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Resumen

En esta tesis doctoral se construyen soluciones para ecuaciones diferenciales parciales eĺıpticas
con no-linealidades exponenciales en el toro plano. La motivación proviene de ecuaciones de tipo
Liouville en el estudio de la teoŕıa de vórtices de Chern-Simons periódicos.

En el primer caṕıtulo mostramos el problema de vórtices de Chern-Simons periódicos, men-
cionando algunos resultados conocidos y deducimos su relación con la ecuación de campo medio
(mean field equation). Mencionamos los resultados obtenidos para esta ecuación. Para una
ecuación de tipo Liouville con una fuente singular se menciona el resultado conseguido.

El segundo caṕıtulo recopila algunos elementos que serán usados en los caṕıtulos posteriores.
Estos son nociones de valores cŕıticos, la función de Green para el laplaciano en el toro y la
ecuación de Liouville.

En el tercer caṕıtulo construimos soluciones para la ecuación de campo medio. A través de
una reducción de Lyapunov-Schmidt aseguramos la existencia de una familia de soluciones que
se concentran en puntos distintos del dominio, los cuales son caracterizados por un funcional en
dimensión finita. En particular, recuperamos un resultado de Chen y Lin. Además, deducimos
el mismo resultado bajo una condición de punto cŕıtico más débil.

En el cuarto caṕıtulo realizamos una construcción análoga para una ecuación de tipo Liouville
con una fuente singular. Bajo la condición que el peso de la fuente sea suficientemente grande
aseguramos la existencia de una familia de soluciones que se concentran en un número de puntos
del dominio, menor estricto que el peso de la fuente más uno. Estos puntos resultan ser distintos
entre śı y distintos del punto donde está ubicada la fuente.
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Outline

This dissertation is organized as follows

Chapter 1: In first chapter, we present the self-dual Chern-Simons-Higgs vortex equation on
a flat two-torus. We mention some known results. Also, we show its relation with the mean field
equation in the existence of non-topological type solutions. Motivated by this fact, we mention our
results for mean field equation and compare with some previous results. A result for a Liouville
type equation on the flat two-torus with a singular source is present at the end of this chapter.
For a more complete description, we refer the reader to corresponding chapters.

Chapter 2: This chapter is concerning to some topics, which will be useful in the sequel
chapters. We present the notions of critical value, the Green’s function and the Liouville equation.

Chapter 3: Here, we study the mean field equation on a flat two-torus with periodic boundary
conditions. By a “Lyapunov-Schmidt” reduction we have re-obtained the existence of blowing up
solutions due to C.-C. Chen and C.-S. Lin. Moreover, under weaker non-degeneracy conditions
used by Chen and Lin, we are able to assure the existence of blowing up solutions. The blow
up points are characterized as critical points, satisfying some stability condition, of a finite-
dimensional functional. The results of this chapter were obtained in collaboration with Dr.
Pierpaolo Esposito at University of Rome III, in Rome, and Dr. Manuel del Pino at the University
of Chile, in Santiago, and are in progress.

Chapter 4: This chapter deals with an analogous construction for a Lioville type equation
with singular source. The assumption that the weight of the source is sufficiently large, allows
us the chance to conclude the existence of blowing up solutions with exactly m points of the
domain, different one from each other and from the source. The m should be less than the weight
plus one. These results, which are the most relevant part of this dissertation, were obtained in
collaboration with Dr. Manuel del Pino at the University of Chile, in Santiago, and are contained
in the research paper Singular Limits for Liouville-type equations on the flat torus, submitted for
publication in Calculus of Variation and Partial Differential Equations.
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Chapter 1

Introduction

In recent years the Chern-Simons vortex theory has been extensively studied for its possible
application to the physics of high critical temperature superconductivity (see Dunne [34] and
references therein). In the study of this theory, some problems can be proposed in terms of
elliptic partial differential equations with exponential nonlinearity. Sometimes called Liouville
type equation after [52]. Particularly, the self-dual Chern-Simons-Higgs vortex equation on a flat
2-torus Ω can be written as follows{

−∆u = 1
ε2
eu(1− eu)− 4π

∑ℓ
j=1 njδpj , in Ω,

u doubly periodic on ∂Ω,
(1.0.1)

where ε > 0, α, β ∈ C \ {0}, Im(β/α) > 0,

Ω = {z = sα+ tβ ∈ C | 0 < s, t < 1},

δp denote a Dirac mass in p, pj ∈ Ω, nj ∈ IN, j = 1, . . . , ℓ and pj ̸= pk if j ̸= k. This problem
was proposed in [45, 46] in an attempt to explain superconductivity of type 2. Here, 2ε > 0 is
the Chern-Simons parameter and the points pj , j = 1, . . . , ℓ are called vortices.

Observe that taking u = u0 + v, (1.0.1) is equivalent to{
−∆v = 1

ε2
eu0+v(1− eu0+v)− 4πN

|Ω| , in Ω,

u doubly periodic on ∂Ω,
(1.0.2)

where u0 is the unique function satisfying
−∆u0 =

4πN
|Ω| − 4π

∑ℓ
j=1 njδpj , in Ω,

u0 doubly periodic on ∂Ω,∫
Ω u0 = 0∑ℓ

j=1 nj = N and |Ω| is the Lebesgue measure of Ω. Note that if v is a solution of (1.0.2), then,
by integration over Ω, we obtain ∫

Ω
eu0+v(1− eu0+v) = 4πNε2. (1.0.3)

Also, we have ∫
Ω

(
eu0+v − 1

2

)2

=
|Ω|
4

− 4πNε2.

1



CHAPTER 1. INTRODUCTION

Thus, a necessary condition for (1.0.2) to admit a solution is that |Ω| > 16πNε2. Concerning the
asymptotic behavior of the solutions of (1.0.2) (for ε > 0 small), we see that by the condition
(1.0.3), we are lead to expect two classes of solutions. Namely, those solutions vε satisfying:

eu0+vε → 1 a.e. in Ω, as ε→ 0 (1.0.4)

which, we are called of topological-type ; and those satisfying:

eu0+vε → 0 a.e. in Ω, as ε→ 0 (1.0.5)

called of non-topological-type.

Existence results have been shown in [6, 65] for an arbitrary number of prescribed vortices. It
is well-known [6] that there exists a constant εc > 0 satisfying |Ω| ≥ 16πNε2c , such that if ε > εc
then (1.0.2) has no solution, while if 0 < ε ≤ εc, there are at least two solutions of (1.0.2). One of
which is the maximal solution, see [6], and the other one can be obtained through the min-max
variational method, see [65]. In fact, (1.0.2) admits a variational structure, in the sense that weak
solutions for (1.0.2) are the critical points of the following energy functional

Jε(u) =
1

2

∫
Ω
|∇u|2 + 1

2ε2

∫
Ω

(
eu0+u − 1

)2
+

4πN

|Ω|

∫
Ω
u, u ∈ H(Ω), (1.0.6)

where
H(Ω) = {u ∈ H1

loc(IR
2) | u is doubly periodic with periodic cell domain Ω}.

Thus, the maximal solution is a local minimum for Jε in H(Ω). Furthermore, as ε → 0, the
maximal solution tends to 0 uniformly in any compact subset of Ω \ {p1, . . . , pℓ}. Hence, the
maximal solution is of topological-type. But the second solution has a different asymptotic
behavior. For N ≥ 3, it is proved in [22] that as ε → 0, the mountain pass solution blows up at
a point q ̸= pj for any j = 1, . . . , ℓ. For N = 1, Tarantello showed in [65] that the mountain pass
solution does not blow up, while in the case N = 2, whether the mountain pass solution blows
up or not depends on whether a minimization problem has no minimizer. Indeed, define

I(u) =
1

2

∫
Ω
|∇u|2 − 8π log

(∫
Ω
eu0+u

)
, (1.0.7)

and

E =

{
u ∈ H(Ω) :

∫
Ω
u = 0

}
.

The existence of bubbling solution for{
−∆v = 1

ε2
eu0+v(1− eu0+v)− 8π

|Ω| , in Ω,

v doubly periodic on ∂Ω,
(1.0.8)

namely, equation (1.0.2) with N = 2, is related to the following minimization problem

inf{I(u) : u ∈ E}. (1.0.9)

Nolasco and Tarantello [60] proved the following result:

2



CHAPTER 1. INTRODUCTION

Theorem 1.0.1. There exists an ε0 > 0 (32πε20 < |Ω|) such that for every 0 < ε < ε0 problem
(1.0.8) admits a solution

vε = wε + cε, with

∫
Ω
wε = 0

for some constant cε satisfying cε → −∞ as ε→ 0. And up to subsequence, one of the following
holds

(a) if (1.0.9) is achieved, then wε → w in Cq(Ω) for any q ≥ 0 as ε→ 0, and w is a minimizer;

(b) if (1.0.9) is not achieved, then there exists a p0 ∈ Ω, satisfying u0(p0) = maxΩ u0 and

eu0+wε∫
Ω e

u0+wε
⇀ δp0 ,

in sense of measure as ε→ 0.

Also, there are several results concerning to problem (1.0.2) in [22, 24, 55, 56]. In [9, 10,
44, 61, 62], many results are shown in the existence of planar Chern-Simons vortices which is
the equation (1.0.1) in the whole plane with an appropriate decay behavior at infinity instead of
doubly periodic conditions.

The mean field equation related to (1.0.9) is

−∆u = λ

(
eu0+v∫
Ω e

u0+v
− 1

|Ω|

)
, in Ω. (1.0.10)

Thus, if (1.0.9) is achieved, then wε converges to a solution w of (1.0.10) with λ = 8π. In general,
namely for any N , equation (1.0.2) is related with the mean field equation as we will show next.
If v is a solution of (1.0.2) then writing v = w + c, where∫

Ω
w = 0 and c =

1

|Ω|

∫
Ω
v,

we get the following identity

e2c
∫
Ω
e2(u0+w) − ec

∫
Ω
eu0+w + 4πNε2 = 0.

Hence, necessarily, (∫
Ω
eu0+w

)2

− 16πNε2
∫
Ω
e2(u0+w) ≥ 0 (1.0.11)

and

ec =

∫
Ω e

u0+w ±
√(∫

Ω e
u0+w

)2 − 16πNε2
∫
Ω e

2(u0+w)

2
∫
Ω e

2(u0+w)
. (1.0.12)

The two possible choice of “plus” or minus sign in (1.0.12) is another indication for multiple
existence for (1.0.2). In [65], the topological-type solutions of (1.0.2) are characterized and satisfy
(1.0.12) with the “plus” sing. On the other hand, in order to find non-topological-type solutions
of (1.0.2), we should impose that (1.0.12) holds with the “minus” sign. Thus, denote c−(w) the
choice of (1.0.12) with the minus sign and observe that

ec−(w) =
8πNε2∫

Ω e
u0+w

(
1 +

√
1− 16πNε2

∫
Ω e2(u0+w)

(
∫
Ω eu0+w)

2

) .

3



CHAPTER 1. INTRODUCTION

Hence, it holds that for any constant α ∈ IR

ec−(w+α) = e−αec−(w).

Since ∆v = ∆w and replacing ec−(w) in the equation (1.0.2), we will find non-topological type
solutions of (1.0.2) if we are able to solve the following problem

−∆w = 1
ε2
eu0+w+c−(w)(1− eu0+w+c−(w))− 4πN

|Ω| , in Ω,

w doubly periodic on ∂Ω,∫
Ωw = 0.

Note that we have

1

ε2
eu0+w+c−(w)(1− eu0+w+c−(w)) =

8πN eu0+w∫
Ω e

u0+w

(
1 +

√
1− 16πNε2

∫
Ω k2e2(u0+w)

(
∫
Ω eu0+w)

2

)

×

1− 8πN ε2 eu0+w∫
Ω e

u0+w

(
1 +

√
1− 16πNε2

∫
Ω k2e2(u0+w)

(
∫
Ω eu0+w)

2

)
 .

Whence, as ε→ 0, one naturally ends up with the mean field equation
−∆w = 4πN eu0+w∫

Ω eu0+w − 4πN
|Ω| , in Ω,

w doubly periodic on ∂Ω,∫
Ωw = 0.

Namely, equation (1.0.10) with λ = 4πN . Let us observe that we could consider that eu0 as a
function k, with k ≥ 0.

Motivated by the existence of non-topological solutions to problem (1.0.2), we have studied
two related elliptic partial differential equations with exponential nonlinearity. First, we have
addressed existence issues for mean field equations on a flat two-torus, and we believe that this
approach give us a way to carry out the existence of non-topological solutions of (1.0.2). On the
other hand, due to the presence of exponential nonlinearity and singular sources, we have studied
a Liouville type equation on the torus involving a singular source.

Second chapter is devoted to introduce some elements which will be useful in the sequel
chapters. These are the notions of critical value, which allow us to assure the existence of
solutions to considered problems. They apply to a functional which involve the Green’s function
which is also considered in this chapter. Due to the presence of exponential non-linearities, we
will review the Liouville equation, showing the main tools in the construction of approximations
of the solutions.

Third chapter is concerning to the problem

−∆u = λ

(
k eu∫
Ω k e

u
− 1

|Ω|

)
, (1.0.13)

in a flat two-torus with periodic boundary conditions, where λ > 0, k is a C3 non-negative, not
identically zero doubly periodic function and |Ω| is the measure of Ω. By a “Lyapunov-Schmidt”

4



CHAPTER 1. INTRODUCTION

reduction we have re-obtained the existence of blowing up solutions due to C.-C. Chen and C.-
S. Lin [18]. Moreover, under weaker non-degeneracy conditions of [18], we are able to assure
the existence of blowing up solutions. The blow up points are characterized as critical points,
satisfying some stability condition, of a finite-dimensional functional φm, involving the function
k and the Green’s function of −∆ with respect to doubly periodic conditions on ∂Ω. In fact,
taking ξ = (ξ1, . . . , ξm) we have that

φm(ξ) = −2
m∑
j=1

log k(ξj)−
∑
l ̸=j

G(ξl, ξj).

and G = G(x, y) satisfy 
−∆xG(·, y) = 8πδy − 8π

|Ω| , in Ω,

G(·, y) is doubly periodic on ∂Ω,∫
ΩG(x, y) dx = 0.

where δp denote a Dirac mass in p ∈ Ω. Define the function H by

G(x, y) = −4 log |x− y|+H(x, y).

Let us observe that H(x, x) is constant for all x ∈ Ω, when Ω is a flat two-torus. An admissibility
condition in terms of k, the Green’s function G and its regular part H should be satisfied in an
appropriate region containing the critical points. That is,

V (ξ) = 4π
m∑
j=1

∆ρj(ξj) ̸= 0, (1.0.14)

for all ξ = (ξ1, . . . , ξm) ∈ D, where D ⊂ Ωm contains the critical points and the stability condition
take place, and where

ρj(x) := k(x) exp

(
H(x, ξj) +

∑
l ̸=j

G(x, ξl)

)
. (1.0.15)

Our approach allows us to know when either λ → 8πm+ or λ → 8πm−. Indeed, it should be
satisfied sgn(λ − 8πm) = sgnV (ξ) for all ξ ∈ D. Stable critical points and non-trivial critical
values of φm give us the stability conditions on critical points enough to conclude the results.
The second one allows us to considered the case k ≡ 1. The solutions are constructed using
a family of solutions of the Liouville equation in IR2, suitable scaled, translated and projected
in order to have the boundary conditions. Solutions are found as a small perturbation of these
initial approximation. A linearization procedure leads to a finite dimensional reduction, where
the reduced problem corresponds to that of adjusting variationally the location of the concentra-
tion points and the high of the bubbles. Similarly to [27], we identify an extra element of the
approximate kernel, which introduces another parameter to be adjusted in the problem, related
to the high of the bubbles. An important element in the reduction procedure is the invertibility
of the linearized operator in suitable L∞-weighted spaces. We remark that in case of the choice
k = eu0 , the admissibility condition is not satisfy when N = 2m. An higher order expansion is
then needed in the study of existence of solutions to problem (1.0.10), which blow up at points
outside of the set {p1, . . . , pℓ}. We conjecture that a similar procedure could be used to address
the existence of non-topological solutions to problem (1.0.2).

5



CHAPTER 1. INTRODUCTION

The fourth chapter is devoted to the Liouville equation on the torus with a singular source,
that is 

−∆u = ε2eu − 1
|Ω|
∫
Ω ε

2eu + 4πN
|Ω| − 4πNδp, in Ω,

u doubly periodic on ∂Ω,∫
Ω u = 0,

(1.0.16)

where p ∈ Ω and N > 0. We stress that in some sense, problem (1.0.16) is similar to (1.0.2), due
to the presence of exponential nonlinearity and the singular source. The assumption m < N +1,
m ∈ IN on the weight of the source, allows us the chance to conclude the existence of blowing
up solutions with exactly m points of Ω, different one from each other and from p. Observe that
(1.0.16) is equivalent to

−∆u = ε2k(x)eu − 1
|Ω|
∫
Ω ε

2k(z)eu(z) dz, in Ω,

u doubly periodic on ∂Ω,∫
Ω u = 0

(1.0.17)

where k = exp(−N
2 G(·, p)), so that k is positive everywhere except at x = p and k(x) ∼ |x−p|2N ,

as x → p. By a “Lyapunov-Schmidt” reduction we have found conditions under which there
exists a family of solutions to (1.0.17), {uε}ε such that

ε2keuε ⇀ 8π
m∑
i=1

δqi as ε→ 0 in measure sense.

These conditions are satisfied for the problem (1.0.16) whenever 1 ≤ m < N + 1, yielding thus
the result. In particular, if k ∈ C2(Ω̄) and infΩ k > 0 then such a family of solutions does
exist for any m ≥ 1. Note that infΩ exp(−N

2 G(·, p)) = 0. Similarly, as above in the problem
(1.0.13), the location of points qi, i = 1, . . . ,m is characterized as a critical point of a functional
φm. The notion of non-trivial critical value gives us the chance to get the existence of blowing
up solutions of problem (1.0.16), where the concentration points are different from p. This fact
is analogous to the corresponding version of the Liouville equation on bounded domains with
Dirichlet boundary conditions shown in [31]. The solutions are constructed using a family of
solutions of the Liouville equation in IR2, suitable scaled and projected to make it up to a good
order for the boundary conditions. Solutions are found as a small additive perturbation of these
initial approximation. A linearization procedure leads to a finite dimensional reduction, where the
reduced problem corresponds to that of adjusting variationally the location of the concentration
point. An important element in the reduction procedure is the bounded invertibility of the
linearized operator in suitable L∞-weighted spaces. We stress that here we only need to adjust
the location of blow up points.
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Chapter 2

Preliminaries

In this chapter, we give some definitions and show some topics which we shall use in the
following chapters. For instance, we present the notions of critical value, the Green’s function
and the Liouville equation.

2.1 Critical values

In this section we will see two different notions of critical values. These are stable critical
value and non-trivial critical value.

Definition 2.1.1. Let S, ∂Q and Q be compact subsets of a domain D. We will say that S links
Q via ∂Q by homotopy in D if ∂Q ⊂ Q, S ∩ ∂Q = ∅ and γ(1, Q) ∩ S ̸= ∅ for any γ ∈ Γ, where

Γ := {γ ∈ C([0, 1]×Q,D) | γ(0, ·) = IdQ, γ(t, ·) = Id∂Q∀t ∈ [0, 1]}.

Now, let us recall the following notion of stability of critical values introduced in [43] and used
also in [37]. Let F : D → IR be a C1-function. We say that:

Definition 2.1.2. c is a stable critical value of F in D, if there exist compact subsets S, ∂Q and
Q of D such that S links Q via ∂Q by homotopy in D,

max
∂Q

F < min
S
F

and the set {x ∈ D | c− ε ≤ F (x) ≤ c+ ε} is complete for some ε > 0, where

c := inf
γ∈Γ

max
x∈Q

F (γ(1, x)).

An important consequence is that if C is a stable critical value of F then any C1 small
perturbation of F has a critical value.

On the other hand, we also consider the role of non-trivial critical values of a functional φm,
in existence of blowing-up solutions of considered problems in this thesis. Let Ωm denote the
cross product of m copies of Ω and let Ω̃ ⊂ Ω̄ set we always assume non-empty. Let φ : D → IR
be a C1-function.

Definition 2.1.3. Let D be an open set in Ωm compactly contained in Ω̃m with smooth boundary.
We will say that φm links in D at critical level C relative to B and B0 if B and B0 are closed
subsets of D̄ with B connected and B0 ⊂ B such that

sup
y∈B0

φm(y) < C ≡ inf
Φ∈Γ

sup
y∈B

φm(Φ(y)) , (2.1.1)
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2.2. GREEN’S FUNCTION ON THE TORUS

where Ψ(1, ·) = Φ, Ψ ∈ Γ

Γ = {Ψ ∈ C([0, 1]×B,D) | Ψ(0, ·) = IdB, Ψ(t, ·)|B0 = IdB0 for all t ∈ [0, 1]}

and for all y ∈ ∂D such that φm(y) = C, there exists a vector τy tangent to ∂D at y such that

∇φm(y) · τy ̸= 0 . (2.1.2)

Furthermore, we call C a non-trivial critical level of φm in D.

Note that under these conditions a critical point ȳ ∈ D of φm with φm(ȳ) = C exists, as
a standard deformation argument involving the negative gradient flow of φm shows. Condition
(2.1.1) is a general way of describing a change of topology in the level sets {φm ≤ c} in D taking
place at c = C, while (2.1.2) prevents intersection of the level set C with the boundary. It is easy
to check that the above conditions hold if

inf
x∈D

φm(x) < inf
x∈∂D

φm(x), or sup
x∈D

φm(x) > sup
x∈∂D

φm(x) ,

namely the case of (possibly degenerate) local minimum or maximum points of φm. The level C
may be taken in these cases respectively as that of the minimum and the maximum of φm in D.
These hold also if φm is C1-close to a function with a non-degenerate critical point in D.

This local notion of nontrivial critical value in (2.1.1)-(2.1.2) was introduced in [28] in the
analysis of concentration phenomena in nonlinear Schrödinger equations. And it was also used
in [31, 38].

2.2 Green’s function on the Torus

Given z ∈ C it is possible define a function, say G∗, which allows us to show an explicit formula
for the Green’s function. This function is the well-known Nerón’s function in the theory of elliptic
curves [49]. We denote e(z) = e2πiz. See [21] for a proof.

Lemma 2.2.1. Let α, β ∈ C \ {0}, Im(β/α) > 0. The function G∗ defined by

G∗(z) := Im

(
|z|2 − ᾱz2/α

2(αβ̄ − ᾱβ)
− z

2α
+

β

12α

)
− 1

2π
log

∣∣∣∣∣(1− e
( z
α

))
×

∞∏
n=1

(
1− e

(
nβ + z

α

))(
1− e

(
nβ − z

α

))∣∣∣∣∣ ,
(2.2.1)

is both α and β periodic, namely, G∗(z) = G∗(z + α) = G∗(z + β) for all z ∈ IR2 and satisfies

−∆G∗ =
∑

z∈αZ+βZ
δz −

1

|Ω|
, in IR2,

∫
Ω
G∗(x) dx = 0,

where δp is a Dirac mass at p ∈ Ω|Ω| = Im(ᾱβ) is the area of the open cell

Ω = {z = sα+ tβ ∈ C | 0 < s, t < 1}.
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2.2. GREEN’S FUNCTION ON THE TORUS

Note that G∗(z) = G∗(−z) for all z ∈ C \ (αZ + βZ). Also, we can express this function in the
following form

G∗(z) = − 1

2π
log |z|+ |z|2

4|Ω|
+H∗(z),

where H∗ is an harmonic function in (C \ (αZ + βZ)) ∪ {0}. Now, we observe that the Green’s
function satisfy G(x, y) = 8πG∗(x−y), for x, y ∈ Ω. In fact, we can consider G(·, y) : Ω̄\{y} → IR
with y ∈ Ω. Furthermore, G(x, y) = G(y, x) for all x, y ∈ Ω̄, x ̸= y and we can express G in the
following form

G(x, y) = −4 log |x− y|+H(x, y), (2.2.2)

where H(x, y) = 2π
|Ω| |x − y|2 + 8πH∗(x − y). Denote Γ the function given by Γ(z) = −4 log |z|.

Note that H satisfies 
−∆xH(·, ξ) = 8π

|Ω| , in Ω,

Γ(· − ξ) +H(·, ξ) doubly periodic on ∂Ω,∫
Ω[Γ(· − ξ) +H(·, ξ)] = 0.

(2.2.3)

and

H(x, x) ≡ −4 log
2π

|α|
+ 8π Im

β

12α
− 4 log

∣∣∣∣∣
∞∏
n=1

(
1− e

(
nβ

α

))2
∣∣∣∣∣ ,

that is to say, H(x, x) = 8πH∗(0) for all x ∈ Ω. Due to definition of H∗, the function H has a
singularity in (x, y) if x− y ∈ (αZ+ βZ) \ {0}.
Remark 2.2.1. An important fact is that for any φ ∈ C2(Ω̄) we have the following integral
representation formula

φ(x) =
1

|Ω|

∫
Ω
φ− 1

8π

∫
Ω
G(x, y)∆φ(y) dy +

1

8π

∫
∂Ω

[
G(x, y)

∂φ(y)

∂ν
− φ(y)

∂G(x, y)

∂ν

]
dσ(y)

(2.2.4)
for all x ∈ Ω.

Let us introduce the projection operator P into the doubly periodic functions with zero
average: let Pu be the unique solution of

∆Pu = ∆u− 1
|Ω|
∫
Ω∆u, in Ω,

Pu doubly periodic on ∂Ω,∫
Ω Pu = 0.

(2.2.5)

Using the Green’s function, we know that Pu has the following integral representation

Pu(x) = − 1

8π

∫
Ω
G(x, y)∆u(y) dy. (2.2.6)

This operator will be used in order to satisfy the boundary conditions in the construction of an
ansatz for solutions.
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2.3 Liouville equation

Our main goal is to study elliptic equations involving exponential nonlinearities. In order to
analyze such elliptic problems, we review the Liouville equation which provides a “basic cell” to
construct approximations of a solution in both considered problems.

To this purpose, identify IR2 with the complex plane C by means of transformation (x, y) ∈
IR2 7→ z = x+ iy ∈ C. Hence, for any holomorphic function f = f(z) in C there holds

∆ log(1 + |f(z)|2) = 4
|f ′(z)|2

(1 + |f(z)|2)2
.

Thus, if f is univalent in C, then

u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2
(2.3.1)

satisfies the equation
−∆u = eu, in IR2. (2.3.2)

In [52], it was shown that the expression (2.3.1) gives all solutions for (2.3.2). We shall restrict our
attention to the solutions of the Liouville equation with the finite energy condition eu ∈ L1(IR2),
namely, the problem {

−∆u = eu, in IR2,∫
IR2 eu < +∞

which, by the Liouville formula, are given by the family of functions

Uδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2
, (2.3.3)

where δ > 0 and ξ ∈ IR2. See [16, 25]. Besides, it follows that∫
IR2

eUδ,ξ = 8π, Uδ,ξ(x) → −∞ as |x| → +∞.

and
eUδ,ξ ⇀ 8πδξ as δ → 0, in measure sense.

Also, note that given a small number r > 0,

sup
B(ξ,r)

Uδ,ξ → +∞, as δ → 0.

Due to these all properties, we shall use functions Uδ,ξ for the construction of an approximate
solution of the problems.
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Chapter 3

Mean Field Equation on the Torus

3.1 Introduction

In this chapter we consider the problem

−∆u = λ

(
k eu∫
Ω k e

u
− 1

|Ω|

)
, (3.1.1)

in a flat two-torus Ω = {z = sα + tβ ∈ IR2 | 0 < s, t < 1}, with periodic boundary conditions
on ∂Ω, where α, β ∈ C \ {0}, Im(β/α) > 0, λ > 0, k is a C3 non-negative, not identically zero
doubly periodic function and |Ω| is the measure of Ω. This equation and its variants arises in
many different disciplines in mathematics. In the study of existence of metrics conformal to the
standard ones on Ω = S2 having a prescribed Gaussian curvature k, equation (3.1.1) appears with
λ = 8π. This is the Nirenberg problem. For a compact Riemann surface is called the Kazdan-
Warner problem. There are several results related to these problems, some of them are due to
Kazdan and Warner [47], Chang and Yang [12] and Chang, Gursky, and Yang [14]. For bounded
domains of IR2, a version of (3.1.1) arises in statistical mechanics and it is referred as a “mean
field equation”. These results are due to Caglioti, Lions, Marchioro, and Pulvirenti [7, 8] and
Kiessling [15, 48]. In our particular case, when Ω is a flat two-torus, equation (3.1.1) is related
to double vortex condensates in the relativistic Chern-Simons-Higgs model, as shown by Nolasco
and Tarantello [60]. For the mathematical theory of the relativistic Chern-Simons- Higgs model,
see [6, 9, 10, 22, 23, 24, 44, 45, 46, 55, 56, 60, 61, 62, 63, 65, 68, 69].

Observe that (3.1.1) admits a variational structure, in the sense that weak solutions for (3.1.1)
are the critical points of the following energy functional

Jλ(u) =
1

2

∫
Ω
|∇u|2 − λ log

(∫
Ω
k(x)eu

)
, u ∈ H1(Ω). (3.1.2)

For λ < 8π, Jλ is bounded from below and the infimum of Jλ can be achieved by the well-
known inequality due to Moser and Trudinger. For λ ≥ 8π the existence problem of (3.1.1) is
much harder. By variational methods, Struwe and Tarantello [63] were able to obtain nontrivial
solutions of (3.1.1) for 8π < λ < 4π2 when k ≡ 1 and Ω is the flat torus with fundamental domain
[0, 1]× [0, 1]. Also, Ding, Jost, Li, and Wang [33] proved the existence of solutions to (3.1.1) for
8π < λ < 16π when Ω is a compact Riemann surface with genus g ≥ 1. Lin [53] proved, for the
case Ω = S2 and 8π < λ < 16π, nonvanishing of the Leray-Schauder degree to equation (3.1.1),
and consequently, the existence of solutions follows for the case of genus 0.

In general case, the existence of solutions of (3.1.1) for this equation in a Riemann surface has
been addressed by C.C. Chen and C. S. Lin in [17, 18]. They completed the program initiated
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by Li [50], who proposed the problem of studying the existence of solutions of (3.1.1) by the
Leray-Schauder degree. Since the equation (3.1.1) is invariant under adding a constant we look
for a solutions in the subspace

E =

{
u ∈ H1(Ω) :

∫
Ω
u = 0

}
.

By the results of Brezis and Merle [5] and Li and Shafrir [51], it follows that for any integer m ≥ 0
and for any compact set I ⊂ (8mπ, 8(m+1)π), solutions of (3.1.1) belonging to E are uniformly
bounded for any positive C1 function k and λ ∈ I. Thus, the Leray-Schauder degree d(λ) of (3.1.1)
can be defined in the space of functions with vanishing mean value for λ ̸= 8πm. Furthermore,
d(λ) is independent of both the function k and the parameter λ whenever λ ∈ (8mπ, 8(m+1)π),
and it is known that d(λ) = 1 for λ ∈ (0, 8π). Set

d+m = lim
λ→8πm+

d(λ) and d−m = lim
λ→8πm−

d(λ).

An important fact is that the gap of d+m − d−m is due to the occurrence of blow-up solutions when
λ → 8πm, that is, there is a sequence of solutions un of (3.1.1) and un ∈ E with λ = λn such
that maxΩ un → +∞ and λn → 8πm. By a result of Li [50], un blows-up at exactly m points
{p1, . . . , pm}, namely, there is a small r > 0 such that supB(pj ,r) un → +∞. These points are
called either blowing-up points or concentration points. The location of the concentration points
are characterized as a critical point of a functional defined explicitly in terms of k and the Green’s
function G = G(x, y) of −∆ on Ω, i.e., given y ∈ Ω{

−∆xG(·, y) = 8πδy − 8π
|Ω| , in Ω,∫

ΩG(x, y) dx = 0,

where δp denote a Dirac mass in p ∈ Ω. Let us denote the regular part of the Green’s function H̃
by

G(x, y) = −4 log dist(x, y) + H̃(x, y).

Hence, the concentration points ξ = (ξ1, . . . , ξm) of a multiple blowing-up solutions are a critical
point of

φm(ξ) = −
m∑
j=1

[2 log k(ξj) + H̃(ξj , ξj)]−
∑
l ̸=j

G(ξl, ξj). (3.1.3)

Since Chen and Lin were interested in the computation of the Leray-Schauder topological degree,
they constructed all possible solutions with exactly m blow-up points and compute their Morse
index. It turns out that the gap d+m − d−m is equal to the sum of the Morse indices of all possible
blow-up solutions of (3.1.1) when λ → 8πm from the above. In the construction of blowing-up
solutions they obtained the following result. See [17, 18].

Theorem 3.1.1. Let k be a C3 positive function on Ω, where Ω is a compact Riemann surface
with |Ω| = 1. Assume that

1. the function φm is a Morse function on Ωm \ Em with N critical points, where

Em = {(x1, . . . , xm) ∈ Ωm | xi = xj for some i ̸= j};

2. the quantity

L(ξ) =
m∑
j=1

[∆(log k)(ξj) + 8πm− 2K(ξj)] k(ξj)e
H̃(ξj ,ξj)+

∑m
l=1,l̸=j G(ξj ,ξl), ξ = (ξ1, . . . , ξm)

does not vanish for any critical point of φm, where K is the Gaussian curvature of Ω.
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3.1. INTRODUCTION

Then there exists a family of solutions which blows-up at m points.

We shall restrict our attention to recover the existence result of a family of solutions which
blows-up at exactlym points when Ω is a flat two-torus, under weaker assumptions. In particular,
we will show some conditions under which there exists a family of solutions {uλ}λ which blows-up
at exactly m different points q1, . . . , qm ∈ Ω̃, in the following sense, as λ→ 8πm

λk euλ∫
Ω k e

uλ
⇀ 8π

m∑
i=1

δqi , in sense of measures in Ω̄. (3.1.4)

Here, Ω̃ = {q ∈ Ω : k(q) > 0} set we always assume non-empty. Precisely, we are interested in lift
the non-degeneracy assumption on critical points. Let us observe that K ≡ 0 when Ω is a torus.

Let us mention that under the assumption of nondegenerate critical points of the analogue
φm, Baraket and Pacard [1] prove the existence of blowing up solutions of (3.1.1) in a bounded
domain of IR2 with k ≡ 1. Also, in bounded domains of IR2 existence results were shown in
[31, 37] under an assumption of topologically nontrivial critical point.

In our approach, namely, when Ω is a flat two-torus we take

G(x, y) = 4 log
1

|x− y|
+H(x, y)

as we have studied in chapter 2 section 2.2. Let us observe that H(x, x) is constant for all x ∈ Ω,
when Ω is a flat two-torus, and H(x, x) = H̃(x, x). Thus, we consider

φm(ξ) = −2

m∑
j=1

log k(ξj)−
∑
l ̸=j

G(ξl, ξj).

An observation we make is that in any compact subset of Ω̃m, we may define, without ambiguity,

φm(x1, . . . , xm) = −∞ if dist(xi − xj , αZ+ βZ) = 0 for some i ̸= j.

Furthermore,H1(Ω) = H(Ω) withH(Ω) defined in the introduction. Denote for ξ = (ξ1, . . . , ξm) ∈
Ω̃ \ Em

V (ξ) = 4π

m∑
j=1

∆ρj(ξj), (3.1.5)

where

ρj(x) := k(x) exp

(
H(x, ξj) +

∑
l ̸=j

G(x, ξl)

)
(3.1.6)

and now

Em = {(x1, . . . , xm) ∈ Ω̄m | dist(xi − xj , αZ+ βZ) = 0 for some i ̸= j}.

We shall use notions of critical value introduced in chapter 1.

Theorem 3.1.2. Let C be a stable critical value of φm in a domain D compactly contained in
Ω̃m \ Em. If V (ξ) ̸= 0, for all ξ = (ξ1, . . . , ξm) ∈ D̄. Then, there exists a family of solutions uλ
to (3.1.1) and m different points qi ∈ Ω, i = 1, . . . ,m satisfying (3.1.4). Furthermore, φm(q) = C
and ∇φm(q) = 0.
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We remark that it holds

1. if V (ξ) > 0 then the blowing-up solutions exist for λ > 8πm, and

2. if V (ξ) < 0 then the blowing-up solutions exist for λ < 8πm.

Here, we are considering a weaker assumption at critical points of φm.

We will consider a different kind of critical value, which also lifts the nondegeneracy assump-
tions of [18] on critical points of φm. Thus, we could consider the case k ≡ 1. More precisely, we
consider the role of non-trivial critical values of φm, in existence of blowing-up solutions of (3.1.1).
In the next result we assume k ≥ 0, k ̸≡ 0, k is doubly periodic on ∂Ω and k ∈ C(Ω̄) ∩ C3(Ω̃).

Theorem 3.1.3. Let m ≥ 1 and assume that there is a domain D compactly contained in Ω̃m\Em,
where φm has a non-trivial level C. If V (ξ) ̸= 0 for all ξ ∈ D̄, then there exists a solution uλ to
(3.1.1) and m different points ξj ∈ Ω̃, i = 1, . . . ,m satisfying (3.1.4). Furthermore, φm(ξ) = C
and ∇φm(ξ) = 0.

Let us mention that the problem (3.1.1) and related ones with singular data have attracted
great attention. Several results for have been addressed in [2, 4, 66], concerning to the profile of
blowing up solutions and quantization of blow-up levels. Chen and Lin have begun in [19], the
study of mean field equation with singular data from the point of view of the topological Leray-
Schauder degree and estimates of blowing up solutions. On the other hand, existence results have
been achieved in works [31, 32, 35, 36]. In this situation, our approach does not apply directly,
since V (ξ) = 0 for all possible points ξ. An higher order expansion is then needed in the study
of existence of solutions to (3.1.1) with singular sources.

Let us consider the particular case when k ≡ 1 in Ω, namely,
−∆u = λ

(
eu∫
Ω e

u
− 1

|Ω|

)
, in Ω,

u is doubly periodic on ∂Ω∫
Ω u = 0.

(3.1.7)

We get the following result.

Theorem 3.1.4. Given any m ≥ 1 there exists a family of solution to (3.1.7) and m different
points such that uλ concentrates at those points as (3.1.4), as λ→ 8πm+.

The solutions are constructed using a family of solutions of the Liouville equation in IR2,
suitable scaled, translated and projected in order to have the boundary conditions. Usually, in
other related problems of asymptotic analysis, solutions are found as a small additive perturbation
of the initial approximation. A linearization procedure leads to a finite dimensional reduction,
where the reduced problem corresponds to that of adjusting variationally the parameters involve
in the approximation, typically the location of concentration point. In our case, we also have to
consider the high of the bubbles. Similarly to [27], we identify an extra element of the approximate
kernel of the linearized operator, which introduces another parameter to be adjusted in the
problem, related to all high of the bubbles. An important element in the reduction procedure
is the invertibility of the linearized operator in suitable L∞-weighted spaces. However, in our
problem, this is not enough. Indeed, in order to perform a precise expansion of the reduced
functional in C1 sense, we need to improve the main term in the ansatz, adding one term in the
expansion of the solution (see section 3.4). This fact is basically due to presence of the extra
parameter to be adjusted and the estimate (3.3.18).
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3.2 Approximation of the solution

In this section we will provide an approximation for the solution of problem (3.1.1) on the
torus. We will use the Green’s function as shown in chapter 2.

Consider as “basic cells” the function Uδ,ξ given by (2.3.3), with ξ ∈ Ω. We would like to
consider Uδ,ξ as the approximation of a solution around ξ. In order to satisfy the boundary
conditions, we take PUδ,ξ, where P is the projection operator introduced in (2.2.5). First, let us
find out the behavior of PUδ,ξ away from ξ and around ξ. We obtain the following characterization.

Lemma 3.2.1. Given ξ ∈ Ω, the function PUδ,ξ, where Uδ,ξ is given by (2.3.3), satisfies

PUδ,ξ(x) = Uδ,ξ(x)− log(8δ2) +H(x, ξ) + αδ,ξ +O(δ2) (3.2.1)

uniformly in C2-sense on compact subsets of Ω, where

αδ,ξ =
1

|Ω|

∫
Ω
log

(δ2 + |y − ξ|2)2

|y − ξ|4
dy.

In particular,
PUδ,ξ(x) = G(x, ξ) + αδ,ξ +O(δ2), (3.2.2)

where the term O(·) is uniform in C2-sense on compact subsets of Ω \ {ξ} and C1-sense on
compact subsets of Ω̄ \ {ξ}.

Proof: First, observe that

Uδ,ξ(x) = log(8δ2) + 4 log
1

|x− ξ|
+O(δ2) (3.2.3)

uniformly in C2-sense for x on compact subsets of Ω̄ \ {ξ}. Let us take

φ(x) = Uδ,ξ(x)− log(8δ2) +H(x, ξ) + αδ,ξ.

Then, by (2.2.3)∫
Ω
φ =

∫
Ω

[
log

1

(δ2 + |x− ξ|2)2
+H(x, ξ)

]
dx+

∫
Ω
log

(δ2 + |y − ξ|2)2

|y − ξ|4
dy = 0

since
∫
ΩG(·, ξ) = 0. Now, ∆φ = ∆Uδ,ξ +

8π
|Ω| . Hence, we get∫

Ω
G(x, y)∆φ(y) dy =

∫
Ω
G(x, y)∆Uδ,ξ(y) dy.

Thus, by the integral representation formula (2.2.4) we deduce that

φ(x) = PUδ,ξ(x) +
1

8π

∫
∂Ω

[
G(x, y)

∂φ(y)

∂ν
− φ(y)

∂G(x, y)

∂ν

]
dσ(y)

for all x ∈ Ω. On the other hand, we have∫
∂Ω
G(x, y)

∂φ(y)

∂ν
dσ(y) = −

∫
∂Ω
G(x, y)

∂

∂ν

[
log

(δ2 + |y − ξ|2)2

|y − ξ|4

]
dσ(y),
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since G(x, ·) and G(·, ξ) are doubly periodic functions on ∂Ω and∫
∂Ω
G(x, y)

∂G

∂ν
(y, ξ) dσ(y) = 0.

Similarly, we get∫
∂Ω
φ(y)

∂G(x, y)

∂ν
dσ(y) = −

∫
∂Ω

log

[
(δ2 + |y − ξ|2)2

|y − ξ|4

]
∂G(x, y)

∂ν
dσ(y).

Therefore,

PUδ,ξ(x) = Uδ,ξ(x)− log(8δ2) +H(x, ξ) +
1

|Ω|

∫
Ω
log

(δ2 + |y − ξ|2)2

|y − ξ|4
dy

+
1

8π

∫
∂Ω

[
G(x, y)

∂

∂ν

{
log

(δ2 + |y − ξ|2)2

|y − ξ|4

}
− log

{
(δ2 + |y − ξ|2)2

|y − ξ|4

}
∂G(x, y)

∂ν

]
dσ(y).

Note that

log
(δ2 + |x− ξ|2)2

|x− ξ|4
=

2δ2

|x− ξ|2
= O(δ2)

uniformly for x over compact subsets of Ω̄ \ {ξ} and

∆(PUδ,ξ − φ) =
1

|Ω|

∫
Ω
eUδ,ξ − 8π

|Ω|
= O(δ2).

Thus, we conclude (3.2.1) in C2-sense on compact subset of Ω. From (3.2.1), (3.2.3) and

∆(PUδ,ξ −G(·, ξ)− αδ,ξ) = −eUδ,ξ +
1

|Ω|

∫
Ω
eUδ,ξ − 8π

|Ω|
= O(δ2) (3.2.4)

uniformly on compact subset of Ω \ {ξ}, we get (3.2.2) in C2- sense uniformly on compact subset
of Ω\{ξ}. Finally, if we consider a point x ∈ ∂Ω then we can extend the function PUδ,ξ to B(x, r)
periodically, for r > 0 small and thus (3.2.4) is satisfied in weak sense. By regularity theory, we
conclude that (3.2.2) is satisfied in C1-sense on compact subset of Ω̄ \ {ξ}. This complete the
proof.

Observe that

αδ,ξ = − 4π

|Ω|
δ2 log δ +O(δ2).

In fact, we decompose∫
Ω
log

(δ2 + |y − ξ|2)2

|y − ξ|4
dy =

∫
B(ξ,r)

log
(δ2 + |y − ξ|2)2

|y − ξ|4
dy +O(δ2)

= −4πδ2 log δ +O(δ2).

Given m a positive integer let us consider ξj ∈ Ω, j = 1, . . . ,m distinct points with k(ξj) > 0
and δj > 0, j = 1, . . . ,m. In order to have a good approximation we will assume that

δ2j = δ2ρj(ξj), ∀ j = 1, . . . ,m, (3.2.5)

16



3.2. APPROXIMATION OF THE SOLUTION

and
∃C > 1 : |λ− 8πm| ≤ Cδ2| log δ|. (3.2.6)

where δ > 0 and ρj is given by (3.1.6). Denote Uj := Uδj ,ξj and Wj = PUj , j = 1, . . . ,m, where
Uδ,ξ are given by (2.3.3) and P is the projection operator defined by (2.2.5). Thus, our first
approximation is

W (x) =W1(x) + · · ·+Wm(x), x ∈ Ω. (3.2.7)

We look for a solution u of (3.1.1) of the form u = W + ϕ. Now, in terms of ϕ, the problem
(3.1.1) becomes ϕ ∈ E such that

L(ϕ) = −[R+N(ϕ)], in Ω, (3.2.8)

where

L(ϕ) = ∆ϕ+ λ
keW∫
Ω ke

W

(
ϕ−

∫
Ω ke

Wϕ∫
Ω ke

W

)
(3.2.9)

R = ∆W + λ

(
keW∫
Ω ke

W
− 1

|Ω|

)
, (3.2.10)

and

N(ϕ) = λ

(
keW+ϕ∫
Ω ke

W+ϕ
− keWϕ∫

Ω ke
W

+
keW

∫
Ω ke

Wϕ(∫
Ω ke

W
)2 − keW∫

Ω ke
W

)
. (3.2.11)

Let us observe that ∫
Ω
R =

∫
Ω
L(ϕ) =

∫
Ω
N(ϕ) = 0.

Furthermore, in order to get the invertibility of the linear operator L in suitable function spaces,
let us consider the weighted norm

∥h∥∗ = sup
x∈Ω

 m∑
j=1

δσj

(δ2j + |x− ξj |2)1+σ/2

−1

|h(x)|, (3.2.12)

for any h ∈ L∞(Ω) and where 0 < σ < 1 is a small fixed constant. Let us see how well W solves
the above problem in ∥ · ∥∗.

Lemma 3.2.2. Assume (3.2.5) and (3.2.6). There exists a constant C > 0 independent of δ such
that

∥R∥∗ ≤ Cδ (3.2.13)

and also we have that
∥R−R0∥∗ ≤ Cδ2−σ| log δ|, (3.2.14)

where

R0(x) =

m∑
j=1

eUj(x)
∇ρj(ξj)
ρj(ξj)

· (x− ξj). (3.2.15)

Proof: First, from Lemma 3.2.1 we note that for any j ∈ {1, . . . ,m}

Wj(x) = Uj(x)− log(8δ2j ) +H(x, ξj) +O(δ2| log δ|)

uniformly for x on compact subsets of Ω and

Wj(x) = G(x, ξj) +O(δ2| log δ|)

17



3.2. APPROXIMATION OF THE SOLUTION

uniformly for x on compact subsets of Ω̄ \ {ξj}. Hence, for r > 0 small fixed we have that∫
Ω
keW =

m∑
j=1

∫
B(ξj ,r)

ke
∑m

l=1 Wl +O(1)

=
m∑
j=1

1

8δ2j

∫
B(ξj ,r)

keUj+H(·,ξj)+
∑

l̸=j G(·,ξl)+O(δ2| log δ|) +O(1)

=
m∑
j=1

1

8δ2j

∫
B(ξj ,r)

eUjρj(1 +O(δ2| log δ|)) +O(1)

=

m∑
j=1

1

δ2j
[πρj(ξj) +O(δ2| log δ|)] +O(1)

=
πm

δ2
+O(| log δ|),

since∫
B(ξj ,r)

δ2j ρj(x)

(δ2j + |x− ξj |2)2
dx =

∫
B(0, r

δj
)

1

(1 + |y|2)2
ρj(ξj + δjy) dy

=

∫
B(0, r

δj
)

1

(1 + |y|2)2

[
ρj(ξj) +∇ρj(ξj) · δjy +O(δ2j |y|2)

]
dy

= πρj(ξj) +O(δ2| log δ|)

Thus, we get that

R =
m∑
j=1

[
∆Uj −

1

|Ω|

∫
Ω
∆Uj

]
+ λ

keW∫
Ω ke

W
− λ

|Ω|

= −
m∑
j=1

eUj + λ
k exp

(∑m
j=1Wj

)
πmδ−2 +O(| log δ|)

+
1

|Ω|

m∑
j=1

∫
Ω
eUj − λ

|Ω|
.

Let us observe that if |x− ξj | > r then eUj(x) = O(δ2) and∫
Ω
eUj = 8π +O(δ2).

Hence, if |x − ξj | > r for all j = 1, . . . ,m then by Lemma 3.2.1 and (3.2.5)-(3.2.6) we get that
W (x) = O(1) and

R(x) = O(δ2) +
8πm− λ

|Ω|
= O(δ2| log δ|).

Now, if |x− ξj | < r for some j ∈ {1, . . . ,m} then by Lemma 3.2.1 and (3.2.5)-(3.2.6)

R(x) = − eUj(x) + λ eUj(x)
k(x)e− log(8δ2j )+H(x,ξj)+

∑
l̸=j G(x,ξl)+O(δ2| log δ|)

πmδ−2 +O(| log δ|)
+

8πm− λ

|Ω|
+O(δ2)

= eUj(x)

[
−1 +

λρj(x)[1 +O(δ2| log δ|)]
8πmρj(ξj) +O(δ2| log δ|)

]
+O(δ2| log δ|)

= eUj(x)

[
ρj(x)− ρj(ξj)

ρj(ξj)
+

(λ− 8πm)ρj(x)

8πmρj(ξj)
+O(δ2| log δ|)

]
+O(δ2| log δ|)

= eUj(x)

[
∇ρj(ξj)
ρj(ξj)

· (x− ξj) +O(|x− ξj |2) +O(δ2| log δ|)
]
+O(δ2| log δ|).
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3.3. THE LINEAR OPERATOR

Finally, from the definition of ∥ · ∥∗ we conclude (3.2.13) and (3.2.14).

Let us stress that by doubly periodic conditions on ∂Ω all points ξj are interior and thus,
without loss of generality we shall always assume ξj ∈ Ω. Furthermore, a posteriori we shall give
an explicit relation between λ and δ, in order to find a solution to (3.2.8) (see proof of Theorem
3.1.2).

3.3 The linear operator

In this section, we will prove the invertibility of the linear operator L, by using the L∞-norm
introduce in (3.2.12), under suitable orthogonal conditions.

Let us consider the following linear operator in IR2

L0(ϕ) = ∆ϕ+
8

(1 + |y|2)2
ϕ.

It is well-known that the bounded solutions of L0(ϕ) = 0 in IR2 are precisely linear combinations
of

Yi(y) =
4yi

1 + |y|2
, i = 1, 2, and Y0(y) = 2

1− |y|2

1 + |y|2
.

See [1] for a proof. On the other hand, let us observe that formally the operator L, scaled and
centered at ξj/δj by setting y = (x− ξj)/δj , approaches

L̃0(ϕ) = ∆ϕ+
8

(1 + |y|2)2

(
ϕ− 1

πm

∫
IR2

ϕ(z)

(1 + |z|2)2
dz

)
.

It turns out that the bounded solutions of L̃0(ϕ) = 0 in IR2 are linear combinations of Yj ,
j = 0, 1, 2 and the constant functions. This exhibits a difference in comparison with some results
related to linearized operators in Liouville type equations with Dirichlet or Neumann boundary
conditions in a domain, [31, 37, 38, 40], where the approximate kernel is span by the translations
Yj , j = 1, 2 and dilations Y0, and the invertibility is obtained avoiding the dilations Y0. Here, we
have the constants functions in the approximate kernel and concerning to the invertibility of the
operator L it is not possible to avoid the dilations.

Let us introduce the functions

Zij(x) = Yi

(
x− ξj
δj

)
, i = 0, 1, 2, j = 1, . . . ,m

for x ∈ Ω. Consider the linear problem of finding a function ϕ ∈ E ∩W 2,2(Ω) and scalars cij ,
i = 1, 2, j = 1, . . . ,m and c0 such that

L(ϕ) = h+
∑2

i=1

∑m
j=1 cij∆PZij + c0∆PZ, in Ω,∫

Ω∆PZijϕ = 0, for all i = 1, 2, j = 1, . . . ,m,∫
Ω ϕ∆PZ = 0

(3.3.1)

where h ∈ C0,α(Ω),
∫
Ω h = 0, ∥h∥∗ < +∞, Z =

∑m
l=1 Z0l and PZij , i = 1, 2, j = 1, . . . ,m,

PZ =
∑m

l=1 PZ0l are the projection of Zij and Z respectively, namely,
∆PZij = ∆Zij − 1

|Ω|
∫
Ω∆Zij , in Ω,

PZij doubly periodic on ∂Ω,∫
Ω PZij = 0.

(3.3.2)
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3.3. THE LINEAR OPERATOR

Let us stress that the orthogonality conditions in the above problem are taken with respect to
the elements of the approximate kernel due to translations and an extra element which involves
dilations. Similar situation appears also in [27].

First, we will prove an a priori estimate for the problem (3.3.1) with cij = 0 for all i = 1, 2,
j = 1, . . . ,m and c0 = 0. Specifically, we consider the problem

L(ϕ) = h, in Ω,∫
Ω∆PZijϕ = 0, for all i = 1, 2, j = 1, . . . ,m,∫
Ω ϕ∆PZ = 0

(3.3.3)

Proposition 3.3.1. Let d > 0 be fixed. There exist positive numbers δ0 and C, such that for any
points ξj ∈ Ω, j = 1, . . . ,m, which satisfy

dist(ξl − ξj , αZ+ βZ) ≥ d for l ̸= j , (3.3.4)

δj > 0 satisfying (3.2.5) and (3.2.6), and any solution ϕ to problem (3.3.3), one has

∥ϕ∥∞ ≤ C

(
log

1

δ

)
∥h∥∗ for all δ < δ0. (3.3.5)

Proof: The proof of estimate (3.3.5) consists of some steps. Let us assume the opposite,
namely, the existence of sequences δn → 0, points ξnj ∈ Ω, δnj = δnρj(ξ

n
j ), functions hn with

| log δn| ∥hn∥∗ = o(1) as n→ +∞, ϕn ∈ E with ∥ϕn∥∞ = 1 and
L(ϕn) = hn, in Ω,∫
Ω ϕn∆PZij = 0, for all i = 1, 2, j = 1, . . . ,m,∫
Ω ϕn∆PZ = 0.

Without loss of generality, we assume that ξnj → ξ∗j as n→ +∞ and ξ∗j ∈ Ω for all j = 1, . . . ,m,
by the doubly periodic boundary conditions. Also, observe that there is a constant C0 > 0 such
that C−1

0 ≤ ρj(ξ
n
j ) ≤ C0, by using (3.3.4). Let us denote

ψn := ϕn −
∫
Ω ke

Wϕn∫
Ω ke

W
and K = λ

keW∫
Ω ke

W
.

Then ψn satisfies 
∆ψn +Kψn = hn, in Ω,∫
Ω ψn∆PZij = 0, for all i = 1, 2, j = 1, . . . ,m,∫
Ω ψn∆PZ = 0.

Claim 3.3.1. There is a constant σ0 > 0 such that ∥ψn∥∞ > σ0 for all n ≥ 1 up to subsequences.
Furthermore, ψn converges to a constant c̃ as n → +∞ in C2,α sense over compact subsets of
Ω \ {ξ∗1 , . . . , ξ∗m}.

Proof: Assume that ∥ψn∥∞ → 0 as n→ +∞. Hence, we have that∥∥∥∥∥ϕn −
∫
Ω ke

Wϕn∫
Ω ke

W

∥∥∥∥∥
∞

→ 0 as n→ +∞.
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3.3. THE LINEAR OPERATOR

Since ∣∣∣∣∣
∫
Ω ke

Wϕn∫
Ω ke

W

∣∣∣∣∣ ≤ ∥ϕn∥∞ ≤ 1,

we conclude that ϕn converges uniformly to a constant in Ω. But
∫
Ω ϕn = 0 pass to the limit and

we get a contradiction, since ∥ϕn∥∞ = 1 and ∥ϕn∥∞ → 0 as n→ +∞. On the other hand, given
r > 0, we observe that

∆ψn = O([δn]2) + o(1), uniformly for x ∈ Ω \ ∪m
j=1B(ξnj , r)

since if |x− ξnj | > r for all j = 1, . . . ,m then we have that

K(x) =
λk(x) exp(

∑m
j=1G(x, ξl) +O([δn]2| log δn|))

πm[δn]−2 +O(| log δn|)
= O([δn]2)

and

|hn(x)| ≤
m∑
j=1

[δnj ]
σ

([δnj ]
2 + |x− ξnj |2)1+σ/2

∥hn∥∗ ≤ C[δn]σ∥hn∥∗.

Therefore, passing to a subsequence ψn → ψ as n → +∞ in C2,α sense over compact subsets of
Ω \ {ξ∗1 , . . . , ξ∗m}. Since ∥ψn∥∞ ≤ 2∥ϕn∥∞ ≤ 2, it follows that ψ is bounded and can be extended
continuously to Ω and satisfies{

∆ψ = 0, in Ω,

ψ is doubly periodic on on ∂Ω.

Therefore, ψ ≡ c̃ in Ω. It follows that

c̃ = − lim
n→+∞

∫
Ω ke

Wϕn∫
Ω ke

W
, since

1

|Ω|

∫
Ω
ψn = −

∫
Ω ke

Wϕn∫
Ω ke

W
.

Now, consider the function Ψn,j(y) = ψn(ξ
n
j + δnj y). Then, Ψn,j satisfies

∆Ψn,j + K̃n,j(y)Ψn,j = h̃n,j(y) in Ωn,j ≡ (δnj )
−1(Ω− ξnj ),

where K̃n,j(y) := (δnj )
2K(ξnj + δnj y) and h̃n,j(y) = (δnj )

2hn(ξ
n
j + δnj y).

Claim 3.3.2. There holds that Ψn,j converges uniformly over compact subsets of IR2 to a0jY0,
as n→ +∞, for some constant a0j ∈ IR, j = 1, . . . ,m. Furthermore,

m∑
j=1

a0j = 0. (3.3.6)

Proof: Let observe that uniformly for y over compact subsets of IR2 we have that as n→ +∞

K̃n,j(y) =
8

(1 + |y|2)2
(1 + o(1)) and |h̃n,j(y)| ≤ C∥hn∥∗.

Hence, we get that elliptic estimates imply that as n → +∞, Ψn,j converges uniformly over
compact subsets of IR2 to a bounded solution Ψj of

∆Ψj +
8

(1 + |y|2)2
Ψj = 0.
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3.3. THE LINEAR OPERATOR

Recall that λn → 8πm as n→ +∞, by using (3.2.6). We know that for some constants aij ∈ IR,

i = 0, 1, 2 it holds Ψj(y) =

2∑
i=0

aijYi(y), y ∈ IR2. On the other hand, we have that for all i = 1, 2,

j = 1, . . . ,m

0 =

∫
Ω
ψn∆PZij =

∫
Ω
ψn∆Zij −

1

|Ω|

∫
Ω
ψn

∫
Ω
∆Zij .

Then, we estimate ∫
Ω
ψn∆Zij = −

∫
Ω
ψn(x)

32(δnj )
3(x− ξnj )i

((δnj )
2 + |x− ξnj |2)3

dx

= −32

∫
B(0, r

δn
j
)
Ψn,j(y)

yi
(1 + |y|2)3

dy +O([δn]3)

and ∫
Ω
∆Zij = −32

∫
B(0, r

δn
j
)

yi
(1 + |y|2)3

dy +O([δn]3) = o(1)

as n→ +∞. Therefore, by dominated convergence we get that∫
IR2

Ψj(y)
yi

(1 + |y|2)3
dy = 0, i = 1, 2

and we conclude that a1j = a2j = 0 for all j = 1, . . . ,m. Thus, Ψn,j converges uniformly over
compact subset of IR2 to Ψj as n→ +∞ for all j = 1, . . . ,m, and as claimed

Ψj(y) = a0jY0(y) = 2a0j
1− |y|2

1 + |y|2
, y ∈ IR2.

Let us observe that

0 =

∫
Ω
ψn∆PZ =

m∑
l=1

∫
Ω
ψn∆PZ0l =

m∑
l=1

[∫
Ω
ψn∆Z0l −

1

|Ω|

∫
Ω
ψn

∫
Ω
∆Z0l

]
.

Hence, we have that∫
Ω
ψn∆Z0j = −

∫
Ω
ψn(x)

16(δnj )
2[(δnj )

2 − |x− ξnj |2]
((δnj )

2 + |x− ξnj |2)3
dx

= −16

∫
B(0, r

δn
j
)
Ψn,j(y)

1− |y|2

(1 + |y|2)3
dy +O([δn]2)

and ∫
Ω
∆Z0j = −16

∫
B(0, r

δn
j
)

1− |y|2

(1 + |y|2)3
dy +O([δn]2) = O([δn]2)

as n→ +∞. Therefore, by dominated convergence we get that

lim
n→+∞

∫
Ω
ψn∆PZ0j = −16

∫
IR2

Ψj(y)
1− |y|2

(1 + |y|2)3
dy,

and we conclude that

0 =

m∑
l=1

∫
IR2

Ψl(y)
1− |y|2

(1 + |y|2)3
dy =

m∑
l=1

2a0l

∫
IR2

(1− |y|2)2

(1 + |y|2)4
dy.

Thus, the claim follows since

∫
IR2

(1− |y|2)2

(1 + |y|2)4
dy > 0.
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On the other hand, from the equation of ψn and by (2.2.2) we have the following integral
representation

ψn(x) =
1

|Ω|

∫
Ω
ψn +

1

8π

∫
Ω

[
4 log

1

|x− y|
+H(x, y)

]
[K(y)ψn(y)− hn(y)] dy. (3.3.7)

Claim 3.3.3. There holds c̃ = 0 and hence, for any r > 0 small (r < d)

∥ψn∥L∞(Ω\∪m
j=1B(ξnj ,r))

→ 0 as n→ +∞.

Proof: Let us estimate the right hand side of (3.3.7). First, we estimate the integrals involving
hn. Observe that for R > 0 fixed we have that∫

B(0,Rδnj )
| log |x|| dx =

πR2(δnj )
2

2
− πR2(δnj )

2 logRδnj .

Hence, we get that for x ∈ Ω∣∣∣∣∣
∫
B(x,Rδnj )

log
1

|x− z|
hn(z) dz

∣∣∣∣∣ ≤ ∥hn∥∗
∫
B(x,Rδnj )

∣∣∣∣log 1

|x− z|

∣∣∣∣ m∑
l=1

(δnj )
σ

((δnj )
2 + |z − ξnl |2)1+σ/2

dz

≤ C

(δn)2
∥hn∥∗

∫
B(0,Rδnj )

| log |z|| dz

≤ C| log δn| ∥hn∥∗.

Now, if |x − y| > Rδnj then for some constant C > 0 we have that C−1δn < |y − x| < C/δn and
| log |x− y|| ≤ C| log δn|. Thus, we get that∣∣∣∣∣

∫
Ω\B(x,Rδnj )

log
1

|x− y|
hn(y) dy

∣∣∣∣∣ ≤ C

(
log

1

δn

)∫
Ω\B(x,Rδnj )

|hn(y)| dy

≤ C| log δn| ∥hn∥∗.

Therefore, we conclude that∣∣∣∣∫
Ω
log

1

|x− y|
hn(y) dy

∣∣∣∣ ≤ C

(
log

1

δn

)
∥hn∥∗

uniformly for x ∈ Ω. Analogously,∣∣∣∣∫
Ω
H(x, y)hn(y) dy

∣∣∣∣ ≤ C

(
log

1

δn

)
∥hn∥∗

uniformly for x ∈ Ω. Now, if |y − ξnl | > r for all l = 1, . . . ,m and |x − ξnj | < Rδnj for some

j ∈ {1, . . . ,m} thenK(y) = O([δn]2) and |x−y| > Rδnj . Hence, we get that | log |x−y|| < C log 1
δn

and ∫
Ω
log

1

|x− y|
K(y)ψn(y) dy =

m∑
l=1

∫
B(ξml ,r)

log
1

|x− y|
K(y)ψn(y) dy +O

(
[δn]2| log δn|

)
.

Now, for any l ∈ {1, . . . ,m} we have that∫
B(ξnl ,r)

log
1

|x− y|
K(y)ψn(y) dy =

∫
B(0, r

δn
l
)
log

1

|x− (ξnl + δnl z)|
K̃l(z)Ψn,l(z) dz.
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Recall that

|K̃l(z)Ψn,l(z)| ≤
C

(1 + |z|2)2
, for all z ∈ B(0,

r

δnl
),

since ∥Ψn,l∥L∞(Ωn,j) = 1 and for |z| < R

K̃l(z) = [δn]2eUj(ξ
n
j +δnj z)

λnρj(ξ
n
j + δnj z)

8πmρj(ξj)
(1 +O([δn]2| log δn|)) = 8

(1 + |z|2)2
(1 + o(1)).

Also, we know that for any l, Ψn,l converges uniformly to a0lY0 on compact subsets of IR2. So,
taking x = ξnj and if l ̸= j then by dominated convergence we get that

lim
n→+∞

∫
B(ξnl ,r)

log
1

|ξnj − y|
K(y)ψn(y) dy = log

1

|ξ∗j − ξ∗l |

∫
IR2

8

(1 + |z|2)2
a0lY0(z) dz = 0,

since

∫
IR2

1− |y|2

(1 + |y|2)3
dy = 0. For l = j, we again take x = ξnj and we obtain

∫
B(ξnj ,r)

log
1

|ξnj − y|
K(y)ψn(y) dy =

∫
B(0, r

δn
j
)
log

1

|δnj z|
K̃j(z)Ψn,j(z) dz

=

∫
B(0, r

δn
j
)
log

1

|z|
K̃j(z)Ψn,j(z) dz

− log δnj

∫
B(0, r

δn
j
)
K̃j(z)Ψn,j(z) dz

Similarly, we have that∫
Ω
H(x, y)K(y)ψn(y) dy =

m∑
l=1

∫
B(ξnl ,r)

H(x, y)K(y)ψn(y) dy +O
(
[δn]2

)
and ∫

B(ξnl ,r)
H(x, y)K(y)ψn(y) dy =

∫
B(0, r

δn
l
)
H(x, ξnl + δnl z)K̃l(z)Ψn,l(z) dz.

Hence, we get that for any l ∈ {1, . . . ,m}

lim
n→+∞

∫
B(ξnl ,r)

H(ξnj , y)K(y)ψn(y) dy = H(ξ∗j , ξ
∗
l )

∫
IR2

8

(1 + |z|2)2
a0lY0(z) dz = 0.

Observe that by (3.3.4) we have G(ξ∗j , ξ
∗
l ) = −4 log |ξ∗j − ξ∗l | +H(ξ∗j , ξ

∗
l ) ∈ IR. Therefore, by the

integral representation of ψn we have obtained that

ψn(ξ
n
j ) =

1

|Ω|

∫
Ω
ψn+

1

2π

∫
B(0, r

δn
j
)
log

1

|z|
K̃j(z)Ψn,j dz−log δnj

∫
B(ξnj ,r)

K(y)ψn(y) dy+o(1), (3.3.8)

as n → +∞. On the other hand, let us note that integrating the equation of ψn, we get that∫
ΩKψn = 0, since

∫
Ω hn = 0, and hence,

m∑
l=1

∫
B(ξml ,r)

K(y)ψn(y) dy = −
∫
Ω\∪m

l=1B(ξnl ,r)
Kψn = O([δn]2).
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Also, by dominated convergence we know that

lim
n→+∞

∫
B(0, r

δn
j
)
log

1

|z|
K̃j(z)Ψn,j(z) dz =

∫
IR2

log
1

|z|
8

(1 + |z|2)2
a0lY0(z) dz.

Taking the sum of equations (3.3.8), since Ψn,j(0) = ψn(ξ
n
j ) and letting n → +∞, we find that,

we get that
m∑
j=1

Ψj(0) = mc̃+
1

2π

m∑
j=1

∫
IR2

log
1

|z|
8

(1 + |z|2)2
Ψj(z) dz.

Recall that Ψj(y) = ã0j
1−|y|2
1+|y|2 with ã0j = 2a0j . Hence, it follows that c̃ = 0, since

∑m
j=1 ã0j = 0.

Therefore, the conclusion follows.

Claim 3.3.4. There holds a0j = 0 for all j = 1, . . . ,m. And by claim 3.3.2 it follows that

∥Ψn,j∥L∞(B(0,R)) = ∥ψn∥L∞(B(ξnj ,Rδnj ))
→ 0, as n→ +∞.

Proof: To this aim let us construct a suitable test function and from the assumption on hn,
| log δn| ∥hn∥∗ = o(1) we get the additional orthogonality relation∫

IR2

8(1− |z|2)
(1 + |z|2)3

Ψj(z) dz = 0, (3.3.9)

which implies a0j = 0 as claimed. We will use an idea developed first in [37] and then exploited
in [38, 39, 40]. We will omit the subscript n in ξnj and δnj . Define the functions ηn,j and η̃n,j for
x ∈ Ω given by

ηn,j(x) =
4

3
log(δ2j + |x− ξj |2)

δ2j − |x− ξj |2

δ2j + |x− ξj |2
+

8

3

δ2j
δ2j + |x− ξj |2

and

η̃n,j(x) = −
2δ2j

δ2j + |x− ξj |2
.

Let us note that ηn,j and η̃n,j satisfy

∆ηn,j +
8δ2j

(δ2j + |x− ξj |2)2
ηn,j = 2

8δ2j (δ
2
j − |x− ξj |2)

(δ2j + |x− ξj |2)3

and

∆η̃n,j +
8δ2j

(δ2j + |x− ξj |2)2
η̃n,j = −

8δ2j
(δ2j + |x− ξj |2)2

.

Consider the test function PZ̃n,j , where Z̃n,j = ηn,j +
2
3H(ξj , ξj)η̃n,j . From the representation

formula (2.2.4) we get that

PZ̃n,j − Z̃n,j −
2

3
H(·, ξj) = O(δ2| log δ|), (3.3.10)

in C2-sense over compact subset of Ω. Recall that ψn satisfies

∆ψn +Kψn = h, in Ω.
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Multiply this equation by PZ̃n,j and integrate on Ω, then we get that∫
Ω
hPZ̃n,j =

∫
Ω
ψn

(
∆PZ̃n,j +KPZ̃n,j

)
=

∫
Ω
ψn∆Z̃n,j −

1

|Ω|

∫
Ω
ψn

∫
Ω
∆Z̃n,j +

∫
Ω
KψnPZ̃n,j

=

∫
Ω
ψn

(
2
8δ2j (δ

2
j − |x− ξj |2)

(δ2j + |x− ξj |2)3
−

8δ2j
(δ2j + |x− ξj |2)2

[
Z̃n,j +

2

3
H(ξj , ξj)

])

− 1

|Ω|

∫
Ω
ψn

∫
Ω
∆Z̃n,j +

∫
Ω
KψnPZ̃n,j

=2

∫
Ω
ψn

8δ2j (δ
2
j − |x− ξj |2)

(δ2j + |x− ξj |2)3
+

∫
Ω
ψn

8δ2j
(δ2j + |x− ξj |2)2

(
PZ̃n,j − Z̃n,j −

2

3
H(ξj , ξj)

)

− 1

|Ω|

∫
Ω
ψn

∫
Ω
∆Z̃n,j +

∫
Ω

(
K −

8δ2j
(δ2j + |x− ξj |2)2

)
ψnPZ̃n,j

From (3.3.10) we get that PZ̃n,j = Z̃n,j +O(1) = O(| log δn|), then∫
Ω
hPZ̃n,j = O(| log δn| ∥hn∥∗) = o(1)

as n→ +∞. From the definition of Z̃n,j , we have that∫
Ω
∆Z̃n,j =

∫
Ω

(
eUjZ0j − eUjηn,j +

2

3
H(ξj , ξj)

[
−eUj − eUj η̃n,j

])
= −

∫
Ω
eUj

4

3
log(δ2j + |x− ξj |2)

δ2j − |x− ξj |2

δ2j + |x− ξj |2
dx+O(1)

= −64

3
log δj

∫
B(0, r

δj
)

1− |y|2

(1 + |y|2)3
dy +

32

3

∫
B(0, r

δj
)

1− |y|2

(1 + |y|2)3
log(1 + |y|2) dy +O(1)

= O(1)

as n→ +∞. On the other hand, we have that Ψn,j(z) = ψn(ξ
n
j + δnj z) then as n→ +∞∫

Ω
ψn(x)

8δ2j (δ
2
j − |x− ξj |2)

(δ2j + |x− ξj |2)3
dx =

∫
B(ξj ,r)

ψn(x)
8δ2j (δ

2
j − |x− ξj |2)

(δ2j + |x− ξj |2)3
dx+O(δ2n)

=

∫
B
(
0, r

δn

)Ψn,j(z)
8(1− |z|2)
(1 + |z|2)3

dx+O(δ2n)

∫
Ω
ψn

8δ2j
(δ2j + |x− ξj |2)2

(
PZ̃n,j − Z̃n,j −

2

3
H(ξj , ξj)

)
=

∫
Ω
ψn

8δ2j
(δ2j + |x− ξj |2)2

(
PZ̃n,j(x)− Z̃n,j(x)−

2

3
H(x, ξj)

)
dx

+
2

3

∫
Ω
ψn

8δ2j
(δ2j + |x− ξj |2)2

(H(x, ξj)−H(ξj , ξj)) dx

=
2

3

∫
B(ξj ,r)

ψn

8δ2j
(δ2j + |x− ξj |2)2

(H(x, ξj)−H(ξj , ξj)) dx

+O(δ2n| log δn|)
= O(δn)
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and∫
Ω

(
K −

8δ2j
(δ2j + |x− ξj |2)2

)
ψnPZ̃n,j

=

∫
B(ξj ,r)

(
K −

8δ2j
(δ2j + |x− ξj |2)2

)
ψnPZ̃n,j +O(δ2n| log δn|) +

m∑
l=1,l ̸=j

∫
B(ξl,r)

KψnPZ̃n,j

=

∫
B(ξj ,r)

eUj [O(|x− ξj |) +O(δ2| log δ|)]ψnPZ̃n,j +O(δ2n| log δn|)

+

m∑
l=1,l ̸=j

∫
B(0, r

δn
)
K̃lΨn,l(z)PZ̃n,j(ξl + δlz) dz

= O

(
δn| log δn|

∫
B(0, r

δn
)

1

(1 + |z|)3
dz

)
+O(δ2n| log δn|) + o(1)

= o(1),

since if l ̸= j then we find that

PZ̃n,j(ξl + δlz) = Z̃n,j(ξl + δlz) +
2

3
H(ξl + δlz, ξj) +O(δ2| log δ|)

=
2

3
G(ξl + δlz, ξj) +O(δ2| log δ|)

=
2

3
G(ξl, ξj) +O(δ)

for all |z| < r
δl

and ∫
B(0, r

δl
)
K̃lΨn,l(z)PZ̃n,j(ξl + δlz) dz = o(1)

thanks to dominated convergence. Therefore, we conclude (3.3.9) and hence, a0j = 0 for all
j = 1, . . . ,m. Also, it follows that Ψn,j converges to zero uniformly over compact subset of IR2

for all j = 1, . . . ,m, namely, ∥ψn∥L∞(B(ξnj ,Rδnj ))
= ∥Ψn,j∥L∞(B(0,R)) → 0, as n→ +∞.

Let us denote L̃(ϕ) = ∆ϕ+Kϕ.

Claim 3.3.5. The operator L̃ satisfies the maximum principle in Ω\∪m
j=1B(ξnj , Rδ

n
j )) for R large

enough.

Proof: First, we have that

K(x) =
λkeW∫
Ω ke

W
=

m∑
j=1

eUj
[
1 +O(|x− ξj |) +O(δ2j | log δj |)

]
.

Hence, we get that there is a constant D0 such that

K(x) ≤ D0

m∑
j=1

δ2j
(δ2j + |x− ξj |2)2

for all x ∈ Ω.

Now, consider the function

Z̃(x) = −
m∑
j=1

Y0

(
a(x− ξj)

δj

)
= 2

m∑
j=1

a2|x− ξj |2 − δ2j
δ2j + a2|x− ξj |2

,
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with 0 < a < 1√
2D0

. Then,

−∆Z̃(x) = 2
m∑
j=1

8δ2ja
2(a2|x− ξj |2 − δ2j )

(δ2j + a2|x− ξj |2)3
,

and for |x− ξj | > Rδj we have that

−∆Z̃(x) ≥ 16

m∑
j=1

δ2ja
2

(δ2j + a2|x− ξj |2)2
a2R2 − 1

a2R2 + 1

≥ 4

m∑
j=1

a2δ2jR
4

(1 + a2R2)2
1

|x− ξj |4
≥ 1

a2

m∑
j=1

δ2j
|x− ξj |4

,

where
√

5
3a < R, so a2R2 > 5

3 > 1 and a2R2−1
a2R2+1

> 1
4 .

On the other hand, Z̃(x) ≤ 2 and

K(x)Z̃(x) ≤ 2D0

m∑
j=1

δ2j
(δ2j + |x− ξj |2)2

≤ 2D0

m∑
j=1

δ2j
|x− ξj |4

< 0.

By the choice of a we have that

L̃(Z̃) = ∆Z̃ +KZ̃ ≤
(
− 1

a2
+ 2D0

) m∑
j=1

δ2j
|x− ξj |4

< 0

and

Z̃(x) ≥ 2

m∑
j=1

a2R2δ2j − δ2j
δ2j + a2R2δ2j

≥ 2m
a2R2 − 1

1 + a2R2
>
m

2
> 0

for |x − ξj | > Rδj . Therefore, L̃(Z̃) < 0 and Z̃ > 0 in Ω \ ∪m
j=1B(ξj , Rδj) and we conclude

that L̃ satisfies the maximum principle, namely, if L̃(ϕ) ≤ 0 in Ω \ ∪m
j=1B(ξj , Rδj) and ϕ ≥ 0 on

∂(Ω \ ∪m
j=1B(ξj , Rδj)) then ϕ ≥ 0 in Ω \ ∪m

j=1B(ξj , Rδj). Note that we have that the maximum
principle also in the region ∪m

j=1[B(ξj , r/2) \B(ξj , Rδj)], with r < d.

Claim 3.3.6. There exists a constant C > 0 such that

∥ψ∥L∞(∪m
j=1[B(ξj ,r/2)\B(ξj ,Rδj)]) ≤ C[∥ψ∥i + ∥h∥∗],

where
∥ψ∥i = ∥ψ∥L∞(∪m

j=1[∂B(ξj ,Rδj)∪∂B(ξj ,r/2)]).

Proof: First, let us consider the functions ηj given by

−∆ηj =
2δσj

|x−ξj |2+σ , Rδj < |x− ξj | < r,

ηj(x) = 0, for |x− ξj | = Rδj , |x− ξj | = r.

A direct computations shows that

ηj(s) = −
2δσj
σ2sσ

+ aj log s+ bj , s = |x− ξj |
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with

aj =
1

log
Rδj
r

2δσj
σ2

(
1

Rσδσj
− 1

rσ

)
and bj =

2δσj
σ2rσ

+
log r

log
Rδj
r

2δσj
σ2

(
1

Rσδσj
− 1

rσ

)
.

Observe that

0 ≤ ηj(s) ≤ −
2δσj
σ2rσ

+ aj logRδj + bj = aj log
Rδj
r

≤ 2

σ2Rσ
.

Now, consider the function

ϕ̃ = 2∥ψ∥iZ̃ + ∥h∥∗
m∑
j=1

ηj .

Hence, we get that

L̃(ϕ̃) ≤ ∥h∥∗
m∑
j=1

L̃(ηj) ≤ ∥h∥∗
m∑
j=1

[
−

2δσj
|x− ξj |2+σ

+
2D0

σ2Rσ

m∑
l=1

δ2l
(δ2l + |x− ξl|2)2

]

= ∥h∥∗
m∑
j=1

[
−

2δσj
|x− ξj |2+σ

+
2D0m

σ2Rσ

δ2j
(δ2j + |x− ξj |2)2

]

≤ −∥h∥∗
m∑
j=1

δσj
(δ2j + |x− ξj |2)2

for R large enough (2D0m ≤ σ2Rσ). Also, we have that 2Z̃ ≥ m ≥ 1 and ϕ̃(x) ≥ |ψ(x)| for all
x ∈ ∪m

j=1[∂B(ξj , Rδj) ∪ ∂B(ξj , r/2)]. By the maximum principle we conclude that |ψ(x)| ≤ ϕ̃(x)
for all x ∈ ∪m

j=1[B(ξj , Rδj) ∪B(ξj , r/2)].. Therefore, the claim follows.

Recall that by claim 3.3.4, ∥ψn∥L∞(B(ξnj ,Rδnj ))
= o(1) as n → +∞ for all j = 1, . . . ,m and

∥ψn∥L∞(Ω\∪m
j=1B(ξnj ,r/2))

= o(1) as n→ +∞. Hence, we conclude that ∥ψn∥∞ = o(1) as n→ +∞
which is a contradiction since by claim 3.3.1 ∥ψn∥∞ > σ0. This completes the proof.

Our main result for the problem (3.3.1) states its invertibility in the following way.

Proposition 3.3.2. Let d > 0 be fixed. There exist positive numbers δ0 and C, such that for any
points ξj ∈ Ω, j = 1, . . . ,m satisfying (3.3.4) and δj > 0 satisfying (3.2.5) and (3.2.6), there is a
unique solution ϕ ∈ E ∩W 2,2(Ω) to problem (3.3.1) for all δ < δ0. Moreover,

∥ϕ∥∞ ≤ C

(
log

1

δ

)
∥h∥∗, |cij | ≤ C∥h∥∗, i = 1, 2, j = 1, . . . ,m, and |c0| ≤ C∥h∥∗.

(3.3.11)

Proof: First, observe that ∆Zij = −eUjZij for all i = 0, 1, 2, j = 1, . . . ,m∫
Ω
∆Z0j = O(δ2j ) and

∫
Ω
∆Zij = O(δ3j ), i = 1, 2.

Since ∆PZij = ∆Zij − 1
|Ω|
∫
Ω∆Zij , it follows that ∥∆PZij∥∗ ≤ C for all i = 0, 1, 2, j = 1, . . . ,m.

Thus, by Proposition 3.3.1, any solution to (3.3.1) satisfies

∥ϕ∥∞ ≤ C

(
log

1

δ

)∥h∥∗ + 2∑
i=1

m∑
j=1

|cij |+ |c0|

 .
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Let us estimates the values of constants |cij |. We test equation (3.3.1) against PZij , i = 1, 2.
Hence,

⟨L(ϕ), PZij⟩ = ⟨h, PZij⟩+
2∑

k=1

m∑
l=1

ckl⟨∆PZkl, PZij⟩+ c0⟨∆PZ, PZij⟩,

where ⟨f, g⟩ =
∫
Ω fg. Note that ⟨L(ϕ), PZij⟩ = ⟨ϕ,L(PZij)⟩. Furthermore, we have that

⟨∆PZ, PZij⟩ =
m∑
l=1

⟨∆PZ0l, PZij⟩.

Hence, we get that for i = 1, 2

⟨ϕ,L(PZij)⟩ = ⟨h, PZij⟩+
2∑

k=1

m∑
l=1

ckl⟨∆PZkl, PZij⟩+ c0

m∑
l=0

⟨∆PZ0l, PZij⟩.

Given i, k = 0, 1, 2, j, l = 1, . . . ,m let us estimate ⟨∆PZkl, PZij⟩. Observe that

PZij = Zij +O(δj), i = 1, 2, j = 1, . . . ,m (3.3.12)

and
PZ0j = Z0j + 2 +O(δ2j | log δj |), j = 1, . . . ,m, (3.3.13)

uniformly on compact subsets of Ω, where

Zij(x) =
4δj(x− ξj)i
δ2j + |x− ξj |2

and Z0j(x) = −2 +
4δ2j

δ2j + |x− ξj |2
.

Hence, we have that

⟨∆PZkl, PZij⟩ =
∫
Ω
∆ZklPZij .

For i = 1, 2 we get that

⟨∆PZkl, PZij⟩ = −
∫
Ω
eUlZkl(Zij +O(δj))

so, if l ̸= j then (for r < d/2)∫
Ω
eUlZklZij =

∫
B(ξl,r)

eUlZklZij +O(δ2l ) = O(δj) +O(δ2l )

since eUl = O(δ2l ) in Ω \B(ξl, r) and Zij = O(δj) in B(ξl, r). Now, if l = j then∫
Ω
eUjZkjZij =

∫
B(ξj ,r)

eUjZkjZij +O(δ2j ) and if k ̸= i then

∫
B(ξj ,r)

eUjZkjZij = 0.

If l = j and k = i, we then get that

⟨∆PZij , PZij⟩ = −
∫
Ω
eUjZ2

ij +O(δj) = −
∫
B(ξj ,r)

eUjZ2
ij +O(δ2j ) +O(δj)

and ∫
B(ξj ,r)

eUjZ2
ij =

∫
B(0, r

δj
)

8

(1 + |y|2)2
Y 2
i (y) dy = 128

∫
B(0, r

δj
)

y2i
(1 + |y|2)4

dy

=
32

3
π +O(δ4j ).
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3.3. THE LINEAR OPERATOR

Now, similarly as above, for i = 0 we get that if j ̸= l then

⟨∆PZkl, PZ0j⟩ = O(δ2| log δ|), k = 0, 1, 2, j = 1, . . . ,m.

If j = l and k = 1, 2 then
⟨∆PZkl, PZ0j⟩ = O(δ2| log δ|).

And if j = l, k = 0 then∫
B(ξl,r)

eUlZ0l(Z0l + 2) =

∫
B(0, r

δl
)

8

(1 + |y|2)2
Y0(y)[Y0(y) + 2] =

32π

3
+O(δ4)

Thus, we conclude that for all i, k = 0, 1, 2, j, l = 1, . . . ,m,

⟨∆PZkl, PZij⟩ =

{
−32π

3 +O(δ), if j = l, i = k

O(δ), otherwise.

Hence, we get that for i = 1, 2

|cij | |⟨∆PZij , PZij⟩| ≤C∥ϕ∥∞ ∥L(PZij)∥∗ + C∥h∥∗ ∥PZij∥∞ +
∑
kl ̸=ij

|ckl| |⟨∆PZkl, PZij⟩|

+ |c0|
m∑
l=0

|⟨∆PZ0l, PZij⟩|

≤C

[
∥ϕ∥∞ ∥L(PZij)∥∗ + ∥h∥∗ + δ

∑
kl ̸=ij

|ckl|+ δ|c0|
]

≤C

[(
log

1

δ

)(
∥h∥∗ +

2∑
k=1

m∑
l=1

|ckl|+ |c0|

)
∥L(PZij)∥∗ + ∥h∥∗

+ δ

(
2∑

k=1

m∑
l=1

|ckl|+ |c0|

)]
.

Let us estimate ∥L(PZij)∥∗, for i = 1, 2. We know that

L(PZij) = ∆Zij −
1

|Ω|

∫
Ω
∆Zij +

λkeW∫
Ω ke

W

(
PZij −

∫
Ω ke

WPZij∫
Ω ke

W

)
and ∫

Ω
keWPZij =

∫
Ω
keW [Zij +O(δ)] =

∫
B(ξj ,r)

keWZij +O

(
1

δ

)
,

since
∫
Ω\B(ξj ,r)

keW = O(δ−2) and Zij = O(δ) in Ω \B(ξj , r). Now, we have that∫
B(ξj ,r)

keWZij =
1

8δ2j

∫
B(ξj ,r)

eUjρj(1 +O(δ2| log δ|))Zij

and ∫
B(ξj ,r)

eUjρjZij =

∫
B(ξj ,r)

8δ2j
(δ2j + |x− ξj |2)2

4δj(x− ξj)i
δ2j + |x− ξj |2

ρj(x) dx

=

∫
B(0, r

δj
)

32yi
(1 + |y|2)3

[ρj(ξj) +O(δj |y|)] dy

= O(δ).
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3.3. THE LINEAR OPERATOR

Hence, we conclude that∫
Ω
keWPZij = O

(
1

δ

)
and

∫
Ω ke

WPZij∫
Ω ke

W
= O(δ).

Since
∫
Ω∆Zij = O(δ3), we get that

L(PZij) = −eUjZij +
λkeW∫
Ω ke

W

(
Zij +O(δ)

)
+O(δ3).

Recall that Zij = O(δ) in Ω \B(ξj , r), then L(PZij) = O(δ3) in Ω \ ∪m
l=1B(ξl, r).

On the other hand, recall that for x ∈ B(ξl, r) we have that

λkeW∫
Ω ke

W
= eUl(x)

[
1 +

ρl(x)− ρl(ξl)

ρl(ξl)
+O(δ2| log δ|)

]
.

Then, for l ̸= j we obtain that

L(PZij) = eUlO(δ) +O(δ3)

in B(ξl, r), and for x ∈ B(ξj , r) we find that

L(PZij)(x) = eUj
[
−Zij +

(
1 +O(|x− ξj |) +O(δ2| log δ|)

)(
Zij +O(δ)

)]
+O(δ3)

= eUj
[
Zij

{
O(|x− ξj |) +O(δ2| log δ|)

}
+O(δ)

)]
+O(δ3)

= eUj
[
O(|x− ξj |) +O(δ)

]
+O(δ3).

Thus, from the definition of ∗-norm we conclude that ∥L(PZij)∥∗ ≤ Cδ for i = 1, 2 j = 1, . . . ,m.
Now, since |⟨∆PZij , Zij⟩| ≥ 8π, it follows that

|cij | ≤ C

[
δ| log δ|

(
∥h∥∗ +

2∑
k=1

m∑
l=1

|ckl|+ |c0|
)
+ ∥h∥∗ + δ

( 2∑
k=1

m∑
l=1

|ckl|+ |c0|
)]

≤ C

[
δ| log δ|

( 2∑
k=1

m∑
l=1

|ckl|+ |c0|
)
+ ∥h∥∗

]
.

(3.3.14)

Let us estimate |c0|. We test equation (3.3.1) against PZ and similarly as above, we get that

⟨ϕ,L(PZ)⟩ = ⟨h, PZ⟩+
2∑

k=1

m∑
l=1

m∑
j=1

ckl⟨∆PZkl, PZ0j⟩+ c0

m∑
j=1

m∑
l=1

⟨∆PZ0j , PZ0l⟩

and

|c0|

∣∣∣∣∣∣
m∑
j=1

m∑
l=1

⟨∆PZ0j , PZ0l⟩

∣∣∣∣∣∣ ≤C∥ϕ∥∞ ∥L(PZ)∥∗ + C∥h∥∗ ∥PZ∥∞

+

2∑
k=1

m∑
j=1

m∑
l=1

|ckl| |⟨∆PZkl, PZ0j⟩|

≤C

[(
log

1

δ

)(
∥h∥∗ +

2∑
k=1

m∑
l=1

|ckl|+ |c0|

)
∥L(PZ)∥∗ + ∥h∥∗

+ δ

2∑
k=1

m∑
l=1

|ckl|
]
.
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3.3. THE LINEAR OPERATOR

Let us estimate ∥L(PZ)∥∗. By using (3.3.13), we have that∫
Ω
keWPZ0j =

∫
Ω
keW

[
Z0j + 2 +O(δ2| log δ|)

]
=

∫
B(ξj ,r)

keW (Z0j + 2) +O(| log δ|),

since
∫
Ω\B(ξj ,r)

keW = O(δ−2) and Z0j + 2 = O(δ2j ) in Ω \B(ξj , r). So, we estimate∫
B(ξj ,r)

keW (Z0j + 2) =
1

8δ2j

∫
B(ξj ,r)

eUjρj(1 +O(δ2| log δ|))(Z0j + 2)

and ∫
B(ξj ,r)

eUjρj(Z0j + 2) =

∫
B(0, r

δj
)

32

(1 + |y|2)3
ρj(ξj + δjy) dy

=

∫
B(0, r

δj
)

32

(1 + |y|2)3
[ρj(ξj) +∇ρj(ξj) · δjy +O(δ2j |y|2)] dy

= 16πρj(ξj) +O(δ2j ).

Also, we have that ∫
Ω
keWPZ0j =

1

8δ2j
[16πρj(ξj) +O(δ2j )] =

2π

δ2
+O(| log δ|).

Then, it follows that ∫
Ω ke

WPZ0j∫
Ω ke

W
=

2π
δ2

+O(| log δ|)
πm
δ2

+O(| log δ|)
=

2

m
+O(δ2| log δ|).

Since,
∫
Ω∆Z0j = O(δ2j ) we get that

L(PZ) =

m∑
j=1

(
∆Z0j −

1

|Ω|

∫
Ω
∆Z0j

)
+

λkeW∫
Ω ke

W

 m∑
j=1

PZ0j −
m∑
j=1

∫
Ω ke

WPZ0j∫
Ω ke

W


= −

m∑
j=1

eUjZ0j +
λkeW∫
Ω ke

W

 m∑
j=1

(Z0j + 2)− 2 +O(δ2| log δ|)

+O(δ2).

Now, we know that Z0j + 2 = O(δ2j ) in Ω \ B(ξj , r). Then, L(PZ) = O(δ2) in Ω \ ∪m
j=1B(ξj , r).

If x ∈ B(ξj , r) for some j ∈ {1, . . . ,m} then

L(PZ) = eUj
[
−Z0j +

(
1 +O(|x− ξj |) +O(δ2| log δ|)

) (
Z0j +O(δ2| log δ|)

)]
+O(δ2)

= eUj
[
Z0j

{
O(|x− ξj |) +O(δ2| log δ|)

}
+O(δ2| log δ|)

]
+O(δ2).

From the definition of ∥ · ∥∗, we conclude that ∥L(PZ)∥∗ ≤ Cδ.
Now, since ⟨∆PZ0j , PZ0j⟩ = −32π

3 + O(δ) and ⟨∆PZ0l, PZ0j⟩ = O(δ) for all j ̸= l, we get
that |⟨∆PZ, PZ⟩| ≥ 8πm for all δ > 0 small enough and it follows that

|c0| ≤C

[
δ log

1

δ

(
2∑

k=1

m∑
l=1

|ckl|+ |c0|

)
+ ∥h∥∗

]
. (3.3.15)
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3.3. THE LINEAR OPERATOR

Combining (3.3.14) and (3.3.15) we obtain that |cij | ≤ C∥h∥∗ for all i = 1, 2, j = 1, . . . ,m and
|c0| ≤ C∥h∥∗. It follows that ∥ϕ∥∞ ≤ C(log 1

δ )∥h∥∗ and the priori estimate has been thus proven.
It only remains to prove the solvability assertion. To this purpose we consider the space

H =

{
ϕ ∈ E :

∫
Ω
∆PZij ϕ = 0, i = 1, 2, j = 1, . . . ,m,

∫
Ω
∆PZ ϕ = 0

}
,

endowed with the usual inner product [ϕ, ψ] =
∫
Ω∇ϕ∇ψ. Problem (3.3.1) expressed in weak form

is equivalent to that of finding a ϕ ∈ H such that

[ϕ, ψ] =

∫
Ω

[
λkeW∫
Ω ke

W

(
ϕ−

∫
Ω ke

Wϕ∫
Ω ke

W

)
− h

]
ψ, for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator
form ϕ = K(ϕ)+h̃, for certain h̃ ∈ H, where K is a compact operator inH. Fredholm’s alternative
guarantees unique solvability of this problem for any h provided that the homogeneous equation
ϕ = K(ϕ) has only the zero solution in H. This last equation is equivalent to (3.3.1) with h ≡ 0.
Thus, existence of a unique solution follows from the a priori estimate (3.3.11). This completes
the proof.

Remark 3.3.1. Given f ∈ L2
#(Ω) := {u ∈ L2(Ω) :

∫
Ω u = 0} denote u = ∆−1f such that u ∈ E

and ∆u = f in Ω. Then, ∆−1 : L2
#(Ω) → E ↪→ L2

#(Ω) is compact and we have that

K(ϕ) = ∆−1

[
λkeW∫
Ω ke

W

(
ϕ−

∫
Ω ke

Wϕ∫
Ω ke

W

)]
, h̃ = ∆−1(−h).

Thus, K : L2
#(Ω) → L2

#(Ω) is compact.

The result of latter proposition implies that the unique solution ϕ = T (h) of (3.3.1) defines a
continuous linear map from the Banach space C∗ of all functions h in L∞ for which ∥h∥∗ < +∞,
into L∞ (with

∫
Ω h =

∫
Ω ϕ = 0).

It is possible to show that T is differentiable with respect to either β = ξkl, k = 1, 2, l =
1, . . . ,m or β = δ. From equation (3.3.1), we formally get that X = ∂βϕ should satisfy

L(X) = h̃(ϕ) +
∑
i,j

dij∆PZij + d0∆PZ,

where

h̃(ϕ) = − ∂β

(
λkeW∫
Ω ke

W

)
ϕ+ ∂β

[
λkeW(∫
Ω ke

W
)2
]∫

Ω
keWϕ+

λkeW(∫
Ω ke

W
)2 ∫

Ω
keW∂βWϕ

+
∑
i,j

cij∂β(∆PZij) + c0∂β(∆PZ),

and dij = ∂βcij , d0 = ∂βc0. The orthogonality conditions now become∫
Ω
X∆PZij = −

∫
Ω
ϕ∂β(∆PZij) and

∫
Ω
X∆PZ = −

∫
Ω
ϕ∂β(∆PZ).
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3.3. THE LINEAR OPERATOR

We will recast X. We consider the function

Y = X +
2∑

i=1

m∑
j=1

bijPZij + b0PZ,

where the coefficients bij , i = 1, 2 j = 1, . . . ,m and b0 are chosen in order to satisfy the orthogo-
nality conditions∫

Ω
Y ∆PZpq = 0, p = 1, 2, q = 1, . . . ,m and

∫
Ω
Y ∆PZ = 0.

Note that ∫
Ω
X =

∫
Ω
Y = 0.

Let us observe that bij , i = 1, 2 j = 1, . . . ,m and b0 are well defined, since they satisfy an almost
diagonal system. Also, we get that

|bij | ≤
C

δ

(
log

1

δ

)
∥h∥∗ and |b0| ≤

C

δ

(
log

1

δ

)
∥h∥∗.

Indeed, consider the vectors v = (b11, . . . , b1m, b21, . . . , b2m, b0),

w =

(∫
Ω
ϕ∂β(∆PZ11), . . . ,

∫
Ω
ϕ∂β(∆PZ1m),

∫
Ω
ϕ∂β(∆PZ21), . . . ,∫

Ω
ϕ∂β(∆PZ2m),

∫
Ω
ϕ∂β(∆PZ)

)
and the matrix A = (aij)1≤i,j≤m given by

aij =



∫
Ω∆PZ1i PZ1j , 1 ≤ i, j ≤ m∫
Ω∆PZ1i PZ2j , 1 ≤ i ≤ m, m+ 1 ≤ j ≤ 2m∫
Ω∆PZ2i PZ1j , m+ 1 ≤ i ≤ 2m, 1 ≤ j ≤ m∫
Ω∆PZ2i PZ2j , m+ 1 ≤ i, j ≤ 2m∫
Ω∆PZ PZ1j , i = 2m+ 1, 1 ≤ j ≤ 2m∫
Ω∆PZ PZ2j , i = 2m+ 1, m+ 1 ≤ j ≤ 2m∫
Ω∆PZ1i PZ, j = 2m+ 1, 1 ≤ i ≤ m∫
Ω∆PZ2i PZ, j = 2m+ 1, m+ 1 ≤ i ≤ 2m∫
Ω∆PZ PZ, i = 2m+ 1, j = 2m+ 1

.

We know that aij = O(δ) if i ̸= j and

aii =

{
−32π

3 +O(δ), i = 1, . . . , 2m

−32πm
3 +O(δ), i = 2m+ 1

.

Thus, we have that Av = w has a unique solution and we get that A is an almost diagonal
matrix, so, it is invertible (for δ small enough) and we can deduce that

∥v∥IR2m+1 ≤ C∥w∥IR2m+1 ≤ Cmax

{∣∣∣∣∫
Ω
ϕ∂β(∆PZij)

∣∣∣∣ : i = 0, 1, 2, j = 1, . . . ,m

}
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3.3. THE LINEAR OPERATOR

since PZ =
∑m

j=1 PZ0j . Also, we obtain∣∣∣∣∫
Ω
ϕ∂β(∆PZij)

∣∣∣∣ ≤ C∥ϕ∥∞ ∥∂β(∆PZij)∥∗

and

∂β(∆PZij) = −eUj [∂βUjZij + ∂βZij ] +
1

|Ω|

∫
Ω
eUj [∂βUjZij + ∂βZij ].

For β = ξkl we get that ∂ξkl(ρj(ξj)) = ρj(ξj)∂2kG(ξj , ξl) if j ̸= l and ∂ξkl(ρl(ξl)) = ∂kρl(ξl), since
∂2kH(ξl, ξl) = 0. Hence, we deduce that

∂ξklUl(x) =
4(x− ξl)k

δ2l + |x− ξl|2
+
∂kρl(ξl)

ρl(ξl)

|x− ξl|2 − δ2l
δ2l + |x− ξl|2

,

if j ̸= l

∂ξklUj(x) = ∂2kG(ξj , ξl)
|x− ξj |2 − δ2j
δ2j + |x− ξj |2

,

∂ξklZ0l(x) =
∂kρl(ξl)

ρl(ξl)

4δ2l |x− ξl|2

(δ2l + |x− ξl|2)2
+

8δ2l (x− ξl)k
(δ2l + |x− ξl|2)2

,

if j ̸= l

∂ξklZ0j(x) = ∂2kG(ξj , ξl)
4δ2j |x− ξj |2

(δ2j + |x− ξj |2)2
,

and for i = 1, 2

∂ξklZil(x) =
∂kρl(ξl)

ρl(ξl)

2δl(x− ξl)i
δ2l + |x− ξl|2

|x− ξl|2 − δ2l
δ2l + |x− ξl|2

− δik
4δl

δ2l + |x− ξl|2
+

8δl(x− ξl)i(x− ξl)k
(δ2l + |x− ξl|2)2

,

if j ̸= l

∂ξklZij(x) = ∂2kG(ξj , ξl)
2δj(x− ξj)i
δ2j + |x− ξj |2

|x− ξj |2 − δ2j
δ2j + |x− ξj |2

,

since (3.2.5). Note that ∥Zij∥∞ ≤ C for all i = 0, 1, 2 j = 1, . . . ,m, ∥∂ξklUl∥∞ ≤ C
δ , ∥∂ξklUj∥∞ ≤

C for all j ̸= l, ∥∂ξklZil∥∞ ≤ C
δ for all i = 0, 1, 2 and ∥∂ξklZij∥∞ ≤ C, for all i = 0, 1, 2, j ̸= l.

Then, for all j ̸= l
∥eUj∂ξklUjZij∥∞ ≤ ∥eUj∥∗∥∂ξklUjZij∥∞ ≤ C

and
∥eUj∂ξklZij∥∞ ≤ ∥eUj∥∗∥∂ξklZij∥∞ ≤ C.

Now, if j = l then we get

∥eUl∂ξklUlZil∥∞ ≤ ∥eUl∥∗∥∂ξklUlZil∥∞ ≤ C

δ

and

∥eUl∂ξklZil∥∞ ≤ ∥eUl∥∗∥∂ξklZil∥∞ ≤ C

δ

for all i = 0, 1, 2. Let us estimates the integrals, if i ̸= k then∫
Ω
eUl∂ξklUl Zil =

∫
Ω\B(ξl,r)

eUl∂ξklUl Zil = O(δ3)
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3.3. THE LINEAR OPERATOR

and ∫
Ω
eUl∂ξklZil =

∫
Ω\B(ξl,r)

eUl∂ξklZil = O(δ3),

for i = 0 we have that∫
Ω
eUl∂ξklUl Z0l =

∫
B(ξl,r)

eUl∂ξklUl Zil +O(δ2) = O(1)

and ∫
Ω
eUl∂ξklZ0l =

∫
B(ξl,r)

eUl∂ξklZil +O(δ4) = O(1).

Now, if i = k then ∫
Ω
eUl∂ξklUl Zil =

∫
B(ξl,r)

eUl
16δl(x− ξl)

2
k

(δ2l + |x− ξl|2)2
dx+O(δ3)

and ∫
Ω
eUl∂ξklZil =

∫
B(ξl,r)

eUl

[
− 4δl
δ2l + |x− ξl|2

+
8δl(x− ξl)

2
k

(δ2l + |x− ξl|2)2

]
dx+O(δ3).

Hence, we get that∫
Ω
eUl [∂ξklUl Zil + ∂ξklZil] =

∫
B(ξl,r)

eUl

[
− 4δl
δ2l + |x− ξl|2

+
24δl(x− ξl)

2
k

(δ2l + |x− ξl|2)2

]
dx+O(δ3)

= O(δ3).

Therefore, definition of *-norm we get that

∥∂ξkl(∆PZij)∥∗ ≤
C

δ
, for all i = 0, 1, 2, k = 1, 2, j, l = 1, . . . ,m.

Now, for β = δ we get that

∂δUj(x) =
2

δ

|x− ξl|2 − δ2l
δ2l + |x− ξl|2

, ∂δZ0j(x) =
1

δ

8δ2j |x− ξj |2

δ2j + |x− ξj |2
,

and for i = 1, 2

∂δZij(x) =
1

δ

4δj(x− ξj)i
δ2j + |x− ξj |2

|x− ξj |2 − δ2j
δ2j + |x− ξj |2

.

Hence, similarly as above, we get that ∥∂δ(∆PZij)∥∗ ≤ C
δ for all i = 0, 1, 2, j = 1, . . . ,m. Thus,

we conclude that

|bij | ≤
C

δ
∥ϕ∥∞ ≤ C

δ

(
log

1

δ

)
∥h∥∗ for all i = 0, 1, 2, j = 1, . . . ,m

and

|b0| ≤
C

δ
∥ϕ∥∞ ≤ C

δ

(
log

1

δ

)
∥h∥∗.

Hence, the function X above can be uniquely expressed as

X = T (f)−
2∑

i=1

m∑
j=1

bijPZij − b0PZ,
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3.3. THE LINEAR OPERATOR

namely, Y = T (f), where

f = h̃(ϕ) +
2∑

i=1

m∑
j=1

bijL(PZij) + b0L(PZ).

This computations is not just formal. Arguing directly by definition it shows that indeed ∂βϕ = X
for either β = ξkl or β = δ. Moreover, we find that

∥f∥∗ ≤ ∥h̃(ϕ)∥∗ +
2∑

i=1

m∑
j=1

|bij | ∥L(PZij)∥∗ + |b0| ∥L(PZ)∥∗.

From the definition of h̃(ϕ) we have that

∥h̃(ϕ)∥∗ ≤∥∂βK∥∗ ∥ϕ∥∞ +

∥∥∥∥∂β ( K∫
Ω ke

W

)∥∥∥∥
∗
∥ϕ∥∞

∫
Ω
keW + ∥K∥∗∥∂βW∥∞∥ϕ∥∞

+
∑
i,j

|cij | ∥∂β(∆PZij)∥∗ + |c0| ∥∂β(∆PZ)∥∗.

In order to have good estimates, we need to know the derivatives ∂βW whether either β = ξkl or
β = δ. Using the integral representation (2.2.4), it is possible to show that

∂ξklW (x) =
4(x− ξl)k

δ2l + |x− ξl|2
− ∂kρl(ξl)

ρl(ξl)

2δ2l
δ2l + |x− ξl|2

+ ∂2kH(x, ξl)

−
m∑

j=1,j ̸=l

∂2kG(ξj , ξl)
2δ2j

δ2j + |x− ξj |2
+O(δ2| log δ|)

(3.3.16)

and

∂δW (x) = −1

δ

m∑
j=1

4δ2j
δ2j + |x− ξj |2

+O(δ| log δ|). (3.3.17)

Hence, it readily follows that ∥∂βW∥∞ ≤ C
δ for either β = ξkl or β = δ. Now, we find that

∂βK = K

(
∂βW −

∫
Ω ke

W∂βW∫
Ω ke

W

)
and ∥∂βK∥∗ ≤ 2∥K∥∗∥∂βW∥∞ ≤ C

δ
,

since ∥K∥∗ ≤ C. Also, we have that∥∥∥∥∂β [ K∫
Ω ke

W

]∥∥∥∥
∗
≤ 3

∥K∥∗∫
Ω ke

W
∥∂βW∥∞ ≤ C

δ

1∫
Ω ke

W
.

From Proposition 3.3.2 and the previous estimates for ∥∂β(∆PZij)∥∗ and ∥∂β(∆PZ)∥∗ we get
that

∥h̃(ϕ)∥∗ ≤
C

δ
∥ϕ∥∞ +

C

δ
∥h∥∗ ≤

C

δ

(
log

1

δ

)
∥h∥∗.

Recall that ∥L(PZij)∥∗ ≤ Cδ for i = 1, 2, j = 1, . . . ,m and ∥L(PZ)∥∗ ≤ Cδ. Hence,

∥X∥∞ ≤ ∥T (f)∥∞ +

2∑
i=1

m∑
j=1

|bij | ∥PZij∥∞ + |b0| ∥PZ∥∞

≤ C

(
log

1

δ

)
∥f∥∗ +

C

δ
∥ϕ∥∞.
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Therefore, we conclude that for either β = ξkl or β = δ with k = 1, 2, l = 1, . . . ,m

∥∂βT (h)∥∞ ≤ C

δ

(
log

1

δ

)2

∥h∥∗. (3.3.18)

From previous estimates and arguments we deduce that ∂δT is differentiable with respect to
δ. We formally differentiate the equation

∂δT (h) = T (f)−
2∑

i=1

m∑
j=1

bijPZij − b0PZ

with respect to δ. Similarly as above, we estimate every term and finally, we obtain that

∥∂δδT (h)∥∞ ≤ C

δ2

(
log

1

δ

)3

∥h∥∗. (3.3.19)

3.4 The nonlinear problem

In what follows we will solve a nonlinear problem. Recall that our goal is to solve (3.2.8).
Instead of solve directly the problem (3.2.8) we shall solve an intermediate problem. First, we
construct a function ϕ0 which will be the main order in the remainder term, namely, we look for
a solution u =W + ϕ and we expand ϕ = ϕ0 + ϕ1.

Note that as δ → 0 for |y| < R′, R′ > 0 some large constant, we have that

δjR(ξj + δjy) = δjR0(ξj + δjy) + o(1) =
8

(1 + |y|2)2
∇ρj(ξj)
ρj(ξj)

· y + o(1).

In fact, ξj + δjy ∈ B(ξj , r) for some r > 0 fixed and

δjR(ξj + δjy) = δje
Uj(ξj+δjy)

[
∇ρj(ξj + δjy)

ρj(ξj)
· δjy +O(δ2j |y|2) +O(δ2| log δ|)

]
+ δjO(δ2| log δ|).

Hence, roughly speaking ϕ0 should satisfy δjϕ0(ξj + δjy) ∼ Ψ(y) around ξj , where Ψ is a solution
to

∆Ψ+
8

(1 + |y|2)2

(
Ψ− 1

πm

∫
IR2

8

(1 + |z|2)2
Ψ(z) dz

)
= − 8

(1 + |y|2)2
∇ρj(ξj)
ρj(ξj)

· y,

up to orthogonal conditions, in IR2.
Consider the function

Ψi(y) =
2yi

1 + |y|2
log(1 + |y|2), i = 1, 2.

This function satisfies in IR2

∆Ψi +
8

(1 + |y|2)2
Ψi = − 8yi

(1 + |y|2)2
+

24yi
(1 + |y|2)3

and ∫
IR2

8

(1 + |y|2)2
Ψi(y) dy = 0.

Note that Ψi is bounded in IR2 and∫
IR2

[
− 8yi
(1 + |y|2)2

+
24yi

(1 + |y|2)3

]
Yi(y) dy = 0.
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Let us define for x ∈ Ω, i = 1, 2, j = 1, . . . ,m the function

ψij(x) = δjΨi

(
x− ξj
δj

)
=

2δ2j (x− ξj)i

δ2j + |x− ξj |2
[
−2 log δj + log(δ2j + |x− ξj |2)

]
which satisfies

∆ψij + eUjψij = −eUj (x− ξj)i +
3

4
δje

UjZij .

Thus, we define the function

ϕ0(x) =
2∑

i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)
Pψij(x), x ∈ Ω, (3.4.1)

where Pψij is the projection of ψij into the doubly periodic functions with zero average. Observe
that

L(ϕ0) =

2∑
i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)
L(Pψij)

and

L(Pψij) = ∆ψij −
1

|Ω|

∫
Ω
∆ψij +

λkeW∫
Ω ke

W

(
Pψij −

∫
Ω ke

WPψij∫
Ω ke

W

)

= −eUj

[
(x− ξj)i −

3

4
δjZij + ψij

]
+

1

|Ω|

∫
Ω
eUj

[
(· − ξj)i −

3

4
δjZij + ψij

]
+

λkeW∫
Ω ke

W

(
Pψij −

∫
Ω ke

WPψij∫
Ω ke

W

)
.

Hence, we get that

L(ϕ0) = −R̃0 +
2∑

i=1

m∑
j=1

(
− 3

4
δj

)
∂iρj(ξj)

ρj(ξj)
∆PZij , (3.4.2)

where

R̃0 = R0 −
1

|Ω|

∫
Ω
R0 +

2∑
i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)

[
eUjψij −

1

|Ω|

∫
Ω
eUjψij

]
− λkeW∫

Ω ke
W

(
ϕ0 −

∫
Ω ke

Wϕ0∫
Ω ke

W

)

A function u of the form u =W + ϕ0 + ϕ1 satisfy (3.1.1) if and only if ϕ1 ∈ E and

L(ϕ0 + ϕ1) = −[R+N(ϕ0 + ϕ1)]

or equivalently ϕ1 ∈ E and

L(ϕ1) = −[R+ L(ϕ0) +N(ϕ0 + ϕ1)],

where L, R and N are given by (3.2.9), (3.2.10) and (3.2.11) respectively. Also, we have that

N(ϕ0 + ϕ1) = N(ϕ0) + Λ(ϕ1) +N0(ϕ1),

where

Λ(ϕ1) = λ

(
keW+ϕ0ϕ1∫
Ω ke

W+ϕ0
− keWϕ1∫

Ω ke
W

−
keW+ϕ0

∫
Ω ke

W+ϕ0ϕ1( ∫
Ω ke

W+ϕ0
)2 +

keW
∫
Ω ke

Wϕ1( ∫
Ω ke

W
)2

)
, (3.4.3)
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N0(ϕ1) = λ

(
keW+ϕ0+ϕ1∫
Ω ke

W+ϕ0+ϕ1
− keW+ϕ0ϕ1∫

Ω ke
W+ϕ0

+
keW+ϕ0

∫
Ω ke

W+ϕ0ϕ1( ∫
Ω ke

W+ϕ0
)2 − keW+ϕ0∫

Ω ke
W+ϕ0

)
. (3.4.4)

Observe that ∫
Ω
R̃0 =

∫
Ω
Λ(ϕ1) =

∫
Ω
N0(ϕ1) = 0.

We consider the following auxiliary non linear problem{
L(ϕ1) = −[R1 + Λ(ϕ1) +N0(ϕ1)] +

∑2
i=1

∑m
j=1 c

(1)
ij ∆PZij + c

(1)
0 ∆PZ, in Ω,∫

Ω∆PZijϕ1 = 0, for all i = 1, 2, j = 1, . . . ,m,
∫
Ω∆PZϕ1 = 0,

(3.4.5)

where
R1 = R− R̃0 +N(ϕ0), (3.4.6)

for some ϕ ∈ E ∩W 2,2(Ω) and c
(1)
ij , c

(1)
0 ∈ IR, i = 1, 2, j = 1, . . . ,m.

Lemma 3.4.1. Let m > 0, d > 0. Then there exist δ0 > 0, C > 0 such that for 0 < δ < δ0 and
for any points ξ1, . . . , ξm ∈ Ω, satisfying (3.3.4) and δj > 0 satisfying (3.2.5) and (3.2.6), problem

(3.4.5) admits a unique solution ϕ1, c
(1)
ij , i = 0, 1, 2, j = 1, . . . ,m and c

(1)
0 such that

∥ϕ1∥∞ ≤ Cδ2−σ| log δ|2. (3.4.7)

Furthermore, the function (δ, ξ) 7→ ϕ(δ, ξ) ∈ E ∩ L∞(Ω) is C1 in ξ = (ξ1, . . . , ξm) and C2 in δ.
Moreover, we have the following estimates

∥∂βϕ1∥∞ ≤ Cδ1−σ| log δ|3, for either β = ξkl or β = δ (3.4.8)

and
∥∂δδϕ1∥∞ ≤ Cδ−σ| log δ|4. (3.4.9)

Proof: In terms of the operator T defined in Proposition 3.3.2, problem (3.4.5) becomes

ϕ1 = T (−[R1 + Λ(ϕ1) +N0(ϕ1)]) := A(ϕ1). (3.4.10)

For a given number ν > 0, let us consider

Fν = {ϕ ∈ C(Ω̄) : ∥ϕ∥∞ ≤ νδ2−σ| log δ|2}.

From Proposition 3.3.2, we get that for any ϕ ∈ Fν ,

∥A(ϕ)∥∞ ≤ C| log δ|∥R1 + Λ(ϕ1) +N0(ϕ1)∥∗
≤ C| log δ| [∥R1∥∗ + ∥Λ(ϕ1)∥∗ + ∥N0(ϕ1)∥∗] .

Let us estimate ∥R1∥∗. We have that

∥R1∥∗ ≤ ∥R− R̃0∥∗ + ∥N(ϕ0)∥∗
≤ ∥R−R0∥∗ + ∥R0 − R̃0∥∗ + ∥N(ϕ0)∥∗.

We know that, from Lemma 3.2.2, ∥R−R0∥∗ ≤ Cδ2−σ| log δ|. Also, we have that

R0 − R̃0 =
1

|Ω|

∫
Ω
R0 −

2∑
i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)

[
eUjψij +

1

|Ω|

∫
Ω
eUjψij

]
+

λkeW∫
Ω ke

W

(
ϕ0 −

∫
Ω ke

Wϕ0∫
Ω ke

W

)
.
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Observe that from the integral representation (2.2.4) we get that

Pψij = ψij +O(δ2| log δ|) (3.4.11)

uniformly o compact subsets of Ω. Let us estimate the integral∫
Ω
keWϕ0 =

2∑
i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)

∫
Ω
keWPψij .

Hence, we get that ∫
Ω
keWPψij =

∫
Ω
keW (ψij +O(δ2| log δ|))

=

∫
B(ξj ,r)

keWψij +O(| log δ|),

since
∫
Ω ke

W = O(δ−2) and ψij = O(δ2| log δ|) in Ω̄ \B(ξj , r). Hence, we get that∫
B(ξj ,r)

keWψij =
1

8δ2j

∫
B(ξj ,r)

eUjρjψij [1 +O(δ2| log δ|)]

and ∫
B(ξj ,r)

eUjρjψij =

∫
B(0, r

δj
)

8

(1 + |y|2)2
ρj(ξj + δjy)δjΨij(y) dy

= δj

∫
B(0, r

δj
)

8

(1 + |y|2)2
2yi

1 + |y|2
log(1 + |y|2)[ρj(ξj) +O(δj |y|)] dy

= O(δ2j ).

Thus, we obtain that∫
Ω
keWPψij = O(| log δ|) for all i = 1, 2, j = 1, . . . ,m

and

Pψij −
∫
Ω ke

WPψij∫
Ω ke

W
= ψij +O(δ2| log δ|),

since
∫
Ω ke

W = O(δ−2). Now, note that∫
Ω
R0 = O(δ2) and

∫
Ω
eUjψij = O(δ4| log δ|).

If |x − ξj | > r for all j = 1, . . . ,m then (R0 − R̃0)(x) = O(δ2). Now, if |x − ξj | < r for some
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j ∈ {1, . . . ,m} then

(R0 − R̃0)(x) = O(δ2)−
2∑

i=1

m∑
l=1

∂iρl(ξl)

ρl(ξl)

[
eUlψil +O(δ4| log δ|)

]
+

λkeW∫
Ω ke

W

(
2∑

i=1

m∑
l=1

∂iρl(ξl)

ρl(ξl)
ψil +O(δ2| log δ|)

)

= eUj
[
1 +O(|x− ξj |) +O(δ2| log δ|)

] [ 2∑
i=1

∂iρj(ξj)

ρj(ξj)
ψij +O(δ2| log δ|)

]

−
2∑

i=1

∂iρj(ξj)

ρj(ξj)
eUjψij +O(δ2)

=

2∑
i=1

∂iρj(ξj)

ρj(ξj)
eUj
[
ψij

{
O(|x− ξj |) +O(δ2| log δ|)

}
+O(δ2| log δ|)

]
+O(δ2).

Thus, we conclude that ∥R0− R̃0∥∗ ≤ Cδ2−σ. On the other hand, by definition of N we estimate

∥N(ϕ0)∥∗ ≤ C∥K∥∗∥ϕ0∥∞ ≤ C∥ϕ0∥2∞.

Hence, there is a constant C independent of ν such that

∥N(ϕ0)∥∗ ≤ Cδ2.

Therefore, we conclude that ∥R1∥∗ ≤ Cδ2−σ| log δ|.
Now, we estimate the linear term and we obtain that

∥Λ(ϕ)∥∗ ≤ C∥ϕ0∥∗∥ϕ∥∗ ≤ Cνδ3−σ| log δ|2.

Furthermore, we get that

∥N0(ϕ)∥∗ ≤ C

∥∥∥∥ λkeW+ϕ0∫
Ω ke

W+ϕ0

∥∥∥∥
∗
∥ϕ∥2∞ ≤ C∥ϕ∥2∞ ≤ Cν2δ4−2σ| log δ|4.

Hence, we get that for any ϕ ∈ Fν

∥A(ϕ)∥∞ ≤ C| log δ|
[
δ2−σ| log δ|+ ∥ϕ0∥∞∥ϕ∥∞ + ∥ϕ∥2

]
≤ C| log δ|

[
δ2−σ| log δ|+ νδ3−σ| log δ|2 + ν2δ4−2σ| log δ|4

]
≤ Cδ2−σ| log δ|2

[
1 + νδ| log δ|+ ν2δ2−σ| log δ|3

]
.

Given ϕ1, ϕ2 ∈ Fν , we have that

A(ϕ1)−A(ϕ2) = T (−[Λ(ϕ1)− Λ(ϕ2) +N0(ϕ1)−N0(ϕ2)])

and
∥A(ϕ1)−A(ϕ2)∥∞ ≤ C| log δ|[∥Λ(ϕ1)− Λ(ϕ2)∥∗ + ∥N0(ϕ1)−N0(ϕ2)∥∗].

We know that Λ(ϕ1)− Λ(ϕ2) = Λ(ϕ1 − ϕ2), so

∥Λ(ϕ1)− Λ(ϕ2)∥∗ ≤ C∥ϕ0∥∞∥ϕ1 − ϕ2∥∞ ≤ Cδ∥ϕ1 − ϕ2∥∞.
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From the definition of N0, it follows that

∥N0(ϕ1)−N0(ϕ2)∥∗ ≤ C(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞

for some constant C independent of ν. Therefore, we conclude that

∥A(ϕ1)−A(ϕ2)∥∞ ≤ C| log δ|
[
δ∥ϕ1 − ϕ2∥∞ + νδ2−σ| log δ|2∥ϕ1 − ϕ2∥∞

]
≤ Cδ| log δ|

[
1 + νδ1−σ| log δ|

]
∥ϕ1 − ϕ2∥∞.

It follows that for all δ sufficiently small A is a contraction mapping of Fν (for ν large enough),
therefore a unique fixed point ϕ1 of A exists in Fν .

Let us now discuss the differentiability of ϕ1 depending on (δ, ξ), i.e., (δ, ξ) 7→ ϕ1(δ, ξ) ∈ C(Ω̄).
Since R1 depends continuously in (δ, ξ), using fixed point characterization (3.4.10) we deduce that
the mapping (δ, ξ) 7→ ϕ1 is also continuous. Then, formally for β = ξkl or β = δ, we get that

∂βϕ1 = ∂βT (−[R1 + Λ(ϕ1) +N0(ϕ1)]) + T (−∂β [R1 + Λ(ϕ1) +N0(ϕ1)]).

From the definition of R1, we have that

∂βR1 = ∂βR− ∂βR̃0 + ∂β [N(ϕ0)], for β = ξkl or β = δ,

and

∂β [N(ϕ)] = N(ϕ)∂βW + λ

(
keW+ϕ∫
Ω ke

W+ϕ
− keW∫

Ω ke
W

)
∂βϕ− λ

(
keW+ϕ

∫
Ω ke

W+ϕ∂βW(∫
Ω ke

W+ϕ
)2

−
keW

∫
Ω ke

W∂βW(∫
Ω ke

W
)2 −

keWϕ
∫
Ω ke

W∂βW(∫
Ω ke

W
)2 −

keW
∫
Ω ke

W∂βWϕ(∫
Ω ke

W
)2

+2
keW

(∫
Ω ke

W∂βW
) (∫

Ω ke
Wϕ
)(∫

Ω ke
W
)3

)
− λ

(
keW+ϕ

∫
Ω ke

W+ϕ∂βϕ(∫
Ω ke

W+ϕ
)2 −

keW
∫
Ω ke

W∂βϕ(∫
Ω ke

W
)2

)
.

So, we conclude that

∥∂β [N(ϕ0)]∥∗ ≤ C
[
∥∂βW∥∞∥ϕ0∥2∞ + ∥ϕ0∥∞∥∂βϕ0∥∞

]
.

Similarly, we get that

∥∂β [N0(ϕ1)]∥∗ ≤ C
[
∥∂βW + ∂βϕ0∥∞∥ϕ1∥2∞ + ∥ϕ1∥∞∥∂βϕ1∥2∞

]
. (3.4.12)
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On the other hand, we have that

∂β [Λ(ϕ1)] = Λ(ϕ1)∂βW + λ

(
keW+ϕ0∂βϕ0ϕ1∫

Ω ke
W+ϕ0

−
keW+ϕ0ϕ1

∫
Ω ke

W+ϕ0∂βϕ0∫
Ω ke

W+ϕ0

−
keW+ϕ0∂βϕ0

∫
Ω ke

W+ϕ0ϕ1(∫
Ω ke

W+ϕ0
)2 −

keW+ϕ0
∫
Ω ke

W+ϕ0∂βϕ0ϕ1(∫
Ω ke

W+ϕ0
)2

+2
keW+ϕ0

(∫
Ω ke

W+ϕ0ϕ1
) (∫

Ω ke
W+ϕ0∂βϕ0

)(∫
Ω ke

W+ϕ0
)3

)
+ λ

(
keW+ϕ0∫
Ω ke

W+ϕ0
− keW∫

Ω ke
W

)
∂βϕ1

− λ

(
keW+ϕ0

∫
Ω ke

W+ϕ0∂βW(∫
Ω ke

W+ϕ0
)2 −

keW
∫
Ω ke

W∂βW(∫
Ω ke

W
)2

)
ϕ1

− λ

(
keW+ϕ0

∫
Ω ke

W+ϕ0∂βWϕ1(∫
Ω ke

W+ϕ0
)2 −

keW
∫
Ω ke

W∂βWϕ1(∫
Ω ke

W
)2

)

− λ

(
keW+ϕ0

∫
Ω ke

W+ϕ0∂βϕ1(∫
Ω ke

W+ϕ0
)2 −

keW
∫
Ω ke

W∂βϕ1(∫
Ω ke

W
)2

)

+ 2λ

(
keW+ϕ0

(∫
Ω ke

W+ϕ0ϕ1
) (∫

Ω ke
W+ϕ0∂βW

)(∫
Ω ke

W+ϕ0
)3 −

keW
(∫

Ω ke
Wϕ1

) (∫
Ω ke

W∂βW
)(∫

Ω ke
W
)3

)

and we conclude that

∥∂β(Λ(ϕ1))∥∗ ≤ C [∥∂βW∥∞∥ϕ0∥∞∥ϕ1∥∞ + ∥∂βϕ0∥∞∥ϕ1∥∞ + ∥ϕ0∥∞∥∂βϕ1∥∞] . (3.4.13)

Let us estimate ∥∂βR− ∂βR̃0∥∗ and ∥∂βϕ0∥∞ for β = ξkl and β = δ. First, note that

∂βR− ∂βR̃0 = ∂βR− ∂βR0 + ∂βR0 − ∂βR̃0.

Hence, for β = ξkl we get that

∂ξklR = ∆∂ξklW +
λkeW∫
Ω ke

W

(
∂ξklW −

∫
Ω ke

W∂ξklW∫
Ω ke

W

)
.

Using the expansion (3.3.16), we find that∫
Ω
keW∂ξklW = O

(
| log δ|
δ

)
.

On the other hand, we know that

∆∂ξklW =

m∑
j=1

[
−eUj∂ξklUj +

1

|Ω|

∫
Ω
eUj∂ξklUj

]
.

It follows that ∫
Ω
eUj∂ξklUj = O(δ2).

On the other hand, if j ̸= l then

∂ξkl

(
∂iρj(ξj)

ρj(ξj)

)
= ∂2k(∂1iG(ξj , ξl)) and ∂ξkl

(
∂iρl(ξl)

ρl(ξl)

)
=
∂ikρl(ξl)

ρl(ξl)
− ∂iρl(ξl)∂kρl(ξl)

[ρl(ξl)]2
.
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Hence, we have that

∂ξklR0(x) = eUl

[
∇(∂kρl)(ξl)

ρl(ξl)
· (x− ξl) +

∇ρl(ξl)
ρl(ξl)

· (x− ξl)

(
4(x− ξl)k

δ2l + |x− ξl|2

−∂kρl(ξl)
ρl(ξl)

2δ2l
δ2l + |x− ξl|2

)
− ∂kρl(ξl)

ρl(ξl)

]
+
∑
j ̸=l

eUj

[
∇x(∂2kG)(ξj , ξl) · (x− ξj)

+ ∂2kG(ξj , ξl)
∇ρl(ξl)
ρl(ξl)

· (x− ξj)
|x− ξj |2 − δ2j
δ2j + |x− ξj |2

]
.

Now, we estimate in the following form, if |x− ξj | > r for all j = 1, . . . ,m then uniformly

∂ξklR = O(δ2) and ∂ξklR0 = O(δ2).

If |x− ξj | < r for some j ∈ {1, . . . ,m} then we have two cases. Suppose that j = l, then

∂ξklR(x) = − eUl

[
4(x− ξl)k

δ2l + |x− ξl|2
+
∂kρl(ξl)

ρl(ξl)

|x− ξl|2 − δ2l
δ2l + |x− ξl|2

]
+O(δ2)

+ eUl

[
1 +

∇ρl(ξl)
ρl(ξl)

· (x− ξl) +O(|x− ξl|2) +O(δ| log δ|)
]

×
[

4(x− ξl)k
δ2l + |x− ξl|2

− ∂kρl(ξl)

ρl(ξl)

2δ2l
δ2l + |x− ξl|2

+ ∂2kH(x, ξl) +O(δ| log δ|)
]

and

∂ξklR0(x) = eUl

[
−∂kρl(ξl)

ρl(ξl)
+

∇(∂kρl)(ξl)

ρl(ξl)
· (x− ξl) +

∇ρl(ξl)
ρl(ξl)

· (x− ξl)

(
4(x− ξl)k

δ2l + |x− ξl|2

−∂kρl(ξl)
ρl(ξl)

2δ2l
δ2l + |x− ξl|2

)]
+O(δ2).

Hence, we get that

(∂ξklR− ∂ξklR0)(x) = eUl

[
∂2kH(x, ξl) + ∂2kH(x, ξl)

∇ρl(ξl)
ρl(ξl)

· (x− ξl)

− ∇(∂kρl)(ξl)

ρl(ξl)
· (x− ξl) +O(|x− ξl|) +O(δ| log δ|)

]
+O(δ2).

Now, if j ̸= l then we have that

∂ξklR(x) = − eUj∂2kG(ξj , ξl)
|x− ξj |2 − δ2j
δ2j + |x− ξj |2

+ eUj

[
1 +

∇ρj(ξj)
ρj(ξj)

· (x− ξj) +O(|x− ξj |2)

+O(δ| log δ|)
] [
∂2kG(x, ξl)− ∂2kG(ξj , ξl)

2δ2j
δ2j + |x− ξj |2

+O(δ| log δ|)

]
+O(δ2)

and

∂ξklR0(x) = eUj

[
∇x(∂2kG)(ξj , ξl) · (x− ξl) + ∂2kG(ξj , ξl)

∇ρl(ξl)
ρl(ξl)

· (x− ξj)
|x− ξj |2 − δ2j
δ2j + |x− ξj |2

]
+O(δ2).
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Thus, we get that for |x− ξj | < r, j ̸= l

∂ξklR(x)− ∂ξklR0(x) = eUj
[
O(|x− ξj |2) +O(δ| log δ|)

]
+O(δ2).

Therefore, from the definition of ∗-norm we conclude that

∥∂ξklR− ∂ξklR0∥∗ ≤ Cδ| log δ|

Now, let us estimate ∥∂ξklR0 − ∂ξklR̃0∥∗. From the definition we know that

∂ξklR0 − ∂ξklR̃0 =
1

|Ω|

∫
Ω
∂ξklR0 +

2∑
i=1

m∑
j=1

∂ξkl

(
∂iρj(ξj)

ρj(ξj)

)[
−eUjψij +

1

|Ω|

∫
Ω
eUjψij

]

+

2∑
i=1

m∑
j=1

∂iρj(ξj)

ρj(ξj)
∂ξkl

[
−eUjψij +

1

|Ω|

∫
Ω
eUjψij

]

+ ∂ξkl

(
λkeW∫
Ω ke

W

)(
ϕ0 −

∫
Ω ke

Wϕ0∫
Ω ke

W

)
+

λkeW∫
Ω ke

W
∂ξkl

(
ϕ0 −

∫
Ω ke

Wϕ0∫
Ω ke

W

)
.

Furthermore, we have that

∂ξklϕ0 =
2∑

i=1

m∑
j=1

[
∂ξkl

(
∂iρj(ξj)

ρj(ξj)

)
Pψij +

∂iρj(ξj)

ρj(ξj)
∂ξkl (Pψij)

]
.

By the integral representation formula (2.2.4) we get that

∂ξklPψij = ∂ξklψij +O(δ2| log δ|) (3.4.14)

uniformly on compact subsets of Ω for all i = 1, 2, j = 1, . . . ,m. So,

∂ξklψil(x) =

[
∂kρl(ξl)

ρl(ξl)

2δ2l (x− ξl)i|x− ξl|2

(δ2l + |x− ξl|2)2
+

4δ2l (x− ξl)i(x− ξl)k
(δ2l + |x− ξl|2)2

] [
log

(
δ2l + |x− ξl|2

δ2l

)
− 1

]
− δik

2δ2l
δ2l + |x− ξl|2

log

(
δ2l + |x− ξl|2

δ2l

)
,

where δik is the Kronecker’s delta, and for j ̸= l

∂ξklψij(x) = ∂2kG(ξj , ξl)
2δ2j (x− ξj)i|x− ξj |2

(δ2j + |x− ξj |2)2

[
log

(
δ2j + |x− ξj |2

δ2j

)
− 1

]
.

Hence and similarly as above we find that from the definition of *-norm

∥∂ξklR0 − ∂ξklR̃0∥∗ ≤ Cδ| log δ|.

Now, it follows that

∥∂ξklR− ∂ξklR̃0∥∗ ≤ ∥∂ξklR− ∂ξklR0∥∗ + ∥∂ξklR0 − ∂ξklR̃0∥∗ ≤ Cδ| log δ|.

On the other hand, we have that

∥∂ξklϕ0∥∞ ≤ C
2∑

i=1

m∑
j=1

[∥Pψij∥∞ + ∥∂ξklPψij∥∞] ≤ C ′.
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From the definition of R1, we have that

∥∂ξklR1∥∗ ≤∥∂ξklR− ∂ξklR̃0∥∗ + ∥∂ξkl [N(ϕ0)]∥∗
≤Cδ| log δ|+ C

[
∥∂ξklW∥∞∥ϕ0∥2∞ + ∥ϕ0∥∞∥∂ξklϕ0∥∞

]
≤Cδ| log δ|.

Thus, using estimates (3.3.18), (3.4.12) and (3.4.13) for β = ξkl we get that

∥∂ξklϕ1∥∗ ≤∥∂ξklT (−[R1 + Λ(ϕ1) +N0(ϕ1)])∥∞ + ∥T (−∂ξkl [R1 + Λ(ϕ1) +N(ϕ0)]∥∞

≤C

[
| log δ|2

δ

(
∥R1∥∗ + ∥Λ(ϕ1)∥∗ + ∥N0(ϕ1)∥∗

)
+ | log δ|

(
∥∂ξklR1∥∗

+ ∥∂ξkl [Λ(ϕ1)]∥∗ + ∥∂ξkl [N0(ϕ1)]∥∗
)]

≤C

[
| log δ|2

δ

(
δ2−σ| log δ|+ ∥ϕ0∥∞∥ϕ1∥∞ + ∥ϕ1∥2∞

)
+ | log δ|

(
δ| log δ|

+ ∥∂ξklW∥∞∥ϕ0∥∞∥ϕ1∥∞ + ∥∂ξklϕ0∥∞∥ϕ1∥∞ + ∥ϕ0∥∞∥∂ξklϕ1∥∞

+ ∥∂ξkl(W + ϕ0)∥∞∥ϕ1∥2∞ + ∥ϕ1∥∞∥∂ξklϕ1∥∞
)]

≤C
[
δ1−σ| log δ|3 + δ| log δ| ∥∂ξklϕ1∥∞

]
and we conclude (3.4.8) for β = ξkl.

On the other hand, using similar arguments as above, there holds that

∥∂δR− ∂δR̃0∥∗ ≤ ∥∂δR− ∂δR0∥∗ + ∥∂δR0 − ∂δR̃0∥∗ ≤ Cδ1−σ

and ∥∂δϕ0∥∞ ≤ C. Hence, we get that

∥∂δR1∥∗ ≤ Cδ1−σ.

Thus, using estimates (3.3.18), (3.4.12) and (3.4.13) for β = δ we conclude (3.4.8) for β = δ.
We proceed in the same way for the second derivatives with respect to δ. So, we have that

∂δδϕ1 = ∂δδT (−[R1 + Λ(ϕ1) +N0(ϕ1)]) + 2∂δT (−∂δ[R1 + Λ(ϕ1) +N0(ϕ1)])

+ T (−∂δδ[R1 + Λ(ϕ1) +N0(ϕ1)]).

Using previous estimates, similar arguments and (3.3.19) we obtain that

∥∂δδϕ1∥∞ ≤ Cδ−σ| log δ|4.

The above computations can be made rigorous by using the implicit function theorem and
the fixed point representation (3.4.10) which guarantees C2 regularity in δ and C1 regularity in
ξ.

3.5 The finite dimensional variational reduction

In view of Lemma 4.4.1, given any points ξj ∈ Ω satisfying (3.3.4) and any δj > 0, j = 1, . . . ,m

satisfying (3.2.5)-(3.2.6), we consider ϕ1(δ, ξ), c
(1)
ij (δ, ξ), i = 1, 2, j = 1, . . . ,m, and c

(1)
0 = (δ, ξ)

where ξ = (ξ1, . . . , ξm), to be the unique solution to (3.4.5) satisfying (3.4.7), (3.4.8) and (3.4.9).
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After problem (3.4.5) has been solved, we observe that from the choice of R1, Λ(ϕ1) and
N0(ϕ1) we get that

L(ϕ0 + ϕ1) = −[R+N(ϕ0 + ϕ1)] +

2∑
i=1

m∑
j=1

cij∆PZij + c0∆PZ, in Ω, (3.5.1)

where

cij = −3

4
δj
∂iρj(ξj)

ρ(ξj)
+ c

(1)
ij for all i = 1, 2, j = 1, . . . ,m

and c0 = c
(1)
0 , and ϕ0 is given by (3.4.1). Hence, we find a solution to (3.2.8) and then to the

original problem if δ and ξ are such that

cij(δ, ξ) = 0, for all i = 1, 2, j = 1, . . . ,m

c0(δ, ξ) = 0.
(3.5.2)

This problem is equivalent to finding critical points of the following functional

Fλ(δ, ξ) := Jλ
(
W (δ, ξ) + ϕ0(δ, ξ) + ϕ1(δ, ξ)

)
, (3.5.3)

where Jλ is given by (3.1.2), W , ϕ0 are defined by (3.2.7) and (3.4.1) respectively, and ϕ1 is
the solution to problem (3.4.5). The following standard result states that critical points of Fλ

correspond to solutions of (3.5.2) for small δ, namely, for λ close to 8πm.

Lemma 3.5.1. There exists δ0 such that for any 0 < δ < δ0 if (δ, ξ) is a critical point of Fλ,
with ξ ∈ Ωm satisfying (3.3.4) and δj > 0, j = 1, . . . ,m satisfying (3.2.5)-(3.2.6), then u =
W (δ, ξ) + ϕ0(δ, ξ) + ϕ1(δ, ξ) is a critical point of Jλ, that is, if DδFλ(δ, ξ) = 0 and DξFλ(δ, ξ) = 0
then (δ, ξ) satisfies system (3.5.2), i.e., u is a solution to (3.1.1).

Proof: Let us denote ϕ = ϕ0 + ϕ1, in order to simplify the notation. So, Fλ(δ, λ) = Jλ(W + ϕ).
Next, let us differentiate the function Fλ with respect to β for either β = ξkl or β = δ. We can
differentiate directly Jλ(W + ϕ) (under the integral sign), so that,

∂βFλ(δ, ξ) = DJλ(W + ϕ)[∂βW + ∂βϕ]

= −
∫
Ω

[
∆(W + ϕ) +

λkW+ϕ∫
Ω ke

W

]
[∂βW + ∂βϕ]

integrating by parts. From (3.5.1) we get that

∆(W + ϕ) + λ

(
kW+ϕ∫
Ω ke

W
− 1

|Ω|

)
=

2∑
i=1

m∑
j=1

cij∆PZij + c0∆PZ. (3.5.4)

Hence, we obtain that

∂βFλ(δ, ξ) = −
2∑

i=1

m∑
j=1

cij

∫
Ω
∆PZij [∂βW + ∂βϕ]− c0

∫
Ω
∆PZ[∂βW + ∂βϕ],

since
∫
Ω[∂βW+∂βϕ] = 0. From the results of previous section, this expression defines a continuous

function of (δ, ξ). Let us assume that DδFλ(δ, ξ) = 0 and DξFλ(ε, ξ) = 0. Then, from previous
equality for both β = δ and β = ξkl

2∑
i=1

m∑
j=1

cij

∫
Ω
∆PZij [∂βW + ∂βϕ] + c0

∫
Ω
∆PZ[∂βW + ∂βϕ] = 0.
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From the estimates of previous section, we get that ∥∂βϕ∥∞ ≤ C, since ϕ = ϕ0 + ϕ1. Also, we
have that

∂δW (x) = −1

δ
PZ +O(δ| log δ|) and ∂ξklW (x) =

1

δl
Zkl +O(1) =

1

δl
PZkl +O(1)

uniformly for x ∈ Ω̄. Thus, it follows that

2∑
i=1

m∑
j=1

cij

∫
Ω
∆PZij [PZ +O(δ)] + c0

∫
Ω
∆PZ[PZ +O(δ)] = 0

2∑
i=1

m∑
j=1

cij

∫
Ω
∆PZij [PZkl +O(δ)] + c0

∫
Ω
∆PZ[PZkl +O(δ)] = 0,

for all k = 1, 2, j = 1, . . . ,m with O(·) in the sense of L∞-norm as δ → 0. The above system is
strictly diagonal dominant and we thus get cij = 0 for all i = 1, 2, j = 1, . . . ,m and c0 = 0.

In order to solve for critical points of the function Fλ, a key step is its expected closeness to
the function Jλ(W ), where W is the function defined in (3.2.7), which we analyze in the next
section.

Lemma 3.5.2. The following expansions holds

Fλ(δ, ξ) = Jλ(W ) + Θ(δ, ξ) + θλ(δ, ξ),

where

Θ(δ, ξ) = −14

3
πδ2

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)

and
|θλ|+ δ|∇θλ|+ δ2|D2

δθλ| = O(δ3−σ| log δ|)

uniformly for points ξ = (ξ1, . . . , ξm), ξj ∈ Ω, j = 1, . . . ,m satisfying (3.3.4), and with δj > 0,
j = 1, . . . ,m satisfying (3.2.5)-(3.2.6).

Proof: We write ϕ = ϕ0 + ϕ1 and

Jλ(W + ϕ)− Jλ(W ) = A+B,

where
A := Jλ(W + ϕ)− Jλ(W + ϕ0) and B := Jλ(W + ϕ0)− Jλ(W ).

Let us estimate A first. A Taylor expansion give us

A = DJλ(W + ϕ)[ϕ1]−
∫ 1

0
D2Jλ(W + ϕ0 + tϕ1)[ϕ1]

2t dt.

Testing equation (3.5.1) against ϕ1 and integrating by parts, we get∫
Ω
∇(W + ϕ)∇ϕ1 − λ

∫
Ω ke

W+ϕϕ1∫
Ω ke

W+ϕ
= 0

i.e., DJλ(W + ϕ)[ϕ1] = 0. Thus,

A = −
∫ 1

0
D2Jλ(W + ϕ0 + tϕ1)[ϕ1]

2t dt.
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In fact, we have that

A = f ′(1)−
∫ 1

0
f ′′(t) dt, with f(t) = Jλ(W + ϕ0 + tϕ1).

Hence, we get that

f ′(t) = DJλ(W + ϕ0 + tϕ1)[ϕ1]

=

∫
Ω

[
−∆(W + ϕ0 + tϕ1)− λ

keW+ϕ0+tϕ1∫
Ω ke

W+ϕ0+tϕ1

]
ϕ1.

So, by (3.5.1) we get that f ′(1) = DJλ(W + ϕ)[ϕ1] = 0, since∫
Ω
ϕ1∆PZij = 0, for all i = 1, 2, j = 1, . . . ,m∫

Ω
ϕ1∆PZ = 0 and

∫
Ω
ϕ1 = 0.

On the other hand, we have that

f ′′(t) = D2Jλ(W + ϕ0 + tϕ1)[ϕ1]
2

= −
∫
Ω

[
∆ϕ1 + λ

keW+ϕ0+tϕ1ϕ1∫
Ω ke

W+ϕ0+tϕ1
− λ

keW+ϕ0+tϕ1
∫
Ω ke

W+ϕ0+tϕ1ϕ1( ∫
Ω ke

W+ϕ0+tϕ1
)2

]
ϕ1

=

∫
Ω

[
R1 + Λ(ϕ1) +N0(ϕ1) +

λkeWϕ1∫
Ω ke

W
−
λkeW

∫
Ω ke

Wϕ1( ∫
Ω ke

W
)2

−λ ke
W+ϕ0+tϕ1ϕ1∫

Ω ke
W+ϕ0+tϕ1

+ λ
kW+ϕ0+tϕ1

∫
Ω ke

W+ϕ0+tϕ1ϕ1( ∫
Ω ke

W+ϕ0+tϕ1
)2

]
ϕ1

=

∫
Ω

[
R1 +N0(ϕ1)− Λ̃t(ϕ1)

]
ϕ1,

(3.5.5)

where

Λ̃t(ϕ1) =λ

(
keW+ϕ0+tϕ1ϕ1∫
Ω ke

W+ϕ0+tϕ1
− keW+ϕ0ϕ1∫

Ω ke
W+ϕ0

−
kW+ϕ0+tϕ1

∫
Ω ke

W+ϕ0+tϕ1ϕ1( ∫
Ω ke

W+ϕ0+tϕ1
)2

+
keW+ϕ0

∫
Ω ke

W+ϕ0ϕ1( ∫
Ω ke

W+ϕ0
)2

)
.

(3.5.6)

Let us observe that we get Λ̃t(ϕ1) from Λ(ϕ1) replacing W by W + ϕ0 and ϕ0 by tϕ1. Thus, we
obtain

A = −1

2

∫
Ω
[R1 +N0(ϕ1)]ϕ1 +

∫ 1

0

{∫
Ω
Λ̃t(ϕ1)ϕ1

}
t dt. (3.5.7)

Now, we can estimate

|A| ≤ C∥R1 +N0(ϕ1)∥∗ ∥ϕ1∥∞ +

∫ 1

0
C∥Λ̃t(ϕ1)∥∗∥ϕ1∥∞ |t| dt

≤ C [∥R1∥∗ + ∥N0(ϕ1)∥∗] ∥ϕ1∥∞ +

∫ 1

0
C|t|∥ϕ1∥2∞∥ϕ1∥∞ |t| dt

≤ C
[
δ2−σ| log δ|+ ∥ϕ1∥2∞

]
δ2−σ| log δ|2 + C[δ2−σ| log δ|]3

≤ C[δ4−2σ| log δ|3 + δ6−3σ| log δ|6].

51
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Note that we estimate ∥Λ̃t(ϕ1)∥∗, similarly as we have done with Λ(ϕ1). Therefore, we get

Jλ(W + ϕ)− Jλ(W + ϕ0) = O(δ4−2σ| log δ|3).

Let us differentiate with respect to either β = ξkl or β = δ. We use the representation (3.5.7)
and differentiate directly under the integral sign, thus obtaining for each ξkl, k = 1, 2, l = 1, . . . ,m
or δ,

∂βA = − 1

2

∫
Ω

(
[∂βR1 + ∂β{N0(ϕ1)}]ϕ1 + [R1 +N0(ϕ1)]∂βϕ1

)
+

∫ 1

0

{∫
Ω

[
∂β{Λ̃t(ϕ1)}ϕ1 + Λ̃t(ϕ1)∂βϕ1

]}
t dt.

We use the estimates from previous section and we observe that an estimate for ∥∂β(Λ̃t(ϕ1))∥∗
arises from similar computations for ∥∂β(Λ(ϕ1))∥∗. So, we find that

∥∂β(Λ̃t(ϕ1))∥∗ ≤ C
[
|t| ∥ϕ1∥2∞∥∂β(W + ϕ0)∥∞ + |t| ∥∂βϕ1∥∞∥ϕ1∥∞

]
.

Hence, by using the estimates of the previous section we obtain

|∂βA| ≤ C

(
[∥∂βR1∥∗ + ∥∂β{N0(ϕ1)}∥∗] ∥ϕ1∥∞ + [∥R1∥∗ + ∥N0(ϕ1)∥∗] ∥∂βϕ1∥∗

+

∫ 1

0

[
∥∂β{Λ̃t(ϕ1)}∥∗∥ϕ1∥∞ + ∥Λ̃t(ϕ1)∥∗∥∂βϕ1∥∞

]
dt

)
≤ C

( [
∥∂βR1∥∗ + ∥∂β(W + ϕ0)∥∞∥ϕ1∥2∞ + ∥ϕ1∥∞∥∂βϕ1∥∞

]
∥ϕ1∥∞

+
[
∥R1∥∗ + ∥ϕ1∥2∞

]
∥∂βϕ1∥∗ +

[
∥ϕ1∥2∞∥∂β(W + ϕ0)∥∞ + ∥∂βϕ1∥∞∥ϕ1∥∞

]
∥ϕ1∥∞

+ ∥ϕ1∥2∞∥∂βϕ1∥∞
)

≤ C
( [
δ1−σ + δ3−2σ| log δ|4 + δ3−2σ| log δ|5

]
δ2−σ| log δ|2

+
[
δ2−σ| log δ|+ δ4−2σ| log δ|2

]
δ1−σ| log δ|3

)
Thus, we conclude that for either β = ξkl or β = δ

∂β [Jλ(W + ϕ)− Jλ(W + ϕ0)] = O(δ3−2σ| log δ|4).

Let us differentiate ∂δA with respect to δ. Hence, it follows that

∂δδA = − 1

2

∫
Ω

(
[∂δδR1 + ∂δδ{N0(ϕ1)}]ϕ1 + 2 [∂δR1 + ∂δ{N0(ϕ1)}] ∂δϕ1 + [R1 +N0(ϕ1)]∂δδϕ1

)
+

∫ 1

0

{∫
Ω

[
∂δδ{Λ̃t(ϕ1)}ϕ1 + 2∂δ{Λ̃t(ϕ1)}∂δϕ1 + Λ̃t(ϕ1)∂δδϕ1

]}
t dt.

From estimates used to obtain (3.4.9) and similarly as above, we get that

∂δδ[Jλ(W + ϕ)− Jλ(W + ϕ0)] = O(δ2−2σ| log δ|5).

On the other hand, we have that by a Taylor expansion

B = DJλ(W + ϕ0)[ϕ0]−
∫ 1

0
D2Jλ(W + tϕ0)[ϕ0]

2t dt.
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In fact, it holds

B = g′(1)−
∫ 1

0
g′′(t)t dt, with g(t) = Jλ(W + tϕ0).

Hence, we get that

g′(t) = DJλ(W + tϕ0)[ϕ0]

=

∫
Ω

[
−∆(W + tϕ0)− λ

keW+tϕ0∫
Ω ke

W+tϕ0

]
ϕ0.

So, by (3.4.2) we get that

g′(1) = −
∫
Ω
[R+ L(ϕ0) +N(ϕ0)]ϕ0

= −
∫
Ω

[
R− R̃0 +

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij +N(ϕ0)

]
ϕ0,

where we denote c
(0)
ij = −3

4δj
∂iρj(ξj)
ρj(ξj)

. Also, we have that

g′′(t) = D2Jλ(W + tϕ0)[ϕ0]
2

= −
∫
Ω

[
∆ϕ0 + λ

keW+tϕ0ϕ0∫
Ω ke

W+tϕ0
− λ

keW+tϕ0
∫
Ω ke

W+tϕ0ϕ0( ∫
Ω ke

W+tϕ0
)2

]
ϕ0

= −
∫
Ω

[
−λke

Wϕ0∫
Ω ke

W
+
λkeW

∫
Ω ke

Wϕ0( ∫
Ω ke

W
)2 − R̃0+

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij

+ λ
keW+tϕ0ϕ0∫
Ω ke

W+tϕ0
− λ

kW+tϕ0
∫
Ω ke

W+tϕ0ϕ0( ∫
Ω ke

W+tϕ0
)2

]
ϕ0

= −
∫
Ω

−R̃0 +

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij + Λ̄t(ϕ0)

ϕ0,

(3.5.8)

where

Λ̄t(ϕ0) = λ

(
keW+tϕ0ϕ0∫
Ω ke

W+tϕ0
− keWϕ0∫

Ω ke
W

−
kW+tϕ0

∫
Ω ke

W+tϕ0ϕ0( ∫
Ω ke

W+tϕ0
)2 +

keW
∫
Ω ke

Wϕ0( ∫
Ω ke

W
)2

)
.

Let us observe that Λ̄t(ϕ0) is obtained replacing ϕ0 by tϕ0 and ϕ1 by ϕ0 in Λ(ϕ1). Thus, we have
that

B = −
∫
Ω

[
R− R̃0 +

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij +N(ϕ0)

]
ϕ0

+

∫ 1

0


∫
Ω

−R̃0 +
2∑

i=1

m∑
j=1

c
(0)
ij ∆PZij + Λ̄t(ϕ0)

ϕ0
 t dt

= −
∫
Ω

[
R− 1

2
R̃0 +N(ϕ0) +

1

2

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij

]
ϕ0 +

∫ 1

0

{∫
Ω
Λ̄t(ϕ0)ϕ0

}
t dt

= B0 +B1,
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where

B0 := − 1

2

∫
Ω

[
R0 +

2∑
i=1

m∑
j=1

c
(0)
ij ∆PZij

]
ϕ0

= − 1

2

∫
Ω
R0ϕ0 +

3

8

2∑
i=1

m∑
j=1

δj
∂iρj(ξj)

ρj(ξj)

∫
Ω
∆PZijϕ0

and

B1 := −
∫
Ω

[
R−R0 +

1

2
(R0 − R̃0) +N(ϕ0)

]
ϕ0 +

∫ 1

0

{∫
Ω
Λ̄t(ϕ0)ϕ0

}
t dt.

We estimate first B1. We get that

|B1| ≤ C

([
∥R−R0∥∗ + ∥R0 − R̃0∥∗ + ∥N(ϕ0)∥∗

]
∥ϕ0∥∞ +

∫ 1

0
|t|2∥ϕ0∥3∞ dt

)
≤ C

[
δ
(
δ2−σ| log δ|+ δ2−σ + δ2

)
+ δ3

]
≤ Cδ3−σ| log δ|,

since ∥Λ̄t(ϕ0)∥∗ ≤ C|t| ∥ϕ0∥2∞. Similar as the estimates for the derivatives of A, we differentiate
B1 directly under the integral sign with respect to either β = ξkl or β = δ and we estimate to
obtain that

|∂βB1| ≤ Cδ2−σ| log δ|.

In the same way, we proceed for the second derivatives ∂δδB1 and we find that

|∂δδB1| ≤ Cδ1−σ| log δ|.

Now, let us compute B0. From the definition of R0 in (3.2.15) and ϕ0 in (3.4.1) we have that∫
Ω
R0ϕ0 =

2∑
i=1

m∑
j=1

2∑
k=1

m∑
l=1

∂iρj(ξj)

ρj(ξj)

∂kρl(ξl)

ρl(ξl)

∫
Ω
(x− ξj)ie

UjPψkl(x).

Using (3.4.11), the definition of ψkl, it follows that if l = j, k = i then∫
Ω
(x− ξj)ie

UjPψij = 6πδ2j +O(δ3| log δ|)

and otherwise (l ̸= j or l = j, k ̸= i)∫
Ω
(x− ξj)ie

UjPψkl = O(δ3| log δ|).

Therefore, we conclude that∫
Ω
R0ϕ0 = 6πδ2

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)
+O(δ3| log δ|),

by the choice of δj in (3.2.5). On the other hand,∫
Ω
∆PZijϕ0 =

∫
Ω
∆Zijϕ0 = −

2∑
k=1

m∑
l=1

∂kρl(ξl)

ρl(ξl)

∫
Ω
eUjZijPψkl.
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Similarly, it is readily checked that∫
Ω
∆PZijϕ0 = −40

9
πδj

∂iρj(ξj)

ρj(ξj)
+O(δ2| log δ|).

Therefore,

B0 = −14π

3
δ2

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)
+O(δ3| log δ|).

From similar arguments used in previous estimates and previous sections, this latter expansion
is also true for first derivatives ∂βB0 with either β = ξkl or β = δ, namely,

∂ξklB0 = −14π

3
δ2

m∑
j=1

∂ξkl

(
|∇ρj(ξj)|2

ρj(ξj)

)
+O(δ2| log δ|) and

∂δB0 = −28π

3
δ

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)
+O(δ2| log δ|).

For the second derivative ∂δδB0 we find that

∂δδB0 = −28π

3

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)
+O(δ| log δ|).

Finally, taking θλ(δ, ξ) = Fλ(δ, ξ)− Jλ(W )−Θ(δ, ξ), where

Θ(δ, ξ) = −14

3
πδ2

m∑
j=1

|∇ρj(ξj)|2

ρj(ξj)

we have shown that as δ → 0

|θλ|+ δ|∇θλ|+ δ2|D2
δθλ| = O(δ3−σ| log δ|)

uniformly for points ξ = (ξ1, . . . , ξm), ξj ∈ Ω, j = 1, . . . ,m satisfying (3.3.4), and with δj > 0,
j = 1, . . . ,m satisfying (3.2.5)-(3.2.6). The continuity in (δ, ξ) of all these expressions is inherited
from that of ϕ = ϕ0 + ϕ1 and its derivatives in (δ, ξ) in the L∞-norm.

3.6 Energy computations

The purpose of this section is to give an asymptotic estimate of Jλ(W ), where W is the approx-
imate solution defined in (3.2.7) and Jλ is the energy functional (3.1.2) associated to problem
(3.1.1).

First, let us see a result which will be useful to get the mentioned expansion.

Lemma 3.6.1. Given any f ∈ C2,γ(Ω̄), 0 < γ < 1 (∂δf ≡ 0), we have that∫
Ω
eUδ,ξf = 8πf(ξ)− 4π∆f(ξ)δ2 log δ +O(δ2),

as δ → 0.
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Proof: First, observe that for r > 0 small we get that∫
Ω
eUδ,ξf =

∫
B(ξ,r)

eUδ,ξf +O(δ2).

Also, we get that∫
B(ξ,r)

eUδ,ξf =

∫
B(ξ,r)

eUδ,ξ(x)

(
f(x)− f(ξ)−∇f(ξ) · (x− ξ)− 1

2
⟨D2f(ξ)(x− ξ), x− ξ⟩

)
dx

+

∫
B(ξ,r)

eUδ,ξ(x)

(
f(ξ) +∇f(ξ) · (x− ξ) +

1

2
⟨D2f(ξ)(x− ξ), x− ξ⟩

)
dx.

So, as δ → 0∫
B(ξ,r)

eUδ,ξ(x)

(
f(x)− f(ξ)−∇f(ξ) · (x− ξ)− 1

2
⟨D2f(ξ)(x− ξ), x− ξ⟩

)
dx = O(δ2),

since

f(x)− f(ξ)−∇f(ξ) · (x− ξ)− 1

2
⟨D2f(ξ)(x− ξ), x− ξ⟩ = O(|x− ξ|2+γ)

uniformly in B(ξ, r). On the other hand, we get that∫
B(ξ,r)

eUδ,ξ(x)

(
f(ξ) +∇f(ξ) · (x− ξ) +

1

2
⟨D2f(ξ)(x− ξ), x− ξ⟩

)
dx

=

∫
B(0, r

δ
)

8

(1 + |y|2)2

(
f(ξ) +

1

2

2∑
i=1

2∑
j=1

D2
ijf(ξ)δ

2yiyj

)
dy

= 8f(ξ)

∫
B(0,r/δ)

dy

(1 + |y|2)2
+ 4δ2

2∑
i=1

D2
iif(ξ)

∫
B(0, r

δ
)

y2i dy

(1 + |y|2)2

= 8πf(ξ)

(
1− δ2

δ2 + r2

)
+ 2πδ2∆f(ξ)

[
log

(
δ2 + r2

δ2

)
+

δ2

δ2 + r2
− 1

]
and the conclusion follows.

Lemma 3.6.2. Let m ∈ Z+ and d > 0 be a fixed small number and W be the function defined in
(3.2.7). Under the assumptions (3.2.5) and (3.2.6), the following expansion holds

Jλ(W ) = − 8π − λ log(πm) + 4πφm(ξ) + 2(λ− 8πm) log δ + V (ξ)δ2 log δ +O(δ2), (3.6.1)

as δ → 0, uniformly ξ = (ξ1, . . . , ξm) satisfying (3.3.4), where the function φm is defined by

φm(ξ) = −2

m∑
j=1

log k(ξj)−
∑
l ̸=j

G(ξl, ξj) (3.6.2)

and V is the function defined by (3.1.5).

Remark 3.6.1. In the sequel, by O(·) and o(·) we will be uniformly in the region ξ = (ξ1, . . . , ξm),
satisfying (3.3.4).
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Proof: First, we will evaluate the quadratic part of energy evaluated at W , that is,

1

2

∫
Ω
|∇W |2 = −1

2

∫
Ω
W∆W = −1

2

m∑
j=1

∫
Ω
W∆Wj =

1

2

m∑
j=1

m∑
l=1

∫
Ω
eUjWl.

Then, for j = l we have that by Lemma 3.2.1∫
Ω
eUjWj =

∫
Ω
eUj
[
Uj − log(8δ2j ) +H(·, ξj) + αδj ,ξj +O(δ2)

]
.

Let us fix a small number r > 0. For the first integral in the R.H.S., we get that∫
Ω
eUj
[
Uj − log(8δ2j )

]
=

∫
B(0, r

δj
)

8

(1 + |y|2)2
log

1

δ4j (1 + |y|2)2
dy +O(δ2).

Note that∫
B(0, r

δj
)

8

(1 + |y|2)2
log

1

δ4j (1 + |y|2)2
dy = 8

∫
B(0, r

δj
)

1

(1 + |y|2)2

[
−4 log δj + 2 log

1

(1 + |y|2)2

]
dy

= 8π

∫ r
δj

0

2s

(1 + s2)2

[
−4 log δj + 2 log

1

(1 + s2)2

]
ds

= −32 log δj +
16πδ2j
δ2j + r2

log(δ2j + r2) +
16πδ2j
δ2j + r2

− 16π.

Hence, we obtain that ∫
Ω
eUj
[
Uj − log(8δ2j )

]
= −16π − 32 log δj +O(δ2).

Next, by the previous Lemma we have that∫
Ω
eUjH(·, ξj) = 8πH(ξj , ξj)− 4π∆xH(ξj , ξj)δ

2
j log δj +O(δ2).

We know that ∆xH(·, ξj) =
8π

|Ω|
, in Ω. Therefore, we conclude that

∫
Ω
eUjH(·, ξj) = 8πH(ξj , ξj)−

32π2

|Ω|
δ2j log δj +O(δ2).

Now, using the previous Lemma∫
Ω
eUjαδj ,ξj = 8παδj ,ξj +O(δ2),

since αδj ,ξj is a constant and αδj ,ξj = O(δ2| log δ|). Therefore, we conclude that∫
Ω
eUjWj = − 16π − 32 log δj + 8πH(ξj , ξj)−

64π2

|Ω|
δ2j log δj +O(δ2).

Now, if l ̸= j then uniformly for x ∈ Ω̄ \B(ξl, r) we have that

Wl(x) = G(x, ξl) + αδl,ξl +O(δ2).
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Hence, we get that∫
Ω
eUjWl =

∫
B(ξj ,r)

eUjWl +

∫
Ω\[B(ξj ,r)∪B(ξl,r)]

eUjWl +

∫
B(ξl,r)

eUjWl,

and ∫
Ω\[B(ξj ,r)∪B(ξl,r)]

eUjWl =

∫
Ω\[B(ξj ,r)∪B(ξl,r)]

8δ2j
(δ2j + |x− ξj |2)2

[
G(x, ξl) +O(δ2| log δ|)

]
dx

= O(δ2).

By Lemma 3.2.1, we have that there is a constant C > 0 independent of δ such that∫
B(ξl,r)

|Wl| ≤
∫
B(ξl,r)

[|Ul − log(8δ2l )|+ |H(·, ξl)|+ C ′δ2| log δ|] ≤ C.

Hence, we get that ∫
B(ξl,r)

eUjWl = O(δ2).

Also, from similar computations in the proof of Lemma 3.6.1, we find that∫
B(ξj ,r)

eUjWl =

∫
B(ξj ,r)

eUj
[
G(x, ξl) + αδl,ξl +O(δ2)

]
= 8πG(ξj , ξl)− 4π∆xG(ξj , ξl)δ

2
j log δj + 8παδl,ξl +O(δ2).

Therefore, we obtain that∫
Ω
eUjWl = 8πG(ξj , ξl)−

32π2

|Ω|
δ2j log δj −

32π2

|Ω|
δ2l log δl +O(δ2).

Now, we know that δ2j = δ2ρj(ξj) and log ρj(ξj) = log k(ξj) +H(ξj , ξj) +
∑
l ̸=j

G(ξj , ξl) hence,

we get that

1

2

∫
Ω
|∇W |2 = 1

2

m∑
j=1

[
− 16π − 32π log δj + 8πH(ξj , ξj)−

64π2

|Ω|
δ2j log δj +O(δ2)

+

m∑
l=1,l ̸=j

(
8πG(ξj , ξl)−

32π2

|Ω|
δ2j log δj −

32π2

|Ω|
δ2l log δl +O(δ2)

)]

= − 8πm+

m∑
j=1

[
− 16π

(
log δ +

1

2
log ρj(ξj)

)
+ 4πH(ξj , ξj)−

32π2m

|Ω|
δ2j log δj

+

m∑
l=1,l ̸=j

4πG(ξj , ξl)

]
+O(δ2)

= − 8πm− 16πm log δ +

m∑
j=1

[
− 8π log k(ξj)− 4πH(ξj , ξj)− 4π

m∑
l=1,l ̸=j

G(ξj , ξl)

]

− 32π2m

|Ω|

m∑
j=1

δ2j log δj +O(δ2).
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Now, let us estimate the second integral term in the energy at W . So, for (the same) r > 0
small fixed number, we have that∫

Ω
keW =

m∑
j=1

∫
B(ξj ,r)

keW +

∫
Ω\∪m

j=1B(ξj ,r)
keW .

Given any j ∈ {1, . . . ,m} we find that∫
B(ξj ,r)

keW =

∫
B(ξj ,r)

k exp

(
Uj − log(8δ2j ) +H(·, ξj) + αδj ,ξj

+
∑
l ̸=j

[G(·, ξl) + αδl,ξl ] +O(δ2)

)

=
1

8δ2j

∫
B(ξj ,r)

eUjρj exp

( m∑
l=1

αδl,ξl

)
(1 +O(δ2)).

Hence, using Lemma 3.6.1 we obtain∫
B(ξj ,r)

keW =
1

8δ2j
e
∑m

l=1 αδl,ξl

[
8πρj(ξj)− 4π∆ρj(ξj)δ

2
j log δj +O(δ2)

]
.

On the other hand, we have that∫
Ω\∪m

j=1B(ξj ,r)
keW =

∫
Ω\∪m

j=1B(ξj ,r)
k exp

( m∑
j=1

[
G(·, ξj) + αδj ,ξj

])
[1 +O(δ2)]

= exp

( m∑
j=1

αδj ,ξj

)
O(1).

Thus, we obtain that∫
Ω
keW = exp

( m∑
j=1

αδj ,ξj

){ m∑
j=1

[
π

δ2
− π

2
∆ρj(ξj) log δj

]
+O(1)

}

=
πm

δ2
exp

( m∑
j=1

αδj ,ξj

){
1 +

1

m

m∑
j=1

[
− 1

2
∆ρj(ξj)δ

2

(
log δ +

1

2
log ρj(ξj)

)]
+O(δ2)

}
and hence,

log

(∫
Ω
keW

)
= log(πm)− 2 log δ +

m∑
j=1

(
− 4π

|Ω|
δ2j log δj +O(δ2)

)

− 1

2m

m∑
j=1

∆ρj(ξj)δ
2 log δ +O(δ2)

= log(πm)− 2 log δ − 4π

|Ω|

m∑
j=1

δ2j log δj −
1

2m
δ2 log δ

m∑
j=1

∆ρj(ξj) +O(δ2).
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Therefore, we conclude that

Jλ(W ) = − 8πm− 16πm log δ + 4πφm(ξ)− 32π2m

|Ω|

m∑
j=1

δ2j log δj − λ log(πm)

+ 2λ log δ +
4πλ

|Ω|

m∑
j=1

δ2j log δj +
λ

2m
δ2 log δ

m∑
j=1

∆ρj(ξj) +O(δ2)

= − 8πm− λ log(πm) + 4πφm(ξ) + 2(λ− 8πm) log δ + 4πδ2 log δ

m∑
j=1

∆ρj(ξj) +O(δ2),

since λ = 8πm+O(δ2| log δ|). Thus, we get (3.6.1). This completes the proof.

In order to find critical points of Fλ, we need to know the expansion of the derivatives of Fλ.
To this aim, we will show that the expansion (3.6.1) is also true in C1-sense in ξ and C2-sense
in δ. First, we show the expansion of ∇ξ[Jλ(W )] in terms of ∇φm, under the assumptions of
Lemma 3.6.2.

Lemma 3.6.3. The following expansion holds, under the assumptions of Lemma 3.6.2,

∇ξ[Jλ(W )] = 4π∇φm(ξ) +O(δ2| log δ|), (3.6.3)

uniformly for points ξ ∈ Ω̃m satisfying (3.3.4), as δ → 0.

Proof: Let us fix i ∈ {1, 2} and j ∈ {1, . . . ,m}. We have that

∂(ξj)i [Jλ(W )] = −
∫
Ω

[
∆W +

λkeW∫
Ω ke

W

]
∂(ξj)iW.

Hence, we first compute

−
∫
Ω
∆W∂(ξj)iW = −

m∑
l=1

∫
Ω
∆Wl∂(ξj)iW =

m∑
l=1

m∑
q=1

∫
Ω
eUl∂(ξj)iWq.

Recall that

∂(ξj)iWj(x) =
4(x− ξj)i

δ2j + |x− ξj |2
− ∂iρj(ξj)

ρj(ξj)

2δ2j
δ2j + |x− ξj |2

+ ∂2iH(x, ξj) +O(δ2| log δ|)

and for q ̸= j

∂(ξj)iWq(x) = −∂2iG(ξl, ξj)
2δ2l

δ2l + |x− ξl|2
+O(δ2| log δ|),

uniformly on compact subset of Ω. If l ̸= j and q = l then∫
Ω
eUl∂(ξj)iWl = −

∫
Ω
eUl

[
∂2iG(ξl, ξj)

2δ2l
δ2l + |x− ξl|2

+O(δ2| log δ|)
]

= −8π∂2iG(ξl, ξj) +O(δ2| log δ|).

If l = j and q = l then∫
Ω
eUj∂(ξj)iWj =

∫
Ω
eUj

[
4(x− ξj)i

δ2j + |x− ξj |2
− ∂iρj(ξj)

ρj(ξj)

2δ2j
δ2j + |x− ξj |2

+ ∂2iH(x, ξj) +O(δ2| log δ|)
]

= −8π
∂iρj(ξj)

ρj(ξj)
+ 8π∂2iH(ξj , ξj) +O(δ2| log δ|).

60



3.6. ENERGY COMPUTATIONS

If q ̸= l and q ̸= j then∫
Ω
eUl∂(ξj)iWq =

∫
B(ξl,r)

eUl∂(ξj)iWq +O(δ2) = O(δ2).

And, if q ̸= l, q = j∫
Ω
eUl∂(ξj)iWj =

∫
B(ξl,r)

eUl

[
− ∂iρj(ξj)

ρj(ξj)

2δ2j
δ2j + |x− ξj |2

+ ∂2iG(x, ξj) +O(δ2| log δ|)
]

+

∫
B(ξj ,r)

eUl
4(x− ξj)i

δ2j + |x− ξj |2
+O(δ2| log δ|)

= 8π∂2iG(ξl, ξj) +O(δ2| log δ|).

Thus, we obtain that

−
∫
Ω
∆W∂(ξj)iW =

∫
Ω
eUj∂(ξj)iWj +

m∑
q=1,q ̸=j

∫
Ω
eUj∂(ξj)iWq

+

m∑
l=1,l ̸=j

(∫
Ω
eUl∂(ξj)iWj +

m∑
q=1,q ̸=l

∫
Ω
eUl∂(ξj)iWq

)
= −8π∂(ξj)i(log ρj)(ξj) +O(δ2| log δ|)
= 4π∂(ξj)iφm(ξ) +O(δ2| log δ|),

since −2∂(ξj)i(log ρj)(ξj) = ∂(ξj)iφm(ξ) and ∂2iH(ξj , ξj) = 0.
Now, in order to compute the next term in the R.H.S., first observe that

∫
Ω
keW = exp

( m∑
j=1

αδj ,ξj

)πm
δ2

− π

2
log δ

m∑
j=1

∆ρj(ξj) +O(δ2)


and

keW =
1

8δ2j
exp

( m∑
j=1

αδj ,ξj

)
ρje

Uj [1 +O(δ2)]

uniformly in B(ξj , r). Hence, we deduce that

λkeW∫
Ω ke

W
=

λρje
Uj

8πmρj(ξj)

[
1 +

δ2 log δ

2m

m∑
l=1

∆ρl(ξl) +O(δ2)

]

uniformly in B(ξj , r) and

λkeW∫
Ω ke

W
= O(δ2) for all x ∈ Ω \ ∪m

j=1B(ξj , r).

On the other hand, from the definition of W we have that∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iW =

m∑
l=1

∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWl
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3.6. ENERGY COMPUTATIONS

and for any l ∈ {1, . . . ,m}∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWl =

m∑
q=1

∫
B(ξq ,r)

λkeW∫
Ω ke

W
∂(ξj)iWl +O(δ2).

For l = q = j, we have

∫
B(ξj ,r)

λkeW∫
Ω ke

W
∂(ξj)iWj =

∫
B(ξj ,r)

λρje
Uj

8πmρj(ξj)

1 + δ2 log δ

2m

m∑
q=1

∆ρq(ξq) +O(δ2)


×
[

4(x− ξj)i
δ2j + |x− ξj |2

− ∂iρj(ξj)

ρj(ξj)

2δ2j
δ2j + |x− ξj |2

+ ∂2iH(x, ξj)

+O(δ2| log δ|)
]

=

∫
B(ξj ,r)

λρje
Uj

8πmρj(ξj)

[(
1 +

δ2 log δ

2m

m∑
q=1

∆ρq(ξq)

)
4(x− ξj)i

δ2j + |x− ξj |2

+ ∂2iH(x, ξj)−
∂iρj(ξj)

ρj(ξj)

2δ2j
δ2j + |x− ξj |2

+O(δ2| log δ|)
]

=

∫
B(0, r

δj
)

λρj(ξj + δjy)

8πmρj(ξj)

8

(1 + |y|2)2

[(
1 +

δ2 log δ

2m

m∑
q=1

∆ρq(ξq)

)
× 4yi
δj(1 + |y|2)

+ ∂2iH(ξj + δjy, ξj)

− ∂iρj(ξj)

ρj(ξj)

2

1 + |y|2

]
dy +O(δ2| log δ|)

= O(δ2| log δ|),

since ∂2iH(ξj , ξj) = 0,∫
B(0, r

δj
)

8

(1 + |y|2)2
4yi

δj(1 + |y|2)
ρj(ξj + δjy) dy =

32

δj

∫
B(0, r

δj
)

yi
(1 + |y|2)3

ρj(ξj + δjy) dy

=
32

δj

∫
B(0, r

δj
)

yi
(1 + |y|2)3

[
ρj(ξj) +∇ρj(ξj) · δjy +

1

2
⟨D2ρj(ξj)δjy, δjy⟩+O(δ3j |y|3)

]
dy

= 8π∂iρj(ξj) +O(δ2| log δ|)

and ∫
B(0, r

δj
)

8

(1 + |y|2)2

[
∂2iH(ξj + δjy, ξj)−

∂iρj(ξj)

ρj(ξj)

2

1 + |y|2

]
ρj(ξj + δjy) dy

= 8πρj(ξj)∂2iH(ξj , ξj)− 8π∂iρj(ξj) +O(δ2| log δ|)

For l = j and q ̸= j, we have that∫
B(ξq ,r)

λkeW∫
Ω ke

W
∂(ξj)iWj =

∫
B(ξq ,r)

λρqe
Uq

8πmρq(ξq)

[
1 +O(δ2 log δ)

] [
∂2iG(·, ξj) +O(δ2| log δ|)

]
=

λ

8πmρq(ξq)

[
8πρq(ξq)∂2iG(ξq, ξj) +O(δ2| log δ|)

]
.
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Therefore, we conclude that∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWj =

m∑
q=1,q ̸=j

λ

m
∂2iG(ξq, ξj) +O(δ2| log δ|).

Now, for l ̸= j we have that if q ̸= l then∫
B(ξq ,r)

λkeW∫
Ω ke

W
∂(ξj)iWl =

∫
B(ξq ,r)

λρqe
Uq

8πmρq(ξq)

[
1 +O(δ2 log δ)

]
×
[
−∂2iG(ξl, ξj)

2δ2l
δ2l + |x− ξl|2

+O(δ2| log δ|)
]

= O(δ2| log δ|)

and for q = l∫
B(ξl,r)

λkeW∫
Ω ke

W
∂(ξj)iWl =

∫
B(ξl,r)

λρle
Ul

8πmρl(ξl)

[
1 +O(δ2 log δ)

]
×
[
−∂2iG(ξl, ξj)

2δ2l
δ2l + |x− ξl|2

+O(δ2| log δ|)
]

= − λ

m
∂2iG(ξl, ξj) +O(δ2| log δ|).

Therefore, we conclude that∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWl = − λ

m
∂2iG(ξl, ξj) +O(δ2| log δ|),

and hence,∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iW =

∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWj +

m∑
l=1,l ̸=j

∫
Ω

λkeW∫
Ω ke

W
∂(ξj)iWl = O(δ2| log δ|).

Finally, the conclusion follows.

Next, we get the expansion of ∂δ[Jλ(W )] and ∂δδ[Jλ(W )] under the assumptions of Lemma
3.6.2.

Lemma 3.6.4. The following expansions hold

∂δ[Jλ(W )] =
2(λ− 8πm)

δ
+ 8πδ log δ

m∑
j=1

∆ρj(ξj) +O(δ) (3.6.4)

and

∂δδ[Jλ(W )] = −2(λ− 8πm)

δ2
+ 8π log δ

m∑
j=1

∆ρj(ξj) +O(1) (3.6.5)

as δ → 0, uniformly for ξ = (ξ1, . . . , ξm) satisfying (3.3.4).
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Proof: First, we need an expansion of ∂δW and ∂δδW . We know that

Wj(x) = log
1

(δ2j + |x− ξj |2)2
+H(x, ξj)−

4π

|Ω|
ρj(ξj)δ

2 log δ +O(δ2)

uniformly on compact subsets of Ω. Hence, by the integral representation formula (2.2.4) and
(3.2.5) we get that

∂δWj(x) = − 1

δ

[
4δ2j

δ2j + |x− ξj |2
+

8π

|Ω|
δ2j log δj

]
+O(δ)

and

∂δδWj(x) = − 1

δ2

[
4δ2j (|x− ξj |2 − δ2j )

(δ2j + |x− ξj |2)2
+

8π

|Ω|
δ2j log δj

]
+O(1)

uniformly on compact subsets of Ω.

Next, we have that

∂δ[Jλ(W )] = −
∫
Ω

[
∆W +

λkeW∫
Ω ke

W

]
∂δW.

Hence, we first compute

−
∫
Ω
∆W∂δW =

m∑
j=1

m∑
l=1

∫
Ω
eUj∂δWl,

and ∫
Ω
eUj∂δWl = − 1

δ

∫
Ω
eUj

[
4δ2l

δ2l + |x− ξl|2
+

8π

|Ω|
δ2l log δl

]
+O(δ).

If l ̸= j then∫
Ω
eUj

4δ2l
δ2l + |x− ξl|2

dx = O(δ2) and if l = j then

∫
Ω
eUj

4δ2j
δ2j + |x− ξj |2

dx = 16π +O(δ4).

Thus, we obtain that

−
∫
Ω
∆W∂δW =

m∑
j=1

∫
Ω
eUj∂δWj +

m∑
l=1,l ̸=j

∫
Ω
eUj∂δWl


= −16πm

δ
− 1

δ

m∑
j=1

[
64π2

|Ω|
δ2j log δj +O(δ2) +

∑
l=1,l ̸=j

(
64π2

|Ω|
δ2l log δl +O(δ2)

)]

= −16πm

δ
− 1

δ

64π2m

|Ω|

m∑
j=1

δ2j log δj +O(δ)

Next, we compute∫
Ω
keW∂δW =

m∑
j=1

∫
Ω
keW∂δWj =

m∑
j=1

[
m∑
l=1

∫
B(ξl,r)

keW∂δWj +

∫
Ω\∪m

l=1B(ξl,r)
keW∂δW

]
.
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Hence, we have that∫
B(ξl,r)

keW∂δWj = − 1

8δδ2l
exp

( m∑
q=1

αδq ,ξq

)∫
B(ξl,r)

eUlρl
(
1 +O(δ2)

)
×

(
4δ2j

δ2j + |x− ξj |2
+

8π

|Ω|
δ2j log δj +O(δ2)

)

Now, if l ̸= j then∫
B(ξl,r)

keW∂δWj = − 1

8δδ2l
exp

( m∑
q=1

αδq ,ξq

)∫
B(ξl,r)

eUlρl

[
8π

|Ω|
δ2j log δj +O(δ2)

]

= −1

δ
e
∑m

q=1 αδq,ξq ρj(ξj)

[
8π2

|Ω|
log δj +O(1)

]
.

If l = j then∫
B(ξj ,r)

keW∂δWj = − 1

8δδ2j
exp

( m∑
q=1

αδq ,ξq

)∫
B(ξj ,r)

eUjρj

[
4δ2j

δ2j + |x− ξj |2

+
8π

|Ω|
δ2j log δj +O(δ2)

]
so, we get that∫

B(ξj ,r)
eUjρj

4δ2j
δ2j + |x− ξj |2

dx =

∫
B(ξj ,r)

32

(1 + |y|2)3
ρj(ξj + δjy)

=

∫
B(ξj ,r)

32

(1 + |y|2)3
[
ρj(ξj) +∇ρj(ξj) · δjy +O(δ2|y|2)

]
= 16πρj(ξj) +O(δ2).

Thus, we obtain that∫
B(ξj ,r)

keW∂δWj = − 1

8δδ2j
exp

( m∑
q=1

αδq ,ξq

)[
16πρj(ξj) +

64π2

|Ω|
ρj(ξj)δ

2
j log δj +O(δ2)

]

= −1

δ
e
∑m

q=1 αδq,ξq

[
2π

δ2
+

8π2

|Ω|
ρj(ξj) log δj +O(1))

]
and∫

Ω\∪m
l=1B(ξl,r)

keW∂δWj =

∫
Ω\∪m

l=1B(ξl,r)
k exp

[ m∑
q=1

G(·, ξq) + αδq ,ξq

]
[1 +O(δ2)]O(δ2| log δ|)

= exp

( m∑
q=1

αδq ,ξq

)
O(δ2| log δ|).
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Therefore, we conclude that∫
Ω
keW∂δW =

m∑
j=1

[
− 1

δ
e
∑m

q=1 αδq,ξq

(
2π

δ2
+

8π2

|Ω|
ρj(ξj) log δj +O(1)

)

+
m∑

l=1,l ̸=j

(
−1

δ

)
e
∑m

q=1 αδq,ξq ρj(ξj)

(
8π2

|Ω|
log δj +O(1)

)]

= −1

δ
e
∑m

q=1 αδq,ξq

[
2πm

δ2
+

m∑
j=1

8π2m

|Ω|
ρj(ξj) log δj +O(1)

]
.

From the expansion of
∫
Ω ke

W , we get that

− λ∫
Ω ke

W
= −λδ

2

πm
e−

∑m
q=1 αδq,ξq

{
1 +

1

2m

m∑
j=1

∆ρj(ξj)δ
2 log δ +O(δ2)

}
and consequently

−
∫
Ω

λkeW∫
Ω ke

W
∂δW =

(
2λ

δ
+ λδ

m∑
j=1

8π

|Ω|
ρj(ξj) log δj +O(δ)

)

×
(
1 +

1

m
δ2 log δ

m∑
j=1

∆ρj(ξj) +O(δ2)

)

=
2λ

δ
+
λ

δ

8π

|Ω|

m∑
j=1

δ2j log δj +
λ

m
δ log δ

m∑
j=1

∆ρj(ξj) +O(δ).

Therefore, we conclude that

∂δ[Jλ(W )] =
2(λ− 8πm)

δ
+

8π

|Ω|
(λ− 8πm)

δ

m∑
j=1

δ2j log δj +
λ

m
δ log δ

m∑
j=1

∆ρj(ξj) +O(δ)

and (3.6.4) follows since λ = 8πm+O(δ2| log δ|).
Finally, (3.6.5) follows from similar computations as above and the expansion of ∂δδW . This,

completes the proof.

3.7 Proofs of the Theorems

In this section, we give a proof of the Theorems.

3.7.1 Proof of Theorem 3.1.2

According to Lemma 3.5.1, we have a solution of Problem (3.1.1) if we adjust (δ, ξ) so that it is
a critical point of Fλ defined by (3.5.3). We will assume that δ = µε so that C−1

0 ≤ µ ≤ C0 for
some constant C0 and ε > 0 such that

ε2 log
1

ε
= |λ− 8πm|.

Note that ε is well defined for all 0 < ε < ε0 with 0 < ε0 < 1 small enough, since the function
given by

f : [0, e−1/2] → [0, (2e)−1], f(s) = s2 log
1

s
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is increasing, positive, and hence is invertible. Thus, we take ε = f−1(|λ− 8πm|), so that ε→ 0
if and only if λ → 8πm, and clearly ε0 = f−1(|λ0 − 8πm|) for λ0 close enough to 8πm. In this
way, we consider F ∗

λ (µ, ξ) = Fλ(µε, ξ). It is clear that (µ
∗, ξ∗) is a critical point of F ∗

λ if and only
if (µ∗ε, ξ∗) is a critical point of Fλ. Also, we have that

F ∗
λ (µ, ξ) = − 8π − λ log(πm) + 2(λ− 8πm) log ε+ 4πφm(ξ)

+ 2(λ− 8πm) log µ+ µ2ε2 log εV (ξ) +O(ε2),

uniformly for ξ = (ξ1, . . . , ξm) satisfying (3.3.4) and C−1
0 ≤ µ ≤ C0 as λ→ 8πm, where V is given

by (3.1.5). Observe that critical points of F ∗
λ are also critical points of F̃λ given by

F̃λ(µ, ξ) = F ∗
λ (µ, ξ) + 8πm+ λ log(πm) + 2(8πm− λ) log ε.

By the choice of ε, we have that ε2 log ε = −|λ − 8πm|, ε2 = o(|λ − 8πm|) and ε2−σ| log ε| =
o(|λ − 8πm|1−σ) as λ → 8πm. Hence, from Lemmas 3.5.2, 3.6.2, 3.6.3 and 3.6.4 the following
expansions follow

F̃λ(µ, ξ) = 4πφm(ξ) + 2(λ− 8πm) log µ− µ2|λ− 8πm|V (ξ) + o(|λ− 8πm|)

DξF̃λ(µ, ξ) = DξFλ(µε, ξ) = 4π∇φm(ξ) + o(|λ− 8πm|1−σ)

DµF̃λ(µ, ξ) = εDδFλ(µε, ξ) =
2(λ− 8πm)

µ
− 2µ|λ− 8πm|V (ξ) + o(|λ− 8πm|)

and

D2
µF̃λ(µ, ξ) = ε2D2

δFλ(µε, ξ) = −2(λ− 8πm)

µ2
− 2|λ− 8πm|V (ξ) + o(|λ− 8πm|)

uniformly for ξ = (ξ1, . . . , ξm) satisfying (3.3.4) and C−1
0 ≤ µ ≤ C0, as λ→ 8πm.

By the assumptions, V (ξ) ̸= 0 for all ξ = (ξ1, . . . , ξm) ∈ D̄. Since D is connected, sgnV (ξ) =
sgnV (ζ) for all ξ, ζ ∈ D. Now, let us take λ > 0 so that sgn(λ−8πm) = sgnV (ξ), ξ ∈ D. Thus, we
have that (λ− 8πm)|λ− 8πm|−1 = V (ξ)|V (ξ)|−1 for all ξ ∈ D. Also, let us denote I = [C−1

0 , C0],
iV = infξ∈D |V (ξ)|−1/2 and sV = supξ∈D |V (ξ)|−1/2. By the assumptions 0 < iV ≤ sV < +∞,

and hence we choose C0 so that max{i−1
V , sV } < C0 and |V (ξ)|−1/2 ∈ I for all ξ ∈ D̄. For a

λ0 > 0 define the set

I(λ0) = {λ > 0 | sgn(λ− 8πm) = sgn(λ0 − 8πm) and |λ− 8πm| < |λ0 − 8πm|}.

Claim 3.7.1. There is λ0 close enough to 8πm such that for all λ ∈ I(λ0) there exists a C1

function µ(λ, ·) : D → I satisfying

DµF̃λ(µ(λ, ξ), ξ) = 0, for all ξ ∈ D.

Proof: First, denote

fλ(µ, ξ) =
1

2|λ− 8πm|
DµF̃λ(µ, ξ).

Observe that fλ → φ̄ and Dµfλ → Dµφ̄ uniformly in I × D̄ as λ → 8πm, where the function φ̄
is given by

φ̄(µ, ξ) =
V (ξ)

µ|V (ξ)|
− µV (ξ).

Note that

∂µφ̄(µ, ξ) = − V (ξ)

µ2|V (ξ)|
− V (ξ)

67



3.7. PROOFS OF THE THEOREMS

and it holds

φ̄(|V (ξ)|−1/2, ξ) = 0 and ∂µφ̄(|V (ξ)|−1/2, ξ) = −2V (ξ) ̸= 0

for all ξ ∈ D. Also, note that φ̄(·, ξ) is strictly increasing if V (ξ) < 0 or strictly decreasing if
V (ξ) > 0. Without loss of generality, we shall assume that V (ξ) > 0, so that we consider λ > 8πm
and I(λ0) = (8πm, λ0). Let us take 0 < δ < min{iV − C−1

0 , sV − C0}, then we get that

φ̄(µ, ξ) ≥ φ̄(|V (ξ)|−1/2 − δ, ξ) = δV (ξ)

[
1 +

1

1− δ|V (ξ)|1/2

]
> δV (ξ) > δi2V > 0

for all µ ∈ [C−1
0 , iV − δ] and ξ ∈ D. Similarly,

φ̄(µ, ξ) ≤ φ̄(|V (ξ)|−1/2 + δ, ξ) = −δV (ξ)

[
1 +

1

1 + δ|V (ξ)|1/2

]
< −δV (ξ) < −δi2V < 0

for all µ ∈ [sV + δ, C0] and ξ ∈ D. Therefore, by uniform convergence there is λ̄ > 8πm such that
for all 8πm < λ < λ̄ we have that fλ(µ, ξ) > 0 for all (µ, ξ) ∈ [C−1

0 , iV − δ]×D and fλ(µ, ξ) < 0
for all (µ, ξ) ∈ [sV + δ, C0] × D. Then, given 8πm < λ < λ̄ and using that fλ is continuous, we
obtain that there exists (a unique) µ(λ, ·) : D → I such that

fλ(µ(λ, ξ), ξ) = 0, for all ξ ∈ D. (3.7.1)

By similar arguments, if V (ξ) < 0 then there is λ̄ < 8πm such that for all λ̄ < λ < 8πm there
exists µ(λ, ·) : D → I satisfying (3.7.1). Furthermore, µ(λ, ξ) → |V (ξ)|−1/2 as λ → 8πm for all
ξ ∈ D. Let us show that µ(λ, ·) is of class C1. Define the function F : I(λ̄)×D̄×I → I(λ̄)×D̄×IR,
given by

F(λ, ξ, µ) =
(
λ, ξ, fλ(µ, ξ)

)
.

We will show that there is λ0 ∈ I(λ̄) such that

F : I(λ0)× D̄ × I → F(I(λ0)× D̄ × I)

is invertible. Clearly, F is onto. Let us see that F is injective. Suppose the opposite, so, for all
λ ∈ I(λ̄) there exist (λi, ξi, µi) ∈ I(λ)× D̄ × I, i = 1, 2 such that

F(λ1, ξ1, µ1) = F(λ2, ξ2, µ2) and (λ1, ξ1, µ1) ̸= (λ2, ξ2, µ2).

From the definition of F , we get that

fλ1(µ1, ξ1) = fλ1(µ2, ξ1) with µ1 ̸= µ2.

Hence, there are sequences {λn}n, {ξn}n and {µin}n, i = 1, 2 with µ1n ̸= µ2n for all n, such that
fλn(µ

1
n, ξn) = fλn(µ

2
n, ξn) for all n and λn → 8πm as n→ +∞. Then, up to subsequence there are

µi ∈ I, i = 1, 2 and ξ∗ ∈ D such that µin → µi and ξn → ξ∗ as n → +∞. Suppose that µ1 ̸= µ2.
Letting n → +∞ we find that φ̄(µ1, ξ∗) = φ̄(µ2, ξ∗), and hence µ1µ2|V (ξ∗)| = −1, which is a
contradiction. Therefore, µ1 = µ2. Without loss of generality, we assume that µ1n < µ2n. By the
mean value theorem there is µ3n ∈ (µ1n, µ

2
n) such that

fλn(µ
1
n, ξn)− fλn(µ

2
n, ξn) = Dµfλn(µ

3
n, ξn)(µ

2
1 − µ3n) = 0.

Hence, letting n → +∞ it follows that Dµφ̄(µ
1, ξ∗) = 0, which implies that (µ1)2|V (ξ∗)| = −1.

Thus, we conclude that there is λ0 ∈ I(λ̄) such that

F : I(λ0)× D̄ × I → F(I(λ0)× D̄ × I)
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is invertible, namely, there exists

G : F(I(λ0)× D̄ × I) → I(λ0)× D̄ × I, G = (g1, g2, g3)

such that F ◦G = IdF(I(λ0)×D̄×I). We know that (λ, ξ, 0) ∈ F(I(λ0)×D̄× I). Hence, we get that

for all (λ, ξ) ∈ I(λ0)× D̄

F
(
g1(λ, ξ, 0), g2(λ.ξ, 0), g3(λ, ξ, 0)

)
= (λ, ξ, 0)

which implies that

fλ(g3(λ, ξ, 0), ξ) = 0 for all (λ, ξ) ∈ I(λ0)× D̄.

Therefore,
g3(λ, ξ, 0) = µ(λ, ξ) for all (λ, ξ) ∈ I(λ0)× D̄.

Fixing λ, we have that F(λ, ·, ·) is C1 and invertible in D× I. Hence, it follows that G : F({λ}×
D×I) → {λ}×D×I is C1 and then we conclude that µ(λ, ·) is C1 in D for all λ ∈ I(λ0). Finally,
the conclusion follows from the definition of fλ.

Now, let us consider the function φ̃λ given by

φ̃(ξ) = F̃λ(µ(λ, ξ), ξ), ξ ∈ D with λ ∈ I(λ0).

Since, C−1
0 ≤ µ(λ, ξ) ≤ C0 for all (λ, ξ) ∈ I(λ0)× D̄, it follows that

φ̃λ(ξ) = 4πφm(ξ) +O(|λ− 8πm|) and ∇φ̃λ(ξ) = 4πφm(ξ) + o(|λ− 8πm|1−σ)

uniformly for ξ ∈ D. Hence, φ̃λ is a C1 small perturbation of 4πφm. Since C is a stable critical
value of φm in D, it follows that there is a critical point ξλ of φ̃λ in D for λ close enough to 8πm,
and

∇φ̃λ(ξλ) = 4π∇φm(ξλ) + o(1) as λ→ 8πm.

Also, we have that

0 = ∇φ̃λ(ξλ) = DµF̃λ

(
µ(λ, ξλ), ξλ

)
Dξµ(λ, ξλ) +DξF̃λ

(
µ(λ, ξλ)

)
.

Finally, (µ(λ, ξλ), ξλ) turns out to be a critical point of F̃λ. Note that ξλ → ξ∗ as λ → 8πm,
where ξ∗ is a critical point of φm. The verification of (3.1.4) follows by construction of the
approximating solutions W =

∑m
j=1 PUδj ,ξj .

3.7.2 Proof of Theorem 3.1.3

Here, we assume a different kind of condition on critical values of φm. It turns out that the
previous proof works out in this situation, since φ̃λ is C1-close to a function with a non-trivial
critical level in D. Indeed, by the assumptions, V (ξ) ̸= 0 for all ξ = (ξ1, . . . , ξm) ∈ D̄. Hence, it
follows that there is λ0 close enough to 8πm such that for all λ ∈ I(λ0) there exists a C

1 function
µ(λ, ·) : D → I satisfying

DµF̃λ(µ(λ, ξ), ξ) = 0, for all ξ ∈ D.

The function φ̃λ given by

φ̃(ξ) = F̃λ(µ(λ, ξ), ξ), ξ ∈ D with λ ∈ I(λ0)

is a C1 small perturbation of 4πφm. Since C is a non-trivial critical level of φm in D, it follows
that there is a critical point ξλ of φ̃λ in D for λ close enough to 8πm. Finally, (µ(λ, ξλ), ξλ)
turns out to be a critical point of F̃λ. Note that ξλ → ξ∗ as λ → 8πm, where ξ∗ is a critical
point of φm. The verification of (3.1.4) follows by construction of the approximating solutions
W =

∑m
j=1 PUδj ,ξj .
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3.7.3 Proof of Theorem 3.1.1: Ω is a flat torus

Note that the Gaussian curvature when Ω is a torus isK ≡ 1. Assume that ξ∗ = (ξ∗1 , . . . , ξ
∗
m) ∈

Ω̄m \ Em is a non degenerate critical point of φm and L(ξ∗) ̸= 0. Then, we have that V (ξ∗) =
4πL(ξ∗), since it is readily checked that

∆ρj(x) = ρj(x)

[
|∇(log ρj)(x)|2 +∆(log k)(x) +

8πm

|Ω|

]
. (3.7.2)

and −2∇(log ρj)(ξ
∗
j ) = ∇ξjφm(ξ∗) = 0. Therefore, there exists a connected neighborhood D of

ξ∗ compactly contained in Ω̄m \ Em such that V (ξ) ̸= 0 for all ξ ∈ D. Finally, in this context the
same proof for Theorem 3.1.2 works out here.

3.7.4 Proof of Theorem 3.1.4

Assume that k ≡ 1 and m ≥ 2. We know that H(x, x) = H(y, y) for all x, y ∈ Ω̄, since Ω̄ is a
torus. Hence, it is enough considering that

φm(ξ) = −
∑
l ̸=j

G(ξl, ξj)

Also, we get that

ρj(x) = exp

(
H(x, ξj) +

∑
l ̸=j

G(x, ξl)

)
and using (3.7.2) we find that ∆ρj(x) ≥ 0 for all x ∈ Ω̄m. Thus, we conclude that V (ξ) > 0 for
all ξ ∈ Ω̄m \ Em. We know that G is bounded from below in Ω̄ × Ω̄ and hence, φm has a global
maximum in Ω̄m. Therefore, 3.1.3 is applicable and the conclusion follows. For m = 1, we have
that the functional F̃λ(µ(λ, ξ), ξ) is bounded and the conclusion follows.
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Chapter 4

Liouville Equation on the Torus

4.1 Introduction and statements of main results

In this chapter, we study the elliptic partial differential equation on the torus with exponential
nonlinearity and a singular source

−∆u = ε2eu − 1
|Ω|
∫
Ω ε

2eu + 4πN
|Ω| − 4πNδp, in Ω,

u doubly periodic on ∂Ω,∫
Ω u = 0,

(4.1.1)

where ε > 0, α, β ∈ C \ {0}, Im(β/α) > 0,

Ω = {z = sα+ tβ ∈ C | 0 < s, t < 1},

p ∈ Ω and N ≥ 0. This equation, which is the corresponding Liouville equation on the torus,
and similar ones have been extensively studied over last decades. For the regular case N = 0,
as we have already mention, due to the presence of an exponential nonlinearity, this type of
equation arises in various context such as astrophysics and combustion theory, see [11, 41, 58]
and references therein, the prescribed Gaussian curvature problem in a compact manifold with its
related mean field version [13, 14, 47] and in statistical mechanics [7, 8, 24]. Recently, motivated
by finding vortex solutions of Maxwell-Chern-Simons-Higgs theory, this type of equation with
singular data, namely N ̸= 0, has drawn a lot of attentions. For recent developments of these
subjects, we refer the readers to [6, 9, 10, 24, 55, 56, 60, 61, 62, 65, 68].

Observe that (4.1.1) is equivalent to
−∆u = ε2k(x)eu − 1

|Ω|
∫
Ω ε

2k(z)eu(z) dz, in Ω,

u doubly periodic on ∂Ω,∫
Ω u = 0

(4.1.2)

where k = eu0 and u0 is the unique solution of the problem
−∆u0 =

4πN
|Ω| − 4πNδp, in Ω,

u0 doubly periodic on ∂Ω,∫
Ω u0 = 0,
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so that k is positive everywhere except at x = p and k(x) ∼ |x − p|2N , as x → p. Furthermore,
problem (4.1.2) admits a variational structure, in the sense that weak solutions for (4.1.2) are the
critical points of the following energy functional

Jε(u) =
1

2

∫
Ω
|∇u|2 − ε2

∫
Ω
k(x)eu, u ∈ E(Ω), (4.1.3)

where
H(Ω) = {u ∈ H1

loc(IR
2) | u is doubly periodic with periodic cell domain Ω}

and

E(Ω) =

{
u ∈ H(Ω) :

∫
Ω
u = 0

}
.

In fact, a critical point of Jε on E(Ω) yields to a doubly periodic function on ∂Ω with zero average
and satisfying

−∆u = ε2 k(x)eu − λ, in Ω,

for some Lagrange multiplier λ. Integrating on Ω, we get that

λ =
1

|Ω|

∫
Ω
ε2k(z)eu(z) dz

and we recover a solution to (4.1.2). For any ε > 0 sufficiently small, the functional given by (4.1.3)
has a local minimum which is a solution to (4.1.2) close to 0. Furthermore, the Moser-Trudinger
inequality assures the existence of a second solution, which can be obtained as a mountain pass
critical point for Jε, and this second solution turns out to be unbounded as ε→ 0.

Our purpose is to study the existence of solution to (4.1.1), for ε positive and small, under
some assumption on the weight N of the source, and to describe the asymptotic behavior of such
solutions as ε → 0. Indeed, we prove that, if 1 ≤ m < N + 1, then we can construct solutions
to (4.1.1) which concentrate and blow-up, as ε→ 0, around some given m points of the torus Ω.
Moreover, we find conditions under which there is a family of solutions of (4.1.2) exhibiting m
concentration points. These are the singular limits.

Let us mention that concentration phenomena of this type has been addressed also for the
problem −∆u = ε2eu − 4πNδp, in Ω,

u = 0 on ∂Ω,
(4.1.4)

where Ω is now a bounded smooth domain. The regular case N = 0, sometimes referred to as the
Gelfand problem [41], has been broadly studied. When ε > 0 is sufficiently small, it has long been
known the existence of both a small and large solution as ε→ 0. This large solution of (4.1.4) was
found in simply connected domains in [70], see also [26] for earlier work on existence. In general,
the analysis of the blowing-up behavior for the large solution, after works [5, 51, 57, 59, 64] yields
that, if uε is a family of solutions to (4.1.4) (with N = 0) for which ε2

∫
Ω e

uε remains uniformly
bounded, then necessarily there is an integer m ≥ 1 such that

lim
ε→0

ε2
∫
Ω
euε = 8πm.

Moreover, there are points ξε1, . . . , ξ
ε
m ∈ Ω which remain away one from each other and away from

∂Ω, such that uε is uniformly bounded on Ω\∪m
j=1B(ξεj , δ) and supB(ξεj ,δ)

uε → +∞ for any small

δ > 0. Existence results of solutions with the above properties has been addressed in [1, 31, 37].
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In particular, in [31] it was shown that uε as above exists for any m ≥ 1 provided that the domain
is not simple connected.

For the problem (4.1.4) with N > 0, in the works [4, 2, 66] important progress have been
achieved in the understanding of blowing-up solutions from the point of view of profile of blowing-
up solutions, quantization of blow-up levels and Harnack-type estimates. See [67] for a complete
account on the topic. Also, in [19], the authors consider the mean field equation with singular
data, and get some estimates for blowing up solutions.

Several existence results of blowing-up solutions to (4.1.4) with N > 0 were shown in [31, 32,
35, 36]. In particular, the author in [35, 36] shows a construction of blowing-up solutions which
concentrate around p provided that α /∈ IN. In case N ∈ IN and Ω is a simply connected domain,
the authors [32] present a construction of a blowing-up solutions concentrating at N+1 vertices of
any sufficiently tiny regular polygon with a suitable center, as ε→ 0. On the other hand, a family
of solutions which concentrate away from p have been built in [31] whenever 1 ≤ m < N + 1,
regardless whether or not N is an integer. An interesting question is whether this latter situation
may be for the problem (4.1.1). In this chapter, we prove that such a family of solutions uε does
actually exists.

Our main result states as follows.

Theorem 4.1.1. Assume that N > 0 and 1 ≤ m < N+1. Then there exists a family of solutions
{uε}0<ε<ε0 to (4.1.1) such that

lim
ε→0

ε2
∫
Ω
euε = 8πm.

Moreover, there are points ξε1, . . . , ξ
ε
m ∈ Ω, which remain uniformly away from p and for all i ̸= j,

dist(ξεi − ξεj , αZ+βZ) remain uniformly away from zero, for which uε remains uniformly bounded
on Ω \ ∪m

i=1B(ξεi , δ) and supB(ξεj ,δ)
uε → +∞ for any small δ > 0.

Let stress that the solutions found in the above result have concentration at points different
from p. The problem of finding solutions with an additional concentration around the source is
of different nature. In case they exist, they provide an extra contribution 8π(1 +N) to the first
above limit. See [2, 32, 66] for some related topics.

The location of concentration points ξεi , i = 1, . . . ,m is characterized in terms of a functional
φm defined explicitly in terms of the Green’s function G = G(x, y) of −∆ with respect to doubly
periodic boundary conditions on ∂Ω, which satisfy

−∆xG(·, y) = 8πδy − 8π
|Ω| , in Ω,

G(·, y) is doubly periodic on ∂Ω,∫
ΩG(x, y) dx = 0.

In fact, taking ξ = (ξ1, . . . , ξm) we have that

∇φm(ξε1, . . . , ξ
ε
m) → 0 as ε→ 0,

where

φm(ξ) = N

m∑
j=1

G(ξj , p)−
∑
l ̸=j

G(ξl, ξj),

that is to say, up to subsequences, the m- tuple (ξε1, . . . , ξ
ε
m) converge to a critical point of the

functional φm.
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We shall deduce Theorem 4.1.1 by applying a more general result, due to the equivalence
with problem (4.1.2). Indeed, we construct a family of solutions to (4.1.2) which blowing up at
m different points of Ω. These points will be characterized by a functional which involves the
function k and the Green’s function. Given a non-negative doubly periodic function k on ∂Ω,
define

φm(ξ) = −2

m∑
j=1

log k(ξj)−
∑
l ̸=j

G(ξl, ξj)

and denote
Ω̃ = {x ∈ Ω̄ | k(x) > 0 }, (4.1.5)

set we always assume non-empty. An observation we make is that in any compact subset of Ω̃m,
we may define, without ambiguity,

φm(x1, . . . , xm) = −∞ if dist(xi − xj , αZ+ βZ) = 0 for some i ̸= j.

Thus, the level of blowing up points will be near a nontrivial critical value of φm.

In the next result we assume k ≥ 0, k ̸≡ 0, k is doubly periodic on ∂Ω and k ∈ C(Ω̄)∩C2(Ω̃)
where Ω̃ is given by (4.1.5).

Theorem 4.1.2. Let m ≥ 1 and assume that there is an open set D compactly contained in Ω̃m

where φm has a non-trivial critical level C. Then, there exists a solution uε to (4.1.2), with

lim
ε→0

ε2
∫
Ω
k(x)euε = 8mπ .

Moreover, there is an m-tuple (xε1, . . . , x
ε
m) ∈ D, such that as ε→ 0

∇φm(xε1, . . . , x
ε
m) → 0, φm(xε1, . . . , x

ε
m) → C,

for which uε remains uniformly bounded on Ω \ ∪m
j=1B(xεi , δ), for any δ > 0

sup
B(xε

i ,δ)
uε → +∞, and ε2k(x)euε − 8π

m∑
i=1

δxε
i
⇀ 0

as ε→ 0 in measure sense.

We will see that for the functional φm corresponding to problem (4.1.1), such a set D actually
exists under the assumption 1 ≤ m < N + 1. Thus, we conclude the result of Theorem 4.1.1.

In [1] the authors prove that for each non-degenerate critical point of the corresponding
analogue φm for the problem (4.1.4) with N = 0, there exist a family of solutions uε concentrating
at this point as ε → 0. Moreover, they construct a very precise approximation of the actual
solution and an application of Banach fixed point theorem, uses non-degeneracy in essential way.
For the related mean field version of problem (4.1.2) in a compact two-dimensional Riemannian
manifold, Chen and Lin construct blowing up solutions as a major step in their program for
computation of degrees in [18]. This construction also seems to rely in essential way on the
assumption of non-degenerate critical points.

On the other hand, for the problem (4.1.4) with N = 0, in [31, 37] have been built a solution
with concentration points near topologically nontrivial critical point. However, the case N > 0
was considered in [31] and also, the notion of nontrivial critical value allow them to get the result.

Another consequence of our procedure is the existence of blowing-up solutions in case infΩ k >
0. In particular, we get the existence of blowing-up solutions when N = 0 in problem (4.1.1).
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Theorem 4.1.3. Assume that infΩ k > 0. Then given m ∈ IN there exist a family of solutions
{uε} to equation (4.1.2) such that

lim
ε→0

ε2
∫
Ω
k(x)euε(x) dx = 8πm.

The proof of Theorem 4.1.2 relies on the construction of an approximate solution, different
from those in [1, 18], and is rather close to those present in [31, 37], which turns out to be precise
enough. In fact, we use a family of solutions of the Liouville equation in IR2 to construct an ap-
proximate solution, suitable scaled and projected to make it up to a good order for the boundary
conditions. Solutions are found as a small additive perturbation of these initial approximation.
A linearization procedure leads to a finite dimensional reduction, where the reduced problem
corresponds to that of adjusting variationally the location of the concentration point. An im-
portant element in the reduction procedure, of independent interest, is the bounded invertibility
of the linearized operator in suitable L∞-weighted spaces. This functional analytic setting have
been used in several works [29, 30, 31, 27, 38, 39, 40] to detect bubbling from above the critical
exponent in higher dimensional problems and in Liouville type equations, and non-degeneracy of
critical points of the analogue of φm in that context. The local notion of nontrivial critical value
in (2.1.1)-(2.1.2) was introduced in [28] in the analysis of concentration phenomena in nonlinear
Schrödinger equations. And it was also used in [31, 38].

4.2 Preliminaries and a first approximation of the solution

The main idea to construct an approximation of a solution is to use the functions Uδ,ξ defined
by (2.3.3), with a suitable choice of δ. Let m be a positive integer and choose ξ1, . . . , ξm ∈ Ω
with k(ξj) > 0, j = 1, . . . ,m and ξj ̸= ξj if i ̸= j. Let µj , j = 1, . . . ,m be positive numbers, and
consider the function

uj(x) = log
8µ2j

(µ2jε
2 + |x− ξj |2)2k(ξj)

, (4.2.1)

where µj , j = 1, . . . ,m are parameters to be determined. Note that

uj = Uµjε,ξj − log[ε2k(ξj)].

In order to satisfy the boundary conditions, consider the functions Uj , j = 1, . . . ,m given by
−∆Uj = ε2k(ξj)e

uj − 1
|Ω|
∫
Ω ε

2k(ξj)e
uj(x) dx, in Ω,

Uj doubly periodic on ∂Ω,∫
Ω Uj = 0,

(4.2.2)

namely, Uj = Puj , where P is the projection operator introduced in (2.2.5). Let us denote
Uj = uj +Hj . Observe that

1

|Ω|

∫
Ω
ε2k(ξj)e

uj(x) dx =
8π

|Ω|
+O(ε2). (4.2.3)

Indeed, choosing δ > 0 small enough, we have∫
Ω
ε2k(ξj)e

uj(x) dx =

∫
B(ξj ,δ)

8µ2jε
2

(µ2jε
2 + |y − ξj |2)2

dx+O(ε2)
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and taking µjεy = x − ξj (4.2.3) follows. We want to know the behavior of Uj away from ξj
and around ξj . We obtain the following characterization, assuming that for all j = 1, . . . ,m,
C−1
0 ≤ µj ≤ C0 for some constant C0. Using the integral representation formula (2.2.4) and

similarly to Lemma 3.2.1 we get the following fact.

Lemma 4.2.1. The function Uj, which is the solution of (4.2.2), satisfies

Uj(x) = uj(x) +H(x, ξj)− log
8µ2j
k(ξj)

+O(ε2| log ε|) (4.2.4)

where the term O(·) is uniform in C2-sense on compact subsets of Ω. In particular,

Uj(x) = G(x, ξj) +O(ε2| log ε|), (4.2.5)

where the term O(·) is uniform in C2-sense on compact subsets of Ω \ {ξj}.

Using the previous result we get the behavior of the function Hj on compact subsets of Ω

Hj(x) = H(x, ξj)− log
8µ2j
k(ξj)

+O(ε2| log ε|) (4.2.6)

uniformly in C2-sense for x on compact subset of Ω.

Our first approximation is

U(x) = U1(x) + · · ·+ Um(x), x ∈ Ω. (4.2.7)

where Uj are given by (4.2.2) with the numbers µj , j = 1, . . . ,m defined by

log(8µ2j ) = log k(ξj) +H(ξj , ξj) +
∑
l ̸=j

G(ξl, ξj), j = 1, . . . ,m. (4.2.8)

In order to have a good approximation, we need to verify Hj(ξj)+
∑m

i=1,i̸=j Ui(ξj) → 0 as ε→ 0.
In fact, by (4.2.4) and (4.2.5) we get readily the following result.

Remark 4.2.1. If we choose µj , j = 1, . . . ,m given by (4.2.8) then U(ξj)−uj(ξj) → 0 as ε→ 0.
Also, we have that U(ξj) = −4 logµjε +H(ξj , ξj) +

∑
l ̸=j G(ξl, ξj) + ε2| log ε|Θε(ξ), where Θε is

a bounded function of ξ = (ξ1, . . . , ξm).

On the other hand, it is possible to show that u satisfies (4.1.2) if and only if v(y) = u(εy)
satisfies 

−∆v = ε4k (εy) ev − 1
|Ωε|

∫
Ωε
ε4k (εz) ev(z) dz, in Ωε,

v doubly periodic on ∂Ωε,∫
Ωε
v = 0

(4.2.9)

where Ωε = ε−1Ω, and |Ωε| = ε−2|Ω|. Taking, the initial approximation in expanded variables as

V (y) = U (εy) , (4.2.10)

we look for a solution v of (4.2.9) of the form v = V + ϕ. We also write ξ′j = ε−1ξj . Now, in
terms of ϕ, the problem (4.1.2) becomes

L(ϕ) = −[R+N(ϕ)], in Ωε,

ϕ doubly periodic on ∂Ωε,∫
Ωε
ϕ = 0

(4.2.11)
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where

L(ϕ) = ∆ϕ+K(y)ϕ− 1

|Ωε|

∫
Ωε

K(z)ϕ(z) dz, K(y) := ε4k (εy) eV (y),

R(y) = ∆V (y) + ε4k (εy) eV (y) − 1

|Ωε|

∫
Ωε

ε4k (εz) eV (z) dz, (4.2.12)

and

N(ϕ) = K(y)(eϕ − ϕ− 1)− 1

|Ωε|

∫
Ωε

K(z)(eϕ(z) − ϕ(z)− 1) dz. (4.2.13)

Let us stress that R, L(ϕ) and N(ϕ) satisfy∫
Ωε

R =

∫
Ωε

L(ϕ) =

∫
Ωε

N(ϕ) = 0.

Let us see how V behaves, namely, we want to measure how well V solves the above problem.

Lemma 4.2.2. Assume (4.2.8) holds true. Then there exists a constant C > 0 independent of ε
such that for any y ∈ Ωε,

|R(y)| ≤ Cε
m∑
j=1

1

1 + |y − ξ′j |2+σ
, (4.2.14)

where 0 < σ < 1 is a small fixed constant and

K(y) =
m∑
j=1

8µ2j
(µ2j + |y − ξ′j |2)2

[1 + θε(y)], (4.2.15)

with

|θε(y)| ≤ Cε
m∑
j=1

[|y − ξ′j |+ 1]. (4.2.16)

Proof: Let us fix a small number δ > 0 and observe that ε4k(εy)eV (y) = ε4k(x)eU(x) with
x = εy. Note that, |y − ξ′j | > δ

ε if and only if |x− ξj | > δ. Hence, we see that if |y − ξ′j | > δ
ε for

all j = 1, . . . ,m then
ε4k(εy)eV (y) = O(ε4). (4.2.17)

Similarly, we have

∆V (y) = ε2∆U(x) = −ε2
m∑
j=1

(
ε2k(ξj)e

uj(x) − ε2k(ξj)

|Ω|

∫
Ω
euj

)
and hence

∆V (y) =
8πm

|Ωε|
+O(ε4) if |y − ξ′j | >

δ

ε
for all j = 1, . . . ,m. (4.2.18)

On the other hand, assume that for certain j, |y − ξ′j | < δ/ε. Then setting y = ξ′j + z we get

K(y) = ε4k(ξj + εz)
8µ2j

(µ2jε
2 + |ξj − εz − ξj |2)2k(ξj)

exp

Hj(ξj + εz) +
∑
l ̸=j

Ul(ξj + εz)


= k(ξj + εz)

8µ2j
k(ξj)(µ2j + |z|2)2

exp

Hj(ξj + εz) +
∑
l ̸=j

Ul(ξj + εz)

 .
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Now, we know that by the choice of µj , j = 1, . . . ,m in (4.2.8) and (4.2.6)

Hj(ξj + εz) = H(ξj + εz, ξj)−
[
H(ξj , ξj) +

∑
l ̸=j

G(ξl, ξj)

]
+O(ε2| log ε|)

= −
∑
l ̸=j

G(ξl, ξj) +O(ε|z|) +O(ε2| log ε|).

From Lemma 4.2.1, we deduce that for l ̸= j

Ul(ξj + εz)−G(ξl, ξj) = G(ξj + εz, ξl)−G(ξl, ξj) +O(ε2| log ε|) = O(ε|z|) +O(ε2| log ε|)

in the considered region. Taking into account these relations we get then that

K(y) =
8µ2j

(µ2j + |z|2)2
· k(ξj + εz)

k(ξj)
exp

(
H(ξj + εz, ξj)−H(ξj , ξj)

+
∑
l ̸=j

[Ul(ξj + εz)−G(ξl, ξj)] +O(ε2| log ε|)
)

=
8µ2j

(µ2j + |y − ξ′j |2)2
[1 +O(ε|z|) +O(ε2| log ε|)], |y − ξ′j | <

δ

ε
.

(4.2.19)

We also have

∆V (y) = ε2

−ε2k(ξj)euj(x) +
ε2k(ξj)

|Ω|

∫
Ω
euj −

∑
l ̸=j

[
ε2k(ξl)e

ul(x) − ε2k(ξl)

|Ω|

∫
Ω
eul

] .

So, by (4.2.3) we conclude that in this region

∆V (y) = −ε4
8µ2j

(µ2jε
2 + ε2|y − ξ′j |2)2

+
8πm

|Ω|
ε2 +O(ε4)

= −
8µ2j

(µ2j + |y − ξ′j |2)2
+

8πm

|Ωε|
+O(ε4).

(4.2.20)

Also, we have that∫
Ωε

ε4k(εz)eV (z) dz = ε2
∫
Ω
k(x)eU(x) dx =

m∑
j=1

ε2
∫
B(ξj ,δ)

k(x)eU(x) dx+Aε.

Observe that Aε = ε2Θε(ξ) with Θε a uniformly bounded function as ε → 0. Now, by Lemma
4.2.1

ε2
∫
B(ξj ,δ)

k(x)eU(x) dx = ε2
∫
B(ξj ,δ)

k(x) exp

(
uj(x) +Hj(x) +

∑
l ̸=j

Ul(x)

)
dx

= ε2
∫
B(ξj ,δ)

8µ2jk(x)

(µ2jε
2 + |x− ξj |2)2k(ξj)

exp

(
Hj(x) +

∑
l ̸=j

Ul(x)

)
dx

=
1

µ4jε
2

∫
B(ξj ,δ)

k(x)eH(x,ξj)+
∑

l ̸=j G(x,ξl)+O(ε2| log ε|)(
1 +

( |x−ξj |
µjε

)2)2 dx (x− ξj = µjεy)

=
1

µ2j

∫
B(0, δ

µjε
)

k(ξj + µjεy)e
H(ξj+µjεy,ξ)+

∑
l̸=j G(ξj+µjεy,ξl)

(1 + |y|2)2
dy +O(ε2| log ε|)

= π
k(ξj)

µ2j
eH(ξj ,ξj)+

∑
l̸=j G(ξj ,ξl) + ε2| log ε|Θε(ξ).
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And using the choice of µj , j = 1, . . . ,m in (4.2.8), we get that

ε2
∫
Ω
k(x)eU(x) dx = 8πm+ ε2| log ε|Θε(ξ). (4.2.21)

In summary, combining (4.2.17)-(4.2.21) we have established the following fact

R(y) = O(ε4| log ε|), if |y − ξ′j | >
δ

ε
for all j = 1, . . . ,m

and if |y − ξ′j | < δ
ε for some j

R(y) =
8µ2j

(µ2j + |y − ξ′j |2)2
[O(ε|y − ξ′j |) +O(ε2| log ε|)] +O(ε4| log ε|).

Therefore, from the definition of ∗-norm we conclude (4.2.14).
The estimates (4.2.15) and (4.2.16) follows from (4.2.17), (4.2.19) and similar arguments used

to obtain (4.2.14). Indeed, note that if |y − ξ′j | < δ
ε for some j then

K(y) =
8µ2j

(µ2j + |y − ξ′j |2)2
[1 +O(ε|y − ξ′j |) +O(ε2| log ε|)]

and if |y − ξ′j | > δ
ε for all j = 1, . . . ,m then

K(y) = O(ε4).

Therefore, (4.2.15) and (4.2.16) follows. This completes the proof.

4.3 The associated linear problem

In this section, we will study the linearized operator under suitable orthogonality conditions.
Thus we set

L(ϕ) = ∆ϕ+Kϕ− 1

|Ωε|

∫
Ωε

Kϕ, (4.3.1)

for functions ϕ defined on Ωε, where K is a function that satisfies (4.2.15) and (4.2.16). Through-
out the main part of this section, we only assume that the numbers µj , j = 1, . . . ,m appearing
in (4.2.15) satisfy C−1

0 ≤ µj ≤ C0 for all j = 1, . . . ,m independently of ε and that the points
ξj ∈ Ω, j = 1, . . . ,m are uniformly separated from each other, namely,

dist(ξl − ξj , αZ+ βZ) ≥ δ for l ̸= j , (4.3.2)

where δ > 0 is fixed. Recall that, from (4.2.8), we have that µj = µj(ξ
′
1, . . . , ξ

′
m), which will be

considered at the end of this section.

Let us observe that L(ϕ) = L̃(ϕ) + c(ϕ), where

L̃(ϕ) = ∆ϕ+Kϕ (4.3.3)

and c(ϕ) := − 1
|Ωε|

∫
Ωε
Kϕ. Formally, if we center the system of coordinates at ξ′j , by setting

z = y − ξ′j , then the operator L̃ approaches the linear operator in IR2,

Lj(ϕ) = ∆ϕ+
8µ2j

(µ2j + |z|2)2
ϕ,
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namely, equation ∆v + ev = 0 linearized around the radial solution vj(z) = log
8µ2

j

(µ2
j+|z|2)2 . An

important fact to develop the desired solvability theory is the non-degeneracy of vj modulo
the natural invariance of the equations under translations and dilations, ζ 7→ vj(z − ζ) and
s 7→ vj(sz)− 2 log s. Thus we set,

Yij(z) = −1

4

∂

∂ζi
vj(z + ζ)

∣∣∣∣
ζ=0

=
zi

µ2j + |z|2
, i = 1, 2, and

Y0j(z) = −1

2

∂

∂s
[vj(sz) + 2 log s]

∣∣∣∣
s=1

= 1−
2µ2j

µ2j + |z|2
.

As it is well know, it turns out that the only bounded solutions of Lj(ϕ) = 0 in IR2 are precisely
the linear combinations of the Yij , i = 0, 1, 2, see [1] for a proof. Let us denote also Zij(y) :=
Yij(y − ξ′j), i = 0, 1, 2 and j = 1, . . . ,m. Also, an important goal in the study of operator L is to
get rid of the presence of the term c(ϕ).

Additionally, let us consider a large but fixed number R0 > 0 and a non-negative cut-off
function χ = χ(ρ) with χ(ρ) = 1 if ρ < R0 and χ(ρ) = 0 if ρ > R0 + 1. We denote

χj(y) = χ(|y − ξ′j |).

Given h of class C0,α(Ωε) with
∫
Ωε
h = 0, we prove first a priori estimates for the problem

L(ϕ) = h, in Ωε,

ϕ doubly periodic on ∂Ωε,∫
Ωε
χjZijϕ = 0, for all i = 1, 2, j = 1, . . . ,m

∫
Ωε
ϕ = 0,

(4.3.4)

where points ξj ∈ Ω, j = 1, . . . ,m satisfy (4.3.2). Thus, we consider the norms

∥ψ∥∞ = sup
y∈Ωε

|ψ(y)|, ∥ψ∥∗ = sup
y∈Ωε

 m∑
j=1

(1 + |y − ξ′j |)−2−σ

−1

|ψ(y)|,

where 0 < σ < 1 is a small fixed constant.

Proposition 4.3.1. Let δ > 0 be fixed. There exist positive numbers ε0 and C, such that for any
points ξj ∈ Ω̃, j = 1, . . . ,m, which satisfy (4.3.2), and any solution ϕ to problem (4.3.4), one has

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗, (4.3.5)

for all ε < ε0.

We observe that the orthogonality conditions in the problem above are only taken with respect
to the elements of the approximate kernel due to translations. Our functional frame is E(Ωε).

Proof: The proof of estimate (4.3.5) consists of several steps. Let assume the opposite, namely,
the existence of sequences εn → 0, points ξnj ∈ Ω, which satisfy (4.3.2), functions hn with

log 1
εn
∥hn∥∗ → 0 as n→ +∞, ϕn with ∥ϕn∥∞ = 1, and

L(ϕn) = hn, in Ωεn ,

ϕn doubly periodic on ∂Ωεn ,∫
Ωεn

χjZijϕn = 0, for all i = 1, 2, j = 1, . . . ,m
∫
Ωεn

ϕn = 0,

(4.3.6)
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Without loss of generality, we assume that ξnj → ξ∗j as n→ +∞ and ξ∗j ∈ Ω for all j = 1, . . . ,m,

by the doubly periodic boundary conditions. Let us define ϕ̂n(x) := ϕn(x/εn) for x ∈ Ω. We
have the following fact.

Claim 4.3.1. There holds ϕ̂n → 0 as n → +∞ in C2,α uniformly over compact subsets of
Ω̄ \ {ξ∗1 , . . . , ξ∗m}. In particular, given any δ0 > 0 we have

∥ϕ̂n∥L∞(Ω\∪m
j=1B(ξnj ,δ0))

→ 0 as n→ +∞. (4.3.7)

Proof: Note that as n→ +∞

c(ϕn) = − 1

|Ωεn |

∫
Ωεn

ε4nk(εnz)e
V (z)ϕn(z) dz = − ε2n

|Ω|

∫
Ω
ε2nk(x)e

U(x)ϕ̂n(x) dx = O(ε2n),

since ϕn is uniformly bounded and from the definition of U

1

|Ω|

∫
Ω
ε2nk(x)e

U(x)ϕ̂n(x) dx = O(1).

Hence, up to a subsequence, we get that as n→ +∞
1

|Ω|

∫
Ω
ε2nk(x)e

U(x)ϕ̂n(x) dx = c0 + o(1).

Furthermore, we have that ϕ̂ is doubly periodic on on ∂Ω,

∥ϕ̂n∥L∞(Ω) = 1 and

∫
Ω
ϕ̂n = 0.

Then

∆ϕ̂n(x) =
1

ε2n
∆ϕn

(
x

εn

)
= −ε2nk(x)eU(x)ϕ̂n(x) +

1

|Ω|

∫
Ω
ε2nke

U ϕ̂n + ĥn(x),

where ĥn(x) =
1
ε2n
hn

(
x
εn

)
. Hence, given δ′ > 0 we get

∆ϕ̂n(x) = O(ε2n) + c0 + o(1) uniformly for x ∈ Ω \ ∪m
j=1B(ξnj , δ

′)

since if |y − (ξnj )
′| > δ′

εn
for all j = 1, . . . ,m then K(y) = O(ε4) and if |x − ξnj | > δ′ for all

j = 1, . . . ,m then

1

ε2n

∣∣∣∣hn( x

εn

)∣∣∣∣ ≤ ∥hn∥∗

 m∑
j=1

ε1−σ
n(

εn + |x− ξnj |
)2+σ

 ≤ C∥hn∥∗.

Therefore, passing to a subsequence ϕ̂n → ϕ̂ as n → +∞ in C2,α sense over compact subsets of
Ω \ {ξ∗1 , . . . , ξ∗m}. Also, we have that{

∆ϕ̂ = c0, in Ω \ {ξ∗1 , . . . , ξ∗m},
ϕ̂ doubly periodic on ∂Ω

Since |ϕ̂(x)| ≤ 1 for all x ∈ Ω \ {ξ∗1 , . . . , ξ∗m}, it follows that ϕ̂ can be extended continuously to Ω
and satisfies 

∆ϕ̂ = c0, in Ω,

ϕ̂ doubly periodic on ∂Ω,∫
Ω ϕ̂ = 0,

(4.3.8)

using dominated convergence. By,
∫
Ω∆ϕ̂ = 0 we get that c0 = 0. Therefore, ϕ̂ ≡ 0, and the claim

follows.
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We follow ideas shows in [31, 40] to prove an estimate for ϕn. We use that L̃ is given by
(4.3.3), where K is a function that satisfies (4.2.15) and (4.2.16).

Claim 4.3.2. The operator L̃ satisfies maximum principle in ΩR,δ0 := ∪m
j=1[B(ξ′j ,

δ0
ε ) \ B̄(ξ′j , R)]

for R > 0 large enough and δ0 > 0 small.

Proof: First, observe that from (4.2.15) and (4.2.16) we have that there is a constant D0 such
that for all y ∈ Ωε

K(y) ≤ D0

m∑
j=1

1

(1 + |y − ξ′j |2)2
.

Now, consider the increasing function Y0(r) =
r2 − 1

1 + r2
, radial solution in IR2 of

∆Y0 +
8

(1 + r2)2
Y0 = 0.

Define a comparison function in Ωε,

g(y) =

m∑
j=1

Y0(a|y − ξ′j |) =
m∑
j=1

a2|y − ξ′j |2 − 1

1 + a2|y − ξ′j |2
, y ∈ Ωε.

Let us observe that

−∆g =
m∑
j=1

8a2(a2|y − ξ′j |2 − 1)

(1 + a2|y − ξ′j |2)3
.

So, that for |y − ξ′j | > R for all j,

−∆g ≥ 8

m∑
j=1

a2

(1 + a2|y − ξ′j |2)2
a2R2 − 1

1 + a2R2
≥ 2

m∑
j=1

a2

(1 + a2|y − ξ′j |2)2

≥ 2

m∑
j=1

a2R4

(1 + a2R2)2
1

|y − ξ′j |4
≥ 1

2a2

m∑
j=1

1

|y − ξ′j |4
,

if we choose a2R2 > 5
3 > 1. On the other hand, it is readily checked that g(y) ≤ m so, in the

same region,

Kg ≤ D0m

m∑
j=1

1

(1 + |y − ξ′j |2)2
≤ D0m

m∑
j=1

1

|y − ξ′j |4
.

Hence, if a is taken so that 0 < a < 1√
2D0m

and fixed, and R > 0 is chosen such that a2R2 > 5
3 ,

then we have that

L̃(g) = ∆g +Kg ≤
(
− 1

2a2
+D0m

) m∑
j=1

1

|y − ξ′j |4
< 0 in ΩR,δ0 .

Since, for all y ∈ ΩR,δ0

g(y) ≥ m
a2R2 − 1

1 + a2R2
≥ m

4
> 0,

we then conclude that L̃ satisfies Maximum principle, namely if L̃(ψ) ≤ 0 in ΩR,δ0 and ψ ≥ 0 on
∂ΩR,δ0 then ψ ≥ 0 in ΩR,δ0 .
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Let us fix such a number R > 0 which we may take larger whenever it is needed and a small
δ0 > 0. Now, let us consider the “annulus norm” and “boundary annulus norm”

∥ϕ∥a = ∥ϕ∥L∞(ΩR,δ0
) and ∥ϕ∥b = ∥ϕ∥L∞(∂ΩR,δ0

).

Note that ∂ΩR,δ0 = ∪m
j=1[∂B(ξ′j , R) ∪ ∂B(ξ′j ,

δ0
ε )]. We have the following estimate.

Claim 4.3.3. There is a constant C > 0 such that if L̃(ϕ) = h in Ωε then

∥ϕ∥a ≤ C[∥ϕ∥b + ∥h∥∗]. (4.3.9)

Proof: We will establish this inequality with the use of suitable barriers. Let M be a large
number such that for all j, Ωε ⊂ B(ξ′j ,

M
ε ). Consider now the solution of the problem

−∆ψj =
2

|y − ξ′j |2+σ
, R < |y − ξ′j | <

M

ε
,

ψj(y) = 0 for |y − ξ′j | = R, |y − ξ′j | = M
ε .

A direct computation shows that

ψj(r) =
2

σ2Rσ
− 2

σ2rσ
+

[
2εσ

σ2Mσ
− 2

σ2Rσ

]
log r

R

log M
εR

, r = |y − ξj |.

Note that
2εσ

σ2Mσ
− 2

σ2Rσ
< 0 and 0 ≤ ψj ≤

2

σ2Rσ
− 2εσ

σ2Mσ
≤ 2

σ2Rσ
.

hence these functions ψj have a uniform bound independent of ε. On the other hand, let us
consider the function g defined above, and let us set

ψ(y) = 4∥ϕ∥b g(y) + ∥h∥∗
m∑
j=1

ψj(y).

Then, it is easily checked that, choosing R larger if necessary, L̃(ψ) ≤ h and ψ ≥ |ϕ| on ∂ΩR,δ0 .
Hence |ϕ| ≤ ψ in ΩR,δ0 . In fact, we have that for all y ∈ ∂ΩR,δ0

ψ(y) ≥ 4∥ϕ∥b g(y) ≥ ∥ϕ∥b ≥ |ϕ(y)|.

Also, we have that choosing 2D0m ≤ σ2Rσ (for R large enough)

L̃(ψ) = 4∥ϕ∥b L̃(g) + ∥h∥∗
m∑
j=1

L̃(ψj) < ∥h∥∗
m∑
j=1

(∆ψj +Kψj)

≤ ∥h∥∗
m∑
j=1

(
− 2

|y − ξ′j |2+σ
+D0

m∑
l=1

1

(1 + |y − ξ′l|2)2
2

σ2Rσ

)

≤ ∥h∥∗
m∑
j=1

(
− 2

|y − ξ′j |2+σ
+

2D0m

σ2Rσ

1

(1 + |y − ξ′j |2)2

)

≤ −∥h∥∗
m∑
j=1

1

(1 + |y − ξ′j |)2+σ
≤ h,
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since

− 2

|y − ξ′j |2+σ
+

2D0m

σ2Rσ

1

(1 + |y − ξ′j |2)2
≤ − 1

(1 + |y − ξ′j |)2+σ
.

Hence, we conclude that |ϕ(y)| ≤ ψ(y) for all R < |y − ξ′j | <
δ0
ε , j = 1, . . . ,m and the claim

follows.

The following intermediate result provides another estimate. Again, for notational simplicity
we omit the subscript n in the quantities involved.

Lemma 4.3.1. There exist constants C > 0 such that for large n

∥ϕ∥
L∞(∪m

j=1B(ξ′j ,
δ0
ε
))
≤ C

{
∥ϕ∥L∞(∪m

j=1B(ξ′j ,R)) + o(1)
}
. (4.3.10)

Proof: First, note that from estimate (4.3.9) we deduce that there is a constant C > 0 such that
if L(ϕ) = h in Ωε then

∥ϕ∥a ≤ C

[
∥ϕ∥b + ∥h∥∗ +

|c(ϕ)|
ε2

]
. (4.3.11)

Indeed, let us consider the function

ϕ̃(y) = ϕ(y) + c(ϕ)
|y − ξ′j |2

4
, y ∈ Ωε.

Then,

L̃(ϕ̃) = L̃(ϕ) + c(ϕ) + c(ϕ)
|y − ξ′j |2

4
K = h+ c(ϕ)

|y − ξ′j |2

4
K.

From (4.2.15) and (4.2.16), it readily follows that ∥K∥∗ ≤ C. Thus, by estimate (4.3.9) we get
that there is a constant C > 0 such that

∥ϕ̃∥a ≤ C

[
∥ϕ̃∥b + ∥h∥∗ +

|c(ϕ)|
ε2

]
,

since ∥∥∥∥h+
|c(ϕ)|
4

| · −ξ′j |2K
∥∥∥∥
∗
≤ ∥h∥∗ +

|c(ϕ)|
4

∥K∥∗ sup
y∈Ωε

|y − ξ′j |2.

Also, we have that

∥ϕ∥a ≤ ∥ϕ̃∥a +
∥∥∥∥c(ϕ)4

| · −ξ′j |2
∥∥∥∥
a

≤ C

[
∥ϕ̃∥b + ∥h∥∗ +

|c(ϕ)|
ε2

]
+

|c(ϕ)|
4

sup
y∈Ωε

|y − ξ′j |2

≤ C

[
∥ϕ∥b + ∥h∥∗ +

|c(ϕ)|
ε2

]
,

since

∥ϕ̃∥b ≤ ∥ϕ∥b +
|c(ϕ)|
ε2

.

From (4.3.7) we find that for large n

∥ϕ∥
L∞(Ωε\∪m

l=1B(ξ′j ,
δ0
ε
))
= o(1). (4.3.12)
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Furthermore, we have that c(ϕ) = o(ε2), since c0 = 0. By the assumption, we know that
∥h∥∗ = o(1). Now, from (4.3.11) it is clear that

∥ϕ∥
L∞(∪m

j=1B(ξ′j ,
δ0
ε
))
≤ max{∥ϕ∥L∞(∪m

j=1B(ξ′j ,R)), ∥ϕ∥a}

≤ ∥ϕ∥L∞(∪m
j=1B(ξ′j ,R)) + C

[
∥ϕ∥b + ∥h∥∗ +

|c(ϕ)|
ε2

]
≤ C∥ϕ∥L∞(∪m

j=1B(ξ′j ,R)) + o(1),

since by (4.3.12) we get that

∥ϕ∥b ≤ ∥ϕ∥L∞(∪m
j=1∂B(ξ′j ,R)) + o(1) ≤ ∥ϕ∥L∞(∪m

j=1B(ξ′j ,R)) + o(1).

Therefore, we conclude (4.3.10) and this completes the proof.

We continue with the proof of Proposition 4.3.1 and we get the following fact.

Claim 4.3.4. There exists an index j ∈ {1, . . . ,m} such that passing to a subsequence if neces-
sary,

lim inf
n→∞

∥ϕn∥L∞(B((ξnj )
′,R)) ≥ κ > 0. (4.3.13)

Proof: Arguing by contradiction, if for all j = 1, . . . ,m

lim inf
n→∞

∥ϕn∥L∞(B((ξnj )
′,R)) = 0,

then (4.3.10) and (4.3.12) implies that, passing to a subsequence if necessary, ∥ϕn∥∞ → 0 as
n→ +∞. On the other hand, we know that ∥ϕ∥∞ = 1 for all n ∈ IN. This conclude (4.3.13).

Let us set ψn,j(z) = ϕn((ξ
n
j )

′ + z) for any j. We notice that ψn,j satisfies

∆ψn,j +K((ξnj )
′ + z)ψn,j = hn((ξ

n
j )

′ + z)− c(ϕn), in Ωn,j ≡ Ωεn − (ξnj )
′ .

Elliptic estimates and (4.3.13) readily imply that ψn converges uniformly over compact subsets
of IR2 to a bounded, non-zero solution ψ∗

j of

∆ψ +
8µ2j

(µ2j + |z|2)2
ψ = 0.

This implies that ψ∗
j is a linear combination of the functions Yij , i = 0, 1, 2. Thus, we have that

for some constants aij , i = 0, 1, 2

ψ∗
j = a0jY0j + a1jY1j + a2jY2j .

But, from (4.3.6), orthogonality conditions over ψn,j pass to the limit thanks to ∥ψn,j∥∞ ≤ C
and dominated convergence, namely,∫

IR2
χ(|z|)Yijψ∗

j = 0, for i = 1, 2.

This implies that a1j = a2j = 0 and ψ∗
j = a0j Y0j . A contradiction with (4.3.13) arises if we are

able to show that a0j = 0. The assumption on hn, | log εn| ∥hn∥∗ = o(1) allows us to get a0j = 0.

Claim 4.3.5. There holds a0j = 0.
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Proof: Let us construct a suitable test function in order to get the additional orthogonality
relation ∫

IR2

8µ2j (µ
2
j − |z|2)

(µ2j + |z|2)3
ψ∗
j (z) dz = 0, (4.3.14)

which implies a0j = 0 as claimed. We will use an idea developed first in [37] and then exploited
in [38, 39, 40]. This idea has been used also to prove claim 3.3.4.

Define the functions wn,j and w̃n,j for x ∈ Ω given by

wn,j(x) =
4

3
log(µ2jε

2 + |x− ξj |2)
µ2jε

2 − |x− ξj |2

µ2jε
2 + |x− ξj |2

+
8

3

µ2jε
2

µ2jε
2 + |x− ξj |2

and

w̃n,j(x) = −
2µ2jε

2

µ2jε
2 + |x− ξj |2

.

Let us note that wn,j and w̃n,j satisfy

∆wn,j +
8µ2jε

2

(µ2jε
2 + |x− ξj |2)2

wn,j = 2
8µ2jε

2(µ2jε
2 − |x− ξj |2)

(µ2jε
2 + |x− ξj |2)3

and

∆w̃n,j +
8µ2jε

2

(µ2jε
2 + |x− ξj |2)2

w̃n,j = −
8µ2jε

2

(µ2jε
2 + |x− ξj |2)2

.

Consider the test function Zn,j satisfying
∆Zn,j = ∆zn,j − 1

|Ω|
∫
Ω∆zn,j(x) dx, in Ω,

Zn,j doubly periodic on ∂Ω,∫
Ω Zn,j = 0,

where zn,j = wn,j +
2
3H(ξj , ξj)w̃n,j . Observe that from the representation formula (2.2.4) we get

that

Zn,j − zn,j −
2

3
H(·, ξj) = O(ε2| log ε|), (4.3.15)

in C2-sense over compact subset of Ω. Recall that ϕ̂n satisfies

∆ϕ̂n + ε2nk(x)e
U ϕ̂n − 1

|Ω|

∫
Ω
ε2nke

U ϕ̂n = ĥ, in Ω.

Multiply this equation by Zn,j and integrate on Ω, since
∫
Ω Zn,j =

∫
Ω ϕ̂n = 0 we get that∫

Ω
ĥZn,j =

∫
Ω
ϕ̂n
(
∆Zn,j + ε2k(x)eUZn,j

)
=

∫
Ω
ϕ̂n∆zn,j +

∫
Ω
ε2k(x)eU ϕ̂nZn,j

=2

∫
Ω
ϕ̂n

8µ2jε
2(µ2jε

2 − |x− ξj |2)
(µ2jε

2 + |x− ξj |2)3
+

∫
Ω
ϕ̂n

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

(
Zn,j − zn,j −

2

3
H(ξj , ξj)

)

+

∫
Ω

(
ε2k(x)eU −

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

)
ϕ̂nZn,j
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From (4.3.15) we get that Zn,j = zn,j +O(1) = O(| log εn|), then∫
Ω
ĥZn,j =

∫
Ωεn

hn(y)Zn,j(εny) dy = O(| log εn| ∥hn∥∗) = o(1)

as n→ +∞. On the other hand, we have that ψn,j(z) = ϕ̂n(ξ
n
j + εnz) then as n→ +∞∫

Ω
ϕ̂n(x)

8µ2jε
2(µ2jε

2 − |x− ξj |2)
(µ2jε

2 + |x− ξj |2)3
dx =

∫
B
(
0, δ

εn

) ψn,j(z)
8µ2j (µ

2
j − |z|2)

(µ2j + |z|2)3
dx+O(ε2n)

∫
Ω
ϕ̂n

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

(
Zn,j − zn,j −

2

3
H(ξj , ξj)

)
=

∫
Ω
ϕ̂n

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

(
Zn,j(x)− zn,j(x)−

2

3
H(x, ξj)

)
dx

+
2

3

∫
Ω
ϕ̂n

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

(H(x, ξj)−H(ξj , ξj)) dx

= O(εn)∫
Ω

(
ε2k(x)eU −

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

)
ϕ̂nZn

=

∫
B(ξj ,δ)

(
ε2k(x)eU −

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

)
ϕ̂nZn,j +O(ε2n| log εn|)

+

m∑
l=1,l ̸=j

∫
B(ξl,δ)

ε2k(x)eU ϕ̂nZn,j

=

∫
B(ξ′j ,

δ
εn

)

8µ2j
(µ2j + |y − ξ′j |2)2

θε(y)ϕn(y)Zn,j(εny) dy +O(ε2n| log εn|)

+
m∑

l=1,l ̸=j

∫
B(0, δ

εn
)

8µ2l
(µ2l + |z|2)2

[1 +O(ε|z|) +O(ε2| log ε|)]ψn,l(z)Zn,j(ξl + εz) dz

= o(1),

since if l ̸= j then we find that Zn,j(ξl + εz) = 2
3G(ξl, ξj) +O(ε) for all |z| < δ

ε and∫
B(0, δ

εn
)

8µ2l
(µ2l + |z|2)2

[1 +O(ε|z|) +O(ε2| log ε|)]ψn,l(z)Zn,j(ξl + εz) dz = o(1)

thanks to dominated convergence. Therefore, we conclude (4.3.14) and hence, a0j = 0.

This conclude the proof of proposition 4.3.1.

Consider the linear problem of finding a function ϕ and scalars cij , i = 1, 2, j = 1, . . . ,m and
such that 

L(ϕ) = h+
∑2

i=1

∑m
j=1 cijχjZij , in Ωε,

ϕ doubly periodic on ∂Ωε,∫
Ωε
χjZijϕ = 0, for all i = 1, 2, j = 1, . . . ,m

∫
Ωε
ϕ = 0,

(4.3.16)
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where h ∈ L∞(Ωε), ∥h∥∗ < +∞ and
∫
Ωε
h = 0. Our main result for the problem (4.3.16) states

its solvability, for any points ξj ∈ Ω uniformly separated from each other. Let us stress that the
right hand side of the equation of L(ϕ) integrates zero.

We are now ready for the proof of our main result of this section.

Proposition 4.3.2. Let δ > 0 be fixed. There exist positive numbers ε0 and C, such that for any
points ξj ∈ Ω̃, j = 1, . . . ,m, satisfying (4.3.2), there is a unique solution to problem (4.3.16) for
all ε < ε0. Moreover,

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗, |cij | ≤ C∥h∥∗, i = 1, 2, j = 1, . . . ,m. (4.3.17)

Proof: We begin by establishing the validity of the a priori estimate (4.3.17). We have the
equation

L(ϕ) = h+
2∑

i=1

m∑
j=1

cijχjZij . (4.3.18)

So, by a priori estimates

∥ϕ∥∞ ≤ C

(
log

1

ε

)∥h∥∗ + 2∑
i=1

m∑
j=1

|cij |

 . (4.3.19)

since for all i = 1, 2, j = 1, . . . ,m we have that ∥χjZij∥∗ ≤ C. Hence, it suffices to estimate
the values of the constants |cij |. Next, we consider a smooth cut-off function η = η(r) with the
following properties: η(r) = 1 for r < δ

4ε , η(r) = 0 for r > δ
3ε , |η

′(r)| ≤ Cε, |η′′(r)| ≤ Cε2. Then
we set

ηj(y) = η(|y − ξ′j |) (4.3.20)

We test equation (4.3.18) against ηjZij to find for i = 1, 2

⟨L(ϕ), ηjZij⟩ = ⟨h, ηjZij⟩+ cij

∫
Ωε

χj |Zij |2, (4.3.21)

where ⟨f, g⟩ =
∫
Ωε
fg. Now, we find that

⟨L(ϕ), ηjZij⟩ = ⟨∆ϕ+Kϕ+ c(ϕ), ηjZij⟩ =
∫
Ωε

[∆ηjZij +KηjZij ]ϕ+ c(ϕ)

∫
Ωε

ηjZij .

Thus, we get that

⟨L(ϕ), ηjZij⟩ = ⟨ϕ, L̃(ηjZij)⟩, for all, i = 1, 2, j = 1, . . . ,m.

And we have

L̃(ηjZij) = ∆ηjZij + 2∇ηj∇Zij + ηj(∆Zij +KZij)

= ∆ηjZij + 2∇ηj∇Zij + evj(·−ξ′j)θεηjZij +O(ε4).

Furthermore, we find for i = 1, 2∫
Ωε

|∆ηjZij | ≤
∫
B(ξ′j ,

δ
3ε

)\B(ξ′j ,
δ
4ε

)

[
|η′′(|y − ξ′j |)|+

1

|y − ξ′j |
|η′(|y − ξ′j |)|

]
|y − ξ′j |

µ2j + |y − ξ′j |2
dy

≤ Cε2
∫
B(ξ′j ,

δ
3ε

)\B(ξ′j ,
δ
4ε

)

|y − ξ′j |
µ2j + |y − ξ′j |2

dy + Cε

∫
B(ξ′j ,

δ
3ε

)\B(ξ′j ,
δ
4ε

)

1

µ2j + |y − ξ′j |2
dy,

≤ Cε
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∫
Ωε

|∇ηj∇Zij | ≤
∫
B(ξ′j ,

δ
3ε

)\B(ξ′j ,
δ
4ε

)
|η′(|y − ξ′j |)| |∇Zij(y)| dy ≤ Cε

and similarly ∫
Ωε

|evj(·−ξ′j)θεηjZij | ≤ Cε.

Thus, for i = 1, 2 ∣∣∣⟨ϕ, L̃(ηjZij)⟩
∣∣∣ ≤ Cε∥ϕ∥∞.

From (4.3.19) and (4.3.21), we get the following inequality for i = 1, 2

|cij |
∣∣∣∣∫

Ωε

χjZ
2
ij

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

ϕ L̃(ηjZij)

∣∣∣∣+ ∫
Ωε

|h| |ηjZij | ≤ Cε∥ϕ∥∞ + C∥h∥∗

≤ Cε log
1

ε

∥h∥∗ + 2∑
i=1

m∑
j=1

|cij |

+ C∥h∥∗

and the estimate

|cij |
∣∣∣∣∫

Ωε

χjZ
2
ij

∣∣∣∣ ≤ C

∥h∥∗ + ε log
1

ε

( 2∑
i=1

m∑
j=1

|cij |
) . (4.3.22)

Also, we have that there is a constant C = C(R0) independent of ε such that∣∣∣∣∫
Ωε

χjZ
2
ij

∣∣∣∣ ≥ C.

Combining this estimate with (4.3.22) we obtain for i = 1, 2

|cij | ≤ C

[
∥h∥∗ + ε log

1

ε

( 2∑
i=1

m∑
j=1

|cij |
)]

which implies |cij | ≤ C∥h∥∗ for all i = 1, 2, j = 1, . . . ,m. It follows finally from (4.3.19) that
∥ϕ∥∞ ≤ C(log 1

ε )∥h∥∗ and the a priori estimate has been thus proven. It only remains to prove
the solvability assertion. To this purpose we consider the space

H =

{
ϕ ∈ E(Ωε) :

∫
Ωε

χjZij ϕ = 0 for i = 1, 2, j = 1, . . . ,m

}
,

endowed with the usual inner product [ϕ, ψ] =
∫
Ωε

∇ϕ∇ψ. Problem (4.3.16) expressed in weak
form is equivalent to that of finding a ϕ ∈ H, such that

[ϕ, ψ] =

∫
Ωε

[Kϕ− h]ψ dx, for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operator
form ϕ = K(ϕ)+h̃, for certain h̃ ∈ H, where K is a compact operator inH. Fredholm’s alternative
guarantees unique solvability of this problem for any h provided that the homogeneous equation
ϕ = K(ϕ) has only the zero solution in H. This last equation is equivalent to (4.3.16) with h ≡ 0.
Thus existence of a unique solution follows from the a priori estimate (4.3.17). This finishes the
proof.
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The result of Proposition 4.3.2 implies that the unique solution ϕ = T (h) of (4.3.16) defines
a continuous linear map from the Banach space C∗ of all functions h in L∞ for which ∥h∥∗ < ∞
and

∫
Ωε
h = 0, into L∞, with norm bounded by C| log ε|.

It is important for later purposes to understand the differentiability of the operator T with
respect to the variable ξ′i. Fix h ∈ C∗ and let ϕ = T (h). Let us recall that ϕ satisfies the equation

L(ϕ) = h+
2∑

i=1

m∑
j=1

cij χj Zij ,

and the doubly periodic and orthogonality conditions, for some (uniquely determined) constants
cij = cij(ξ

′), i = 1, 2, j = 1, . . . ,m. We want to compute derivatives of ϕ with respect to the
parameters ξ′kl. Formally

∆(∂ξ′klϕ) +K∂ξ′klϕ− 1

|Ωε|

∫
Ωε

K∂ξ′klϕ = −∂ξ′klK ϕ+
1

|Ωε|

∫
Ωε

∂ξ′klKϕ+

2∑
i=1

m∑
j=1

∂ξ′kl(cijχjZij)

so, X = ∂ξ′klϕ should satisfy

L(X) = −∂ξ′klK ϕ+
1

|Ωε|

∫
Ωε

∂ξ′klKϕ+
2∑

i=1

m∑
j=1

cij ∂ξ′kl(χjZij) +
2∑

i=1

m∑
j=1

dijχjZij ,

where (still formally) dij = ∂ξ′kl(cij), i = 1, 2, j = 1, . . . ,m. The orthogonality conditions now
become ∫

Ωε

χjZijX = −
∫
Ωε

∂ξ′kl(χjZij)ϕ, i = 1, 2, j = 1, . . . ,m.

Observe that ∂ξ′kl(χjZij) is not necessarily identically zero, since µj = µj(ξ
′
1, . . . , ξ

′
m) by (4.2.8).

We will recast X as follows. Let us consider ηj , a smooth cut-off function as in (4.3.20). We
consider the constants bij defined as

bij

∫
Ωε

χj |Zij |2 :=
∫
Ωε

ϕ ∂ξ′kl(χjZij), i = 1, 2, j = 1, . . . ,m

and the function

f :=

2∑
i=1

m∑
j=1

[
bij L(ηj Zij) + cij ∂ξ′kl(χjZij)

]
− ∂ξ′klK ϕ+

1

|Ωε|

∫
Ωε

∂ξ′klKϕ.

Then the function X above can be uniquely expressed as

X = T (f)−
2∑

i=1

m∑
j=1

bij ηj Zij .

This computation is not just formal. Arguing directly by definition it shows that indeed ∂ξ′klϕ =

X. Also, we find that ∥f∥∗ ≤ Cε−σ(log 1
ε )∥h∥∗. In fact, we get that

∥f∥∗ ≤
2∑

i=1

m∑
j=1

[
|bij | ∥L(ηjZij)∥∗ + |cij | ∥∂ξ′kl(χjZij)∥∗

]
+ ∥∂ξ′klKϕ∥∗ +

∥∥∥∥ 1

|Ωε|

∫
Ωε

∂ξ′klKϕ

∥∥∥∥
∗
.
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First, note that |bij | ≤ C∥ϕ∥∞ ∥∂ξ′kl(χjZij)∥∗. Since, suppχj ⊆ B(ξ′j , R0 + 1), we get that
∥∂ξ′kl(χjZij)∥∗ ≤ C. Thus, we obtain that

|bij | ≤ C

(
log

1

ε

)
∥h∥∗.

Next, we estimate ∥L(ηjZij)∥∗. So, we have that

∥L(ηjZij)∥∗ = ∥L̃(ηjZij) + c(ηjZij)∥∗ ≤ ∥L̃(ηjZij)∥∗ + ∥c(ηjZij)∥∗.

We know that in B(ξ′j ,
δ
3ε)

L̃(ηjZij) = ∆ηjZij + 2∇ηj∇Zij + evj(·−ξ′j)θεηjZij +O(ε4)

and L̃(ηjZij) = 0 in Ωε \ B(ξ′j ,
δ
3ε). Therefore, from the definition of ∗-norm we obtain that

∥L̃(ηjZij)∥∗ ≤ Cε1−σ.
On the other hand, we know that

c(ηjZij) = − 1

|Ωε|

∫
Ωε

KηjZij

and hence, we estimate

∥c(ηjZij)∥∗ ≤
ε2

|Ω|

∣∣∣∣∫
Ωε

KηjZij

∣∣∣∣ sup
y∈Ωε

(1 + |y − ξ′j |)2+σ ≤ Cε1−σ,

since ∫
Ωε

∆(ηjZij) = 0 and

∫
Ωε

∣∣∣L̃(ηjZij)
∣∣∣ ≤ Cε.

Now, we estimate ∂ξ′klK. We know that K(y) = ε4k(εy)eV (y) and hence we find that

∂ξ′klK(y) = ε4k(εy)eV (y)∂ξ′klV (y). From the definition of V , we have that

∂ξ′klV (y) = ∂ξ′kl [U(εy)] =

m∑
j=1

∂ξ′kl [Uj(εy)] = ε

m∑
j=1

∂ξklUj(εy).

Using the integral representation (2.2.4) we deduce that for all j = 1, . . . ,m

∂ξklUj(x) = ∂ξkl

(
uj(x)− log

8µ2j
k(ξj)

+H(x, ξj)

)
+O(ε2| log ε|)

uniform in C2-sense on compact subsets of Ω. In particular, for j ̸= l

∂ξklUj(x) =
−2∂ξkl(µ

2
j )ε

2

µ2jε
2 + |x− ξj |2

+O(ε2| log ε|)

and

∂ξklUl(x) =
4(x− ξl)k

µ2l ε
2 + |x− ξl|2

−
2∂ξkl(µ

2
l )ε

2

µ2l ε
2 + |x− ξl|2

+ ∂2kH(x, ξl) +O(ε2| log ε|).

Hence, we have that ∥∂ξklUl∥∞ ≤ C
ε and for all j ̸= l ∥∂ξklUj∥∞ ≤ C. Thus, we get that

∥∂ξ′klV ∥∞ ≤ C and ∥∂ξ′klK∥∞ ≤ ∥K∥∗∥∂ξ′klV ∥∞ ≤ C. With this estimate, we get that

∥∂ξ′klKϕ∥∗ ≤ ∥∂ξ′klK∥∗∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗
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and ∥∥∥∥ 1

|Ωε|

∫
Ωε

∂ξ′klKϕ

∥∥∥∥
∗
≤ C∥∂ξ′klK∥∗∥ϕ∥∞ sup

y∈Ωε

(1 + |y − ξ′j |)σ ≤ C

εσ

(
log

1

ε

)
∥h∥∗.

Therefore, we conclude that

∥f∥∗ ≤ C

[
ε1−σ

(
log

1

ε

)
∥h∥∗ + ∥h∥∗ +

(
log

1

ε

)
∥h∥∗ + ε−σ

(
log

1

ε

)
∥h∥∗

]
≤ C

εσ

(
log

1

ε

)
∥h∥∗.

Moreover, using Proposition 4.3.2, we find that

∥∂ξ′klϕ∥∗ ≤ ∥T (f)∥∞ +

2∑
i=1

m∑
j=1

|bij | ∥ηjZij∥∞ ≤ C

(
log

1

ε

)
∥f∥∗ + C

(
log

1

ε

)
∥h∥∗.

Finally, we conclude that

∥∂ξ′klT (h)∥∞ ≤ C

εσ

(
log

1

ε

)2

∥h∥∗ for all k = 1, 2, l = 1, . . . ,m. (4.3.23)

This estimate is of crucial importance in the arguments to come. Remark that 0 < σ < 1.

4.4 The nonlinear problem

In this section, instead of solve directly the problem (4.2.11) we shall solve an intermediate
problem. First, we consider the following auxiliary non linear problem

L(ϕ) = −[R+N(ϕ)] +
∑2

i=1

∑m
j=1 cijχjZij , in Ωε,

ϕ doubly periodic on ∂Ωε,∫
Ωε
χjZijϕ = 0, for all i = 1, 2, j = 1, . . . ,m

∫
Ωε
ϕ = 0.

(4.4.1)

where K, R and N(ϕ) are given by (4.2.15), (4.2.12) and (4.2.13) respectively.

Lemma 4.4.1. Let δ > 0. Then there exist ε0 > 0, C > 0 such that for 0 < ε < ε0 and for
any ξ1, . . . , ξm ∈ Ω̃ satisfying (4.3.2), problem (4.4.1) admits a unique solution ϕ, cij, i = 1, 2,
j = 1, . . . ,m such that

∥ϕ∥∞ ≤ Cε| log ε|. (4.4.2)

Furthermore, denoting ξ′ = (ξ′1, . . . , ξ
′
m), the function ξ′ 7→ ϕ(ξ′) ∈ C(Ω̄ε) is C

1 and

∥Dξ′ϕ∥∞ ≤ Cε1−σ| log ε|2. (4.4.3)

Proof: First, note that R ∈ L∞(Ωε), ∥R∥∗ < +∞,
∫
Ωε
R = 0 and

∫
Ωε
N(ϕ) = 0 for any

ϕ ∈ C(Ω̄ε). Next, we observe that in terms of the operator T defined in Proposition 4.3.2, the
latter problem becomes

ϕ = −T (R+N(ϕ)) := A(ϕ). (4.4.4)

For a given number ν > 0, let us consider

Fν = {ϕ ∈ C(Ω̄ε) : ∥ϕ∥∞ ≤ νε| log ε|}
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From the Proposition 4.3.2, we get

∥A(ϕ)∥∞ ≤ C| log ε|∥R+N(ϕ)∥∗ ≤ C| log ε| [∥R∥∗ + ∥N(ϕ)∥∗] .

From (4.2.14) it follows the estimate ∥R∥∗ ≤ Cε. Furthermore,

∥N(ϕ)∥∗ ≤ ∥K∥∗ ∥eϕ − ϕ− 1∥∞ +
ε2

|Ω|

∥∥∥∥∫
Ωε

K(z)(eϕ(z) − ϕ(z)− 1) dz

∥∥∥∥
∗

≤ C∥ϕ∥2∞ +
C

εσ
∥K∥∗ ∥eϕ − ϕ− 1∥∞

≤ C

εσ
∥ϕ∥2∞.

Hence, we get for any ϕ ∈ Fν ,

∥A(ϕ)∥∞ ≤ C| log ε|
[
ε+

1

εσ
∥ϕ∥2∞

]
≤ C| log ε|

[
ε+ ν2ε2−σ| log ε|2

]
≤ Cε| log ε|

[
1 + ν2ε1−σ| log ε|2

]
.

Given any ϕ1, ϕ2 ∈ Fν , we have A(ϕ1)−A(ϕ2) = −T (N(ϕ1)−N(ϕ2)),

∥A(ϕ1)−A(ϕ2)∥∞ ≤ C| log ε| ∥N(ϕ1)−N(ϕ2)∥∗ ,

N(ϕ1)−N(ϕ2) = K(eϕ1 − ϕ1 − [eϕ2 − ϕ2])−
1

|Ωε|

∫
Ωε

K(eϕ1 − ϕ1 − [eϕ2 − ϕ2])

and

∥N(ϕ1)−N(ϕ2)∥∗ ≤ C(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞ +
C

εσ
∥K∥∗∥eϕ1 − ϕ1 − [eϕ2 − ϕ2]∥∞

≤ Cνε1−σ| log ε| ∥ϕ1 − ϕ2∥∞

with C independent of ν. Therefore,

∥A(ϕ1)−A(ϕ2)∥∞ ≤ Cνε1−σ| log ε|2∥ϕ1 − ϕ2∥∞

It follows that for all ε sufficiently small A is a contraction mapping of Fν (for ν large enough),
and therefore a unique fixed point of A exists in Fν .

Let us now discuss the differentiability of ϕ depending on ξ′, i.e., ξ′ 7→ ϕ(ξ′) ∈ C(Ω̄ε) is C1.
Since R depends continuously (in the ∗-norm) on ξ′, using the fixed point characterization (4.4.4),
we deduce that the mapping ξ′ 7→ ϕ is also continuous. Then, formally

∂ξ′klN(ϕ) = ∂ξ′klK(eϕ − ϕ− 1) +K[eϕ − 1]∂ξ′kl ϕ

− 1

|Ωε|

∫
Ωε

(
∂ξ′klK(eϕ − ϕ− 1) +K[eϕ − 1]∂ξ′kl ϕ

)
.

It can be checked that ∥∂ξ′klK∥∗ and
∫
Ωε

|∂ξ′klK| are uniformly bounded, so we conclude

∥∂ξ′klN(ϕ)∥∗ ≤
C

εσ
∥ϕ∥2∞ +

C

εσ
∥ϕ∥∞ ∥∂ξ′klϕ∥∞ ≤ Cε1−σ| log ε|

[
ε| log ε|+ ∥∂ξ′klϕ∥∞

]
.

Also, observe that we have

∂ξ′klϕ = −(∂ξ′klT ) (R+N(ϕ))− T
(
∂ξ′kl [R+N(ϕ)]

)
.
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So, using (4.3.23), we get

∥∂ξ′klϕ∥∞ ≤ C

εσ
| log ε|2 ∥R+N(ϕ)∥∗ + C| log ε| ∥∂ξ′kl(R+N(ϕ))∥∗

≤ C| log ε|
[
| log ε|
εσ

(∥R∥∗ + ∥N(ϕ)∥∗) + ∥∂ξ′klR∥∗ + ∥∂ξ′klN(ϕ)∥∗
]
.

Let us estimate ∥∂ξ′klR∥∗. We know that

∂ξ′klR(y) = ∆∂ξ′klV (y) + ε4k(εy)eV ∂ξ′klV − 1

|Ωε|

∫
Ωε

ε4k(εz)eV (z)∂ξ′klV (z) dz.

Thus, we have that

∆∂ξ′klV (y) = −ε2
m∑
j=1

∂ξ′kl

(
ε2k(ξj)e

uj(εy) − 1

|Ω|

∫
Ω
ε2k(ξj)e

uj

)

= −ε2
m∑
j=1

(
ε3∂ξkl [k(ξj)e

uj(εy)]− ε

|Ω|

∫
Ω
ε2∂ξkl [k(ξj)e

uj ]

)
.

Observe that

∂ξkl [k(ξl)e
ul(x)] =

32µ2l (x− ξl)k
(µ2l ε

2 + |x− ξl|2)3
+

8∂ξkl(µ
2
l )(|x− ξl|2 − µ2l ε

2)

(µ2l ε
2 + |x− ξl|2)3

and for j ̸= l

∂ξkl [k(ξj)e
uj(x)] =

8∂ξkl(µ
2
j )

(µ2jε
2 + |x− ξj |2)2

|x− ξj |2 − µ2jε
2

µ2jε
2 + |x− ξj |2

.

Hence, we get that

ε2
∫
Ω
∂ξkl [k(ξl)e

ul(x)] dx =
∂ξkl(µ

2
l )

µ2l

∫
B(ξl,δ)

8µ2l ε
2(|x− ξl|2 − µ2l ε

2)

(µ2l ε
2 + |x− ξl|2)3

dx+O(ε2)

= O(ε2)

and similarly for j ̸= l

ε2
∫
Ω
∂ξkl [k(ξj)e

uj(x)] dx =
∂ξkl(µ

2
j )

µ2j

∫
B(ξj ,δ)

8µ2jε
2

(µ2jε
2 + |x− ξj |2)2

|x− ξj |2 − µ2jε
2

µ2jε
2 + |x− ξj |2

dx+O(ε2)

= O(ε2).

Also, we have that

∆∂ξ′klV (y) = −
32µ2l (y − ξ′l)k

(µ2l + |y − ξ′l|2)3
− ε

m∑
j=1

8∂ξkl(µ
2
j )(|y − ξ′j |2 − µ2j )

(µ2j + |y − ξ′j |2)3
+O(ε5).

On the other hand, we have that∫
Ωε

ε4k(εz)eV (z)∂ξ′klV (z) dz =

∫
Ω
ε2k(x)eU(x)ε∂ξklU(x) dx

=
m∑
j=1

ε3
∫
B(ξj ,δ)

k(x)eU(x)∂ξklU(x) dx+O(ε3).
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For any j, denote ρj(x) = k(x)eH(x,ξj)+
∑

q ̸=l G(x,ξq). Now, by similar computations to get (4.2.21),
if j ̸= l then

ε3
∫
B(ξj ,δ)

k(x)eU(x)∂ξklU(x) dx

= ε3
∫
B(ξj ,δ)

ρj(x)

µ4jε
4

(
1 +

(
|x−ξj |
µjε

)2)2 (1 +O(ε2| log ε|))

×

(
−2∂ξkl(µ

2
j )ε

2

µ2jε
2 + |x− ξj |2

+ ∂2kG(x, ξl) +O(ε2| log ε|)

)
dx

=
ε

µ2j

∫
B(0, δ

µjε
)

ρj(ξj + µjεy)

(1 + |y|2)2

(
−2∂ξkl(µ

2
j )

µ2j (1 + |y|2)
+ ∂2kG(ξj + µjεy, ξl)

)
dy

+O(ε3| log ε|)

= −
2∂ξkl(µ

2
j )ε

µ4j

[π
2
ρj(ξj) +O(ε2)

]
+

ε

µ2j

[
πρj(ξj)∂2kG(ξj , ξl) +O(ε2| log ε|)

]
+O(ε3| log ε|)

= O(ε3| log ε|),

since 8µ2j = ρj(ξj), ∂ξkl(µ
2
j ) = µ2j∂2kG(ξj , ξl) for j ̸= l. Also, we have that

ε3
∫
B(ξl,δ)

k(x)eU(x)∂ξklU(x) dx

= ε3
∫
B(ξl,δ)

ρl(x)

µ4l ε
4

(
1 +

(
|x−ξl|
µlε

)2)2 (1 +O(ε2| log ε|))

×
(
4(x− ξl)k − 2∂ξkl(µ

2
l )ε

2

µ2l ε
2 + |x− ξl|2

+ ∂2kH(x, ξl) +O(ε2| log ε|)
)
dx

=

∫
B(0, δ

µlε
)

[
4

µ3l

ykρl(ξl + µlεy)

(1 + |y|2)3
−

2∂ξkl(µ
2
l )ε

µ4l

ρl(ξl + µlεy)

(1 + |y|2)3

+
ε

µ2l

ρl(ξl + µlεy)

(1 + |y|2)2
∂2kH(ξl + µlεy, ξl)

]
dy +O(ε3| log ε|)

= O(ε3| log ε|),

since 8µ2l = ρl(ξl), ∂kρl(ξl) = 8∂ξkl(µ
2
l ), ∂2kH(ξl, ξl) = 0 and∫

B(0, δ
µlε

)

ykρl(ξl + µlεy)

(1 + |y|2)3
dy

=

∫
B(0, δ

µlε
)

yk
(1 + |y|2)3

[
ρl(ξl) +∇ρl(ξl) · µlεy + µ2l ε

2⟨D2ρl(ξl)y, y⟩+O(µ3l ε
3|y|3)

]
dy

=
π

4
∂kρl(ξl)µlε+O(ε3| log ε|).

Therefore, we conclude that∫
Ωε

ε4k(εz)eV (z)∂ξ′klV (z) dz = O(ε3| log ε|).
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On the other hand, we know that

∂ξ′klV (y) =
4(y − ξ′l)k

µ2l + |y − ξ′l|2
+ ε∂2kH(εy, ξl)−

m∑
j=1

2∂ξkl(µ
2
j )ε

µ2j + |y − ξ′j |2
+O(ε3| log ε|).

If |y − ξ′j | > δ
ε for all j = 1, . . . ,m then ε4k(εy)eV (y) = O(ε4) and ∂ξ′klV (y) = O(ε). Similarly,

in the same region ∆∂ξ′klV (y) = O(ε5). Hence, we get that in the considered region ∂ξ′klR(y) =

O(ε5| log ε|), for all j = 1, . . . ,m. Now, if |y − ξ′j | < δ
ε for some j ∈ {1, . . . ,m} then

ε4k(εy)eV (y) =
8µ2j

(µ2j + |y − ξ′j |2)2
[1 +O(ε|y − ξ′j |) +O(ε2| log ε|)].

We have that for j ̸= l

∂ξ′klV (y) = −
2∂ξkl(µ

2
j )ε

µ2j + |y − ξ′j |2
+O(ε) = O(ε)

and

∂ξ′klR(y) = −ε
8∂ξ′kl(µ

2
j )(|y − ξ′j |2 − µ2j )

(µ2j + |y − ξ′j |2)3

+
8µ2j

(µ2j + |y − ξ′j |2)2
[
1 +O(ε|y − ξ′j |) +O(ε2| log ε|)

]
O(ε) +O(ε5| log ε|)

=
8µ2j

(µ2j + |y − ξ′j |2)2
[
O(ε) +O(ε2|y − ξ′j |)

]
+O(ε5| log ε|).

For j = l, we find that

∂ξ′klR(y) = −
32µ2l (y − ξ′l)k

(µ2l + |y − ξ′l|2)3
− ε

8∂ξ′kl(µ
2
l )(|y − ξ′l|2 − µ2l )

(µ2j + |y − ξ′j |2)3

+
8µ2l

(µ2l + |y − ξ′l|2)2
[
1 +O(ε|y − ξ′l|) +O(ε2| log ε|)

] [ 4(y − ξl)k
µ2l + |y − ξ′l|2

+O(ε)

]
+O(ε5| log ε|)

=
8µ2l

(µ2l + |y − ξ′l|2)2
[
O(ε) +O(ε|y − ξ′l|)

]
+O(ε5| log ε|).

Therefore, from the definition of *-norm we conclude that∥∂ξ′klR∥∗ ≤ Cε. Hence, we find the
following estimate

∥∂ξ′klϕ∥∞ ≤ C| log ε|
[
| log ε|
εσ

(
ε+

1

εσ
∥ϕ∥2∞

)
+ ε+ ε1−σ| log ε|

(
ε| log ε|+ ∥∂ξ′klϕ∥∞

)]
≤ C| log ε|

[
ε1−σ| log ε|+ ε2−2σ| log ε|3 + ε+ ε2−σ| log ε|2 + ε1−σ| log ε| ∥∂ξ′klϕ∥∞

]
.

Thus, we conclude
∥∂ξ′klϕ∥∞ ≤ Cε1−σ| log ε|2.

The above computations can be made rigorous by using the implicit function theorem and
the fixed point representation (4.4.4) which guarantees C1 regularity in ξ′.
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4.5 Variational reduction

In view of Lemma 4.4.1, given δ > 0 and any points ξ1, . . . , ξm ∈ Ω satisfying dist(ξi−ξj , αZ+
βZ) > δ for all i ̸= j, we consider ϕ(ξ′), cij(ξ

′), i = 1, 2, j = 1, . . . ,m, where ξ = (ξ1, . . . , ξm) and
ξ = εξ′, to be the unique solution to (4.4.1) satisfying (4.4.2) and (4.4.3).

After problem (4.4.1) has been solved, we find a solution to problem (4.2.9) and hence to the
original problem if ξ′ is such that

cij(ξ
′) = 0, i = 1, 2, j = 1, . . . ,m. (4.5.1)

This problem is equivalent to finding critical points of a functional of ξ = εξ′. Let us consider Jε,
given by (4.1.3) and define

Fε(ξ) := Jε
(
U(ξ) + ϕ̃(ξ)

)
, (4.5.2)

where (with slight abuse of notation) U = U(ξ) = U(x, ξ) and ϕ̃ = ϕ̃(ξ) = ϕ̃(x, ξ) are the functions
defined on Ω from the relations

U(x, ξ) = V

(
x

ε
,
ξ

ε

)
and ϕ̃(x, ξ) = ϕ

(
x

ε
,
ξ

ε

)
,

The following result states that critical points of Fε correspond to solutions of (4.5.1) for small ε.

Lemma 4.5.1. There exists ε0 such that for any 0 < ε < ε0, if ξ ∈ Ωm satisfying (4.3.2) is a
critical point of Fε then u = U(ξ) + ϕ̃(ξ) is a critical point of Jε, that is, if DξFε(ξ) = 0 then ξ
satisfies system (4.5.1), i.e., u is a solution to (4.1.2).

Proof: Define the energy functional Iε associated to problem (4.2.9), namely,

Iε(v) =
1

2

∫
Ωε

|∇v|2 −
∫
Ωε

ε4k(εy)ev.

It is easy to see that
Iε(V (ξ′) + ϕ(ξ′)) = Jε(U(ξ) + ϕ̃(ξ)). (4.5.3)

Let us differentiate the function Fε(ξ) with respect to ξ. Since (4.5.3), we can differentiate directly
Iε(V + ϕ) (under the integral sign), so that

∂ξklFε(ξ) =
1

ε
∂ξ′kl [Iε(V + ϕ)] =

1

ε
DIε(V + ϕ)

[
∂ξ′klV + ∂ξ′klϕ

]
=

1

ε

[∫
Ωε

∇(V + ϕ)∇
(
∂ξ′klV + ∂ξ′klϕ

)
−
∫
Ωε

ε4k(εy)eV+ϕ
(
∂ξ′klV + ∂ξ′klϕ

)]
.

We know that
∆(V + ϕ) + ε4k (εy) eV+ϕ − 1

|Ωε|
∫
Ωε
ε4k (εz) eV+ϕ dz =

∑2
i=1

∑m
j=1 cijχjZij , in Ωε,

ϕ doubly periodic on ∂Ωε,∫
Ωε
(V + ϕ) = 0.

(4.5.4)
So, integrating by parts, we get

∂ξklFε(ξ) =
1

ε

[
−
∫
Ωε

∆(V + ϕ)
(
∂ξ′klV + ∂ξ′klϕ

)
−
∫
Ωε

ε4k(εy)eV+ϕ
(
∂ξ′klV + ∂ξ′klϕ

)]
= − 1

ε

2∑
i=1

m∑
j=1

cij

∫
Ωε

χjZij

[
∂ξ′klV + ∂ξ′klϕ

]
,
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since
∫
Ωε

(
∂ξ′klV + ∂ξ′klϕ

)
= 0. From the results of the previous section, this expression defines a

continuous function of ξ′, and hence of ξ. Let us assume that DξFε(ξ) = 0. Then, from the latter
equality

2∑
i=1

m∑
j=1

cij

∫
Ωε

χjZij

[
∂ξ′klV + ∂ξ′klϕ

]
= 0, k = 1, 2, l = 1, . . . ,m.

Using (4.4.3) and ∂ξ′klV = 4Zkl +O(ε), where O(ε) is in the L∞ norm, it follows

2∑
i=1

m∑
j=1

cij

∫
Ωε

χjZij [Zkl + o(1)] = 0, k = 1, 2, l = 1, . . . ,m.

with o(1) small in the sense of the L∞ norm as ε → 0. The above system is diagonal dominant
and we thus get cij = 0 for i = 1, 2, j = 1, . . . ,m.

In order to solve for critical points of the function Fε, a key step is its expected closeness to
the function Jε(U), where U is the function defined in (4.2.7), which we will analyze in the next
section.

Lemma 4.5.2. The following expansions holds

Fε(ξ) = Jε(U) + θε(ξ),

where
|θε| = O(ε2| log ε|) and |∇θε| = O(ε1−σ| log ε|2), as ε→ 0,

uniformly on points ξ = (ξ1, . . . , ξm) ∈ Ωm satisfying the constraints (4.3.2).

Proof: Since we have, Iε(V ) = Jε(U) and (4.5.3), we write

Jε(U + ϕ̃)− Jε(U) = Iε(V + ϕ)− Iε(V ) := A.

Let us estimate A first. A Taylor expansion gives us

A = DIε(V + ϕ)[ϕ]−
∫ 1

0
D2Iε(V + tϕ)[ϕ]2 t dt.

Testing equation (4.5.4) against ϕ and integrating by parts, we get∫
Ωε

∇(V + ϕ)∇ϕ−
∫
Ωε

ε4k(εy)eV+ϕϕ = 0,

i.e., DIε(V + ϕ)[ϕ] = 0. Thus,

A = −
∫ 1

0
D2Iε(V + tϕ)[ϕ]2 t dt.

We know that K(y) = ε4k(εy)eV (y) and ϕ satisfies

−∆ϕ = R+Kϕ+N(ϕ)−
2∑

i=1

m∑
j=1

cijχjZij −
1

|Ωε|

∫
Ωε

Kϕ
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using (4.4.1). Also, we have that

D2Iε(V + tϕ)[ϕ]2 = −
∫
Ωε

ϕ∆ϕ−
∫
Ωε

ε4k(εy)eV+tϕϕ2

=

∫
Ωε

[R+N(ϕ)]ϕ+

∫
Ωε

ε4k(εy)eV (1− etϕ)ϕ2.

Thus,

A = −
∫ 1

0

(∫
Ωε

[R+N(ϕ)]ϕ+

∫
Ωε

ε4k(εy)eV (1− etϕ)ϕ2
)
t dt. (4.5.5)

Now, we can estimate

|A| ≤
∫ 1

0
C
∥∥[R+N(ϕ)]ϕ+ ε4k(εy)eV (1− etϕ)ϕ2

∥∥
∗ dt

≤
∫ 1

0
C
[
∥ϕ∥∞(∥R∥∗ + ∥N(ϕ)∥∗) + ∥K∥∗ |1− etϕ|∥ϕ∥2∞

]
dt

≤ C
[
ε2| log ε|+ ε3−σ| log ε|2 + ε3| log ε|3

]
,

since ∥R∥∗ ≤ Cε, ∥N(ϕ)∥∗ ≤ Cε−σ∥ϕ∥2∞ and ∥ϕ∥∞ ≤ Cε| log ε|. Therefore, we get

Iε(V + ϕ)− Iε(V ) = O(ε2| log ε|).

Let us differentiate with respect to ξ′. We use representation (4.5.5) and differentiate directly
under the integral sign, thus obtaining, for each k = 1, 2, l = 1, . . . ,m

−∂ξ′kl [A] =
∫ 1

0

(∫
Ωε

∂ξ′kl [{R+N(ϕ)}ϕ] +
∫
Ωε

ε4∂ξ′kl

[
k(εy)eV (1− etϕ)ϕ2

])
t dt

We analyze and estimate each term, so,∣∣∣∣ ∫ 1

0

(∫
Ωε

∂ξ′kl [{R+N(ϕ)}ϕ]
)
t dt

∣∣∣∣
≤
∣∣∣∣∫

Ωε

∂ξ′kl [{R+N(ϕ)}ϕ]
∣∣∣∣

≤ C
[(

∥∂ξ′klR∥∗ + ∥∂ξ′klN(ϕ)∥∗
)
∥ϕ∥∞ +(∥R∥∗ + ∥N(ϕ)∥∗) ∥∂ξ′klϕ∥∞

]
≤ C

[
ε| log ε|(ε+ ε1−σ| log ε|{ε| log ε|+ ε1−σ| log ε|2}) +ε1−σ| log ε|2(ε+ ε2−σ| log ε|2)

]
≤ Cε2−σ| log ε|2

using Lemma 4.4.1 and the computations in the proof. Now, similarly as above∣∣∣∣ ∫ 1

0

(∫
Ωε

ε4∂ξ′kl

[
k(εy)eV (1− etϕ)ϕ2

])
t dt

∣∣∣∣
≤
∫ 1

0
C
∥∥ε4k(εy)eV [∂ξ′klV (1− etϕ)ϕ2 − etϕ t ∂ξ′klϕϕ

2 + 2(1− etϕ)ϕ∂ξ′klϕ
]∥∥

∗ |t| dt

≤ C
[
∥K∥∗ ∥∂ξ′klV ∥∞|t| ∥ϕ∥3∞ + ∥K∥∗ |t| ∥ϕ∥2∞ ∥∂ξ′klϕ∥∞

]
≤ Cε3−σ| log ε|4.

Thus, we conclude

∂ξ′kl [Iε(V + ϕ)− Iε(V )] = O(ε2−σ| log ε|2), k = 1, 2, l = 1, . . . ,m.
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Now, taking θ̃ε(ξ
′) = θε(εξ

′) with θε(ξ) = Fε(ξ)− Jε(U), we have shown that

|θ̃ε|+
εσ

| log ε|
|∇ξ′ θ̃ε| = O(ε2| log ε|), as ε→ 0.

The continuity in ξ of all these expressions is inherited from that of ϕ and its derivatives in ξ in
the L∞ norm.

4.6 Energy computations of approximate solution

The purpose of this section is to give an asymptotic estimate of Jε(U) where U is the approximate
solution defined in (4.2.7) and Jε is the energy functional (4.1.3) associated to Problem (4.1.2).

We have the following result.

Lemma 4.6.1. Let m ∈ Z+ and δ > 0 be a fixed small number and U be the function defined in
(4.2.7). With the choice (4.2.8) for the parameter µj, j = 1, . . . ,m, the following expansion holds

Jε(U) = −16πm+ 8πm log 8− 16πm log ε− 32π2mH∗(0) + 4πφm(ξ) + εΘε(ξ) (4.6.1)

where the function φm is defined by

φm(ξ) = −2

m∑
j=1

log k(ξj)−
∑
l ̸=j

G(ξl, ξj). (4.6.2)

In (4.6.1), Θε is a smooth function of ξ = (ξ1, . . . , ξm), bounded together with its derivatives, as
ε→ 0 uniformly on points ξ1, . . . , ξm ∈ Ω that satisfy dist(ξi − ξj , αZ+ βZ) > δ for all i ̸= j.

Remark 4.6.1. In the sequel, by θε,Θε we will denote generic functions of ξ that are bounded
in the region dist(ξi − ξj , αZ+ βZ) > δ for all i ̸= j.

Proof: First, we will evaluate the quadratic part of energy evaluated at U , that is,

1

2

∫
Ω
|∇U |2 dx = −1

2

∫
Ω
U∆U dx = −1

2

m∑
j=1

∫
Ω
U∆Uj dx.

Using the equation (4.2.2) of Uj , we have∫
Ω
U(−∆Uj) dx =

∫
Ω
U(x)

[
ε2k(ξj)e

uj(x) − 1

|Ω|

∫
Ω
ε2k(ξj)e

uj

]
dx

=

∫
Ω
ε2k(ξj)e

uj(x)U(x) dx

since
∫
Ω U = 0. Given 0 < δ0 < δ we have∫

Ω
ε2k(ξj)e

uj(x)U(x) dx =

∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)U(x) dx+

∫
B(ξj ,δ0)

ε2k(ξj)e
uj(x)U(x) dx

=

∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)U(x) dx+ 8πU(ξj)

+ 8

∫
B(0,

δ0
µjε

)

U(ξj + µjεy)− U(ξj)

(1 + |y|2)2
dy − 8U(ξj)

∫
IR2\B(0,

δ0
µjε

)

dy

(1 + |y|2)2
.
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From the definition of U , we find∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)U(x) dx =

m∑
l=1

∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)Ul(x) dx

and for all l ̸= j we decompose∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)Ul(x) dx =

∫
B(ξl,δ0)

ε2k(ξj)e
uj(x)Ul(x) dx

+

∫
Ω\(B(ξj ,δ0)∪B(ξl,δ0))

ε2k(ξj)e
uj(x)Ul(x) dx.

Since, for any l ∈ {1, . . . ,m} we have Ul(x) = G(x, ξl)+O(ε2| log ε|) uniformly in Ω̄\B(ξl, δ0), Ul

is uniformly bounded in Ω̄ \B(ξl, δ0) by a constant independent of ε. Besides ε2k(ξj)e
uj = O(ε2)

uniformly in Ω̄ \B(ξj , δ0). Hence we get∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)Uj(x) dx = O(ε2)

and for all l ̸= j ∫
Ω\(B(ξj ,δ0)∪B(ξl,δ0))

ε2k(ξj)e
uj(x)Ul(x) dx = O(ε2).

Note that by Lemma 4.2.1 we have that uniformly for all x ∈ B(ξl, δ0)

Ul(x) = log
1

(µlε2 + |x− ξl|2)2
+H(x, ξl) +O(ε2| log ε|).

So, we have that∫
B(ξl,δ0)

|Ul(x)| dx ≤
∫
B(ξl,δ0)

2
∣∣log(µ2l ε2 + |x− ξl|2)

∣∣ dy + C̃ ≤ C.

Hence, we obtain that for all l ̸= j∫
B(ξl,δ0)

ε2k(ξj)e
uj(x)Ul(x) dx = O(ε2).

And we conclude ∫
Ω\(B(ξj ,δ0)

ε2k(ξj)e
uj(x)U(x) dx = O(ε2).

Also, we know that U(ξj) = −4 logµjε+H(ξj , ξj) +
∑

l ̸=j G(ξl, ξj) + ε2| log ε|Θε(ξ), so

U(ξj)

∫
IR2\B(0,

δ0
µjε

)

dy

(1 + |y|2)2
= O(ε2| log ε|).

On the other hand, observe that

U(ξj + µjεy)− U(ξj) = Uj(ξj + µjεy)− Uj(ξj) +
∑
l ̸=j

[Ul(ξj + µjεy)− Ul(ξj)].

Hence, we find that

Uj(ξj + µjεy)− Uj(ξj) = log
1

(1 + |y|2)2
+Hj(ξj + µjεy)−Hj(ξj),
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since

uj(ξj + µjεy)− uj(ξj) = log
µ4jε

4

(µ2jε
2 + µ2jε

2|y|2)2
.

Now, from Lemma 4.2.1 we can deduce that for y ∈ B
(
0, δ0

µjε

)
Hj(ξj + µjεy)−Hj(ξj) = H(ξj + µjεy, ξj)−H(ξj , ξj) +O(ε2| log ε|).

By the choice of δ0 we get that B(ξj , δ0) ∩ B(ξl, δ0) = ∅ for all l ̸= j, so from Lemma 4.2.1 we
have that for y ∈ B

(
0, δ0

µjε

)
Ul(ξj + µjεy)− Ul(ξj) = G(ξj + µjεy, ξl)−G(ξj , ξl) +O(ε2| log ε|).

Then, for y ∈ B(0, δ0
µjε

)

U(ξj + µjεy)− U(ξj) = log
1

(1 + |y|2)2
+H(ξj + µjεy, ξj)−H(ξj , ξj)

+
∑
l ̸=j

[G(ξj + µjεy, ξl)−G(ξj , ξl)] +O(ε2| log ε|).

Also, we obtain that∫
B(0,

δ0
µjε

)

1

(1 + |y|2)2
log

1

(1 + |y|2)2
dy = −2π

∫ δ0/µjε

0

−2r

(1 + r2)2
log

1

(1 + r2)2
dr

= −2π

∫ µ2
j ε

2

µ2
j
ε2+δ20

1
log t dt

= −2π

[
µ2jε

2

µ2jε
2 + δ20

log
µ2jε

2

µ2jε
2 + δ20

−
µ2jε

2

µ2jε
2 + δ20

+ 1

]
.

Hence, we conclude∫
B(0,

δ0
µjε

)

U(ξj + µjεy)− U(ξj)

(1 + |y|2)2
dy =− 2π

[
µ2jε

2

µ2jε
2 + δ20

log
µ2jε

2

µ2jε
2 + δ20

−
µ2jε

2

µ2jε
2 + δ20

+ 1

]

+

∫
B(0,

δ0
µjε

)

H(ξj + µjεy, ξj)−H(ξj , ξj)

(1 + |y|2)2
dy

+
∑
l ̸=j

∫
B(0,

δ0
µjε

)

G(ξj + µjεy, ξl)−G(ξj , ξl)

(1 + |y|2)2
dy +O(ε2| log ε|)

=− 2π + ε2| log ε|Θε(ξ).

And again using U(ξj) = −4 logµjε+H(ξj , ξj) +
∑

l ̸=j G(ξj , ξl) + ε2| log ε|Θε(ξ) we conclude∫
Ω
ε2k(ξj)e

uj(x)U(x) dx = −16π − 32π logµjε+ 8π

(
H(ξj , ξj) +

∑
l ̸=j

G(ξj , ξl)

)
+ εΘε(ξ).

Therefore,

1

2

∫
Ω
|∇U |2 dx = −8πm+

m∑
j=1

[
−16π logµjε+4π

(
H(ξj , ξj)+

m∑
l=1,l ̸=j

G(ξj , ξl)

)]
+εΘε(ξ). (4.6.3)

102



4.6. ENERGY COMPUTATIONS OF APPROXIMATE SOLUTION

On the other hand, from (4.2.21) we know that the second term in the energy functional
satisfies

ε2
∫
Ω
k(x)eU(x) dx = 8πm+ ε2| log ε|Θε(ξ).

Using (4.6.3) and (4.2.21), we conclude

Jε(U) = −16πm+

m∑
j=1

[
− 16π logµjε+ 4π

(
H(ξj , ξj) +

m∑
l=1,l ̸=j

G(ξj , ξl)

)]
+ εΘε(ξ)

= −16πm+ 8πm log 8− 16πm log ε− 4π
m∑
j=1

[
2 log k(ξj) +H(ξj , ξj) +

m∑
l=1,l ̸=j

G(ξl, ξj)

]
+ εΘε(ξ),

(4.6.4)

since by the choice of µj

16π logµjε = 8π

[
log k(ξj)− log 8 +H(ξj , ξj) +

∑
l ̸=j

G(ξl, ξj)

]
+ 16π log ε.

Recall that H(ξj , ξj) = 8πH∗(0) and H(ξj + µjεy, ξj)−H(ξj , ξj) =
2π
|Ω|µ

2
jε

2|y|2 + 8πH∗(µjεy) −
8πH∗(0) for all j = 1, . . . ,m. Hence, we conclude (4.6.1). The C1-closeness is a direct consequence
of the fact that Θε is bounded together with its derivatives in the considered region. In fact, we
will show that

∂ξkl [Jε(U)] = 4π∂ξklφm(ξ1, . . . , ξm) +O(ε2| log ε|) (4.6.5)

in the considered region. First, observe that

∂ξkl [Jε(U)] = DJε(U)[∂ξklU ] = −
∫
Ω

[
∆U + ε2keU

]
∂ξklU.

Now, we have that∫
Ω
∂ξklU(−∆U) =

m∑
j=1

∫
Ω
∂ξklU(−∆Uj) =

m∑
j=1

∫
Ω
ε2k(ξj)e

uj(x)∂ξklU(x) dx

using the equation (4.2.2) of Uj and
∫
Ω ∂ξklU = 0. Again, we consider 0 < δ0 < δ. So, we have∫

Ω
ε2k(ξj)e

uj(x)∂ξklU(x) dx =

∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)∂ξklU(x) dx+ 8π∂ξklU(ξj)

+ 8

∫
B(0,

δ0
µjε

)

∂ξklU(ξj + µjεy)− ∂ξklU(ξj)

(1 + |y|2)2
dy

− 8∂ξklU(ξj)

∫
IR2\B(0,

δ0
µjε

)

dy

(1 + |y|2)2
.

From the definition of U , we find∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)∂ξklU(x) dx =

m∑
q=1

∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)∂ξklUq(x) dx
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and for all q ̸= j we decompose∫
Ω\B(ξj ,δ0)

ε2k(ξj)e
uj(x)∂ξklUq(x) dx =

∫
B(ξq ,δ0)

ε2k(ξj)e
uj(x)∂ξklUq(x) dx

+

∫
Ω\(B(ξj ,δ0)∪B(ξq ,δ0))

ε2k(ξj)e
uj(x)∂ξklUq(x) dx.

We know that for any q, ∂ξklUq is uniformly bounded in Ω̄ \B(ξq, δ0) by a constant independent
of ε. Hence we get ∫

Ω\B(ξj ,δ0)
ε2k(ξj)e

uj(x)∂ξklUj(x) dx = O(ε2)

and for all q ̸= j ∫
Ω\(B(ξj ,δ0)∪B(ξq ,δ0))

ε2k(ξj)e
uj(x)∂ξklUq(x) dx = O(ε2).

Furthermore, observe that for q ̸= l, ∂ξklUq is uniformly bounded in Ω and

∂ξklUl(x) =
4(x− ξl)k

µ2l ε
2 + |x− ξl|2

+O(1)

in Ω. Then we have that∫
B(ξl,δ0)

|∂ξklUl(x)| dx ≤ C1

∫
B(ξl,δ0)

|x− ξl|
µ2l ε

2 + |x− ξl|2
dx+ C2 ≤ C

Hence, we obtain that for all q ̸= j∫
B(ξq ,δ0)

ε2k(ξj)e
uj(x)∂ξklUq(x) dx = O(ε2).

Thus, we conclude that ∫
Ω\(B(ξj ,δ0)

ε2k(ξj)e
uj(x)∂ξklU(x) dx = O(ε2).

On the other hand, we know that

∂ξklU(x) =
4(x− ξl)k

µ2l ε
2 + |x− ξl|2

+ ∂2kH(x, ξl)− 2

m∑
q=1

∂ξkl(µq)
2ε2

µ2qε
2 + |x− ξq|2

+O(ε2| log ε|),

hence, we get that there is a constant C > 0 independent of ε such that for all j = 1, . . . ,m,
|∂ξklU(ξj)| ≤ C. So, we get that

∂ξklU(ξj)

∫
IR2\B(0,

δ0
µjε

)

dy

(1 + |y|2)2
= O(ε2).

Now, observe that if j ̸= l then

∂ξklU(ξj + µjεy)− ∂ξklU(ξj) = ∂2kG(ξj + µjεy, ξl)− 2
∂ξkl(µj)

2

µ2j (1 + |y|2)

− ∂2kG(ξj , ξl) + 2
∂ξkl(µj)

2

µ2j
+O(ε2| log ε|)
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and

∂ξklU(ξl + µlεy)− ∂ξklU(ξl) =
4yk

µlε(1 + |y|2)
+ ∂2kH(ξl + µlεy, ξl)− 2

∂ξkl(µl)
2

µ2l (1 + |y|2)

− ∂2kH(ξl, ξl) + 2
∂ξkl(µl)

2

µ2l
+O(ε2| log ε|).

Also, we obtain that ∫
B(0,

δ0
µjε

)

2

(1 + |y|2)3
dy = π

[
1−

µ4jε
4

(µ2jε
2 + δ20)

2

]
.

Thus, we have that for any j∫
B(0,

δ0
µjε

)

∂ξklU(ξj + µjεy)− ∂ξklU(ξj)

(1 + |y|2)2
dy = π

∂ξkl(µ
2
j )

µ2j
+O(ε2| log ε|).

Also, we know that for j ̸= l

∂ξklU(ξj) = ∂2kG(ξj , ξl)− 2
∂ξkl(µ

2
j )

µ2j
+O(ε2| log ε|)

and

∂ξklU(ξl) = −2
∂ξkl(µ

2
l )

µ2l
+O(ε2| log ε|).

Thus, we conclude that∫
Ω
∂ξklU(−∆U) = 8π

−2
∂ξkl(µ

2
l )

µ2l
+

m∑
j=1,j ̸=l

[
∂2kG(ξj , ξl)− 2

∂ξkl(µ
2
j )

µ2j

]
+ 8π

m∑
j=1

∂ξkl(µ
2
j )

µ2j
+O(ε2| log ε|)

= − 8π
m∑
j=1

∂ξkl(µ
2
j )

µ2j
+ 8π

m∑
j=1,j ̸=l

∂2kG(ξj , ξl) +O(ε2| log ε|).

On the other hand, we know that

ε2
∫
Ω
k(x)eU(x)∂ξklU(x) dx = O(ε2| log ε|).

Therefore, using the choice of µj , we conclude

∂ξkl [Jε(U)] = −8π
m∑
j=1

∂ξkl(logµ
2
j ) + 8π

m∑
j=1,j ̸=l

∂2kG(ξj , ξl) +O(ε2| log ε|)

= −8π∂ξkl

 m∑
j=1

[
log k(ξj) +H(ξj , ξj) +

m∑
q=1,q ̸=j

G(ξq, ξj)

]
+ 8π∂ξkl

 m∑
j=1,j ̸=l

G(ξj , ξl)

+O(ε2| log ε|)

= −4π∂ξkl

 m∑
j=1

[
2 log k(ξj) +

m∑
q=1,q ̸=j

G(ξq, ξj)

]+O(ε2| log ε|)

(4.6.6)
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since H(ξj , ξj) is constant, G(ξq, ξj) = G(ξj , ξq) for all j ̸= q, ∂1kG(ξl, ξq) = ∂2kG(ξq, ξl),

∂ξkl

 m∑
j=1

m∑
q=1,q ̸=j

G(ξq, ξj)

 = 2∂ξkl

 m∑
j=1,j ̸=j

G(ξj , ξj)


and

m∑
j=1

m∑
q=1,q ̸=j

G(ξq, ξj) =
m∑

q=1,q ̸=l

G(ξq, ξl)
m∑

j=1,j ̸=l

m∑
q=1,q ̸=j

G(ξq, ξj).

Thus, we conclude (4.6.5). This completes the proof.

4.7 Proof of Theorems

4.7.1 Proof of Theorem 4.1.2.

Let us consider the set D as in the statement of the theorem, C the associated critical value and
ξ ∈ D. According to Lemma 4.5.1, we have a solution of Problem (4.1.2) if we adjust ξ so that
it is a critical point of Fε defined by (4.5.2). This is equivalent to finding a critical point of

F̃ε(ξ) =
1

4π

[
Fε(ξ) + 16mπ log ε+ 16πm− 8πm log 8 + 32π2mH∗(0)

]
.

On the other hand, from Lemmas 4.5.2 and 4.6.1, we have that for ξ ∈ D, such that its components
satisfy |ξi − ξj | ≥ δ,

F̃ε(ξ) = φm(ξ) + εγΘε(ξ), with 0 < γ < 1− σ

where Θε and ∇ξΘε are uniformly bounded in the considered region as ε→ 0.
Let us observe that if M > C, then assumptions (2.1.1), (2.1.2) still hold for the function

min{M,φm(ξ)} as well as for min{M,φm(ξ)+εΘε(ξ)}. It follows that the function min{M, F̃ε(ξ)}
satisfies for all ε small assumptions (2.1.1),(2.1.2) in D and therefore has a critical value Cε < M
which is close to C in this region. If ξε ∈ D is a critical point at this level for F̃ε(ξ), then since

F̃ε(ξε) ≤ Cε < M

we have that there exists a δ > 0 such that |ξε,j − ξε,i| > δ. This implies C1-closeness of F̃ (ξ) and
φm(ξ) at this level, hence ∇φm(ξε) → 0. The function uε = U(ξε) + ϕ̃(ξε) is therefore a solution
as predicted by the theorem.

4.7.2 Proof of Theorem 4.1.1.

According to the result of Theorem 4.1.2, it is sufficient to establish that given m ≥ 1, φm has
a nontrivial critical value in some open set D, compactly contained in Ω̄m. We will use an idea
developed in [31]. Let us observe that the function φm becomes

φm(y1, . . . , ym) =

m∑
j=1

NG(yj , p)−
∑
i ̸=j

G(yi, yj).

The domain D is chosen as D = Ωm
δ , where

Ωδ = {y ∈ Ω̄ : |y − p| > δ }
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where δ is a small positive number and p ∈ Ω (open cell). Consider a closed, smooth Jordan
curve γ contained in Ω which encloses the point p. We let S to be the image of γ, B0 = ∅ and
B = S × · · · × S = Sm.

Let us recall that
Ω = {z = sα+ tβ ∈ C | 0 < s, t < 1}

with α, β ∈ C \ {0} and Im(β/α) > 0. By the doubly periodic conditions it will be useful to
consider the distance

d(x, y) = dist(x− y, αZ+ βZ) := inf{|x− y + n1α+ n2β| : for all n1, n2 ∈ Z}.

Note that for a small δ > 0 we have that d(y, p) ≤ δ implies d(x, y) = |y − p|. Furthermore, for
any x, y ∈ IR2 there is z ∈ αZ+ βZ such that d(x, y) = |x− y + z| and by the periodicity of the
Green’s function G(x, y) = G(x+ z, y) = G(x, y − z).

Then define
C = inf

Φ∈Γ
sup
z∈B

φm(Φ(z)), (4.7.1)

where Φ ∈ Γ if and only if Φ(z) = Ψ(1, z) with Ψ : [0, 1]×B → D continuous and Ψ(0, z) = z.

Lemma 4.7.1. There exists K > 0, independent of the small number δ used to define D such
that C ≥ −K.

Proof. We need to prove the existence of K > 0 independent of small δ such that if Φ ∈ Γ, then
there exists a z̄ ∈ B with

φm(Φ(z̄)) ≥ −K. (4.7.2)

Let us write
Φ(z) = (Φ1(z), . . . ,Φm(z)).

Identifying the components of the above m-tuple with complex numbers and given m points
ζ1, . . . , ζm ∈ S1, we shall establish the existence of z̄ ∈ B such that

Φj(z̄)− p

|Φj(z̄)− p|
= ζj for all j = 1, . . . ,m. (4.7.3)

This fact was shown in [31]. For the sake of self-containment we shall present a proof here. To
prove (4.7.3), we consider an orientation-preserving homeomorphism h : S1 → S and the map
f : Tm → Tm defined as f(ζ) = (f1(ζ), . . . , fm(ζ)) with

Tm = S1 × · · · × S1︸ ︷︷ ︸
m

,

and

fj(ζ1, . . . , ζm) =
Φj(h(ζ1), . . . , h(ζm))− p

|Φj(h(ζ1), . . . , h(ζm))− p|
.

We define a homotopy F : [0, 1]× Tm → Tm by

Fj(t, ζ) =
Ψj(t, h(ζ1), . . . , h(ζm))− p

|Ψj(t, h(ζ1), . . . , h(ζm))− p|
.

Notice that F (1, ζ) = f(ζ) and

F (0, ζ) =

(
h(ζ1)− p

|h(ζ1)− p|
, . . . ,

h(ζm)− p

|h(ζm)− p|

)
,
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which is a homeomorphism of Tm. The existence of z̄ such that relation (4.7.3) holds follows
from establishing that f is onto, which we show next.

The torus Tm can be identified with the closed manifold embedded in IRm+1 parameterized
as

ζ : (θ1, . . . , θm) ∈ [0, 2π)m 7→ (ρ1e
iθ1 , 0m−1) + (01, ρ2e

iθ2 , 0m−2) + · · ·+ (0m−1, ρme
iθm),

where 0 < ρm < · · · < ρ1 and we have denoted 0k = (0, . . . , 0)︸ ︷︷ ︸
k

, eiθj = (cos θj , sin θj). We consider

as well the solid torus T̂m parameterized as

(θ1, . . . , θm, ρ) ∈ [0, 2π)m × [0, ρm] 7→ (ρ1e
iθ1 , 0m−1) + (01, ρ2e

iθ2 , 0m−2) + · · ·+ (0m−1, ρe
iθm).

Obviously ∂T̂m = Tm in IRm+1.
With slight abuse of notation, we consider the map f : Tm → Tm, induced from the original

f under the above identification, namely

f(ζ) = (ρ1f1(ζ), 0m−1) + (01, ρ2f2(ζ), 0m−2) + · · ·+ (0m−1, ρmfm(ζ)).

f then can be extended continuously to the whole solid torus as f̃ : T̂m → IRm+1 defined simply
as

f(ζ, ρ) = (ρ1f1(ζ), 0m−1) + (01, ρ2f2(ζ), 0m−2) + · · ·+ (0m−1, ρfm(ζ)).

f̃ is homotopic to a homeomorphism of T̂m, along a deformation which applies ∂T̂m into itself.
Thus if P ∈ int(T̂m) then deg(f̃ , T̂m, P ) ̸= 0 and hence there exists Q ∈ T̂m such that f̃(Q) = P .
Thus if we fix angles (θ∗1, . . . , θ

∗
m) ∈ [0, 2π)m and ρ∗ ∈ (0, ρm) then there exist ζ∗∗ ∈ Tm and

ρ∗∗ ∈ (0, ρm) such that

(ρ1f1(ζ
∗∗), 0m−1) + (01, ρ2f2(ζ

∗∗), 0m−2) + · · ·+ (0m−1, ρ
∗∗fm(ζ∗∗)) =

(ρ1e
iθ∗1 , 0m−1) + (01, ρ2e

iθ∗2 , 0m−2) + · · ·+ (0m−1, ρ
∗eiθ

∗
m).

A direct computation shows then that fj(ζ
∗∗) = eiθ

∗
j for all j and also ρ∗ = ρ∗∗. It then follows

that f is onto. This concludes the proof of (4.7.3).
Now, we will choose ζ1, . . . , ζm ∈ S1 as follows: denote ζj = e2πiθj , with θj ∈ [0, 1) and define

t∗j := max{t > 0 | p + tζj ∈ Ω̄}. Thus, we get that p + t∗jζj ∈ ∂Ω. Also, for j = 1, . . . ,m define
the sets

Aj =

{
t∗jζj + n1α+ n2β

|t∗jζj + n1α+ n2β|
: n1, n2 = −1, 0, 1, n21 + n22 ̸= 0 and p+ t∗jζj + n1α+ n2β ∈ ∂Ω

}
.

Then, we choose any θ1 ∈ [0, 1
m) and θj for j > 1 such that θj ∈ [ j−1

m , j
m) and ζj = e2πiθj /∈ ∪j−1

l=1Al.
Hence, we have that there is a constant σ0 > 0 such that if y ∈ D satisfies

yj − p

|yj − p|
= ζj for all j = 1, . . . ,m

then
|yj − yl + n1α+ n2β| > σ0 for all j ̸= l and n1, n2 = −1, 0, 1, n21 + n22 ̸= 0,

namely, d(yj , yl) ≥ σ0 and H(yj , yl) = O(1) uniformly for all j ̸= l. Furthermore, ζj ̸= ζl if j ̸= l
and there exist a constant C > 0 such that |yl − yj | ≥ C|yl − p| for all l ̸= j.
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Now, from (2.2.2), it is clearly that

φm(y1, . . . , ym) = 4N

m∑
j=1

log
1

|yj − p|
+ 4

∑
l ̸=j

log |yj − yl|+O(1).

Fix j, then we have

4N log
1

|yj − p|
+ 4

m∑
l=1,l ̸=j

log |yj − yi| ≥ 4

(
N log

1

|yj − p|
− (m− 1) log

1

|yj − p|

)
+O(1).

Since N > m−1 by assumption, the above quantity is uniformly bounded below, hence the value
C is bounded below independently of δ, as desired.

The second step we have to carry out to make Theorem 4.1.2 applicable is to establish the
validity of assumption (2.1.2). To this end we need to establish a couple of preliminary facts on
the half plane

H = {(x1, x2) : x1 ≥ 0}.

Lemma 4.7.2. Consider the function of k distinct points on H

Ψk(x1, . . . , xk) = −4
∑
i ̸=j

log |xi − xj |.

Let I+ denote the set of indices i for which x1i > 0 and I0 that for which x1i = 0. Then, either

∇xiΨk(x1, . . . , xk) ̸= 0, for some i ∈ I+,

or
∂

∂xi2
Ψk(x1, . . . , xk) ̸= 0, for some i ∈ I0.

Proof. We have that
∂

∂λ
Ψk(λx1, . . . , λxk)|λ=1 =∑

i∈I+

∇xiΨk(x1, . . . , xk) · xi +
∑
i∈I0

∂xi2Ψk(x1, . . . , xk)xi2.

On the other hand,

∂

∂λ
Ψk(λx1, . . . , λxk)|λ=1 = −4

∂

∂λ
[k(k − 1) log λ]|λ=1 ̸= 0,

and the result follows.

Now, we are ready to prove the validity of assumption (2.1.2) which in this case reads as
follows:

Lemma 4.7.3. Given K > 0 there exists a δ > 0 such that if ξ = (ξ1, . . . , ξm) ∈ Dδ and
|φm(ξ)| ≤ K, then there is a vector τ , tangent to ∂Dδ at ξ such that

∇φm(ξ) · τ ̸= 0
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Proof: Let us assume the opposite, namely the existence of a sequence δn > 0, δn → 0, and
points ξn ∈ ∂Dδn such that ξn = (ξn1 , . . . , ξ

n
m),

∇ξiφm(ξn1 , . . . , ξ
n
m) = 0 if ξni ∈ Ωδn

and
∇ξiφm(ξn1 , . . . , ξ

n
m) · τi = 0 if ξni ∈ ∂Ωδn , for all τi ∈ Tξni (∂Ωδn),

where Tξi(∂Ωδn) is the set of all vectors τ tangent to ∂Ωδn at ξi. Note that ∂Ωδn = {y ∈ Ω :
|y− p| = δn}. From the assumptions of the Lemma follows that there is a point ξni ∈ ∂Ωδn for all
n (up to subsequence). Hence, ξni → p as n → +∞ and G(ξni , p) → +∞ as n → +∞. Since the
values of φm remains uniformly bounded, necessarily we must have that there are two different
points ξnj , ξ

n
l such that ξnj and ξnl are becoming close, namely d(ξnj , ξ

n
l ) → 0 as n → +∞. Let

us set ρn = infi ̸=j d(ξ
n
i , ξ

n
j ), so ρn → 0 as n → +∞. Without loss of generality, we can assume

ρn = d(ξn1 , ξ
n
2 ). Let ζ

n
j ∈ αZ+ βZ such that d(ξnj , ξ

n
1 ) = |ξnj − ξn1 − ζnj |. We define

xnj =
ξnj − ξn1 − ζnj

ρn
.

Clearly there exists a k, 2 ≤ k ≤ m such that

lim
n→+∞

|xnj | < +∞, j = 1, . . . , k and lim
n→+∞

|xnj | = +∞, j > k

For j ≤ k we set x̃j = limn→+∞ xnj . Note that x̃1 = 0 and |x̃2| = 1. Define

φ̃m(x1, . . . , xn) = φm(ξn1 + ρnx1, . . . , ξ
n
1 + ρnxk, ξ

n
k+1 + ρnxk+1, . . . , ξ

n
m + ρnxm).

We have

∂(xj)lφ̃m(x1, . . . , xn) = ρn∂(ξj)lφm(ξn1 + ρnx1, . . . , ξ
n
1 + ρnxk, ξ

n
k+1 + ρnxk+1, . . . , ξ

n
m + ρnxm).

for all l = 1, 2, j = 1, . . . ,m. Observe that

∂(ξj)lφm(y1, . . . , yn) = N

(
−4

(yj − p)l
|yj − p|2

+ ∂1lH(yj , p)

)
− 2

m∑
i=1,i ̸=j

(
−4

(yj − yi)l
|yj − yi|2

+ ∂2lH(yi, yj)

)
and

∂(xj)lφ̃m(xn1 , . . . , x
n
k , 0, . . . , 0)

= − 4Nρn
(ξnj − p)l

|ξnj − p|2
+ ρnN∂1lH(ξnj , p)− 2

m∑
i=1,i ̸=j

(
− 4ρn

(ξnj − ξni + ζni − ζnj )l

|ξnj − ξni + ζni − ζnj |2

+ ρn∂2lH(ξni − ζni , ξ
n
j − ζnj )

)
= − 4Nρn

(ξnj − p)l

|ξnj − p|2
+ ρnN∂1lH(ξnj , p) + 8

m∑
i=1,i ̸=j

(xnj − xni )l

|xnj − xni |2

− 2

m∑
i=1,i ̸=j

ρn∂2lH(ξni − ζni , ξ
n
j − ζnj ),

since, ξnj − ξni + ζni − ζnj = ρn(x
n
j − xni ).

We consider two cases:
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(1) either

lim
n→+∞

dist(ξn1 , ∂Ωδn)

ρn
= +∞;

(2) or there exists C0 > 0 such that for all n

dist(ξn1 , ∂Ωδn)

ρn
≤ C0,

where dist(ξn1 , ∂Ωδn) = inf{d(ξn1 , y) | y ∈ ∂Ωδn}.

In case 1, it is easy to see that actually

lim
n→+∞

dist(ξnj , ∂Ωδn)

ρn
= +∞, for all j = 1, . . . , k.

Indeed, we have that dist(ξn1 , ∂Ωδn) ≤ d(ξnj , ξ
n
1 ) + dist(ξnj , ∂Ωδn). Furthermore, points ξn1 , . . . , ξ

n
k

are all interior to Ωδn , hence

∇ξjφm(ξn1 , . . . , ξ
n
m) = 0 for all n, for j = 1, . . . , k.

Then, from the inequality dist(ξnj , ∂Ωδn) ≤ d(ξnj , p), we deduce lim
n→+∞

ρn∂1lG(ξ
n
j , p) = 0. Now,

note that for any 1 ≤ j ≤ k and i ≥ k + 1 we get that

lim
n→+∞

d(ξni , ξ
n
j )

ρn
= +∞.

Also, if d(ξni , ξ
n
j ) ≥ σ0 for all n (up to subsequence) and for some σ0 > 0, then there exists

x ∈ IR2 \ (αZ+ βZ) such that |ξni − ξnj − x| → 0 as n→ +∞. Hence, we find that

ρn∂2lG(ξ
n
i , ξ

n
j ) = −4ρn

(ξni − ξnj )l

|ξni − ξnj |2
+ ρn∂2lH(ξni , ξ

n
j ) = O(ρn),

as n → +∞. If d(ξni , ξ
n
j ) = o(1) as n → +∞, then there exists ζnij ∈ αZ + βZ such that

d(ξni , ξ
n
j ) = |ξni − ξnj + ζnij | and we have that as n→ +∞

ρn∂2lG(ξ
n
i , ξ

n
j ) = − 4ρn

(ξni − ξnj + ζnij)l

|ξi.− ξnj + ζnij |2
+ ρn∂2lH(ξni + ζnij , ξ

n
j )

=O

(
ρn

d(ξni , ξ
n
j )

)
+O(ρn),

since |ξni − ξnj + ζnij | → 0. Therefore, we deduce that

lim
n→+∞

∂(xj)lφ̃m(xn1 , . . . , x
n
k , 0, . . . , 0) = −4∂(xj)l

( ∑
i̸=q,i,q≤k

log
1

|x̃q − x̃i|

)
= 0.

Note that ρn|xnj − xni | ≥ |ξni − ξnj + ζnij | = d(ξnj , ξ
n
i ) ≥ ρn implies x̃j ̸= x̃i for all i ̸= j, i, j ≤ k.

Hence, we deduce that this last equality is true for any j ≤ k, l = 1, 2. Thus, we arrive at a
contradiction with Lemma 4.7.2, which proves impossibility of this case.

On the other hand, in case 2 there exist a constant C1 > 0 such that

dist(ξnj , ∂Ωδn)

ρn
≤ C1, for all j = 1, . . . , k.

111



4.7. PROOF OF THEOREMS

In fact, it easily follows from the inequality dist(ξnj , ∂Ωδn) ≤ d(ξnj , ξ
n
1 )+dist(ξn1 , ∂Ωδn). Also, note

that we have

|ξnj − p| ≤ δn + dist(ξnj , ∂Ωδn) ≤ δn + C1ρn, for all j = 1, . . . , k.

Hence, we get that ξnj → p for all j = 1, . . . , k. Let us stress that |ξnj − p| → 0 if and only if
d(ξnj , p) → 0 as n→ +∞, since p is an interior point of the open cell Ω.

Assume first that there exists a constant C > 0 such that δn < Cρn. Hence, we get that
|ξnj − p| ≤ (C + C1)ρn. Observe that

φm(ξn1 , . . . , ξ
n
m) =N

m∑
j=1

[
−4 log |ξnj − p|+H(ξnj , p)

]
−
∑
i ̸=j

G(ξni + ζnij , ξ
n
j )

=
m∑
j=1

snj +O(1),

where we denote

snj := 4N log
1

|ξnj − p|
+

m∑
i=1,i ̸=j

4 log |ξni − ξnj + ζnij |.

Then, we get that for all j = 1, . . . , k

snj ≥ 4N log
1

(C + C1)ρn
+

m∑
i=1,i ̸=j

4 log ρn

≥ 4N log
1

ρn
+ 4(m− 1) log ρn + 4N log

1

C + C1

≥ 4 log
1

ρ
N−(m−1)
n

+ C̃1.

Under the assumption N + 1 > m, we obtain that

k∑
j=1

snj → +∞ as n → +∞. If k = m then

we conclude that φm(ξn1 , . . . , ξ
n
m) → +∞, as n → +∞, which is contradiction, since φm(ξn) is

bounded uniformly in n. Therefore, it holds that k ≤ m − 1. Next, let us estimate the sum
m∑

j=k+1

snj , with k ≤ m−2. We can isolate groups of those points according to the asymptotic form

of their mutual distances. For example, we can define:

ρ1n = inf
i ̸=j,i,j>k

d(ξnj , ξ
n
i ),

and consider those points whose mutual distances are O(ρ1n), and so on. For each group of
those points (also those with indices higher than k) the argument given above in the Case 1
applies. This means that not only those points become close to one another but also that their
distance to the boundary ∂Ωδn is comparable with their mutual distance. Observe that for any
j ∈ {k + 1, . . . ,m} we have

m∑
i=1,i ̸=j

4 log |ξni − ξnj + ζnij | =
k∑

i=1

4 log |ξni − ξnj + ζnij |+
m∑

i=k+1,i̸=j

4 log |ξni − ξnj + ζnij |.
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First, assume that there is a constant d0 > 0 such that ρ1n ≥ d0 for all n. Then, at most there
is certain j0 ∈ {k + 1, . . . ,m} such that ξnj0 → p as n → +∞, since ξni → p as n → +∞
for all i = 1, . . . , k. Thus, for those j ∈ {k + 1, . . . ,m} such that there is a constant r0 > 0
satisfying |ξnj − p| ≥ r0 for all n and we have that d(ξni , ξ

n
j ) = |ξni − ξnj + ζnij | ≥ r1 for all n,

i = 1, . . . ,m for some constant r1 > 0. Hence, we get that snj = O(1) as n→ +∞. Now, for that
j0 ∈ {k + 1, . . . ,m} such that ξnj0 → p as n → +∞, we have that ζnij0 = 0 and |ξnj0 − ξni | → 0 as
n→ +∞ for all i = 1, . . . , k. Thus, taking ρ̃n = infi=1,...,k |ξni − ξnj0 |, we consider two cases:

(a) either

lim
n→+∞

dist(ξnj0 , ∂Ωδn)

ρ̃n
= +∞;

(b) or there exists C2 > 0 such that for all n

dist(ξnj0 , ∂Ωδn)

ρ̃n
≤ C2,

since ρ̃n → 0 as n → +∞. In case (a), after scaling with ρ̃n around ξnj0 and arguing similarly as
in the Case 1 we get a contradiction with Lemma 4.7.2. Thus, case (a) cannot hold and it does
hold case (b). In case (b) we have that

snj0 ≥ 4N log
1

(C + C2)ρ̃n
+

k∑
i=1

4 log ρ̃n +

m∑
i=k+1,i̸=j0

4 log d0

≥ 4N log
1

ρ̃n
+ 4k log ρ̃n + 4N log

1

C + C2
+ 4(m− k − 1) log d0

≥ 4 log
1

ρ̃N−k
n

+ C̃2.

Since N > m − 1 > k, we conclude that as n → +∞, snj0 → +∞. If k = m − 1 then by
similar arguments as above, depending on whether or not ξnm → p as n → +∞, we get that
either snm = O(1) or snm → +∞ as n → +∞. Therefore, in any case k ≤ m − 2 with ρ1n ≥ d0 or
k = m − 1, we conclude that φm(ξn1 , . . . , ξ

n
m) → +∞ as n → +∞, which is contradiction, since

φm(ξn) is bounded uniformly in n. Thus, it holds that ρ1n → 0 as n → +∞ when k ≤ m − 2.
Since ρn ≤ ρ1n, we get that δn < Cρ1n. Similarly as above, without loss of generality, we can
assume that ρ1n = |ξnk+1 − ξnk+2|. If

lim
n→+∞

dist(ξnk+1, ∂Ωδn)

ρ1n
= +∞

then the argument given above in the Case 1 applies. Thus, it holds that there is a constant
C3 > 0 such that

dist(ξnj , ∂Ωδn)

ρ1n
≤ C3, for all j = k + 1, . . . , k′,

where k+2 ≤ k′ ≤ m. In this case, we get that ξnj → p for all j = k+1, . . . , k′ as n→ +∞, since

ρ1n → 0 as n→ +∞ by the assumption and for all j = k + 1, . . . , k′,

|ξnj − p| ≤ δn + dist(ξnj , ∂Ωδn) ≤ δn + C3ρ
1
n.

Thus, for each j ∈ {k+1, . . . , k′} we have that |ξni − ξnj | → 0 as n→ +∞ for all i = 1, . . . , k. Let

us consider ρ̃jn = infi=1,...,k |ξnj − ξni |. Note that ρn ≤ ρ1n, ρn ≤ ρ̃jn for all j = k + 1, . . . , k′ and ρn,
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ρ1n and ρ̃jn → 0 as n→ +∞. For any j ∈ {k + 1, . . . ,m}, if

lim
n→+∞

dist(ξnj , ∂Ωδn)

ρ̃jn
= +∞,

then the Case 1 applies. Therefore, there is a constant C̃3 > 0 such that dist(ξnj , ∂Ωδn) ≤ C̃3ρ̃
j
n.

Hence, we get that

|ξnj − p| ≤ δn + C3ρ
1
n ≤ Cρn + C3ρ

1
n ≤ (C + C3)ρ

1
n

and
|ξnj − p| ≤ δn + dist(ξnj , ∂Ωδn) ≤ Cρn + C̃3ρ̃

j
n ≤ (C + C̃3)ρ̃

j
n

for all j = k + 1, . . . , k′. And we find the estimate

snj ≥ 4(N −m+ 1) log
1

|ξnj − p|
+ 4k log

1

(C + C̃3)ρ̃
j
n

+ 4(m− k − 1) log
1

(C + C3)ρ1n

+

k∑
i=1

4 log ρ̃jn +

m∑
i=k+1,i ̸=j

4 log ρ1n

≥ 4(N −m+ 1) log
1

ρ1n
+ C ′

3

for all j = k + 1, . . . , k′. On the other hand, if k′ ≤ m− 1 then the sum

m∑
j=k′+1

[
4N log

1

|ξnj − p|
+

m∑
i=1,i ̸=j

4 log |ξni − ξnj + ζnij |
]

could be estimated similarly as above. Therefore, in any case, we conclude

φm(ξn1 , . . . , ξ
n
m) → +∞ as n→ +∞,

which is contradiction, since φm(ξn) is bounded uniformly in n.

Finally, it remains to consider that ρn = o(δn) as n→ +∞. Observe that |ξnj − p| ≥ δn for all
j = 1, . . . , k, and hence

lim
n→+∞

ρn
ξnj − p

|ξnj − p|2
= 0

If all points ξn1 , . . . , ξ
n
k are interior to Ωδn then after scaling with ρn we argue as in case 1 above

to reach a contradiction with Lemma 4.7.2. Suppose that {1, . . . , k} = I1 ∪ I2, where I1 is the set
of indices j for which ξnj ∈ ∂Ωδn and I2 that for ξnj ∈ Ωδn . So, I1, I2 ̸= ∅ and I ∩ I2 = ∅. Then,
we have that

∇ξjφm(ξn1 , . . . , ξ
n
m) · τ = 0 for all τ ∈ Tξnj (∂Ωδn), for all j ∈ I1

and
∇ξiφm(ξn1 , . . . , ξ

n
m) = 0 for all i ∈ I2.

Let j ∈ I1, by the definition of ∂Ωδn , we can take τnj ∈ Tξnj (∂Ωδn), |τnj | = 1 and (ξnj − p) · τnj = 0
for all n. Then, for j ∈ I1 we get that

lim
n→+∞

∇xj φ̃m(xn1 , . . . , x
n
k , 0, . . . , 0) · τnj = 8

k∑
l=1,l ̸=j

x̃j − x̃l
|x̃j − x̃l|2

· τj = 0, (4.7.4)
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where |τj | = 1 and τnj → τj as n→ +∞ (up to subsequence) and for i ∈ I2

lim
n→+∞

∇xiφ̃m(xn1 , . . . , x
n
k , 0, . . . , 0) = 8

k∑
l=1,l ̸=i

x̃i − x̃l
|x̃i − x̃l|2

= 0. (4.7.5)

In order to get a contradiction, we will use the following fact.

Claim 4.7.1. Let an, bn ∈ IR2 be, such that an ̸= bn for all n, δn = |an| = |bn|, δn → 0,
C0ρn ≤ |an − bn| ≤ C1ρn, for some constants C0, C1 > 0 and ρn = o(δn) as n → +∞. Then, up
to subsequence

lim
n→+∞

an − bn
ρn

· an
δn

= lim
n→+∞

an − bn
ρn

· bn
δn

= 0.

Proof: First, it is clear that the limits are finite. By the definition of |an − bn|, we have

C2
0ρ

2
n ≤ (an − bn) · an − (an − bn) · bn ≤ C2

1ρ
2
n

and

C2
0

ρn
δn

≤ an − bn
ρn

· an
δn

− an − bn
ρn

· bn
δn

≤ C2
1

ρn
δn
.

Thus, we get

lim
n→+∞

an − bn
ρn

· an
δn

= lim
n→+∞

an − bn
ρn

· bn
δn
.

On the other hand, |an|2 = (an − bn) · an + an · bn and |bn|2 = −(an − bn) · bn + an · bn. Hence,
we get that

(an − bn) · an + (an − bn) · bn = 0 and
an − bn
ρn

· an
δn

+
an − bn
ρn

· bn
δn

= 0.

Then, letting n→ +∞ the claim follows.

Similarly, we have a variant of the above conclusion.

Claim 4.7.2. Let an, bn ∈ IR2 be, such that an ̸= bn for all n, δn = |an| < |bn|, δn → 0,
C0ρn ≤ |an − bn| ≤ C1ρn, for some constants C0, C1 > 0 and ρn = o(δn) as n → +∞. Then, up
to subsequence

lim
n→+∞

an − bn
ρn

· an
δn

= lim
n→+∞

an − bn
ρn

· bn
δn

≤ 0.

Now, taking an = ξnj − p, bn = ξni − p and j ∈ I1, we have that for i ∈ I1

lim
n→+∞

ξnj − ξni
ρn

·
ξnj − p

δn
= (x̃j − x̃i) · x̃ = 0, (4.7.6)

where

x̃ = lim
n→+∞

ξnj − p

δn

and for i ∈ I2

lim
n→+∞

ξnj − ξni
ρn

·
ξnj − p

δn
= (x̃j − x̃i) · x̃ ≤ 0. (4.7.7)

Note that from the equality
ξnj − p

δn
=
ξni − p

δn
+
ρn
δn

ξnj − ξni
ρn
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we get that x̃ is independent of j = 1, . . . , k. Also, we have that

lim
n→+∞

ξnj − p

δn
· τnj = x̃ · τj = 0

since (ξnj − p) · τnj = 0 for all n and j ∈ I1. Hence, we can assume that τ = τj for all j ∈ I1.
Now, let us take j ∈ I1 and observe that from (4.7.6) and (4.7.7) we find that

k∑
i=1,i̸=j

x̃j − x̃i
|x̃j − x̃i|2

· x̃ =
∑
i∈I2

x̃j − x̃i
|x̃j − x̃i|2

· x̃ ≤ 0.

On the other hand, for i ∈ I2, we get that from (4.7.5)

x̃j − x̃i
|x̃j − x̃i|2

=
k∑

l=1,l ̸=i,l ̸=j

x̃i − x̃l
|x̃i − x̃l|2

=
∑

l∈I1,l ̸=j

x̃i − x̃l
|x̃i − x̃l|2

+
∑

l∈I2,l ̸=i

x̃i − x̃l
|x̃i − x̃l|2

and hence, ∑
i∈I2

x̃j − x̃i
|x̃j − x̃i|2

=
∑
i∈I2

∑
l∈I1,l ̸=j

x̃i − x̃l
|x̃i − x̃l|2

.

Therefore, using (4.7.7) we have that∑
i∈I2

x̃j − x̃i
|x̃j − x̃i|2

· x̃ =
∑
i∈I2

∑
l∈I1,l ̸=j

x̃i − x̃l
|x̃i − x̃l|2

· x̃ ≥ 0.

Thus, we conclude that for all j ∈ I1

k∑
i=1,i̸=j

x̃j − x̃i
|x̃j − x̃i|2

· x̃ = 0.

Therefore, from (4.7.4) and x̃ · τ = 0, it follows that

k∑
l=1,l ̸=i

x̃i − x̃l
|x̃i − x̃l|2

= 0, for all i = 1, . . . , k.

Thus, we get a contradiction with Lemma 4.7.2 and Case 2 cannot hold.
In summary we reached now a contradiction with the assumptions of the Lemma. The proof

is complete.

4.7.3 Proof of Theorem 4.1.3.

According to Lemma 4.5.1, given m ≥ 1, we have a solution of Problem (4.1.2) if we adjust ξ
so that it is a critical point of Fε defined by (4.5.2). This is equivalent to finding a critical point
of

F̃ε(ξ) =
1

4π

[
Fε(ξ) + 16mπ log ε+ 16πm− 8πm log 8 + 32π2H∗(0)

]
.

On the other hand, from Lemmas 4.5.2 and 4.6.1, we have that for ξ ∈ Ωm, such that k(ξj) > 0
and its components satisfy |ξi − ξj | ≥ δ,

F̃ε(ξ) = φm(ξ) + εγΘε(ξ), with 0 < γ < 1− σ
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where Θε and ∇ξΘε are uniformly bounded in the considered region as ε → 0, and α ̸= 0 and
β are universal constants. By the assumption infΩ k > 0, we get that −2 log k is bounded from
above. Since the Green’s function G is bounded from below in Ω × Ω, it holds φm is bounded
from above and there is a global maximum, that is to say, a critical value C such that

C = max
Ωm

φm.

Now, taking D = {x ∈ Ωm | φm(x) > C/2} we have that there exists a δ > 0 such that |ξj−ξi| ≥ δ
for any ξ = (ξ1, . . . , ξm) ∈ D. Hence, αF̃ε + β is uniformly bounded from above in D and there
is a critical value

Cε = max
D

[αF̃ε + β]

which is close to C in this region. From C1-closeness of αF̃ + β and φm in the region D it follows
that, if ξε ∈ D is a critical point at level Cε then ∇φm(ξε) → 0. The function uε = U(ξε) + ϕ̃(ξε)
is therefore a solution as predicted by the theorem.
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