

UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

ENHANCING TEAMWORK IN SOFTWARE PROJECTS

DEVELOPED IN THE ACADEMIA

TESIS PARA OPTAR AL GRADO DE

MAGISTER EN CIENCIAS MENCIÓN COMPUTACIÓN

MAÍRA REJANE MARQUES SAMARY

PROFESOR GUÍA:

SERGIO OCHOA DE LORENZI

MIEMBROS DE LA COMISIÓN

ALEXANDRE BERGEL

NELSON BALOIAN TATARYAN

YADRAN ETEROVIC SOLANO

SANTIAGO DE CHILE

NOVIEMBRE 2011

2

Abstract

Software engineering is an important area within industry and academia. Normally there is a

high demand for well-trained software engineers, since chips and code are embedded in almost all

consumer products. Consequently young professionals who finish their studies in Computer Science or

Informatics have many job opportunities, and the majority of them will work on software development,

a human centered process.

As a human centered process, human factors have a great impact on the process and its

performance. Although human factors have been proven to have an impact on the software

development process, they are still overlooked by researchers. One of the most important human

centered processes involved is the one that deals with the coordination of the activities and the ability to

combine people skills and teamwork.

In Computer Science, particularly in software engineering, effective teamwork can mean the

difference between a positive or negative outcome of a development project. Educational institutions

offering Computer Science programs must accept the responsibility to prepare their graduate students

not only in technical issues, but also in soft skills that allow them to work efficiently in their professional

careers.

Trying to address this problem is complicated; I state there exists a short list of variables that

systematically influence teamwork in software projects conducted by small and novice development

teams. We also stated that ThinkLets (activity or process that produces predictable results to deal with

recurring collaboration problems) could be used to mitigate recurrent situations that affect teamwork.

To do so, a Software Engineer Project Course was observed during two semesters. After a

literature review on the subject three variables were chosen to be evaluated: Communication,

Coordination and Motivation. With bases on these we concluded that these variables were the most

important ones. The most recurrent team problems were found in the literature and so they’re possible

solution. The teams observed generated a list of problems and so a list of ThinkLets was created and the

practices were tested.

An analysis of the data observed showed that the three variables found were the most important

ones and that the ThinkLets created were able to effectively mitigate the negative situations affecting

teamwork.

Resumen

La ingeniería de software es un área relevante en la comunidad científica y también en la

industria. Normalmente existe una importante demanda por ingenieros de software bien entrenados,

dado que las líneas de código en los productos de consumo masivo, se duplican cada dos años

aproximadamente. Los profesionales que terminan los estudios de las Ciencias de la Computación o

Informática tienen muchas oportunidades de trabajo, porque existe una demanda no satisfecha en el

mercado laboral. La mayoría de estos profesionales trabaja en desarrollo de software; un proceso

centrado en las personas.

En todo proceso centrado en las personas, los factores humanos tienen un gran impacto en el

esfuerzo de ejecución del mismo y en los resultados que se obtienen. A pesar de ello, recién ahora la

ingeniería de software le está dando la importancia que esto se merece. Uno de los procesos humanos

más importantes en el desarrollo de software es el trabajo en equipo. Un trabajo en equipo eficaz puede

hacer la diferencia entre un buen y un mal resultado en un proyecto de desarrollo. Las instituciones de

educación superior deben asumir su responsabilidad de enseñar sus alumnos no solamente temas

técnicos, sino también las habilidades blandas, que les permitan llevar a cabo sus actividades

profesionales como miembros de un equipo de trabajo.

Este trabajo de tesis ha definido dos hipótesis al respecto: (H1) hay un pequeño número de

variables que sistemáticamente influencia el trabajo en equipo en proyectos de software ejecutados por

equipos de desarrollo pequeños e inmaduros, y (H2) el uso de ThinkLets podría ser útil para ayudar a

mitigar las situaciones negativas que afectan al trabajo en equipo.

En base a una extensa revisión bibliográfica y a la observación directa de varios equipos de

desarrollo del curso CC51A: Ingeniería de Software, se identificaron preliminarmente tres variables que

influyen de manera sistemática en el trabajo en equipo: comunicación, coordinación y motivación. Estas

variables generan problemas típicos, tanto al interior del equipo de desarrollo, como entre éste y los

clientes y usuarios. Para paliar estos problemas se definió un conjunto de ThinkLets. Estos ThinkLets son

actividades o procesos que producen resultados predecibles, para hacer frente a problemas recurrentes

de colaboración entre los miembros de un equipo de trabajo.

El uso de algunos de estos ThinkLets fue validado a través de la observación directa de siete

equipos de desarrollo del curso CC61A: Proyecto de Software. A través de dichas observaciones, que

involucraron dos semestres, se pudo constatar que las variables identificadas efectivamente fueron las

4

que generaron mayor cantidad de inconvenientes para el trabajo en equipo. Por otra parte el uso de los

ThinkLets para paliar dichos problemas tuvo un impacto positivo. Si bien los resultados obtenidos aún

son escasos para sacar conclusiones sólidas, estos están alineados con las hipótesis definidas.

5

Acknowledgement

I am truly indebted and thankful to my husband who believed in me and helped me to achieve

this thesis. I would like to show all my gratitude to my daughter and my mom who were with me in this

challenge since the beginning.

I am sincerely and heartily grateful to my advisor, Sergio Ochoa, for the support and guidance he

showed me throughout my dissertation writing. I am sure it would have not been possible without his

help.

This thesis work has been partially supported by the Fondef Project N°: D09I1171.

6

Table of Contents

Abstract .. 2

Resumen .. 3

Acknowledgement ... 5

1 Introduction ... 10

1.1. Problem to Address .. 11

1.2. Work Hypotheses .. 12

1.3. Objectives ... 12

1.4. Methodology .. 13

1.5. Structure of the Thesis Document ... 14

2 Related Work ... 15

2.1 Team and Teamwork ... 15

2.2 Teamwork and Computer Science Education ... 17

2.3 ThinkLets ... 18

3 Preliminary Identification of Influencing Variables .. 20

3.1 Literature Review .. 20

3.2 Observation of the CC51A Course .. 21

3.3 Preliminary Validation ... 21

4 Recommended Practices .. 22

4.1 Thinking Practices .. 25

4.2 Collaborating Practices .. 27

4.3 Releasing Practices .. 33

4.4 Planning Practices .. 34

4.5 Developing Practices .. 37

5 Influence Model ... 40

5.1 Communication ... 41

5.1.1 Internal Communication... 41

5.1.2 Client Communication .. 46

7

5.2 Coordination .. 50

5.2.1 Internal Coordination ... 50

5.2.2 Client Coordination .. 58

5.3 Motivation ... 62

5.3.1 Internal Motivation .. 62

5.3.2 Client Motivation ... 64

5.4 Correspondence Matrix ... 65

6 Experimental Results.. 70

6.1 Experimentation Scenario .. 70

6.2 Obtained Results.. 70

7 Discussion and Expected Contributions ... 80

8 Conclusions and Future Work .. 82

9 References ... 84

Appendix .. 92

8

Table Index

Table 1. Variables affecting teamwork ... 16

Table 2. Practices Classification According to the Influencing Variables ... 23

Table 3. Correspondence Matrix .. 66

Table 4. Variables Observed... 71

Table 5. ThinkLets vs. Outcomes .. 74

Table 6. Obtained Results .. 78

9

Figure Index

Figure 1. Recommended Practices ………22

Figure 2. Thinking Practices ……..25

Figure 3. Collaborating Practices ………..27

Figure 4. Releasing Practices ………. .33

Figure 5. Planning Practices …… 34

Figure 6. Developing Practices …….. 37

Figure 7. Influence Model ………..40

10

1 Introduction

Software engineering is a highly relevant area in academia and also within industry. Typically,

there is an important demand for well-trained software engineers, since the code in consumer products

is doubling approximately every two years (Bagert, et al. 1999) (Simmons 2006). Professionals who have

completed their studies in Computer Science or Informatics have many job opportunities, as there is an

increasingly high demand for these professionals.

The professional skills required for today’s software industry are on the increase. New trends in

software development such as offshore and distributed software development require professionals

with new skills (Hawthorne and Dewayne 2005). One of these skills is “teamwork”.

The importance of the word “teamwork” began in sports along with the creation of various types

of collective sports. In the twentieth century “teamwork“ became the keyword for all companies in

general; and it is defined by Wikipedia “as the capability to comprehend and recognize the diverse

strengths and abilities in a group setting and then applying them to one final solution” (Wikipedia 2011).

In a 1992 article, Peter Denning (Denning 1992) reported a study that showed recently graduated

engineers did not know how to communicate with others and had insufficient experience and

preparation to work as part of a team. Denning states that the responsibility to provide such skill belongs

to the university where these people were educated. Trying to solve this problem, ABET (ABET 2010)

emphasized the teaching of communication and teamwork skills as a requirement for accrediting

engineering programs.

In computer science, more particularly in software engineering, teamwork can mean the

difference in the success or failure of a project in several development scenarios. This is the major

reason why companies around the world consider teamwork a norm to which employees must attend. It

is assumed that universities must educate software engineers not only in the scientific and technical

aspects of the discipline, but also in the social capabilities that allow them to be effective in teamwork

(Bagert, et al. 1999). Therefore, educational institutions must prepare their undergraduate students to

work in a more interconnected manner and in social software development scenarios (Bareisa, et al.

2007). The research community has recognized the complexity of developing specific skills in the

students (Simmons 2006). Clearly, teamwork is considered a soft skill, hard to teach and lean in practice.

Giraldo and Jazayeri (Giraldo, et al. 2010) (Jazayeri 2004) stated that the majority of the projects done in

11

software engineering courses are short projects and normally they do not have a real customer, it is

usually the course professor that plays the role of the client.

1.1. Problem to Address

Concerning the teamwork skills of recently graduated software engineers, there are several

reports indicating the gap between software engineering education and the industry needs (Denning

1992) (Hilburn and Bagert 1999) (Gorla and Lam 2004) (Wellington, Briggs and Girard 2005). Clearly this

is a major challenge that seems difficult to address. This problem can be confronted from two

perspectives: (1) human behaviour and (2) practices involved in software processes. The human

behaviour approach must follow a more psychological perspective through which the students must be

trained to have attitudes that contribute to teamwork and avoid those that jeopardize teamwork.

Typically this perspective will involve changes in the engineering curricula; any changes in the curricula

are extremely difficult and take time; therefore only through an institutional decision it can be done.

The second perspective seems to be more feasible to address in a computer science master

thesis. Such a perspective should change the practices embedded in a software process, which leads to a

closer definition of teamwork. Of course, designing software processes that promote teamwork require

one to know which are the most influential variables and also how these variables affect teamwork in a

software project. The resulting solution will depend on each project context.

Identifying these variables, the relationships among them and also the project context, will allow

us to design small process solutions that can be used by software engineering students during their

education. Thus these students could learn through their own experience, some of the teamwork skills

required by the industry.

Provided that every project context represents a potential study scenario, this thesis studies only

projects that develop Web information systems involving teams with 5 to 7 novice developers. The

projects lasted between 3 and 5 months. The reasons to select such context for the study are several:

1. This type of projects represent an important percentage of the developments conducted by the

Chilean industry (A.G., GECHS Softwares y Servicios Chile 2010). This is the scenario in which this

work could have some impact.

2. Recently graduated software engineers are initially involved in short and low risks projects.

12

3. The author of this proposal had access to a couple of software engineering undergraduate

courses in which these kind of projects are developed. These courses were used as study

scenarios for this thesis.

1.2. Work Hypotheses

Trying to help solve this problem in this specific context, this thesis work defines the following

hypotheses:

H1: There is a short list of variables that systematically influence the teamwork in software

projects conducted by small and novice development teams (5-7 developers).

H2: Thinklets can be used to help mitigate the recurrent situations negatively affecting

teamwork.

In this thesis we define a thinkLet as an activity or process that produces predictable results to

deal with recurring collaboration problems in software development teams. A thinkLet can be seen as a

kind of process pattern to address collaboration problems. This definition is based on the one stated by

Noor et al (Noor, Grunbacher and Briggs 2007): “a thinkLet is a named, scripted, and well-tested activity

that produces a known pattern of collaboration among people working together towards a goal”.

ThinkLets can also be seen as building block for collaborative processes (Briggs, et al. 2001). In Chapter 5,

is possible to see the Thinklets created.

1.3. Objectives

This thesis proposal sets out to improve teamwork among Computer Science undergraduate

students when they participate in a software development team. In order to do that, this work starts by

formalizing the context in which the research will be conducted. We will identify the variables that can

favourably or negatively impact teamwork effort. Based on the results, a set of thinkLets will be

proposed to generate positive impacts on the teamwork and mitigate the negative ones. As a

consequence of using these thinkLets in the software project, the students should improve or enhance

their teamworking skills. Summarizing, the specific goals derived from the general one are the following:

1. Identify the variables favourably or negatively affecting teamwork.

13

2. Define a set of thinkLets that can be used by teammates to promote/enhance teamwork and

also mitigate possible negative effects produced by particular variables. The research in this area

will produce a set of thinkLets that help increase and/or enhance teamwork inside a group.

3. Propose a set of guidelines indicating how to address particular communication and coordination

problems using the proposed thinkLets.

1.4. Methodology

This thesis will involve the qualitative research approach (ethnographical) and the interpretivism

as paradigm of the research. First, to do so, a literature review was carried out (historical study) on the

subject along with an analysis of the historical course information.

Course CC61A (Software Project) is a course that allows formative evaluation of student’s

performance regarding their technical skills and in their teamwork capabilities. During the course

duration (one semester), the students have to work in their client’s facilities (real clients) at least 20

hours per week, and have to attend a 1.5-hour meeting with their software engineering instructors once

a week. The students have to formally present their project three times and they are graded by the

client, software engineering instructors and by their peers (their own team only). The course CC51A

(Software Engineering) also allows formative evaluation of the students, but the students do not have to

attend formal meetings or work in the client’s facilities; they can work from home or the university in

their own time.

At the same time a Focus Group (ethnographical study) was conducted with software

engineering instructors and also with the students from CC61A – Software Project course. The main goal

was to identify variables that affect teamwork.

In this research, courses CC51A and CC61A were used as a laboratory. According to Wohlin

(Wohlin, et al. 2000) software engineering is mainly a social process; therefore empirical studies, even

with computer science students, is a valid research methodology in this context. Based on an extensive

literature review and direct observation of several development teams of the Course CC51A: Software

Engineering, the variables that systematically influence teamwork were preliminarily identified. Then I

observed the Software Project Course (CC61A) for two semesters (Spring 2010 and Autumn 2011) and I

performed a total of 45 hours of team meetings and a 50-hours focus group with team members alone.

During the semester Spring 2010, the data gathered was related to the literature and patterns were

identified and a design of ThinkLets was done. The designs of ThinkLets were based on the literature

14

proposals and experiences from instructors of courses involving academic software development

projects. During the semester Autumn 2011, the design of the thinkLets and their adherence to software

engineering education were evaluated along with their outcomes.

The author is aware that a qualitative empirical study is not concerned only with collecting

verifiable data, and sometimes not repeatable in other contexts (other cultures as an example). However

it helps understand a social environment that is present in the teaching-learning process.

1.5. Structure of the Thesis Document

This thesis proposes a set of practices to be used to improve teamwork on software projects

developed in Academia. Most of the practices proposed come from the Computer Science area and

from different areas of knowledge that have great influence on the subject of this thesis: Psychology, and

Management Theory.

In Chapter 2, I summarize the relevant work done in the subject of teamwork - variables which

affect teamwork and thinkLets. Chapter 3 focuses on the preliminary identification of the variables

affecting teamwork. Chapter 4, describes the practices that I found in the literature that can be used to

enhance teamwork, and the literature review that support it.

Chapter 5 discusses real problems that a team doing software projects can face and what can be

done to mitigate them. Chapter 6 discusses the Experimental Results found in our observations of

CC61A during two semesters and the grades of the last nine semesters. Chapter 7 talks about the

expected contributions. The final Chapter 8, presents the conclusions of this thesis and speaks about

future work.

15

2 Related Work

The IEEE (Institute of Electrical and Electronic Engineers) defines Software Engineering as “the

application of a systematic, disciplined, quantifiable approach to the development, operation and

maintenance of software” (Tripp 1994). For the industry it is crucial that users work within a team-based

framework while developing a software product.

2.1 Team and Teamwork

A team is a group of people working collaboratively to reach a common goal. Teams are more

than collections of individuals and teamwork is more than the aggregate of their individual’s behaviours

(Paris, Salas and Cannon-Bowes 2000), e.g. a team of experts is not necessarily an expert team. This

means that it is not possible to label a group of individuals as a team, and to expect them to behave like

one (Bass 1980).

Team members use processes to coordinate their activities and also to combine their skills

appropriately in order to be more effective (Koslowski and Ilgen 2006). As Lingard states (Lingard 2010)

Teamwork is a well-researched topic and skills are supposedly taught and refined through university

courses. Several software engineering researchers have emphasized the importance of teamwork in the

software industry (Aranda, Easterbrook and Wilson 2007) (Demirors, Sarmasik and Demirors 1997)

(Wellington, Briggs and Girard 2005). However, most of the scientific work in this area comes from

psychology researchers (Gorla and Lam 2004) (McDonough III and Cedrone 2000) (Safizadeh 1991)

(Hernandez 2010) (Zika-Viktorsson and Ingelgard 2006) (Gladstein 1984) (Shenhar and Dvir 1996).

Research on the topic in the 1970s focused on orientation, resource distribution, timing,

response coordination, motivation and morale. In the 1980s it was on collective self-efficacy,

coordination activities, tasks and motivational reinforcement. In the 1990s it was mutual performance,

monitoring, collective orientation, flexibility, potency, cohesion. Today the main topics talks about

attitudes, collective efficacy, shared vision, team cohesion, mutual trust, collective orientation and

importance of teamwork and for most all of these topics, researched software engineering helped create

software to measure, control and help teamwork development (Paris, Salas and Cannon-Bowes 2000).

According to Morgenson (Morgenson, Aiman-Smith and Campion 1997) and Meister (Meister

1985) the variables that influence team performance are presented in Table 1.

16

Table 1. Variables affecting teamwork

Variable Description Examples Possible
Interventions

Contextual Pertaining to the environment, in which the team
activity is embedded, differences between members
of the team (e.g. culture or education), or rules of the
team (e.g. rewards). They are often amenable to
change by the organization and they typically
influence team performance by creating a work
environment conducive to teamwork effectiveness.

Culture, working
climate,
educational level,
or reward systems.

1. Team selection

2. Training

3. Team Design

Structural External sources affecting the team, such as the
physical environment where the team will work,
organizational arrangements (hours and days of work),
technologies to be used for developing and supporting
the project and the team. They are not so often
amenable to change and could represent potential
barriers to effective teamwork performance.

Physical
environment,
organizational
arrangements,
technological
systems

1. Task design

2. Training

Process Inherent to the team itself and the way in which it
behaves. The general rules of the game:
communication (who will talk with the client, what
kind of documentation will be used, which level of
detail will be used in communication, what are the
norms of the project/team, mandatory meetings of
project status.

Boundary
management, task
cohesion,
performance
norms,
communication,
team interactions

1. Team selection

2. Task design

3. Training

Contingency Internal and external situations affecting the team; for
example the lack of an important resource (e.g.
knowledge, man power) for the team would cause
poor teamwork effectiveness regardless of the teams
standing on other effectiveness factors (e.g. cohesion,
potency, efficacy) Trying to avoid future problems, the
team has to have a clear mission and operation rules
in terms of team members and technology.

Resources
availability,
procedural
requirements, rules
of operation

1. Task design

2. Training

Hoegel and Gemuenden (Hoegl and Gemuenden 2001) stated that some of the variables that

directly affect teamwork in software development are: communication (it should be frequent, informal,

direct and open), coordination (individual efforts should be structured and synchronized within the

team), balance of members’ contributions (all team members should share their expertise as much as

possible), mutual support (team members should help and support each other, while they perform the

assigned tasks), effort (team members should exert all efforts to the teams tasks) and team cohesion

(team members should be motivated to maintain the team and the team spirit).

In short there are many variables that can influence teamwork (without a context analysis) and

sometimes these variables are more like a category of influences than variables in themselves. Some are:

17

communication, coordination, balance of team member’s contributions, mutual support, effort, team

cohesion, contextual, structural, process and contingency.

2.2 Teamwork and Computer Science Education

Educational institutions delivering computer science programs must accept the responsibility of

preparing their graduate students not only in technical issues, but also in soft skills that allow them to

work properly in their professional career (Bareisa, et al. 2007). In order to address this challenge,

practice-based approaches for software engineering education have been recognized as a best practice

(Carver, et al. 2003).

Students of computer science programs have to address not only the technical aspects of

software engineering, but also the social and behavioural aspects of this discipline (Giraldo, et al. 2010).

It represents a great challenge for students enrolled in software engineering courses. However, teaching

software engineering is not a trivial problem to address in universities scenarios, since a good software

engineer must combine formal knowledge, good judgment and taste, experience and ability to interact

with and understand the needs of clients. Moreover, these skills must be transmitted to the students

through two or three courses, not enough, which are typically focused on the phases of the development

process (requirements, analysis, specification, design, implementation and testing) (Jazayeri 2004).

In order to provide some level of experience, other than what is taught in textbooks, many

courses include a project where students have to develop a software application, which aims to show

the student the “real world” of software development. Adhering to such an idea Gehrke et al. (Gehrke,

et al. 2002) designed a software engineer course focused on the creation of an “industrial strength”

student skill. Therefore the instructor worked in one semester long courses simulating the tough reality

of the industry. The course was taught over four years at the University of Paderborn and one year in the

University of Braunschweig, both in Germany. The projects developed in the course involved making

extensions to an existing product and not developing something from the scratch.

These projects take into consideration hard deadlines, well-defined deliverables, requirement

changes, and also the fact that some team members come into and, leave the team during the project

execution. At the end of the semesters they achieved their goal of showing students the reality of the

industry, while expressing the importance of teamwork. They came to two major conclusions for this

project: (1) the students wanted and required weekly meetings with the client (teacher) and themselves

more often as the project was being developed; and (2) the more they pushed the deadlines the more

the teams stuck together (improving team cohesion).

18

Another experience was reported by Tvedt et al. (Tvedt, Tesoriero and Gary 2001) about the

creation of a software factory. They made major changes in the curricula and software engineering

courses were taught in all semesters (8 semesters courses). In these new software engineering courses

each student in each course had a specific role to play within a project. All the selected projects involved

developing software, which dealt with problems from real companies. The objectives were to meet the

needs of industry, attract and retain quality students, conduct empirical software engineering research,

encourage teamwork and multidisciplinary collaboration.

In the Computer Science Department at the Universidad de Chile, there are two advanced

courses that should have promoted teamwork skills to undergraduate students. These courses are

CC51A: Software Engineering and CC61A: Software Project. In such courses undergraduate students are

grouped to form a development team. Each team is in charge of developing a software product that

solves a problem for a real client. Development teams used in each course are different in terms of

structure, responsibilities and the methodology they have to follow to obtain a final product. The team

size, the macro-activities to perform and the final goal are similar. However In Software Project (CC61A)

the students have to work a regular amount of time with the client. In Software Engineering (CC51A) the

students work on their own time. In the beginning of this work Software Engineering (CC51A) was

considered, though after some data analysis it became clear that obliging students to follow a schedule

created a big difference between the two courses.

These courses do not include particular mechanisms to promote teamwork, or strategies to

guide uncoordinated teams toward coordination of team members’ activities. Teaching students how to

keep and promote teamwork in their teams is an important skill for their professional life. For that

reason this thesis hypothesizes that a set of thinkLets can be used to address this challenge. A thinkLet is

a codified and encapsulated facilitation technique (i.e. a process or activity) that creates a predictable

pattern of collaboration (Kolfschoten, et al. 2006). These thinkLets produce a predictable pattern of

interactions among people working together toward a goal. And can be used as snap-together building

blocks for team process designs.

2.3 ThinkLets

According to Briggs (Briggs, et al. 2001) in one of the first definition of a thinkLet, he stated that,

is the smallest unit of intellectual capital required to create one repeatable, predictable pattern of

thinking among people working toward a goal. A thinkLet is a named, packaged, thinking activity that

creates predictable and repeatable pattern of collaboration among people working towards a goal. A

19

thinkLet has three components: Tool – the specific version of the specific hardware and software

technology used to create a pattern of thinking. Configuration – The specifics of how the hardware and

software were configured to create a pattern of interaction. Script – the sequence of events and

instructions given to the group to create the pattern of thinking.

ThinkLets thoughts of this way have huge limitations, as they tend to be technologically

dependent. Another problem is with the ThinkLet definition itself. Any change on the script, tool or

configuration generate a completely new thinklet. So Kolfschoten et al (Kolfschoten, et al. 2006) worked

on a re-conceptualization of thinkLets. This new thinkLet conceptualization describes the requirements

to create a certain pattern of collaboration independent of technology and its configuration. They re-

defined thinkLets in terms of its principle: tools, configuration and script, and in terms of transitions and

modifiers. It gave thinkLets the capacity to grow and change without the concern of technology and

configuration.

The definition of thinkLet used in this thesis is an activity or process that produces predictable

results to deal with recurring collaboration problems in software development teams. A thinkLet can be

seen as a kind of process pattern to address collaboration problems or challenges.

We envision that a set of thinkLets, containing processes which can be used in particular

situations and work scenarios, can help promote and/or enhance teamwork. The thinkLets should help

neutralize the negative effect produced by some variables affecting communication, coordination and

motivation within the team. Based on the use of specific solutions to deal with particular communication

and coordination problems in practice, the hope is that students can improve their teamworking skills.

These solutions are the recommended practices in the following section.

20

3 Preliminary Identification of Influencing Variables

This section describes the initial steps that were followed to identify the variables that influence

teamwork. Such processes involve three steps: a literature review, the observation of the CC51A course,

and a preliminary validation. Next, these steps are briefly explained.

3.1 Literature Review

During the development of this thesis a lot of bibliographic material on the subject was found.

Much of it spoke of teamwork in different contexts, where teamwork is essential in life or death

situations (e.g. in hospitals and fire response processes). Other texts dealt with management styles

within companies. Compared with other fields, those that spoke of computer science teamwork focused

on distributed teams.

Koslowski and Bell (Kozlowski and Bell 2003) identified coordination, cooperation and

communication as the key team behavioural processes. Much of the research is centered on effort

coordination of as the critical behavioural process in teamwork (Salas, Stagl and Burke 2004).

Communication is normally used as a means to prompt and maintain coordination in teams.

Others researchers studied the impact of motivation on teamwork. For example, Ryan and Deci

(Ryan and Deci 2000) say that “to be motivated means to be moved to do something; a person who feels

no impetus or inspiration to act is thus characterized as unmotivated, whereas someone who is

energized or activated towards an end is considered motivated”. Specifically in the computer science

field we did not find research works that measure the impact of team members´ motivation. However,

Humphrey (W. S. Humphrey 1996) reported a lot of his practical experience in the field: “in technology,

there are many failures for every success, and it is easy to become discouraged, unmotivated…. people

need to be charged up and reminded that the goal is important and achievable.”

Thus we found that many variables could influence teamwork, but there are three that stand out

in many of the papers. Sometimes the authors used different names to describe the same problem from

another perspective. In the end the assigned meaning to these variables is the same. These variables are:

communication, coordination and motivation.

Coincidently the most prominent variables of the literature were the variables that we have found

empirically to be the most relevant ones during the teamwork observations in the course CC51A. The

21

course CC51A has been taught for at least 5 years, and since 2005 the course has a self-evaluation,

where students grade themselves and the other team members. In this self-evaluation, they are asked to

evaluate each of the team member’s performance and to write down the strengths and weaknesses of

each other. And during the last presentation the teams are always asked what were the worse

challenges that they had. Looking over this past data, we see that the major problems were:

communication, coordination and motivation.

3.2 Observation of the CC51A Course

At the beginning of this thesis, we observed teamwork in two undergraduate courses (CC51A –

Software Engineering and CC61A – Software Project). The student teams worked together to develop a

software product in 12 weeks. In the first observations performed in CC51A we identified that the three

influencing variables (i.e., communication, coordination and motivation) were present in most cases.

Moreover, looking at the co-evaluation grades (i.e., the scores assigned by each team member to their

teammates’ job) of these courses during the last four to five years, it was also possible to see the

problems of communication, coordination and motivation that these teams had.

Given that CC51A did not have a pre assigned time for the team to work in the project, the

students have problems organizing their time. This and other particular features make these courses

difficult to compare between them.

3.3 Preliminary Validation

Trying to determine the importance of these three variables influencing the teamwork, I talked

with experienced people (e.g. instructors of the two courses mentioned here). We discussed the nature

of the teamwork problems and how repeatable they can be. This discussion was also opened to some

coaches of the CC61A – Software Project course. These people use their experience to determine if the

identified variables were the most influencing ones for teamwork. After various discussions we all agreed

in the relevance of communication, coordination and motivation as important variables that affect

teamwork.

The next chapter presents the practices that could be eventually useful to address problems of

communication, coordination and motivation in a software development team in the academia. Several

of these practices have been already proposed by researchers of software engineering.

22

Practices

Thinking

Collaborating

Releasing

Planning

Developing

4 Recommended Practices

This section presents a list of practices that can be used to resolve some problems a team may face

during a project. I will borrow a definition of practices used by Aranda (Aranda, A Theory of Shared

Understanding for Software Organizations 2010), that says that they “are contained, repeatable, and

transferable techniques used to improve some aspect of the performance of a software organization

that is pertinent to the creation of its products. They are mechanisms to attack a known software

development problem, or to gain some generally useful benefit.”

The majority of the practices mentioned here are used in various contexts of software development

methodologies: traditional development and the three major approaches of agile development (XP,

SCRUM and Crystal Family). Some of the practices are normally used in different contexts, others than

software engineering, such as business, psychology and management. I selected only the practices that

were proved (all of them have references) to be effective solving teamwork problems. Few of them were

created by me, grouping concepts and ideas from different areas, such as Peer Activities, Decision

Making and Public Profile. It is important to remark that this thesis does not intend to bring together

everything on the matter. In this sense, I have to agree with Aranda (Aranda 2010) “there is an

overwhelming variety of academic disciplines that tackle these issues in different ways, and achieving

mastery over any of them appears to hinder one’s efforts for achieving mastery in one’s domain.”

The practices were classified in five categories: Thinking Practices, Collaborating Practices, Releasing

Practices, Planning Practices and Developing Practices. In

Thinking Practices are grouped all the practices in which

team thinking and analysis are needed. In Collaborating

Practices, we find the practices used to improve

collaboration and communication among team members

and between the team and the client. With Releasing

Practices the goal is to avoid problems and conflicts

within the team or with the client that can be related to

the process of software engineering. The Planning

Practices are practices that are used to avoid problems of miscommunication between the team and the

client, and the Developing Practices are the ones used to solve or avoid technical problems and bugs.

Figure 1 shows how many practices there are in which one of the practices categories created. The next

Figure 1 - Recommended Practices

23

section presents examples of practices belonging to these categories, considering the software

development scenario.

The table below classifies the Practices listed in this chapter, and their relation with the three

influencing variables: Communication, Coordination and Motivation. Here we see that most practices try

to deal with coordination problems (42), and those addressing motivational issues are few (13).

Table 2. Practices Classification According to the Influencing Variables

 Practices Communication Coordination Motivation

Th
in

ki
n

g

Peer Activities X X

Energized Work X X X

Informative Workspace X X

Root Cause Analysis X X

Retrospectives X X X

Trust X X X

C
o

lla
b

o
ra

ti
n

g

Sit Together X X X

Real Customer Involvement X X X

Ubiquitous Language X X

Stand Up Meetings X X X

Coding Standards X X

Iteration Demo X X

Reporting X

Team-Building Workshop X X X

Peer Review X X

Coaching X X X

Kanban X X

Decision Making X X

Public Profile X X

Feedback X

R
e

le
as

in
g

Done Done X

No Bugs X

Version Control X

Ten-Minute Build X

Continuous Integration X

24

 Practices Communication Coordination Motivation

Collective Code Ownership X X
P

la
n

n
in

g

Vision X X X

Stories X X X

Estimating X X

Planning Game X X X

Release Planning X

Iteration Planning X X

Slack X X

Risk Management X

Meeting Minutes X X

D
e

ve
lo

p
in

g

Spike Solution X X

Test Driven Development X

Refactoring X

Simple Design X

Incremental Design and
Architecture

 X

Performance Optimization X

Customer Testing X

Customer Reviews X

Exploratory Testing X

25

4.1 Thinking Practices

Peer Activities. This is everything that can be

done in pairs during a software project and that has

already be proved in the literature:

Pair Programming. It involves two people

working together on one keyboard. One person

writes the code – the driver, and the other one (the

navigator) has to think. Sometimes the navigator’s

work is to think of what the driver is writing. Other

times, he/she has to think about what to do next and how their work will fit into the general

design of the software. It is normally used to increase the power of thinking and problem

resolution. It also reinforces the use of development methodologies and decreases the number

of mistakes in the code. Chong and Hurlbutt (Chong and Hurlbutt 2007) pointed out important

insights into collaboration with the use of pair programming, and concluded that it can improve

the mental model of team members and consequently produce a better product. There is a

variation of this practice called Side-by-Side Programming, when two people sit close enough

together to see each others screen easily, but work on their own assignments (Cockburn 2004).

Pair Designing. This involves two designers who work on the same design document, on

the same machine and at the same time: the first designer is the designated driver and writes

the document, while the designated observer reviews it. The two roles can be switched which

usually happens when the driver does not know how to proceed, and when the observer has

already elaborated a candidate solution for the problem. The observer can also accomplish other

activities apart from reviewing, which might help to reach the goal of the current task. Pair

design brings confidence to the team in that the design will have fewer mistakes and will be

more suitable to the clients´ needs (Canfora, et al. 2007). According to Al-Kilidar et al (Al-Kilidar,

et al. 2005) and Canfora et al (Canfora, et al. 2007) pair design empirically has higher quality than

solo design, regarding: functionality, usability, portability and maintainability.

Pair Analysis. According to Williams et al (Williams, et al. 2000) it is important for the

pair to collectively agree on the development direction and strategy outlined during these

stages. Additionally, it is doubtlessly true that “two brains are better than one” when performing

analysis and design. Together, pairs have been found to consider many more possible solutions

to a problem and more quickly converge on which is best to implement. Their constant feedback,

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 2 - Thinking Practices

26

debate, and idea exchange significantly decreases the probability of proceeding with a bad

design, improving the team efficacy.

Peer Code Review. Here one-team member revises the code written by another team member.

The idea of this task is to help team members to read code and to learn how to extract useful alternate

methods to solve a problem, improving the capacity and knowledge of the team. According to Trytten

(Trytten 2005): “writing code and reading code are very different activities, and both have value”.

Energized Work. Here, team members need to maintain their personal mental health. They go

home on time everyday so they can spend time with family and friends and take part in activities that

take their mind off work. It also allows one to stay home when one is sick. It is used to guarantee that

each member of the team can accomplish his/her best and be more productive, to maintain high levels

of motivation and assure that the progress of the work being done is constant. Shore and Warden (Shore

and Warden 2008) state, “When your team is energized, there is a sense of excitement and camaraderie.

As a group, you pay attention to detail and look for opportunities to improve your work habits.”

Informative Workspace. The workspace provides simple and direct information about the

project in the environment (workspace) that everyone share, allowing everyone to know what each

other is doing, and where the team is going. Big white boards and visible hand-made graphs are typically

used for this workspace. The purpose is to keep all those interested in the project updated, without

having to interrupt someone’s job to ask. Sharp, Robbinson and Petre (Sharp, Robinson and Petre 2009)

concluded that the Wall of the Informative Workspace is an artefact of significance and meaning to

developers. The Wall shape mediates and manages the life of developers. It is the symbolic means by

which work is managed, by which code is created, judged and accepted. The Wall comes with a litany

and a liturgy that those present accept, understand and respond to.”

Root Cause Analysis. It is a routine of self-evaluation that can be done by a group of team

members or the team as a whole, where they ask: what, where and why at least five times; sometimes

more, depending on how deep the problem is (Shore and Warden 2008). It is used to solve problems

encountered during development without blaming anyone. As the code belongs to everyone, no one is

to blame. This type of self-evaluation helps team members maintain focus on the project and avoid

relationship conflicts among team members.

Retrospectives. This practice performs an analysis made by all team members of the work done;

what was good and what was bad. Normally it finishes with a short list of attention points that can be

used as new stories for the next iteration. It is used to help keep the team from making the same

27

mistakes again; to improve the development process, to make the team more cohesive and to solve

problems within the team. Retrospectives are an opportunity for the team to learn from what worked

and what did not. According to Rising and Derby (Rising and Derby 2003) “retrospectives provide a

wonderful opportunity for capturing knowledge as patterns to improve team knowledge and team

cohesion.” It is also know as Reflection Workshop (Cockburn 2004).

4.2 Collaborating Practices

Trust. It helps a team to work efficiently, with

confidence that each member is doing his/her best.

There are many strategies that can be applied to a

team to accomplish that goal, according to Shore and

Warden (Shore and Warden 2008), there are two major

types of strategies to use; team strategies and the

organizational. This practice is normally used to

improve team cohesion and to improve the

relationship between the client and the team. Normally

the performance of the team increases, as does the final product.

The team strategies are (Shore and Warden 2008):

Customer-Programmer Empathy – A recurrent problem of customers feeling that programmers

do not care enough about their needs and deadlines and programmers often feel forced into

commitments they cannot meet. Sitting together is the most efficient way to build empathy according to

Shore and Warden.

Programmer-Tester Empathy – When this kind of problem occurs programmers tend not to show

respect for the tester abilities, resulting in testers responding to programmers by becoming excessively

critical of programmers code. To avoid this, the authors suggest that the team show empathy in all areas

and occasions and to remind the team that a mistake is not one person’s problem; it is the team’s

problem.

Eat Together – There is anecdotal knowledge among project managers says that team

members that spend some time outside work, can break down barriers between them, and

according to Shore ”Something about having meals breaks down barriers and fosters team

cohesiveness”.

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 3 - Collaborating Practices

28

Team Continuity. – After a project ends, the team typically breaks up and all the

wonderful trust and cohesiveness that the team has formed is lost. The idea is to keep

productive teams together. It is a good idea to take advantage of this effective team as a training

ground for other teams.

The organizational strategies are (Shore and Warden 2008):

Show Some Hustle – The team has to show that they are doing productive work, as the

author said: “a fair day’s work for a fair day’s pay”.

Deliver on Commitments – Normally stakeholders have worked with software teams

before, they probably have plenty of war wounds from slipped schedules, unfixed defects and

wasted money. The teams have to create a plan that can be achieved, and demonstrate that

they can deliver on commitments.

Manage Problems – “When the team identifies a problem, let the stakeholders know

about it. They will appreciate your professionalism even if they did not like the problem.”

Respect Customer Goals – No matter how impossible or different a customer goal or

requirement is, the team always has to manage this important issue. The team must have the

customer at their side to show the customer alternatives, estimates and ask for priorities.

Promote the Team – Let everyone know what the team is doing. Invite everyone to the

Iteration Demo. Being open and clear about what you are doing also helps people appreciate the

team more.

Be Honest – Concentrate on looking good only to customers and stakeholders is a

common mistake. Do not do it, be honest; only count stories that are completely finished and

tested. Does not extend iterations for a few days in order to finish something. The cost of not

being honest is much bigger than the gain a team can achieve with these kinds of “white lies”.

Sit Together. It consists of putting the team members and the client together. It requires wide

and open spaces, with no barriers of access between the team members. It is used to increase the

effectiveness of communication between the members of the team and also the client. The goal is to let

team members eavesdrop and get involved in other team members’ conversations so that they can

contribute with their ideas and opinions, participating directly in the conversation. Teasley et al (Teasley,

et al. 2002)explored the Sit Together, or radical co-location as he/she calls it in software development of

automobile companies – we believe that co-location of the project team and customers in a war room

29

can be effective in reducing such communication breakdowns and facilitating speedy resolutions of

conflicts. By improving communication, productivity and timeliness of the projects will also improve.”

Real Customer Involvement. This task is involves the client. The client must stay together with

the development team, and he/she should be a real team member, with full commitment. The purpose

of this practice is to guarantee that the team will have a better understanding of the project’s goal, and

the clients’ problem. The knowledge needed for the project is transmitted in a direct and clear way. The

team can quickly access the client for any questions or problem; if not the software development could

have to wait for the client response. Korkala et al (Korkala, Abrahamsson and Kyllonen 2006) conducted

empirical research on the communication in software development and they concluded that the rate of

defects fixing in the cases where there were no Real Customer Involvement practice being used was two

times greater than the worse case that utilized Real Customer Involvement.

Ubiquitous Language. This refers to the use of a common language. The language of the

development team and the client should be unique, clear and concise. Despite the fact that developers

tend to use their own language, the language used should be the one used by the expert in the problem,

normally the client. It is important to decrease the communication failures and to let the client get more

comfortable with the communication between team members. Hayes and Andrews (Hayes and Andrews

2006) stated that the practice of using Ubiquitous Language helps ensure everyone is working on the

same concept.

Stand Up Meetings. Here, the team has a daily meeting, scheduled at the start of the project, in

a set place and time. All team members should attend and the team members have to stand up in a

circle. Members of the team have to talk about what they did yesterday, what they will do today and

report if they have something keeping them from doing their work. It is a brief meeting where everyone

should be concise and only talk about what really matters. It is very useful to make team members aware

of each other’s work, problems and challenges. According to Larman (Larman 2007) “It supports

openness and allows resolution of dependencies and conflicts in real time to maximize throughput.”

Coding Standard. Team members should follow development guidelines during the project.

These guidelines should include: development practices, tools, files and archive layouts, build

conventions, error handling, assertions, design conventions. It is used to increase maintainability and

reading of the code written by others. Sfetsos et al (Sfetsos, Angelis and Stamelos 2006) found out that

“the use of rules in writing code emphasizes communication through the code and ensures readability of

the system.”

30

Iteration Demo. The team presents to themselves, the client and anyone that is interested in

what the team produced on each iteration. It is useful to mitigate errors of communication, because it

brings confidence to the client and to team about what work is being done. Hibbs et al stated that

(Hibbs, Jewett and Sullivan 2009) “Ending the iteration with a demo gives the development team a

chance to show off what it has been doing over the course of the iteration. … It indicates to the customer

that the team is dedicated to reaching milestones and delivering promises.”

Reporting. This helps keep anyone who is interested in the project informed. The idea is to

publish various reports in the common area of the team. Some of the reports suggested by Shore y

Warden (Shore and Warden 2008) are: Vision (a general description of what the team is doing and why),

Release and Iteration Plans, Burn Up Chart (how much work is done and how much work needs to be

done). They are very useful in gaining and increasing the trust of the client and of any project

stakeholder.

Team-building Workshop. It aims to improve the cohesion of the team. Though there are lots of

techniques written and well researched on that topic, the general idea is to place the team outside their

work place, motivating them to participate in games that show them the importance of knowing and

trusting in each other. Kapp (Kapp 2009) conducted research on the improvement of team cohesion by a

“team building intervention”, a short workshop where students have to play a game to get to know each

other. He compared the performance and grades from the team who had the - Team-Building Workshop

with the ones that did not have the workshop. The improvement was conclusive. The games that can be

used in this kind of event are numerous. For example: Twister, Faster Drawn, Amoeba, Obstacles, Group

Story Telling Chunks and many more… A short explanation of the game Chunks:

“Chunks” (Parker and Hoffman 2006) - Prepare for the exercise by printing out a

sentence and then cutting it into eight to ten pieces. Divide your team into subgroups, as many

as the number of pieces you have. Describe the exercise to the participants like this: The

sentence describes an important team principle. The sentence is cut into pieces, and the

challenge is to reassemble the sentence without knowing in advance how it should read. The

chunk that contains a period is the last chunk. Any chunk that begins with a space is the

beginning of a new word. A chunk that looks like the beginning of a word but does not have a

space in front could be the first word in the sentence. Some of the sentences suggested by

Parker and Hoffman are: There is no “I” in team. Nothing of importance was ever done without a

plan. If the going gets easy, you may be going downhill. The authors suggest picking the sentence

according to the team challenges at stake in the moment.

31

Peer Review. The origin of Peer Review was first written by Naur, in his research he discussed

the value of “students mutual evaluation, to supplement the normal grading of project work.” In his

work he remarked that the process of Peer Review should be a motivational technique and not a

punishing methodology. The idea of the practice of Peer Review is to let team members evaluate the

performance of other members of the team according to some criteria. To avoid retaliation the feedback

of the review should be done anonymously, in other words the team member being evaluated does not

need to know who gave him which evaluation. This practice helps the team to improve and shows the

team how they are behaving as a team so far. According to Patit and Wilemon (Patit and Wilemon 2005)

“In fostering a software development culture, Peer Reviews help foster healthy intra-group dynamics.

Coaching. This practice intends to bring out the best of everyone in the team, trying to maximize

each one’s performance as well as that of the team. According to Hackman and Wageman (Hackman and

Wageman, A Theory of Team Coaching 2005) proposed a model of team coaching, “Team coaching being

a direct interaction with a team intended to help members make coordinated and task appropriate use

of their collective resources in accomplishing team’s work”. In this work Hackman and Wageman

empirically proved the anecdote that coaching really makes a difference in an academic environment.

Kanban. Has the goal of limiting the work that will be done by the team. The idea is to timebox

each iteration. After clients and the team create the user stories, estimate and prioritize them, the team

or the project manager has to agree to the length of the iteration, and the team according to the

iteration will get the user stories that will be done. Normally a Computer Science Kanban is made of a

white board with at least four parts. Each part shows the status of the stories being done: To Do List,

Work in Progress, Test, Release and Done. According to the teams work the story cards will be moved

doing the iterations. It is normal to state a limit of two or three story cards per status, depending on the

project. The general idea of the Kanban is to keep everyone informed of what is going on in the team so

no one has to stop working to ask questions about what each one is doing. According to Kniberg and

Skarin (Kniberg and Skarin 2010) Kanban “is an approach for introducing change into an existing software

development lifecycle or project management methodology.”. They state that Kanban can be used no

matter what “flavour of agile methodology or traditional methodology you are using, it will help to see

through the process and have a clear vision of what is happening in our project.

Decision Making. This is about helping the team make a decision. There are four different

strategies for a team to make a decision: Dialectical Inquiry, Devil’s Advocacy, Consensus and Voting.

Schweiger and Sandberg (Schweiger and Sandberg 1989) did extensive research on the first three

strategies:

32

o Dialectical Inquiry – uses a structural debate among two sets of group members who

represent diametrically opposed recommendations and assumptions, whereas

o Devils Advocacy uses a structured critique by one set of group members of

recommendations and assumptions developed by a second set as bases for critical

examination.

o Consensus encourages open discussion among group members but does not formally

structure or encourage conflict

o Voting is a useful tool, for example, to rapidly have a compact summary of what a large

group thinks about a particular issue or anonymous voting can reduce bias of dominant

individuals. Voting was studied by Hietala et al (Hietala, Koivunen and Ropo 2004) “one way

to structure decision-making”.

According to Schweiger and Sandberg (Schweiger and Sandberg 1989), Dialectical Inquiry should

lead to higher quality solutions than Devils Advocacy because it seeks to identify alternatives from the

original set of diametric recommendations and assumptions, whereas Devils Advocacy focuses only on

what is wrong with recommendations and assumptions, rather than on identifying suitable alternatives.

Consensus could be hard to come to and only used when there is no dominant member. Moreover,

voting should be used not only to end the Decision Making process but also to reveal the lack of

consensus, and to enable the group to explore the issue at a deeper level.

Public Profile. It consists of knowing in advance, before the project really starts, who each team

member is and also knowing their strengths, abilities, knowledge, likes, dislikes and more. It would be

ideal to have an MBTI (Myers-Brigg Type Indicator) of every member of the team, so everybody could

know how to deal with difficult situations between one another, avoiding conflict and enhancing team

efficacy. Amato and Amato (Amato and Amato 2005) states that knowing each other can give a new

team the ability to know what to expect from the others, so cohesion and confidence increases.

Feedback. This consists of the team constantly receiving feedback from the client and from each

team member receiving opinions of their work. It is essential that all participants stay informed of

changes in order to provide feedback regarding the results and implications of these changes and to be

certain that each change is acceptable to all project stakeholders (Patit and Wilemon 2005). They also

reported that continuous and rapid feedback from customers not only leads to earlier problem

identification, but also improves software quality. According to Mathieu et al (Mathieu, et al. 2008)

Feedback has a positive impact on motivation, interpersonal trust and ultimately performance.

33

4.3 Releasing Practices

Done Done. In this practice the team has to

define at the beginning of the project what is

considered “done work. It is very important because

work done is not only code developed; it is work

developed, tested, integrated, installed, revised (by

the client) and accepted by the client. It is used to

avoid cascade errors in integrations. It also

guarantees that the team will have functional code

for the demos at the end of each iteration, and it can result in

the avoiding of misunderstandings with the client. An example: the client asks about the status of some

functionality. A developer can say that it is done; and the client could ask to test it, but it is not

integrated and not tested, and the client will have it to start testing days later, leading misunderstanding

between the team and the client. According to Warden and Shore “when your stories are Done Done,

you avoid unexpected batches of work and spread wrap-up and polish work throughout the iteration.”

No Bugs. This practice is about writing code without errors. In order to accomplish a goal such as

this, almost all the previously mentioned practices here are needed. It is used to increase the quality of

the developed software and consequently raise the trust of the client in the team. Shore and Warden

(Shore and Warden 2008) points out that “The agile approach is to generate fewer defects. This is not a

matter of finding defects earlier; it is a question of not generating them at all.”

Version Control. Concern it with project artefacts that should be all in one place - normally this

decision is authority. By artefacts I mean every, and any file, archive or document that was used in the

project and all its versions. It is used to maintain a security copy of everything that was used in the

project. In addition the newer versions control systems allow team members to concurrently develop

code. Abrahamsson et al (Abrahamsson, et al. 2002) points out that the role of version control is that it

must be orchestrated and run continuously, day and night, and the developers themselves have highly

varying skill levels and backgrounds.

Ten-Minute Build. This is about automating the compilation, construction and tests of the

developed software. It is very useful to make the release phase easy and fast, and it can be done at any

given time. The automated build let the team spend their time doing what really matters, not having to

update servers, tests or any other routine that does not bring value to the project. According to Shore

and Warden (Shore and Warden 2008) “When your build is fast and well-automated, you build and test

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 4 - Releasing Practices

34

the whole system more frequently. You catch bugs earlier and, as a result, spend less time debugging.

You integrate your software frequently without relying on complex background build systems, which

reduces integration problems.”

Continuous Integration. It consists of integrating all the code done in the last couple of hours

and maintaining up-to date test, infrastructure and code. This allows you to avoid problems with

integration, therefore not leaving you unable to deliver to the client. When the team does, the deliveries

to the client are painless. This provides immediate feedback on newly created code, and also “reduces

time that people spend on searching for bugs and allows detection of compatibility problems early” says

Huo et al (Huo, et al. 2004).

Collective Code Ownership. It is a principle where each member is responsible for doing and

maintaining a code of high quality, no matter where it is. It is used to avoid breakdowns in the team

when a team member is absent for whatever reason. It also helps to increase maintainability and

knowledge spread. Nordberg (Nordberg III 2003) points out “Collective Code Ownership is a lofty goal

embodying altruism, positive team dynamics, good communication, and individual accountability.” He

also states “collective ownership is infeasible without several other XP practices related to source code

quality during system implementation.”

4.4 Planning Practices

Vision. It is the disclosure of the project, its

goals, reasons, projected impact of the project and

the criteria to measure the project success. It is used

to maintain the focus of the project, making

prioritization an easy task in planning meetings.

Larman (Larman 2007) puts the importance of this

practice “Establishing and reiterating a common

vision is frequent advice from agile leaders. It may

be seen as absurd to highlight such an obvious idea,

but in over 10 years of post-project reviews with hundreds of project members, Standish Group in 2002

did not find even two people who stated the same purpose or vision for their project.”

Stories. This is about the creation of one or two lines of description of what the development

team has to produce. It should be written in the “language” of the users and not in any development or

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 5 - Planning Practices

35

complex language. Normally they are written on index cards or post-its. The idea is to make clients and

developers understand each other and the tasks at hand. Each story should be as short as possible and

as independent from each other as possible. It is used to help clients and developers understand one

another regarding tasks to be done during the project. Mike Cohn (Cohn 2004) wrote a book that only

talks about user stories. He points out that they are verbal communications of the client wishes, are

comprehensible, are the right size for planning, work well for iterative development, encourage

deferring detail, support opportunistic development, encourage participatory design and build tacit

knowledge.

Estimating. It is the work of estimating the time that the developers will need to code each user

story. The estimations are normally done in work days or work hours. This is an iterative process where

each developer must state his/her own estimate. If there is not a consensus on the estimation made; the

developers have to talk to each other, trying to explain the estimation they did. They have to do this

until they come to consensus in each user story. It is helpful to everyone, since the velocity and

predictability of the team will be based on that estimate. There are different techniques that can be used

to do the estimations, but in all of them it is important that the team makes the estimation. Everyone on

the team will be fully committed to what they estimated. Goodpasture (Goodpasture 2009) wrote “next

to requirements, estimates are probably the most influential factor on the predictability of the project

outcomes. In the agile methodologies, estimating is a team activity. The team both comes up with the

estimate and lives with the estimate.”

Planning Game. This consists of a meeting where the client has to explain what problem he

wants solved through the stories that he wants. During the meeting any member of the team can create

a story. Each story need to be explained and well understood by everyone attending the meeting. The

client has to prioritize all the stories. This spreads the knowledge of what the client wants and what the

team has to do. Normally the first step is a brainstorming where the client shows a picture of the whole

idea, and then the team begins to cut this whole idea up into short user stories. Sfetos et al. (Sfetsos,

Angelis and Stamelos 2006) found out empirically that, the Planning Game was considered a good

process oriented practice with technical and social impact on programmers and managers. It is also

known as Blitz Planning.

Release Planning. At this point the team has to plan which stories created at the Planning Game

will be done in each iteration. The client, the product owner and the whole team must attend this

meeting. Normally the team does a release planning for the whole project, but as time passes the stories

can also change. The product owner can reprioritize the release plan at any moment. At this phase of the

36

project the stories do not need to be well defined, but they should be listed and estimated, though not

necessarily with a lot of details and tasks as needed in the Iteration Planning. This process makes the

idea of the final product clear in the mind of all the team at the time they will need to deliver the final

product. According to Ruhe (Ruhe and Saliu 2005), release planning is an important and integral part of

any type of incremental product development.

Iteration Planning. It is a meeting planning of what the team will do in the next cycle or

iteration. Normally in the beginning of the project the time for the iteration is defined, but there is no

right amount of time for iteration. Each team has to adjust themselves to their own pace. In this

meeting, at the beginning a retrospective of the last iteration (the good and the bad things) is carried

out. It is a meeting where the developers choose which stories they will do according to their velocity

and estimations previously done. They must always take the client priorities into account. It is very

helpful to guarantee a commitment by the developers to the stories they will do. It helps the team to

create a predictable and constant development cadence. Shore and Warden (Shore and Warden 2008)

points out that if you use iterations well, your team can have consistent and predictable velocity so

stakeholders will know what to expect and will trust that it will deliver on its commitments.

Slack. This practice consists of adding time (slack) in the project to unforeseen events. This extra

time can be used to find solutions and new features. It is used to help the team guarantee that they will

accomplish the desired velocity and finish all the stories they committed to in the iteration time. This can

be considered a management practice that can badly influence the development of the product. The

team or the project manager has to agree on how much slack will be “safe” to consider, to guarantee

that the product will be delivered as promised and to avoid overtime of the team. Shore and Warden

(Shore and Warden 2008) suggests that slack must be incorporated so the team can consistently meet

their commitments and maintain high morale. He also suggests spending the slack time paying technical

debt (time spent correcting know bugs) when the team has finished everything on time.

Risk Management. This focuses on management and knowledge of project risks. There are

generic risks in all projects such as new requirements, interruptions, and team members abandoning the

team, among other things. It is used to inform the client, the stakeholders and team members about the

risks the project faces and what can be done to mitigate them. According to Shore and Warden (Shore

and Warden 2008) the risk management in agile software belongs to the whole team, the team must

guarantee delivery on their commitments even in the face of disruptions.

Meeting Minutes. This practice is simple. After all meetings, someone that was previously

assigned makes a summary of the major points of the meeting, and what was agreed upon among all the

37

those involved. Everyone involved in the project should receive the Meeting Minutes and people that

participated in the meeting should sign off on the Meeting Minutes in some way (written or

electronically). According to Lutz (Lutz 2009) “Minutes can be used as explicit means of documentation

to ensure that common ground is reached for comprehension, interpretation and controlling.” Meeting

Minutes can avoid breakdowns between the team and the client and within the team because it is an

explicit documentation of the commitments made by everyone in the project.

4.5 Developing Practices

Spike Solutions. It is the practice of small and

isolated experiments and research, which tries to make

better development decisions. Normally this experiment

has a maximum time deadline. It is important to clarify

technical problems and to evaluate possible solutions

without spending too much time and resources on the

matter. Mitigating the risks of something that is not

within the knowledge of the team, and helping the

team to make proper decisions is also important. Shore and Warden (Shore and Warden 2008) states,

“when you clarify technical questions with well directed, isolated experiments, you spend less time

speculating about how your program will work. “

Test Driven Development (TDD). In this technique the team member has to first develop a test

and then develop the code that passes the test. TDD has five principles: Think (think about the test), Red

Bar (to make code that fails the test), Green Bar (to make code that passes the test), Refactor (refactor

the code done to make it more clear, clean and concise), Repeat (start this process again with another

functionality). It decreases mistakes and consequently the time spent in tests and debugs, helping the

team to maintain cohesion and to achieve their goal in the time committed. George and Williams

(George and Williams 2003) found out in an empirical study that developers using TDD techniques

produced higher quality code.

Refactoring. For this, the team has to look at the developed code and try optimizing it in some

way, avoiding repetitions and ambiguities. It refers to a change in the structure of the code but not in the

behavior of the code. It is used to improve the code constantly, increasing the maintainability and the

integration. It reinforces the commitment to the team to achieve the goal and the best quality, helping

the team to develop shared understanding.

Figure 6 - Developing Practices

Practices

Thinking

Collaborating

Releasing

Planning

Developing

38

Simple Design. It is a principle, to make code as simple as possible. One example can be, trying to

isolate foreign code (code that was done for people outside the project), trying to find the mistakes and

failures in design as fast as possible, trying to write code only once. It is helpful to avoid component

support problems and update problems. Shore and Warden point out: “when you create a simple design,

you avoid adding support for any features other than the ones you are working in the current iteration.”

It helps the team to maintain the focus in the stories at hand and to achieve a quality product.

Incremental Design and Architecture. The team has to try and develop exactly what they will

need in the functionality they are working with, nothing more. They should not try to anticipate

anything, and do everything step by step regardless if the team member already had seen something

that could be useful in the future or not. It helps to maintain a constant development rate and in the

improvement of software quality. “Only if a product is developed and delivered incrementally, frequent

feedback can be given.” Concluded Carbon et al (Carbon, et al. 2006).

Performance Optimization. This is about optimizing only when there is a real customer issue,

when something needs to be done such as finding out which performance a client wants or at what

value is expected, which has to somehow be measured. It is very helpful to team members to direct their

efforts to what is important to the client. This kind of practice improves the relationship between client

and the team. Shore and Warden (Shore and Warden 2008) said: “when you optimize code as necessary,

you invest in activities that customers have identified as valuable over perceived benefit. …Your code is

more maintainable, and you favor simple and straightforward code over highly optimized code.”

Customer Testing. The client tells the developers which test he/she would do in each story to be

accepted. With this in hands, the developers have the entire acceptance test, and they can be included in

the development of the TDD technique. It is used to mitigate the number of logical mistakes, rules,

ambiguities and special cases of the software. According to Shore and Warden (Shore and Warden 2008)

“reduce the number of mistakes in your domain logic. You discuss rules in concrete, unambiguous terms

and often discover special cases you hadn’t considered. “

Customer Reviews. The client runs an extensive analysis of the software as a trial to establish

how the software will be used and how it will behave in a real environment. It also helps in uncovering

errors and logic failures of the software.

Exploratory Testing. Here, tester designed tests are conducted with the help of one of the

developers. This test does not have a pre-defined script; the idea is to follow the flow of the information.

Some methodologies used are: None, Some, All, Too Big Too Small, Just Right, Beginning, Middle, End,

39

Create, Read, Update, Delete, Command Injection and Data Type Attacks. It is used to reveal mistakes

that will be discovered easily by the users. It may help the team improve their own process and reduce

the number of problems in future iterations. Shore and Warden (Shore and Warden 2008) states: ”When

you use exploratory testing, you discover information about both the software and the process used to

create that software.”

40

5 Influence Model

After a short period of time during the research observations we saw that the three influencing

variables (Communication, Coordination and Motivation) stood out among the variables mentioned in

the Related Work. It was also possible to envision that the problems belonging to these three variables

could be categorized according to two different points of view: Internal (within the team) and Client

(outside the team). Figure 7 shows the influence model: variables influencing the teamwork and the

different points of view they have.

Aranda (Aranda 2010) points out in his thesis that “Achieving effective coordination and

communication is the central problem of software development”. He recognizes that in the research

literature this could be controversial, but states that coordination and communication are two linked

aspects showing the essential complexity of the nature of any software development project.

 Figure 7 - Influence Model

Ryan and Deci (Ryan and Deci 2000) wrote about motivation: “to be motivated means to be

moved to do something; a person who feels no impetus or inspiration to act is thus characterized as

unmotivated, whereas someone who is energized or activated towards an end is considered motivated.”

Problem Influence Model Context

Problem

Communication

Internal

Client

Coordination

Internal

Client

Motivation

Internal

Client

41

Humphrey (W. S. Humphrey 1996) says that “in technology, there are many failures for every success,

and it is easy to become discouraged, unmotivated…. people need to be charged up and reminded that

the goal is important and achievable.”

For software development, in general, communication, coordination and motivation need to occur

among all individuals involved in the project: the team members and the clients and stakeholders. In this

thesis I refer to a client as anyone who is involved in the project that has any interactions with team

members that can affect the project; e.g. they could also be users of the product under development.

5.1 Communication

This section presents a list of thinklets that deal with recurring communication problems.

Subsection 5.1.1 is focused on internal communication problems and subsection 5.1.2 is focused on

external communication (i.e. with the user/client).

5.1.1 Internal Communication

Internal communication deals with the challenge of each team member to conduct effective

communication with his peers. This subsection talks about internal communication, the major recurrent

problems that were caused by it and the ThinkLets that can be used to address them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

Stage fright There are members that are

not willing to express their

opinion in public. This problem

reduces the capacity of the

team to generate ideas, to

identify challenges or the

capacity to generate warnings

during the project (Hackman

1990).

o Weekly meetings, where all team

members must report their work

status (Round-Robin Meeting).

According to Humphrey (W. S.

Humphrey 1996) meetings directed by

a team member, where this member

exerts some kind of pressure to get

everybody to speak, efficiently

mitigates the problem.

o Try to generate confidence between

the team members. This can be done

with Team-Building activities (games)

or with some social extra project

o Stand Up

Meeting

o Trust

o Sit Together

o Team-

Building

Workshop

o Coaching

42

ThinkLets Recurring Problem Corrective Actions Useful Practices

activity. Kapp (Kapp 2009) research

found out that the Team-Building

Workshops at the beginning of the

project could guarantee a higher level

of trust and confidence between team

members.

Playing

dumb

In the team there are members

who do not listen or take the

ideas of their peers seriously.

This goes against the process of

trust generation and the team

cohesion (Pfaff and Huddleston

2003).

o Meetings with the only purpose of

conciliation or confrontation,

whatever the need of the team

members involved may be. This kind

of meeting could also involve the

whole team if needed (Whitten 1995).

o According to Page y Donelan (Page

and Donelan 2003), one solution can

be to begin a project with Team-

Building Workshop. These techniques

should have the ability to analyze the

capacity and skills of team members

prior to beginning the real work. With

this kind of strategy the team knows

in advance how each one works best

and how to avoid this kind of conflict.

Amato and Amato (Amato and Amato

2005) suggest conducting personality

tests, such as the MBTI (Myers-Brigg

Type Indicator) prior to team

formation, to enhance the team

effectiveness.

o Trust

o Sit Together

o Peer

Activities

o “Done,

Done”

o Collective

Code

Ownership

o Public

Profile

o Team-

Building

Workshop

Team

hijacking

The team relies on the

knowledge and capacity of one

or a few team members only. In

a project there are some points

in which the

o In any scope, knowledge has to be

transferred; the activities should be

done at least in pairs (ex. analysis,

design or development). To make this

really useful and efficient, one of the

o Peer

Activities

o Collective

Code

Ownership

43

ThinkLets Recurring Problem Corrective Actions Useful Practices

discussion/validation/

generation of ideas cannot be

done because there is not

enough knowledge in just one

person (or a few). Pfaff y

Huddleston (Pfaff and

Huddleston 2003) defined this

kind of behaviour as a “team

hijacking”.

team members must be an expert on

the subject. According to Karhatsu et

al (Karhatsu, et al. 2010) the

redundancy of the agile

methodologies, where one member

has the ability to do the tasks of any

other team member, and should be

assured by the whole team through

self-management.

o Peer Activities sessions to share the

knowledge. It is important to clarify

that the responsibility of acquiring the

transmitted knowledge is a team

member responsibility. To Page and

Donelan (Page and Donelan 2003)

team members have to know and take

responsibility in the development of

their own team, always trying to

increase their capacity for

accomplishment.

o Perform research or a spike solution

lead by an expert. Pfaff y Huddleston

(Pfaff and Huddleston 2003) talk

about constantly controlled

interventions as compelling ways to

ensure effective practices.

o Vision

o Planning

Game

o Ubiquitous

Language

o Spike

Solution

Why

bother to

answer

Team members do not answer,

or not answer in time other

team member’s requests. This

goes against the dynamics of

teamwork and the execution of

the project itself.

o Make the team behave towards

written communication in order to

maintain good levels of persistence

and traceability.

o On a daily basis team members must

access the official communication

system of the team. This policy has to

o Peer

Activities

o Collective

Code

Ownership

o Trust

o Coaching

44

ThinkLets Recurring Problem Corrective Actions Useful Practices

be stated and the tool selected in the

beginning of the project.

o Define an answer protocol to emails

or other persistent means of

communication, where the urgency is

stated in the subject of the message

(Cohn 2009). For example:

o FYI (No need to answer).

o Low Importance (Answer

needed within the week).

o Important (Answer needed

within 48 hours).

o Very Important (Answer

needed within 24 hours).

o URGENT (Answer needed

within 3 hours).

o According to Page y Donelan (Page and

Donelan 2003) the roles of action that

each team member has should be

known to the whole team (not only

formal roles). The team should also

develop a “psychological contract”

between its members at the beginning

of the project, where the parameters of

what each member believes are

acceptable, well stated and understood

by the whole team.

Ego Members of the team with

strong personalities (ego)

engage in conflict for some

specific subject of the project.

o When the scope of the conflict is of

technical nature and relevant; the

client is the only person who can

decide which solution is better and

o Trust

o Sit Together

o Planning

Game

45

ThinkLets Recurring Problem Corrective Actions Useful Practices

This kind of problem can create

a supremacy contest within the

team, hampering the process of

generating ideas and trust

within the team. According to

Eisenhardt and Schoonhoven

(Eisenhardt and Schoonhoven

1990) some task conflicts could

bring benefits to the project

development. Jehn et al (Jehn,

Nothcraft and Neale 1999)

found out that these benefits

have a limit. High levels of

conflict within the team can

distract and affect the final

product, leading to unachieved

goals.

give him real value. When the subject

is not relevant the team has to choose

the solution itself, seeing which one

fits better with the project in terms of

permanent solution. (Cohn 2009)

o Define a work protocol where the

tasks are assigned to each team

member with the technical or logical

solution pre-defined. This kind of

decision should be made in a design

meeting where all the team members

address challenges and what to do in

the project.

o Active client participation in all the

stages of the project, using techniques

such as Planning Game, which are

shown to be empirically effective

according to Fraser (Fraser and

Wotawa 2007).

o Peer

Activities

o Coding

Standards

o Ubiquitous

Language

o Collective

Code

Ownership

I do not

belong

Some team members do not

feel they belong to the team.

This kind of problem directly

affects the final result of the

team, because without team

cohesion, all the advantages of

working in a team are lost.

Synergy only happens when the

resulting work done by the

team is greater than the sum of

individual’s work. If the team

members do not feel they

belong to the team this synergy

ceases to exist.

o Team meetings with the purpose of

promoting team integration and trust.

One known technique is to promote

meetings where there are activities

that are different from the usual ones

performed by a team (Barr, Dixon and

Gassenheimer 2005)

o More frequent team meetings; short

ones, with the intention of

familiarizing the team members with

each other, so everyone involved

knows the skills that each possess.

o Organize social activities or a shared

meal (Shore and Warden 2008).

o Trust

o Sit Together

o Peer

Activities

o Energized

Work

o Team-

Building

Workshop

46

ThinkLets Recurring Problem Corrective Actions Useful Practices

Free Riders Some team members do not

want to fully participate on the

project, so they try to emulate

work. They are used to pretend

to be busy, never commit

themselves to tasks and they

easily let others do their work.

Humphrey (Humphrey and

Tomas 2010) says ”nothing can

be more disruptive than to

have some people in a group

openly getting away with

something.” Dommeyer

(Dommeyer 2007) defines free

riders “Group members who

shirk their obligation in the

hopes of benefiting from the

work of others are often

referred to as social loafers or

free riders”.

o At the beginning of the project, a

Team-Building Workshop can help

team members bond..

o A team meeting with the purpose of

letting this team member know that

his action brings consequence to the

whole team. The team can threaten to

kick the free rider from the team.

Humphrey (Humphrey and Tomas

2010) recognizes that this kind of

problem is a major threat to academic

projects, because in industries people

can be fired, and the consequence for

this kind of behaviour in the academia

is not so severe.

o Dixon and Gassenheimer (Dixon and

Gassenheimer 2003) suggests

providing students opportunities to

familiarize themselves with their

group members in a social context,

away from the high pressure of the

academic setting.

o Peer

Review

o Team-

Building

Workshop

o Root Cause

Analysis

5.1.2 Client Communication

Client communication involves the communication between the development team and the client. This

subsection introduces the major recurrent problems that can be present during a project and the

ThinkLets we can use to address them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

Client

availability

A client having real availability

to communicate with the team

is a difficult goal to reach. This

o To establish a fixed day and time of a

weekly meeting with the client, prior to

the beginning of the project. It ensures

o Trust

o Retrospecti

ves

o Real

47

ThinkLets Recurring Problem Corrective Actions Useful Practices

problem is a threat to the

project, the client is an

important part of the project;

he/she is the expert. It is his

/her responsibility to define

and clarify key points to the

project. If he/she is not

available he/she can become a

bottleneck for the project, and

lockout the decision-making

process and validation of the

project.

that such time period will be available

for the team; therefore, the need for

negotiation does not exist, trying to

guarantee at least some participation of

the client in the project.

o Define a decision relevance protocol

that should be used in every meeting.

The decisions to be made and their

relevance, have to be reported to the

client at least a day prior to the

meeting. With this kind of information

at hand, the client can summon other

people needed to discuss the decisions

that need to be acted upon. For

example:

o Low Importance (Project

Status and simple decisions

that the technical counterpart

can easily decide).

o Important (Project Status and

complex decisions where

decisions would be better

made by someone else than

the counterpart).

o Critical (Project Status and

critical decisions where it must

be someone else other then

the counterpart to do).

Customer

Involvement

o Sit Together

o Informative

Workspace

o Team-

Building

Workshop

o Kanban

Client

communica

tion

The client is not able to

effectively communicate with

the team, so he/she is not able

to transmit his real needs to

o Call a meeting that all people involved

in the project must attend, with the

purpose of defining the scope of the

project and mitigate it. The team has

o Vision

o Planning

Game

o Stories

o Estimating

48

ThinkLets Recurring Problem Corrective Actions Useful Practices

the team. This kind of problem

can generate anxiety among

the team members because

they do not understand what

the client really wants. It can

cause the team to start working

on something different from

what the client really needs or

wants.

to gather together after this scope

meeting and debate all the points

discussed. Afterwards then get back

to the client with something (a

document, a user story, user case), so

the client can confirm that there are

no misunderstandings among them.

o Holding meetings with all the people

involved in the project using agile

techniques such as: Planning Game

and Divide and Conquer.

o Real

Customer

Involvement

o Sit Together

o Ubiquitous

Language

You did

what I

asked, but

is not what

I need

At the end of the project the

client has a product that

addresses all the requisites

he/she asked for, but he/she is

not satisfied with the product

obtained. This can generate

frustration and low morale

among team members severing

the relationship between the

client and the team.

o At the beginning of the project the

acceptance standards must be stated

by the client.

o Hold at least a weekly meeting with

the client, where the team presents

the project status and the product

itself.

o Planning

Game

o Iteration

Planning

o Reporting

o Slack

o Stories

o Estimating

o Real

Customer

Involvement

o Sit Together

o Exploratory

Testing

I know

what I

want, but I

do not

know why

The client knows what he/she

wants to have at the end of the

project, but he/she does not

know the problems trying to

solve.

o To focus the meeting on finding the

problem in which to solve and the

context in which it belongs. Maintain

this approach until the problem and the

context can be identified.

o Vision

o Planning

Game

o Stories

o Real

Customer

Involvement

I do not

know what

Unjustified and constant

request changes frustrate the

o At the beginning of the project the

Vision of the project should be well

o Vision

o Real

49

ThinkLets Recurring Problem Corrective Actions Useful Practices

I want team since it can change the

project goal and / or the scope

of the project.

stated and the whole team should

participate in Planning Games and

Estimates to guarantee that the

knowledge is spread among

everyone,; team members and client.

o Team members have to let the client

know that changes can be done.

Though it is healthy for the project, all

changes have a consequence. With

each change, a new Iteration Planning

is done and probably a new Release

Planning.

Customer

Involvement

o Iteration

Planning

o Estimating

I did not

say that

The client and / or the team do

not recognize the agreement

reached in the meeting.

o During the meeting the team has to

guarantee that a Ubiquitous Language

is being used, so everybody is talking

about the same subject.

o At every meeting, minutes should be

taken and everybody involved has to

agree to what has been recorded.

o Team-Building Workshops can help to

break the conflict between client and

the team and help them see that they

are all together in the project, seeking

the same goal.

o Meeting

Minutes

o Ubiquitous

Language

o Team-

Building

Workshop.

50

5.2 Coordination

This section shows a list of thinklets that deal with recurring coordination problems. Subsection

5.2.1. is focused on internal coordination problems and subsection 5.2.2 is focused on external

coordination problems.

5.2.1 Internal Coordination

Internal coordination is the process through which the team members coordinate their own activities to

reach a common goal. Limitations in the coordination activities produce major recurrent problems. The

following table presents such problems as well as the ThinkLets that can be used to deal with them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

Lone wolf There is one team member

who monopolizes project

tasks. This attitude can

generate a knowledge

concentration resulting in

the project becoming

dependent on one team

member. This can turn into

a bottleneck at any

moment.

Lone wolf is considered a

“psychological state” in

which one prefers to work

alone when making

decisions and accomplishing

goals (Barr, Dixon and

Gassenheimer 2005). They

also define lone wolves as

people highly committed,

who devote a lot of energy

to complete tasks.

o Be assure that the workload

between team members is equally

distributed.

o Have a weekly meeting of the team

to evaluate what was done, where

tasks can be reassigned between

team members according to each

one capacity or knowledge, taking

always the workload balance in

account.

o According to (Barr, Dixon and

Gassenheimer 2005), “the lone wolf

with some guidance could be an

ideal candidate for mentoring others

who share interest in their work, and

so contribute to the team effort.”.

o Trust

o Sit Together

o Ubiquitous

Language

o Stand Up

Meetings

o Iteration

Planning

o Public Profile

o Coaching

51

ThinkLets Recurring Problem Corrective Actions Useful Practices

Knowledge

of a few

The team relies on the

knowledge and skill of one

or a few members of the

team. The team capacity to

generate ideas and make

decisions fall on just one or

a few people.

o Define and assign responsibilities

and tasks in a clear and explicit way.

o Define a work protocol that is based

on written communications (as a

wiki for instance).

o Peer Activities

o Sit Together

o Stand Up

Meetings

o Coding

Standards

Meetings

absence

Team members do not

attend the meetings. This

goes against the knowledge

transfer that all projects

need. Besides the team fells

that this member is not

doing their share and the

commitment of the team

deteriorates. As stated by

Lee Iacoca (Iacoca and

Novak 1984): “If everybody

is suffering equally, you can

move a mountain. But the

first time you find someone

goofing off or not carrying

his share of the load, the

whole thing can be

unravelled.”

o Have a conciliation meeting with the

problematic team member

sometimes can be the whole team

conciliation.

o Social events and games (Game

Theory) with the purpose of bringing

cohesion and unity to the team.

o Trust

o Energized Work

o Stand Up

Meetings

o Team-Building

Workshop

o Feedback

I only know

my own

belly

button

Team members do not

know what others are

doing. This cause feelings of

uncertainty among team

members, and may cause

some tasks to be done in

duplicity. According to

o Structured weekly team meetings,

with a specific agenda to address,

such as: project status, each

member’s task status, task analysis

and task reassignments (if needed).

o Define a work protocol of

documentation where each team

o Stand up

Meeting

o Informative

Workspace

o Kanban

o Public Profile

52

ThinkLets Recurring Problem Corrective Actions Useful Practices

Humphrey (Humphrey and

Tomas 2010) “Without

timely and complete

communication, the team

members do not know what

their teammates are doing,

they cannot support each

other, and they do not feel a

sense of progress.”

member has to write about what

he/she did during the week (in a

Wiki for example) besides the

existence and usage of any version

control system.

I do what I

think is

needed

Team members perform

changes in the project that

were not assigned to

him/her, or worse, not even

stated by the client.

Without any repercussion

analysis the final product

and the work other team

members are doing can be

affected by this change.

During design and

development phases,

developers always see ways

to improve their work.

These well-intentioned

changes are hard to control

and hard to avoid without a

defined process and plan.

(Robillard 1996)

o Define a protocol of work to the

team, where each member of the

team has to follow and to work just

on tasks previously assigned to him.

o Weekly meetings of the team to

evaluate what was done and the

status of each task, and task

reassignment when needed.

o Informative

Workspace

o Stand-up

Meeting

o No Bugs

o Collective Code

Ownership

o Continuous

Integration

o Test driven

development

o Refactoring

o Performance

optimization

o Kanban

Last minute

delivery

Team members do their

work but they deliver their

work just before the

deadline. This is a problem

o When the project starts, the

estimation technique that will be

used has to be defined. The

estimation technique chosen has to

o Planning Game

o Iteration

Planning

o Estimating

53

ThinkLets Recurring Problem Corrective Actions Useful Practices

to the final quality of the

problem, because a task

ended just before the

deadline probably will not

have all the validation and

tests needed to assure the

product quality.

be in the mind of the team members

when the estimation process begins.

When needed (scope change as an

example) the estimation must be re-

evaluated. All team members must

participate and agree on the

estimates to make sure that they all

commit with the project.

o Conduct weekly team meetings to

evaluate what was done and the

status of each task, besides task

reassignment when needed. To help

the team keep track of the tasks it is

suggested by many authors and

methodologies (PSP, CMM, CMMI,

TSP) to use a task management tool

to maintain control of the project in

a simple and real manner.

o Stand up

Meeting

o Slack

I do in my

own time

Team members are not

respecting the due dates of

their tasks. This increases

the probability that the

project will fail to be

delivered to the client on

the agreed date.

o Prior to the beginning of the project

the estimation technique that will

be used must be defined. The

chosen estimation technique has to

be in the mind of the team

members when the estimation

process begins. When needed

(scope change as an example) the

estimation must be re-evaluated.

All team members must participate

and agree on the estimates, to

make sure that they all commit to

the project.

o Weekly meetings with team

members who have the

o Planning Game

o Iteration

Planning

o Estimating

o Stand up

Meeting

54

ThinkLets Recurring Problem Corrective Actions Useful Practices

responsibility of taking care of the

tasks, their estimation and their real

time. It is suggested to use a

management tool to help in that

control.

No notes Team members do not use

any methodology or

tracking device during

clients meeting. They do not

take notes of the

requirements, changes or

requests that the clients

have. This kind of problem

can affect the relationship

between client and team,

because team members will

start to ask the client the

same questions, over and

over.

o Define a documentation protocol of

the project since the beginning. The

documentation should be written

and updated constantly. It is

suggested by various methodologies

to keep all project documentation in

a single repository where the whole

team can have access.

o Choose a team member to be

responsible for the documentation

(if there is no project manager). This

person is responsible for taking

written meetings minutes of all the

clients meetings with the team. All

the minutes should be available to

the whole team for consultation.

o Planning Game

o Stories

o Real Customer

Involvement

o Meeting

Minutes

Where are

we

Team members do not have

visibility of the status of the

project; they do everything

that the client asks. This

kind of problem can shake

up the relationship within

the team. Motivation and

morale decreases and the

team looses commitment to

their members, resulting in

lost in productivity and

quality.

o Define a protocol that states that the

team will only do what the client

asked formally and according to the

priorities defined by him. One typical

problem occurs with performance,

the team does not have to improve

performance if not formally asked

and prioritized by the client.

o At the beginning of the project

partial deliveries must be defined

between client and team.

o The client must state at the start of

o Planning Game

o Iteration

Planning

o Release Planning

o Informative

Workspace

o Kanban

55

ThinkLets Recurring Problem Corrective Actions Useful Practices

the project the acceptance criteria of

the project, and as soon as the

requisites are defined, the client

must prioritize them.

Paralysis

analysis

The team is frozen, waiting

for possible solutions to a

problem, or trying to

analyze and learn new

technologies (paralysis by

analysis). This halt of the

team can affect the time

agreements.

o Define in advance the amount of

time that can be spent in analysis.

For example:

o 1
st

. Day Web search,

tutorials

If the search is positive, one day of

Spike Solution / Spin Off.

o 2nd. Day: Try to make contact

with someone that is an

expert on the subject.

o 3rd. Day: Evaluate the impact

of change in the project

strategy.

o Perform an evaluation phase of the

new technology together with any

initial phases of the project. This is

helpful when the team knows in

advance that the project will use

new technologies that no one in the

team knows.

o Test Driven

Development

o Refactoring

o Spike Solutions

o Decision Making

o Coaching

Why to

decide

Team members or the

whole team do not have

enough confidence to make

the decisions needed. This

kind of problem can deeply

affect the delivery date of

o Define a work protocol where the

task assigned to each team member

contains previously defined

technology or logic. This kind of

definition can be developed in a

design meeting at the beginning of

o Peer Activities

o Root Cause

Analysis

o Retrospectives

o Stand Up

Meetings

o Decision Making

56

ThinkLets Recurring Problem Corrective Actions Useful Practices

the project. the project.

o Define a protocol for making

decisions within the team. If the

decision is a minor decision the team

member has to decide what is the

best thing to do within the day. If

he/she is not capable of making this

decision, he/she has to call their

peers to help him decide what to do

the following day.

o Coaching

I decide The team has members who

make important decisions

alone, without properly

analysing or at least thinking

it through beforehand. This

goes against the dynamics

of the team and can put the

quality of the final product

at risk. There also exist the

potential possibility for

having to rework the

product details.

o Define a work protocol where the

tasks assigned to each team member

already have the technology or logic

needed previously defined. This kind

of definition can be done in a design

meeting usually done in the beginning

of the project.

o Define a decision protocol, this way

the team members can have a clear

understanding of what they can

decide on their own and what should

involve other team members. For

example:

o Low Importance (the decision

affects only the team

member tasks and do not

have any integration with

other tasks) – the decision

can be made by any team

member alone.

o Important (the decision to be

made affects other team

o Incremental

Design and

Architecture

o Peer Activities

o Retrospectives

o Decision Making

o Simple Design

57

ThinkLets Recurring Problem Corrective Actions Useful Practices

members’ tasks) – the team

has to make the decision.

o Critical (the decision

transversally affects the

whole project) – the decision

must be made by the team

together with the client.

No sell The team did not prepare

themselves for delivering

the product to the client; so

the product was sub

evaluated. This problem can

affect the motivation and

the morale of the team,

reflecting badly in their

future endeavours.

o Define a delivery protocol and

presentation of the product (partial

or final). For example:

o Demo testing.

o Presentation must have all

the major milestones of the

project history

o Presentation must answer or

show all the clients questions

/ use cases/ stories.

o All presenters must rehearse,

memorize and recite the presentation

without reading anything.

o Real Customer

Involvement

o Customer

Reviews

o Customer

Testing

o Iteration

Planning

o Iteration Demo

o Ten minutes

build

o Feedback

o Version Control

“I” not “us” Team members are still

acting selfish. They do not

take into account that they

now have to work on a

team, and act as team

members. This kind of

problem reduces the team

ability to generate ideas and

synergy.

o Meetings with the purpose that

team members get to know each

other and each other’s skill.

o Team meetings with the purpose of

promoting team integration and

trust. One known technique is to

promote meetings with activities

different from the usual ones they

perform as a team (Barr, Dixon and

Gassenheimer 2005)

o Extra project meetings, social

meetings, sharing a meal. The idea is

o Energized Work

o Peer Activities

o Retrospectives

o Sit Together

o Team-Building

Workshop

o Peer Review

58

ThinkLets Recurring Problem Corrective Actions Useful Practices

to let team members bond freely.

According to (Shore and Warden

2008): “Something about sharing a

meal breaks down barriers and

fosters team cohesiveness.”

Nobody

responsible

There is no coordination,

since nobody is responsible

for anything.

o Hold a Team-Building Workshop to

demonstrate to team members the

importance of trust and

commitment.

o Rotating the coordination of the

team between team members can

help the team to understand the

importance of coordination and

responsibilities

o Coaching

o Team-Building

Workshop

5.2.2 Client Coordination

Client coordination involves a set of activities that allows the development team to coordinate their

effort with the client. This subsection presents the main recurrent problems generated by client

coordination activities and the ThinkLets we can use to address them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

I did not

asked that

The client or the team does

not remember some

requirements or changes

asked for during the project.

This can be a nasty source of

conflicts between the client

and the team.

o Define a documentation or process

protocol at the beginning of the

project. The documentation or the

processes have to be written and the

documentation has to be constantly

updated. It is suggested that

everything be maintained in a shared

directory where the whole team has

access.

o The team has to choose one

o Planning

Game

o Stories

o Customer

Review

o Real

Customer

Involvement

o Meeting

Minutes

59

ThinkLets Recurring Problem Corrective Actions Useful Practices

responsible member for all the

documentation (if there is no project

manager). This person is responsible

for taking meetings minutes,

especially for those where the client

is present. All the minutes should be

available to the whole team.

What

problem

The client has no clear idea of

the problem he/she wants to

solve. This kind of problem

clashes with project

implementation because the

client will probably change

his/her mind and the project

scope many times, until they

have an idea of what the

problem is. In the meantime

the relationship between

client and the team will erode.

o Have a scope and definition meeting

with the client to help the client think

about what he/she wants,

freethinking techniques such as

Brainstorming or LeafHooper.

o Define an early prototype protocol so

the team can get an early feedback of

the client and change the project

scope early in the project.

o Vision

o Planning

Game

o Stories

o Iteration

Demo

Client

decision

The client is not available to

make the decision the project

needs. The delays in decision-

making can affect the delivery

schedule of the final product.

o Maintain all communication in

written format, so it can be traced

and stored.

o Hold weekly meetings between the

client and the team. These meetings

should be scheduled at a set day and

time at the start of the project to try

and guarantee the client attendance.

o Define an answer protocol to mails or

other persistent means of

communication, where the urgency is

stated in the subject of the message

o Real

Customer

Involvement

o Informative

Workspace

o Sit Together

o Planning

Game

o Stories

o Kanban

60

ThinkLets Recurring Problem Corrective Actions Useful Practices

(Cohn 2009). For example:

o FYI (No need to answer).

o Low Importance (Answer

needed within the week).

o Important (Answer needed

within 48 hours).

o Very Important (Answer

needed within 24 hours).

o Urgent (Answer needed

within 3 hours).

Change

again

The client changes the

requisites of the project. This

can have a huge impact on the

project schedule and in the

quality of the final product.

o Define an analysis process of the

changes requested by the client

(“Change Management”). This

analysis has to estimate the impact of

the changes in the project and have

to be done by all the team members.

The results of this analysis have to be

reported to the client. The team has

to negotiate with the client, a new

deadline or a decrease in the number

of the requirements if necessary.

o Define a tool to implement a formal

workflow to manage the change

management of the project.

o Planning

Game

o Stories

o Estimating

o Risk

Management

Client

meeting

It is difficult to establish a

meeting with clients.

o Hold weekly meetings between the

client and the team. These meetings

should be scheduled on fixed days

and times at the start of the project

to try to guarantee client attendance.

o Real

Customer

Involvement

o Sit Together

o Planning

61

ThinkLets Recurring Problem Corrective Actions Useful Practices

o Have a Team-Building Workshop with

the client to show them the

importance of their active

participation on the project.

Game

o Team-

Building

Workshop

62

5.3 Motivation

This section presents a list of thinklets that deal with recurring motivation problems. Subsection

5.3.1. is focused on internal motivation problems and subsection 5.3.2 is focused on external motivation

(i.e. with the user/client).

5.3.1 Internal Motivation

Internal motivation allows a team to maintain high morale and to try guaranteeing positive

development and a strong relationship among team members. The lack of internal motivation generates

major recurrent problems within the team. This subsection presents these problems and the ThinkLets

that can be used to deal with them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

I do what

I’m told

Some team members stopped

contributing to the project,

choosing to only take on

project tasks when assigned,

and then only if the tasks are

simple, not requiring further

evaluation and analysis. This

kind of apathy can be easily

spread among team members,

gravely affecting the

advantages of teamwork.

o Motivational activities with the team

members bring back cohesion to them

and show that the commitment to the

project is relevant to everyone.

o Remind the team of the vision and the

relevance of the project. According to

Humphrey (Humphrey and Tomas

2010) it is periodically necessary to

reinforce team commitment.

o “Commitment is based on four

requirements: should be voluntary,

must be visible, must be credible and

must be owned by the people who

will do the required work.”

(Humphrey and Tomas 2010). Based

on that, a meeting has to be made to

evaluate why requirements are not

being met and the project manager

should directly address this problem.

o Trust

o Stand Up

Meetings

o Sit Together

o Energized

Work

o Retrospecti

ves

o Coaching

63

ThinkLets Recurring Problem Corrective Actions Useful Practices

Bad

decisions

The project manager (or the

person responsible for the

team) is not making the best

decisions for the team. This

problem can rupture team

cohesion and consequently

negatively influencing the

results that the team could

achieve.

o Plan an open team meeting with the

purpose of dealing with the project

manager problem (or the person in

charge). All members have to express

their views and concerns. The project

manager has to listen and to address

all the problems directed to him. It is a

good idea to have someone a human

resources staff running conciliation

process.

o In some cases when the project is self-

directed the team may freely choose

another project manager or choose an

alternate project manager.

o Trust

o Planning

Game

o Stand Up

Meetings

o Retrospecti

ves

o Decision

Making

Us vs.

Them

Team members are

unmotivated because of the

constant friction between them

and the client or within the

team.

o Remind the team and the client of the

vision and relevance of the project.

According to Humphrey (Humphrey

and Tomas 2010) it is periodically

necessary to reinforce team

commitment.

o Team-Building Workshop to break the

barrier between the team and the

client

o Define a documentation or process

protocol at the beginning of the

project. The documentation or the

processes has to be written and

constantly updated. It is suggested

that everything be maintained in a

shared directory where the whole

team has access.

o Vision

o Real

Customer

Involvement

o Team-

Building

Workshop

o Coaching

64

5.3.2 Client Motivation

Client motivation is the ability that a team has to keep the client involved and satisfied with the

project in some way. The lack of this motivation generates a set of recurrent problems, which are

presented in the next table. The table also presents the ThinkLets able to deal with them.

ThinkLets Recurring Problem Corrective Actions Useful Practices

Client

commitme

nt

The client is not committed to

the project, as he/she should

be. This complicates the whole

project, because the project

depends on the client to define

requisites and solve ambiguity

issues during the project

development.

o Make the client aware of the

importance of his commitment to the

project. Involve the client in the

strategic decisions of the project.

o Define an answer protocol to emails

or other persistent means of

communication, where the urgency is

stated in the subject of the message

(Cohn 2009). For example:

o FYI (No need to answer).

o Low Importance (Answer

needed within the week).

o Important (Answer needed

within 48 hours).

o Very Important (Answer

needed within 24 hours).

o Urgent (Answer needed within

3 hours).

o Hold weekly meetings between the

client and the team. These meetings

should be scheduled at set a day and

time at the start of the project to try

and guarantee client attendance.

o Real

Customer

Involvement

o Sit Together

o Planning

Game

o Stories

o Iteration

Demo

o Team-

Building

Workshop

Them vs.

Us

Clients / Users unmotivated

because of the constant

o Define a documentation or process

protocol in the early stages of the

project. The documentation or the

o Real

Customer

Involvement

65

ThinkLets Recurring Problem Corrective Actions Useful Practices

bickering with the developers. processes should be written and the

documentation has to be constantly

updated. Everything should be

maintained in a shared directory

where the whole team has access.

o Conduct Team-Building Workshops to

break the barriers between the team

and the client.

o Remind the team and the client of the

vision and the relevance of the

project. According to Humphrey

(Humphrey and Tomas 2010) it is

periodically necessary to reinforce

team commitment.

o Vision

o Team-

Building

Workshop

5.4 Correspondence Matrix

This section presents a correspondence matrix that links all the problems listed with the practices

that can be used to mitigate them.

66

Table 3. Correspondence Matrix

Practice /

ThinkLet

P
e

e
r

A
ct

iv
it

ie
s

En
e

rg
iz

e
d

 W
o

rk

In
fo

rm
at

iv
e

 W
o

rk
sp

ac
e

R
o

o
t

C
au

se
 A

n
al

ys
is

R
e

tr
o

sp
e

ct
iv

e
s

Tr
u

st

Si
t

To
ge

th
e

r

R
e

al
 C

u
st

o
m

e
r

In
vo

lv
em

e
n

t

U
b

iq
u

it
o

u
s

La
n

gu
ag

e

St
an

d
 U

p
 M

e
e

ti
n

gs

C
o

d
in

g
St

an
d

ar
d

s

It
e

ra
ti

o
n

 D
e

m
o

R
e

p
o

rt
in

g

Te
am

 B
u

ild
in

g
W

o
rk

sh
o

p

P
e

e
r

R
e

vi
e

w

C
o

ac
h

in
g

K
an

b
an

D
e

ci
si

o
n

 M
ak

in
g

P
u

b
lic

 P
ro

fi
le

Fe
e

d
b

ac
k

D
o

n
e

 D
o

n
e

N
o

 B
u

gs

V
e

rs
io

n
 C

o
n

tr
o

l

Te
n

-M
in

u
te

 B
u

ild

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

C
o

lle
ct

iv
e

 C
o

d
e

 O
w

n
e

rs
h

ip

V
is

io
n

St
o

ri
e

s

Es
ti

m
at

in
g

P
la

n
n

in
g

G
am

e

R
e

le
as

e
 P

la
n

n
in

g

It
e

ra
ti

o
n

 P
la

n
n

in
g

Sl
ac

k

R
is

k
M

an
ag

e
m

e
n

t

M
e

e
ti

n
g

M
in

u
te

s

Sp
ik

e
 S

o
lu

ti
o

n

Te
st

 D
ri

ve
n

 D
e

ve
lo

p
m

en
t

R
e

fa
ct

o
ri

n
g

Si
m

p
le

 D
es

in
g

In
cr

e
m

e
n

ta
l D

e
si

gn
 a

n
d

 A
rc

h
it

e
ct

u
re

P
e

rf
o

rm
an

ce
 O

p
ti

m
iz

at
io

n

C
u

st
o

m
e

r
Te

st
in

g

C
u

st
o

m
e

r
R

e
vi

ew

Ex
p

lo
ra

to
ry

 T
e

st
in

g

Stage fright X X X X X

Playing dumb X X X X X X X

Team hijacking X X X X X X

Why bother to
answer

X X X X

Ego X X X X X X X

I do not belong X X X X X

Free Riders X X X

Client
availabity

 X X X X X X X

Client
communication

 X X X X X X X

67

Practice /

ThinkLet

P
e

e
r

A
ct

iv
it

ie
s

En
e

rg
iz

e
d

 W
o

rk

In
fo

rm
at

iv
e

 W
o

rk
sp

ac
e

R
o

o
t

C
au

se
 A

n
al

ys
is

R
e

tr
o

sp
e

ct
iv

e
s

Tr
u

st

Si
t

To
ge

th
e

r

R
e

al
 C

u
st

o
m

e
r

In
vo

lv
em

e
n

t

U
b

iq
u

it
o

u
s

La
n

gu
ag

e

St
an

d
 U

p
 M

e
e

ti
n

gs

C
o

d
in

g
St

an
d

ar
d

s

It
e

ra
ti

o
n

 D
e

m
o

R
e

p
o

rt
in

g

Te
am

 B
u

ild
in

g
W

o
rk

sh
o

p

P
e

e
r

R
e

vi
e

w

C
o

ac
h

in
g

K
an

b
an

D
e

ci
si

o
n

 M
ak

in
g

P
u

b
lic

 P
ro

fi
le

Fe
e

d
b

ac
k

D
o

n
e

 D
o

n
e

N
o

 B
u

gs

V
e

rs
io

n
 C

o
n

tr
o

l

Te
n

-M
in

u
te

 B
u

ild

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

C
o

lle
ct

iv
e

 C
o

d
e

 O
w

n
e

rs
h

ip

V
is

io
n

St
o

ri
e

s

Es
ti

m
at

in
g

P
la

n
n

in
g

G
am

e

R
e

le
as

e
 P

la
n

n
in

g

It
e

ra
ti

o
n

 P
la

n
n

in
g

Sl
ac

k

R
is

k
M

an
ag

e
m

e
n

t

M
e

e
ti

n
g

M
in

u
te

s

Sp
ik

e
 S

o
lu

ti
o

n

Te
st

 D
ri

ve
n

 D
e

ve
lo

p
m

en
t

R
e

fa
ct

o
ri

n
g

Si
m

p
le

 D
es

in
g

In
cr

e
m

e
n

ta
l D

e
si

gn
 a

n
d

 A
rc

h
it

e
ct

u
re

P
e

rf
o

rm
an

ce
 O

p
ti

m
iz

at
io

n

C
u

st
o

m
e

r
Te

st
in

g

C
u

st
o

m
e

r
R

e
vi

ew

Ex
p

lo
ra

to
ry

 T
e

st
in

g

You did what I
asked, but is

not what I
need

 X X X X X X X X X X

I know what I
want, but I do
not know why

 X X X X

I do not know
what I want

 X X X X

I did not say
that

 X X X

Lone wolf X X X X X X X

Knowledge of a
few

X X X X

Meetings
absence

 X X X X X

I only know my
own belly

button

 X X X X

I do what I
think is needed

 X X X X X X X X X

68

Practice /

ThinkLet

P
e

e
r

A
ct

iv
it

ie
s

En
e

rg
iz

e
d

 W
o

rk

In
fo

rm
at

iv
e

 W
o

rk
sp

ac
e

R
o

o
t

C
au

se
 A

n
al

ys
is

R
e

tr
o

sp
e

ct
iv

e
s

Tr
u

st

Si
t

To
ge

th
e

r

R
e

al
 C

u
st

o
m

e
r

In
vo

lv
em

e
n

t

U
b

iq
u

it
o

u
s

La
n

gu
ag

e

St
an

d
 U

p
 M

e
e

ti
n

gs

C
o

d
in

g
St

an
d

ar
d

s

It
e

ra
ti

o
n

 D
e

m
o

R
e

p
o

rt
in

g

Te
am

 B
u

ild
in

g
W

o
rk

sh
o

p

P
e

e
r

R
e

vi
e

w

C
o

ac
h

in
g

K
an

b
an

D
e

ci
si

o
n

 M
ak

in
g

P
u

b
lic

 P
ro

fi
le

Fe
e

d
b

ac
k

D
o

n
e

 D
o

n
e

N
o

 B
u

gs

V
e

rs
io

n
 C

o
n

tr
o

l

Te
n

-M
in

u
te

 B
u

ild

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

C
o

lle
ct

iv
e

 C
o

d
e

 O
w

n
e

rs
h

ip

V
is

io
n

St
o

ri
e

s

Es
ti

m
at

in
g

P
la

n
n

in
g

G
am

e

R
e

le
as

e
 P

la
n

n
in

g

It
e

ra
ti

o
n

 P
la

n
n

in
g

Sl
ac

k

R
is

k
M

an
ag

e
m

e
n

t

M
e

e
ti

n
g

M
in

u
te

s

Sp
ik

e
 S

o
lu

ti
o

n

Te
st

 D
ri

ve
n

 D
e

ve
lo

p
m

en
t

R
e

fa
ct

o
ri

n
g

Si
m

p
le

 D
es

in
g

In
cr

e
m

e
n

ta
l D

e
si

gn
 a

n
d

 A
rc

h
it

e
ct

u
re

P
e

rf
o

rm
an

ce
 O

p
ti

m
iz

at
io

n

C
u

st
o

m
e

r
Te

st
in

g

C
u

st
o

m
e

r
R

e
vi

ew

Ex
p

lo
ra

to
ry

 T
e

st
in

g

Last minute
delivery

 X X X X X X

I do in my own
time

 X X X X

No notes X X X X

Where are we X X X X X

Paralysis
analysis

 X X X X X

Why to decide X X X X X X

I decide X X X X X

No sell X X X X X X X X

“I” not “us” X X X X X X

Nobody
responsible

 X X

I did not asked
that

 X X X X X

69

Practice /

ThinkLet

P
e

e
r

A
ct

iv
it

ie
s

En
e

rg
iz

e
d

 W
o

rk

In
fo

rm
at

iv
e

 W
o

rk
sp

ac
e

R
o

o
t

C
au

se
 A

n
al

ys
is

R
e

tr
o

sp
e

ct
iv

e
s

Tr
u

st

Si
t

To
ge

th
e

r

R
e

al
 C

u
st

o
m

e
r

In
vo

lv
em

e
n

t

U
b

iq
u

it
o

u
s

La
n

gu
ag

e

St
an

d
 U

p
 M

e
e

ti
n

gs

C
o

d
in

g
St

an
d

ar
d

s

It
e

ra
ti

o
n

 D
e

m
o

R
e

p
o

rt
in

g

Te
am

 B
u

ild
in

g
W

o
rk

sh
o

p

P
e

e
r

R
e

vi
e

w

C
o

ac
h

in
g

K
an

b
an

D
e

ci
si

o
n

 M
ak

in
g

P
u

b
lic

 P
ro

fi
le

Fe
e

d
b

ac
k

D
o

n
e

 D
o

n
e

N
o

 B
u

gs

V
e

rs
io

n
 C

o
n

tr
o

l

Te
n

-M
in

u
te

 B
u

ild

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

C
o

lle
ct

iv
e

 C
o

d
e

 O
w

n
e

rs
h

ip

V
is

io
n

St
o

ri
e

s

Es
ti

m
at

in
g

P
la

n
n

in
g

G
am

e

R
e

le
as

e
 P

la
n

n
in

g

It
e

ra
ti

o
n

 P
la

n
n

in
g

Sl
ac

k

R
is

k
M

an
ag

e
m

e
n

t

M
e

e
ti

n
g

M
in

u
te

s

Sp
ik

e
 S

o
lu

ti
o

n

Te
st

 D
ri

ve
n

 D
e

ve
lo

p
m

en
t

R
e

fa
ct

o
ri

n
g

Si
m

p
le

 D
es

in
g

In
cr

e
m

e
n

ta
l D

e
si

gn
 a

n
d

 A
rc

h
it

e
ct

u
re

P
e

rf
o

rm
an

ce
 O

p
ti

m
iz

at
io

n

C
u

st
o

m
e

r
Te

st
in

g

C
u

st
o

m
e

r
R

e
vi

ew

Ex
p

lo
ra

to
ry

 T
e

st
in

g

What problem X X X X

Client decision X X X X X X

Change again X X X X

Client meeting X X X X

I do what I’m
told

 X X X X X X

Bad decisions X X X X X

Us vs. Them X X X X

Client
Commitment

 X X X X X X

Them vs. Us X X X

70

6 Experimental Results

This chapter presents the experimental results of this thesis work. It shows the variables of the

influence model observed during two semesters in the course CC61A – Software Project, and also the

outcomes produced by the ThinkLets used.

CC61A – Software Project is a mandatory course that computer science students from University

of Chile have to complete before they graduate. At the beginning of the semester the students are

assigned to teams (composed of 4-7 students) and each team is assigned to a client. They have to plan

and run a project that usually involves 16 weeks. These teams work 12 weeks (20 hours per week) in the

client office. Each team has a coach (an experienced engineer) that meets with the students weekly in a

fixed day and time to review the project’s advance. The teams are normally self-managed and they have

to make three presentations and release three product versions during the semester. The final goal is to

put the software developed by each team into production.

6.1 Experimentation Scenario

The experimentation scenario used in this thesis was mentioned earlier in the Methodology

section. The course CC61A was used as a laboratory for the analysis and experimentation. Two semesters

were observed: Spring 2010 where 13 students were enrolled in three different teams (T1, T2, and T3),

Autumn 2011 where 23 students were enrolled in four different teams (T4, T5, T6 and T7).

During the two semesters I accompanied the teams in all their 90-minute long meetings with

their software development coach, which occurred every Thursday during the semester. I also attended

their three presentations to clients, software engineering instructors and the other students of the

course. Meeting minutes were taken, and once a week I talked more informally with the students to

understand their perceptions of the team and of the problems that they were facing at that moment. In

the Appendix there is more information on how these meetings were monitored.

6.2 Obtained Results

This section presents the results of the observations. In table 4 we see the observations made

and the variables involved according to the influence model. During the observations the teams had only

one recurring problem that did not fit in these variables. Such instances were classified as “Others” and

the two problems observed were with the Clients Infrastructure.

71

Fifty-eight observations were made in total during the research: from 7 to 13 observations per

team, and an average of 8 observations per team.

 Analysing the results in terms of the influence model variables, it was found that the variable

that had the most impact on a team was Coordination (46%), followed by Communication (30%) and

Motivation (22%). Looking at the numbers in detail we found: 36% Internal Coordination, 18% Internal

Communication, 12% Client Communication, 10% Client Coordination, 16% Internal Motivation, 7%

Client Motivation and 2% were classified as others. The most interesting finding was that 71% of the

observations were of the Internal problems of the team and just 29% were Clients problem.

Table 4 shows all the observations made by team and by influence model variables.

Table 4. Variables Observed

Team Observation
Internal

Communication
Client

Communication
Internal

Coordination
Client

Coordination
Internal

Motivation
Client

Motivation
Others

T1 1 X

X

T1 2
X

X

T1 3
X

T1 4 X

X

T1 5 X

X

T1 6
X

X

T1 7
X

T1 8
X

X

T1 9
X

T1 10 X

X

X

T1 11
X

T1 12

Client

Infra-
structure

T2 13
X

T2 14
X

X

T2 15 X

X

T2 16
X

T2 17
X

T2 18
X

T2 19
X

T3 20
X

T3 21
X

X

72

Team Observation
Internal

Communication

Client

Communication

Internal

Coordination

Client

Coordination

Internal

Motivation

Client

Motivation
Others

T3 22
X

T3 23 X

X

X

T3 24
X

T3 25
X

T3 26
X

T4 27 X

X

T4 28 X

T4 29
X

X

T4 30
X

T4 31 X

X

T4 32
X

X

T4 33
X

T4 34
X

T4 35
X

T5 36 X

X

T5 37
X

X

T5 38
X

T5 39 X

X

T5 40 X

X

T5 41
X

T5 42
X

X

T5 43
X

T5 44
X

X

T6 45 X

X

T6 46
X X

T6 47
X

T6 48 X

X

T6 49
X

T6 50
X

X X

T6 51
X

T7 52 X

X

T7 53
X

X

T7 54
X

73

Team Observation
Internal

Communication

Client

Communication

Internal

Coordination

Client

Coordination

Internal

Motivation

Client

Motivation
Others

T7 55 X

X

T7 56
X

X

T7 57
X

T7 58

Client
infra

structure

Tot
al

58 16 11 33 9 14 6 2

Table 5 shows the observation, their severity level, the ThinkLets used on each observation and

the outcome after applying the thinklet. Each observation as well as the ThinkLets, can involve one or

more variables of the influence model according to the nature of the problem. The severity levels were

classified as Low (when it has a low impact on the team performance), Medium (if it has some impact on

the team performance) and High (it has a high impact on the team performance). Finally, the outcomes

were classified as Positive (the use of the ThinkLet changed the outcome of the team in a positive way),

Negative (the use of the ThinkLet changed the outcome of the team in a negative way) and Neutral (the

use of the ThinkLet did not change the outcome in any way).

74

Table 5. ThinkLets vs. Outcomes

Team Observation
Influence Model

Variables
Severity Level Thinklets Outcome

T1 1
Internal Communication Medium Playing Dumb Positive

Internal Coordination Medium Playing Dumb Positive

T1 2
Client Communication High I do not know what I want Positive

Client Coordination High Client Meeting Positive

T1 3 Internal Coordination High No notes Positive

T1 4
Internal Communication Medium Lone wolf Positive

Internal Coordination Medium Team hijacking Positive

T1 5
Internal Communication Medium I do what I'm told Positive

Internal Motivation Medium I do what I'm told Positive

T1 6
Client Coordination Low Change Again Positive

Client Motivation Low Change Again Positive

T1 7 Internal Coordination Low Paralysis Analysis Positive

T1 8
Client Coordination High Client Availability Negative

Client Motivation High Client Availability Negative

T1 9 Internal Motivation Low Nobody responsible Neutral

T1 10

Internal Communication High Ego Positive

Internal Coordination High Why to Decide Positive

Internal Motivation High Team hijacking Positive

T1 11 Internal Motivation Low Bad Decisions Negative

T1 12 Others Low Neutral

T2 13 Internal Coordination High "I" not "us" Positive

T2 14
Client Communication High What problem Positive

Internal Motivation High What problem Positive

T2 15 Internal Communication Medium No sell Positive

75

Team Observation
Influence Model

Variables
Severity Level Thinklets Outcome

Internal Coordination Medium No sell Positive

T2 16 Internal Coordination Medium Why bother to answer Positive

T2 17 Client Communication High Us vs. Them Positive

T2 18
Internal Coordination Medium Client Decision Positive

Internal Coordination Medium I decide Positive

T2 19 Internal Coordination Medium I do in my own time Positive

T3 20 Client Communication High You did what I asked but it is not what I need Positive

T3 21
Internal Coordination High Ego Positive

Internal Motivation High Bad Decisions Positive

T3 22 Internal Coordination Medium I do in my own time Positive

T3 23

Internal Communication Medium No sell Neutral

Internal Coordination Medium No notes Neutral

Internal Motivation Medium No sell Neutral

T3 24 Internal Coordination Medium Where are we Positive

T3 25 Client Coordination Medium Change Again Positive

T3 26 Internal Coordination Low Stage Fright Positive

T4 27
Internal Communication High I do what I think is needed Positive

Internal Coordination High I do what I think is needed Positive

T4 28 Internal Communication High Stage Fright Positive

T4 29
Client Communication Medium I know what I want but I do not know why Positive

Internal Motivation Medium I know what I want but I do not know why Positive

T4 30 Client Communication Medium Client Communication Positive

T4 31
Internal Communication High Where are we Positive

Internal Coordination High Where are we Positive

T4 32 Internal Coordination Medium I do not belong Negative

76

Team Observation
Influence Model

Variables
Severity Level Thinklets Outcome

Internal Motivation Medium I do not belong Negative

T4 33 Internal Coordination Medium I only know my belly button Positive

T4 34 Client Coordination Low What problem Positive

T4 35 Internal Motivation Medium I do what I am told nothing else Neutral

T5 36
Internal Communication Medium I only know my belly button Positive

Internal Coordination Medium I only know my belly button Positive

T5 37
Client Communication Low Client Availability Positive

Client Motivation Low Client Availability Positive

T5 38 Internal Coordination Medium Where are we Positive

T5 39
Internal Communication High Knowledge of a few Positive

Internal Coordination High Knowledge of a few Positive

T5 40
Internal Communication Medium Last Minute Delivery Negative

Internal Coordination Medium Last Minute Delivery Negative

T5 41 Internal Coordination Low I do not belong Neutral

T5 42
Client Communication Medium You did what I asked but it is not what I need Positive

Client Coordination Medium You did what I asked but it is not what I need Positive

T5 43 Internal Motivation Low Nobody responsible Positive

T5 44
Client Motivation Medium Client Commitment Positive

Client Coordination Medium Client Commitment Positive

T6 45
Internal Communication Medium Where are we Positive

Internal Coordination Medium Where are we Positive

T6 46
Client Communication High I did not say that Positive

Internal Coordination High I did not say that Positive

T6 47 Internal Coordination Medium Stage Fright Neutral

T6 48 Internal Communication High I only know my belly button Positive

77

Team Observation
Influence Model

Variables
Severity Level Thinklets Outcome

Internal Coordination High I only know my belly button Positive

T6 49 Client Coordination High I do what I think is needed Positive

T6 50

Internal Coordination High Us vs. Them Neutral

Internal Motivation High Us vs. Them Neutral

Client Motivation High Us vs. Them Neutral

T6 51 Client Motivation Medium I do not belong Neutral

T7 52
Internal Communication Medium Meetings Absence Positive

Internal Coordination Medium Playing Dumb Positive

T7 53
Internal Coordination High Team hijacking Positive

Internal Motivation High Team hijacking Positive

T7 54 Client Communication Medium Them vs. Us Positive

T7 55
Internal Communication Medium I only know my belly button Positive

Internal Coordination Medium I only know my belly button Positive

T7 56
Client Communication Medium I do what I think is needed Positive

Client Coordination Medium I do what I think is needed Positive

T7 57 Internal Motivation High
Ego Positive

I decide Positive

T7 58 Others High Positive

78

78

Looking at the outcomes it can be seen that from the 58 observations made, 46 of them had a

positive outcomes (79%), 4 of them a negative outcome (7%) and 8 of them had a neutral outcome

(14%). Negative outcomes were found in three different teams, neutral outcome in 5 teams, and in 2

teams we only found positives outcomes. Table 6 summarizes this.

Table 6. Obtained Results

Upon analysis of the ThinkLets we see that ThinkLets were used 90 times during the research;

the team that used the most ThinkLets, used 19, the team that used less ThinkLets used 10, and the

overall average use of ThinkLets was almost 13. The ThinkLet most used “I only know my belly button”, 7

times; “Where are we”, 6 times; “I do what I think is needed”, 5 times; and “Client availability”, “I do not

belong”, “No sell”, “Team hijacking” and “Us vs. Them”, 4 times each.

Performing a more detailed analysis of the Negative Outcome show us that sometimes no matter

what the team does or what ThinkLet is used, there are some problems that concern teams but cannot

be changed unless the team is changed; for example:

 Observation 8, Team 1 – The problem was that the client was not willing to commit to the

project as they should be. The technical counterpart of the team changed and the new one

did not have a clue of what the team was doing. The team asked the client for a possible

users list of the software. The team used the Client Availability” ThinkLet, which consists of

the practices: Trust, Retrospectives, Real Customer Involvement, Sit Together, Informative

Workspace. The team carried out the tasks and insisted on it by the end of the project the

client still had not delivered the possible users list and the software was delivered without a

final users test.

 Observation 11, Team 1 – One team member started to act as leader and started to make

decisions for the team, but the team did not agree on the decisions made. The team used

the “Bad Decisions” ThinkLet, which consists of: Trust, Planning Game, Stand Up Meetings,

79

79

Retrospectives and Decision Making. The team started to use the ThinkLet and in the

beginning it helped, but as the time passed and they started to have problems with the

client, the team started to become unmotivated and allowed this team member to take

charge of the team again.

 Observation 32, Team 4 – The Problem was that the team was not a team; they have two

people working completely separate from the others. So they used the ThinkLet “I do not

belong” which consisted of practices: Trust, Sit Together, Peer Activities and Energized

Work. As the team started using this practices they were able to slightly improve the

participation of one of the team members with problems. The more they pushed, the

further away went the other member. Anything that the team did to include him in the

team made him feels less integrated and more alone. This team member has a strong

introspective and shy personality, so most efforts only served to place him at a distance.

 Observation 40, Team 5 – The team failed to conduct an early risk evaluation before

transferring from developing to production servers. Trying to correct the problem they used

the ThinkLet “Last Minute Delivery”, which consisted of: Planning Game, Iteration Planning,

Estimating, Stand Up Meeting and Slack. The outcome was negative at the end, because the

team started to use the ThinkLet too late and there was not enough time to change

everything.

An analysis of a few Neutral Outcomes:

 Observation 41, Team 5 – There is a team member that did not communicate with the team

and did not express his opinion. The ThinkLet “I do not belong was used, which consisted of:

Trust, Sit Together, Peer Activities, Energized Work, Team Building. The outcome was

Neutral because this team member has a particular personality that does not let him

express himself and be an effective team member.

 Observation 50, Team 6 – The client hit verbally the team pretty hard, which sparked a

phase of being unmotivated within the team. The team started to protect itself from further

client attacks. To address this issue the team used the ThinkLet “Us vs. Them”, which

consisted of the practices: Vision, Real Customer Involvement and Team Building

Workshops. The outcome was neutral because the team was not capable of overcoming the

fear of a possible new client outburst.

80

80

7 Discussion and Expected Contributions

In this thesis two hypotheses were stated. The Hypothesis 1 states that there is a short list of

variables that systematically influences teamwork in software projects conducted by small and novice

development teams (5-7 developers). In the proposed Influence Model (Chapter 4), three variables were

considered: Communication, Coordination and Motivation from two different points of view: Internal

and with the Client. In the experimental observations we found that the majority of issues affecting

teamwork were related to these variables.

The Hypothesis 2 states that thinklets can be used to help mitigate the recurrent situations

negatively affecting the teamwork. During the experimental observations a catalogue of the issues was

developed. At the same time extensive research on them was done to try to look for patterns that had

been addressed before, regardless of the context that had been previously addressed. Therefore a list of

thinkLets was created along with the practices that can be used to mitigate the recurrent problem.

Analysing our results we saw to see that the majority of the problems were mitigated with the use of the

ThinkLets.

The results obtained up to now are well aligned with the two hypotheses raised in this thesis. It is

possible to conclude that the idea of creating a framework of thinkLets is feasible to help improve

teamwork in computer science teams in Academia.

However, this thesis still has some limitations, mainly regarding the context and the number of

people being researched. The observations performed covered just one course of a University, and today

it is well known that people from different cultures, ages, and professional fields work differently. Also

the University context of the observations is different from the context of a real company. In a real

company someone can be fired which is a pressure point that can be used to make people behave as

they are supposed to, but in the University this pressure point does not work so smoothly.

We expect that this work will help four groups of people: students, course instructors, software

industry people and the software engineering scientific community. Students often complain about the

relevance that a course will have in their future working life. With that in mind, a course designed with

ThinkLets, with one of its main goals being to teach teamwork through experimentation, will expose

students directly to the reality of the companies and will help them learn how to deal with it.

81

81

The instructor will have the chance to teach in a less conventional way, challenging his teaching

capacities and establishing a more direct and closer communication channel between students and

instructor. There will be more motivated students and consequently better results among them by the

end of the course.

The software industry will find professionals better prepared for teamwork. On the other hand

the industry will be able to apply the thinkLets designed in this work, in order to improve teamwork

inside software organizations. Finally, the software engineering scientific community will have a new tool

to help train and motivate students to conduct teamwork. To the best of my knowledge, there are no

reported solutions that use thinkLets to promote or enhance teamwork; therefore this thesis work

proposes an innovative idea to deal with the stated problem (Jehn, Nothcraft and Neale 1999).

82

82

8 Conclusions and Future Work

Human factors have shown to have a great impact on most process conducted by people, an also

in software development. However they are still overlooked by researchers of this area. One of the most

important human centred activities involved in the software process is the teamwork.

In Computer Science, particularly in software engineering, effective teamwork can mean the

difference in the outcome of a development project. Educational institutions offering Computer Science

programs must accept the responsibility to prepare their graduate students not only in technical issues,

but also in soft skills that allow them to work efficiently in their professional career.

Trying to address this problem we have stated in this thesis that there exists a short list of

variables that systematically influence teamwork in software projects conducted by small and novice

development teams. We have also stated that ThinkLets (activity or process that produces predictable

results to deal with recurring collaboration problems) could be used to mitigate recurrent situations that

affect the teamwork.

To do so, first we performed an extensive literature review and direct observation of several

development teams of the Course CC51A: Software Engineering. Based on the results of such activities

we identified a preliminary list of three variables that systematically influence teamwork:

communication, coordination and motivation. It included the internal work and also with the client.

Afterward the course CC61A -Software Project was observed over two semesters in order to

check how suitable the preliminary influencing variables were. Based on these observations it was

possible to conclude that these variables were the most important ones, at least in the observed

scenario. The most recurrent team problems were found in the literature and consequently their

possible solution. The teams observed generated a list of problems and also a list of ThinkLets was

created and the practices were tested. An analysis of the data observed showed that the three variables

found were the most important ones and that the ThinkLets created were able to effectively mitigate the

negative situations affecting teamwork.

In the author´s opinion, this thesis is just the tip of the iceberg. The challenges in the human area

of software engineering are tremendous and the research being done is just beginning. This thesis did

not have the intention to cover every aspect of how to enhance teamwork in software projects in the

universities; it only shows a recurring fraction. However it is a beginning.

83

83

This work has to be extended to other Universities (possible to other cultural contexts) to try to

evaluate the adherence of the ThinkLets to other instructional scenarios. The work could then be

extended to evaluate the adherence in a real software company.

I hope to see this emerging area in Computer Science grow, because the major problems found

in software projects today are about people. Now we have the challenge of helping people to work

better as team members, so they can fully contribute in their work make better software and also to

improve their work environment.

84

84

9 References

A.G., GECHS Softwares y Servicios Chile. www.gechs.cl. GECHS. 2010.

http://bligoo.com/media/users/0/32814/files/GECHS-6o_informe_diagnostico.pdf (accessed 5 18, 2011).

ABET. ABET. 7 1, 2010. http://www.abet.org (accessed 5 17, 2011).

Abrahamsson, P., O. Salo, J. Ronkainen, and J. Warsta. Agile Software Development Methods. Technical

Research Centre of Finland, Technical Report Review and Analysis, Espoo, Finland: VTT Publications,

2002, 478.

Al-Kilidar, H., P. Parkin, A. Aurum, and R. Jeffery. Evaluation of Effects of Pair Work on Quality of Designs.

Software Engineering Conference. IEEE, 2005. 78-87.

Amato, C. H., and L. H. Amato. Enhancing Student Team Effectiveness: Application of Myers Briggs

Personality Assessment in Business Courses. Journal of Marketing Education 21 (2005): 41-51.

Aranda, J. A Theory of Shared Understanding for Software Organizations. Doctorate Thesis. University of

Toronto, 2010.

Aranda, J., S. Easterbrook, and G. Wilson. Requirements in the Wild: How Small Companies Do It. 15th

IEEE Requirements Engineering Conference. IEEE, 2007. 39-48.

Bagert, D. J., T. B. Hilburn, M. Lutz, M. McCracken, and S. Mengel. Guidelines for Software Engineering

Education - Version 1.0. Technical Report CMU/SEI-99-TR-032 (Citeseer), 1999.

Bareisa, E., E. Karciauskas, E. Macikenas, and K. Motiejunas. Research and Development of Teaching

Software Engineering Process. International Conference in Computer Systems and Technologies. ACM,

2007. 75.

Barr, T. F., A. L. Dixon, and J. B. Gassenheimer. Exploring the Lone Wolf Phenomenon in Student Teams.

Journal of Marketing Education (SAGE) 27, no. 1 (2005): 81.

Bass, B. M. Individual Capability, Team Performance and Team Productivity. Human Performance and

Productivity Journal, 1980: 179-232.

85

85

Briggs, R. O., G. J. De Vreede, J. F. Nunamaker Jr, and D. Tobey. ThinkLets: Achieving Predictable,

Repeatable Patterns of Group Interaction with Group Support Systems. 34 Annual Hawaii International

Conference on System Sciences. Hawaii: IEEE, 2001. 9.

Canfora, G., A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio. Evaluating Performances of Pair

Designing in Industry. Journal of Systems and Software (Elsevier) 80, no. 8 (2007): 1317-1327.

Carbon, R., M. Lindvall, D. Muthing, and R. Costa. Integrating Product Line Engineering and Agile

Methods: Flexible Design Up-front vs. Incremental Design. International Workshop on APLE. IEEE, 2006.

Carver, J., L. Jaccheri, S. Morasca, and F. Shull. Issues in Using Students in Empirical Studies in Software

Engineering Education. 9th International Software Metrics Symposium (METRICS'03). JSTOR, 2003. 239-

249.

Cockburn, A. A Human-Powered Methodology for Small Teams. Addison Wesley, 2004.

Chong, J., and T. Hurlbutt. The Social Dynamics of Pair Programming. ICSE'07 - International Conference

of Software Engineering. IEEE, 2007.

Cohn, M. Succeeding with Agile: Software Development Using Scrum. Boston: Addison Wesley, 2009.

Cohn, M. User Stories Applied: for Agile Software Development. Addison Wesley, 2004.

Demirors, E., G. Sarmasik, and O. Demirors. The Role of Teamwork in Software Development Microsoft

Case Study. 23rd Euromicro Conference: New Frontiers of Information Technology. IEEE, 1997. 129-133.

Denning , P. J. Educating a New Engineer. Communications of the ACM, 12 1992: 82-97.

Dixon, A. L., and J. B. Gassenheimer. Identifying the Lone Wolf: A Team Perspective. Journal of Personal

Selling and Sales Management, no. 23 (2003): 205-219.

Dommeyer, C. J. Using the Diary Method to Deal with Social Loafers on the Group Projects: Its Effects on

Peer Evaluations. Group Behaviour and Attitudes. Journal of Marketing Education, no. 29 (2007): 175-

188.

Eisenhardt, K. M., and C. Schoonhoven. Organizational Growth: Linking Founding Team, Strategy,

Environment and Growth among US. Administrative Science Quarterly 35, no. 3 (1990): 504-529.

86

86

Fraser, G., and F. Wotawa. Test-Case Prioritization with Model-Checkers. International Multi Conference:

Software Engineering. ACTA, 2007. 267--272.

Gehrke, M., et al. Reporting About Industrial Strength Software Engineering Courses for Undergraduates.

24th International Conference on Software Engineering. ACM, 2002. 395-405.

George, B., and L. Williams. An Initial Investigation of Test Driven Development in Industry. ACM

Symposium on Applied Computing. ACM, 2003. 1135-1139.

Giraldo, F. D., C. Z. Collazos, S. F. Ochoa, and S. Zapata. Teaching Software Engineering from a

Collaborative Perspective: Some Latin-American Experiences. 2010 Workshops on Database and Expert

Systems Applications. IEEE, 2010. 97-110.

Gladstein, D. L. Groups in Context: a Model of Task Group Effectiveness. Administrative Science

Quarterly (JSTOR) 29 (1984): 499-517.

Goodpasture, J. C. Project Management the Agile Way: Making It Work in the Enterprise. J. Ross

Publishing, 2009.

Gorla, N., and Y. W. Lam. Who Should Work with Whom? Building Effective Software Project Teams.

Communications of the ACM, 2004: 79-82.

Hackman, J. R. Groups that Work (and those that Don't): Creating conditions for effective teamwork. San

Francisco: Jossey-Bass, 1990.

Hackman, J. R., and R. Wageman. A Theory of Team Coaching. Academy of Management Review (JSTOR)

30 (2005): 269-287.

Hawthorne, M., and E. Dewayne. Software Engineering Education in the Era of Outsourcing, Distributed

Development and Open Source Software: Challenges and Opportunities. 27th International Conference

on Software Engineering (ICSE). Saint Louis: ACM, 2005. 633-644.

Hayes, S., and M. Andrews. An Introduction to Agile Methods. Pace University. 2006.

http://csis.pace.edu/~marchese/CS616/Agile/IntroToAgileMethods.pdf (accessed 09 06, 2011).

Hernandez, J. Universidad Adolfo Ibañez. Escuela de Psicologia. Work Under Pressure as Labor Mobilizing

(In Spanish). 2010. http://www.uai.cl/mundo (accessed 10 17, 2010).

87

87

Hibbs, C., S. Jewett, and M. Sullivan. The Art of Lean Software Development: A Practical and Incremental

Approach. Boston: O'Reilly, 2009.

Hietala, P., K. Koivunen, and E. Ropo. Analysis of Student Decision-Making in Online Collaboration .

Journal of Information Technology Impact (Loyola) 4, no. 2 (2004): 99-120.

Hilburn, T. B., and D. J. Bagert. A Software Engineering Curriculum Model. ASEE Annual Conference. IEEE,

1999. 12A4-6.

Hoegl, M., and H. G. Gemuenden. Teamwork Quality and the Success of Innovative Projects: A

Theoretical Concept and Empirical Evidence. Organization Science (INFORMS) Vol 12, no. 4 (2001): 435-

449.

Humphrey, W. S. Managing Technical People: Innovation, Teamwork and the Software Process. Boston:

Addison-Wesley Longman Publishing Co., 1996.

Humphrey, W., and W. Tomas. Reflection on Management: How to Manage your Software Projects, your

Teams, your Boss and Yourself. Boston: Pearson Education, 2010.

Huo, M., J. Verner, L. Zhu, and M. A. Babar. Software Quality and Agile Methods. Computer Software and

Applications Conference. IEEE, 2004. 520-525.

Iacoca, L., and W. Novak. Iacoca: An autobiography. New York: Bantam Books, 1984.

Jazayeri, M. The Education of a Software Engineer. 19th Automated Software Engineering Conference.

IEEE, 2004. 16-27.

Jehn, K. A., G. B. Nothcraft, and M. A. Neale. Why Differences Make a Difference: A Field Study of

Diversity, Conflict and Performance in Workgroups. Administrative Science Quarterly (JSTOR) 44, no. 4

(1999): 741-763.

Kapp, E. Improving Student Teamwork in a Collaborative Project Based Course. (Heldref Publications) 57,

no. 3 (2009): 139-143.

Karhatsu, H., M. Ikonen, P. Kettunen, F. Fagerholm, and P. Abrahamsson. Building Blocks for Self-

Organizing Software Development Teams a Framework Model and Empirical Pilor Study. 2nd

International Conference on Software Technology and Engineering (ICSTE). IEEE, 2010. 290-297.

Kniberg, H., and M. Skarin. Kanban and Scrum: Making the Most of Both. InfoQ, 2010.

88

88

Kolfschoten, G. L., R. O. Briggs, G. J. De Vreede, P. Jacobs, and J. H. Appelman. A Conceptual Foundation

of the Thinklet Concept for Collaborating Engineering. International Journal of Human-Computer Studies

(Elsevier) 64, no. 7 (2006): 611-621.

Korkala, M., P. Abrahamsson, and P. Kyllonen. A Case Study of the Impact of Customer Communication

on Defects in Agile Software Development. Agile Conference. IEEE, 2006.

Koslowski, S. W., and D. R. Ilgen. Enhancing the Effectiveness of Work Groups and Teams. Psychological

Science in the Public Interest (SAGE) 7, no. 3 (2006): 77-124.

Kozlowski, S. W. J., and B. S. Bell. Work Groups and Teams in Organizations. Handbook of Psychology

(Wiley) 12 (2003): 333-375.

Larman, C. Agile & Iterative Development - A Manager's Guide. Boston: Addison Wesley, 2007.

Lingard, R. W. Teaching and Assessing Teamwork Skills in Engineering and Computer Science. Journal of

Systemics, Cybernetics and Informatics 18, no. 1 (2010): 34-37.

Lutz, B. Linguistic Challenges in Global Software Development: Lessons Learned in an International SW

Development Division. Global Software Engineering. IEEE, 2009. 249-253.

Mathieu, J., M. T. Maynard, T. Rapp, and L. Gilson. Effectiveness Effectiveness 1997-2007: A Review of

Recent Advancements and a Glimpse into the Future. Journal of Management (SAGE) 34, no. 3 (2008):

410.

McDonough III, E. F., and D. Cedrone. Meeting the Challenge of Dispersed Team Management. Research

& Technology Management 43 (July-August 2000): 12-17.

Meister, D. Behavioural Foundations of System Development. 2nd Edition. J. Wiley, 1985.

Morgenson, F. P., L. D. Aiman-Smith, and M. A. Campion. Implementing Work Teams: Recommendations

From Organizational Behaviour and Development Theories. Advances in Interdisciplinary Studies if Work

Teams. 4 (1997): 1-44.

Noor, M. A., P. Grunbacher, and R. O. Briggs. A Collaborative Approach for Product Line Scoping: A Case

Study in Collaborative Engineering. 25th International Multi-Conference Software Engineering.

Innsbruck: Springer, 2007. 69-83.

Nordberg III, M. E. Managing Code Ownership. IEEE Software (IEEE), 2003: 26-33.

89

89

Page, D., and J. G. Donelan. Team-Building Tools for Students. The Journal of Education for Business 78,

no. 3 (2003): 125-128.

Paris, C. R., E. Salas, and J. A. Cannon-Bowes. A Teamwork in Multiperson Systems: a Review and

Analysis. Ergonomics (Taylor & Francis) 43, no. 8 (2000): 1052-1075.

Parker, G., and R. Hoffman. Meeting Excellence: 33 Tools to Lead Meetings that Get Results. Jossey-Bass,

2006.

Patit, J. M., and D. Wilemon. Creating High-Performing Software Development Teams. R&D Journal

(Wiley Online Library) 35, no. 4 (2005): 375-393.

Pfaff, E., and P. Huddleston. Does it Matter if I Hate Teamwork? What Impacts Student Attitudes Toward

Teamwork. Journal of Marketing Education 25, no. 1 (2003): 37.

Rising, L., and E. Derby. Singing the Songs of Project Experience: Patterns and Retrospectives. The Journal

of Information Technology Management 16, no. 9 (2003).

Robillard, P. N. Teaching Software Engineering Through a Project-Oriented Course. 10th CSEE. Virginia

Beach: IEEE, 1996. 85.

Ruhe, G., and M. O. Saliu. The Art and Science of Software Release Planning. IEEE Software (IEEE), 2005:

47-53.

Ryan, R. M., and E. L. Deci. Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.

Contemporary Educational Psychology (Elsevier) 25, no. 1 (2000): 54-67.

Safizadeh, M. H. The Case of Workgroups in Manufacturing Operations. California Management Review

33 (1991): 61-82.

Salas, E., K. C. Stagl, and C. S. Burke. 25 Years of Team Effectiveness in Organizations: Research Themes

and Emerging Needs. International Review of Industrial and Organizational Psychology 19 (2004): 47-91.

Schweiger, D. M., and W. R. Sandberg. The Utilization of Individual Capabilities in Group Approaches to

Strategic Decision Making. Strategic Management Journal (Wiley Online) 10 (1989): 31-43.

Schweiger, D., and W. Sandberg. The Utilization of Individual Capabilities in Group Approaches to

Strategic Decision Making. Strategic Management Journal (Willey Online) 10, no. 1 (1989): 31-43.

90

90

Sfetsos, P., L. Angelis, and I. Stamelos. Investigating the Extreme Programming System - An Empirical

Study. Empirical Software Engineering (Springer), 2006: 269-301.

Sharp, H., H. Robinson, and M. Petre. The Role of Physical Artefacts in Agile Software Development: Two

Complimentary Perspectives. Interacting with Computers (Elsevier) 21, no. 1 (2009): 108-116.

Shenhar, A. J., and D. Dvir. Long and Short Term Success Dimensions in Technology-Based Organizations.

Handbook of Technology Management (McGraw Hill), 1996: 32.1-32.15.

Shore, J., and S. Warden. The Art of Agile Development. 2nd. Edition. O'Reilly, 2008.

Simmons, D. B. Software Engineering Education in the New Millennium. 30th Annual International

Computer Software Applications Conference - COMPSAC'06. IEEE PRESS, 2006. 46-47.

Teasley, S. D., L. A. Covi, M. S. Krishman, and J. S. Olson. Rapid Software Development Through Team

Collocation. Transactions on Software Engineering (IEEE) 28 (2002): 671-683.

Tripp, L. IEEE Standards Collection: Software Engineering Standard 610. Standard, Institute of Electrical

and Electronic Engineers, IEEE, 1994.

Trytten, D. A. A Design for Team Peer Code Review. SIGCSE. ACM, 2005. 455-459.

Tvedt, J. D., R. Tesoriero, and K. A. Gary. The Software Factory: Combining Undergraduate Computer

Science and Software Engineering Education. 23rd International Conference on Software Engineering.

IEEE, 2001. 633-642.

Van Eerd, W. Procrastination: Self-Regulation in Initiating Aversive Goals. Applied Psychology (Wiley

Publisher) 49, no. 3 (2000): 372-389.

Wellington, C. A., T. Briggs, and C. D. Girard. Examining Team Cohesion as an Effect of Software

Engineering Methodology. 2005 Workshop on Human and Social Factors of Software Engineering. ACM,

2005. 1-5.

Wellington, C. A., T. Briggs, and C. D. Girard. Examining Team Cohesion as an Effect of Software

Engineering Methodology. Workshop on Human and Social Factors of Software Engineering. ACM, 2005.

1-5.

Whitten, N. Managing Software Development Projects. New York: John Wiley & Sons, 1995.

91

91

Wikipedia. Wikipedia. 4 21, 2011. http://en.wikipedia.org/wiki/Teamwork (accessed 5 17, 2011).

Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. Strengthening the Case for Pair-Programming.

Software IEEE (IEEE) 17, no. 4 (2000): 19-25.

Wohlin, C., P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. Experimentation in Software

Engineering. Norwell: Kluwer Academic Publishers, 2000.

Zika-Viktorsson, A., and A. Ingelgard. Reflecting Activities in Product Developing Teams: Conditions for

Improved Project Management Process. Research in Engineering Design (Springer) 17, no. 2 (2006): 103-

111.

92

92

Appendix

In this Appendix I will describe in more detail how the Observations were done in the course

CC61A – Software Project.

The teams have an assigned time and room to do the meetings, each team had a software

engineering instructor and the course had a professor who supervised everything. All the meetings

happened in the same room and at the same time. The software-engineering instructors are professors

or professionals with large experience in software engineering projects; the majority of them are used to

use the agile approach for developing software. Their experience in projects is used to help the teams to

reach the goal of finishing successfully their project.

A colleague and I did all the observations, we divided the teams according to their position, and

normally each one of us had two different teams to observe. We always sited in a certain distance of the

teams and refrained ourselves of participating in any of the meetings, our position was always of

listening and taking notes, since any intervention from us could affect the development of the team. We

took online notes from the meetings recording their behavior towards a topic, the problems they found,

the observations made by the instructors and their response to that; in short we took note of everything

they did in this 1.5-hour meetings they had every week.

During these meetings the software engineering instructor always started asking them how was

the week, what were the problems they found and what happened with the problems they discussed the

previous meetings. The instructor sometimes asked the team what they thought about the impact that a

particular problem could have on their project, so this information became our severity level. When he

asked about past problems, they always asked if it was solved, if they found a solution or if they used the

solution he proposed, so this information was our outcome. And when a problem was identified by the

instructor or by the team, they were considered a thinkLet.

	Abstract
	Resumen
	Acknowledgement
	1 Introduction
	1.1. Problem to Address
	1.2. Work Hypotheses
	1.3. Objectives
	1.4. Methodology
	1.5. Structure of the Thesis Document

	2 Related Work
	2.1 Team and Teamwork
	2.2 Teamwork and Computer Science Education
	2.3 ThinkLets

	3 Preliminary Identification of Influencing Variables
	3.1 Literature Review
	3.2 Observation of the CC51A Course
	3.3 Preliminary Validation

	4 Recommended Practices
	4.1 Thinking Practices
	4.2 Collaborating Practices
	4.3 Releasing Practices
	4.4 Planning Practices
	4.5 Developing Practices

	5 Influence Model
	5.1 Communication
	5.1.1 Internal Communication
	5.1.2 Client Communication

	5.2 Coordination
	5.2.1 Internal Coordination
	5.2.2 Client Coordination

	5.3 Motivation
	5.3.1 Internal Motivation
	5.3.2 Client Motivation

	5.4 Correspondence Matrix

	6 Experimental Results
	6.1 Experimentation Scenario
	6.2 Obtained Results

	7 Discussion and Expected Contributions
	8 Conclusions and Future Work
	9 References
	Appendix

