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Resumen

En esta tesis doctoral se construyen soluciones para ecuaciones diferenciales parciales elipticas
con no-linealidades exponenciales en el toro plano. La motivacion proviene de ecuaciones de tipo
Liouville en el estudio de la teoria de vértices de Chern-Simons periédicos.

En el primer capitulo mostramos el problema de vértices de Chern-Simons periédicos, men-
cionando algunos resultados conocidos y deducimos su relacién con la ecuacion de campo medio
(mean field equation). Mencionamos los resultados obtenidos para esta ecuacién. Para una
ecuacién de tipo Liouville con una fuente singular se menciona el resultado conseguido.

El segundo capitulo recopila algunos elementos que serdan usados en los capitulos posteriores.
Estos son nociones de valores criticos, la funcion de Green para el laplaciano en el toro y la
ecuacion de Liouville.

En el tercer capitulo construimos soluciones para la ecuacién de campo medio. A través de
una reduccién de Lyapunov-Schmidt aseguramos la existencia de una familia de soluciones que
se concentran en puntos distintos del dominio, los cuales son caracterizados por un funcional en
dimensién finita. En particular, recuperamos un resultado de Chen y Lin. Ademés, deducimos
el mismo resultado bajo una condicién de punto critico més débil.

En el cuarto capitulo realizamos una construccién andloga para una ecuacion de tipo Liouville
con una fuente singular. Bajo la condicion que el peso de la fuente sea suficientemente grande
aseguramos la existencia de una familia de soluciones que se concentran en un niimero de puntos
del dominio, menor estricto que el peso de la fuente mas uno. Estos puntos resultan ser distintos
entre si y distintos del punto donde esta ubicada la fuente.
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Outline

This dissertation is organized as follows

Chapter 1: In first chapter, we present the self-dual Chern-Simons-Higgs vortex equation on
a flat two-torus. We mention some known results. Also, we show its relation with the mean field
equation in the existence of non-topological type solutions. Motivated by this fact, we mention our
results for mean field equation and compare with some previous results. A result for a Liouville
type equation on the flat two-torus with a singular source is present at the end of this chapter.
For a more complete description, we refer the reader to corresponding chapters.

Chapter 2: This chapter is concerning to some topics, which will be useful in the sequel
chapters. We present the notions of critical value, the Green’s function and the Liouville equation.

Chapter 3: Here, we study the mean field equation on a flat two-torus with periodic boundary
conditions. By a “Lyapunov-Schmidt” reduction we have re-obtained the existence of blowing up
solutions due to C.-C. Chen and C.-S. Lin. Moreover, under weaker non-degeneracy conditions
used by Chen and Lin, we are able to assure the existence of blowing up solutions. The blow
up points are characterized as critical points, satisfying some stability condition, of a finite-
dimensional functional. The results of this chapter were obtained in collaboration with Dr.
Pierpaolo Esposito at University of Rome III, in Rome, and Dr. Manuel del Pino at the University
of Chile, in Santiago, and are in progress.

Chapter 4: This chapter deals with an analogous construction for a Lioville type equation
with singular source. The assumption that the weight of the source is sufficiently large, allows
us the chance to conclude the existence of blowing up solutions with exactly m points of the
domain, different one from each other and from the source. The m should be less than the weight
plus one. These results, which are the most relevant part of this dissertation, were obtained in
collaboration with Dr. Manuel del Pino at the University of Chile, in Santiago, and are contained
in the research paper Singular Limits for Liouville-type equations on the flat torus, submitted for
publication in Calculus of Variation and Partial Differential Equations.
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Chapter 1

Introduction

In recent years the Chern-Simons vortex theory has been extensively studied for its possible
application to the physics of high critical temperature superconductivity (see Dunne [34] and
references therein). In the study of this theory, some problems can be proposed in terms of
elliptic partial differential equations with exponential nonlinearity. Sometimes called Liouville
type equation after [52]. Particularly, the self-dual Chern-Simons-Higgs vortex equation on a flat
2-torus €2 can be written as follows

1 u u L ] .
—Au= e (1—e")—4m ) ;1 n;bp,, in €, (L0.1)
U doubly periodic on 09,
where € > 0, a, 8 € C\ {0}, Im(5/a) > 0,
Q={z=sa+teC|0<s,t <1},

dp denote a Dirac mass in p, pj € Q, nj € IN, 5 =1,...,¢ and p; # pi if j # k. This problem
was proposed in [45, 46] in an attempt to explain superconductivity of type 2. Here, 2 > 0 is
the Chern-Simons parameter and the points p;, j = 1,...,£ are called vortices.

Observe that taking u = ug + v, (1.0.1) is equivalent to

—Ap = L guotv(] — guotvy _ M, in Q,
{ = ( )~ oy (1.0.2)

U doubly periodic on 09,
where ug is the unique function satisfying
47N ‘ .
—Aug = IWT\ —d4r Zj:l 10p; s in €,
uQ doubly periodic on 09,

Jouo=0

Z?:l nj = N and |Q] is the Lebesgue measure of 2. Note that if v is a solution of (1.0.2), then,

by integration over €2, we obtain

/ eUOTV(1 — U0ty = 47 Ne?. (1.0.3)
Q

2
/ (e“OH’ — 1) = @ — 47 NEe>.
o 2 4

Also, we have
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Thus, a necessary condition for (1.0.2) to admit a solution is that Q2| > 167 Ne2. Concerning the
asymptotic behavior of the solutions of (1.0.2) (for € > 0 small), we see that by the condition
(1.0.3), we are lead to expect two classes of solutions. Namely, those solutions v, satisfying:

et 51 ae inQ,ase—0 (1.0.4)
which, we are called of topological-type; and those satisfying:

et 50 ae inQ ase—0 (1.0.5)
called of non-topological-type.

Existence results have been shown in [6, 65] for an arbitrary number of prescribed vortices. It
is well-known [6] that there exists a constant e, > 0 satisfying || > 167 Ne2, such that if € > e,
then (1.0.2) has no solution, while if 0 < & < &, there are at least two solutions of (1.0.2). One of
which is the maximal solution, see [6], and the other one can be obtained through the min-max
variational method, see [65]. In fact, (1.0.2) admits a variational structure, in the sense that weak
solutions for (1.0.2) are the critical points of the following energy functional

1 1 47N
*W*:zéﬁm2+zﬁgﬁ&HMUQ+ﬂaQ% weH©Q),  (106)

where
H(Q) = {u € HL (IR?) | u is doubly periodic with periodic cell domain Q}.

Thus, the maximal solution is a local minimum for J. in H(2). Furthermore, as ¢ — 0, the
maximal solution tends to 0 uniformly in any compact subset of Q\ {p1,...,p¢}. Hence, the
maximal solution is of topological-type. But the second solution has a different asymptotic
behavior. For N > 3, it is proved in [22] that as ¢ — 0, the mountain pass solution blows up at
a point g # p;j for any j =1,...,¢. For N = 1, Tarantello showed in [65] that the mountain pass
solution does not blow up, while in the case N = 2, whether the mountain pass solution blows
up or not depends on whether a minimization problem has no minimizer. Indeed, define

I(u) = ;/Q |Vu|? — 87 log (/Qeuo+“>, (1.0.7)
Ez{ué%@)iéu:o}

The existence of bubbling solution for

and

—Av = 8% euotv(] — euotv) — %T', in Q, (1.08)
v doubly periodic on 09,
namely, equation (1.0.2) with N = 2, is related to the following minimization problem
inf{I(u) : ue E}. (1.0.9)

Nolasco and Tarantello [60] proved the following result:
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Theorem 1.0.1. There exists an g > 0 (32we3 < |Q]) such that for every 0 < & < &g problem
(1.0.8) admits a solution

Ve = We + Ce, with /wgzo
Q

for some constant c. satisfying cc — —o0 as € — 0. And up to subsequence, one of the following

holds
(a) if (1.0.9) is achieved, then w, — w in C9(Y) for any ¢ > 0 ase — 0, and w is a minimizer;

(b) if (1.0.9) is not achieved, then there exists a po € 2, satisfying up(po) = maxq ug and

euo +we

up+w —\(5p0’
er 0+ I3

in sense of measure as € — 0.

Also, there are several results concerning to problem (1.0.2) in [22, 24, 55, 56]. In [9, 10,
44, 61, 62|, many results are shown in the existence of planar Chern-Simons vortices which is
the equation (1.0.1) in the whole plane with an appropriate decay behavior at infinity instead of
doubly periodic conditions.

The mean field equation related to (1.0.9) is
Y 1 ) 0.10
— = _— i . 1.0.
v (fg ) (1.0.10)

Thus, if (1.0.9) is achieved, then w, converges to a solution w of (1.0.10) with A = 8x. In general,
namely for any N, equation (1.0.2) is related with the mean field equation as we will show next.
If v is a solution of (1.0.2) then writing v = w + ¢, where

1
/ w=20 and c=— / v,
0 12 Jo
we get the following identity

626/ e2(uotw) _ ec/ e L ArNe? = 0.
Q Q

2
(/ eu0+w> _ 167‘(‘N€2/ 62(u0+w) >0 (1.0.11)
0 Q

fQ etotw 4 \/(fQ euo+w)2 — 167w Ne2 fQ e2(uo+w)
- 2 fQ e2(uo+w) ’

The two possible choice of “plus” or minus sign in (1.0.12) is another indication for multiple
existence for (1.0.2). In [65], the topological-type solutions of (1.0.2) are characterized and satisfy
(1.0.12) with the “plus” sing. On the other hand, in order to find non-topological-type solutions
of (1.0.2), we should impose that (1.0.12) holds with the “minus” sign. Thus, denote c_(w) the
choice of (1.0.12) with the minus sign and observe that

Hence, necessarily,

and

eC

(1.0.12)

B 87 Ne?

o 2(ugtw) \
ewtw (14 [1—167rNe2da ") )
fQ < \/ (fg eu0+w)2

c—(w)

e




CHAPTER 1. INTRODUCTION

Hence, it holds that for any constant « € IR

c—(wta) _ —a cf(w).

e e e

Since Av = Aw and replacing e~ (*) in the equation (1.0.2), we will find non-topological type
solutions of (1.0.2) if we are able to solve the following problem
“Aw = E%euo—&—wﬁ;(w)(l _ 6uo—&-w-i—cf(w)) _ %7 in Q,
w doubly periodic on 09,

fﬂw:O.

Note that we have

ieuo-‘rw—i-c, (w)(l _ guotwte— (w)) _ 8w N etotw
52

n B 9 fQ k2e2(ugtw)
[, ot (1 + \/1 16w Ne (oear)?
87N g2 etotw

+ _ 21‘0 k282(u0+w)
fﬂ euotw <1 + \/1 16w Ne 7(&2 eu0+w)2

x 11—

Whence, as ¢ — 0, one naturally ends up with the mean field equation
ot _
—Aw == 4}5\[6%03—“) - %7 m Q?

w doubly periodic on 09,
Jow=0.

Namely, equation (1.0.10) with A = 47N. Let us observe that we could consider that e"° as a
function k, with £ > 0.

Motivated by the existence of non-topological solutions to problem (1.0.2), we have studied
two related elliptic partial differential equations with exponential nonlinearity. First, we have
addressed existence issues for mean field equations on a flat two-torus, and we believe that this
approach give us a way to carry out the existence of non-topological solutions of (1.0.2). On the
other hand, due to the presence of exponential nonlinearity and singular sources, we have studied
a Liouville type equation on the torus involving a singular source.

Second chapter is devoted to introduce some elements which will be useful in the sequel
chapters. These are the notions of critical value, which allow us to assure the existence of
solutions to considered problems. They apply to a functional which involve the Green’s function
which is also considered in this chapter. Due to the presence of exponential non-linearities, we
will review the Liouville equation, showing the main tools in the construction of approximations
of the solutions.

Third chapter is concerning to the problem

ke* 1
—Au= M\ ( — ) , 1.0.13)
kae” || (

in a flat two-torus with periodic boundary conditions, where A > 0, k is a C® non-negative, not
identically zero doubly periodic function and 2| is the measure of Q. By a “Lyapunov-Schmidt”
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reduction we have re-obtained the existence of blowing up solutions due to C.-C. Chen and C.-
S. Lin [18]. Moreover, under weaker non-degeneracy conditions of [18], we are able to assure
the existence of blowing up solutions. The blow up points are characterized as critical points,
satisfying some stability condition, of a finite-dimensional functional ¢,,, involving the function
k and the Green’s function of —A with respect to doubly periodic conditions on 0f). In fact,
taking £ = (&1,...,&n) we have that

pm(§) = =2 logk(&) = > G(&,&).
j=1 I#]

and G = G(z,y) satisfy
—A,G(,y) = 8wy — %‘, in ,
G(-,y) is doubly periodic on 02,

Jo G(z,y)dx = 0.
where 6, denote a Dirac mass in p € §2. Define the function H by

Let us observe that H(x, ) is constant for all x € Q, when  is a flat two-torus. An admissibility
condition in terms of k, the Green’s function G and its regular part H should be satisfied in an
appropriate region containing the critical points. That is,

V(&) =4y Ap;(&) #0, (1.0.14)

Jj=1

forall ¢ = (&1,...,&m) € D, where D C Q™ contains the critical points and the stability condition
take place, and where

p;(x) := k(z) exp <H(:c, &)+ Gla, &)>. (1.0.15)
I#]

Our approach allows us to know when either A — 8tm™ or A\ — 8mm~. Indeed, it should be
satisfied sgn(\ — 8mm) = sgnV (&) for all & € D. Stable critical points and non-trivial critical
values of ., give us the stability conditions on critical points enough to conclude the results.
The second one allows us to considered the case ¥ = 1. The solutions are constructed using
a family of solutions of the Liouville equation in IR?, suitable scaled, translated and projected
in order to have the boundary conditions. Solutions are found as a small perturbation of these
initial approximation. A linearization procedure leads to a finite dimensional reduction, where
the reduced problem corresponds to that of adjusting variationally the location of the concentra-
tion points and the high of the bubbles. Similarly to [27], we identify an extra element of the
approximate kernel, which introduces another parameter to be adjusted in the problem, related
to the high of the bubbles. An important element in the reduction procedure is the invertibility
of the linearized operator in suitable L*>°-weighted spaces. We remark that in case of the choice
k = e"0, the admissibility condition is not satisfy when N = 2m. An higher order expansion is
then needed in the study of existence of solutions to problem (1.0.10), which blow up at points
outside of the set {p1,...,ps}. We conjecture that a similar procedure could be used to address
the existence of non-topological solutions to problem (1.0.2).
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The fourth chapter is devoted to the Liouville equation on the torus with a singular source,
that is
—Au =" — g [ et + G — AnNGy, in Q,

u doubly periodic on 01, (1.0.16)

Jqu=0,

where p € Q and N > 0. We stress that in some sense, problem (1.0.16) is similar to (1.0.2), due
to the presence of exponential nonlinearity and the singular source. The assumption m < N + 1,
m € IN on the weight of the source, allows us the chance to conclude the existence of blowing
up solutions with exactly m points of €2, different one from each other and from p. Observe that
(1.0.16) is equivalent to

—Au = %k(x)e* — ﬁ Jo e2k(z)e"®) dz, in Q,
u doubly periodic on o, (1.0.17)
Jou=0

where k = eXp(—%G(',p)), so that k is positive everywhere except at = p and k(z) ~ |z —p
as r — p. By a “Lyapunov-Schmidt” reduction we have found conditions under which there
exists a family of solutions to (1.0.17), {uc}. such that

|2N
)

m
e2kes — 8r g dq; as € — 0 in measure sense.
i=1

These conditions are satisfied for the problem (1.0.16) whenever 1 < m < N + 1, yielding thus
the result. In particular, if k& € C?(Q) and infgk > 0 then such a family of solutions does
exist for any m > 1. Note that infq exp(—%G(-,p)) = 0. Similarly, as above in the problem
(1.0.13), the location of points g;, © = 1,...,m is characterized as a critical point of a functional
©m. The notion of non-trivial critical value gives us the chance to get the existence of blowing
up solutions of problem (1.0.16), where the concentration points are different from p. This fact
is analogous to the corresponding version of the Liouville equation on bounded domains with
Dirichlet boundary conditions shown in [31]. The solutions are constructed using a family of
solutions of the Liouville equation in IR?, suitable scaled and projected to make it up to a good
order for the boundary conditions. Solutions are found as a small additive perturbation of these
initial approximation. A linearization procedure leads to a finite dimensional reduction, where the
reduced problem corresponds to that of adjusting variationally the location of the concentration
point. An important element in the reduction procedure is the bounded invertibility of the
linearized operator in suitable L°*°-weighted spaces. We stress that here we only need to adjust
the location of blow up points.



Chapter 2

Preliminaries

In this chapter, we give some definitions and show some topics which we shall use in the
following chapters. For instance, we present the notions of critical value, the Green’s function
and the Liouville equation.

2.1 Critical values

In this section we will see two different notions of critical values. These are stable critical
value and non-trivial critical value.

Definition 2.1.1. Let S, 9Q and @ be compact subsets of a domain D. We will say that S links
Q via 9Q by homotopy in D if 0Q C Q, SNIQ =0 and v(1,Q) NS # O for any v € ', where

I''={yeC(0,1] xQ,D) | ~(0,-) =1Idg, ¥(t,-) = IdagVt € [0, 1]}.

Now, let us recall the following notion of stability of critical values introduced in [43] and used
also in [37]. Let F : D — IR be a C!-function. We say that:

Definition 2.1.2. cis a stable critical value of F' in D, if there exist compact subsets S, Q) and
Q of D such that S links Q via dQ by homotopy in D,

max F' < min F’
oQ S

and the set {z € D | ¢ —e¢ < F(x) < ¢+ ¢} is complete for some € > 0, where

¢ := inf max F'(v(1, x)).
inf max F(y(1,2))
An important consequence is that if C is a stable critical value of F' then any C' small
perturbation of F' has a critical value.

On the other hand, we also consider the role of non-trivial critical values of a functional ¢,,,
in existence of blowing-up solutions of considered problems in this thesis. Let 2" denote the
cross product of m copies of  and let Q C Q set we always assume non-empty. Let ¢ : D — IR
be a C!-function.

Definition 2.1.3. Let D be an open set in Q™ compactly contained in Q™ with smooth boundary.
We will say that o, links in D at critical level C relative to B and By if B and By are closed
subsets of D with B connected and By C B such that

sup pm(y) <C = inf sup pm(2(y)), (2.1.1)
y€Bo oel’ yeB
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where ¥(1,-) =, ¥ €T
I'={veC(0,1] x B,D) | ¥(0,-) =1dp, ¥(t,-)|B, = Idp, for all ¢t € [0,1]}
and for all y € 9D such that ¢,,(y) = C, there exists a vector 7, tangent to 9D at y such that

Vom(y) -7y #0. (2.1.2)

Furthermore, we call C a non-trivial critical level of ., in D.

Note that under these conditions a critical point § € D of ¢, with ¢,,(y) = C exists, as
a standard deformation argument involving the negative gradient flow of ¢, shows. Condition
(2.1.1) is a general way of describing a change of topology in the level sets {¢,, < ¢} in D taking
place at ¢ = C, while (2.1.2) prevents intersection of the level set C with the boundary. It is easy
to check that the above conditions hold if

inf p,(r) < inf @p(x), or supem,(zr)> sup pmn(x),
z€D €D z€D +€dD

namely the case of (possibly degenerate) local minimum or maximum points of ¢,,. The level C
may be taken in these cases respectively as that of the minimum and the maximum of ¢, in D.
These hold also if ¢, is C'-close to a function with a non-degenerate critical point in D.

This local notion of nontrivial critical value in (2.1.1)-(2.1.2) was introduced in [28] in the
analysis of concentration phenomena in nonlinear Schrédinger equations. And it was also used
in [31, 38].

2.2 Green’s function on the Torus

Given z € C it is possible define a function, say G*, which allows us to show an explicit formula
for the Green’s function. This function is the well-known Nerén’s function in the theory of elliptic
curves [49]. We denote e(z) = e*™*. See [21] for a proof.

Lemma 2.2.1. Let o, € C\ {0}, Im(8/«) > 0. The function G* defined by

\z|2—07z2/a_ N 6] )

2B —aB) 2o 12a

(e ()T (1 (25)) (1 (25)|

is both o and B periodic, namely, G*(z) = G*(z + a) = G*(z + B) for all z € IR? and satisfies

G*(z) :=Im (
(2.2.1)

11
— —1lo
27Tg

1
~AGT = Y e T IR?, /G*(m)d:c:O,
ze€al+B7 ‘ | Q2

where 6y is a Dirac mass at p € Q|Q| = Im(apB) is the area of the open cell

Q={z=s5a+tecC|0<s,t<1}.



2.2. GREEN’S FUNCTION ON THE TORUS

Note that G*(z) = G*(—%) for all z € C\ (aZ + BZ). Also, we can express this function in the
following form
= ——l — +H
G(2) = —5 o8 2| + 37 + H"(2)

where H* is an harmonic function in (C\ (aZ + fZ)) U {0}. Now, we observe that the Green’s
function satisfy G(z,y) = 87G*(x —vy), for z,y € Q. In fact, we can consider G(-,y) : Q\{y} - R
with y € Q. Furthermore, G(z,y) = G(y,x) for all 2,y € Q,  # y and we can express G in the
following form

G(z,y) = —4log|z — y| + H(z,y), (2.2.2)

where H(z,y) = IQ\ Tz — y|? + 87H*(z — y). Denote I the function given by I'(z) = —4log|z|.
Note that H satisfies

—A H(-,&) = ‘ in Q,
L(-—¢&+ H(-¢) doubly periodic on 99, (2.2.3)
JolP( =&+ H(, ] =0.

and

H(z,z)=—4lo ||+87r1m1§410g

il ()]

n=1

that is to say, H(z,z) = 8mH*(0) for all z € Q. Due to definition of H*, the function H has a
singularity in (z,y) if x —y € (aZ + BZ) \ {0}.

Remark 2.2.1. An important fact is that for any ¢ € C%(Q)) we have the following integral
representation formula

1 1 1 Oo(y) 0G(z,y)
o) = [ o= 5 [ Gemavmays o [ [own 5 - o) 240 da((f; .

for all z € Q.

Let us introduce the projection operator P into the doubly periodic functions with zero
average: let Pu be the unique solution of

APu = Au — ﬁ fQ Au, in €,
Pu doubly periodic on 99, (2.2.5)
fQ Pu=0.

Using the Green’s function, we know that Pu has the following integral representation

—iﬁ /Q Gz, ) Auly) dy. (2.2.6)

This operator will be used in order to satisfy the boundary conditions in the construction of an
ansatz for solutions.



2.3. LIOUVILLE EQUATION

2.3 Liouville equation

Our main goal is to study elliptic equations involving exponential nonlinearities. In order to
analyze such elliptic problems, we review the Liouville equation which provides a “basic cell” to
construct approximations of a solution in both considered problems.

To this purpose, identify IR? with the complex plane C by means of transformation (z,y) €
IR? — z = x + iy € C. Hence, for any holomorphic function f = f(z) in C there holds

()12

2y

Thus, if f is univalent in C, then

81.f'(2)?
u(z) = log —1 2 2.3.1
B =l TPy 23
satisfies the equation
—Au = e, in R?. (2.3.2)

In [52], it was shown that the expression (2.3.1) gives all solutions for (2.3.2). We shall restrict our
attention to the solutions of the Liouville equation with the finite energy condition e* € L'(IR?),
namely, the problem

—Au = e¥, in IR,

Jr2 € < +oo

which, by the Liouville formula, are given by the family of functions

862
(6% + [z — &[2)%

Use(x) = log (2.3.3)

where § > 0 and ¢ € IR%. See [16, 25]. Besides, it follows that
/]R2 eVse = 8, Use(x) = —o0  as  |z| = +o0.

and
eUse 8o as d — 0, in measure sense.

Also, note that given a small number r > 0,

sup Use — +o0, as 0 — 0.
B(&r)

Due to these all properties, we shall use functions Us¢ for the construction of an approximate
solution of the problems.

10



Chapter 3

Mean Field Equation on the Torus

3.1 Introduction

In this chapter we consider the problem

ke® 1

in a flat two-torus Q = {z = sa +t3 € R? | 0 < s, < 1}, with periodic boundary conditions
on 052, where o, 8 € C\ {0}, Im(8/a) > 0, A > 0, k is a C3 non-negative, not identically zero
doubly periodic function and || is the measure of 2. This equation and its variants arises in
many different disciplines in mathematics. In the study of existence of metrics conformal to the
standard ones on © = S? having a prescribed Gaussian curvature k, equation (3.1.1) appears with
A = 8n. This is the Nirenberg problem. For a compact Riemann surface is called the Kazdan-
Warner problem. There are several results related to these problems, some of them are due to
Kazdan and Warner [47], Chang and Yang [12] and Chang, Gursky, and Yang [14]. For bounded
domains of IR?, a version of (3.1.1) arises in statistical mechanics and it is referred as a “mean
field equation”. These results are due to Caglioti, Lions, Marchioro, and Pulvirenti [7, 8] and
Kiessling [15, 48]. In our particular case, when  is a flat two-torus, equation (3.1.1) is related
to double vortex condensates in the relativistic Chern-Simons-Higgs model, as shown by Nolasco
and Tarantello [60]. For the mathematical theory of the relativistic Chern-Simons- Higgs model,
see [6, 9, 10, 22, 23, 24, 44, 45, 46, 55, 56, 60, 61, 62, 63, 65, 68, 69].

Observe that (3.1.1) admits a variational structure, in the sense that weak solutions for (3.1.1)
are the critical points of the following energy functional

Ty(u) = ;/Q Vul2 — Alog </Q k(x)e“) . ueHY(Q) (3.1.2)

For A < 8w, J) is bounded from below and the infimum of Jy can be achieved by the well-
known inequality due to Moser and Trudinger. For A > 87 the existence problem of (3.1.1) is
much harder. By variational methods, Struwe and Tarantello [63] were able to obtain nontrivial
solutions of (3.1.1) for 87 < A < 472 when k = 1 and  is the flat torus with fundamental domain
[0,1] x [0,1]. Also, Ding, Jost, Li, and Wang [33] proved the existence of solutions to (3.1.1) for
87 < A < 167 when  is a compact Riemann surface with genus g > 1. Lin [53] proved, for the
case 2 = S? and 87 < A < 167, nonvanishing of the Leray-Schauder degree to equation (3.1.1),
and consequently, the existence of solutions follows for the case of genus 0.

In general case, the existence of solutions of (3.1.1) for this equation in a Riemann surface has
been addressed by C.C. Chen and C. S. Lin in [17, 18]. They completed the program initiated

11



3.1. INTRODUCTION

by Li [50], who proposed the problem of studying the existence of solutions of (3.1.1) by the
Leray-Schauder degree. Since the equation (3.1.1) is invariant under adding a constant we look

for a solutions in the subspace
E:{ueH%m:/uzo}
Q

By the results of Brezis and Merle [5] and Li and Shafrir [51], it follows that for any integer m > 0
and for any compact set I C (8mm,8(m + 1)7), solutions of (3.1.1) belonging to E are uniformly
bounded for any positive C* function k and A € I. Thus, the Leray-Schauder degree d()\) of (3.1.1)
can be defined in the space of functions with vanishing mean value for A # 8mm. Furthermore,
d()) is independent of both the function k£ and the parameter A whenever A € (8mm, 8(m + 1)7),
and it is known that d(\) = 1 for A € (0,87). Set

dt = lim d(\) and d = lim d()\).
A—8mm*t A—=8mTm~

An important fact is that the gap of d —d. is due to the occurrence of blow-up solutions when
A — 8mm, that is, there is a sequence of solutions u, of (3.1.1) and w, € F with A = \,, such
that maxqu, — +oo and A\, — 8wm. By a result of Li [50], u, blows-up at exactly m points
{p1,.-.,pPm}, namely, there is a small » > 0 such that SUPB(p; ) Un — +00. These points are
called either blowing-up points or concentration points. The location of the concentration points
are characterized as a critical point of a functional defined explicitly in terms of k and the Green’s
function G = G(z,y) of —A on , i.e., given y € Q

—A,G(, ):87r5y—%, in Q,
fQ (z,y)dx =0,

where J,, denote a Dirac mass in p € 2. Let us denote the regular part of the Green’s function H
by )
G(z,y) = —4logdist(z,y) + H(z,y).

Hence, the concentration points § = (&1,...,&y) of a multiple blowing-up solutions are a critical
point of
m
pm(€) = =) [2logk(&) + H(E,&)] = Y G&.&). (3.1.3)
J=1 I#]

Since Chen and Lin were interested in the computation of the Leray-Schauder topological degree,
they constructed all possible solutions with exactly m blow-up points and compute their Morse
index. It turns out that the gap d,} — d,, is equal to the sum of the Morse indices of all possible
blow-up solutions of (3.1.1) when A — 87m from the above. In the construction of blowing-up
solutions they obtained the following result. See [17, 18].

Theorem 3.1.1. Let k be a C3 positive function on 2, where Q is a compact Riemann surface
with || = 1. Assume that

1. the function oy, is a Morse function on Q™ \ &,, with N critical points, where
Em ={(z1,...,2m) € Q" | 2; = x; for some i # j};

2. the quantity

= Z [A(log k) (&) + 8mm — 2K (£;)] ]{;(é’j)eﬁ(gjv&j)'i_zgl,lij GE&) ¢ = (&1, bm)

j=1

does not vanish for any critical point of pp,, where K is the Gaussian curvature of €.

12



3.1. INTRODUCTION

Then there exists a family of solutions which blows-up at m points.

We shall restrict our attention to recover the existence result of a family of solutions which
blows-up at exactly m points when {2 is a flat two-torus, under weaker assumptions. In particular,
we will show some conditions under which there exists a family of solutions {u) }» which blows-up

at exactly m different points q1,...,qm € Q, in the following sense, as A — 8mm
Ak e . -
f o — 87 Z Og; s in sense of measures in €. (3.1.4)

Here, 2 = {q € Q: k(q) > 0} set we always assume non-empty. Precisely, we are interested in lift
the non-degeneracy assumption on critical points. Let us observe that K = 0 when {2 is a torus.

Let us mention that under the assumption of nondegenerate critical points of the analogue
©m, Baraket and Pacard [1] prove the existence of blowing up solutions of (3.1.1) in a bounded
domain of IR? with k¥ = 1. Also, in bounded domains of IR? existence results were shown in
[31, 37] under an assumption of topologically nontrivial critical point.

In our approach, namely, when 2 is a flat two-torus we take

G(z,y) = 4log + H(z,y)

1
|z =yl
as we have studied in chapter 2 section 2.2. Let us observe that H(x,z) is constant for all x € €,
when Q is a flat two-torus, and H(x,z) = H(z,x). Thus, we consider

m
€ =-2> logh(§) - Y G(&, &)
j=1 1]
An observation we make is that in any compact subset of Q™. we may define, without ambiguity,
Om(x1,...,Tm) = —oo if dist(z; — xj,aZ + SZ) = 0 for some i # j.

Furthermore, H'(Q) = H(Q) with H(€2) defined in the introduction. Denote for § = (&1, ...,&m) €
Q\ &

V() =4m ) Api()), (3.1.5)
j=1
where
pi(o) = bt exp (&) + 3 606 ) (3.1.6)
I#j
and now

Em ={(z1,...,2p) € Q" | dist(z; — zj,0Z + BZ) = 0 for some i # j}.
We shall use notions of critical value introduced in chapter 1.

Theorem 3.1.2. Let C be a stable critical value of @, in a domain D compactly contained in
Qm \Em. IfV(€) #0, for all € = (&1,...,&m) € D. Then, there exists a family of solutions uy
to (3.1.1) and m different points q; € Q, i = 1,...,m satisfying (3.1.4). Furthermore, on(q) =C
and Vo, (q) = 0.

13



3.1. INTRODUCTION

We remark that it holds
1. if V(§) > 0 then the blowing-up solutions exist for A > 8mwm, and
2. if V(§) < 0 then the blowing-up solutions exist for A < 8wm.

Here, we are considering a weaker assumption at critical points of .

We will consider a different kind of critical value, which also lifts the nondegeneracy assump-
tions of [18] on critical points of ¢,,. Thus, we could consider the case k = 1. More precisely, we
consider the role of non-trivial critical values of ¢y, in existence of blowing-up solutions of (3.1.1).
In the next result we assume k > 0, k # 0, k is doubly periodic on dQ and k € C(Q) N C3(€).

Theorem 3.1.3. Let m > 1 and assume that there is a domain D compactly contained in Qm\é’m,
where o, has a non-trivial level C. If V(&) # 0 for all ¢ € D, then there exists a solution uy to
(3.1.1) and m different points &; € Q, i =1,...,m satisfying (3.1.4). Furthermore, ¢, (€) = C
and Vi, (€) = 0.

Let us mention that the problem (3.1.1) and related ones with singular data have attracted
great attention. Several results for have been addressed in [2, 4, 66], concerning to the profile of
blowing up solutions and quantization of blow-up levels. Chen and Lin have begun in [19], the
study of mean field equation with singular data from the point of view of the topological Leray-
Schauder degree and estimates of blowing up solutions. On the other hand, existence results have
been achieved in works [31, 32, 35, 36]. In this situation, our approach does not apply directly,
since V(£) = 0 for all possible points . An higher order expansion is then needed in the study
of existence of solutions to (3.1.1) with singular sources.

Let us consider the particular case when k£ = 1 in {2, namely,

ev 1
—Au:A(—), in 0,
fQ ev Q)

U is doubly periodic on 02
fQ u = 0.

(3.1.7)

We get the following result.

Theorem 3.1.4. Given any m > 1 there exists a family of solution to (3.1.7) and m different
points such that uy concentrates at those points as (3.1.4), as A\ — 8wm™.

The solutions are constructed using a family of solutions of the Liouville equation in IR2,
suitable scaled, translated and projected in order to have the boundary conditions. Usually, in
other related problems of asymptotic analysis, solutions are found as a small additive perturbation
of the initial approximation. A linearization procedure leads to a finite dimensional reduction,
where the reduced problem corresponds to that of adjusting variationally the parameters involve
in the approximation, typically the location of concentration point. In our case, we also have to
consider the high of the bubbles. Similarly to [27], we identify an extra element of the approximate
kernel of the linearized operator, which introduces another parameter to be adjusted in the
problem, related to all high of the bubbles. An important element in the reduction procedure
is the invertibility of the linearized operator in suitable L°°-weighted spaces. However, in our
problem, this is not enough. Indeed, in order to perform a precise expansion of the reduced
functional in C! sense, we need to improve the main term in the ansatz, adding one term in the
expansion of the solution (see section 3.4). This fact is basically due to presence of the extra
parameter to be adjusted and the estimate (3.3.18).

14



3.2. APPROXIMATION OF THE SOLUTION

3.2 Approximation of the solution

In this section we will provide an approximation for the solution of problem (3.1.1) on the
torus. We will use the Green’s function as shown in chapter 2.

Consider as “basic cells” the function Us¢ given by (2.3.3), with £ € Q. We would like to
consider Us¢ as the approximation of a solution around £. In order to satisfy the boundary
conditions, we take PUs¢, where P is the projection operator introduced in (2.2.5). First, let us
find out the behavior of PUs¢ away from £ and around . We obtain the following characterization.

Lemma 3.2.1. Given £ € Q, the function PUs¢, where Usg¢ is given by (2.3.3), satisfies
PUs¢(x) = Use(x) —log(88%) + H(w, &) + ase + O(6%) (3:2.1)

uniformly in C?-sense on compact subsets of Q, where

(6% + |y — €1%)?
« dy.
€= |m/ e

PUs¢(7) = G(,€) + ase + O(6%), (3.2.2)

where the term O(-) is uniform in C%-sense on compact subsets of Q\ {£} and Cl-sense on
compact subsets of Q\ {¢}.

In particular,

Proof: First, observe that

Us¢(x) = log(86%) + 4log + 0(6?) (3.2.3)

b

|z = ¢

uniformly in C2-sense for x on compact subsets of Q\ {¢}. Let us take
p(z) = Usg(x) — log(86%) + H(x,€) + asge.

Then, by (2.2.3)

/ / {log 52+|x £|? ) H(z, )} da:-|—/ﬂlog (62?;/'3&46'2)2 dy =0

since [ G(+,€) = 0. Now, Ap = AUs¢ + %. Hence, we get

/ G, y) A (y) dy = / Gr,y) AUs ¢ (y) dy.
Q Q

Thus, by the integral representation formula (2.2.4) we deduce that

oa) = PUse(e) + - [ 60280 — o) 2EED ] oy

for all x € 2. On the other hand, we have

O¢(y) _ 0 [ (82+1y—¢P)?
[ e ast) = [ oy, [los LI dot),
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3.2. APPROXIMATION OF THE SOLUTION

since G(z,-) and G(-, ) are doubly periodic functions on 02 and

G(w,y)zG(yvf) do(y) = 0.
o0 v

Similarly, we get

T 2 f12\2 T
[ o208 4o < — [ 1 [CE ) 060
o0 o0

Ov ly — |4 ov
Therefore,
1 52 + |y — £]2)2
PUse(w) = Ue(a) — 1og(86%) + H(w, &) + - [ log O =E0 g,
92/ Ja ly —¢]
: 0 <62+ry—s|2>2}
+ = |GG {m
8w 89[ ( y)au & ly— €
(6% + |y — 5\2)2} 8G(x,y)]
—lo do(y).
g{ ly — &t ov (¥)
Note that

(624 |z —€2)2 282
=€t o€

uniformly for x over compact subsets of 0\ {¢} and

= 0(5%)

log

_ _i U55_8l_ 2
A(PU(;,g g@) = ‘Q’ /Qe ’Q| —0(5 )

Thus, we conclude (3.2.1) in C?-sense on compact subset of 2. From (3.2.1), (3.2.3) and

1 8
A(PU57§ - G(,f) - Oé(g’g) = —€U6’f + — 6U5q§ _om

= 0(6%) (3.2.4)
€2 Jo €2
uniformly on compact subset of 2\ {¢}, we get (3.2.2) in C2- sense uniformly on compact subset
of @\ {¢}. Finally, if we consider a point x € 09 then we can extend the function PUs¢ to B(z, 1)
periodically, for > 0 small and thus (3.2.4) is satisfied in weak sense. By regularity theory, we
conclude that (3.2.2) is satisfied in Cl-sense on compact subset of Q\ {¢}. This complete the
proof. O

Observe that 4
Qase = —ﬁ(ﬁ log § + O(6?).

In fact, we decompose

52 _ £12)2 52 _ £12)2
/log( 1y f’) dy:/ logwdy—i-O(dQ)
Q ly — & B(&,r) ly —¢]
= 475 log § + O(6?).
Given m a positive integer let us consider &; € Q, j = 1,...,m distinct points with £(&;) > 0
and 0; >0, j =1,...,m. In order to have a good approximation we will assume that
55 =06%pi(&), Vi=1,...,m, (3.2.5)
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3.2. APPROXIMATION OF THE SOLUTION

and
3C >1: |\ —8mm| < C6?logdl. (3.2.6)

where § > 0 and p; is given by (3.1.6). Denote U; := Us, ¢, and W; = PU;, j = 1,...,m, where
Use are given by (2.3.3) and P is the projection operator defined by (2.2.5). Thus, our first
approximation is

Wi(x) =Wi(z)+ -+ Wp(x), x e Q. (3.2.7)

We look for a solution w of (3.1.1) of the form uw = W + ¢. Now, in terms of ¢, the problem
(3.1.1) becomes ¢ € E such that

L(¢) = —=[R+ N(9)], in Q, (3.2.8)
where . .
ke ke™ ¢
L(¢) = A¢+>\fgk W (qﬁ fj? i > (3.2.9)
R— AW + (gewv—'é') (3.2.10)
and

w w
N(¢)=>\< ke 70 heo | keT Joke & ket ) (3.2.11)

Jo ke +o B Jo keV (Jo, ;{;GW)2 B Jo keV

| 7= [ 1) = [ N6 -

Furthermore, in order to get the invertibility of the linear operator L in suitable function spaces,
let us consider the weighted norm

Let us observe that

m 0’

|2l = sup ; 52+|$_§| | @, (3.2.12)

for any h € L>°(§2) and where 0 < o < 1 is a small fixed constant. Let us see how well W solves
the above problem in || - [|..

Lemma 3.2.2. Assume (3.2.5) and (3.2.6). There exists a constant C > 0 independent of § such
that

IR|l. < C§ (3.2.13)
and also we have that
|R — Roll« < C5%7|log |, (3.2.14)
where .
(z) = Zer(I)M Az —§j). (3.2.15)
— pi (&)

Proof: First, from Lemma 3.2.1 we note that for any j € {1,...,m}
W;(x) = Uj(x) — log(857) + H(x,&;) + O(5°| log d])
uniformly for x on compact subsets of 2 and

Wi(x) = G(z,&) + 06| log d])
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3.2. APPROXIMATION OF THE SOLUTION

uniformly for x on compact subsets of Q\ {¢;}. Hence, for r > 0 small fixed we have that

/ Z/ keXi W4 O(1)
B(&,r

1

2
1 J

1

2
1 86]

1
52

kUit H (804 By L&) +0( logd]) 4 (7
(5]'77')

I
NERD
g

S =

.
Il

Ui p5 (1 + O(8|log 8)) + O(1)
(fjﬂ“)

I
NE

m\

<.
I

[ij(fj) + 0(52‘ log 6])] + O(1)
J

5+ O(]logdl),

I
EiwE
Qq

[« %)

since

62p;(x) 1

Vi)

+ |z — dx / 5 P& + 05y) dy
/B(gj,r) (5]2 |z — &;]2)2 B0.£) 1+ [yP)2 (&5 + 65v)

:/B<0T)(1+1|y2)[p1(51)+vm(£g) 3y + O(82|y[?)| dy

= mp; (&) + O(6%| log d])

Thus, we get that

m

1 ke A
R_Z[AUJ-—M/QAUJ} +)\7f9kew al

J=1

moo kexp(zj 1W>
:—;e%ﬂm“wmgﬂ mZ/ “@

Let us observe that if |z — &;| > r then ¢Yi(®) = O(62) and

/ eYi = 87 + 0(8?).
Q

Hence, if | — &;| > r for all j = 1,...,m then by Lemma 3.2.1 and (3.2.5)-(3.2.6) we get that
W(z) = O(1) and

8mm — A
1]
Now, if |z — &;| < r for some j € {1,...,m} then by Lemma 3.2.1 and (3.2.5)-(3.2.6)

R(x) = O(6%) + = 0(6%|1og d)).

—1og(802)+H (2,6)+3,; G(x,6)+0(82| log 8)) B
R(z) = — Vi) 4\ (U@ k(z)e” 8% _ 9)H 2y G g L 8mm =2
mmd—2 + O(]log d|) Q]

U@ [ g, Api(@)[L+ O(6% log d])] 21
et | REC L]
U | Pi(@) —pi(&) | (A —8mm)p;(z)
L pi(&) " 8mmp;(§;) "

) | Y. (- ) + Ol - &) + 0@l 1ogd]) | + O] og ).
L ri(&))

+ 0(6?)

O0(6?|log 5|)} + O(6?%|1og d|)
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Finally, from the definition of || - ||« we conclude (3.2.13) and (3.2.14). O

Let us stress that by doubly periodic conditions on 02 all points {; are interior and thus,
without loss of generality we shall always assume £; € €. Furthermore, a posteriori we shall give
an explicit relation between A and ¢, in order to find a solution to (3.2.8) (see proof of Theorem
3.1.2).

3.3 The linear operator

In this section, we will prove the invertibility of the linear operator L, by using the L°°-norm
introduce in (3.2.12), under suitable orthogonal conditions.

Let us consider the following linear operator in IR?

8
Lo(¢) = A¢+ 550
(1+ |y*)?

It is well-known that the bounded solutions of Ly(¢) = 0 in IR? are precisely linear combinations
of
4yi 1-— |y|2
Yily) = ———, =2 .
W= T+ ul?
See [1] for a proof. On the other hand, let us observe that formally the operator L, scaled and
centered at &;/d; by setting y = (z — §;)/d;, approaches

- 8 (o 9z) z
L0(¢) = A¢+ (1 4 ‘y’2)2 (¢ ™ JRr2 (1 + |Z|2)2 a ) .

It turns out that the bounded solutions of E0(¢) = 0 in IR? are linear combinations of Y;,
7 =0,1,2 and the constant functions. This exhibits a difference in comparison with some results
related to linearized operators in Liouville type equations with Dirichlet or Neumann boundary
conditions in a domain, [31, 37, 38, 40], where the approximate kernel is span by the translations
Y;, 7 = 1,2 and dilations Yj, and the invertibility is obtained avoiding the dilations Yy. Here, we
have the constants functions in the approximate kernel and concerning to the invertibility of the
operator L it is not possible to avoid the dilations.
Let us introduce the functions
xr — Sj

Zij(x) =Y, < 5,
for € Q. Consider the linear problem of finding a function ¢ € E N W22(Q) and scalars Cijs
1=1,2,7=1,...,m and ¢ such that

L(¢) = h+ 222:1 Z;nzl CijAPZZ‘j + cgAPZ, in €,
JoAPZyj¢p =0, foralli=1,2,j=1,...,m, (3.3.1)

i=1,2, and Yo(y)

), i=0,1,2,7=1,...,m

Jy #APZ =0

where h € C%*(Q), [oh =0, ||hllx < +o0, Z = 3" Zy and PZ;;, i = 1,2, j = 1,...,m,
PZ =", PZy are the projection of Z;; and Z respectively, namely,

APZZ']' = AZZ']‘ — ﬁ fQ AZZ‘]‘, n Q,
PZ;; doubly periodic on 0, (3.3.2)
Joy PZij = 0.
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3.3. THE LINEAR OPERATOR

Let us stress that the orthogonality conditions in the above problem are taken with respect to
the elements of the approximate kernel due to translations and an extra element which involves
dilations. Similar situation appears also in [27].

First, we will prove an a priori estimate for the problem (3.3.1) with ¢;; = 0 for all i = 1,2,
j=1,...,m and ¢y = 0. Specifically, we consider the problem

L(¢) = h,  inQ,
[y APZ¢ =0, foralli=1,2,j=1,...,m, (3.3.3)
[, dAPZ =0

Proposition 3.3.1. Let d > 0 be fized. There exist positive numbers dg and C, such that for any
points £ € §), j =1,...,m, which satisfy

dist(&§ — &, o+ BZ) > d for 1#7, (3.3.4)

d; > 0 satisfying (3.2.5) and (3.2.6), and any solution ¢ to problem (3.3.3), one has

1
6]l < C <1og 5) Ihlle  for all § < 8. (3.3.5)

Proof: The proof of estimate (3.3.5) consists of some steps. Let us assume the opposite,
namely, the existence of sequences 6" — 0, points £ e Q, 5;-1 = 5”/)]-({?), functions h,, with
|log 0"| ||hn|l« = o(1) as n — +o00, ¢y, € E with ||¢p]|cc =1 and

L(én) = hn, in Q,
Jo®nAPZij =0, foralli=1,2j=1,...,m,
JoonAPZ = 0.
Without loss of generality, we assume that ' — £ asn — +ooand §§ € Qforall j=1,...,m,

by the doubly periodic boundary conditions. Also, observe that there is a constant Cy > 0 such
that Cy ' < p; (§}') < Coy, by using (3.3.4). Let us denote

fQ kew¢n keW
n = P — S———— d K=\——.
pnime Jo ket " Jo kel
Then 1, satisfies
Awn + Kwn = hm in Q,
JynAPZij =0, foralli=1,2,j=1,...,m,
Jo¥nAPZ = 0.

Claim 3.3.1. There is a constant og > 0 such that |1, ||cc > o0 for alln > 1 up to subsequences.
Furthermore, 1), converges to a constant ¢ as n — +oo in C>* sense over compact subsets of

Q\{E, )

Proof: Assume that ||[¢,]|cc — 0 as n — +oo. Hence, we have that

_ fQ kew¢n

ka —0 as n — +oo.
o ke

O

o0
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3.3. THE LINEAR OPERATOR

Since
fQ ker)n

< <1

we conclude that ¢, converges uniformly to a constant in 2. But fQ ¢n = 0 pass to the limit and
we get a contradiction, since ||¢n||cc = 1 and ||¢p|/cc — 0 as n — 4o00. On the other hand, given
r > 0, we observe that

Ay, = O([6™%) + o(1), uniformly for x € Q\ UL B(}',7)
since if |z — fj"| >r for all j =1,...,m then we have that

Me(z) exp(37L) G, &) + O([0"]%] log 6"]))

K(x) = mm[67]=2 + O(| log 6|)

=0([0")

and .
Z [67]7
o 5n tlz— ‘2)1+cr/2

[[nlls < C16"1 ||+

Therefore, passing to a subsequence v, — 1 as n — 400 in C*® sense over compact subsets of
Q\A{&, ..., &5} Since [|[Yn]loo < 2||énlloo < 2, it follows that ¢ is bounded and can be extended

continuously to ) and satisfies

Ay = 0, in Q,
1 is doubly periodic on on 0f2.

Therefore, 1) = ¢ in 2. It follows that

ke ¢, ke ¢,
Lim 7f9 Z I/i) , since % Py = —7&7 ¢ M(f .
" & fQ € | | Q fQ ke

Now, consider the function W, ;(y) = ¥n (&} + 07y). Then, ¥y, ; satisfies
AW+ K@) Uns = hnj(y)  in Q= (07)7H(Q = &),

where K, j(y) := (] )2K(§n + 07y) and ﬁn](y) = (5?)%"(5? +07y)-

Claim 3.3.2. There holds that V,, ; converges uniformly over compact subsets of IR? to ao; Yo,
as n — +oo, for some constant ap; € IR, j = 1,...,m. Furthermore,

m
> ag; =0. (3.3.6)
j=1

Proof: Let observe that uniformly for y over compact subsets of IR? we have that as n — 400

K J(y) (_|_8||)

Hence, we get that elliptic estimates imply that as n — +oo0, ¥, ; converges uniformly over
compact subsets of IR? to a bounded solution U of
AV, + 8 U, =0
Ty

(L+o0(1) and ()| < Cllhn]
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3.3. THE LINEAR OPERATOR

Recall that A\, — 8mm as n — 400, by using (3.2.6). We know that for some constants a;; € IR,
2

i=0,1,2it holds ¥;(y) = ai;jYi(y), ye€ IR2. On the other hand, we have that for all i = 1, 2,

1=0

1
0:/7/1nAPZij =/¢nAZij—/¢n/ AZ;;.
Then, we estimate

sz == [ nte <x_§:‘>> e

:_32/3(0 v, (>( ||)dy+0([6”])

,@)

j=1....m

and

o u 3y _
/QAZU 32/3(07-) A o+ O = o)

37
J

as n — 400. Therefore, by dominated convergence we get that

Yi .
Ui(y) —L  dy=0, i=1,2
/RQ i T yEE Y

and we conclude that a1; = ag; = 0 for all j = 1,...,m. Thus, ¥, ; converges uniformly over
compact subset of IR? to V;asn — 4oo forall j =1,...,m, and as claimed

1—|yl?
V) = aoYol) =200, 1 g W E R

Let us observe that

O:/Qz/;nAPZ:g/anAPZOZ :g [/anAZOZ—;Z/an/QAZOZ].

Hence, we have that

[( 1P =l =&
/anAZOj /wn IRk dx

-Hx

_ 1—7“4\2 e
_ 16/3(075 )\1; ()(1+| sy + 097

u_:‘ﬁ

and

o R "2) _ (5"
/QAZOJ_ 16/( T e O =0

57’L
J
as n — 4o00. Therefore, by dominated convergence we get that
lim / UnAPZy; = —16/ Wi(y) il Uil dy,
n—+o0 Jq ’ r2 (L4 yl?)?

and we conclude that

Iyl / (1 - Jy[*)?
= 5 dy = 2 = dy.
- Z/ Z " Jwe (T Py
Thus, the claim follows since / (;)

yl
dy > 0. O
w2 (1+ [y[?)?
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3.3. THE LINEAR OPERATOR

On the other hand, from the equation of 1, and by (2.2.2) we have the following integral
representation

1 1 1
= — — 41 H K — hy dy. 3.3.7
o) = iy [t g [ 10w H )| K@)~ b a3
Claim 3.3.3. There holds ¢ =0 and hence, for any r > 0 small (r < d)

||¢n||L°° (UL, B(€T, r) as n — +00.

Proof: Let us estimate the right hand side of (3.3.7). First, we estimate the integrals involving
hy. Observe that for R > 0 fixed we have that

TR?(67)?

/ |log |x|| dx = - 7TR2((S;L)2 log R47.
B(0,Rs7)
Hence, we get that for x €
1 m (571)0
log ———hy(2) dz| < ||hn|« dz
/B(z,Ray) |z — 2| B(z,Ray) \fﬂ — 2 g 24 |z =g 2)ite/?

C
< thu*/ |log ||| d=
(6m)2 B(0,R6™)
< C|1og 8" | m]|-.

Now, if [z — y[ > R4} then for some constant C' > 0 we have that C~l6" < |y — x| < C/6™ and
|log |x — y|| < C|logd™|. Thus, we get that

1
/ log ——hn(y) dy
AB(wreY) |7 =Yl

1
<C <log 5n> / |hn(y)| dy
O\B(x,R07)
< C|log 6" ||hn]|«

Therefore, we conclude that

1
/10g ———hy,(y) dy' <C (log > |||«
Q |17—y\

uniformly for x € 2. Analogously,

’/Ha;y dy‘<C(log5n>Hh ||

uniformly for x € Q. Now, if [y — &' > r for all I = 1,...,m and |z — £}| < R4} for some
je{l,...,m}then K(y) = O([6"]?) and |z —y| > Ro7. Hence, we get that |log |z —y[| < C'log =
and

/1og PR OLC dy—Z/ e log |x_y| K (y)n(y) dy + O ([0"]?|1og 6") -

Now, for any [ € {1,...,m} we have that

1
log Kywnydyz/ log S Ki(2)W(2) da
/B@f,r) oy W= [ B e )
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3.3. THE LINEAR OPERATOR

Recall that
C

|KI(Z)\IITL7[(Z)’ < W7 for all z € B(O (5”)
since |Wn | L~(q, ) =1 and for [2| < R
- (enagn Anpi (€7 + 07 2) 8
Ki(z) = [6"]2eY &G +2) 2202 570 (1 4 O([6™2]1og 6™)) = —————— (1 + o(1)).

Also, we know that for any [, ¥, ; converges uniformly to apYp on compact subsets of IR2. So,
taking « = £} and if [ # j then by dominated convergence we get that

lim

Y dz=0
n—-+oo 617 lfn_ ‘ aol O(Z) Z )

1 8
n(y)dy =1
K(y)¢n(y) dy = log & =& Jre (11 22

. 1—|y|? . . .
since ———=—=dy = 0. For [ = j, we again take z = £} and we obtain
/132 (1+ |y>)? !

1 1 -
[ o Ky = [ o R0 (2) ds
B(r ) &7 =yl B, %) 1077]

75? ]
1 -
:/ log —K;(2)¥,;(2)dz
BO,%) |l
J
—logé?/ Ki(2), (z)dz
B(0, )
J
Similarly, we have that
/Ha:y ¥y dy—Z/(é VK (5)n(y) dy + O ([5"]2)
l7

and

[ oK@ dy = [ HEg R () b
B(&rr) B(0,7 a7 )
Hence, we get that for any [ € {1,...,m}

lim H(gyay)K(y)wn(y) dy = H(fj*,ﬁf)/]R ( 8 aosz(z) dz = 0.

n=+o0 JB(en,r) 2 (14 12]2)2

Observe that by (3.3.4) we have G(&7,&) = —4log | — & + H(E], &) € IR. Therefore, by the
integral representation of 1, we have obtained that

1 =~
5;1 = /¢n / long(Z)\Ifn,jdz—log(S?/ K(y)Yn(y) dy+o(1), (3.3.8)
[ O 7] BEr )

as n — 4o00. On the other hand, let us note that integrating the equation of ,, we get that
Jo Ktb = 0, since [, hy, = 0, and hence,

Z / un(o)dy = [ K = O(6"?).
{l ,7") Q\U;’;lB(gl",r)

24



3.3. THE LINEAR OPERATOR

Also, by dominated convergence we know that

1 - 1 8
lim logK-z\Il,-zdz:/ log — 7a01Y()zdz.
T T E EICEAED RO

Taking the sum of equations (3.3.8), since ¥, ;(0) = %(S}l) and letting n — 400, we find that,

we get that
\Ij. -
2 V(0 =me+ Z/IRQ IRl OIS

j=1

Recall that V,;(y) = &oj% with ag; = 2ap;. Hence, it follows that ¢ = 0, since Z;n:l ao; = 0.
Therefore, the conclusion follows. O

Claim 3.3.4. There holds agj =0 for all j =1,...,m. And by claim 3.3.2 it follows that

1WnjllLe(B0,R) = I¥nllLe(Bier,Rory) =0, as n— foo.

Proof: To this aim let us construct a suitable test function and from the assumption on h,,,
|log 6™ ||hn|l« = o(1) we get the additional orthogonality relation

8(1—12%)
——— 2 V.i(2)dz = 3.
/]R2 0522 j(2)dz =0, (3.3.9)
which implies ag; = 0 as claimed. We will use an idea developed first in [37] and then exploited
in [38, 39, 40]. We will omit the subscript n in &7 and 67. Define the functions 7, ; and 7, ; for
x € § given by

4 Pl =gl 8 &3
i log(67 - = !
g (@) = 3 log(dj + | fy‘)52+‘x gj,2+3532+|x—€j\2
and
(@) 267
Mnj(x) = —F——"—7%-
’ 07 + |z — &2
Let us note that 7, ; and 7, ; satisfy
867 862(52 — |z — &[*)

Any, n
T P = g2 T (G e - g P

and
852 85]2.

Ay, n .
T eGP T G eGP

Consider the test function PZnJ, where Zn,j = Nn,j + %H(Ej,fj)ﬁmj. From the representation
formula (2.2.4) we get that

),

~ ~ 2
PZn,j - an - gH(agj) = 0(62| 10g6’)7 (3310)

in C2%-sense over compact subset of . Recall that v, satisfies

Aty + Koy =h,  in Q.
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3.3. THE LINEAR OPERATOR

Multiply this equation by PZW' and integrate on €2, then we get that

/ hPZy ;= / Un (APZn; + KPZn;)
Q Q

= /Q wnAZn,j—‘é’ /Q Un /Q AZnj+ /Q KynPZ,
A (28f§§612|:n|f e @+ g gH“j’fﬂ')D
]Q‘ Qj)n/AZnJ—I-/KlanZ n,j
:2/911’”82552%;; A GE g (P 2 6.6)

1/¢/AZ-+/K 8] VUnPZy
9 Jo "o g (02 +]z—g»2) " 7

From (3.3.10) we get that PZ, ; = Z, j + O(1) = O(]logd,|), then

/Q 1P Zy; = O(1og 5ul [lhull) = o(1)

as n — 4o00. From the definition of an, we have that

/AZn,j:/ <€ jZO _e nn,j+ H(&]aﬁj)[ € J_eU]nnj]>
Q Q

_| _&,,2
5 1085 ke~ ) G e O)
64 1—Jyl 32 1= |yf? ;
= ——logd; e dy + — I log(1 + [y[?) dy + O(1
3 Bo,z) (L [yP)? 3 Jpo.p) O+ TWPP (1+1y[") (1)

=0(1)
as n — +0o0. On the other hand, we have that W, ;(2) = ¢, (£} + d72) then as n — 400

89202 — e — &7 862(6 — |z — &) )
/Q ) e = /B D G g e 00

2
= Jyoy T e 2 0
867 N _ 2
/an (EEarI=rIEE (PZn,j — Znj — 3H(§j,£j)>
/¢ 862 <PZ (x) — Zn j(z) — gH(JU §)> dx
oG T gy \T o) T Bnal) = g G

8(52
/ (02 |z - &)? (H(z, &) — H(&,&5)) do

867
e /B(gj,r) v (02 + - €5]%)2
+0(07| log 6,|)
= O((sn)

(H(,&5) — H(E;,&5)) do
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3.3. THE LINEAR OPERATOR

and

K 8532 PZ
/ﬂ GEIEIIRE UnPZns

/ K %) YnPZy i + O(62|log b,) +
= - n n 0og
B(&;.r) (532 + |z = &;[?)? 7

- / UI0(a — &]) + O(8| log S|)tnP Zn; + O(62] 1og 62])
(EivT)

Z /B K, PZy ;

1=1,1£j Y B&.r)

m

+ Z / kl\I’n’l(Z)PZn,j (él + (5[2) dz
1=1,1; V BO:5)

1
=0 | 6,|log oy, / —————dz | + O(0?|1og b,|) + o(1)
< | | B0, (L+120)? ) (Cnl )

= o(1),

since if | # j then we find that
PZ, (& +6i2) = Zy, (§l+5l2)+2H(£l+5lz>§j)+0(52|10g5|)

= 26(6 + 62, &5) + O(3"| og )

= 26(6,6) + 00)

for all [z < 5 and
| RiPZus(a +82) dz = of)
B(0,5)
thanks to dominated convergence. Therefore, we conclude (3.3.9) and hence, ag; = 0 for all

j=1,...,m. Also, it follows that W,, ; converges to zero uniformly over compact subset of R?
for all j =1,...,m, namely, [[¢nl|L(Ber rory) = [|¥n,;l

L"O(B(O,R)) — 0, as n — +oo. D

Let us denote L(¢) = A¢ + K¢.

Claim 3.3.5. The operator L satisfies the mazimum principle in Q\U;nle( 7 Régl)) for R large
enough.

Proof: First, we have that

K(z) = ZeUﬂ [1+O(|z = &1) + O(57| log 5;)] -

fQ keW

Hence, we get that there is a constant Dy such that

for all z € Q.

Z; 62+|x—5\>

Now, consider the function

" a?|x —£j|2 —

e (0 —&) o
_ Y; ]> =9 J’
jz:; O< 9 ;5?+a2|$—£j|2
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3.3. THE LINEAR OPERATOR

W1th0<a<\/7

A () — 2 S~ G~ )
A =20 - g

and for |x — §;| > RJ; we have that

| \/

m 52 2 a2R2 -1
jz:: (52—1—@2’1’ j’2)2 CL2R2+1

m 252R4 1 1 2
>4 _ __J
= ; 1+a2R22$_§]’4—a2j§‘x_£j’4’

where \/ga < R, so a’R? > % > 1 and agggj& > %.
On the other hand, Z(x) < 2 and

K(z) <2DOZ 52+|m_£| 2D02|x_@|4 <0.

By the choice of a we have that

_ . - 1 m 52
LZ)=AZ+KZ<|—— +2D —J <0
2=z K7% (gt °>;1x—5j\4<
and m 2 p252 2 9
- a“R=6% — 62 a?R?2—-1 m
Za)>2Y o T2t T2 M
(@) = 25§+a2325§ =M v eRr T 2

for |z — &| > RJ;. Therefore, L(Z) < 0 and Z > 0 in Q\ UL, B(&;, Rd;) and we conclude

that L satisfies the maximum principle, namely, if i)(d)) <0in Q \ U * B(&, Réj) and ¢ > 0 on
O(Q\ UL, B(j, Réj)) then ¢ > 0 in Q\ UTL, B(;, Ré;). Note that We have that the maximum
principle also in the region U™, [B(;,7/2) \ B(&;, R6j)], with r < d. O

Claim 3.3.6. There exists a constant C > 0 such that

HW\LO@(um (B r2\BE RS < CllIYlli + [|R][],

where
191l = 1l Lo (um, 0B, RSy OB(E /2 -
Proof: First, let us consider the functions 7; given by

25"
|J,‘ 5 |2+o‘ ’

—An Réj < ‘1‘ —fj’ <7,
nj(z) =0, for |z—¢&| =R, |z—¢&|=r.

A direct computations shows that

25"

nj(s) = ilogs+bj, s=|r—¢&
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3.3. THE LINEAR OPERATOR

with

1 209 1 1 267 logr 207 1 1
aj = Ry 7; (RO'(SU B O') and bj = 230 + gR(Sj 7; Ro§e o |
log =< O ;oo o°r log 2% o 7

T r

Observe that 05 Rs
g . 2
ilog Roj +bj = ajlogTj < oy v

0 <mnj(s) < —

Now, consider the function

m
¢ = 2(|9ll:Z + |All Y_ -
j=1
Hence, we get that

L(@) < Ikl Y Lim) < Il Y |~ oot > :
o = 2| eGP T o2 & (7 + o — G

m o 2
STV Sy e SR L
= |x—sj\ 2R (74 Jr &)

| /\

~Iall Z 52% o

for R large enough (2Dgm < 02R%). Also, we have that 2Z > m > 1 and ¢(x) > |¢(x)] for all
z € U, [0B(§;, Rd;) UOB(E;,7/2)]. By the maximum principle we conclude that [¢(z)| < ¢(z)

for all z € UTL,[B(&;, Rd;) U B(j,7/2)].. Therefore, the claim follows. O

Recall that by claim 3.3.4, [[4n| (B B(gr,R6T)) = o(l) as n — 4oo for all j = 1,...,m and
||wnHLOO(Q\UTJﬁle(§;L’T/2)) o(1) as n — +o0. Hence, we conclude that ||1,||cc = 0(1) as n — 400
which is a contradiction since by claim 3.3.1 ||[¢,]|oc > 00. This completes the proof. O

Our main result for the problem (3.3.1) states its invertibility in the following way.

Proposition 3.3.2. Let d > 0 be fixed. There exist positive numbers &g and C, such that for any
points £ € Q, j=1,...,m satisfying (3.3.4) and §; > 0 satisfying (3.2.5) and (3.2.6), there is a
unique solution ¢ € ENW?22() to problem (3.3.1) for all § < &y. Moreover,

I6lleo < C (log ) Wlhes legl < Cllalhs =125 =1,....m, and |co < CJAl..
(3.3.11)
Proof: First, observe that AZ;; = —eUiZij foralli=0,1,2,7=1,...,m

/ AZy; = 0(5]2-) and / AZ;; = 0(55?)’ i=1,2.
Q Q

Since APZ;; = AZ;; — ﬁ fQ AZ;j, it follows that ||APZ;;||, < Cforalli=0,1,2,j=1,...,m
Thus, by Proposition 3.3.1, any solution to (3.3.1) satisfies

2 m
1
ol < (1085 ) [Tl + 30D el + e

i=1 j=1
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3.3. THE LINEAR OPERATOR

Let us estimates the values of constants |c;j|. We test equation (3.3.1) against PZ;;, i = 1,2.
Hence,

2 m
(L(¢), PZij) = (h, PZij) + Y > cu{APZy, PZ;;) + co(APZ, PZy),
k=11=1

where (f,g) = [, fg. Note that (L(¢), PZi;) = (¢, L(PZ;j)). Furthermore, we have that
m
(APZ,PZ;j) Z APZy, PZ;j).
=1
Hence, we get that for i = 1,2

2 m
(¢, L(PZij)) = (h,PZij) + Y > eni{APZy, PZ;;) + C()Z (APZy, PZ;j).
k=1 1=1 =0

Given i,k =0,1,2, j,l =1,...,m let us estimate (APZy,, PZ;;). Observe that
PZij=Zjj+0(;), i=12,7=1,....,m (3.3.12)

and
PZy; = Zo; + 2+ O(53|log &;]), j=1,...,m, (3.3.13)

uniformly on compact subsets of €2, where

46;(x — &) 497
ii(r) = 59———"= and Zy;i(x —_—
) g P o) = 52+!w—§gl2

Hence, we have that
<APZkl,PZZ]> :/AZMPZZJ
Q

For i = 1,2 we get that
(APZy, PZ;j) = — /Q "' Zi(Zij + O(65))
so, if I # j then (for r < d/2)
/ eUlelZij = / 6Ul ZklZij + 0(512) = O((gj) + 0(5?)
Q (&l: )
since eVt = O(6?) in Q\ B(§,7) and Z;; = O(5;) in B(&, 7). Now, if [ = j then
/ Vi 2y Zij = / V1 Z4;Zij + O(67) and if k # i then / Vi Zy;2;5 = 0.

Q B(&;,r) B(&;.r)

If | = j and k = i, we then get that
(APZ;, PZy) = / Ui 72+ 0(5;) = _/ U 2+ 0(62) + O()
Q (§j7 )

and

| 8 2

U; 72 2 7
efzi.:/ s Y ydy—128/ __ Yy
/B(gj,r) 7 IBo.r £) y (1+[y?)? @) BO.E) (1+ Jy[?)*

%’/T + 0(54).
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3.3. THE LINEAR OPERATOR

Now, similarly as above, for i = 0 we get that if j # [ then
(APZy, PZy;) = O(6*|1logd|), k=0,1,2,j=1,...,m.

If j=1and k =1,2 then
(APZy, PZy;) = O(6*|log ).
And if j =1, k =0 then
8 327
U, _ _ 4
e’ Zo(Zor + 2) —/ e Yoy [Yo(y) +2] = — + 0(5")
/B(Ez,r) B(0.£) (1+ [y[*)? 3

Thus, we conclude that for all ¢,k =0,1,2, 5,{=1,...,m,

—32T 4+ 0(0), ifj=1i=k

APZ, PZ;;) —
< & ) {0(5), otherwise.

Hence, we get that for i = 1,2

leij| (AP Zij, PZij)| < Cl¢lloc IL(PZig) |l + Cllkl« 1P Zijlloo + Y len| (AP Zya, PZyj)]

Kl
+leol Y (APZy, PZ;)|
=0
schwmuup&»m+wmu+a§jwm+am@

kl£ij

2 m
1
gC[(Iog 5) (HhH*JrZZICkz\Jr\Co\) IL(PZij)||« + [[h]l«

k=1 1=1
2 m
e (3l 41 |
k=1 1=1
Let us estimate ||L(PZ;j)]|«, for i = 1,2. We know that

ke PZi; - fQ k:eWPZij
Jo ket Jo ke

1
/ ]{TGWPZZ‘J‘ = / keW[Zij + 0(5)] = / ]{JBWZU + 0 <> s
9] Q B(§j7T) 5

since fQ\B(Ej,r) ke = O0(072) and Z;; = O(0) in Q\ B(¢j,r). Now, we have that

1

and

/ ke Zij = 12/ e%ipj(1 4 O(6%|10g d])) Z;
B(&;.r) 805 J

and

862 46;(x — &)i
Uj J J g/t
e Jp'ZZ-~:/ pi(z)dz
L@M T g (03 e = 122 07 + o — g2

) (L+[yl?)?

[p;(&5) + O(55|y])] dy
B(0

@)

r
Iy
5]

5).

—
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3.3. THE LINEAR OPERATOR

Hence, we conclude that
1 Jo keVV PZ;;
ke PZij=0(< d L7 = 0().
/Q ‘ ! <5> o fQ ke ©)
Since [, AZ;; = O(6%), we get that

L(PZy) = —¢% 2y + 2 (7. 4+ 0(8)) + O(6°
( ’L])—_e Z]+W( 1,]+ ())+ ( )
Recall that Z;; = O(8) in Q\ B(&j,r), then L(PZ;;) = O(63) in Q\ U™, B(&, 7).
On the other hand, recall that for z € B(,r) we have that
Mee  y pi(x) — pu(&)
= U@ 4 B S 062 log b)) | -
T ke @) (0% log 1)

Then, for [ # j we obtain that
L(PZ;;) = eV0(8) + O(8°)
in B(&,r), and for z € B(&;,r) we find that
L(PZ)(x) = " [~ Zij + (1 + O(|z — &) + O(8%[1og 8])) (Zi; + O(3))] + O(&?)
= e [Z;;{0(|z — &) + O(6%|1og 8]) } + O(3))] + O(5*)
"1 [O(|z = &) + 0(8)] + O(6?).

Thus, from the definition of *-norm we conclude that | L(PZ;;)||« < Cé fori=1,2j=1,...,m
Now, since |(APZ;;, Z;;)| > 8, it follows that

2

m 2 m
el < {1101 (Il + 303 el + ol ) + il + (33 e + ol

k=1 =1 k=1 I=1

2 m
< 0ol10g01(( 3D leu + e ) + 1l

k=11=1

(3.3.14)

Let us estimate |cp|. We test equation (3.3.1) against PZ and similarly as above, we get that

2 m m m m
(6, L(PZ)) = (h,PZ)+ Y > > cu(APZy, PZy;) +co » Y (APZo;, PZy)

k=11=1 j=1 Jj=11=1

and

m m
Z Z APZy;, PZy)

j=1 =1

ol < Cll¢lloc IL(PZ)]x + ClAll« P2

2 m m
3 33 ewl (AP Zy, PZo;)]
2 m
hH*+ZZ\cu|+Icol) |L(PZ)« + |||«

k=11=1

IA
Q
| — |
—
O
0’
Sl
—
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3.3. THE LINEAR OPERATOR

Let us estimate ||L(PZ)||«. By using (3.3.13), we have that
/ ke PZy; = / ke [Zoj + 2+ O(6%| log d])] = / ke (Zoj +2) + O(|log d)),
Q Q B(&;,r)
since fQ\B(gj,r) ke = O(672) and Zp; +2 = 0(5]2.) in Q\ B(&;,7). So, we estimate

1 .
Jo i G =g [ i1+ 0 sy +2)
(&) 897 /(&)

and

32
eYipi(Zoj + 2 :/ 3 P&+ 05y) dy
/B(fj,) J J ) B, (1+‘ |)3 ](J J )

T

5]

N /B( (14‘3|2|) [pj (&) + V(&) - Jy+0(52|y| )l dy

= 16mp;(&;) + 0(52)
Also, we have that

2m

1
Afw?%jgymmmm+oWﬂ =7 +0(logd).

Then, it follows that

keWPZy; % +0O(|logé
Jo ke T +0(|logd|) m

Since, [ AZy; = 0(5]2-) we get that

i(AZoj o / AZOJ> L e keW (Z PZo; - ng l}:ek;vzo])

Jj=1

i Vi Zo; + A kV:V (i(20j+2)2+0(5210g5)) + 0(6%).

j=1

Now, we know that Zo; +2 = O(7) in Q\ B(&j, 7). Then, L(PZ) = O(6%) in Q\ UM, B(&;, 7).
If € B(§;,r) for some j € {1,...,m} then
L(PZ) =Y [-Zy; + (1 + O(|z — &) + O(5°|1og 8])) (Zoj + O(5%|log 8]))] + O(?)
= e [Zo; {O(|z — &) + O(8%|log 3|) } + O(5?|log &])] + O(5?).
From the definition of || - ||+, we conclude that |L(PZ)]. < C4.

Now, since (APZyj, PZy;) = —3% + O(8) and (APZy, PZo;) = O(6) for all j # I, we get
that |(APZ, PZ)| > 8rm for all 6 > 0 small enough and it follows that

2 m
dlog = (ZZ || + \Co\> + [|R]«

k=1 1=1

‘Co‘ < C (3.3.15)
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3.3. THE LINEAR OPERATOR

Combining (3.3.14) and (3.3.15) we obtain that |¢;;| < C||h« for all i = 1,2, j = 1,...,m and
co| < C||A]|s. Tt follows that [|¢[|c < C(log 1)||h]l« and the priori estimate has been thus proven.
It only remains to prove the solvability assertion. To this purpose we consider the space

H:{gbeE : /APZZ-]-QS:O,i:1,2,j:1,...,m,/APZQS:O},
Q Q

endowed with the usual inner product [¢, ] = [, V$V1). Problem (3.3.1) expressed in weak form
is equivalent to that of finding a ¢ € H such that

- eV fQ keV ¢
¢, 9] —/Q [fﬂkeW <¢— W) —h] ¢,  forally € H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator
form ¢ = K(¢) +h, for certain h € H, where K is a compact operator in H. Fredholm’s alternative
guarantees unique solvability of this problem for any h provided that the homogeneous equation
¢ = K(¢) has only the zero solution in H. This last equation is equivalent to (3.3.1) with A = 0.
Thus, existence of a unique solution follows from the a priori estimate (3.3.11). This completes
the proof.

O]

Remark 3.3.1. Given f € Li&(Q) i={u € L*(Q) : [,u=0} denote u = A~!f such that u € E
and Au = f in Q. Then, A™!: Li(Q) — FE — Li(Q) is compact and we have that

eV eV ~
K(¢) =A™ [ f?fkew <¢ - ffﬂkkew(b)] . h=A"Y(=h).

Thus, £ : Li(ﬂ) — Li((l) is compact.

The result of latter proposition implies that the unique solution ¢ = T'(h) of (3.3.1) defines a
continuous linear map from the Banach space Cy of all functions h in L* for which |||/« < +o0,
into L (with [, h = [ ¢ =0).

It is possible to show that T' is differentiable with respect to either 8 = &y, £ = 1,2, [ =
1,...,mor § =4¢. From equation (3.3.1), we formally get that X = 0g¢ should satisfy

L(X) =h(¢) + > dijAPZ;; + dyAPZ,
i
where
~ AeeWV AeeW AeeW
h(¢) = —0g | ———= g | ——— ke | koW
@=0(Jaw ) o+ ﬁl(fﬂkem?]/@ ) ¢+(fgk‘ew)2/ﬁ oo

+ ) cij0s(APZiy) + cods(APZ),
2]

and d;; = 0gc;j, dg = Ogcg. The orthogonality conditions now become

/Q XAPZij = — /Q $95(APZ;)  and /Q XAPZ = — /Q ¢ 95(APZ).
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3.3. THE LINEAR OPERATOR

We will recast X. We consider the function
2 m
Y =X+ Zzbijpzij +boPZ,
i=1 j=1

where the coefficients b;;, ¢ = 1,2 j = 1,...,m and by are chosen in order to satisfy the orthogo-
nality conditions

/YAPqu:O, p=12,¢=1,...,m and /YAPZ:().
Q Q

AXzéY:Q

Let us observe that b;;, i = 1,2 j = 1,...,m and by are well defined, since they satisfy an almost
diagonal system. Also, we get that

Note that

C 1 C 1
|bij| < 5 <log 6) | 7]] and |bo| < 5 <108 5) 12 ]]-

Indeed, consider the vectors v = (bi1,...,b1m,b21, ..., b2m, bo),

W = </Q¢86(APZ11%...,/Q¢8g(APZ1m),/Q¢85(APZ21),...,

/Q 6 03(APZop), /Q (b@g(APZ))

and the matrix A = (a;j)1<i j<m given by

JoAPZiPZyj, 1<i,j<m
JoAPZ1jPZyj, 1<i<m,m+1<j<2m
JoAPZyPZyj, m+1<i<2m,1<j<m
JoAPZy PZyj, m+1<1,j<2m

aij =4 [¢APZPZyj, i=2m+1,1<j<2m
fQAPZPZgj, i=2m+1,m+1<j<2m
JoAPZPZ, j=2m+1,1<i<m
JoAPZy PZ, j=2m+1,m+1<i<2m
[oAPZPZ, i=2m+1,5=2m+1

We know that a;; = O(0) if i # j and

-3 4+ 000), i=1,....2m
Qg = .
—3m 4 0(8), i=2m+1

Thus, we have that Av = w has a unique solution and we get that A is an almost diagonal
matrix, so, it is invertible (for § small enough) and we can deduce that

IV|Igzm+r < C||lw||gem+r < Cmax{’/ »03(APZ;j)
Q

:i:O,l,Z,jzl,...,m}
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3.3. THE LINEAR OPERATOR

since PZ = > ", PZp;. Also, we obtain

\ | 00u(aPz)| < Cloll 058P 5.

and
1
05(APZyj) = —e%105U; Zij + 0325 + 9] / ¢1(05U; Zij + 05 Zi5).
Q

For B = {u we get that O, (p;(&5)) = p;(&)0wG(&5, &) if § # 1 and Og,, (pi(&)) = Okpi(&), since
Dok H (&,&) = 0. Hence, we deduce that

Az =&k hp(&) |z — &> = &}

O, Ui(x) = ,
sl = e T o) ot le—ar
it A1 o
e, U () = (e, ) I 0
‘5]‘ + |z = &l
Oep(&) 4%z — &? 807 (z — &)
O, Zoy() = ,
Ekl Ol(x) pl(fl) (6[2 + ‘.f[f . 51‘2)2 (512 + ‘LU - §1’2)2
i 41
O Zog(x) = DG )l S 1
i\T) = j ) 3
€kt <07 2k Js Sl (5]2+’$_§j’2)2
and for ¢ = 1,2
O Zi(a) = Apu(&) 20i(x —&)i |z —&l* =& . 45, 86,(z — €)i(z — &)
Sk (&) F4lz—&P2 & +le—&P? ToE4|x—&P? (62 + |z — &2
it £1

20j(x — &)i lv — &P =07
5J2 + ’1‘ - fj’Q (5]2 + ‘.I' - {j’27
since (3.2.5). Note that || Zij]|lcc < C foralli=0,1,2 j=1,...,m, ||0g,Ulllcc < %, 10¢,, Ujlloo <

C for all j # 1, ||0¢,, Zit|loo < % for all i = 0,1,2 and [|0¢,, Zij|loc < C, for all i = 0,1,2, j # L.
Then, for all j #1

O, Zij (v) = 82kG(€j7 &)

1€%90¢,,U; Zijll oo < 1|1€Y7]14110¢,, U Zijlloo < C

and
HeraﬁkzZinOO < HerH*HaEMZinOO <C.

Now, if 7 = [ then we get

C
1% 8¢, Ui Zalloo < e |10eu Ui Zalloo <

and

Q

U U
€74 0ey, Zitlloo < [l€7 4[| 0gy, Zitlloo < <

(=%

for all ¢ = 0,1,2. Let us estimates the integrals, if i # k then

/ eUlaékz Ui Ziy = / eUlaszUl Zy = 0(53)
Q DB(&,r)
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3.3. THE LINEAR OPERATOR

and

/ eUlaﬁklZil :/ eUlaiklZil = 0(6?),
Q Q\B(&r)

for 4 = 0 we have that
/ €U18§MU[ Zo = / eUlagklUl Zig+ 0(52) = O(l)
Q B(&lyr)

and

/ e 0g,, Zo = / g, Zu + 0(5") = O(1).
Q B(gl»r)

Now, if ¢ = k then

165[(1’ — 61)2

U, _ U, k 3
e l0¢, U Zy = e dx + O(6
/Q St /B({l,r) (67 + |z — &?)? @

and )
451 8(51($ — él)k

V1, Z; =/ el [— + ] dz + O(6%).
o, e’ L m—al T @+ eP)y (9

Hence, we get that

45 246, (z — &)? ]

U, _ U, l l Uk 3
V10, Uy Zy + B¢, Z; _/ e [— + dz +O(8
e et 2+ e Ben L O+l —&R T (O - &Py o

= 0(5%).

Therefore, definition of *-norm we get that
C , :
10¢,, (AP Z;j) ||« < 5 foralli=0,1,2, k=1,2,5,1=1,...,m.

Now, for 8 = ¢ we get that

2z =>4
- (5(5?4-‘.%’—51‘2’

1 8|e - &

osU; — - S
5 j(x) 5(sz+‘x_§j’27

8520]'(.%‘)
and for i = 1,2
1 4di(e - &) lr— &P -6

05 Zij(x) = < .
2 = Sl P T e 6P

Hence, similarly as above, we get that ||0s(APZ;;)||« < Cforali=0,1,2,j=1,...,m. Thus,
we conclude that

C C 1
MAséwwwsé(manw* for all i =0,1,2,j = ... m

and

C C 1
ol < Sloll < S (1085 ) Il

Hence, the function X above can be uniquely expressed as

2 m
X=T(f)=> Y bijPZj—bPZ,

i=1 j=1
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3.3. THE LINEAR OPERATOR

namely, Y = T'(f), where

2 m

f=h@)+ Y > biL(PZy) + boL(PZ).

i=1 j=1

This computations is not just formal. Arguing directly by definition it shows that indeed dg¢ = X
for either 8 = & or B = d. Moreover, we find that

2 m
111 < MR + Y D 1l IL(PZig)l|s + [bol | L(PZ)]ls-
i=1 j=1

From the definition of h(¢) we have that

~ K
@) <1551 Tl + 05 (i ) | 1ol [ e + NI el

+ > leijl 105 (APZij) |« + |co| |05 (APZ)]].
i?j
In order to have good estimates, we need to know the derivatives d3W whether either 8 = & or
B = 4. Using the integral representation (2.2.4), it is possible to show that

4@ =&k (&) 267

0, W = O H (x,
e W () Prlo-aP  p@) Fra-aP + 0o H (2, &)
m 2 (3.3.16)
OarG (&), &) 5———— + O(6?|log d|)
j%ﬂ Tt e = &P
" OsW (x BN 452 + O(d]log 3.3.17
W)= =53 g *+ Ol1oad) (3:3.17)

Hence, it readily follows that ||0gW ||oc < % for either 8 = & or B = J. Now, we find that

keV 05 W C
8BK =K <8BW — W) and H(S?BKH < QHKH HagWHOO <5
Q
since || K ||« < C. Also, we have that
HKH ¢ 1
Haﬁ |:fQ k:eW] H Ha,BWHoo = fg keW *

From Proposition 3.3.2 and the previous estimates for ||05(APZ;;)||« and ||0s(APZ)|« we get
that

i@ < el + Sl < § (1065 ) Il
Recall that |[L(PZ;;)|« < Cé fori=1,2, j=1,...,m and |[L(PZ)||, < C4. Hence,
2 m
Xl < 1T oo + D23 il 1PZisloe + ool P71l
i=1 j—l

c(log )Hfu .
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3.4. THE NONLINEAR PROBLEM

Therefore, we conclude that for either 8 =& or =0 withk=1,2,1=1,...,m

2
ot ()1 < 5 (1087) Il (33.18)

From previous estimates and arguments we deduce that 957 is differentiable with respect to
0. We formally differentiate the equation

2 m
95T (h Z > bijPZi — b PZ
i=1 j=1

with respect to §. Similarly as above, we estimate every term and finally, we obtain that
C 1
st < & (1082 1l (33.19)

3.4 The nonlinear problem

In what follows we will solve a nonlinear problem. Recall that our goal is to solve (3.2.8).
Instead of solve directly the problem (3.2.8) we shall solve an intermediate problem. First, we
construct a function ¢¢ which will be the main order in the remainder term, namely, we look for
a solution u = W + ¢ and we expand ¢ = ¢g + ¢1.

Note that as § — 0 for |y| < R, R’ > 0 some large constant, we have that

8  Vpi(&)

i R(& + 65y) = ;R0 (&5 + 05y) + o(1) = (1 +[ylP)? ps(&)

y+o(1).

In fact, §; + 0;y € B(§;,r) for some r > 0 fixed and

Vp;(& +6;y)

R@+@m:@%@%w[ «m+o@m%+mwmwﬂ+@m¥mww

pi (&)
Hence, roughly speaking ¢g should satisfy 6;¢0(&; +9;y) ~ ¥(y) around &;, where ¥ is a solution
to
8 1 8 8  Vpi(&)
A\If+(\11— \Ilzdz>:— Iy,
(ERTEANETY SRR T+ PP 2ile)

up to orthogonal conditions, in IR?.
Consider the function

2 .
Vi(y) = W log(1+ |y, i=1,2.

This function satisfies in IR?
8 8Y; 24y;
AV, + ———— T, = —
(422 T+ 1[y2)?  (1+[y[*)?

8
/1R2 A W) dy =0

Note that ¥; is bounded in IR? and

8Yi 24y;
- + Yi(y) dy = 0.
A#[u+wm2 ey Y

and
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3.4. THE NONLINEAR PROBLEM

Let us define for x € Q,¢=1,2, j =1,...,m the function

_ ¢, 20%(x — &),
o) = 59 - f) =5 i(ig D [-2tosi +1og(6} + [+ &)
i J

which satisfies 3

Thus, we define the function

ZZ zpj P% ), TEQ, (3.4.1)

i=1 j=1

where P1;; is the projection of 1);; into the doubly periodic functions with zero average. Observe

that
ZZ ”J L(P)

i=1 j=1

and

_ 1 )\keW fQ k’eWP@ZJij
L(Pyij) = Avij — |Q/ Atij + T ke (P%‘ T R

1 3
= _er |:(:E - gj) 5 sz + ¢1]:| + 157 |Q’ er [( - g])z - Z(SjZij + ¢7,j:|
\eeW (szj B fQ ke P%Dij) .

+ fQ ke fQ keW

Hence, we get that

. p; (&)
= R0+ZZ< > o) APZ;, (3.4.2)

=1 j=1

where
w
ng g] U 1 U )\]CQW fQ ke (250
~Ro— g [ o+ { fwi-—/ewi]— do — 2
12l ;]z:l pi(&5) 719l Ja T o ke Jo ket
A function u of the form u = W + ¢g + ¢ satisfy (3.1.1) if and only if ¢; € F and

L(¢o + ¢1) = —[R+ N(do + ¢1)]

or equivalently ¢; € E and

L(¢1) = —[R+ L(¢o) + N(¢o + ¢1)],
where L, R and N are given by (3.2.9), (3.2.10) and (3.2.11) respectively. Also, we have that

N(¢o + ¢1) = N(do) + A1) + No(¢1),

where

(61) = A ke g, ke ke [ ke T0g, N ke [ ke ¢ (3.4.3)
' JokeWHoo [ ke (Jq keW+¢0)2 (Jo kzeW)2 7 -
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3.4. THE NONLINEAR PROBLEM

No(ér) = A LkeW+do+é1 kew+¢0¢1 N LeW+do fﬂ k€W+¢O¢1 - LeW+do 344
o\P1) = fQ keW+do+é1 fQ LeW+éo (fQ keW+¢0)2 fQ LeW+do | 4.

Observe that
i~i p— & —_— —_— .
/Q 0 /Q (91) /Q No(¢1) =0

We consider the following auxiliary non linear problem

L(¢1) = —[Ri+ A(é1) + No(61)] + X1, Sy 6V APZy + eV APz, i Q, (3.45)
[y APZij¢1 =0, foralli=1,2,j=1,....m, [,APZ¢ =0, o
where .
Ri=R—Ry+ N(¢Q), (3.4.6)

for some ¢ € ENW?22(Q) and cgjl-),c(()l) eER,i=1,2,j=1,...,m.

Lemma 3.4.1. Let m > 0, d > 0. Then there exist dg > 0, C' > 0 such that for 0 < § < &g and

for any points &1, ..., &m € Q, satisfying (3.3.4) and 6; > 0 satisfying (3.2.5) and (3.2.6), problem
(1)

(3.4.5) admits a unique solution ¢1, ¢i,1=0,1,2,7=1,...,m and cgl) such that

[p1[loe < C5*7|log 6. (3.4.7)

Furthermore, the function (6,€) = ¢(8,€) € ENL®(Q) is C1 in &€ = (&1,...,&y) and C? in 4.

Moreover, we have the following estimates
10501l0c < C5~7|log %, for either =&y or B =0 (3.4.8)

and
10s5¢1]l0c < C37[log 5| (3.4.9)

Proof: In terms of the operator T' defined in Proposition 3.3.2, problem (3.4.5) becomes
¢1=T(—[R1 + A(¢1) + No(é1)]) := A(¢r). (3.4.10)
For a given number v > 0, let us consider
Fr=1{€C(Q) : |[¢llo < v6*~7|logd|*}.

From Proposition 3.3.2, we get that for any ¢ € F,,

[A(@)lloo < Cllog d[|| By + A(¢1) + No(¢1)]]«
< Cllogd| [[[Ball« + [[A(@1)[l« + [[No(d1)]ls]

Let us estimate || R1]|«. We have that

IRl < IR — Roll« + [N (0) s
< IR = Roll« + |1 Ro — Roll« + |V (¢0) |+

We know that, from Lemma 3.2.2, ||R — Ro||l« < C§%77|1logé|. Also, we have that

g 2 L 9ip4(&5) [ U, 1 [ ] AkeW [y ke gy
Ry—Ry=— | Ry— LAY A iy 4+ — Jahs o _Jo7
o IQy/Q ’ ;; o€ 1Tl Jo T ke \ T T ke

41



3.4. THE NONLINEAR PROBLEM

Observe that from the integral representation (2.2.4) we get that
Py = 45 + O(6%| log 8]) (3.4.11)

uniformly o compact subsets of 2. Let us estimate the integral

/kquso_ZZ 9ipi(&) /k W Py,

=1 j=1 Pj §]
Hence, we get that
/ kW Py — / ke (i + O(5%) log 3)))
Q Q
= [ keuy+ 0(lloga))
(gjv )

since [, ke = O(67?) and ;; = O(6%|log§|) in Q \ B(&;,r). Hence, we get that

1
/ ke i = 2/ eV pjiis[1 + O(6%| log 81)]
(&) 807 JB(¢g;.r)

and

8

U.

e ]P'W'—/ (5 + 059)0; Vi (y) dy
/B(gj,r) 7 B(0,5) (1+[y?)? (85 + 059)9735(0)

8 2y,
=0 [ R T oA+ () + O] dy

70

= 0(6?).

Thus, we obtain that
/ ke Pyi; = O(|logd|)  foralli=1,2,j=1,...,m
Q

and W

fQ ke Pd)w
Jo ke

since [, k" = O(672). Now, note that

P — = 1ij + O(6%|logd|),

/30_0(52) and /eUu/;ij_O(aﬂlogay).
Q Q

If |x — &| > r for all j = 1,...,m then (Ry — Ro)(z) = O(6?). Now, if [z — &;| < r for some
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3.4. THE NONLINEAR PROBLEM

jeA{l,...,m} then

2 m
VI dip1(&)
(Ro — Ro)(x) = O(%) ;; pi(&)

AeeW (G 9ip1(&1) 2
ke <ZZ () Vit T O logdl)

i=1 [=1

[eU’wu + 0(54\ log 5])]

= Ui [1 4+ O(|a — &) + O(82| log 6])]

2 . .
> 8;éjéf;)wu +0(6%| log 5|>]

: (
=1 J
2
9:05(&) v,
3o
i=1

=" 82’7253)6% [y {O(|z — &) + 05| log 8))} + O(5?| log 8])] + O(8).
i=1 I

Thus, we conclude that ||[Ry — Ro|[« < C62~7. On the other hand, by definition of N we estimate
IN(@0)ll+ < ClIK ||| g0l < Cligollz-
Hence, there is a constant C' independent of v such that
IN(¢o)ll+ < C8°.

Therefore, we conclude that | Ryl < C6277|log§]|.
Now, we estimate the linear term and we obtain that

1A+ < Cllgoll<ll @]l < Cva*=7|logd|*.

Furthermore, we get that

AkeWW+do

INo(@)ll. < CHW

H 1612 < Cll6I2 < Cv25™2|log 3|

Hence, we get that for any ¢ € F,

IA(9) |0 < C|logd| [6*~7|1og 8| + [[¢ollcll i + [16]7]
< C|logd| [6* 7| log 8| + v6* 7| log 6| + v25* 27| log §|*]
< C6*7|logd|* [1 + vd|logd| + v*6% 7| log 5]*] .

Given ¢1, ¢2 € F,,, we have that

A1) — A(d2) = T (=[A(¢1) — Ald2) + No(¢1) — No(¢2)])

and

[A(¢1) — A(¢2)[loe < Cllog 8][[[A(¢1) — A(@2)[l« + | No(d1) — No(¢2)[+]-
We know that A(¢p1) — A(¢p2) = A(p1 — ¢2), so

[A(¢1) = A(@2)]l« < Cligollsolldor — d2lloc < Cdl[P1 — P2]|oo-
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3.4. THE NONLINEAR PROBLEM

From the definition of Ny, it follows that

[No(61) = No(#2)ll« < C(l[#1]lo + [ld2llco) |01 = d2lloo

for some constant C' independent of v. Therefore, we conclude that

[ A(¢1) — A(¢2) [l < Cl1og 6] [8]|¢1 — d2lloc + 10> [10g 7 [|¢1 — ¢2lloo]
< Cd|logd| [1+v5' [ log d|] [|¢1 — d2|oc-

It follows that for all § sufficiently small A is a contraction mapping of F,, (for v large enough),
therefore a unique fixed point ¢ of A exists in F,,.

Let us now discuss the differentiability of ¢; depending on (4, &), i.e., (6,£) — ¢1(8,&) € C(Q).
Since Ry depends continuously in (6, £), using fixed point characterization (3.4.10) we deduce that
the mapping (0,&) — ¢1 is also continuous. Then, formally for 5 = & or 5 = §, we get that

Ipd1 = 0T (—[R1 + A(¢1) + No(¢1)]) + T(=0p[R1 + A(é1) + No(é1)])-
From the definition of Rq, we have that
dsR1 = 9sR — dgRo + 5[ N (¢o)), for B = & or B =6,

and

W+e w W+é W+é
%[N(qb)]:zv(qb)aﬁva( ke ke > 550 A(ke Jo, kW09

Jo kW [ ke (Jo keW+¢)2
B ke [, ke 9sW B ke [ ke osW B ke [, ke 9sW ¢

(fQ kew)Q (fQ k‘eW)2 (fQ keW)Q
+2 ke (Jo ke 05W) (Jo ke™ o) ) —A <k6W+¢ Jo ke 2959 _ ke Jo k:eW85¢>
(Jo kew)g (fQ k:eW+¢>)2 (fQ keW)z

So, we conclude that

105N ()]l < C [195W lloolltoll30 + lI@olloc|Opbolloc] -

Similarly, we get that

195[No(¢)]ll+ < C [185W + Bpulloc|é1 115 + 161100 19591 [15] - (34.12)
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3.4. THE NONLINEAR PROBLEM

On the other hand, we have that

kew+¢°3/3¢o¢1 kew+¢0¢1 fQ keW+¢005¢0
I[A(¢1)] = A1) OsW + A < T kW oo Jo keW+o0
B kew+¢°85¢o fﬂ keWteog, - keW+éo fﬂ kew+¢“85¢0¢1
(Jo ket +0)? (Jo ket +0)?
keWFeo ([ ke HP0g,) ([, keW T d50) keW+eo keV
+2 3 + Wtdo w | 9891
(fQ k€W+¢o) Jo ke o [ ke
. keW oo Jq ke T0a,W B ke [, ke oW "
(Jo ket +0)? (Jo keW)?
. keWFoo [ ke TP0o5W ¢y B ke [, ke" 95W ¢
(Jo ket +0)? (Jo ke)”
. keW oo Jq ke T30, B ke [, ke" gy
(Jo ke +0)? (Joy k)
Lo ke +do (fQ kew+¢0¢1) (fQ keW+¢085W) B ke (fQ keWgZ)l) (fQ keW83W)
(Jo ket +0)? (Jo k)

and we conclude that
105(A(e1)) [« < ClIOsW lloo | dolloo @1 lloc + [195d0llc0 | P1lloo + [Idollool|Fprlloc] - (3.4.13)
Let us estimate [|0sR — 95 Ro||» and |00l for B = & and B = 4. First, note that
9sR — 95Ry = OsR — OgRo + 93 Ro — s Ro.
Hence, for g = & we get that

ke
afklR = Aa§sz + W aﬁsz -

Using the expansion (3.3.16), we find that

1
/ ke, W = O ('Og‘”) .
o 5

On the other hand, we know that
& | 1 |
Aagle = Z |:—€U]6§kl Uj + @ /Q eUfagkl Uj:| .
j=1
It follows that
/Q Vi, Uy = O(5?).
On the other hand, if j # [ then

ikpr(&) — Oipu(&)Okpi(&1)
p1(&r) [o(&)?

8&; (aipj (€J)> = a2k(aliG(£j7§l)) and a&kl (

0ip1(&1) )
;i (&)

pi(&r)
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3.4. THE NONLINEAR PROBLEM

Hence, we have that

v, [ V(Opt) (&)

O¢, Ro(z) =e

)t Vi (&) (- ) ( Az — &)

pu(&) pu(&) of + |z — &2
Oep1(&) 267 ) Okp1(&) ] [
- + E (021G (&5, x—§&;
p(&) Of + ]z — & (&) #G)&p &) (7 = &)
Voi(&) o —&I* - 5?]
+ 091, G(&;, (x—&) 55|
2k (5] gl) (él) ( gj)(sjg + |$‘ — 5]‘2
Now, we estimate in the following form, if |z — &;| > r for all j =1,...,m then uniformly

O, R =0(8%) and O, Ro = O(6%).
If |x — &;| < r for some j € {1,...,m} then we have two cases. Suppose that j = [, then

Uz =&k Owp(&) |z —&|* — 6}
Z+lz—g2  pl&) 6+ |z — &
V) (o &) + 0o~ &%)+ 03[ o5 )

pi(&1)

[ 4(r — &)k Ohp1(&) 267

Ftlz—al>  p&) 67 +]z—&P? + O H (2, &) + O(&]logé\)]

O¢, R(z) = — eVt [ } +0(6%)

+ eV [1+

and

_u | Oe&) | VOp)&) Vo) ey (_Ae =&k
e,y Ro(x) = [ (&) + e (x—&)+ e ( gl)<5?+’x_§l’2

_Okpi(&1) 207 ﬂ 5
ae) Zje—gp)| OO

Hence, we get that

pu(&)
pi(&)

(0cy, R — O Ro) () = ¥ [azkmx &) + O H (2, &) Y21 (g

_ YO&) () 1 ol —g)) + 0 log6|>] o).
pi(&)
Now, if j # I then we have that
_ 2 (.
D6, R(z) — —evjazkc:(@,fz)ggﬁ S Vp”(g) (- &) +0(r - &)

2
08| log 8)) | |9okG(2, &) — 02k G (&, &) ——=—— + O8] log 8]) | + O(5?
(6] log )] [ kG2, &) — 02 G (& 51)5?—1—\3:—@]2 (6]log d]) (6%)
and
— &2 =52
ey Ro(w) =1 | Vo (0G) (&5, &) - (x — &) + 82kG(fj,€z)vplpé§)l) (- fj)W]
b J

+ 0(6?).
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3.4. THE NONLINEAR PROBLEM

Thus, we get that for |z — &;| <r, j #1
Oe R(x) — 9g,, Ro(x) = eV [O(|z — &) + O(5]log 8])] + O(5%).
Therefore, from the definition of *-norm we conclude that
|0¢,, R — Oc,, Roll« < Cdllogd|
Now, let us estimate ||0¢,, Ro — O¢,, Rol|+. From the definition we know that

0; 1 ,
gy Ro — Og, Ro = g Ro + Z Z ey p] Vit + Vi
IQ\ ) 12 Jo

=1 j=1

+ZZ Zp] §] ey [—e Tij + |§12 e jwij]

=1 j=1 ]
\keV fQ kew¢o eV fQ kewgbo
+ O, <W> <¢o— [ ke > + T ke Wﬁgkl <<J5 - W )

Furthermore, we have that

%m—ZZ[ () P+ S o (P

=1 j=1 J

By the integral representation formula (2.2.4) we get that

Og, Pij = By i + O(6%| log d]) (3.4.14)
uniformly on compact subsets of Q for all i =1,2, 5 =1,...,m. So,
e il @M@ow%x—&nx—aﬁ+4ﬁu—a>u—&>]%%(ﬁ+m—ﬁv>_q
Sk pu(&) (0 + ]z — &%) (OF + |z = &l* of

252 512 + ‘JZ — 51‘2
S log [ TS
6 + |z =&l o

where d;; is the Kronecker’s delta, and for j # [

200 — €| — £.]2 2 2
6€k1¢ij($):82kG(§j,fl)25j(x SJMx éj‘ [lOg <M>_1]

(62 + [z — &12)2 07

Hence and similarly as above we find that from the definition of *-norm
|0¢,, Ro — ¢, Roll+ < C6]log d|.
Now, it follows that
10g,, R — Ogy Roll+ < [10g,, R — dgy, Rollx + [|0g,, Ro — Dgy, Roll« < C5|log|.
On the other hand, we have that

2 m
||afkl¢0||00 < CZZ [||P7;Z)lj||oo + ||8Ekzp¢ij||00] <.

i=1 j=1
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

From the definition of R, we have that

HaszRlH* < HaﬁklR - aszROH* + Haﬁkz [N(¢O)]||*
< C6[log 8| + C [[|0, W ool b0ll2e + [1D0]loo | Oe,y P0lloc ]
< 4| logd|.

Thus, using estimates (3.3.18), (3.4.12) and (3.4.13) for 5 = &; we get that
108,111« <1108, T(=[R1 + A(d1) + No(@1)])lleo + [T(=0gy, [R1 + A(d1) + N(¢o)]llo

log o
< 0[BEE . + a0l + INu(0)1) + g 8110 Rl

+ 106, A @]l + 106, Na(o]l)
log 5|2 o
0[R2 (52 10g 1+ nlallnlloc + 6112) + 1081510z
+ 196, Wllool6ollcllé1oe + 1, Golloc 911100 + 1 601loc 1B b1 o
+ 106 0 -+ 00) 01 + 10105, 1)

<C [6'7|log 8> + 5| 1og 8] [|De,, 61 o]

and we conclude (3.4.8) for 8 = &x.
On the other hand, using similar arguments as above, there holds that

|05 R — 95Roll« < [|05R — d5Roll« + |05 Ro — 05 Ro|« < C6' 7
and [|05¢o|/cc < C. Hence, we get that
105 Rl < C6*7.

Thus, using estimates (3.3.18), (3.4.12) and (3.4.13) for § = § we conclude (3.4.8) for 8 = 4.
We proceed in the same way for the second derivatives with respect to . So, we have that

o591 = OssT(—[R1 + A(¢1) + No(¢1)]) + 205T(—0s[R1 + A(¢1) + No(¢1)])
T(=0s5[R1 + A(¢1) + No(¢1)])-

Using previous estimates, similar arguments and (3.3.19) we obtain that
|0s5¢1]]00 < C6~7|log 5%

The above computations can be made rigorous by using the implicit function theorem and
the fixed point representation (3.4.10) which guarantees C? regularity in § and C! regularity in
&. O

3.5 The finite dimensional variational reduction

In view of Lemma 4.4.1, given any points §; € 2 satisfying (3.3.4) and any §; >0,j=1,...,m
satisfying (3.2.5)-(3.2.6), we consider ¢1(d,&), Z(j (6,6),1=1,2, 5 =1,...,m, and c(() = ( ,€)
where & = (&1,...,&mn), to be the unique solution to (3.4.5) satisfying (3.4.7), (3.4.8) and (3.4.9).
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

After problem (3.4.5) has been solved, we observe that from the choice of R, A(¢1) and
No(¢1) we get that

2 m
L(¢o+ ¢1) = —[R+ N(¢o + ¢1)] + Y > ¢ijAPZij + cAPZ, in Q, (3.5.1)
i=1 j=1

where

3 . 0ipi (&) 1 - ,
c%f—z@ﬁé; +d) forall i=1,2,j=1,..,m

and ¢y = cél), and ¢¢ is given by (3.4.1). Hence, we find a solution to (3.2.8) and then to the
original problem if § and £ are such that

¢ij(6,€) =0, foralli=1,2,7=1,...,m

(3.5.2
Co (67 5) =0. )
This problem is equivalent to finding critical points of the following functional

where Jy is given by (3.1.2), W, ¢g are defined by (3.2.7) and (3.4.1) respectively, and ¢, is
the solution to problem (3.4.5). The following standard result states that critical points of F)
correspond to solutions of (3.5.2) for small d, namely, for A close to 8rm.

Lemma 3.5.1. There exists &g such that for any 0 < § < 0 if (6,€) is a critical point of F,
with §& € Q™ satisfying (3.3.4) and 6; > 0, j = 1,...,m satisfying (3.2.5)-(3.2.6), then u =
W (6,€) + ¢0(8,8) + ¢1(9,€) is a critical point of J, that is, if DsF(6,€) =0 and D¢Fx(0,€) =0
then (9,€) satisfies system (3.5.2), i.e., u is a solution to (3.1.1).

Proof: Let us denote ¢ = ¢g + ¢1, in order to simplify the notation. So, F\ (4, A) = Jx(W + ¢).

Next, let us differentiate the function F) with respect to 3 for either § = & or 8 = 6. We can
differentiate directly Jy(W + ¢) (under the integral sign), so that,

IpEN(8,€) = DIN(W + ¢)[0sW + 0¢]

_ _/Q [A(W +6) + W} [0sW + 03¢

integrating by parts. From (3.5.1) we get that

2 m
=YY ¢jAPZ;j+ c)APZ. (3.5.4)
i=1 j=1

A(W+¢>)+)\(kw+¢ 1>

Jo ke B @

Hence, we obtain that
2 m
OpFA(5,8) =—=> > ci /Q APZij[05W + dg¢] — co /Q APZ[0zW + D),
i=1 j=1

since fQ [0sW +05¢] = 0. From the results of previous section, this expression defines a continuous
function of (4,&). Let us assume that DsF(0,£) = 0 and D¢F)(g,£) = 0. Then, from previous
equality for both 6 = ¢ and 8 = &

2 m

D ey /Q APZi;[0sW + 93¢] + co /Q APZ[05W + dg¢] = 0.

i=1 j=1
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

From the estimates of previous section, we get that ||0s¢|s < C, since ¢ = ¢o + ¢1. Also, we
have that
1

OsW (z) = 5PZ—}—O(5|10g5\) and  Og,,W(x)

_ !
o

1

Zi+0(1) = 5

PZy +0(1)

uniformly for 2 € Q. Thus, it follows that

2 m
D e /Q APZ;[PZ + O(8)] + co /Q APZ[PZ +0(8)] =0

i=1 j=1

2 m
S e /Q APZ[PZi + O(8)] + co /Q APZ[PZy +0(8)] =0,

i=1 j=1
forall k =1,2, j=1,...,m with O(-) in the sense of L>-norm as 6 — 0. The above system is
strictly diagonal dominant and we thus get ¢;; =0 foralli=1,2,5=1,...,mand cg=0. [

In order to solve for critical points of the function F), a key step is its expected closeness to
the function Jy(W), where W is the function defined in (3.2.7), which we analyze in the next
section.

Lemma 3.5.2. The following expansions holds
F)\((Sa 5) = J/\(W) + 9(57 5) =+ 0)\(57 f))

where
m

0(0.6) = - Mgy VoS

3 = &)

and
0x] + 865 | + 82 D20,| = O(5°~7| log )

uniformly for points £ = (&1,...,ém), § € Q, j = 1,...,m satisfying (3.3.4), and with §; > 0,
j=1,...,m satisfying (3.2.5)-(3.2.6).

Proof: We write ¢ = ¢g + ¢1 and
J)\(W + ¢) - J)\(W) = A+ B,

where
A=W+ ¢)— AW +¢o) and B := Jy(W + ¢o) — A(W).

Let us estimate A first. A Taylor expansion give us

1
A= DI\W + §)on] - /0 D2IA(W + do + té1) [t d.

Testing equation (3.5.1) against ¢ and integrating by parts, we get

Jo ke b

ie., DIN(W + ¢)[¢1] = 0. Thus,

1
A= —/0 D2J\(W + ¢o + ton)[o1]2t dt.
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

In fact, we have that

1
A=) —/0 PO d with f(8) = Ja(W + do + tér).
Hence, we get that

f'(t) = DINW + o + té1)[1]
keW+do+io1
So, by (3.5.1) we get that f/(1) = DJ\(W + ¢)[¢1] = 0, since

/(Z)lAPZZ-j—O, foralli=1,2,j=1,....m
Q

/ 1 APZ =0 and / ¢1 = 0.
Q Q
On the other hand, we have that

£ () = D2I\(W + ¢o + ton)[¢1]?

A \ k€W+¢0+t¢1¢1 keW+do+io1 fQ keW+¢o+t¢1¢l
- _/Q o1+ fQ keW+dottor (fQ keW+¢0+t¢1)2 o1
)\kewgzﬁl ke fﬂ kewd)l
= Ri1+ A(p1) + No(o1) + —
|+ o+ Mot + P - = (355

keW+do+io1 oS WHgo+ten J‘Q LeW +do+ipr )
— + A
fQ keW+dot+ign (fﬂ k€W+¢o+t¢1)2 o1

= /Q [Rl—%-No(gf)l)—]\t((Zsl)} o1,

where
A (¢ ) _)\ LeW+éo+tdr o) B keW+¢o¢1 B kWo+ign fQ LeW+éo+tdn o)
ROV TN J kW rdotton T T keWHdo ([, keW+oo+tor)? 350
3.5.6
keW+¢>o fQ keW+¢>o¢1
(JokeW+oo)® )

Let us observe that we get A;(¢) from A(¢1) replacing W by W + ¢ and ¢g by t¢1. Thus, we
obtain

A= —;/Q[Rl+No(¢1)]¢1—i—/ol{/ﬂﬁt(él)(bl}tdt. (3.5.7)

Now, we can estimate

1 ~
[ Al < Cll Ry + No(o1) |« (|61l +/0 CllA (1) |+l 91 lloo [¢] dt

1
< OBl + [|No(1)]]+] ||</51Hoo+/0 Cltlllrll3 I onlloo [t dt

< €[5 logd] + 2] 62 og 32 + O[5 log 4]
< O[6*27|log 6] + 65737 | log 619).
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

Note that we estimate ||A;(¢1)]|«, similarly as we have done with A(¢;). Therefore, we get
INW + @) — JA(W + ¢g) = O(6 7| log 6[%).

Let us differentiate with respect to either 8 = & or § = §. We use the representation (3.5.7)
and differentiate directly under the integral sign, thus obtaining for each &g, k=1,2,1=1,...,m
or J,

A = — ;/ﬂ ([0sR1 + 9s{No(#1)}] 61 + [R1 + No(¢1)]0pé1)

+ /01 { /Q [aﬁ{&(asl)}qbl +At(¢1)aﬁ¢l} }t i

We use the estimates from previous section and we observe that an estimate for [|9g(As(¢1))]|x
arises from similar computations for ||05(A(¢1))||«. So, we find that

105 (Ae(o)l+ < C (It 161]1%:105(W + d0)lloo + [t 1051 lloo 61 1] -

Hence, by using the estimates of the previous section we obtain
|0 A| < C( 198 Rall« + 195{ No(@1)}+] |@1llco + [[[1Rall« + | No (@)l ] O]«

1
+ [ [10s R0l + It 1050 ] )

< C( [0 Rl + 9s(W + ¢0)lloolld1ll2 + [[@1 1|00 10561 [loo] (1110
+ (1Rl + l61l3] 195l + [l61]12105(W + do)lloo + 10561 ool B1lloc] 61l

+ 16111319501 1)
< C([6'77 + 62| logd|* + 6* 7| log 6]°] 6%~ 7| log 5|
+ [6%77|log 3| + 6727 | log 6]] 6' 7| log &|*)

Thus, we conclude that for either 8 = & or 8 =06
Os[IN(W + &) — A(W + ¢o)] = O(6°~**|log 3|*).

Let us differentiate 0s A with respect to . Hence, it follows that

Ousd = — 5 | ([BssR -+ Oss{Nolén)] 61+ 2 (05 + O5{No(0)}] 561 + (R + No(61)0s561)

+ /01 {/Q [aga{fxt(cm)}cbl + 205 { Ay (1)} D51 +/~\t(¢1)855¢1} }tdt.

From estimates used to obtain (3.4.9) and similarly as above, we get that
Ass[ AW + @) — JA(W + ¢o)] = O(6° %" |log 5]°).

On the other hand, we have that by a Taylor expansion

1
B = DJ5(W + o) 0] — /0 D2J\(W + o) o]t dt.
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

In fact, it holds

1
B=g(1) —/ JBtdt,  with g(t) = Jy(W + to).
0
Hence, we get that

g'(t) = DIN(W + teo)[¢o]
keW—i—tho :l ¢

_ /Q [—A(W 00 <A

So, by (3.4.2) we get that

J(1) = /Q R+ L(¢o) + N(d0)lo

/ [R Ro+ZZ <°>APZij+N(¢o>]¢o,

i=1 j=1

where we denote cg)) = 35J Z J(g])) Also, we have that

g"(8) = D*J\(W + tdo)[¢o)”
- / keW o g keWttdo fQ ke +tdo g
Q

Jo ke Hto0 ( Jiy keW+t90)?
w AkeW [ keW ~ 2 m
[ s TS5
ol Joke (Jo ke™) i=1 j=1 (3.5.8)
keW+t¢0¢0 LW +tdo J‘Q k€W+t¢o¢o
- )
f LeW +tdo (fQ keW"‘td’U)Q 0

Agy + A 0

+ A

-

_ (60) = A k6W+t¢o¢0 B keW¢0 - LW +tdo fﬂ k:ew“‘t%géo N keW fﬂ k€W¢0
R A N A

—RO + Z Z c: O)APZij + At(¢0)] ®o,

i=1 j=1

where

Let us observe that A;(¢g) is obtained replacing ¢ by téo and ¢1 by ¢o in A(¢1). Thus, we have
that

/ [R Ry + ZZ APz + N(dm)] o

+/:{/Q

1 —
- /Q[R—R[H—N o) + ZZ APz, ¢0+/0 {/QAt(qbo)gbo}tdt

21]1

—R(] + Z Z CZ(;-])APZZ'J' + At((ﬁo) ¢0} tdt

i=1 j=1

= By + B,
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3.5. THE FINITE DIMENSIONAL VARIATIONAL REDUCTION

where
By = / |:R0 + Z ZC(O)APZ”:| %o
=1 j=1
e S [
=1 j=1
and

By = — /Q [R Ro+ 5 (Ro — Ro) +N(¢o)] b0 +/01 {/S)At(cﬁo)cﬁo}tdt-

We estimate first B;. We get that

1
51l < ([1R = ol + 1o = ol + INGo)IL] ool + [ 120l )
< C[0(6°77|1og 8| + 6% + 6%) + 6%]
< C6377]log d|,

since ||A¢(¢o)|l« < CJt| ||dol|%- Similar as the estimates for the derivatives of A, we differentiate
By directly under the integral sign with respect to either 5 = & or § = § and we estimate to
obtain that

105 B1| < C3%~7|log d|.

In the same way, we proceed for the second derivatives ds5B1 and we find that
1055 B1| < C6'|log d|.
Now, let us compute By. From the definition of Ry in (3.2.15) and ¢q in (3.4.1) we have that

m 2 m
/R0¢0 _ ZZZ &Pg 6] 8};7&5)1) /Q(-T_éj)ierP¢kl(x)-

i=1 j=1 k=1 =1 Pi(&)

Using (3.4.11), the definition of vy, it follows that if [ = j, k = i then
/Q (2 — &):e" Pus; = 68 + O(6% | log 8])
and otherwise (I # jorl=j, k #1i)
/Q(x — &5)ie% Py = O(5%|og ).

Therefore, we conclude that

m (£)]2
/QRO% = 677522%((5))' + O(5%]1og d|),
j=1

by the choice of ¢; in (3.2.5). On the other hand,

0 .
/QAPZz'j%:/QAZz‘j% ZZ kpl / Vi Z;; Py

k=11=1
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3.6. ENERGY COMPUTATIONS

Similarly, it is readily checked that

40 9ip;(&)) n

—7d; O(6?|log 51).
9" (&) (97 log 3])

/ APZZ'jgf)O = —
Q

Therefore,

P 147522\%)]( &)IP + O(8%1og 8)).

3 = pi (&)

From similar arguments used in previous estimates and previous sections, this latter expansion
is also true for first derivatives dg By with either 8 = &; or 8 = J, namely,

Oe, Bo = — 14”5220 (’V”J ’iﬂ))‘ )+0(52ylog5\) and

281 TN Vo ()P | e
Os By = —7(5 + O(6%|log d|).
]Zl Pj gj

For the second derivative 055 By we find that

28 \Y
056 By = — WZ‘ Sl + O(6|logdl).

26
Finally, taking 6,(0,&) = F)\(d,£) — Jx(W) — ©(4, &), where
!Vp
036 =~y VO

T

we have shown that as § — 0
165 + 6| VO] + 6°| DF0x| = O(5° 7| log 6])

uniformly for points £ = (&1,...,&m), &§ € Q, j = 1,...,m satisfying (3.3.4), and with §; > 0,
j=1,...,m satisfying (3.2.5)-(3.2.6). The continuity in (9, {) of all these expressions is inherited
from that of ¢ = ¢g + ¢1 and its derivatives in (d,&) in the L*°-norm.

O

3.6 Energy computations

The purpose of this section is to give an asymptotic estimate of Jy(W), where W' is the approx-
imate solution defined in (3.2.7) and J) is the energy functional (3.1.2) associated to problem
(3.1.1).

First, let us see a result which will be useful to get the mentioned expansion.

Lemma 3.6.1. Given any f € C*7(Q), 0 <~y <1 (9sf =0), we have that

/ eVs f = 87 f(€) — AmAf(€)8% log b + O(5?),
Q

as 6 — 0.
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3.6. ENERGY COMPUTATIONS

Proof: First, observe that for r > 0 small we get that
/ elVos f = Vs f 4+ 0(6%).
Q B(¢,r)
Also, we get that
IR ()= 1O = VH©) - (0= = DO~ .0~ ) do
/(5 | eoel® (f(i) + V) (x =&+ §<D2f<£><x —&)w - 5>) da.
So,as d = 0
[ 5 (50~ 1O = 910t - = (D@~ 2 - ) ) e =0

since .
F@) = 1) = V) (@ =€) = D[z =),z =& = O]z — £[*")
uniformly in B(§, 7). On the other hand, we get that

/ ele(®) (f(ﬁ) FVIE) (=) + DO —&),a - §>) da
B(&r)

= 8 1 Ses 2 2
a /B( 0 (1+\y,< O+5>.> Dif©)o yz'yj> dy

6 =1 j=1
2

2
_ 52 y; dy
8f<§)/3<0,r/5 T e 2 DLt / o T+ PP

52 6% + 12 52
= 87Tf(£) (1 — (W) + 27T52Af(§) |:10g < 52T ) + 52 4 r2 o 1:|

and the conclusion follows. O
Lemma 3.6.2. Let m € Z+ and d > 0 be a fized small number and W be the function defined in
(3.2.7). Under the assumptions (3.2.5) and (3.2.6), the following expansion holds

(W) = — 81 — Mog(mm) + 47pm (&) + 2(\ — 8mm)log § + V(€)6%logd + O(6?),  (3.6.1)
as 0 — 0, uniformly & = (&1,...,&m) satisfying (3.3.4), where the function @, is defined by

§) =-2> logk(§) — > G(&,&) (3.6.2)
=1 i

and V' is the function defined by (3.1.5).

Remark 3.6.1. In the sequel, by O(-) and o(+) we will be uniformly in the region § = (1, ...,&m),
satisfying (3.3.4).
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3.6. ENERGY COMPUTATIONS

Proof: First, we will evaluate the quadratic part of energy evaluated at W, that is,

1 1 1
et fovaw -y faws - S5 o

=11=1

Then, for j = we have that by Lemma 3.2.1

/ Viw; = / eli — log( 8(52) + H(, &) + as, ¢ + 0(6%)] .
Let us fix a small number » > 0. For the first integral in the R.H.S., we get that
/er [Uj —1og(867)] :/ : log 54 : 3 4y + 0(5%).
0 BO.Z) y L+ Y227 651+ [y?)
Note that
/ 8 log ! d 8/ [ 4log d +2log71 } d
Yy = j Y
Bz (1+ [yl?)2 7 oL+ [y[?)? (sL ) (L+[yP)? ! 2)? ’ (1+1y?)?
1
= K 4logd; +2log ———= | d
8” 0 1+52 Alogo;+ Og(1+s2)2} °
12 2, .2 67
= —32log; +(52—|— log(07 +r)—|—62+r2—167r.

J

Hence, we obtain that

/ Ui [Uj - log(85]2~)] = —167 — 32logd; + 0(6?).
Q

Next, by the previous Lemma we have that
/Q VI H(, &) =8mH (&5,&5) — Am A H (&5, £5)5; log 85 + O(6%).

8m
We know that A, H(-,&;) = a in Q. Therefore, we conclude that

U; 322 2
[ €)= 8n (6. €) S8 lomds + O,

Now, using the previous Lemma
/QEUJ'O@].,SJ. = 8770%.75]. + 0(52),

since ag; ¢, is a constant and ag; ¢, = O(62|1og 6]). Therefore, we conclude that

6472

/ eViW; = — 167 — 32log §; + SwH(&;,£5) —
%

Now, if I # j then uniformly for x € Q\ B(&,r) we have that

Wi(z) = G(z,§) + Qg e + 0(52)‘
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3.6. ENERGY COMPUTATIONS

Hence, we get that

/eUJ'T/Vl—/ eUJ'VVH-/ erWl—i—/ Ui,
Q B(f]ﬂ“) Q\[B(§J7T)UB(§l 7T)] B(flﬂ“)

and
862
/ eU]'VVl :/ 5 J 5
Q\[B(&;,r)UB (7)) \[B(gnuBE.n) (07 T 1z — &%)
= 0(62).

5 [G(,&) + O(6%| log 6]) ] da

By Lemma 3.2.1, we have that there is a constant C' > 0 independent of § such that
[l [ U= dos(sa)] + |H (&) + €' logd] < C.
B(&,r) B(&,r

Hence, we get that

/ Vi, = 0(6?).
B(gl’r)

Also, from similar computations in the proof of Lemma 3.6.1, we find that

/ Vi, = / Ui [G(x,&) +ag6 + 0(52)]
B(&]”r) B(§j7T)

= 87TG(€J‘, fl) - 47TAxG(€j, 51)5? log (5]' + 871'0551’& + 0(52)
Therefore, we obtain that

3272
€]

3272

Ql 6% log &; + O(6%).

/QeUan =81G(&;,&) — 53 log &; —

Now, we know that 6]2- = §%p;(&;) and log p;(&;) = log k(&) + H(&5,&5) + ZG(@-,@) hence,

1£]
we get that
1 1 — 6472
/ IVW> =237 | — 167 — 32 log §; + 8wH(£),£;) — ~— 82 log 6 + O(5%)
2 Ja 2 Q]
- 22 22
+ ) (87@(@,@) - 37”532 log §; — 37”5,2 log &, + 0(52))]
ey |€2] jo
= 1 32m2m
= —8mm + J; {— 167 (log(5 + 3 log pj(ﬁj)> +4rH(&5,&5) — de log 6;

s 4wG<gj,sl>} o)

I=1,1#]

= —8mm — 16mmlogd + Z [— 8mlog k(&) — 4mH (&5,&5) — 4m Z G(gj,fl)}
j=1 1=1,l#j

3272m,
ar > " 62logd; + O(62).
j=1
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3.6. ENERGY COMPUTATIONS

Now, let us estimate the second integral term in the energy at W. So, for (the same) r > 0
small fixed number, we have that

/ Z / ke' .
B(E] 7T) Q\U;nle(ng‘)

Given any j € {1,...,m} we find that
W 2
/ / k exp (U log(865) + H(+,&;) + as; ¢,
(5]’ ) 5])

+ Z (&) + ag, 51] + 0(52)>
I#j

1 e (S
= — e“Ip;jexp ags.¢ | (1+0(69)).
857 /B¢, ’ ; .

Hence, using Lemma 3.6.1 we obtain

1
/(5 : keV = 8(52 e2lm1 O {87‘(/}]‘({]‘) — 47TApj(§j)5]2- log d; + 0(52):| .
7

On the other hand, we have that

m

/ ke = k exp (Z 5 &5) —i—oa,;],gj] >[1—|—O(52)]
QUm, B(g;r) QU™ B(g;r)

J=1
= exp < Z oz(;j,gj) o(1)
j=1

Thus, we obtain that

/lew — exp (i%@) { zmj [; gAp] (&) 1og b, ] + 0(1)}

J=1

exp(ia],gj {1+;L§m:[ 520;(&)9 <10g5+;10gpj(§j)>} +0(52)}

Jj=1 j=1

and hence,
1 W) =1 21 1 2
og(/ﬂke ) og(m™m) 0g5+j;( ]Q|6 0gd; +O(0 )>
1 m
— 5= > " Ap;j(&5)6°log§ + O(6?)
j=1

= log(mm) — 2log é — |Q| Za%ga ——6 log5ZApj &) +0(8%).

7j=1
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3.6. ENERGY COMPUTATIONS

Therefore, we conclude that

32
(W) = —8rm — 16mm log d + 4mpm, (&) — ‘g’m Z 6%log §; — Mog(mm)

252 log d; + i&%ogéZApj (&) + 0(6%)

7=1

+ 2Xlog 6 +
IQI

= — 8tm — Alog(mm) + 47 (€) + 2(A — 87m) log § + 476> logéz Api(&) + O(6%),
j=1

since A = 87m + O(6%|log §|). Thus, we get (3.6.1). This completes the proof. O

In order to find critical points of F, we need to know the expansion of the derivatives of F.
To this aim, we will show that the expansion (3.6.1) is also true in C'-sense in ¢ and C?-sense
in §. First, we show the expansion of V¢[Jy\(W)] in terms of V¢,,, under the assumptions of
Lemma 3.6.2.

Lemma 3.6.3. The following expansion holds, under the assumptions of Lemma 3.6.2,

Ve[ A(W)] = 47V pm () + O(6%|log 6]), (3.6.3)
uniformly for points & € Q™ satisfying (3.3.4), as & — 0.
Proof: Let us fix ¢ € {1,2} and j € {1,...,m}. We have that

ke
) W) == [ [aw s 2o, w

Hence, we first compute

- /Q AW e W / AW ZZ / e, W,

=1 g=1

Recall that

d(z = &) 9ip;i (&) 207 9
Oyer Wi(z) = _ + Do H (2, ;) + O(6%|log
(€)W (@) Bale—gR  p&) E+lz-gP (2:6) +0("|log )

and for q # j

267 N
5l2 + ]a: — §l|2
uniformly on compact subset of 2. If [ # j and ¢ = [ then

262
Ula..w——/ Ul 9y,G ) P —— TE XA R IYT)
[ e = [ o606 5oy + O og)
= —87109,G(&,&5) + O(8%|log 8]).

Ae;), Wo(x) = —02:G(&1,€5) O(6%|1og 8|),

If l =j and ¢ = [ then
: & Oipil&) 205 . . 2 ]

/e e, Wy = / [52—1—]96—5]]2 (&) 5?+‘$_€j’2+821H(w,§g)+0(5 | log d])
lpj(gj)
pi(&;)

= 87 + 8w H(&5,&5) + O(5?| log 8]).
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3.6. ENERGY COMPUTATIONS

If ¢ #1 and q # j then
/ e, Wy = / e"1¢;), Wy + O(6%) = O(6?).
Q B(&,r)

And, ifqg# 1, qg=

/eUla ‘.w}—/ evz[_aﬁ’f(fj) ] 0G(e,)) + 0@ ogd))
o &, pi(&5) 6F +lx — &l -

4(95—53')1' 2
+/ Ut~ S (62| 1og 6))
&) 0]z =2

= 8105 G(&1,&5) + O(6%|log ).

Thus, we obtain that

/Awa W= / V10, Wi + 2/ Vi 0e,), Wy

q=1,q#j

+Z</Ula W+Z/Ulagj )

I=1,l#j q=1,g#l
= —870¢,), (log p;)(&;) + O(6°| log 6])
= 4md(¢;),pm () + O(8%|log d]),

since —28(§j)i(logpj)(§j) = 8(§j)i90m(§) and 0y H (§;,6;) =0
Now, in order to compute the next term in the R.H.S., first observe that

m

/lew = exp <Za5i7§j> |:7:;: — ;rlog(SJZ::lApj(fj) + 0(52)]

Jj=1

and
1

802 P (Za5 @) pieVi[1+0(6%)]

uniformly in B(§;,r). Hence, we deduce that

ke =

eV )\pjer 621log § ~— 9
Jo keW — 8tmp;(&)) " ; a&) +0()

uniformly in B(¢;,7) and

ke

ke =0(8%)  forall z € Q\ UL B(&,7).

On the other hand, from the definition of W we have that

eV ke
f LkeW O W = Z/f LkeW 9e;): Wi
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3.6. ENERGY COMPUTATIONS

and for any [ € {1,...,m}

ke 9
Q fQ kew EJ)ZVVZ Z/ fQ keW fJ)in +O<6 )

For [ = g = j, we have

ke Ap;eYi 621og § —
— 0 .iW»:/ J 1+ Apy (&) + O(6%)
/B(gﬂ) oy ke (&) "V €) |: Z a\Sq

B(g;,r) 8Tmp;(&5) 2m

2
y [ Az =&l Oips(§) 20 + 02 H (2, ;)

2+l &2 pi(§) 0%+ v — &I
+ 0(5%| 1og51)}

)\pjeUJ’ [( 621og & > 4(x — &)
_ A€ (4 Apo(Eg) ) ot — 5308
/B(fjﬂ”) 8mmp;(&;) 2m 2 Anuléa) 0F + o =&

q=1
9ip;i (&) 207
pi(&) 0F + ]z — &

_ Apj(§+05y) 8 [( 0logd <~ )
/Bw Sty &) (7 P2 [\ 2w 2 A&

+ 02 H (7, 5) —

O(8”log 5|>]

q=1
4yi

X e O H () + 01,6
I+ " o)
Zp](gj) 2 :| 2

- dy + O(6“| log §
&) T Iy @ OCToE)

= 0(6”| log 4]),
since O H (§5,&5) =0,
(& +05y)dy = — e (& + S5y) dy
/B( 5L (1_|_|y’ )25( +|y|2)p]( J J ) 5j B(O,sij) (1_‘_‘y|2)3p]( J J )

1
- E B0.2) m [p](gj) + Vp; (&) - 05y + 2<D2Pj(§j)5jy75jy> + 0(5?@‘3) d

= 8mip;(&;) + O(6%|log 6])

and

. B P PSS SN 71 1) B (Ei s
/B( o U P [621H(£j+5jy,éj) (&) 1+ 1o p;i(& + ) dy

= 87p;(£;)02:H (€5, &5) — 8m0ipj(€5) + O(8%|log 6])
For [ = j and g # j, we have that

70

ke )\pq ) e )
/ o) Jo T pew den Wi / ) 87mpq gq) [140(6%10g 8)] [02iG(-,&5) + O(6%|log d])]

2 (8 iG(Eq & 2o |
= S (3P BO(E )+ O g )]
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3.6. ENERGY COMPUTATIONS

Therefore, we conclude that

m

/”‘”Wa W= Y ia-G(g &)+ 0(6%]1og d))
QkaeW &):"Vi = m 0% q>Sj go]).

q=1,q#j

Now, for [ # j we have that if ¢ # [ then

ke Apgela
0N W = " 140 5210g5
/B(gqﬂ") fQ ke (&) B(&q,r) 87Tmpq(‘fq) [ ( )}

267
—0iG(&,&) 51— + O(5°|log &
< |G ) s + O og)
= O(6°|log 6])
and for g =1
0 W:/ e [1+0(5%logé
/fl ) fQ keW (&) Bewr) 87Tmpl(§l)[ ( )]
26?2
—00iG (&1, &) 1 + O(6*|log &
|6 e + O o)

A
==~ 0iG(&: &) + O(6%|log d|).
Therefore, we conclude that

Ake

A 2
Q Wa(ﬁj)iwl = —— 3G (&, &) + O(0°[log 3]),

and hence,

AkeW ke ke 9
Qfgkew gj W /f keW ~( EJ)IW +llzl¢/f kewa(ﬁy)zm O(67]1ogd|).

Finally, the conclusion follows. O

Next, we get the expansion of 05[Jx(W)] and 055[Jx(W)] under the assumptions of Lemma
3.6.2.

Lemma 3.6.4. The following expansions hold

As[In(W)] = 2“_587””) +8mdlogd »  Ap;(&;) + O(5) (3.6.4)
Jj=1
and
2(A — 8mm)
Oas[A(W)] = == + 87 log&Z Ap;(&5) +O(1) (3.6.5)
j=1

as 6 — 0, uniformly for & = (&1,...,&n) satisfying (3.3.4).
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3.6. ENERGY COMPUTATIONS

Proof: First, we need an expansion of 95W and 955 . We know that

1
(0F + | - I

Wj(z) = log H(z,&;) — ’Q‘Pj(ga)é logd + O(8°)

uniformly on compact subsets of 2. Hence, by the integral representation formula (2.2.4) and
(3.2.5) we get that

1 467 8T
OsWj(x) 3 532'4‘ Py ’Q|6 0gd;| + O(9)
and
1 45]2'(|37_£j|2_5j) 9
855Wj(£6) = 5 (5]2 - £j|2)2 |Q‘5 logd;| + o(1)

uniformly on compact subsets of (2.
Next, we have that

D5 Iy (W)] = /Q [AW+ fzkkvzv]aéw

Hence, we first compute

/AW&;W ZZ/ Yi0sWi,

7j=11=1
and
1 467
U; U;
e]8W:—/e [ 6105]4—05.
/Q T 6 g 52+|x—a|2 * oy los ]+ 00)
If | # j then
462 467
U, I 2 . . U; 4
el ———-"——dr=0(0 and if | = j then /e i dx =167 + O(5%).
/Q 5124-\1:—&\2 (6%) J Q 52+|x—§]|2 (6%)

Thus, we obtain that

/QAwaawi{/ YigsW; + Z / Jaan]

I=1,l#j

2
= mﬂ 62 {6?;‘ (5210g5 + 0(6%) + Z <6|Z§2 o} log5l+0((52)>]
=1 a

16mm  164m2m —
=— - > 87 1ogd; + O(d)
j=1

58 |9

Next, we compute

ke osw = / ke osw; = [ / WosW, + / k:eW&;W].
/Q ]; Q T j= Z B(&, 7") ’ Q\UZ, B(&r)

1
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3.6. ENERGY COMPUTATIONS

Hence, we have that

ke osw: = exp ( as, ¢ ) / eYip (1 + 0(6?)
/B(sz,r) T 8552 q; ) I ( )

—452 521 §; + O(8?
Frlw—gP |Q| 0g9; +O(0%)

Now, if [ # j then

1 - 8
keWosW,;, = ——— exp < as ) / eVip, [(52 log §; + O(5> ]
/B(sl,r) T 8 ; ) I % 1080 + 00

1 sm g 872
= —5 ezqzl 5qv5qu(§j) |: |Q| log5 + O( )]
If [ = j then
1 - 463
keWosW, = ——— exp < as,. ) / eV [
/B(sj,m T 8] q; o B(sj,r) 0F + | — &

(5210g5 + O(8? }
\QI (6%)

so, we get that

462 32
U; j
e Jp»dx:/ pi(€ + 851)
/13(§j,r) 3532' + |z — &2 Be;r) (L+1[y[?)? I

:/(5 )(1+3|2y|2)[ﬁ’9(53)+vﬂg(£y) 8y + 0(6%|y[*)]

= 167p;(&;) + O(57).

Thus, we obtain that
- 1 = 647> 5 5
) ke™ OsW; = T 3582 exp Z 05,8, 16mp;(&5) + ij(fj)5j log 0; + O(67)
3> J q=1

1 sm 277 82
_ _geZqzl 5g.6q { ‘mp](g])logé i+ O(1 ))]

and

/ ke osW; = k exp {Z G(, &)+ Oé(sq’gq:| [1+ 0(6%)]0(5°|log 6])
Q\Ulnll (&lv ) Q\Lﬂ B(&lv ) :1

= exp <Z aéq,gq> (62| log 61).
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Therefore, we conclude that

2
/keW66W Z |:_]'€Zq 1 Q5q,8q <27T+Tg’p](§])log(5 +O( )>
Q

+ i <—§> 62710‘5*5%(&)(?97 logd; +0(1 )>]

1 m 2mm 8m2m
T gt asge, | 21T
- 5@ 1a8, 5q|: 4 E 1] ——p;(&)logd; +O(1 )]

From the expansion of fQ ke, we get that

A A2 s, 1 —
Tk T i€ Y {1 +35,- > Api(&;)8%logd + 0(52)}
Q j=1
and consequently
AkeeW 2\

" 87
f k:eWa&W (6+>\5§ |Q|pj(§j)log5j+0(6)>
=1

X <1 + %52 logéz Ap;(&) + 0(52)>

j=1
2)\ A 81 9 A
= 1 1 A .
5‘Q|Z(5 ogd; + 50g5jzl p;i (&) + O(0)
Therefore, we conclude that
_ 2(A—8mm) 8w (A—8mm) 9 A
As[Ir(W)] = 5 + ] 5 Za log & + 5log5]§:1Apj &)+ 0(9)

and (3.6.4) follows since A = 87m + O(82|log §|).
Finally, (3.6.5) follows from similar computations as above and the expansion of ds5W. This,
completes the proof. O

3.7 Proofs of the Theorems

In this section, we give a proof of the Theorems.

3.7.1 Proof of Theorem 3.1.2

According to Lemma 3.5.1, we have a solution of Problem (3.1.1) if we adjust (4,&) so that it is
a critical point of F)\ defined by (3.5.3). We will assume that § = ue so that Co_l < u < Cy for
some constant Cy and € > 0 such that

1
e?log = = |\ — 8mm).
€
Note that ¢ is well defined for all 0 < € < g¢ with 0 < g9 < 1 small enough, since the function
given by

f:00,e7% = [0, (2e) 71, f(s) = s logé
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is increasing, positive, and hence is invertible. Thus, we take ¢ = f~(|]A — 8wm|), so that £ — 0
if and only if A\ — 87m, and clearly g = f~1(|]A\g — 87m|) for A\g close enough to 87m. In this
way, we consider Fy(u,&) = Fa(ue, §). It is clear that (u*,£*) is a critical point of FY if and only
if (u*e, &) is a critical point of F). Also, we have that

F{(u, &) = — 8w — Alog(mm) + 2(A — 8mm) log e + 4w, (€)
+2(\ — 8mm) log pu + p?e®log eV (&) + O(e?),

uniformly for £ = (&1, ..., &) satisfying (3.3.4) and CO_1 < u < Cpas A — 8mm, where V is given
by (3.1.5). Observe that critical points of F} are also critical points of F) given by

Fx(u,€) = Fi(, &) + 8mm + Mog(mm) 4 2(87m — ) loge.

By the choice of €, we have that e?loge = —|\ — 87m|, €2 = o(|]A — 8wm|) and £2~7|loge| =
o(]\ — 87m|'=%) as A — 8mm. Hence, from Lemmas 3.5.2, 3.6.2, 3.6.3 and 3.6.4 the following
expansions follow

Fa(u, &) = Amom(€) + 2(A — 87m) log pn — p*| A — 8m| V(£) + o(|A — 8wm)

DeFx(p,€) = DeFa(pe,€) = 4V (€) + o(|A — 87m|'~9)

2(A — 8mm)

Dy Fy(11,€) = eDsFy(pe, §) = — 20|\ — 87m| V(€) + o(|A — 87m))

and

2(A — 8mm)
112

uniformly for € = (&1, .., &) satisfying (3.3.4) and Cy' < p < Cp, as A — 8wm.

By the assumptions, V(&) # 0 for all £ = (&1,...,&n) € D. Since D is connected, sgn V (£) =
sgn V (¢) for all , ¢ € D. Now, let us take A > 0 so that sgn(A—8mm) = sgnV (§), £ € D. Thus, we
have that (A — 8mm)|\ — 8wm|~! = V(&)|V(€)|~! for all ¢ € D. Also, let us denote I = [Cy ', Cy],
iy = infeep V(€)|7'/? and sy = SUD¢ep [V (€)|71/2. By the assumptions 0 < iy < sy < +00,
and hence we choose Cy so that max{i;;',sy} < Cy and [V(€)|7%/2 € I for all ¢ € D. For a
Ao > 0 define the set

D2F\(p,€) = e*DiFy(pe, ) = — —2|A = 87m| V(€) + o(|A — 87m))

I(XNg) ={A>0]sgn(A—8rm) =sgn(Ag — 8m) and |\ — 8wm| < |A\g — 87m|}.

Claim 3.7.1. There is Ao close enough to 8wm such that for all X\ € I(\o) there exists a C!
function u(X\,-) : D — I satisfying

DuFa(i(A€),6) =0, for all € € D.

Proof: First, denote

f)\()uag) D,LLF/\(/'Lag)

B 1
- 2|\ —8mm

Observe that fy — ¢ and D, f\ — D,@ uniformly in I x D as A — 87m, where the function @
is given by

_ A
o(u, &) = PG nV (&)
Note that V)
Oup(p,§) = GG V(&)
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and it holds

PIVEIT2 =0 and  8p(V(EI 2 = -2V () #0
for all £ € D. Also, note that ¢(+,&) is strictly increasing if V() < 0 or strictly decreasing if
V(&) > 0. Without loss of generality, we shall assume that V' (£) > 0, so that we consider A > 8mm
and I(A\g) = (87m, \g). Let us take 0 < § < min{iy — C; ', sy — Cp}, then we get that

#1.6) > eV 6.6 = ov(E) |1+ | > ovi© >0t >0

1
1= d[V(['/2

for all 4 € [Cyt, iy — 6] and & € D. Similarly,

B ) < GV V2 1 6.6) = oV (E) [1 n } < GV(E) < —8i% <0

1
1+6[V(&)[1/2
for all p € [sy +6, g’o] and ¢ € D. Therefore, by uniform convergence there is A > 8mm such that
for all 8mm < A < A we have that fy(u, &) > 0 for all (u,§) € [Cytyiv — 6] x D and fy(1,€) <0

for all (i, &) € [sy + d,Cp] x D. Then, given 8mm < A < A and using that f) is continuous, we
obtain that there exists (a unique) u(\,-) : D — I such that

(N €),8) =0, for all £ € D. (3.7.1)

By similar arguments, if V(¢) < 0 then there is A < 8wm such that for all A < A < 8mm there
exists p(X,-) : D — I satisfying (3.7.1). Furthermore, u(\, &) — |V(€)|7Y? as A — 8mm for all
¢ € D. Let us show that p(), ) is of class C!. Define the function F : I(\)xDxI — I[(A)xDx IR,
given by

F(Aa 3 M) = ()‘a 3 f)\(M7 f))

We will show that there is A\g € I(\) such that
F:I(N) xDx I — F(I(M\)xDxI)

is invertible. Clearly, F is onto. Let us see that F is injective. Suppose the opposite, so, for all
A € I()) there exist (A, &, pi) € I(N) x D x I, i = 1,2 such that

f(A17€17M1) = f()\27527u2) and ()‘17617/1’1) 7é ()\275271’62)'

From the definition of F, we get that

I (p1,61) = fag (p2, 1) with 1 # po.

Hence, there are sequences {\,}n, {&n}n and {pé},, @ = 1,2 with pl # p2 for all n, such that
I, (k&) = fr, (12, &) for all nand A, — 87m as n — +oo. Then, up to subsequence there are
pt eI, i=1,2and & € D such that pf, — u' and &, — £* as n — +o00. Suppose that p! # p2.
Letting n — +oo we find that @(u!, &%) = @(u?,£*), and hence plp?|V(€*)] = —1, which is a
contradiction. Therefore, u! = p2. Without loss of generality, we assume that p} < p2. By the
mean value theorem there is u3 € (uh, u2) such that

Poltth, &) = Fan (12, 60) = Dy fr, (1o, &) (uf — 1) = 0.

Hence, letting n — +oo it follows that D,@(u',£*) = 0, which implies that (u')2|V(£*)] = —1.

Thus, we conclude that there is A\g € I(\) such that

F:I(N) xDx I — F(I(M\)xDxI)
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is invertible, namely, there exists
G:FI(N)xDxI)—I(N)xDxI, G =(91,92,93)
such that F oG = Tdz () xpx1)- We know that (A, €,0) € F(I(Xo) x D x I). Hence, we get that
for all (X, &) € I(\g) x D
F(91(A,€,0),92(N£,0),93(A, £,0)) = (X,€,0)
which implies that

Falg3(X,€,0),6) =0 forall (X&) e I(X) x D.

Therefore,
93(A\, €,0) = p(A €) for all (A, &) € I(A\g) x D.

Fixing A, we have that F(X,-,-) is C' and invertible in D x I. Hence, it follows that G : F({\} x
DxI) — {A\} xDx I is C! and then we conclude that u(},-) is C! in D for all A € I(\g). Finally,
the conclusion follows from the definition of fy. O

Now, let us consider the function ¢y given by

P(6) = Fa(p(X,€),6),  €eD  with A€ I()).
Since, Cy ' < p(\, €) < O for all (X, €) € I(A\g) x D, it follows that

PA(E) = Amom (&) + O(IA = 8mm|)  and V@A) = dmpm(€) + o(|A — 8mm['™7)

uniformly for € € D. Hence, ¢, is a C! small perturbation of 4wp,,. Since C is a stable critical
value of ¢, in D, it follows that there is a critical point &) of ¢y in D for A close enough to 8wm,
and

Vor(én) = 4nVem (&) + o(1) as A\ — 8mwm.

Also, we have that
0= V@a(&r) = DBy (N €1), €) Depr(N, €) + DeFy (u(X, €1)).

Finally, (u(\,€)),&)) turns out to be a critical point of F\. Note that &, — &* as A — 8mm,
where £* is a critical point of ¢,,. The verification of (3.1.4) follows by construction of the
approximating solutions W = """ | PUs, ¢.. O

3.7.2 Proof of Theorem 3.1.3

Here, we assume a different kind of condition on critical values of ,,. It turns out that the
previous proof works out in this situation, since @y is C'-close to a function with a non-trivial
critical level in D. Indeed, by the assumptions, V(&) # 0 for all £ = (£1,...,&,) € D. Hence, it
follows that there is Ag close enough to 87m such that for all A € I()\g) there exists a C! function
w(, ) : D — I satisfying

D, Fy(u(),€),€) =0, for all & € D.
The function @) given by

G(&) = Fx(u(X€),8), €e€D  with Xel())

is a C'!' small perturbation of 47p,,. Since C is a non-trivial critical level of ,, in D, it follows
that there is a critical point §\ of g) in D for A close enough to 8wm. Finally, (u(A,€3),8))
turns out to be a critical point of F). Note that £, — £* as A — 8mm, where £* is a critical

point of ¢,,. The verification of (3.1.4) follows by construction of the approximating solutions
W = Z;n:l PUs, ¢ O
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3.7.3 Proof of Theorem 3.1.1: () is a flat torus

~ Note that the Gaussian curvature when €2 is a torus is K’ = 1. Assume that {* = (&1,...,&,) €
Q™ \ &, is a non degenerate critical point of ¢, and £(£*) # 0. Then, we have that V(£*) =
4w L(€*), since it is readily checked that

Apy(a) = (@) |1 (1o8 ) (@) + Aog )(z) + TG |. (3.7.2)

and —2V (log pi)(&;) = Ve, om(§*) = 0. Therefore, there exists a connected neighborhood D of
£* compactly contained in Q™ \ &,, such that V(£) # 0 for all ¢ € D. Finally, in this context the
same proof for Theorem 3.1.2 works out here. O

3.7.4 Proof of Theorem 3.1.4

Assume that k = 1 and m > 2. We know that H(x,z) = H(y,y) for all z,y € Q, since Q is a
torus. Hence, it is enough considering that

Pm(€) = =D G&,¢)
I#j

Also, we get that
(o) =ewp (H(0.6) + 3 6lo.6) )
I#j

and using (3.7.2) we find that Ap;j(z) > 0 for all z € Q™. Thus, we conclude that V(¢) > 0 for
all € € Q™ \ &,,. We know that G is bounded from below in Q x € and hence, ¢,, has a global
maximum in Q™. Therefore, 3.1.3 is applicable and the conclusion follows. For m = 1, we have
that the functional Fy(u(X,€),€) is bounded and the conclusion follows. O
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Chapter 4

Liouville Equation on the Torus

4.1 Introduction and statements of main results

In this chapter, we study the elliptic partial differential equation on the torus with exponential
nonlinearity and a singular source
—Au = g2e® ‘Q‘ fqe%e" + 4‘7&\[ 4T NG, in Q,
U doubly periodic on o9, (4.1.1)
fQ u =0,
where € > 0, o, 5 € C\ {0}, Im(8/a) > 0
Q={z=sa+tpeC|0<s,t <1},

p € Q and N > 0. This equation, which is the corresponding Liouville equation on the torus,
and similar ones have been extensively studied over last decades. For the regular case N = 0,
as we have already mention, due to the presence of an exponential nonlinearity, this type of
equation arises in various context such as astrophysics and combustion theory, see [11, 41, 58]
and references therein, the prescribed Gaussian curvature problem in a compact manifold with its
related mean field version [13, 14, 47] and in statistical mechanics [7, 8, 24]. Recently, motivated
by finding vortex solutions of Maxwell-Chern-Simons-Higgs theory, this type of equation with
singular data, namely N # 0, has drawn a lot of attentions. For recent developments of these
subjects, we refer the readers to [6, 9, 10, 24, 55, 56, 60, 61, 62, 65, 68].

Observe that (4.1.1) is equivalent to

—Au = £2k(x)e? — ﬁ Jo e2k(z)e"®) dz, in Q,
u doubly periodic on 09, (4.1.2)
Jou=0

where k = e¥0 and ug is the unique solution of the problem

—Aug = 4‘”]|V 47 N6, in Q,

U doubly periodic on o9,
Jouo =0,
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so that k is positive everywhere except at © = p and k(z) ~ |z — p|2N , as x — p. Furthermore,

problem (4.1.2) admits a variational structure, in the sense that weak solutions for (4.1.2) are the
critical points of the following energy functional

Je(u) = ;/Q\VUF - EQ/Qk:(:c)e“, u € E(Q), (4.1.3)

where
H(Q) = {u € HL (IR?) | u is doubly periodic with periodic cell domain 2}

E(Q)z{ué’H(Q):/ﬂuzO}.

In fact, a critical point of J. on E(2) yields to a doubly periodic function on 92 with zero average
and satisfying

and

—Au =2 k(z)e* — ), in ,

for some Lagrange multiplier A. Integrating on €2, we get that

1
)\:/52k 2)et®) dz
o] Jo© M)

and we recover a solution to (4.1.2). For any € > 0 sufficiently small, the functional given by (4.1.3)
has a local minimum which is a solution to (4.1.2) close to 0. Furthermore, the Moser-Trudinger
inequality assures the existence of a second solution, which can be obtained as a mountain pass
critical point for J., and this second solution turns out to be unbounded as £ — 0.

Our purpose is to study the existence of solution to (4.1.1), for ¢ positive and small, under
some assumption on the weight IV of the source, and to describe the asymptotic behavior of such
solutions as € — 0. Indeed, we prove that, if 1 < m < N + 1, then we can construct solutions
to (4.1.1) which concentrate and blow-up, as € — 0, around some given m points of the torus .
Moreover, we find conditions under which there is a family of solutions of (4.1.2) exhibiting m
concentration points. These are the singular limits.

Let us mention that concentration phenomena of this type has been addressed also for the
problem
—Au = g%e" — 47 N6, in €,
(4.1.4)
u=0 on 09,

where € is now a bounded smooth domain. The regular case N = 0, sometimes referred to as the
Gelfand problem [41], has been broadly studied. When € > 0 is sufficiently small, it has long been
known the existence of both a small and large solution as & — 0. This large solution of (4.1.4) was
found in simply connected domains in [70], see also [26] for earlier work on existence. In general,
the analysis of the blowing-up behavior for the large solution, after works [5, 51, 57, 59, 64] yields
that, if u. is a family of solutions to (4.1.4) (with N = 0) for which &? [, ¢“s remains uniformly
bounded, then necessarily there is an integer m > 1 such that

lime? [ e% = 8rm.
e—0 0

Moreover, there are points &5, ..., &;, € Q which remain away one from each other and away from
98, such that u is uniformly bounded on Q\ UL, B(5, ) and sup Bz ) Ue = +00 for any small
9 > 0. Existence results of solutions with the above properties has been addressed in [1, 31, 37].
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In particular, in [31] it was shown that u. as above exists for any m > 1 provided that the domain
is not simple connected.

For the problem (4.1.4) with N > 0, in the works [4, 2, 66] important progress have been
achieved in the understanding of blowing-up solutions from the point of view of profile of blowing-
up solutions, quantization of blow-up levels and Harnack-type estimates. See [67] for a complete
account on the topic. Also, in [19], the authors consider the mean field equation with singular
data, and get some estimates for blowing up solutions.

Several existence results of blowing-up solutions to (4.1.4) with N > 0 were shown in [31, 32,
35, 36]. In particular, the author in [35, 36] shows a construction of blowing-up solutions which
concentrate around p provided that o ¢ IN. In case N € IN and (2 is a simply connected domain,
the authors [32] present a construction of a blowing-up solutions concentrating at N +1 vertices of
any sufficiently tiny regular polygon with a suitable center, as € — 0. On the other hand, a family
of solutions which concentrate away from p have been built in [31] whenever 1 < m < N + 1,
regardless whether or not IV is an integer. An interesting question is whether this latter situation
may be for the problem (4.1.1). In this chapter, we prove that such a family of solutions u. does
actually exists.

Our main result states as follows.

Theorem 4.1.1. Assume that N > 0 and 1 < m < N+1. Then there exists a family of solutions
{uetoce<s, to (4.1.1) such that

lim 52/ e's = 8mrm.

e—0 0

Moreover, there are points &3, ..., &, € 2, which remain uniformly away from p and for all i # j,
dist(&5 — 5.+ BZ) remain uniformly away from zero, for which u. remains uniformly bounded
on Q\ UL B(&F,0) and supp g 5) ue — +00 for any small § > 0.

]7

Let stress that the solutions found in the above result have concentration at points different
from p. The problem of finding solutions with an additional concentration around the source is
of different nature. In case they exist, they provide an extra contribution 87 (1 + N) to the first
above limit. See [2, 32, 66] for some related topics.

The location of concentration points £, 4 = 1,...,m is characterized in terms of a functional
©m defined explicitly in terms of the Green’s function G = G(z,y) of —A with respect to doubly
periodic boundary conditions on 052, which satisfy

—A,G(-,y) = 8md, — |Q| in Q,
G(-,y) is doubly periodic on 052,
fQ x,y)dx = 0.

In fact, taking £ = (&1, .., &) we have that

Vom(&, ..., &) =0 as ¢ —0,

where .
em() =N G(&,p) - > G(& &),
J=1 I#j

that is to say, up to subsequences, the m- tuple (&§,...,&5,) converge to a critical point of the
functional @y,.
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We shall deduce Theorem 4.1.1 by applying a more general result, due to the equivalence
with problem (4.1.2). Indeed, we construct a family of solutions to (4.1.2) which blowing up at
m different points of 2. These points will be characterized by a functional which involves the
function k& and the Green’s function. Given a non-negative doubly periodic function k£ on 0f,

define .
pm(&) = =2 logk(&) =D G(&, &)
j=1 I#]
and denote
Q={zecQ|kx) >0}, (4.1.5)

set we always assume non-empty. An observation we make is that in any compact subset of Qm,
we may define, without ambiguity,

om(T1,...,Tm) = —oo if dist(x; — xj,aZ + BZ) = 0 for some ¢ # j.

Thus, the level of blowing up points will be near a nontrivial critical value of py,.

In the next result we assume k > 0, k # 0, k is doubly periodic on 9 and k € C(Q)NC?* Q)
where  is given by (4.1.5).

Theorem 4.1.2. Let m > 1 and assume that there is an open set D compactly contained in Qm
where Y, has a non-trivial critical level C. Then, there exists a solution ue to (4.1.2), with

e—0

lim 82/ k(x)e's = 8mm .
Q
Moreover, there is an m-tuple (25, ...,25,) € D, such that as € — 0
Vom(xg,...,z;,) =0, on(z5,...,25,) = C,

for which ue remains uniformly bounded on Q\ U7 B(x7,0), for any 6 > 0

m
sup us — 400, and  %k(x)e's — 87TZ 6ze =0
B(z7.9) 1

as € — 0 in measure sense.

We will see that for the functional ¢,, corresponding to problem (4.1.1), such a set D actually
exists under the assumption 1 < m < N + 1. Thus, we conclude the result of Theorem 4.1.1.

In [1] the authors prove that for each non-degenerate critical point of the corresponding
analogue ¢y, for the problem (4.1.4) with N = 0, there exist a family of solutions u. concentrating
at this point as ¢ — 0. Moreover, they construct a very precise approximation of the actual
solution and an application of Banach fixed point theorem, uses non-degeneracy in essential way.
For the related mean field version of problem (4.1.2) in a compact two-dimensional Riemannian
manifold, Chen and Lin construct blowing up solutions as a major step in their program for
computation of degrees in [18]. This construction also seems to rely in essential way on the
assumption of non-degenerate critical points.

On the other hand, for the problem (4.1.4) with N = 0, in [31, 37] have been built a solution
with concentration points near topologically nontrivial critical point. However, the case N > 0
was considered in [31] and also, the notion of nontrivial critical value allow them to get the result.

Another consequence of our procedure is the existence of blowing-up solutions in case infq k& >
0. In particular, we get the existence of blowing-up solutions when N = 0 in problem (4.1.1).
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Theorem 4.1.3. Assume that infq k > 0. Then given m € IN there exist a family of solutions
{uc} to equation (4.1.2) such that

lim 52/ k(x)e'=®) do = 8rm.
e—0 Q

The proof of Theorem 4.1.2 relies on the construction of an approximate solution, different
from those in [1, 18], and is rather close to those present in [31, 37], which turns out to be precise
enough. In fact, we use a family of solutions of the Liouville equation in IR? to construct an ap-
proximate solution, suitable scaled and projected to make it up to a good order for the boundary
conditions. Solutions are found as a small additive perturbation of these initial approximation.
A linearization procedure leads to a finite dimensional reduction, where the reduced problem
corresponds to that of adjusting variationally the location of the concentration point. An im-
portant element in the reduction procedure, of independent interest, is the bounded invertibility
of the linearized operator in suitable L°°-weighted spaces. This functional analytic setting have
been used in several works [29, 30, 31, 27, 38, 39, 40] to detect bubbling from above the critical
exponent in higher dimensional problems and in Liouville type equations, and non-degeneracy of
critical points of the analogue of ¢,, in that context. The local notion of nontrivial critical value
in (2.1.1)-(2.1.2) was introduced in [28] in the analysis of concentration phenomena in nonlinear
Schrodinger equations. And it was also used in [31, 38].

4.2 Preliminaries and a first approximation of the solution

The main idea to construct an approximation of a solution is to use the functions Us, defined
by (2.3.3), with a suitable choice of 6. Let m be a positive integer and choose &1,...,&, € Q
with k(&) >0, j=1,...,mand § # & if i # j. Let pj, j = 1,...,m be positive numbers, and
consider the function

(r) =1 By (12,1
uj(x) = log , 2.
’ (13e? + |z — &[)?k(;)
where pj, j = 1,...,m are parameters to be determined. Note that
uj; = U,uﬁ,é}‘ - 10g[€2]€(§j)].
In order to satisfy the boundary conditions, consider the functions U;, j = 1,...,m given by
—AU; = %k(&))e" — iy Jo e2k(&;)e" @) da, in Q,
U; doubly periodic on 99, (4.2.2)
fQ Uj =0,

namely, U; = Pu;, where P is the projection operator introduced in (2.2.5). Let us denote
Uj = u;j + H;. Observe that

81

1
‘m/gazk(fj)e“f(z) dx = 9] +O(e?). (4.2.3)

Indeed, choosing ¢ > 0 small enough, we have

/62k(§,)€uj(z) dx _/ 8MJ262 d$+0(52)
0 ! B(g;0) (13e2 + |y — &1%)?
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and taking pjey = x — & (4.2.3) follows. We want to know the behavior of U; away from ¢;
and around ;. We obtain the following characterization, assuming that for all j = 1,...,m,
Cy < p; < Cp for some constant Cy. Using the integral representation formula (2.2.4) and
similarly to Lemma 3.2.1 we get the following fact.

Lemma 4.2.1. The function U;, which is the solution of (4.2.2), satisfies

812
Uj(@) = uj(w) + H(w,&) ~ log . (‘;?) +O0(e?| log &) (4.2.4)
where the term O(-) is uniform in C%-sense on compact subsets of Q. In particular,
Uj(z) = G(x, &) + O(*| loge]), (4.2.5)

where the term O(-) is uniform in C2-sense on compact subsets of Q\ {¢;}.

Using the previous result we get the behavior of the function H; on compact subsets of {2

2

Hj(x) = H(z,&;) —log kg(Zj) + O(e?|loge|) (4.2.6)

uniformly in C?-sense for z on compact subset of Q.

Our first approximation is
U(z) =Ui(z) + - + Up(x), x €. (4.2.7)
where U; are given by (4.2.2) with the numbers 15, j = 1,...,m defined by
log(32) = log h(&;) + H(€, &) + S G(6.&),  j=1,...,m. (128)
i

In order to have a good approximation, we need to verify H;(&;) +32"; ;; Ui(§;) — 0 ase — 0.
In fact, by (4.2.4) and (4.2.5) we get readily the following result.

Remark 4.2.1. If we choose pj, j =1,...,m given by (4.2.8) then U(¢;) —u;(&;) — 0 as e — 0.
Also, we have that U(§;) = —4log pje + H(&;, &) + 3012 G(&, &) + £2]loge|O. (&), where O, is
a bounded function of £ = (&1,...,&m).

On the other hand, it is possible to show that u satisfies (4.1.2) if and only if v(y) = u(ey)
satisfies

—Av = etk (sy) e’ — ﬁ Jo. €'k (e2) €*(2) dz, in Q.,
v doubly periodic on 09, (4.2.9)
ng v=0
where . = ¢71Q, and |Q.| = ¢2|Q2|. Taking, the initial approximation in expanded variables as
V(y) =U (ey), (4.2.10)

we look for a solution v of (4.2.9) of the form v = V 4 ¢. We also write §§- = e 1¢. Now, in
terms of ¢, the problem (4.1.2) becomes

L(¢) = —[R+ N(9)], in €2,
10) doubly periodic on 09, (4.2.11)
fQE ¢=0
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where

L(¢) = Ad + K(y)

’55\ /Q K(2)¢(z) dz, K(y) := Ak (cy) ev(y)7

R(y) = AV (y) + 'k (ey) W — . / etk (e2) eV ?) dz, (4.2.12)

and
1

K(2)(e®®) — ¢(2) — 1) dz. (4.2.13)
€] Ja.

N(¢)=K(y)(e® —¢—1) -

Let us stress that R, L(¢) and N(¢) satisfy

/E / RO

Let us see how V' behaves, namely, we want to measure how well V' solves the above problem.

Lemma 4.2.2. Assume (4.2.8) holds true. Then there exists a constant C' > 0 independent of €
such that for any y € Q.,

m

1
Ry <Ce ) ————mrs 4.2.14
IR(y)| < ;H,y_gﬂm (4.2.14)
where 0 < o < 1 is a small fixed constant and
w=> gL+ 0:(v)], (4.2.15)

2 /

with

m

Z ly — & +1]. (4.2.16)
Proof: Let us fix a small number § > 0 and observe that e*k(ey)e¥®) = e*k(x)eV® with

z = ey. Note that, |y — | > g if and only if [z — &;| > . Hence, we see that if |y — &}| > g for
all j =1,...,m then

e'k(ey)e’ W) = O(*). (4.2.17)
Similarly, we have
AV(y) = AU(@) =~ Q%(@-)e““” - |s§r£j) | )
J=1 Q
and hence
AV(y) = Tg”r +0@EY i Jy-&l> g forall j =1,...,m. (4.2.18)
€

On the other hand, assume that for certain j, |y — §§| < ¢/e. Then setting y = 5; + z we get

812
Kl) =&+ ) e~ — g ki) O (HJ' (& +22)+ S Uilg + m)

I#]

812
= k(¢ ! H;(&; > Ui :
&+ €Z)k(fj)(,u? EDD exp ( (& +ez)+ 2 (& + 52))
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Now, we know that by the choice of pj, 7 =1,...,m in (4.2.8) and (4.2.6)

H;(& +ez)=H(& +ez,&) — [H(Q,@) + Z G(&,ﬁj)] + O(?|logel)
I#j

= =D G&,) + O(elz)) + O logel).
I#5

From Lemma 4.2.1, we deduce that for [ # j

Ui(& +e2) — G(&,&) = G(& +e2,&) — G(&,&) + O(*|loge|) = O(e|z|) + O(?| logel)
in the considered region. Taking into account these relations we get then that

8y k(& + e2)
K(y) = SEIv I

(1F +[2[%)? k(&)

exp (H(gj Fengy) - H(ELE)

# S0 +22) - 6@, + Ol1ogel)) (4219
I#j

8

(G ly €

We also have

I#j

)
[1+O0(elz]) + O logel)], |y —¢&l< -

So, by (4.2.3) we conclude that in this region

2
AV(y) = &' — T 82,%' BE + 8’7;;”52 +0()
(Mj‘f e’y & ) (4.2.20)
8#? 87r
- - +O(),

(13 + |y — €)1%)? Y
Also, we have that

/ etk(ez)e" P dz = ¢ / V@) dg = Z / V@) dz + A..
Q. Q £J,6)

Observe that A, = £20.(¢) with ©. a uniformly bounded function as ¢ — 0. Now, by Lemma
4.2.1

62/ k(z)eV®) do = 52/ k(x)exp (uj(x) + Hj(x) + Z Ul(l‘)> dx
B(&;,9) B(&;,0) ;

I#j
8u2k(x) (
2 J
=¢ exp )+ U(z >
/B(sm (H3e? + |z = &§*)2k(&;) ;
1 k() e @8+ Gl@.&)+0(e?] loge])
- [ M dr (o€ = e
K (&:9) <1+ (|x §J|) )
1 k(& + piey)eEtrisy Ot iy, Gl&tueyt)
=— (& + miey) V) dy + O(£*| logel)
K2 Jp02) A+ vP)

_ SJ) (6:6)+ 51 G &) | 2|10g £|0.(€).
J
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And using the choice of pj, j =1,...,m in (4.2.8), we get that
g /Q k(z)eV @ dz = 8wm + £2|loge|O.(€). (4.2.21)
In summary, combining (4.2.17)-(4.2.21) we have established the following fact
R(y) = O(*| logel), if ]y—§;]>jfor allj=1,...,m
and if [y — & < g for some j

8/1?
(13 + |y — &j1%)?
Therefore, from the definition of *-norm we conclude (4.2.14).

The estimates (4.2.15) and (4.2.16) follows from (4.2.17), (4.2.19) and similar arguments used
to obtain (4.2.14). Indeed, note that if [y — £}| < g for some j then

R(y) =

[O(ely — &) + O(e?|log e])] + O(e*| log e]).

8/@

W +Ty—€P)

K(y) = s[1+ O(ely = &) + O(*|loge|)]

and if [y — &[> % for all j =1,...,m then
K(y) = O(e").

Therefore, (4.2.15) and (4.2.16) follows. This completes the proof. O

4.3 The associated linear problem

In this section, we will study the linearized operator under suitable orthogonality conditions.
Thus we set

L(¢) = Ap+ Ko — K¢, (4.3.1)
‘Qa’ Qe
for functions ¢ defined on )., where K is a function that satisfies (4.2.15) and (4.2.16). Through-
out the main part of this section, we only assume that the numbers pj;, j = 1,...,m appearing
in (4.2.15) satisfy CO_1 < pj < Cp for all j = 1,...,m independently of ¢ and that the points
& €Q,7=1,...,m are uniformly separated from each other, namely,
dist(&§ — &, aZ + BZ) > 6 for 1#7, (4.3.2)

where § > 0 is fixed. Recall that, from (4.2.8), we have that p; = p;(&1,...,§),), which will be
considered at the end of this section.

Let us observe that L(¢) = L(¢) + ¢(¢), where

L(¢) = Ap+ Ko (4.3.3)
and c¢(¢) = —ﬁ er K¢. Formally, if we center the system of coordinates at f;-, by setting
z=19y— 5} , then the operator L approaches the linear operator in IR?,

82
Li(¢) = Ap+ 5550,
J (7 12
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82
namely, equation Av + e’ = 0 linearized around the radial solution v;(z) = log m An
j

important fact to develop the desired solvability theory is the non-degeneracy of v; modulo
the natural invariance of the equations under translations and dilations, ¢ — v;(z — ¢) and
s — vj(sz) — 2log s. Thus we set,

10 2
Y‘(z):—v‘(z—l—q)‘ =5, i=1,2, and
N 49¢ 7 ¢=0 N? + 212
10 2015
Yoi(2) = —==[vj(sz) + 2log 5] =1—- I,
: 20s" 7 =1 p3 + |22

As it is well know, it turns out that the only bounded solutions of L;(¢) = 0 in IR? are precisely
the linear combinations of the Yj;, i = 0, 1,2, see [1] for a proof. Let us denote also Z;;(y) =
Yii(y — 5;), i=0,1,2and j =1,...,m. Also, an important goal in the study of operator L is to
get rid of the presence of the term ¢(¢).

Additionally, let us consider a large but fixed number Ry > 0 and a non-negative cut-off
function x = x(p) with x(p) =1 if p < Ry and x(p) = 0 if p > Ry + 1. We denote

xi () = x(ly = &)
Given h of class C%%(€).) with st h = 0, we prove first a priori estimates for the problem

L(¢) = h, in €,

¢ doubly periodic on 09, (4.3.4)
fQEXjZ’ij¢ =0, foralli=1,2,5=1,...,m fﬂgqﬁz 0,
where points §; € 2, j =1,...,m satisfy (4.3.2). Thus, we consider the norms
-1
m
[l = sup [w()l, ¢l = sup | D (L+ly=&D727| [,
Y€, yEeQe j=1

where 0 < o < 1 is a small fixed constant.

Proposition 4.3.1. Let 0 > 0 be fixed. There exist positive numbers €9 and C, such that for any
points & € Q, j =1,...,m, which satisfy (4.3.2), and any solution ¢ to problem (4.3.4), one has

1
[¢]loo < C<log s)HhH*, (4.3.5)

for all e < gp.

We observe that the orthogonality conditions in the problem above are only taken with respect
to the elements of the approximate kernel due to translations. Our functional frame is E(€).

Proof: The proof of estimate (4.3.5) consists of several steps. Let assume the opposite, namely,
the existence of sequences g, — 0, points £ € ), which satisfy (4.3.2), functions h,, with
logéﬂhnﬂ* — 0 as n — 400, ¢, With ||¢n||cc = 1, and

L(én) = hy, in Q,,

On doubly periodic on e, (4.3.6)

an XjZijon =0, foralli=1,2,7=1,...,m st on =0,
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4.3. THE ASSOCIATED LINEAR PROBLEM

Without loss of generality, we assume that ' — £ asn — +ooand §§ € Qforall j=1,...,m,

by the doubly periodic boundary conditions. Let us define ¢, (z) := ¢n(z/cy) for z € Q. We
have the following fact.

Claim 4.3.1. There holds qgn — 0 as n — +oo in C*Y uniformly over compact subsets of
QN ..., &8 . In particular, given any 69 > 0 we have

|énllz@ur, Ber sy = 0 asn— +oo. (4.3.7)

Proof: Note that as n — +o00

c(én) = / Hen)e () dz = =22 [ k@)l @0 de = O(2)
10 2 Ja .

since ¢, is uniformly bounded and from the definition of U
1 .
/ e2k(z)eV @, (x) de = O(1).
12 Jo
Hence, up to a subsequence, we get that as n — +oo
1 .
/ e2k(z)eV @ ¢, () dz = co + o(1).
€2 Jo
Furthermore, we have that gZ; is doubly periodic on on 02,

|énllpo@ =1  and /Q b = 0.

Then
Bdna) = 80, (£ ) = - @na) + 167 [ e+ o)
where hy,(z) = 1 h ( ) Hence, given ¢’ > 0 we get
Aqgn(a:) = O0(e2) + co + o(1) uniformly for = € Q\ UL, B(£},0)
since if |y — (§7)] > % for all j = 1,...,m then K(y) = O(¢*) and if |x — £t > 0 for all
j=1,...,m then

m

x
hn <8>‘ < [Pl Z

=1 €n+‘

1
=2
817,

) < Cllhnf-

Therefore, passing to a subsequence qgn — qﬁ as n — 400 in C>* sense over compact subsets of
Q\{&, ..., &} Also, we have that

Ad = o, in Q\ {&,...,€5),
gﬁ doubly periodic on 9f2

Since |p(x)| < 1 for all z € Q\ {€F,...,&%}, it follows that ¢ can be extended continuously to Q
and satisfies

AQAﬁ = o, in ,
¢ doubly periodic on 9%, (4.3.8)
Ja ‘?3 =0
using dominated convergence. By, fQ AQAS = 0 we get that cg = 0. Therefore, <2> = 0, and the claim
follows. O
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We follow ideas shows in [31, 40] to prove an estimate for ¢,. We use that L is given by
(4.3.3), where K is a function that satisfies (4.2.15) and (4.2.16).

Claim 4.3.2. The operator L satisfies mazimum principle in Qg s, := U, [B(E, 550) \ B( R)]
for R > 0 large enough and ég > 0 small.

Proof: First, observe that from (4.2.15) and (4.2.16) we have that there is a constant Dj such
that for all y € .

m

1
K(y) SDOZW-

j=1
2 _
1+7r2’
8
(14+7r2)2

Now, consider the increasing function Yy(r) = radial solution in IR? of

AYp + Yo = 0.

Define a comparison function in €2,

" " a2y — 2 — 1
=3 Yolaly €)=Y T o,y e
j=1 J

2 _el2?

Let us observe that m 9, 9 112
. _Z8a (a®ly — &> — 1)
9= (1 +a?ly —&}?)3

J=1

So, that for |y — &} > R for all j,
a? a’R? — > 9 f: a?
« (1+a?ly = &P )21+a232 - (1+a?ly — &[?)?

Dﬁs

—Ag >3

m 2 4
a“R 1 1
22§ E ,
< (L+a?R?)? |y = &I* — 2a2 < |y — ly — &J*

<.

if we choose a’R? > % > 1. On the other hand, it is readily checked that g(y) < m so, in the
same region,

m
Kg<Dymy ——— < Dym
jz: +|y 5/ Z ‘ §/|4

o 1 : 2p2 5
Hence, if a is taken so that 0 < a < T and fixed, and R > 0 is chosen such that a*R* > 3,

then we have that
L(g)=Ag+ Kg < L p §}4Lf<o in Q
= — m m .

Since, for all y € Qg s,
() > a’R? - 1 >m>0
mi R
T =My rpegr =g 7
we then conclude that L satisfies Maximum principle, namely if L(1)) < 0 in Q R, and ¥ > 0 on
8QR’50 then ¢ > 0 in Qg s,. ]
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Let us fix such a number R > 0 which we may take larger whenever it is needed and a small
dg > 0. Now, let us consider the “annulus norm” and “boundary annulus norm”

[6lla =9l (ps)  and (ol = 9l L=(00p 5,)-
Note that 9Qg 5, = UJL,[0B(}, R) UIB(E;, 660)] We have the following estimate.
Claim 4.3.3. There is a constant C > 0 such that if i(¢) = h in Q. then
[9lla < Clliolly + [I2]]4]- (4.3.9)

Proof: We will establish this inequality with the use of suitable barriers. Let M be a large
number such that for all j, Q. C B( ;-, %) Consider now the solution of the problem

2

M
/
m» R<|y*5j|<?a

—Agpj =

vily) =0for [y —&l =R, |y—¢&l="4.

A direct computation shows that

2 2 2e° 2 log E
w](r)_UQR"_a?r"—i_[a?M“_aR ] log 227 r=ly =&l
Note that
2e° 2 2 2e° 2

o2M? 2RO <0 and 0<9;= 02R7  g2Mo = o2Ro’

hence these functions v; have a uniform bound independent of €. On the other hand, let us
consider the function g defined above, and let us set

W(y) = 4ll¢lls g(y) + ||h]l Zw

Then, it is easily checked that, choosing R larger if necessary, L(1) < h and 1 > |#| on dQp.s,.
Hence |¢| < 1) in Qps,. In fact, we have that for all y € 0Qg 5,

P(y) = 4lollb 9(y) = [[6lls = [¢(y)]-

Also, we have that choosing 2Dgm < 0?R° (for R large enough)

L) = 4)10lls L(g) + 1Bl Y L(wy) < Ihll Y (A + K1)

j=1 j=1
m m 2
< | A|]«
Il Z( mm Do) 7 T ap) 0230)
Ui 2Dom 1
< | ~|]«
” ” J;( é‘/|2+o’ + O-QRO' (1+’y_§;|2)2)

—|In]. Z o <

83



4.3. THE ASSOCIATED LINEAR PROBLEM

since
2 2Dgm 1 1

_ + < — .
ly = &Pt o?RT (1+ly =522~ (I+]y—&)*e

Hence, we conclude that [¢(y)| < ¢(y) for all R < [y — | < 50 , 7 =1,...,m and the claim
follows. =

The following intermediate result provides another estimate. Again, for notational simplicity
we omit the subscript n in the quantities involved.

Lemma 4.3.1. There exist constants C' > 0 such that for large n

Proof: First, note that from estimate (4.3.9) we deduce that there is a constant C' > 0 such that
if L(¢) = h in . then

[8lla < C 118l + [|7[]« + ’Cgf)’ : (4.3.11)
Indeed, let us consider the function
o(y) = o(y) +c(9) W, y € Q.
Then,
£6) = L0) +0) + o0 "I K —hro0) =S g

From (4.2.15) and (4.2.16), it readily follows that ||K||. < C. Thus, by estimate (4.3.9) we get
that there is a constant C' > 0 such that

bl < 13 1
since
|+ M g <+ L s - g
* ye
Also, we have that
16lla < 130 + H W g

<c[u¢u + Al + “f)'] A oy 1y g

yE &
[wu T lafl, + 19 (‘f”],

since

10 < gl + =2

From (4.3.7) we find that for large n

||¢||L°°(QE\U{113(§;,%O)) = 0(1) (4312)
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Furthermore, we have that c(¢) = o(e?), since ¢cg = 0. By the assumption, we know that
|h]|« = o(1). Now, from (4.3.11) it is clear that

|’¢”Loo(u;;13(59,%0)) < max{(|| Lo, Be,r) [10lla}
< I6llum g, ey + € |19l + [l + 122
< Ol poo(um, e,y +o(1),
since by (4.3.12) we get that
16l < Il oo, ome;,r)) + (1) < Nl U, Bl Ry + 0(1)-
Therefore, we conclude (4.3.10) and this completes the proof. d

We continue with the proof of Proposition 4.3.1 and we get the following fact.

Claim 4.3.4. There exists an index j € {1,...,m} such that passing to a subsequence if neces-
sary,

Proof: Arguing by contradiction, if for all j =1,...,m
liminf {|¢n [ oo (g7 .R) = 05

then (4.3.10) and (4.3.12) implies that, passing to a subsequence if necessary, ||¢n|lcc — 0 as
n — +00. On the other hand, we know that ||¢||cc = 1 for all n € IN. This conclude (4.3.13). O

Let us set ¢ j(2) = ¢n((§])" + 2) for any j. We notice that 1y, ; satisfies
At + K((&§7) +2) ¥ng = ha((§]) +2) —c(dn),  in Qnj=Q, — (&)

Elliptic estimates and (4.3.13) readily imply that v, converges uniformly over compact subsets
of IR? to a bounded, non-zero solution Y7 of

This implies that 7 is a linear combination of the functions Y;;, i = 0,1,2. Thus, we have that
for some constants a;;, i = 0,1, 2

ﬂ); = aoj}/oj + alelj + CZQJ'YQj.

But, from (4.3.6), orthogonality conditions over ¢, ; pass to the limit thanks to [|1y j|lcc < C
and dominated convergence, namely,

[y =0, oroi-v2

This implies that a1; = a2; = 0 and ¥} = ag; Yp;. A contradiction with (4.3.13) arises if we are
able to show that ag; = 0. The assumption on hy,, |logey| ||hy ||« = o(1) allows us to get ag; = 0.

Claim 4.3.5. There holds ag; = 0.
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Proof: Let us construct a suitable test function in order to get the additional orthogonality
relation

815 (u3 — 121?) B
/132 i Y ¥i(2) dz =0, (4.3.14)

which implies ag; = 0 as claimed. We will use an idea developed first in [37] and then exploited
in [38, 39, 40]. This idea has been used also to prove claim 3.3.4.
Define the functions w, ; and w, ; for x € {2 given by

piet—le =g 8 pe

_1_7
piet +lr =&l 3 e + ]z — &2

4
= —log(uie® + |z — &)

Wy, () 3

and
2;1]2-82
pie® + |v — &%

Wy, j(z) = —

Let us note that w, ; and w, ; satisfy

8uze? 8u2e2(1u2e2 — |o — £:12
Awn,j + 5 H 22 Wnig = = 2</;] | 2§J3| :
(H5e? + |z — &%) (1262 + |z — &)
and .
8 8usie
Atlnj + 2 :“ Unj =~ 755 & 2\2°
(M35+|$—§’) (n5e? + |z — &%)
Consider the test function Z, ; satisfying
AZy = Nzpj— ﬁ Jo Azyj(z) de, in Q,

Znj doubly periodic on  0f2,
Jo Zni =0,

where 2z, j = wp; + %H(ﬁ'j, &)Wy, j. Observe that from the representation formula (2.2.4) we get
that

2
Znj = 2nj = 3H( &) = O(*|loge]), (4.3.15)

in C2%-sense over compact subset of . Recall that gz@n satisfies
. . 1 . .
Ay + e2k(x)eY by, — ’Q‘/ kY, =h, in Q
Q

Multiply this equation by Z, ; and integrate on (2, since fQ Znj = fQ q@n = 0 we get that

/hzm = / b (AZy j + %k(2)eV Z,, ) /%Azn] / 2k(x)eY ppZn

8,u ,uje —\:c—fj N
_2/¢ (wie® + | — /¢" uﬁ?ﬂw—é! (Z’J T H(€J’§J)>

2 v_ 8Mj A
+/Q (5 k(z)e (M§€2 e _§j|2)2> OnZn,j
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From (4.3.15) we get that Z, ; = 2z, ; + O(1) = O(|logey|), then

/Q 2 = /Q o (9) Zon s () dy = O( g 0] [hlls) = o(1)

&n

as n — +00. On the other hand, we have that v, j(z) = QAS,L(SJ" + enz) then as n — 400

. 8,u, (,uja — |z —&?) 8/@'(#3“&’% 2
fyo B+ =GP /B(o,;)w G Ty O

R 8122 ,
/Qd)n (uie” + ’;3 —&[?)? (Zn’j T AT H(@-,@))
2
“J uﬁlﬂx—@r>(Z”“V—%A@—gﬂwfg)m

/%MQHQJ £ (&)~ H(6.6)) do
= O(ep)

2 U Buje? f
A (6 S (72 ey e R

_/ 52]{:(33)6U_ 8#32‘52 a) 7 '+O(€2‘10g5 )
Bt (1B + o — g7 ) oy e

m

+ / sgk(x)engAann
Z i/ B(&1,0) ’

I=1,I#j

8/1? ,
- 0= (y)on(y Zn,‘ eny)dy + O €n logey,
/Bw. ) (21— g W s Eny) dy+ O flog =l

M _[1+0 0|1 ni(2)Zn; d
+l—1z,l:¢j/3(0 i oy L OCelzl) + O log el () Zn; (& + e2) dz

= 0(1)7
since if [ # j then we find that Z, (& +e2) = 3G(&,&;) + O(e) for all |2| < g and
/ L[l + O(elz]) + O(e?|log e|)|thn,1(2) Zn (& + £2) dz = o(1)
b0, ) R+ PP 22

thanks to dominated convergence. Therefore, we conclude (4.3.14) and hence, ag; = 0.

This conclude the proof of proposition 4.3.1.

Consider the linear problem of finding a function ¢ and scalars ¢;;, i = 1,2, 5 =1,...,m and
such that
L(§) = h+ 30, Yt cijxiZig, in €,
10) doubly periodic on 09, (4.3.16)

fQEXJZl]qb:O, foralli:172aj:1>"'7m fﬂs(z):()?
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where h € L>(Q:), [[h][« < 4+o0c and [, h = 0. Our main result for the problem (4.3.16) states
its solvability, for any points £; € € uniformly separated from each other. Let us stress that the
right hand side of the equation of L(¢) integrates zero.

We are now ready for the proof of our main result of this section.

Proposition 4.3.2. Let 0 > 0 be fixed. There exist positive numbers €9 and C, such that for any
points £ € Q, j = 1,...,m, satisfying (4.3.2), there is a unique solution to problem (4.3.16) for
all e < gg. Moreover,

|olloe < C (log ) 17|, leijl < C\hlls, i=1,2,5=1,...,m. (4.3.17)

Proof: We begin by establishing the validity of the a priori estimate (4.3.17). We have the

equation
2 m
L (;5) =h+ Z Z CinjZij- (4318)
i=1 j=1

So, by a priori estimates

1 2 m
ol < (1082 ) | 101+ 35 Y- lesl| (1319)

i=1 j=1

since for all i« = 1,2, j = 1,...,m we have that [|x;Z;;|« < C. Hence, it suffices to estimate
the values of the constants |c;j|. Next, we consider a smooth cut-off function n = 7(r) with the
following properties: n(r) =1 for r < £, n(r) =0 for r > 2, [/(r)| < Ce, |n"(r)| < Ce?. Then
we set

ni(y) = n(ly = &) (4.3.20)
We test equation (4.3.18) against 7;Z;; to find for ¢ = 1,2

(L(®)smjZij) = <h,7]jZij>+Cij/ X1 Zi;1?, (4.3.21)

€

where (f,g) = [_fg. Now, we find that

(L(9),njZij) = (Adp+ K+ (), nj Zij) = /Q [An; Zij + KnjZij] ¢ + C(¢)/Q i Zij-

€

Thus, we get that
<L(¢),77jZ7;j> = <¢,I~/(77jZ7;j)>, fOI‘ all, 7, = 1,2, j = 1, o,

And we have
L(n; Zij) = An; Zij + 2Vn;V Zij +nj(AZi; + K Zy;)
= An; Zij + 2V V Zij + €50, Z;; + O(e4).

Furthermore, we find for i = 1,2

/ |An; Zij] S/
Qe 3(61735)\B(5/’45)

/
1
ch/ Iy 5/2d +C/ z—mdy

< (e

ly — &l

n (\ —§]|)| m Y

[In”(ly - &I+

ly =&l —f’l
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4.3. THE ASSOCIATED LINEAR PROBLEM

/ V0,V 2y < / 7 (jy — €011V Zii ()] dy < Ce
Qf B( ,735)\3(61745

and similarly

/\6”3(é 0-n;Zi;| < Ce.

Thus, for i =1,2
(6, L(n;Zi5))| < Celléloe.

From (4.3.19) and (4.3.21), we get the following inequality for ¢ = 1,2

/ ’/ 6 L(nZj)

1
< Celog = |[|h]|« + ZZ lessl | + ClInlls
£

i=1 j=1

/ 11 10, Zi3] < Cellblloe + C11]l

|cij]

and the estimate

|cijl

s

Also, we have that there is a constant C' = C(Ry) independent of ¢ such that

‘/ X;Z;
0.

Combining this estimate with (4.3.22) we obtain for ¢ = 1,2

el < C . + 21og 1 (ZZ\% )]

i=1 j=1

< C |||h||« +elog = (ZZ@J . (4.3.22)

=1 j=1

which implies ]cw\ < C||hl|« for all ¢ = 1,2, j = 1,...,m. It follows finally from (4.3.19) that
[¢]loc < C(log2)||R||. and the a priori estimate has been thus proven. It only remains to prove
the solvability assertion. To this purpose we consider the space

:{¢€E(QE) : / XiZij¢ =0 fori:1,2,j:1,...,m},
Qe

endowed with the usual inner product [¢,¢] = an V¢Vip. Problem (4.3.16) expressed in weak
form is equivalent to that of finding a ¢ € H, such that

[0, V] :/ [K¢ — h|¢ de, for all ¢ € H.
Qe
With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator
form ¢ = K(¢) +h, for certain h € H, where K is a compact operator in H. Fredholm’s alternative
guarantees unique solvability of this problem for any h provided that the homogeneous equation
¢ = K(¢) has only the zero solution in H. This last equation is equivalent to (4.3.16) with h = 0.
Thus existence of a unique solution follows from the a priori estimate (4.3.17). This finishes the
proof. ]
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4.3. THE ASSOCIATED LINEAR PROBLEM

The result of Proposition 4.3.2 implies that the unique solution ¢ = T'(h) of (4.3.16) defines
a continuous linear map from the Banach space C, of all functions h in L> for which ||A|. < oo
and [, h =0, into L*°, with norm bounded by C|loge|.

It is important for later purposes to understand the differentiability of the operator T with
respect to the variable &. Fix h € C, and let ¢ = T'(h). Let us recall that ¢ satisfies the equation

2 m
L(¢)=h+ Y cijx; Zij,
i=1 j=1

and the doubly periodic and orthogonality conditions, for some (uniquely determined) constants
Cij = cij(f’), 1=1,2,5=1,...,m. We want to compute derivatives of ¢ with respect to the
parameters ;. Formally

1
€ 1= 1j 1

so, X = 8§;€l¢ should satisfy

( ) aﬁle¢+|Q ’/ aﬁle¢+chwa§k Xj i +szz]X] i s

i=1 j=1 i=1 j=1

where (still formally) d;; = 8§;l(cij), 1=1,2, 5 =1,...,m. The orthogonality conditions now
become

Observe that dg (X;Zi;) is not necessarily identically zero, since yi; = pi(&1, -, &) by (4.2.8).
We will recast X as follows. Let us consider 7;, a smooth cut-off function as in (4.3.20). We
consider the constants b;; defined as

bij/ XjlZi; I 32/ ¢ O (XjZij), i=1,25=1....m
Q. Q.
and the function
m
o= S b b 20 e 0570 0 0+ [ 0
i=1 j=1
Then the function X above can be uniquely expressed as
2 m
=D by Ziy
i=1 j=1

This computation is not just formal. Arguing directly by definition it shows that indeed 8521¢ =
X. Also, we find that || f[|. < Ce™?(log 1)||h[|.. In fact, we get that

2 m
1
111 < 353 (bl 12,21 + el 106, (sl + g &l + | [ g,

i=1 j=1
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4.3. THE ASSOCIATED LINEAR PROBLEM

First, note that [bjj| < Cl|¢ll [|0g (xjZij)ll«. Since, suppx; € B(}, Ro + 1), we get that
||(9€;CZ(XJ Zij)|l« < C. Thus, we obtain that

bl < € 1oz 1) 1]
Next, we estimate || L(n;Zi;)||«. So, we have that

IL(m; Zij) 1« = [|1L(n; Ziz) + c(nj Zij)l« < N L(njZij)lls + llc(nj Zij)|s-

We know that in B(¢! y 38)

L(?]] i) = An;Zij +2Vn;VZi; +e o= )Heanij + 0(54)

and L(n;Z;;) = 0 in Q. \ B(¢ / :fg). Therefore, from the definition of *-norm we obtain that
IL(n;Zij)|l. < Ce'=7.
On the other hand, we know that

1
c(njZi;) = _]QE]/Q Kmn;Zij

and hence, we estimate

[le(n; (L+ly—gh* < e,

yeQde

/Q A(T]jZij) =0 and /Q ’IN/(T]]ZZ])‘ < Ce.

Now, we estimate Jy K. We know that K(y) = e*k(ey)e¥® and hence we find that
K(y) = 64k(5y)ev(y)8£]/€lV(y). From the definition of V', we have that

since

O,

kl
0 V(y) = 0 [U Zagkl (ey)] = EZ%

Using the integral representation (2.2.4) we deduce that for all j =1,...,m

2

we) T f;)) +0(e* loge))

815
afklUj('r) = O, ( ) — log

uniform in C?-sense on compact subsets of €. In particular, for j # I

72851@1 (H?)‘?Q
pie? + |z — g

8§klUj(x) = +0(52|10g5|)

and
Az — &)k 20¢,, (1)e? 2
¢, U(x) = - L + Qo H (,&) + O(e”|logel).
&kl l( ) :U'1252+‘$_€l‘2 Ml252+|x_§l|2 2k ( &) ( | g ’)
Hence, we have that [|0¢,,Ujljcc < % and for all j # 1 ||0g,Ujlloc < C. Thus, we get that
[0¢, Voo < C and [0y Klloo < [[K|[[|0g, Voo < C. With this estimate, we get that

10g, Kol < 10g K]l chumw(log )uhu
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4.4. THE NONLINEAR PROBLEM

. Cf 1
< C10g Kol sup (1-+ 1y =€) < & (1082 ) 4]

1
ng\/gz Og, 1o

Therefore, we conclude that

1 1 1
I£1. <€ | (1og 2 ) Il + il + (1og 2 ) Il +=72 (105 2) 1.

Moreover, using Proposition 4.3.2, we find that

2 m
1 1
1Og 1l < 1Tl + 33 sl Zilloe < € (1082 ) 111+ (108 2) Il

i=1 j=1

Finally, we conclude that
C 1\?
10, T(h)|[oe < = logg |h]|« forall k=1,2,1=1,...,m. (4.3.23)

This estimate is of crucial importance in the arguments to come. Remark that 0 < o < 1.

4.4 The nonlinear problem

In this section, instead of solve directly the problem (4.2.11) we shall solve an intermediate
problem. First, we consider the following auxiliary non linear problem

L(¢) = —[R+ N(¢)] + X0, 0y cijxiZij, n 0.,
10) doubly periodic on 082, (4.4.1)
Jo. XiZijp =0, foralli=12 j=1,....,m [, ¢=0.

where K, R and N(¢) are given by (4.2.15), (4.2.12) and (4.2.13) respectively.

Lemma 4.4.1. Let § > 0. Then there exist g > 0, C > 0 such that for 0 < ¢ < gy and for
any &1, ..., Em € Q satisfying (4.3.2), problem (4.4.1) admits a unique solution ¢, c;j, i = 1,2,
j=1,...,m such that

|olloe < Cellogel. (4.4.2)

Furthermore, denoting & = (&],...,£..), the function & +— ¢(&') € C(£) is C' and
| Der ¢l < Ce*~7|logel?. (4.4.3)

Proof: First, note that R € L®(S), [[R[ls < +oo, o R = 0 and [, N(¢) = 0 for any
# € C(Q.). Next, we observe that in terms of the operator T defined in Proposition 4.3.2, the
latter problem becomes

¢p=-T(R+ N(¢)):=A(9). (4.4.4)

For a given number v > 0, let us consider

Fr={¢ € C(k) : [[4llcc < ve[logel}
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4.4. THE NONLINEAR PROBLEM

From the Proposition 4.3.2, we get
[A(@)lloo < Cllogel|R + N(¢)|+ < Clloge| [ Bll« + [[N(&)]l+] -

From (4.2.14) it follows the estimate | R||« < Ce. Furthermore,

2
e
IN()ll < K]« lle” — ¢ — Lo + 0]

’ /Q E K(2)(e®®) — ¢(2) — 1) dz

c
< Cllgll3 + ped LY B le? — ¢ — 1o
C
<~ 191%-
9

Hence, we get for any ¢ € F,,

| A(@)|lo < C|loge] [E + ;JHgﬁHgo] < Clloge| [E + 12e279| 10g£|2}
< Celloge| [1 4+ %' 7| logel?] .
Given any ¢1, ¢2 € F,,, we have A(¢p1) — A(¢p2) = =T (N(¢1) — N(¢2)),

| A(¢1) — A(¢2)lloo < Cllogel [[N(¢1) = N(¢2)ll,,

N(¢p1) — N(2) = K(e” — ¢1 — [e” — ¢po]) — ’56’ ; K(e? — ¢1 — [e?2 — ¢o])

and
C
[N (¢1) = N(¢2)l« < Clllo1lloc + ll¢2lloo)[1 — P2lloc + ;C,HKH*H@‘#’1 — 1 — [” = d]lloo
< Cve'™7|loge] |61 — ¢2loo
with C independent of v. Therefore,
| A(¢1) — A(d2)lloo < Cre'~7|logel?[|d1 — b2l

It follows that for all £ sufficiently small A is a contraction mapping of F,, (for v large enough),
and therefore a unique fixed point of A exists in F,.

Let us now discuss the differentiability of ¢ depending on &', i.e., & + ¢(¢') € C(Qe) is CL.
Since R depends continuously (in the x-norm) on &', using the fixed point characterization (4.4.4),
we deduce that the mapping & +— ¢ is also continuous. Then, formally

De N(¢) =g K(e® — ¢ — 1)+ K[e? —1]0e; ¢
1
It can be checked that [|0g K|« and Ja. |0g; K| are uniformly bounded, so we conclude

C C .
106, N@)ll- < 19112 + 16l 19, @lloc < C='~7|loge] |l loge] + 9 Dlcc] -

Also, observe that we have

Oy, = (0, T) (R+ N(9)) - T (9, [R+ N(9)])
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4.4. THE NONLINEAR PROBLEM

So, using (4.3.23), we get
C
19, 8ll00 < logel* IR + N ()]l + Clloge] |9, (R + N ()]l

1
< Cltoge| |85

IRIl + IN (@)1 + 19g, Rl + 110, N6 | -

Let us estimate [|0g R|«. We know that

1

et R(y) = Adg V(y) +ek(ey)e” 0y V — == | 'k(e2)e" (2)0g V(2) dz.
€] Jo.

Thus, we have that
2 etile 2
Adg V(y) = —¢ E:ag, ( s(ev) — \QI/ k(e >

m

- _622 < Sasz uj(ey)] ’;:)‘ € a&kz[ (gj)euj})'

Observe that

3202 (x — &) 80e,, (1) (|x — &I — pie?)
(nPe? + |z — &|?)? (pfe? + |z — &|?)°

Ogy [k(&)e" )] =

and for j # 1
80, (113) |z = &? — pie?
(ufe? + o = &§[%)? pie® + o — [

aﬁkl [k(gj )ets (z)] =

Hence, we get that
ey (1) 8uie* (| — &l — uie?)
2 wy(x) _ O\l / My ! H 2
e* | 0Og,[k(&)e"\ ] dx = dz + O(e?)
/Q b (&)™ I @o) (e +lr—g?)3
= 0(£?)

and similarly for j #{
ey, (113) 8u3e” I
2 N ouwi ()] 7. SR / j J j 2
e [ O¢,[k(&)e" '\ ] dax = dz + O(e7)
/Q e [R(5) ] M? (&:9) (’u]zgg + |z — £]2)2 /@252 + |z — &2
= 0(£%).

Also, we have that

+ O(e”).

32N12(y - le)k _ €i Saﬁkz(ug)ay _ §§‘2 _ M?)

Ady V(y) = —
G =y gy 0+ 1y — &P

Jj=1

On the other hand, we have that

/ €4k(6z)ev(z)8£;dV(z) dz:/QEQk(x)eU(x)aagklU(m) dx
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4.4. THE NONLINEAR PROBLEM

For any j, denote p;(z) = k(az)eH(x’fj)Jrzqﬂ G(#&)  Now, by similar computations to get (4.2.21),
if j # [ then

83/ k(w)eU(‘”)ﬁgklU(:ﬂ) dx
B(&;,0)

:&‘3/ Pj(l') - 2(1+O(€2“0g€‘))
B(&.6 ot
e (14 (52))
_2asz (/‘?)52
pe? + v — &
_ £ pi(& + pjey) [ —20g,(13)
1 oty (L lyP)? \ s+ )
+ O(e®|logel)
20¢ (MZ)E T €
= _% bp'(fj) + 0(52)} + 2 [7p; (&) 001G (&5, &) + O(e?| loge|)]
J J
+ O(e?|logel)
= O(¢’| loge),

+ 0k G (&) + O(€?| 10g6|)> dx

+ 0ok G(&5 + pjey, 5l)> dy

since 8/1? = p;(&), 65,@[(/@) = ,ujzﬁng(fj,&) for j # 1. Also, we have that

€3 / k‘(:v)eU(I)@gklU(:n) dx
B(&,9)

:53/ ,01(1') - 2(1+O(€2|10g€|))

B(&,0) r—

1 M;L54 <1 + <| m§|> )

X (4(56 = &) — 20g, (7)<
pie? + |z — &2

_ / [4 ykor(& + mey)  20g, (17)e pi(& + puey)
B(0,-2) uf (14 |y|?)3 N? (1+ |y|2)5
€ pl& + mey)
ne( 4+ [y?)?

T O H (. 6) + 0<52|1oger>) da

Tue

OokH (& + ey, &) | dy + O(®|logel)
= O(c®|logel),

since 8u7 = pi(&), Okp1(&1) = 80e,, (17), Dok H (&1,&) = 0 and

/ Yk (& + uey)
B2y (L+1y*)?
nie

)

- /B(O e (NFZJW [p1(&) + Voul&) - ey + 122 (D*pi(&)y, y) + O(uied|y|*)] dy

T
= Zﬁkm(&)uﬁ + O(e%| loge|).

)

Therefore, we conclude that

/ ch(ez)e D0y V(2) dz = O loge).

€
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On the other hand, we know that

Ay — &k
V) T g

28§kz (M§)€

I 1 O(e] log g|).
iy —gp T oe e

m
+edorH ey, &) — Y
j=1
If |y — & > g for all j = 1,...,m then e*k(cy)eV® = O(e*) and 9 V(y) = O(g). Similarly,
in the same region Adg V(y) = O(e®). Hence, we get that in the considered region g R(y) =
O(&%|logel), for all j =1,...,m. Now, if |y =&l < g for some j € {1,...,m} then
2

8’
4 Viy) _ J
e k(ey)e =

(€w) (13 + ly = &1?)

5L+ O(ely — &) + O(*| log e

We have that for j # 1

28§kl (N?)g

O V(y) = ———"—"""5
6V W) w3+ ly — &2

+0(e) =0(e)

and

80g, (13)(ly — &> — u3)

¢ R(y) = —
G = T Gy gy
812 ,
+ (M? T j_ €§|2)2 [1+O(ely — &) + O(?| loge|)] O(e) + O(’|logel)

812
= g [0+ Oy — )] + O(elog <))
J J

For j =1, we find that

Og R(y) = — 327y — €)r B0, (v — &1 — )
Rl (1 +ly = &1%)3 (12 + |y — &2)
+ 811
(1 +ly — )7
+ O(°| logel)

8/142 / 5
= O(e) + O(ely = &) | + O(e’|logel).
(MZQ + |y _§ZI|2)2 [ ( ) ( ‘ l|)] ( ‘ |)
Therefore, from the definition of *-norm we conclude that||0g R||. < Ce. Hence, we find the
following estimate

4y — &)k
pd+ly — &2

[1+O(ely - &) + O(*| log )] +0(e)

| log €| 1 _
10¢; ¢lloo < Clloge] [EU e+€—JH¢H§o +e+e' 77 loge| (e\logeHH@smuoo)

< Clloge| [51_U| loge| + €272 |loge|® + € + €277 loge|> + £ 77| log ¢ ||6§;€lqb||oo] .
Thus, we conclude
||(3§;d¢>||oo < Cel™|logel?.

The above computations can be made rigorous by using the implicit function theorem and
the fixed point representation (4.4.4) which guarantees C* regularity in &’
O

96



4.5. VARIATIONAL REDUCTION

4.5 Variational reduction

In view of Lemma 4.4.1, given 6 > 0 and any points 1, ..., &y, € §2 satisfying dist(§; — &5, aZ +
BZ) > ¢ for all i # j, we consider ¢(¢'), ¢;;(§'), i =1,2,j=1,...,m, where { = (§1,...,&n) and
¢ = e, to be the unique solution to (4.4.1) satisfying (4.4.2) and (4.4.3).

After problem (4.4.1) has been solved, we find a solution to problem (4.2.9) and hence to the
original problem if £ is such that

cj(€)=0, i=12, j=1,...,m. (4.5.1)

This problem is equivalent to finding critical points of a functional of £ = £’. Let us consider Jg,
given by (4.1.3) and define

Fe(€) = J.(U(©) + 9(9)), (4.5.2)

where (with slight abuse of notation) U = U(€) = U(z, &) and ¢ = ¢(€) = ¢(x, £) are the functions
defined on 2 from the relations

U(x,£>=V<”” 5) and ¢<x,5>=¢(,),

e'e
The following result states that critical points of F; correspond to solutions of (4.5.1) for small €.

Lemma 4.5.1. There exists £9 such that for any 0 < e < eo, if § € Q™ satisfying (4.3.2) is a
critical point of F, then u = U(§) + ¢(&) is a critical point of J., that is, if D¢Fe(§) = 0 then &
satisfies system (4.5.1), i.e., u is a solution to (4.1.2).

Proof: Define the energy functional I, associated to problem (4.2.9), namely,

L) =5 [ vl - /Q S(ey)e”.
It is easy to see that .
L(V(E) + ¢(&) = J(U (&) + 8(8))- (4.5.3)

Let us differentiate the function F.(£) with respect to £. Since (4.5.3), we can differentiate directly
I.(V + ¢) (under the integral sign), so that

06, F-(6) = gy [I(V + 6)] = DL(V +6) [,V + 0, ]
:2 UQ VIV +¢)V (8%1/ + ‘95,21‘75) - /Q 'k (ey)eV T <8€le + 8£Ll¢>] .

We know that

AV + ¢) + etk (ey) V¢ — @ fﬂe etk (e2) V0 dz = Z?:1 Z;n:1 CiiXjZij, in Q,
10) doubly periodic on €Y,
Jo.(V+¢)=0.
(4.5.4)

So, integrating by parts, we get

el = [‘ [ AW +0) (9g,V +0g,0) - | etk (og,v + 6»:;@)}

€
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since fﬂe (8%‘/ + 8§;Clgz§) = 0. From the results of the previous section, this expression defines a
continuous function of &', and hence of . Let us assume that D¢ F(§) = 0. Then, from the latter
equality

ZZCU/ X] ij 85/V+(9§/¢ =0, k=12, 1=1,...,m.

=1 j=1

Using (4.4.3) and Og V = 4Z; + O(e), where O(¢) is in the L norm, it follows

ZZCU/ Xj ij Zk;l+0( )} 0, k=12, 1=1,...,m.

=1 j=1

with o(1) small in the sense of the L> norm as ¢ — 0. The above system is diagonal dominant
and we thus get ¢;; =0fori=1,2,j=1,...,m
O

In order to solve for critical points of the function F;, a key step is its expected closeness to
the function J.(U), where U is the function defined in (4.2.7), which we will analyze in the next
section.

Lemma 4.5.2. The following expansions holds

Fs(&) = JE(U) + 96(5)7

where
0| = O(e*|logel) and |VO.| = O(s' 7] log e|?), as €—0,

uniformly on points & = (&1,...,&m) € Q™ satisfying the constraints (4.3.2).

Proof: Since we have, I.(V) = J-(U) and (4.5.3), we write

JE(U + ¢) - Je(U) = IE(V + ¢) - Ie(v) = A

Let us estimate A first. A Taylor expansion gives us

1
A= DLV +6)d) — [ DLWV +19)[oP v
0
Testing equation (4.5.4) against ¢ and integrating by parts, we get

/vv+¢ Vo — / k(sy)eV 09 =0,

ie., DI.(V + ¢)[¢] = 0. Thus,

1
_ / D2L(V + t6)[0]> ¢ dt.
0

We know that K (y) = e*k(ey)e”®) and ¢ satisfies

2 m
_A¢:R+K¢+N(¢)_ZZ Z]X] i é‘ 0 ¢
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using (4.4.1). Also, we have that
DV 1) = = [ 680 [ thiep)et e
a/m+Nww+/ Hep)e (1 - )

Thus,

A:—/O1 </6[R+N(¢)]¢+/e k(ey)e (1—et¢)¢2> tdt. (4.5.5)

Now, we can estimate
1
A< [ IR+ N@) 6+ ket (- )| di
0

1
SACDMNWMWMMMHWMPVWMQﬁ
< C [*|loge| + & 7|loge|* + 3| loge|*] ,
since ||R||« < C¢, |[N(¢)|l« < Ce™?||o||%, and ||¢||oo < Ce|loge|. Therefore, we get

L(V +¢) — I.(V) = O(e*| log ).

Let us differentiate with respect to £’. We use representation (4.5.5) and differentiate directly
under the integral sign, thus obtaining, for each k =1,2,l=1,....m

0 [A / ( / 9 R+ N(@)} o] + / c4og, [k(eu)e” (1 - et¢)¢2]> Lt
We analyze and estimate cach term, so,
i ([ o6, 1tr+ N}l )ear|
< /Q 9, [{R+ N(9)) ¢]'

< € [(l0g, Bl + 19, N(®)11) 16110 + (IRl + IN(@)].) 10,0l
C [e|loge|(e + e logel{e|loge| + ' 7| loge|*}) +e' 77| logel? (e + 27| loge\Q)]
< Ce?7|logel?

using Lemma 4.4.1 and the computations in the proof. Now, similarly as above

/01 (/ 19 [k:(sy)ev(l _et?) gﬂ > tdt'

1
< / Cle*k(ey)e” [0 V(1 — €'?) ¢ — et 0y ¢ 6 +2(1 — €'?) ¢ Dy ]|, [t] dt
0

<C [HKH* 18; Vlloo ] 191126 + N1 I« [¢] 19115 110, &l oo
< Ce¥7|logelt.

Thus, we conclude

Ot [I(V +¢) — L(V)] = O(e* 7| logel*),  k=1,2,1=1,...,m.
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Now, taking 0. (&) = 0.(e¢') with 6.(€) = F.(€) — J.(U), we have shown that

0] + ——— |V§r9 | = O(c%| loge)), as € —0.

The continuity in £ of all these expressions is inherited from that of ¢ and its derivatives in £ in
the L* norm. O
4.6 Energy computations of approximate solution

The purpose of this section is to give an asymptotic estimate of J.(U) where U is the approximate
solution defined in (4.2.7) and J: is the energy functional (4.1.3) associated to Problem (4.1.2).
We have the following result.

Lemma 4.6.1. Let m € Z" and § > 0 be a fized small number and U be the function defined in
(4.2.7). With the choice (4.2.8) for the parameter pj, j =1,...,m, the following expansion holds

J.(U) = —167mm + 8mmlog 8 — 16mmloge — 32w mH*(0) + 4w, (€) + €0.(€) (4.6.1)
where the function ¢y, is defined by

&) =-2> logh(§) — Y G(&,&). (4.6.2)
j=1 1]

n (4.6.1), O is a smooth function of & = (&1,...,&m), bounded together with its derivatives, as
e — 0 uniformly on points &1, ...,&m € Q that satisfy dist(& — &, a + BZ) > 0 for all i # j.

Remark 4.6.1. In the sequel, by 6., 0. we will denote generic functions of £ that are bounded
in the region dist(&; — &, aZ + BZ) > ¢ for all i # j.

Proof: First, we will evaluate the quadratic part of energy evaluated at U, that is,

1 1 1 <&
= UPdr=—-= | UAUdz = —= UAU; dz.
2/Q|V |“ dx 2/Q T 2;/9 ;dx

Using the equation (4.2.2) of Uj, we have
/UhﬁmwszU{ k&) ) — o [ e }
Q 0 9l
= / e2k(£)e“ @ U (z) dx
Q
since [, U = 0. Given 0 < §y < § we have
/ e2k(£)e“ @ U (z) dx = / e2k(&)e @ U (z) dx + / e2k(£)e @ U (z) dx
Q Q\B(&;,00) (&5+00)

= / £2k(€;)e“ @ U (x) dx + 87U (&)
Q\B({%éo)

U(&j + piey) —U(E;) dy
n 8/ dy — 8U(&; / Y
B, 2%) (1+ Jy[?)? &) rAB0, ) (L+[yf)?

)
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4.6. ENERGY COMPUTATIONS OF APPROXIMATE SOLUTION

From the definition of U, we find

m

/ E2k(E,) DU (z) di = / 2k(E))e DU () da
Q\B(éjﬁo) Q\B(E],éo)

=1

and for all [ # j we decompose

[ emee@de= [ k) I ) da
Q\B(&;,00) B(&;,00)

- / k()@ U (2) da.
O\ (B(&;,60)UB(&1,60))

Since, for any [ € {1,...,m} we have Uj(x) = G(x,&) + O(g?|log ¢|) uniformly in Q\ B(&;, ), U,
is uniformly bounded in Q\ B(&;, do) by a constant independent of . Besides £2k(¢;)e% = O(£?)
uniformly in Q\ B(&;,8). Hence we get

[ HE)e U)o = O
Q\B(gj 50)
and for all [ # j

/ 21(,)e" DU (2) da = O().
Q\(B(&;,60)UB(&,60))

Note that by Lemma 4.2.1 we have that uniformly for all x € B(&;, dp)

+H(z,&) + O(c*|logel).

Uiw) =l 0 s o~y

So, we have that

/ Uy()| dae g/ 2 [log (3<% + [« — &2)] dy + C < C.
(&1,90) &

;00

Hence, we obtain that for all [ # j
/ 21(&,)e" DU (2) dx = O(E2).
(é1,00)

And we conclude
/ e2k(£)e @ U (z) dz = O(e?).
Q\(B(&;,00)
Also, we know that U(§;) = —4loguje + H(E;, &) + >, G(&, &) + e2|loge|O:(£), so

. dy
U(gj)/n#\B( o) 1+ y2)? ~

On the other hand, observe that

U(& + mjey) — U(&) = Us(&5 + mjey) — Ui (&) + DU + piey) — Ui(&)))-
I#]

O(e?|logel).

Hence, we find that

U;(&j + pjey) — U;(§;) = log Hj(& + pjey) — Hi (&),

1
— _|_
(1 +1yl*)?
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4.6. ENERGY COMPUTATIONS OF APPROXIMATE SOLUTION

since w
12233

(H5e? + pie?lyl?)*

(&5 + miey) — u;(&;) = log
Now, from Lemma 4.2.1 we can deduce that for y € B(O 0 E)

Hj(&5 + pjey) — Hi (&) = H(E + pyey. &) — H(E,€5) + O(?| logel).

By the choice of §y we get that B(&;,00) N B(&,00) = 0 for all I # j, so from Lemma 4.2.1 we

have that for y € B(0, 0 5)

Ui(& + pjey) — Uil(&) = G(& + pjey, &) — G(&,&) + O(e?| loge).

Then, for y € B(0, o E)

1
U(&j + pjey) — U(E;) = log A+ e + H (& + pjey, &) — H(&5, &)
+ 216G + ey, &) = G(g, )] + O log ).
I#]
Also, we obtain that
1 1 do/mje 1
log 27r/ log dr
/3(0,3(@) (T+[yl»)? = A +y?) 0 (1+ T2 (1+7r2)?
27r/ +% logt dt
1
2.2
[i5e 233 Wie
=_2 J 1 J - J 1.
m /@52 + 58 o8 u§€2 + 62 M?&“Q + 62 +

Hence, we conclude

/ U + Mj8y)2—2U(€j) dy = —on
B(o,%) (1+1[yl?)

2.2 2.2 2.2
s HiE 12

o - +1
R AT T P

H(& + pjey, &) — H(E;,&5) i
*é@g) T+ 1y

£j +,U153/7§l> (ijgl) d O(£2]1
+;/ 50) (1+ [y)2 y + O(e”|log )

= — 271 + 2| loge|O©.(£).

And again using U(;) = —4log pje + H(&;,&5) + 321 G(&5, &) + £2]loge|O. (&) we conclude

/ €2k<fj)euj(x)[](x) dx = —16m — 32w log je + 8w (H(fj,fj) + ZG(@,&[)) + 895(5)
“ I#i

Therefore,

/]VU|2dx—87Tm+Z[ 167rlog,u]5+47r( (&,&5)+ Z G(fj,fl)ﬂqte@g(f). (4.6.3)
I=1,l#]

7j=1
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4.6. ENERGY COMPUTATIONS OF APPROXIMATE SOLUTION

On the other hand, from (4.2.21) we know that the second term in the energy functional
satisfies

/k 2) dz = 8wm + 2| log | O (€).

Using (4.6.3) and (4.2.21), we conclude

JE(U):—IGWm—i—Z[—167r10guj8+47r< &)+ D ij,éz)]—l—e@s({)
j=1

I=1,l#j

= —167m + 8rmlog8 — 16mmloge — 47rz [2logk(g]) +HEG )+ Y, G }
Jj=1 1=1,l#j
+ €@€(£)a
(4.6.4)

since by the choice of p;
167 log pje = 87| log k(&;) —log8 + H(&;,&;) + ZG(&,@)] + 167 loge.
I#j

Recall that H(¢;,&) = StH*(0) and H(&; + pjey. &) — H(&.€) = Zpude |yl + SmH* (jey) -
8mH*(0) for all j = 1,...,m. Hence, we conclude (4.6.1). The C'-closeness is a direct consequence
of the fact that ©. is bounded together with its derivatives in the considered region. In fact, we
will show that

85kz [Ja(U)] = 47ra§k190m(€17 . 7§m) + 0(52‘ log E|) (4.6.5)

in the considered region. First, observe that
¢y [J-(U)] = DJ.(U)[0g,, U] = — /Q [AU + ke 0, U.

Now, we have that

/8£kl —AU) = /aﬁkl AU Z/E k g] a&kz (z) dx

using the equation (4.2.2) of U; and fQ O¢,,U = 0. Again, we consider 0 < g < ¢. So, we have

/ e2k(&;)e @, U(x) de = / e2k(&;)e @, U(x) da + 810, U (&;)
Q

Q\B(ﬁj,(so)
+ 8/ aﬁsz(gj + Mjey)z_Qa&czU(gj) d
B(0,20.) (1+yl?)

dy
— 80, U(&; / —_—
kil ( ]) ]RQ\B(O,%) (1+ ‘y|2)2

From the definition of U, we find

/ 21(£7)e D0, Ux)do = Y / £21(&,)e% )9y, U, () da
\B(E, 50)

= 0B, )
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and for all ¢ # j we decompose

/ 52k(£j)€Uj (w)aﬁkqu ($) dr = / 62]{:(@')6%@)8&1 Uq (:L‘) dx
Q\B(&;,00) B(£q,90)

“
Q\(B(fj’(;O)UB(&lv(;O))

ezk(§j)e“j ($>agkqu(a;) dzx.

We know that for any g, d,,U, is uniformly bounded in Q\ B(&,,d) by a constant independent

of €. Hence we get
2k (&) @y, Us(z) dz = O(?)
O\B(&;,00)
and for all ¢ # j

(gj) asz ( )dx = 0(52)~
Q\(B(ﬁjﬁo)UB(Eqﬁo))

Furthermore, observe that for q # [, d¢,, U, is uniformly bounded in €2 and

4z — &)
,U«%EQ + ]a: — 55’2

aﬁklUl(l‘) = +0(1)

in Q. Then we have that

|z — &
0 Ul(x)|d33§Cl/ o+ Cy < C
/B(sz,&n o Blendo) MPE2 + |z — &2

Hence, we obtain that for all ¢ # j

/ 24(&)e" @ g, Uy () do = O(2).
(fq,&())
Thus, we conclude that

/ E21(&,)e" ™, U(x) dx = O(2).
O\ (B(&;,00)

On the other hand, we know that

4(33 — él)k = agkl (,uq)2€2 2
U = + O H —2 + 1
g, U () 262 1 [z — & o H (2, &) E Mq52 EEYaE O(e*|logel),

hence, we get that there is a constant C' > 0 independent of € such that for all j = 1,...

|0¢,, U(&5)] < C. So, we get that

. L 2

Now, observe that if j # [ then

e, (11)?
aisz(gj + quy) - 8§sz(§j) = a2kG(§j T ,quy,&) B 2%

- 0u(g &) + 22057 1 O 10ge)
J
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4.6. ENERGY COMPUTATIONS OF APPROXIMATE SOLUTION

and

4y
m + O H (& + tuey, &)
()

B
— OopH(&,6) + 2fle + O(e?|log ).
l

aﬁsz(& + puey) — a&sz(gl) =

Also, we obtain that

4.4
2 Wie
/ ; (1+||2)3dy:7rll_ 7 1 52
B0, Y (nje* + 65)
Thus, we have that for any j

/ 8§klU(£j + :U’j‘sy) - aﬁsz(fj) dy = 8§kz( )
B(0,20) (14 ly|?)? p?

+ O(?|log ).

Also, we know that for j # 1

8&]@1(#?) 2
9, U(&5) = 0 G(&5, &) — 2 E + 0(£?|logel)
J
and ) )
e, U(&) = —2M + O(e%|loge)).

l
Thus, we conclude that

Skl aﬁu(ﬂ?)
/QafklU(_AU) —2—="5— 12 + Z 0o G ( §J>£l 22—
; :

J=1,j# Hj

N——

2 +O e2|logel)
H;

i (

Z 9ok G(&5, &) + O(®| logel).
J=Lj#l

On the other hand, we know that

£ [ k)0, Ule) di = O loge).

Therefore, using the choice of y;, we conclude

O [Je(U)) = =8> 0g, (log p3) + 87 Y 09G(§,&) + O(e*| logee])
j=1 J=1j#l

= —87T8§kl (Z [logk(@)—i—H fj,fg )+ Z G( fqagj ])

= —4mog,, (Z [210gk &)+ Z G(&, &5 ]) +O(52|10g6|)

q=1,q#j
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4.7. PROOF OF THEOREMS

since H(&;,€;) is constant, G(&4,&5) = G(&;,&,) for all j # q, 01:.G(&1, &) = 0 G (&g, &)

ey, Z Z G(&g: &) = 20, Z G(&5.&5)

J=1lq=1q#j J=Lj#j
and
m m
Z Z G(&q: &) = Z G(&q: &) Z Z G(&q:&))-
J=1q=1,q#j q=1,g#l J=1j#lq=1,q#j
Thus, we conclude (4.6.5). This completes the proof. O

4.7 Proof of Theorems

4.7.1 Proof of Theorem 4.1.2.

Let us consider the set D as in the statement of the theorem, C the associated critical value and
¢ € D. According to Lemma 4.5.1, we have a solution of Problem (4.1.2) if we adjust £ so that
it is a critical point of F; defined by (4.5.2). This is equivalent to finding a critical point of

1
F.(¢) = y [Fa(f) + 16mmloge + 16mm — 8mm log 8 + 32772mH*(0)] .

On the other hand, from Lemmas 4.5.2 and 4.6.1, we have that for £ € D, such that its components
satisfy |§ — &] > 6,

Fo(§) = om(§) +70:(8), with 0<y<1l-o0o

where O, and V¢O, are uniformly bounded in the considered region as ¢ — 0.

Let us observe that if M > C, then assumptions (2.1.1), (2.1.2) still hold for the function
min{ M, o (€)} as well as for min{ M, ,,,(£)+c0.(€)}. Tt follows that the function min{M, F.(£)}
satisfies for all € small assumptions (2.1.1),(2.1.2) in D and therefore has a critical value C. < M
which is close to C in this region. If £, € D is a critical point at this level for ]5’5(5), then since

F.(&)<C<M

we have that there exists a § > 0 such that | ; — & ;| > 0. This implies C-closeness of F(£) and
©m(§) at this level, hence Vi, (&) — 0. The function u. = U(&:) + ¢(&) is therefore a solution
as predicted by the theorem. O
4.7.2 Proof of Theorem 4.1.1.

According to the result of Theorem 4.1.2, it is sufficient to establish that given m > 1, ¢, has
a nontrivial critical value in some open set D, compactly contained in 2™. We will use an idea
developed in [31]. Let us observe that the function ¢,, becomes

emyr, - ym) = Y NG(y;,p) = > Glyi, yy)-
= i3

The domain D is chosen as D = 1", where

Q={yeQ : |ly—p/>6}
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where § is a small positive number and p € Q (open cell). Consider a closed, smooth Jordan
curve 7 contained in € which encloses the point p. We let S to be the image of v, By = () and
B:SX..XS:Sm
Let us recall that
Q={z=sa+tfecC|0<s,t <1}
with o, 8 € C\ {0} and Im(5/a) > 0. By the doubly periodic conditions it will be useful to
consider the distance

d(z,y) = dist(z — y,aZ + BZ) := inf{|x — y + n1a + n2B| : for all ny,ny € Z}.

Note that for a small § > 0 we have that d(y,p) < d implies d(z,y) = |y — p|. Furthermore, for
any x,y € IR? there is z € aZ + BZ such that d(z,y) = |x — y + z| and by the periodicity of the
Green’s function G(z,y) = G(z + z,y) = G(x,y — 2).

Then define

— inf m(®(2)), 471
C dnfsup (®(2)) (4.7.1)

where ® € I if and only if ®(z) = ¥U(1,2) with ¥ : [0,1] x B — D continuous and ¥(0, z) = z.

Lemma 4.7.1. There exists K > 0, independent of the small number § used to define D such
that C > —K.

Proof. We need to prove the existence of K > 0 independent of small § such that if ® € I'; then
there exists a z € B with
em(2(2)) = —K. (4.7.2)

Let us write
O(2) = (P1(2),...,Pm(2)).

Identifying the components of the above m-tuple with complex numbers and given m points
Ciy. ..y Gm € ST, we shall establish the existence of Z € B such that

®j(z)—p _

|©5(2) = p|
This fact was shown in [31]. For the sake of self-containment we shall present a proof here. To
prove (4.7.3), we consider an orientation-preserving homeomorphism A : S' — S and the map

f:T™ — T™ defined as f(¢) = (f1(C),- .., fm(C)) with

Tm =8 % x S,
~—_——

m

¢ forallj=1,...,m. (4.7.3)

and

. _ (I)j(h(C1)""’h(Cm)) —-p
TG tm) = (). b)) — ol
We define a homotopy F': [0,1] x T™ — T™ by

\Ilj(ta h(<1)’ c h(gm)) - P

Fy(t,¢) = 06, h(C1), - h(Cm)) — |

Notice that F(1,¢) = f(¢) and
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which is a homeomorphism of 7™. The existence of Z such that relation (4.7.3) holds follows
from establishing that f is onto, which we show next.
The torus 7™ can be identified with the closed manifold embedded in IR™*! parameterized

as
Ci (01,0, 0m) €10,2m)™ = (p1€”, 0 1) + (01, 26", 0 —9) + -+ + (01, pme’™™),
where 0 < p;, < -+ < p; and we have denoted 0y, = (0,...,0), €% = (cos6;,sin6;). We consider
——
k

as well the solid torus 7™ parameterized as
(917 DRI 97717 p) € [07 27r)m X [07 pm] = (pleiglaom—l) + (017 p2€i9270m—2) + -+ (Om_l, peiem).

Obviously 7™ = T™ in R™+!.
With slight abuse of notation, we consider the map f : T™ — T", induced from the original
f under the above identification, namely

F(Q) = (p1f1(€); Om—1) + (01, p2/2(C), Om—2) + -+ + (Om—1, P fim(C))-

f then can be extended continuously to the whole solid torus as f ;7™ — R™! defined simply
as

f((7p) = (plfl(C)a Om—l) + (017p2f2(<)7 Om—2) Eale (Om—lypfm(g))'

f is homotopic to a homeomorphism of Tm, along a deformation which applies 1™ into itself.
Thus if P € int(7™) then deg(f,T™, P) # 0 and hence there exists Q € 7™ such that f(Q) = P.
Thus if we fix angles (67,...,0%) € [0,27)™ and p* € (0, py,) then there exist ¢** € T™ and
p** € (0, prm) such that

(P1f1(C7); Om—1) + (01, p2/2(¢C™), Om—2) + -+ + (O, ™ fin (7)) =

(1™, 0m—1) + (01, p2e™, 0pp—2) + - -+ + (01, p*e™m).

A direct computation shows then that f;(¢**) = ¢ for all j and also p* = p**. It then follows
that f is onto. This concludes the proof of (4.7.3).

Now, we will choose (i,...,(n € St as follows: denote G = e?™0; | with 6; € [0,1) and define
ti=max{t > 0| p+1t( € Q). Thus, we get that p + ti¢; € 02 Also, for j = 1,...,m define
the sets

A tiG + ma +n2f
/ 3¢ + nia + naf|

:ny,ng = —1,0,1, n%—l—n% #0 andp—i—t;fcj—i-nla—i-ngﬁ € 89}.

Then, we choose any 61 € [0, L) and 6, for j > 1 such that 6; € [Z-2, L) and ¢; = €205 ¢ Uf;lAl.

m m 'm
Hence, we have that there is a constant oy > 0 such that if y € D satisfies
Yi—P _
ly; — 1l

¢j forallj=1,....,m

then
lyj — yi + nia+naf| > o for all j #1 and ny,ne = —1,0,1, n% —i—ng #0,

namely, d(y;,y) > oo and H(y;j,y;) = O(1) uniformly for all j # [. Furthermore, (; #  if j # 1
and there exist a constant C' > 0 such that |y; — y;| > Cly; — p| for all [ # j.
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Now, from (2.2.2), it is clearly that

m
1
Cm(Y1, - Ym) = 4N210gﬁ +4ZIOQ§ ly; —uil + O(1).
j=1 J I#]

Fix 7, then we have

4N log ——

(m—1)log
ly; — pl

m
+4 Z 10g|yj_yi|24<N10gM—
=i vim b

)+ow,

ly; — pl

Since N > m — 1 by assumption, the above quantity is uniformly bounded below, hence the value
C is bounded below independently of §, as desired. O

The second step we have to carry out to make Theorem 4.1.2 applicable is to establish the
validity of assumption (2.1.2). To this end we need to establish a couple of preliminary facts on
the half plane

H = {(z},2?) . z' >0}

Lemma 4.7.2. Consider the function of k distinct points on H

\I/k(fL‘l, ce ,:Uk) = —4210g|x¢ — :Uj|.
i#j

Let I denote the set of indices i for which x} > 0 and Iy that for which x} = 0. Then, either
Ve, VUi(x,...,xk) #0, for someie€ I,

or

0
Up(z1,...,x) 0, for some i € Iy.
O0x42
Proof. We have that 5
a\I’kO\xh cy ATE)A=1 =
Z in\llk(xl, e ,l’k) 73 + Z 8$i2‘1/k(1‘1, . ,xk):cig.

i€I+ Z'GIO
On the other hand,

9 5n k)t = —4-2 [k — 1) log Allxey # 0

I\ EWAZL, -« oy ATE ) N=1 = I\ 0og A=1 ’
and the result follows. ]

Now, we are ready to prove the validity of assumption (2.1.2) which in this case reads as
follows:

Lemma 4.7.3. Given K > 0 there exists a § > 0 such that if £ = (&1,...,&m) € Ds and
lom ()| < K, then there is a vector T, tangent to 0Ds at & such that

Vsﬁm(f) T 7é 0
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Proof: Let us assume the opposite, namely the existence of a sequence 6, > 0, §, — 0, and
points " € 9Dy, such that £" = (£}, ...,&0),

Veom(&ls--6m) =0 if & €Qs,

and
Vgi(pm(f?, c ,gfn) -7, =0 if f? S 8Q5n, for all 7; € Tfln(aggn),

where T¢, (0€)5,) is the set of all vectors 7 tangent to d€s, at &. Note that 095, = {y € Q :
|y —p| = 0n}. From the assumptions of the Lemma follows that there is a point " € 0, for all
n (up to subsequence). Hence, {' — p as n — 400 and G(§',p) — +00 as n — +o00. Since the
values of ¢, remains uniformly bounded, necessarily we must have that there are two different
points 7', §" such that £ and §" are becoming close, namely d( J”,ﬁl") — 0 as n = +o0o. Let
us set p, = inf;4; d(g;l,gy), S0 pp, — 0 as n — 4o00. Without loss of generality, we can assume
pn = d(&1,&3). Let (' € oZ + BZ such that d(£7,€7) = €] — &7 — (f|. We define

LG8

Pn
Clearly there exists a k, 2 < k < m such that
lim [27] <400, j=1,...;k and lim [2}|=+o0, j>k
n—-+4o0o n—-+4oo

For j < k we set ; = lim,_, o 27/. Note that ; =0 and |Z2| = 1. Define

G (@15 Tn) = (&L + P15 &8 + Pnhs Efpt + PuTht1s - - & + PrTim).
We have

a(a:j)l@m(fla e al'n) = ,Ona(gj)l@m(f? + pnZ1, .- - 75? + PnTk, 5]?4-1 + PnTk+1, - - - ,577;3 + pnxm)-
foralll=1,2, j=1,...,m. Observe that

(yj —ph

a(&j)l@m(yla ce ayn) =N <_4 ‘2 + 8UH(y], ))

M
i=1,i#j yj
and
Ny Pm (@Y, 2, 0,...,0)
(& —ph - ( (& =&+ =G
= —4Np, + puNOUH (£, p) — 2 4p, J
g PeNOHE D =2 D | g
§ puOuH(E my—m)
n __ m " —
= —4Np \(E" — p|)2 + pnNOuH (', p) Z ZL_ $;|)2l
i=1,3 J

-2 Z PO H (&' = ¢ € = (1),

i=1,i#j

since, £ — &' + (' — (F = pu(a] —a).
‘We consider two cases:
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(1) either
dist (&7, 0%2s,)

m — = +OO;
n—-+o00 Pn

(2) or there exists Cp > 0 such that for all n

dist(&7, 09s,.)

< 007
Pn
where dist(£7, 09Qs,) = inf{d(&},y) | y € 09, }.
In case 1, it is easy to see that actually
dist (&7, 00
lim M:—Foo, forall j=1,... k.

n—-+o0o Pn

Indeed, we have that dist(£7', 0Qs,) < d(€},&T) + dist(£], 09, ). Furthermore, points &7, ..., &
are all interior to (25, , hence

Ve, om(Els-- &) =0 forall n, for j=1,... k.

Then, from the inequality dist( ?,89571) < d( ;L,p), we deduce lir}rl pnOuG (], p) = 0. Now,
n—-+0oo
note that for any 1 < j <k and ¢ > k+ 1 we get that

d(en, en
lim w:

n—-+o0o Pn

Also, if d(&]',&}) > oo for all n (up to subsequence) and for some oy > 0, then there exists
x € R?\ (aZ + BZ) such that |€]' — £} — x| — 0 as n — +oo. Hence, we find that

(E" &
e - lep—epp

as n — 4oo. If d(§',&}) = o(l) as n — +oo, then there exists (J; € aZ + (BZ such that
d(&, &7) = |&§' — & + (3| and we have that as n — +o0

& —& +
|(£ _£n+cn|)2 +pn82lH(§:L+CzT;7€]n)
i ij

_O( ager an)) +Olon),

since | — &7 + (J;| — 0. Therefore, we deduce that

PrduG(&',&f) = + pnOuH (', &) = O(pn),

PnOaG(&}',€5') =

~ n n 1
ngrfooa( )me(;ﬂl,,,,,xk,o,...,o):46(zj)l< Z IOgM>:O.

i#q,1,q<k

Note that pp|2] — 27| > |§' — & + (3| = d(&}. &) > py implies @ # &; for all @ # j, 0,7 < k.
Hence, we deduce that this last equality is true for any 7 < k, [ = 1,2. Thus, we arrive at a
contradiction with Lemma 4.7.2, which proves impossibility of this case.

On the other hand, in case 2 there exist a constant C7 > 0 such that
dist( ?,89%)
Pn

< (f, forall j=1,...,k.
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In fact, it easily follows from the inequality dist(£7, 982, ) < d(&], &) +dist (&7, 0€25,). Also, note
that we have

|£jn _p| < 6n + dlSt( ;Laaﬂdn) < (5n + Clpn7 for all ] = 17 s 7k'

Hence, we get that £ — p for all j = 1,...,k. Let us stress that |§;l — p| — 0 if and only if
d(&},p) — 0 as n — +00, since p is an interior point of the open cell €.

Assume first that there exists a constant C' > 0 such that §, < Cp,. Hence, we get that
1€} — pl < (C + C1)py. Observe that

m(f?a?&%):NZ[ 410g‘§] —pH—Hfj,p Zng +Cz]7§]>

J=1 i#]
m
= D5 +0(),
j=1
where we denote
s} :=4Nlog ——— + Z 4log | — &7 + G-

|£”— |

Then, we get that for all j =1,... k

i=1,i#]

3?24Nlog(c 01 + Z 4log pp,
i=1,i#j

1 1
>4Nlog — +4(m —1) 1o + 4N lo
> g (m — 1) log py, e

+ 1.

1
= 4log =y

k
Under the assumption N + 1 > m, we obtain that Zs;‘ — 400 as n — 4oo. If K = m then
j=1
we conclude that ¢, (&F,...,£7) — +00, as n — +o00, which is contradiction, since ., (£") is
bounded uniformly in n. Therefore, it holds that £ < m — 1. Next, let us estimate the sum

Z s%, with & < m—2. We can isolate groups of those points according to the asymptotic form

j=k+1
of their mutual distances. For example, we can define:

ph=int  dg]. &),
and consider those points whose mutual distances are O(pl), and so on. For each group of
those points (also those with indices higher than k) the argument given above in the Case 1
applies. This means that not only those points become close to one another but also that their
distance to the boundary 0€)s, is comparable with their mutual distance. Observe that for any
je{k+1,...,m} we have

m k m
> dlog|e — &+l =) Alog|é — &+ (Rl + Y 4log e — &7 + .
i=1,i#j i=1 i=k+1,i#£j
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First, assume that there is a constant dy > 0 such that p. > dy for all n. Then, at most there
is certain jo € {k + 1,...,m} such that §n — pasn — +oo, since ' — pasn — +00
for all # = 1,...,k. Thus, for those j € {k + 1,...,m} such that there is a constant rog > 0
satisfying |§7 — p| > 7o for all n and we have that d(£]',&7) = [ — & + (5| > 1 for all n,
i=1,...,m for some constant 71 > 0. Hence, we get that s = O(1) as n — +o0. Now, for that
jo € {k +1,...,m} such that {§ — p as n — +o0, we have that (f; = 0 and [§ — &F'[ — 0 as
n — +oo for all i = 1,..., k. Thus, taking p, = inf;—; _; [£]' — f}g], we consider two cases:

(a) either
dist (&7, 00
lim —( J0 o) = +00;
n——+0o0o pn

(b) or there exists Cy > 0 such that for all n

dist( ]0,89(;") e
Pn -7

since p, — 0 as n — +oo. In case (a), after scaling with p,, around &, and arguing similarly as
in the Case 1 we get a contradiction with Lemma 4.7.2. Thus, case (a) cannot hold and it does
hold case (b). In case (b) we have that

sJ0_4Nlog(C C +Z4logpn+ Z 4log dy
2 i=k+1,i#j0

1
> 4N log — + 4k log p,, + 4N log +4(m — k —1)logdy
Pn

_
C+ Cs

> 4log % + Co.
Pn

Since N > m — 1 > k, we conclude that as n — 400, i — +oo. If kK = m — 1 then by
similar arguments as above, depending on whether or not ¢, — p as n — 400, we get that
either s = O(1) or s% — 400 as n — +o00. Therefore, in any case k < m — 2 with pl > dy or
k = m — 1, we conclude that ¢, (&7, ...,§),) — +00 as n — 400, which is contradiction, since
©m (&) is bounded uniformly in n. Thus, it holds that p. — 0 as n — +o0o when k < m — 2.
Since p, < pl, we get that 6, < Cpl. Similarly as above, without loss of generality, we can
assume that p}, = [£], | — &L o] If

dist(¢n,,, 09
lim (§k+} o) =400
n—-4o00 pn

then the argument given above in the Case 1 applies. Thus, it holds that there is a constant

C3 > 0 such that
dist(ﬁj”, 09s,,)

1

Pn

where k+2 < k' < m. In this case, we get that & —p forall j =k+1,...,k" as n — +oo, since
pL — 0 as n — +oo by the assumption and for all j =k +1,..., K,

< (s, forall j=k+1,...,K,

&5 — pl < 0n + dist(&f, 0,) < 6 + Capy,-

Thus, for each j € {k+1,...,k'} we have that [{]' —{}'| = 0asn — +ooforalli=1,... k. Let
us consider ﬁ% =infj—1 g |§;L —&"|. Note that p, < oL pp < ﬁ% forall j =k+1,...,k" and p,,
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pL and g — 0 asn — +oo. Forany j € {k+1,...,m}, if
dist( ?,89%)

im a2 )
n—+o00 ﬁ%

then the Case 1 applies. Therefore, there is a constant Cs > 0 such that dist( g 00s.) < Cspi,
Hence, we get that

’gjn _p| <6, _|_C’3prlZ < C’Pn+0310711 < (C+C3)p7ll

and

€5 — pl < 0 + dist(¢],095,) < Cpn + Cap, < (C+ C3)p,
forall j=k+1,...,k. And we find the estimate

1 1 1
ns _ - s e -
si > 4N —m+1)log |§;l ) + 4k log 1 03)5% +4(m —k —1)log C Tyl
k m
+Z4logﬁ{l+ Z 4log p
i=1 i=k+1,ij

1
> 4(N —m+1)log + + Cy

TL

forall j =k+1,...,k. On the other hand, if ¥ < m — 1 then the sum

m
> [4Nlog’€n_ ‘+ Z dlog|é]" — & + (1|
Jj=k'+1 i=1,i#j

could be estimated similarly as above. Therefore, in any case, we conclude
om (&, &) = +o0 as n — 400,

which is contradiction, since ¢,,(£") is bounded uniformly in n.

Finally, it remains to consider that p, = 0(d,) as n — +o00. Observe that [} —p| > d,, for all

7 =1,...,k, and hence
lim pu P g
nHJroo ’5" p‘2

If all points &7, ..., & are interior to (25, then after scaling with p,, we argue as in case 1 above
to reach a contradiction with Lemma 4.7.2. Suppose that {1,...,k} = I1 U I, where I; is the set
of indices j for which &7 € 0%, and Iy that for £ € Qs,. So, I1, I2 # 0 and I NIy = . Then,
we have that

Ve, om(Els-- - &m) 7=0 forall 7€ Tgy(aﬂan), forall j € [1

and
Ve om(&ls. &) =0 for all ¢ € I.

Let j € I1, by the definition of 92, , we can take 73" € Ten (09s,), I7'| =1 and (&} —p) - 7;' =0
for all n. Then, for j € I; we get that

k ~ ~
Z T — I
ngr—&{loo vx (pm(l‘l’ ' ,$Z, 0. 0) ‘ Tjn - 8[—1 #J W e 0, (4'7‘4)
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where |7j| = 1 and 7' — 7j as n — +00 (up to subsequence) and for i € I

k ~ ~
. ~ n n o Ly — X
ngggoviﬁ%xxl“'”a%’a"”o)__Slégiwii—ﬁhP__0' (4.7.5)
=1, 7

In order to get a contradiction, we will use the following fact.

Claim 4.7.1. Let a,,b, € IR* be, such that a, # by for all n, 6, = |a,| = |ba|, 60 — 0,
Copn < |an — by| < Cipy, for some constants Cy,C1 > 0 and p, = 0(d,) as n — +oo. Then, up

to subsequence

. an — by an .
lim -— = lim
n—-4o0o Pn 571 n—-4o0o Pn (5n

anp — by, by

Proof: First, it is clear that the limits are finite. By the definition of |a,, — b,|, we have

Cgp?z < (an —bn) - an — (an —bp) by < C%pi

and
Cgpig an —bn .%_a”_b" .bﬁgcfl‘
517, Pn 5n Pn n 511
Thus, we get
n—-4o00 Pn 6n n—4o0o Pn 6n

On the other hand, |a,|?> = (an — by) - an + an - by and |by|?> = —(ay — by) - by + ay, - by,. Hence,
we get that

an_bn an, an_bn bn

Pn On Pn n

(an —by) - an + (an —by) - b, =0 and

Then, letting n — +oo the claim follows. O

Similarly, we have a variant of the above conclusion.

Claim 4.7.2. Let a,,b, € IR* be, such that a, # by for all n, 6, = |a,| < |bn|, 60 — 0,
Copn < |an — by| < Cipy, for some constants Cy,C1 > 0 and p, = 0(d,) as n — +oo. Then, up

to subsequence

lim an—bn'ain: lim n = bn bn

- — <0.
n—+oo Py On, n—+oco  pp Sy,

Now, taking a,, = 5]” —p, by, =& —pand j € I, we have that for ¢ € I

g- g-p_

where en
= lim 27
n——+oo 5n

and for i € Iy

lim
n—+oo Pn 571,

(%) — &) - & <0. (4.7.7)

Note that from the equality
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we get that Z is independent of j = 1,..., k. Also, we have that

S e R
lim T =2-7;,=0
n—-+o0o 5n J

since (EJ" —p)- 7' =0 for all n and j € I;. Hence, we can assume that 7 = 7; for all j € I.
Now, let us take j € I; and observe that from (4.7.6) and (4.7.7) we find that

k . .
Ti— T Ti— T
i=1,i#] @5 — il icly |z — @il

On the other hand, for i € I, we get that from (4.7.5)

Bi—d Ek: B-d 5 B-d 5 B — &
T — &2 < x3 - 32 |z — 2)? Nz — 2y
1=1,1#4,l#] lel l#] lels,l#i

and hence,
Z L Z Z xl
2
Tj— T T
i€ls | J | icly lel l;ﬁ] l

Therefore, using (4.7.7) we have that

—:Ul N
Zm_%,z z= Z Z i — @2 z 0.

1€l i€l lel l;éj
Thus, we conclude that for all j € I

k

Z ~.J ~.Z2'i‘:0'
i=1,i£j |25 — il

Therefore, from (4.7.4) and z - 7 = 0, it follows that

k ~ -
Ty — X
—— =0, foralli=1,...k

1=1,1%i & — 2]
Thus, we get a contradiction with Lemma 4.7.2 and Case 2 cannot hold.
In summary we reached now a contradiction with the assumptions of the Lemma. The proof

is complete.
O
4.7.3 Proof of Theorem 4.1.3.

According to Lemma 4.5.1, given m > 1, we have a solution of Problem (4.1.2) if we adjust £
so that it is a critical point of F. defined by (4.5.2). This is equivalent to finding a critical point
of

1
F.(¢) = o [FL(€) + 16mm log e + 16mm — 8wm log 8 + 320> H*(0)] .

On the other hand, from Lemmas 4.5.2 and 4.6.1, we have that for £ € Q™, such that k(&) > 0
and its components satisfy |§; — &;| > 0,

Fe(g) = pm(§) +70:(8), with 0<y<1l-0o
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where ©. and V¢O, are uniformly bounded in the considered region as ¢ — 0, and o # 0 and
(B are universal constants. By the assumption info k& > 0, we get that —2log k is bounded from
above. Since the Green’s function G is bounded from below in £ x €2, it holds ¢,, is bounded
from above and there is a global maximum, that is to say, a critical value C such that

C= max Y.

Now, taking D = {z € Q™ | ¢, (x) > C/2} we have that there exists a § > 0 such that |{; —&| >
for any &€ = (&1,...,&n) € D. Hence, aF. + 8 is uniformly bounded from above in D and there
is a critical value

C. = mgx[aﬁ’g + A

which is close to C in this region. From C'-closeness of oF + 3 and ©m in the region D it follows

that, if & € D is a critical point at level C. then Vi, (&) — 0. The function u. = U (&) + (5(55)
is therefore a solution as predicted by the theorem. O
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