/Zn class E(I) and

Mn/Fe class U(I) the control variables have been associated with proteins playing a central

role in the mechanisms of traffic and uptake, as the case of TD, Y vgX, ZurA, SirR or

DpsA, confirming the importance of these proteins in the cellular response to external metal

ion stress.

4.6 Simulations

In this section we will show the most important results obtained by the different simulations,

putting emphasis in the principal proteins involved in the mechanisms of metal resistance,
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such as V NG1179C (with Trash domain), V NG0702H/V NG2582H (Chaperones), Y vgX,

ZntA, SirR and DpsA. All the simulations have been made using the programs xDim [MM]

to solve numerically the differential equations with unknown parameters and CellDesigner

([K03], [K07]) to draw the interaction model.

In the first part we will show the standard global response of Halobacterium NRC-1 to

metal stress. In this direction, we have done simulations for each one of the modules, which

are consistent with the known experimental behavior. Then we will explore some relevant

questions based in some observations made by the authors of the biological model such as:

1. Cellular response to the change in external metal concentrations (Baliga personal com-

munication).

2. How the system works when we change the order in which we incorporate the metals,

either at the same time or with a delay (Baliga personal communication).

3. How to measure the cellular growth and growth arrest incorporating a new differential

equation to the model taking into account some experimental data of optical density

versus external metal concentrations [B06].

4.6.1 Internal metal ions variation

The mathematical proof of the homeostatic property is difficult in general and Thomas rule

gives us only a necessary condition. For that reason, it is important to obtain numerical

results depending basically on the nature of the parameters in the models. In this direction

the parametric stability of the steady state characteristics of the gene network components

was analyzed.

In this part, it is demonstrated numerically, that the stationary concentration of internal

metal is robust to changes in environmental conditions. For both modules, in order to test

the property of homeostasis, it is important to know the variation of internal metal ions

concentration at the equilibrium as a function of the parameters in the non trivial case. In

our analysis we have distinguished two cases: (i) re-utilization of the extruded metal ions,

and (ii) use of constant rates σi 6= 0.

(i) As we have seen before, in the steady state analysis (see Section 4.4.1) for both modules,

the most relevant case occurs when there exists re-utilization of the extruded metal

ions (class E(II) and U(II)). This is because in the other cases (class E(I)) the

only equilibrium is constant and equal to zero, with the exception of the unregulated
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proteins with constant non zero production. In the following we will show the numerical

behavior of both modules:

1. Cu/Zn module:

In Figure 4.16 we can see that the concentrations for the external metal ions of

Cu and Zn, x and y axis respectively, converge to a steady state that depends on

the initial external concentration, as we have proved previously.

Initial states

Final states

Zn_e

Cu_e

Figure 4.16: xDim simulation: convergence of external metal ions concentration for the
Cu/Zn module, depending on the initial external metal concentration. The x
axis corresponds to the external copper concentration and the y axis corresponds
to the external zinc concentration.

2. Mn/Fe module:

In Figure 4.17 as before we can observe that the external amount of Mn and Fe,

x and y axis respectively, converges to an equilibrium that depends on the initial

condition.

(ii) In previous analysis (Subsection 4.4.1), we have assumed for convenience that the pa-

rameter σi, rate at which the external metal ions enter to the system, remains constant

and equal to zero.

For that reason a natural question, that needs to be addressed, is to understand the
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Initial states

Final states

Fe_e

Mn_e

Figure 4.17: xDim simulation: convergence of external metal ions concentration for the
Mn/Fe module, depending on the initial external metal concentrations. The x
axis corresponds to the external manganese concentration and the y axis corre-
sponds to external iron concentration.

typical behavior of both modules in the case σi 6= 0.

In this scenario, it is possible to prove (numerically) that for a range of values both

modules preserve the property of convergence toward the equilibrium. Additionally,

this demonstrates the robustness of the cellular system under external variations.

In the following we will see some of the most relevant simulations when we change the

value of the parameter σi in both modules.

1. Cu/Zn module:

We have developed several simulations in which we move the parameters σ1 and σ2

in order to preserve the convergence of internal and external metal concentrations.

As a result we have found two threshold values, σ∗1 = 0.186 and σ∗2 = 0.106 (for the

artificial values of our parameters), at which we lost the internal stability, which

implies an increasing amount of metal ions that produce finally cellular death.

In Figure 4.18 we observe the convergence of free internal copper ions independent

of the initial external copper concentration. In this case the copper extrusion
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mechanism is robust under external variations. This is because of the two proteins

Y vgX and ZntA that participate in the copper exportation process.

Cu_e

Cu_i

Initial states

Figure 4.18: Convergence: Cue versus Cui. Internal copper remains constant independent of
the initial condition for external metal ions using σ1 = σ = 0.186 (copper) and
σ2 = β = 0.056 (zinc). The x axis represents external copper concentration and
the y axis represents free internal copper concentration. The other parameters
(degradation, affinity and synthesis) can be seen in the right hand side of the
figure.

In contrast, for the internal zinc variation (see Figure 4.19) it is necessary that the

degradation parameters to be less than a threshold (here artificially 0.2), because

if it is not the case there are not convergence and the amount of internal metal ions

would grow linearly. One possible explanation for this phenomenon could be that

the zinc exportation mechanism is exclusive to the ZntA protein and therefore it

is less robust under environmental variations than the copper system.

2. Mn/Fe module:

In the Mn/Fe module we have found some particularities in the study of the

internal metal ions variation. Specifically we have observed that the ferric uptake

system is not robust under changes on the rate of iron concentration (σ4). For that

reason all the simulations have been obtained independently by changing only one

parameter at once.

If we only analyze the manganese mechanism (Figure 4.20) with σ3 6= 0, we can
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Zn_e

Zn_i

Initial states

Figure 4.19: Convergence: Zne versus Zni. Internal copper remains constant independent
of the initial condition for external metal ions using σ2 = 0.106 (zinc) and
σ1 = 0.118 (copper). The x axis represents external zinc concentration and
the y axis represents free internal zinc concentration. The other parameters
(degradation, affinity and synthesis) can be seen in the right hand side of the
figure.

conclude that there exists again a threshold value for such rate at which the amount

of internal manganese ions converge to the same equilibrium point independently

of the initial external condition. This proves that the manganese mechanism is

robust under external environmental variations.

In the case of internal iron ions, as Mn mimics iron deficiency if both σ3 and σ4

are constant but different from zero, the amount of internal iron increases steadily,

i.e. there is not limit situation. In Figure 4.21 we can observe that for σ3,4 = 0

the amount of external and internal metal ions converge to a value different from

zero. Besides, the amount of DpsAFe is different from zero, which implies that

the mechanism for detoxification works.

Additionally, we can observe in the small picture of Figure 4.21 the trajectories for

Fei, Mni and DpsAFe, deployed in the same decreasing order. In this case the

internal amount of iron is bigger than the internal amount of manganese because

the latest is necessary in both uptake regulatory mechanisms.
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Mn_e

Mn_i

Initial states

Figure 4.20: Convergence: Mne versus Mni. Internal manganese remains constant indepen-
dent of the initial condition for external metal ions using σ3 = σ = 0.018 (man-
ganese) and σ4 = β = 0.018 (iron). The x axis represents external manganese
concentration and the y axis represents free internal manganese concentration.
The other parameters (degradation, affinity and synthesis) can be seen in the
right hand side of the figure.

It is important to note that in all the previous simulations the internal amount of metals

ions at steady state are different from zero. This is crucial because Halobacterium NRC-1

needs the metal ions to maintain their internal processes but at the same time it needs to be

robust under external variations (maintain their values below a certain level).

4.6.2 Global response

As we have mentioned in Section 4.2 the complete model has been divided in two modules

because we want to observe two independent processes, traffic and uptake of heavy metals

respectively, which are essential at cellular level. Additionally, we have simplified the model

eliminating the action of the zinc into the Fe(II) resistance system. In fact in our final

model we have only considered four metal interactions Cu(II), Zn(II), Mn(II) and Fe(II)

from the six proposed in the original model (i.e. without Co(II) and Ni(II)).

In order to understand the global response we proceed to describe the trajectories obtained
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Mn_e

Fe_e

Fe_i

Mn_i

DpsAFe

Final state

Figure 4.21: Convergence: Mne versus Fee in the main picture and in the secondary picture
we have the trajectories for Fei, Mni and DpsAFe in the same order from top
to button. Internal iron remains constant independently of the initial condition
for external metal ions using σ3 = σ4 = 0. The other parameters (degradation,
affinity and synthesis) can be seen in the right hand side of the figure.

numerically in the simulation of each module.

Cu/Zn module

We will begin with the traffic response, as we can see in Figure 4.22. The first conclusion

deals with the variation in metals concentrations. The amount of external metals Cue and

Zne decreases until reaching a value near to zero (the limit is zero). As we have explained

before, in the first module we do not know the uptake mechanism, so for the simulations we

have used a positive regulatory function with a threshold parameter.

The exported metals have been measured with the variables Cu∗ and Zn∗, which increased,

indicating that the exporting mechanism works. The only difference between the two metals

is that the final amount of copper ions is greater than the amount of zinc ions, this happens

mainly by two reasons: (i) For the copper we have two mechanisms exporting a bigger

quantity of the metal outside the cell, Y vgX and ZntA proteins, (ii) The zinc is used by the

cell in the regulation of the copper mechanism.
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In contrast, the function describing the solution for the internal metals Cuint and Znint

is concave and reach a maximum which coincides with the minimum of the external concen-

trations, then it decreases until a level next to zero. This evidence confirm the hypotheses

about how the cell reacts under metal stress: at the beginning the metal enter to the cell,

activates the proteins involved in the traffic process and then it is exported, reducing its

toxicity. To complete the module we present a detailed description of the principal proteins

in the process:

1. V NG1179C acts as an activator with either Cu(II) or Zn(II) cofactors bound to

the TRASH domain, and it is important for the up-regulation of both Y vgX and the

chaperones. In our model we have made the assumption of the initial and constant

concentration value, because we do not know the regulators for the gene. In [B06]

there exists empirical evidence of inhibition under copper’s presence but we did not

have found a proof or references of such behavior in other articles. So we exclude this

in the final model. As we can see in the simulations and in the mathematical steady

state the final concentrations are different from zero.

2. The two chaperones V NG0702H and V NG2582H play a central role in the traffic

mechanism because they initialize the complete process and transport the ions. In our

simulations we have observed that a basal transcription rate concentration is necessary

for the traffic of copper, so we can respond one of the hypotheses: the chaperone is

constitutively present in the cell at a basal level. The simulations reveal that without

the action of the chaperones we can obtain a higher internal concentration of the heavy

metals.

3. Y vgX protein is important for withstanding copper toxicity and it is up-regulated by

the complex TDCu and TDZn. As a function of the time it grows until reaching a

constant value obtained numerically in the steady state section. Meanwhile for the other

protein ZntA we have the same behavior, because both perform the same function. It

is possible that this cause a problem in a more robust model but we do not have more

information about the kinetic constants so mathematically there are no difference in

the regulation.

Mn/Fe module

In the second module, dealing with the uptake mechanism, we have obtained a completely

different behavior, mainly because we have down-regulations (negative interactions) and with

them opposite results in the simulations. Here the manganese plays a central role in the
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(Cu)*

(Zn)*

External metals

Internal metals

Zn_i
Cu_i

Cu_e

Zn_e

Figure 4.22: Simulation of the traffic mechanism in the Cu/Zn module for both classes E(I)
(up) and E(II) (down).

control of Fe metabolism, because it mimics a Fe(II) starvation condition in Halobacterium

NRC-1.

The first conclusion has to do with the amount of external and internal metals. In the

Mn/Fe module we have only considered the uptake mechanism proposed by Baliga et al.

and for the simulation we have used a positive regulatory function that does not change the

final results. As we can see in Figure 4.24 the external amount of metals ions Mne and Fee

decreases as a function of time, as a cause of the negative sign. Additionally we can observe

that both trajectories differ. This is because the uptake mechanism of Fe needs Mn, so it is

natural that the manganese is depleted before.

On the other hand, the final internal quantity of Fe(II) and Mn(II) is near zero, this effect

is desired since both metals are essentially toxic for the cell. This shows that the mechanism

responds under external changes. So we can prove numerically that a big quantity of ferric

ions are joined with the DpsA protein which store it in a less toxic Fe(III) form (DpsAFe

variable). In contrast the manganese is used by the cell in the ferric system and on its own

mechanism. This is important because in some sense the manganese is used to help in other

processes. To conclude we present the most relevant consequences for the other elements:

1. SirR protein is the principal regulator of the uptake system for the manganese. In

the presence of Mn and Fe, it down-regulates the production of ZurA and of itself.
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TD

YvgX

Ch

YvgX

YvgXCu

ZntA

ZntAZn

ZntACu

Figure 4.23: Proteins variation in the Cu/Zn module: The first graph shows the trajectory of
the three proteins in the copper system: TD, Ch and Y vgX. The second graph
shows Y vgX and Y vgXCu. Finally, the third graph shows ZntA, ZntAZn and
ZntACu.

This double negative regulation was proposed by Baliga et al., in our model we can

observe the same behavior, in fact we can see that the trajectory reach a maximum,

then decrease until external manganese is depleted and finally grows to reach an steady

state value different from zero.

2. ZurA represents the unit involved in the uptake of Mne, of the three proteins we have

chosen one to characterize the system. In this case the final trajectory is similar to that

for the SirR protein, and this constitute an explanation about why both profiles, SirR

and ZurA, are similar. In Baliga’s experiments they have thought at the beginning that

there exists activation of the protein, but in reality the most credible explanation was

double down-regulation. In the simulations we have obtained the same experimental

results, so we have confirmed mathematically the hypotheses of down-regulation of

Mn(II) uptake to control toxicity.

3. The detoxification of the Fe(II) by oxidation is made by the DpsA protein. In the
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graph we have a complex trajectory with a maximum and a minimum to end with a

constant non zero maximum value in the stationary state. At the beginning we observe

that the curve grows but when the internal amount of manganese increases then the

DpsA level decreases, we can see that the minimum value corresponds to the maximum

value of internal Mn(II). This effect coincides with the down-regulation exhibited in

the biological experiments. Then when the amount of internal manganese is depleted,

the curve grows again to reach the maximum at a steady state. This coincides with the

experimental knowledge and with the regulation parameters. In the last point there is

still a lot of work to do because we do not know exactly how the cell uses the up or

down regulation in this case. To measure the quality of the detoxification process we

have the variable DpsAFe, in the simulation we can see that the final value is near to

the external ferric quantity, this means that the ferric uptake mechanism responds to

the metal stress in an appropriate way.

External metals

Internal metals

DpsAFe

Mn_e

Fe_e

DpsAFe

Fe_i
Mn_i

Figure 4.24: Simulation of the uptake mechanism in the Mn/Fe module for both classes
U(I) (up) and U(II) (down). In this graph we have only considered the metal
ions presented in the module and the complex DpsAFe (detoxification).
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4.6.3 Metal stress response

In general, when we study mechanisms dealing with the traffic and uptake of heavy metal

ions, it is important not only to try to understand the proteins and genes involved in the

processes, but also try to understand how the external conditions of metal ions in the medium

control and damage the cellular response.

For that reason, one of the main questions in the Cu/Zn module is try to measure the

cellular effect under multiple stress. That is, we try to understand how the cell responds under

different stress scenarios. In our case, this scenarios are presented as successive variations of

the external metal ions concentrations, and as time delay in the order of the ions.

In order to answer these questions, in our simulations we have considered three possible

external variations:

1. Put both copper and zinc at the same time in the exterior: this simulation gives us the

usual response, i.e., it is some kind of positive control in order to realize a comparison

between the possible scenarios.

2. Put first copper and then zinc: this simulation gives us the effect of copper in the zinc

mechanism.

3. Put first zinc and then copper: this simulation gives us the effect of the zinc in the

copper mechanism.

4. Put copper in a successive way, that is, pulses of external ions with constant time delay.

The idea is to compare these three different conditions as we can see in the following

simulation results showed in Figure 4.25:

In the simulations we have observed that the main difference is the time response. Under

the third condition the copper response is faster because the zinc participate in the regulation

of the copper system producing Y vgX protein. So when the copper enter to the cell in second

place quickly is drawn to the outside. In contrast, if we put the copper first the zinc system

is not initiated, since the regulation of zntA depends exclusively on ZntR plus Zn(II). So

the response is the same as we have seen before (see Figure 4.26).

In the Mn/Fe module we can do the same experiment, proving that manganese simulates

iron deficiency increasing its response. In the manganese uptake system we can see the same

effect because Fe(II) regulates SirR and ZurA. By contrast, stress in the Fe(II) system
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Cu_e
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Cu_e

Cu_i
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Figure 4.25: Stress response in time when we have applied three pulses of punctual external
copper. The main fact is the behavior of protein Y vgX. At each time that
the pulse acts, its concentration decreases and then increases at the same time
that the free internal copper change, showing that the system is robust under
external variations.

is only effective until a certain threshold of the internal free iron concentrations, before this

threshold the system fails. Basically, because the concentration of DpsAFe maintains a

constant value meanwhile the concentration of free internal Fe(II) remains high (see Figure

4.27).

4.6.4 Incorporating a growth equation

Another important question extracted from the paper of Baliga et al. [B06] is to measure

in some sense how the cellular growth depends on the external metal stress variations. To

consider this problem, it is necessary to incorporate a new equation to the differential model,

consisting mainly of a function that approximate how the cell grows and dies in the medium.

Several experiments have been made in Halobacterium NRC-1 showing growth rates assays

when different metals concentrations are presented. In all of them growth was measured as

the increment of the cell density (OD600). The prediction says that at high concentrations

of copper and zinc (bigger than 1.25 nM unit) there exists growth arrests. Besides, the

experiments corroborate that the proteins Y vgX and ZntA are necessaries because without

them the cell dies at very low metal concentrations.

For that reason we have designed a growth function for the variable ρ0,i, constant in

the above simulations, in such a manner that for each one of the modules it is necessary to

incorporate an additional differential equation for the region coding the main protein involved
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Figure 4.26: Stress by zinc in the Cu/Zn module: we have measured the effect of cellular
stress resistance using ZntA as a variable.

Fe_i

Fe_e pulses

DpsA

Figure 4.27: Stress by three pulses of iron: In the plot we can see the existence of a certain
threshold in the iron concentration implying that the system for detoxification
fails because DpsA remains constant.

in the key regulatory mechanism, such as Y vgX, ZntA, ZurA and DpsA, because we know

from the monotonicity property that they are essential to survive. Based in the graphical

information, we have constructed the new function G(·) as the sum of two functions, one

dealing with the growth at low metal concentrations and the other with the growth arrest at

high metal concentrations. It is given by,

G(Cuint) :=
K1

1 + (Cuint
Cu∗

)n
+

K2(Cuint
Cu′

)m

1 + (Cuint
Cu′

)m

where K1 and K2 are two constants obtained to fit the same curve as for defective growth,

and n, m are the cooperative coefficients. Finally we can see the plot of the function in Figure

4.28 for the copper case and constants Cu′ = 1.25, Cu∗ = 8.5, n = 8, m = 2, K1 = 0.6 and

K2 = 0.2.

As the main idea behind the growth function is to measure the availability of the promotor

region coding for the essential proteins, at the beginning, when we do not have metal ions

inside the cell, the promotor region operates at some constant level. If the amount of internal

metal growth until a first threshold, the promotor region increases its rate showing that the
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Figure 4.28: Scheme of the growth function depending on the variable for internal metal
concentration and two constants indicating growth and death.

metal is necessary for the cell. But if the internal metal concentrations pass the second

threshold then the function decreases until another constant level showing that high internal

copper concentrations are harmful for the cell (see Figure 4.29).

Cu_i

YvgX

Figure 4.29: Limit behavior in the copper system with the additional growth equation: we
have observed a threshold for the amount of internal free copper at which the
cell arrest its growth.

So the new differential equation needed to be incorporated, for the copper model for

example, has the form:

ρ̇ = G(Cuint)ρ− γρ

In general, we can incorporate independently to each module one equation modeling the

cellular growth effect, because it depends on each internal metal concentration variable,

regulating only the partial mechanism but with global effect, as we show in the compared
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simulations. With all this information we are able to propose a more realistic model for the

metal stress phenomena.

Cu_i

YvgX

Fe_i

DpsA

Figure 4.30: Left: Y vgX versus Cuint. At a bigger concentration of metal the slope of
the curve decreases because we are in the right part of the growth function G.
Right: DpsA versus Feint. We can see a limit phenomenon, if the amount of
free internal iron is bigger than a certain threshold, the mechanism did not work
and the cell arrest its growth.

In the simulations we have measured the variation of essential proteins concentrations

versus the variation of the free internal metal condition as we can see in Figure 4.30. In the

case of Y vgX protein production versus free internal copper concentration, we can observe

that at a bigger concentration of metal the slope of the curve decreases because we are in

the right part of the growth function G. Meanwhile, in the case of DpsA protein production

versus free internal iron concentration, we can see a limit phenomenon. If the concentration

of Feint is bigger than a certain threshold, the mechanism did not work and the cell arrest

its growth.

In summary, we numerically test that high internal copper concentrations are harmful for

the cell and the same behavior is true for iron where if the free internal amount of Fe(II) pass

a critical value the cell arrest its growth. These evidences corroborate that the trafficking

(copper) and detoxification (iron) mechanisms are necessary for cellular survival.

4.7 Conclusions and discussions

The mathematical model for metal stress response constructed in this chapter has been mainly

achieved from previous biological results of Baliga and coworkers, besides an exhaustive

searching in the literature. Using this information we have derived some of the chemical
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reactions governed by mass-action kinetics and with them we have proposed two modules,

each one of them with more than 16 differential equations, dealing with essential cellular

mechanisms such as traffic, uptake, efflux, detoxification and extrusion of heavy metal ions.

Once both modules are designed two questions arise naturally: a mathematical analysis in

order to capture unknown information and simulations in order to answer and corroborate

essential biological questions. In this direction, since metal resistance to external stress is a

phenomenon of “equilibrium”, we have made a steady state analysis with global convergence

results, and we have studied the homeostasis property of the system. Additionally, several

simulations confirm biological knowledge and reveal new evidence for metal stress resistance.

In the construction of both modules we have considered some restrictions as the elimination

of the effect of nickel and cobalt. Moreover, we have introduced some interpretations and

simplifications of the biological data in order to isolate the dynamical behaviors that we want

to describe. In this context, for example, we have defined a variable for free internal metal ion

(for the four metals) to represent the internal metal which is not bounded to a protein, that

could be involved at the same time in storage or metabolic activities that remains unknown

and independent of our model.

Some of the main questions are based in some observations made by the authors of the

biological model such as: (i) Cellular response to the change in external metal concentrations

(Baliga personal communication), (ii) How the system works when we change the order in

which we incorporate the metals, either at the same time or with a constant time delay (Baliga

personal communication), and (iii) How to measure the cellular growth and growth arrest

incorporating a new differential equation to the model taking into account some experimental

data of optical density versus external metal concentrations.

In the Cu/Zn module we have seen that the curve for the concentration of external copper

grows faster than the curve for the concentration of external zinc. This behavior is consistent

with two biological forces: zinc is necessary inside the cell because it is used in multiple

regulatory mechanisms and copper is exported by two different proteins Y vgX and ZntA. In

the simulations we have corroborated that the chaperone is necessary at basal concentration

in order to initiate the main processes.

Dealing with alternate changes in external metal ion concentrations we have observed that

the most important difference is the time response. Under the third condition, put first zinc

and then copper, the copper response is faster because the zinc participate in the regulation

of the copper system producing Y vgX protein. Hence when copper ions enter to the cell in

second place quickly are drawn to the outside. In contrast, if we first put the copper, the

zinc system is not initialized since the regulation of zntA depends exclusively on the complex
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ZntR plus Zn(II).

In the Mn/Fe module we can do the same experiment, proving that manganese simulates

iron deficiency increasing its response. In the manganese uptake system we can see the same

effect because Fe(II) regulates SirR and ZurA. By contrast, stress in the Fe(II) system

is only effective until a certain threshold of the internal free iron concentrations, before this

threshold the system fails. Basically, because the concentration of DpsAFe maintains a

constant value meanwhile the concentration of free internal Fe(II) remains high.

From the mathematical point of view we have proved that both modules, class E(I) and

U(I), present a unique steady state depending on the initial external amount of metal ions.

Meanwhile, the other two classes, E(II) and U(II), present a finite number of equilibrium

states. The simulations and rigorous mathematical proofs confirm that the system attains an

equilibrium, and that the machinery determined by the trafficking and uptake mechanisms

allow to adapt the internal state of the cell to changes in the external level of heavy metal

ions.

Homeostasis and internal metal response have been studied. It is well known that these

kind of systems dealing with resistance mechanisms are homeostatic. The homeostasis phe-

nomenon is determined either by the convergence to a steady state or small oscillations

around a given value. Nevertheless, it is difficult to answer positively these questions due to

the complexity and nonlinearity of the differential equations. For that reason we have stud-

ied the existence of negative circuits (necessary condition) to identify the essential proteins

involved in cellular maintaining. Here it was crucial to consider the effect of σi, rate at which

the external metal ions enter to the system, constant but different from zero.

Together with the steady state analysis, the property of global convergence have been

proved using the approach developed for near-monotone systems [ES06]. In this context it is

possible to prove that both modules are near monotone due to the presence of inconsistent

edges (negative undirected cycles) in its regulatory graph. Nonetheless, it is possible to

decompose both modules into controlled monotone systems and using a small gain condition

prove the desire property.

Finally, we have incorporated independently to each module one equation modeling the

cellular growth effect in order to propose a more realistic model. For that reason, using

previous biological evidence we have constructed a growth function to measure the availability

of the promotor region coding for the essential proteins. Additionally, cellular growth effect

depends on each internal metal concentration variable, regulating only the partial mechanism

but with global effect. In different simulations we have observed that there exists critical

values (thresholds) for the internal metal ion concentrations. For example, we are able to
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test that high internal copper concentrations are harmful for the cell and the same behavior

is true for iron where if the free internal amount of Fe(II) pass a critical value the cell arrest

its growth. These evidences corroborate that the trafficking and detoxification mechanisms

are necessary for cellular survival.

In the future we expect to clarify some important questions that have not been taken into

account in this work. In this direction, it would be interested to find a critical range for the

unknown parameters values, test the model against new observations to see the prediction

power and lately extend the model incorporating new biological information as reactions that

involve new differential equations specially to particular mechanisms for nickel and cobalt,

which have not been taken into consideration in this work.
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[He99] Héchard, Y., Dalet, K., Gouin, E., Cenatiempo, Y., Cossart, P.: Characterisation of

a new operon encoding a Zur-like protein and an associated ABC zinc permease in

Listeria monocytogenes. FEMS Microbiology Letters 174, 111-116, 1999.

[Hi85] Hirsch, M.: Systems of differential equations that are competitive or cooperative:

Convergence almost everywhere. SIAM J. Mathematical Analysis, 16:423-439, 1985.

[K03] Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H.: CellDesigner: a

process diagram editor for gene-regulatory and biochemical networks. BIOSILICO,

1:159-162, 2003.

[K07] Funahashi, A., Jouraku, A., Matsuoka, Y., Kitano, H.: Integration of CellDesigner

and SABIO-RK. In Silico Biol. 7(2 Supple), S81-90, 2007.

197



Bibliography

[L99] Larin, D., Mekios, C., Das, K., Ross, B., Yang, A.S., Gilliam, T.C.: Characteri-

zation of the interaction between the Wilson and Menkes disease proteins and the

cytoplasmic copper chaperone, HAH1p. Journal Biol. Chem. 274, 28497-28504, 1999.

[M01] Mercer, J. F.: The molecular basis of copper-transport diseases. Trends Mol. Med.

7, 64-69, 2001.

[MM] Monticelli, Marc: xDim, Interactive Numerical Experimentation software.

[Mo05] Moore, C.M., Gaballa, A., Hui, M., Ye, R.W., Helmann, J.D.: Genetic and phys-

iological responses of Bacillus subtilis to metal ion stress. Molecular Microbiology

57(1), 27-40, 2005.

[N99] Nelson, N.: Metal ion transporters and homeostasis. The EMBO Journal Vol.18

(16), 4361-4371, 1999.
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