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SPATIOTEMPORAL FEATURES OF NATURAL CONVECTION

TESIS PARA OPTAR EL GRADO DE DOCTOR EN

CIENCIAS DE LA INGENIERÍA MENCIÓN FLUIDODINÁMICA
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Stuart Bruce Dalziel

Aldo Tamburrino Tavantzis

Peter Anthony Davies
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Esta tesis, consistente en una recopilación de art́ıculos de investigación originales autocon-

tenidos, se ocupa del estudio de los mecanismos f́ısicos que explican algunas caracteŕısticas

de la dinámica de convección térmica con aplicación a convección penetrativa, frecuente-

mente observada en lagos y reservorios chilenos. Este fenómeno consiste en la aparición

de un campo de flujo derivado del enfriamiento superficial de una masa de de fluido donde

potencialmente puede existir una estratificación de densidad previa. Si bien este problema

ha sido extensivamente estudiado empleando experimentos de pequeña escala (desde 1 mm

hasta unos pocos cent́ımetros), no es el caso para sistemas naturales de mayor tamaño,

donde los flujos son comúnmente turbulentos y la dinámica asociada está además acoplada

con perturbaciones espaciotemporales, incluyendo temperatura ambiente y vientos locales.

El presente trabajo se ocupa de algunas de estas interrogantes, incluyendo las condiciones

requeridas para la aparición de convección penetrativa bajo condiciones de borde térmicas

que dependen del tiempo y suponiendo ausencia de viento. Primero, se consideró el caso

más simple de un enfriamiento superficial repentino, modelado como una capa horizontal

infinita, inicialmente en reposo, de fluido de Boussinesq. La siguiente fase de este estu-

dio consistió en la elaboración de un modelo teórico simplificado, propuesto como una

base para dar cuenta de la estabilidad de sistemas de pequeña escala frente a patrones de

forzamiento térmico sinusoidales, buscando aśı un śımil al efecto de enfriamiento vesper-

tino o nocturno en lagos en los casos donde además hay turbulencia media nula antes del

comienzo del flujo convectivo. Un segundo aspecto de este trabajo de tesis fue el estudio del

efecto de la presencia de fuentes y sumideros térmicos cercanos. Para condiciones débiles

de calentamiento y enfriamiento, se ha encontrado que el estudio de esta configuración es

equivalente al estudio de la interacción entre plumas térmicas y corrientes de densidad en

régimen laminar.

Se ha perseguido los objetivos mencionados empleando una combinación de métodos,

incluyendo simulaciones numéricas, técnicas anaĺıticas de perturbación para el estudio de la

estabilidad de los sistemas referidos modelados a través de las ecuaciones de Navier-Stokes

y enerǵıa, además de la realización de experimentos. En este último caso, se propone una

técnica de medición simultánea de los campos vectoriales de velocidad (usando PIV) y

gradiente de densidad (usando schlieren sintético). La naturaleza inherentemente delicada

de los experimentos llevados a cabo hizo necesario el desarrollo de sistemas de control

ad-hoc. Como resultado de estas actividades, ha sido posible vincular las propiedades del

fluido con parámetros adimensionales (incluyendo los números de Prandtl y Rayleigh), para

dar cuenta de los tiempos de inicio de convección y frecuencia de forzamiento térmico en la

superficie (entre otros). Del estudio de inhomogeneidades espaciotemporales, se encontró

que las plumas térmicas bidimensionales laminares pueden sobrevivir el impacto con una

corriente de gravedad modificando, sin embargo, su posición original.



Abstract

This thesis, consisting of a series of self-contained research articles, is devoted to the study

of physical mechanisms allowing to explain some characteristics of the dynamics of thermal

convection with application to penetrative convection, frequently observed in Chilean lakes

and reservoirs. This phenomenon consists of the appearance of a flow field derived from

the surface cooling of a fluid enclosure in systems where an existing background density

stratification is possibly present. Although it has been extensively studied using small-scale

experiments (from 1 mm to few centimetres), it is not the case for large, natural systems,

where flows are commonly fully turbulent and associated phenomena is often coupled

with spatiotemporal disturbances, including ambient temperature, and local winds. The

present work deals with some related questions, including the conditions required for the

appearance of penetrative convection under time-dependent thermal boundary conditions.

First, it was considered the simpler case of a sudden decrease of surface temperature,

modelled as a infinite horizontal Boussinesq fluid layer with no initial velocity vector field.

The next phase of this study consisted of the construction of a simplified theoretical model,

proposed as a base to account for the stability of small-scale lakes and reservoirs in front

of a sinusoidally-varying forcing thermal pattern, thus mimicking the effect of evening or

overnight cooling in fluid systems where zero-mean-flow turbulence exist, as is the case of

many lakes. A second aspect of this thesis work was the study of the effect of the presence

of nearby thermal heat and sources. For weak heating and cooling, this was found to be

equivalent to study the interaction of laminar thermal plumes and gravity currents.

The aforementioned objectives have been pursued using a combination of techniques,

including direct numerical simulations, analytic perturbation techniques for the study of

the stability of the referred systems using Navier-Stokes and energy equations, and ex-

periments. In the latter case, a new observation technique, based on colour separation

concepts, was proposed to simultaneously measure velocity (using PIV) and density gradi-

ent (using synthetic schlieren) vector fields. The inherently delicate nature of experiments

made it necessary to develop ad-hoc control systems. As an outcome of the referred ac-

tivities, it was possible to link flow properties with nondimensional parameters (including

Prandtl and Rayleigh numbers) accounting for convection onset times and thermal forcing

frequency (among others). From the study of spatial thermal inhomogeneities, it was found

that two-dimensional, laminar thermal plumes can withstand an impelling gravity current,

though displaced from their original position.



We are like sailors who on the open sea must

reconstruct their ship but are never able to start

afresh from the bottom.

Otto Neurath (1882-1945)
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Chapter 1

Introduction

When an initially quiescent horizontal Boussinesq fluid layer is heated from below (or

cooled from above), a vertical density gradient is induced. After heating at the bottom

a 1 mm-depth cell with wax in it, the French physicist Henri Bénard (Bénard, 1900;

Drazin & Reid, 1981) discovered that under certain heating conditions, hexagonal flow

patterns formed. He interpreted these patterns as convective flow strctures, named Bénard

convection after him. Minimal conditions for the formation of such a flow structure were

analysed in the seminal paper of Rayleigh (1916, with over 586 cites in the scientific

literature), who, as a first approximation assumed first-order disturbances in an infinitely

wide fluid enclosure to neglect boundary effects. In his work, he found a formal relation

between the exponential growth of disturbances and a balance between buoyancy driven

by the density contrast induced by heating and the effects of thermal diffusion (or the

concentration of a passive scalar) and viscosity, which are inherent properties of the fluid.

Flow structures similar to those corresponding to Bénard experiments can be found over

and over again in a countless number of situations in nature, as well as in industry. They are

often the prelude of complex momentum and mass exchange processes. In the industry,

an area of active research is flow control in nuclear reactors (Liaqat & Baytas, 2001),

crystallization processes (Worster, 2001), the conception of heat exchangers in hydrocarbon

processing (Gebhart et al., 1988) and the design of buildings optimised for low energy

consumption due to heating systems (Linden, 1999). In nature, large scale convective

structures are ubiquitous in the planetary boundary layer (Stull, 1988), the ocean (Marshall

& Schott, 1999; Maxworthy, 1997), lakes and reservoirs (Imberger & Patterson, 1990; Jonas

et al., 2003; Wüest & Lorke, 2003), magma and liquid metal flows occurring near the earth

inner core (Griffiths, 2000), the sun and several planets in the solar system (Majumder &

Yuen, 2004; Veronis, 1963).

The need to elucidate the impact of different initial and boundary conditions on the sta-
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bility of systems where Bénard convection can occur has motivated numerous research in-

vestigations, including the effect of different initial thermal stratifications (Chandrasekhar,

1961; Jeffreys, 1928; Low, 1929; Pellew & Southwell, 1940; Rayleigh, 1916; Reid & Harris,

1958; Sparrow et al., 1964; Sutton, 1950) and the result of disturbances during transient

heating conditions (Currie, 1967; Foster, 1965a, 1968; Goldstein, 1959; Homsy, 1973; Kim

et al., 1999, 2008, 2002; Lick, 1965; Morton, 1957; Neitzel, 1982; Yang & Choi, 2002a). As-

pects of non-linear dynamics of this type of flow, both from the point of view of transition

to turbulence (Busse, 1978), as well as in the case of fully developed turbulence have been

revised in greater detail during the last two decades (Chavanne et al., 2001; Siggia, 1994),

partly because of advances in computer hardware (Moin & Mahesh, 1998; Pope, 2000). In

turbulent flow in closed containers, main elements driving convective flows are plumes, the

thermal boundary layer adjacent to where heating or cooling is applied, and the central

region Grossmann & Lohse (2000); Kadanoff (2001). Plume is defined as a non-linear con-

vective flow driven by an instability driven on the thermal boundary layer (Turner, 1969).

In particular, flows induced by this mechanism have a remarkable impact on mixing pro-

cesses in density-stratified fluids present in natural systems. Even biological variables such

as oxygenation and eutrophication strongly depend on them (Fernando, 1991; Imberger &

Patterson, 1990; Martin et al., 1999; Svendsen, 1997).

Nature offers many non-ideal situations where convective flows occur mixed with sev-

eral other effects, including spatiotemporal variations in heat flux. Examples are unusually

distributed atmospheric convective patterns due to vegetation, introducing local variations

in sensible heat and moisture (Grossman et al., 2004). In polar areas, the re-freezing of nar-

row channels, also know as leads, induce the formation of plume-like elongated structures.

Their existence have a significative effect on the energy balance along with the biological

activity in the ocean(Morison et al., 1992). This kind of flow structure, often modelled

as two-dimensional plumes, are close enough to interact among each other (Ching et al.,

1996). A different consequence of a spatial heterogeneity in heat flux is the interaction be-

tween plumes and thermally-induced gravity currents. The latter can appear when exists a

locally cooler zone at the bottom of an enclosure. Their properties depend of fluid proper-

ties, the slope of the surface where they grow, and existing the density contrast (Benjamin,

1968; Simpson, 1997; Turner, 1973), and they behaviour can be significantly affected in

the presence of a density-stratified background (Ungarish & Huppert, 2002).

The objective of this thesis work is to study some spatiotemporal features in thermal

convection. The present document is the compilation of a series of related research papers.

First of them deals with the link between time and the onset of convection. When the

surface temperature of a large reservoir drops below its initial (steady) level, an enhanced

mixing appears at specified times (Imberger & Patterson, 1990; Jonas et al., 2003). In this
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work a model based on linear stability analysis for convection onset times is proposed, both

for the case of a sudden cooling (chapter 2), and the more realistic condition of sinusoidal

cooling (chapter 3). Also, in chapter 4, using linear and non-linear stability analysis, critical

conditions for the existence of convective patterns when no heat exchange whatsoever exists

between the layer of fluid and its bottom were explored. Some numerical simulations are

given on the appendix A.1, while the effect of an initial background stratification is referred

to in the conference paper enclosed in appendix A.2. On the other hand, with the purpose

of studying the generation of laminar plumes and their interaction with thermally-induced

gravity currents, a new experimental methodology was developed to simultaneously observe

velocity and temperature fields (chapter 5).
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Chapter 2

The onset of nonpenetrative

convection in a suddenly cooled

layer of fluid

This chapter is published as research paper, authored by Christian Ihle and Yarko Niño,

in International Journal of Heat and Mass Transfer, volume 49 (2006), pp. 1442–1451.

Abstract

Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq

fluid layer subject to a step change in temperature are studied using propagation

theory. A wide range of Prandtl numbers and two different kinematic boundary

conditions are considered. It is shown that for high Rayleigh numbers, critical

conditions for the onset of convective motion reproduce exactly those for the

unsteady Rayleigh-Bénard instability. Present results extend those of previous

research and show a tendency of the rigid-rigid and free-rigid critical curves to

converge for low Prandtl numbers. Comparison between present and previously

reported results on critical conditions for the onset of instabilities and onset

time using different methods yields good agreement on a middle to high Prandtl

number range. A ratio of 10 between experimentally measured and theoretically

predicted onset times is suggested for stress-free bounded systems.

Keywords: Buoyancy-driven instability, critical time, nonpenetrative convection, Prandtl

number, propagation theory, Rayleigh number, isothermal heating.
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Nomenclature

as, bs coefficients of Eqs. (2.10) and (2.11), respectively, s = 1, . . . , 5 (integer), or ∞
(ax, ay) dimensionless horizontal wavevector

a dimensionless horizontal wavenumber,
√

a2x + a2y

C concentration [kmol/m3] or designation of constant value

Cp specific heat of the fluid at constant pressure [J kg−1 K−1]

D mass diffusion coefficient [m2/s]

D(·) ordinary derivative with respect to ζ, d(·)/dζ
∂χ(ψ)(·) partial derivative, ∂(·)/∂χ or ∂2(·)/∂χψ
dp deep pool acronym

g gravity vector (pointing in the direction of z axis) [m s−2]

k thermal conductivity of the fluid [Wm−1K−1]

L depth of the fluid layer [m]

Pr Prandtl number, να−1

r slope of the geometrical sequence to extrapolate critical Raτ values

t time (dimensionless if no superscript)

u velocity, (u, v, w) (dimensional or not depending on the superscript.

w is ζ-dependent if no superscript is present)

Ra Rayleigh number, gβ(θ∗max − θ∗min)L
3ν−1α−1

Raτ τ -dependent Rayleigh number, τ3/2Ra

TBL thermal boundary layer acronym

(x, y, z) Cartesian coordinates (dimensionless if no superscript is present)

Greek letters

α thermal diffusivity of the fluid [m2 s−1]

β thermal expansion coefficient [K−1]

λ relative difference coefficient, maxζ{100 × |1− θ0/θ0dp|}
δθ dimensionless thermal penetration depth

∆ laplacian operator (dimensional or not depending on the superscript)

∆1 horizontal laplacian operator (dimensional or not depending on the superscript)

γ concentration coefficient of expansion [kg/kmol]

ζ self-similar vertical coordinate, z/
√
t

θ temperature (self-similar if no superscript, otherwise dimensional or dimensionless)

ν kinematic viscosity of the fluid [m2 s−1]
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σ temporal growth rate for disturbances

τ definition for time in the self-similar framework, τ = t

Subscripts

0 base state

1 disturbance, or correlative assignment to constant

2–5 correlative assignment to constant

b bulk

c critical state

dp deep pool assumption: ζ-only dependence

linear linear boundary forcing

∞ infinite Prandtl number

m experimental detection

min minimal condition

max maximal condition

u thermal advection dominance over pure diffusivity

step step boundary forcing

τ τ -dependent variable: Γτ ≡ τφΓ

Superscripts

∗ dimensional length, temperature, time, velocity or differential operator

∼ dimensionless temperature, velocity or differential operator

– root-mean-square

2.1 Introduction

Nonpenetrative convection is defined by Adrian (1986) as the unstable flow field that

derives from the existence of a fluid layer heated from below (or cooled from above) with

adiabatic top (or bottom if cooled from above), resembling Bénard convection (Rayleigh,

1916). This thermal boundary condition precludes the existence of a steady flow regime.

Nonpenetrative convection represents a reasonable assumption in a variety of physical

problems, that range from ventilation and air conditioning (like, for instance, cold storage

rooms and warehouses with poor insulation from one side) to earth sciences, particularly

regarding the dynamics of the planetary boundary layer (Stull, 1988). In this paper,
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the attention is focused on the study of conditions for the onset of impulsively generated

nonpenetrative convection. Here, the base state of the system to be perturbed, at difference

from the one that gives rise to Bénard convection (Drazin & Reid, 1981), is unsteady due

to the existence of a thermally diffusive state whose temporal rate of change is high at the

very beginning of the evolution. Hence, a stability model able to deal with this difficulty

is to be considered.

After early approaches to the analysis of the stability of unsteady systems (e.g. ‘frozen

time’ and ‘quasi-static’ models, reviewed by Gresho & Sani (1971) and Homsy (1973),

respectively), the study of the onset of manifest convection in high Rayleigh number fluid

layers impulsively heated or cooled began with Foster (1965b), who used an initial value

technique, so-called ‘amplification model’, which considers a transient evolution of the base

state. In this case, disturbances that cause the onset of convection are assumed to occur

only initially. The major drawback of this method is that determination of amplification

requires the knowledge of amplitudes of initial disturbances, for all the wavelengths present

on the eigenfunction expansion. As this is impossible, Foster’s approach consisted of a

heuristic procedure that combined the assumption of several disturbance patterns along

with experimental observations (Foster, 1969). Using a different approach, Jhaveri &

Homsy (1982) and Kim & Kim (1986) used random forcing functions to solve an initial

value problem to find the onset times, both for step and ramp-heated systems of high

Rayleigh numbers, suggesting a definition of the onset time as that corresponding to a

certain excess of the computed Nusselt number with respect to the purely conductive one.

More recently, Kim et al. (1999) studied the impulsively driven Rayleigh-Bénard prob-

lem with initial stratification, using the method called by these authors ‘propagation the-

ory’ (Choi et al., 1988; Kang & Choi, 1997; Kim et al., 1996). Its basis lies on the assump-

tion that most of the disturbances are confined within the thermal penetration depth, which

is considered as a length scale, leading to the transformation of the linearized equations

into self-similar forms. In more recent contributions, Chung et al. (2004) and Choi et al.

(2004d) suggest new definitions for onset times, taking into account nonlinear effects that

come from the numerical simulation of the unsteady Rayleigh-Bénard problem and com-

pare them with results obtained using propagation theory. In the latter work, the influence

of initial stratification on the distribution of the mentioned time scales is analyzed.

In an experimental context, Spangenberg & Rowland (1961) studied the onset of evapo-

rative convection using Schlieren photography techniques, while Foster (1965a), by means

of radiometry, showed that surface temperature in suddenly cooled evaporative systems

evolves in a linear fashion. Plevan & Quinn (1966), Blair & Quinn (1969) and later Tan &

Thorpe (1992), measured onset times in non-evaporative systems whose stability depends

on the concentration of gases into water. Their results, in the context of the present re-
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search, are commented in Section 2.4. Goldstein & Volino (1995), studied the onset of

convection on a thick fluid layer heated impulsively from below. Their work presents also

an extensive review of literature focused on the transient features of natural convection.

In this paper, propagation theory was the chosen stability method to assess the onset

of nonpenetrative convective motion. For high thermal perturbations, it is shown that this

phenomenon behaves the same as the onset of unsteady Rayleigh-Bénard convection. This

result allows for a side by side comparison of present computations with numerical and

experimental results reported in the context of the latter problem. Some new findings in

that regard are presented and discussed as well.

2.2 Problem description

An initially quiescent horizontal fluid layer, well mixed at temperature θ∗ = θ∗max, infinite

on its horizontal dimension but finite, with height L, on the vertical axis z∗, is suddenly

cooled, by dropping its surface temperature, at time t∗ = 0 and z∗ = 0, to θ∗ = θ∗min.

Surface is to be kept at this lower temperature for t∗ > 0 (Fig. 2.1).

For high enough temperature step: δθ∗ = θ∗max − θ∗min, a buoyancy-driven circulation

is induced. This problem can be modeled using continuity, Navier-Stokes and energy

equations on a Boussinesq fluid, with no heat sources present. Surface tension effects in

the free-rigid case are neglected in the present study. This assumption is reasonable in

the present context, as shown experimentally by Davenport & King (1974) in the case of

linearly heated deep reservoirs. Scales to be used are L to form dimensionless coordinates

(x, y, and z), L2α−1 to form dimensionless time, t, αL−1 to form dimensionless velocity base

state and perturbations, (ũ0, ṽ0, w̃0) and (ũ1, ṽ1, w̃1), respectively. ναg
−1β−1L−3, to form

dimensionless temperature perturbation, θ̃1, whereas the dimensionless base temperature,

θ̃0, is scaled to range between 0 and 1: θ̃0 = (θ∗0 − θ∗min)(θ
∗
max − θ∗min)

−1. α, ν and β are

the thermal diffusivity, kinematic viscosity, and thermal expansion coefficient of the fluid,

respectively. g is the magnitude of the gravity vector, which points in the same direction

of the z axis. In the latter expressions, the subscript 0 refers to the base state and 1 to

the perturbed one.

A first order expansion for the dimensionless temperature and velocity is considered,

with the form θ̃ = θ̃0 − θ̃1, and ũ = ũ0 + ũ1 = ũ1 = (ũ1, ṽ1, w̃1), respectively. The minus

sign on the expansion for temperature means that positive perturbations have a cooling

effect. The base state is that of a horizontally infinite, quiescent fluid layer. Neglecting

second order terms, the following set of equations is obtained for the vertical velocity and
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temperature perturbations:

(

1

Pr
∂t − ∆̃

)

∆̃w̃1 = ∆̃1θ̃1 (2.1a)

∂tθ̃1 −Ra w̃1∂z θ̃0 = ∆̃θ̃1, (2.1b)

where Pr = να−1 corresponds to the Prandtl number and Ra = gβ(θ∗max − θ∗min)L
3ν−1α−1

corresponds to a Rayleigh number based on the overall temperature step, ∆̃ ≡ ∂xx+ ∂yy+

∂zz and ∆̃1 ≡ ∆̃− ∂zz, provided the dimensionless equation for the base state is satisfied:

∂tθ̃0 = ∂zz θ̃0 (2.2a)

θ̃0(t = 0, z) = 1, θ̃0(t > 0, z = 0) = ∂z θ̃0(t ≥ 0, z = 1) = 0. (2.2b)

The derivation of stability equations using propagation theory is analogous to that of Kang

& Choi (1997) and Yang & Choi (2002a). Hence, only the essential steps are given here.

In propagation theory it is stated that, for the case of thermal convection in systems where

instabilities are confined mainly into the thermal boundary layer (TBL), a balance between

viscous and buoyant forces can be made, such that it is possible to scale dimensionless ver-

tical velocity perturbations with time as |w̃1θ̃
−1
1 | ∼ δ2θ , where δθ ∝

√
t is the dimensionless

thermal penetration depth. From the latter relation and dimensional analysis it can also

be inferred that (Yang & Choi, 2002a):

[

θ̃1 (z, t) , w̃1 (z, t)
]

=
[

tnθ1

(

z
/
√
t
)

, tn+1w1

(

z
/
√
t
)]

, (2.3)

where n is a parameter. Now, stability equations are represented in a new coordinate

system defined as
(

t, ζ = z
/√

t
)

, instead of (t, z), while θ̃1 and w̃1 turn to θ1 and w1 in the

newly defined system. To avoid confusion, t will be defined as τ . The present criterion for

the setting of n is to find the lowest possible onset times from the characteristic problem.

To this purpose, it must be set to zero (Yang & Choi, 2002a). Additionally, Choi et al.

(2004d) and Chung et al. (2004) argue that this condition can be also derived from the

assumption that the onset time occurs when the growth rates of the root-mean-square

values of the base state temperature and of the temperature perturbations are equal. In

the context of a system with an imposed heat flux, the latter assumption leads to a different

n value of 1/2 (Choi et al., 2004a,b).

Eqs. (2.1) are cyclic in the horizontal plane. Then, modes with wavenumbers ax and

ay for the x and y axis, respectively, are considered. Introducing (2.3)× exp[i(axx+ ayy)]

in the latter system, noting that ∂τ (·) = −ζ(2τ)−1∂ζ(·) and that ∂z(·) = τ−1/2∂ζ(·), the
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set of stability equations to be solved is:

[

(

D2 − a2τ
)2

+
1

2Pr

(

ζD3 − a2τζD+ 2a2τ
)

]

w1 − a2τθ1 = 0 (2.4a)

(

D2 +
1

2
ζD− a2τ

)

θ1 + w1RaτDθ0 = 0, (2.4b)

where Dn(·) = dn(·)/dζn, aτ = τ1/2
√

a2x + a2y and Raτ = τ3/2Ra.

The scaling assumed here, which considers the hypothesis that disturbances are confined

mainly into a thermal penetration depth, makes Eqs. (2.4) valid for small values of time

only. In this case, the base state for temperature, θ0, can be expressed as a function

exclusively of ζ. This kind of system, representative of a thermally semi-infinite one, is

commonly named ‘deep pool’ system (the acronym dp will be adopted hereafter). Its TBL

is small compared with the thickness of the fluid layer.

For large values of τ , when equations are not self-similar anymore, it has been shown (Kim

et al., 2002; Yang & Choi, 2002a) that eigenvalues for (2.4) can still be found. In those

works, it was also shown that asymptotic convergence in time to results obtained with the

frozen time model is achieved. However, the validity at intermediate values of time of the

thermal scaling proposed here is not clear. Regarding this topic, an analysis on the validity

of this model, in the context of nonpenetrative convection, is being presently prepared (Ihle

& Niño, 2005). For the system with no-slip top and bottom surfaces (named herein as the

rigid-rigid case), boundary conditions for the perturbed quantities are:

θ1 = w1 = Dw1 = 0 in ζ = 0 (2.5a)

Dθ1 = w1 = Dw1 = 0 in ζ = 1/
√
τ . (2.5b)

In the case with stress-free top and no-slip bottom (defined also as the free-rigid case),

boundary conditions which are to be applied to Eqs. (2.4) are:

θ1 = w1 = D2w1 = 0 in ζ = 0 (2.6a)

Dθ1 = w1 = Dw1 = 0 in ζ = 1/
√
τ . (2.6b)

The marginal stability problem to be considered is to solve: minaτ Raτ , where aτ and

Raτ satisfy (2.4), with boundary conditions (2.5) or (2.6), in the rigid-rigid and free-

rigid cases, respectively. This procedure is to be applied to the self-similar system, valid

for small values of time. Under this condition, the present definition of the Rayleigh

number is the same as the one used in the classical Rayleigh-Bénard problem, based on the

temperature difference between the top and bottom horizontal boundaries, since here, the
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bottom boundary holds its higher temperature throughout the whole lapse of time during

which the present stability model is valid.

2.3 Solution method

Eqs. (2.4) and the boundary conditions (2.5) and (2.6) are homogeneous. Then, the value

of D2w1(0) and Dw1(0) can be assigned arbitrarily in the rigid-rigid and free-rigid cases,

respectively (Kang & Choi, 1997; Kim et al., 2002). To solve the problem posed in the

previous section, a solver based on the shooting method using a fourth order Runge-Kutta

numerical integration formula was implemented. Convergence to minima was achieved

using a Newton-Raphson scheme. Validation of the numerical implementation was done

by analyzing the classical rigid-rigid Rayleigh-Bénard problem with a step change in the

bottom temperature (Kim et al., 1999), using Eqs. (2.4). Monotonic, albeit slow conver-

gence for increasing time, close to the well known value of the critical Rayleigh number of

1708 was found for different Prandtl numbers. This result numerically checks the classic

result for the steady state problem, which states that the onset of the Rayleigh-Bénard

instability does not depend on the Prandtl number (Drazin & Reid, 1981). This statement

is recalled expressing (2.4) in the (z, t) space, re-scaling w1 and θ1 and their derivatives

to w̃1 and θ̃1 via (2.3), and taking the limit when τ → ∞. The resulting equations are
(

∂zz − a2
)2
w̃1 = a2θ̃1 and

(

∂zz − a2
)

θ̃1 + w̃1Ra = 0, regardless of the value of Prandtl

number, for which no assumption has been made but to be positive. Now, as the resulting

expressions are only functions of z, it is noted that the latter equations also correspond to

the linearized stability system obtained assuming an exponential growth rate, expσt, with

a critical stability condition σ = 0 (Yang & Choi, 2002a). This approach corresponds to

the ‘marginal state’ variation of the frozen time model (Gresho & Sani, 1971). With this

set of equations, the computed critical Rayleigh number and its associated wavenumber are

1707.7618 and 3.11632, respectively, in agreement with the pair (1707.765, 3.12) proposed

by Sparrow et al. (1964) and (1707.7618, 3.11635), computed by Mizushima (1995).

In numerical terms, the dp system assumption means that the outer boundary to be

considered goes to infinite. To reproduce this fact into the computation of eigenvalues prior

to the minimization process, the extrapolation procedure described by Chen et al. (1983)

for critical Raτ numbers was used. Roughly, this approach is based on the observation that

different Raτ n numbers, obtained for different outer depths ζn, decrease approximately as

a geometrical sequence. Then, the asymptotic Rayleigh number can be computed as Ra0τ ≈
Raτ

0
n + r(Raτ

0
n − Raτ

0
n−1)/(1 − r), where r is the slope of the approximately logarithmic

line obtained using different pairs (ζn,Raτ n).
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2.4 Results and discussion

2.4.1 Base state solutions

The base state solution can be calculated using Laplace transforms, which yields equa-

tion (2.7). This approach has the advantage of producing a series with faster convergence

than that obtained through Fourier decomposition.

θ0(ζ, τ) = 1 +
∑

n≥0

(−1)n+1

{

erfc

[

n√
τ
+
ζ

2

]

+ erfc

[

n+ 1√
τ

− ζ

2

]}

(2.7)

The dp solution can be readily obtained solving (2.2) on a semi-infinite domain:

θ0dp(ζ) = erf (ζ/2) . (2.8)

For values of τ lower or close to 0.01 very small relative differences between equations (2.7)

and (2.8) are observed. Computing the latter as λ = maxζ{100 × |1 − θ0/θ0dp|}, for

τ = 0.005, 0.007, 0.01, 0.02 and 0.05, λ < 10−12, 10−12, 10−10, 10−4 and 0.1, respectively.

2.4.2 Comparison with the unsteady Rayleigh-Bénard problem

The deduction of the nonpenetrative stability problem in the light of the propagation

model yields an interesting similitude with the unsteady Rayleigh-Bénard problem stud-

ied by Kim et al. (1999). Eqs. (2.4a) and (2.4b) have the same analytical expression

than those corresponding to the latter work. The only difference between them is the

thermal condition imposed at the boundary away from the step change in temperature

(named herein as the outer boundary). In the present problem, the boundary condition

limζ→∞Dθ1 = 0 is imposed, while in Kim et al. (1999), limζ→∞ θ1 = 0 is imposed instead,

representing the existence of an isothermal outer boundary. It can be shown, however,

that both types of outer boundary condition must be satisfied simultaneously in both

problems. For fixed Rayleigh and Prandtl numbers, an onset time τc exists such that

θ1 = 0 for τ < τc = τc(Pr,Ra) (i.e., the system does not experience convection before the

onset time). On the other hand, the similarity condition inherent to the present propaga-

tion model imposes the scaling δθ ∼
√
τ ≪ 1 (τ ≪ 1) for the thermal penetration depth,

and the boundary condition Dθ1(1/
√
τ) = 0. Then, considering, as stated previously, that

the perturbations are mainly confined within the TBL, and assuming continuity of the tem-

perature disturbance, necessarily θ1(1/
√
τ) = 0, which is a mere consequence of the small

penetration depth occurring at small times. As this holds for arbitrarily small onset times

(and, consequently, arbitrarily large values of the Rayleigh number), if limζ→∞Dθ1 = 0,
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then limζ→∞ θ1 = 0. Consequently, both problems, the impulsively isothermally heated

Rayleigh-Bénard and the present nonpenetrative convection, are equivalent, provided the

existence of a Rayleigh number range that support the deep-pool assumption.

Another interesting feature of the eigensystem (2.4) is that its eigenvalues are insensi-

tive to the type of outer boundary condition considered, free or rigid, as can be verified

with arguments similar to those of the previous paragraph. Hence, according to the prop-

agation model, for high Rayleigh numbers the only boundary that matters to eigenvalues

(both in the thermal and kinematic sense) is the one subjected to the impulsive change

on temperature. This conclusion agrees with that of Foster (1965b), who noticed that mo-

tion was ‘decoupled from the bottom’, analyzing the problem of a surface-stress-free fluid

layer subject to a step change in temperature, using the amplification model. Another

consequence of this conclusion is that the free-rigid results to be presented here should

be valid for the free-free and free-rigid variations of the Rayleigh-Bénard convection. The

same applies, of course, to the free-free nonpenetrative convection problem, which offers

a reasonable approximation to systems where a nearly stress-free, strong and stable den-

sity interface exists between two rather homogeneous layers of fluid. The latter, so-called

‘thermocline’ (Imberger & Patterson, 1990), is commonly found in lakes and reservoirs.

2.4.3 Solution of the eigenvalue problem

As τ ≤ 0.01 (which is bonded to the assumption of a highly supercritical system) must

hold to keep the self similarity of the base state, a lower bound to valid Rayleigh numbers

is imposed:

Ra(Pr) ≥ Ramin(Pr) =
Raτ (Pr)

0.013/2
(2.9)

Despite the existence of Kim et al. (1999) results for the impulsively heated Rayleigh-

Bénard problem, whose mathematical posing fully coincides with that of the present non-

penetrative convection problem as discussed in previous section, the eigenvalues for the

rigid-rigid case were re-calculated here to serve as an additional validation of the numeri-

cal results obtained. Differences on computed values of Raτ were found only for Pr = 100,

and even in that case they were not higher than about 1%. In the case of the aτ computed

values, a difference (of about 10%) was found for Pr = 1. The latter are indicative of an

apparent error on Kim et al.’s (Kim et al., 1999) solution. Table 2.1 shows the minimum

(aτ ,Raτ ) eigenvalues computed for the dp system for a range of Prandtl numbers and the

corresponding values of the minimum valid Rayleigh number, given by (2.9).

Results for the dp free-rigid case, which have not been previously reported in the

context of the present problem and method, are shown in Fig. 2.2. The Raτ parameter

varies exponentially for Pr ≤ 1 and is virtually constant for values of Pr > 1000. The
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same trend occurs for the rigid-rigid case, as previously commented by Kim et al. (1999,

2002). Considering comments on Section 2.4.2, present data extend the results reported

in the former work and are new to the nonpenetrative problem context. The following

correlations, valid for 0.01 ≤ Pr ≤ 1000, can be used to predict the onset time and the

most unstable mode in the case of the dp system, for the free-rigid or rigid-rigid cases,

with an error bound of 2%:

τ c = a1

[

a2 +
( a3
Pr

)a4]a5
Ra−2/3 (2.10)

ac =



b1 + b2 erf

[

(

b3
Pr

)b4
]b5



 τ−1/2
c (2.11)

Corresponding values of the parameters aj are given on Table 2.2. For higher values of the

Prandtl number (Pr > 1000), τ c = a∞Ra−2/3 and ac = b∞τ
−1/2
c replace (2.10) and (2.11),

respectively. Here, a∞ = 7.531 and 4.207, b∞ = 0.533 and 0.317, for the rigid-rigid and

free-rigid cases, respectively.

The amplitude functions corresponding to the results in Table 2.1 are represented in

Fig. 2.3. Here, a TBL can be defined as the ζ value for which the base temperature reaches

a value of 0.99. This limiting condition is depicted in Fig. 2.3 with a vertical line. With this

definition, the latter figure shows a tendency of the amplitude curves to displace out of the

TBL with increasing Prandtl number. The same trend was previously observed by Kang

& Choi (1997) in the dp system associated with the Bénard-Marangoni convection.

For Prandtl numbers greater than about one, it is found that vertical velocity distur-

bances reach depths that exceed by a factor close to 2 the thermal penetration depth. The

increasing of the penetration of disturbances with Prandtl number means that the higher

the latter parameter, the deeper is the layer where disturbances exist (Fig. 2.3). At the

same time, as the Prandtl number increases, the system becomes less stable as shown by

the monotonically decreasing marginal stability curves of the upper panel of Fig. 2.2.

An interesting feature of the eigenfunctions is that only for medium to large Prandtl

numbers (greater that about 10) the asymptotic decay of the disturbances with depth in the

case of the free-rigid case is noticeably slower than in the rigid-rigid case (Fig. 2.3). This

trend is consistent with the separation between the stability curves for different bound-

ary conditions depicted in Fig. 2.2 (upper panel), which appears to be minimum for low

Prandtl numbers and maximum in the infinite Prandtl number case. As some liquid met-

als, like mercury, have very low Prandtl numbers (∼ 0.025 at room temperature), present

results suggest a way to avoid the kinematic effect of the boundary condition in laboratory

experiments with a proper choice of the fluid.

Computed critical wavenumbers exhibit slight variations with the Prandtl number, for
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values of this parameter lower than about 0.1 and larger than about 10 (Fig. 2.2, lower

panel). In the intermediate range (0.1 < Pr < 10), however, they present rather steep

change rates with Pr. As the onset of convection is marked by the formation of regular

cells, within the intermediate Pr range those disturbances should be rather more sensitive

to small spatial variations in fluid properties than in the low and high Pr cases. Conse-

quently, it is believed that this factor may influence to some extent the reproducibility of

experiments and possibly explain in part the large dispersion in the horizontal wavelengths

experimentally obtained by Foster (1969, Fig. 4).

Present results have some differences with respect to previous numerical calculations

using other other approaches to the stability analysis. In particular, in the amplification

model (Foster, 1965b) an amplification factor, built upon the normalized RMS of the dis-

turbance of the vertical velocity field, is defined as w̄(t) = [
∫ 1
0 w̃

2
1(z, t) dz/

∫ 1
0 w̃

2
1(z, 0) dz]

1/2,

where w̃1(z, 0) represents the initial disturbance condition, which has been commonly cho-

sen as white noise with equal amplitude coefficients (see Foster, 1965b; Gresho & Sani,

1971; Mahler et al., 1968). When w̄(t) grows beyond some predefined factor, the corre-

sponding time is marked as the onset time. In this context, different thresholds for w̄

induce the estimation of different times. Such need for a definition of limiting conditions

precludes a straightforward comparison between results coming from different methods and

care should be taken. The onset time predicted by the present method is analyzed in more

detail next.

2.4.4 Analysis of onset time

To assess the onset time, commonly three classes of characteristic times are considered.

The first corresponds to that which comes indirectly from the eigensystem (2.4a)–(2.4b),

τc. The second one is that which marks the thermal dominance of advection over diffusion,

τu. Finally, the third one is that at which fluid motion or temperature increase can be

experimentally detected, τm. It is likely that the better the experiment, the closer is τm

to τu since normally scalar change sensing is used. Experimental verification of τc seems

to be more difficult, as it marks the beginning of convection, with a very small amplitude

fluid motion (Choi et al., 2004d ; Chung et al., 2004; Davenport & King, 1974; Foster, 1969;

Yang & Choi, 2002a). On the other hand, there must be a lapse of time when velocities are

small enough to make the advective term in the energy equation negligible compared with

the diffusive one (Elder, 1969), that is 0 < w∗
1∂z∗ θ̃ ≪ α∆̃θ̃ for τ such that τc < τ < τu.

Then, τc must always be lower that τu.

In the case of results for the rigid-rigid case, Kim et al. (1999) supported the conjecture

of Foster (1969) about the existence of a scaling factor of about 4, between time τc coming
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from eigenvalue calculations and time τm corresponding to observations of convective mo-

tion. To this purpose, they used the propagation model with the temperature step change

setup and compared their theoretical results with the experimental ones by Ueda et al.

(1984). Further comparisons were later reported by the same research group (see Choi

et al., 2004d ; Kim et al., 2002, and references therein) for large Prandtl numbers.

For the free-rigid case, theoretical results using the amplification model are given by Fos-

ter (1965b) for step and ramp changes in surface temperature with an isothermal bottom

and some Ra-Pr combinations. However, no experimental results were available to vali-

date the former case. Also in a theoretical framework, for Pr = 7 and free-free conditions,

defining the onset time, τu, from a Nusselt number departure of 1% above the conduc-

tive state, Jhaveri & Homsy (1982), found that τu ∼ Ra−2/3 (named hereafter as the

−2/3 power law), and also that ac ∼ Ra1/3, showing that the latter relations hold for

Ra ≥ 30 × (27/4)π4 ≈ 2 × 104, which is close to the corresponding lower limit of this

parameter proposed in Table 2.1. From their data and onset time definition (considered

herein as being representative of τu), the value Ra τ
3/2
u ≈ 350 is obtained. This value is

greater than the critical Raτ = 12.68 = Ra τ
3/2
c obtained from Table 2.1, thus giving a

value of the ratio τu/τc = (350/12.68)2/3 ≈ 9.1.

In Fig. 2.4 (right panel), results from both the present propagation theory and the

amplification model (Foster (1965b)) for different Prandtl numbers and Ra = 106 are

shown. It can be seen that for the free-rigid case both models differ on computed onset

times by a factor close to 5, when w̄ = 10 is used as an amplification factor, and the Prandtl

number is greater than about 10. For lower values of Pr, the propagation model yields

higher onset times than the ones found using the amplification model. It is noteworthy

that the best amplification ratios for the rigid-rigid experiment by Foster (1969) were found

between w̄ = 103 and 108 (the latter theoretical calculations were previously reported

by Foster (1968)). Taking these results into account, it can be concluded that the tuned

amplification factor can also be understood as a measure of the disturbance level that a

system can afford just before the onset of convection. Wavenumbers were calculated with

the present model using the data for Pr = 7 shown in Table 2.1, i.e., aτ = 0.447 = ac
√
τc.

Fig. 2.4 (left panel) shows good agreement between present computations of the critical

wavenumber ac and those of Foster (1965b) for Rayleigh numbers higher than about 105,

verifying the 1/3 power law scaling previously noted.

Experimental data for the free-rigid unsteady Rayleigh-Bénard case have been reported

by Spangenberg & Rowland (1961) and Foster (1965a), but a step in surface temperature

was not obtained since evaporative cooling was the dominant effect. An approximate piece-

wise linear cooling on top was found experimentally. Using infrared radiometry to record

surface layer temperature, the latter author compared his results with those obtained by
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the former, checking them against calculations made with the amplification model (Fos-

ter, 1965b). Good correspondence with this theory was found, however, due to the linear

evolution of temperature on the top boundary, the experimental results fitted better a

−2/5 exponent, instead of the −2/3 power law expected for the step change case. Table I

of Foster (1965a) lists several results for the onset time given combinations of Prandtl and

Rayleigh numbers. That table also includes results from Spangenberg & Rowland (1961).

This data set agree well with amplification model calculations by Foster (1965b) using

amplification factors between 10 and 100, showing that computed values of the onset times

for low amplification and linear cooling describe well the onset of evaporative convection,

as previously mentioned. On the other hand, the latter measurements yield times that

differ in approximately three orders of magnitude with the present propagation theory

results. Differences appear to reside solely on the different applicable power laws, with

τc step/τc linear ∼ 10−3 in the range of Ra values analyzed, since for the step cooled system

Ra τ
3/2
c = C1 (constant), while in the linearly cooled one the scaling is rather Ra τ

5/2
c = C2

(constant).

In the case of convection induced by gas absorption with free-rigid boundaries, defining

a Rayleigh number based on a concentration step, Ra = gγ(C − Cb)L
3D−1ν−1 (γ, C, Cb

and D are the concentration coefficient of expansion, equilibrium and bulk concentration

of solute and mass diffusion coefficient, respectively), along with the time scale L2/D,

Plevan and Quinn’s data (Plevan & Quinn, 1966) yield measured dimensionless onset times

τm ≈ 2.1×10−3 for carbon dioxide in water and τm ≈ 1.3×10−4 for sulphur dioxide in water.

Although Pr ≈ 6.25 in both cases, differences may come partly from the better solubility

of the latter gas in water (Blair & Quinn, 1969). Corresponding time ratios, compared

with that obtained from Eq. (2.10), are τm/τc ≈ 11 and 13.1, respectively. Similarly, Blair

& Quinn (1969) found Ra τ
3/2
m ≈ 300 for sulphur dioxide in water. Using data from

Table 2.1, time ratios are τm/τc ≈ 8.2, 10.3 and 10.6, for Prandtl numbers of 7, 100,

and 1 000, respectively. In both works, Ra & 106. Unfortunately, it is impossible to build

similar relations with the experimental setup information from Tan & Thorpe (1992), since

no liquid layer thickness was specified in that paper. On the other hand, in the latter work,

an alternative temporal and depth-dependent version of the Rayleigh number is proposed,

along with a theoretical model where the solution of Ra(z∗, t∗) = z∗4gγµ−1D−1dC/dz∗ is

maximized with respect to z∗, finding the length scale L(t∗) = 2
√
2Dt∗. The corresponding

onset time is computed using the critical Rayleigh number in Bénard convection on a

steady, horizontally infinite domain with free-rigid boundaries (Chandrasekhar, 1961) on

the expression for the maximum Ra(z∗, t∗). From Tan & Thorpe (1992) data, the latter

was found to be on the order of 1 000. Using Ra(z∗, t∗) and L(t∗) as the corresponding

Rayleigh number and length scale, yields time ratios τm/τc close to 4, but their definitions
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are not analogous to the present Rayleigh number and length scale. Consequently, except

for Tan and Thorpe’s data (Tan & Thorpe, 1992), which provides no clue, all the revised

references support the present estimation of a time ratio τm/τc on the order of 10, rather

that 4, for the free-rigid system.

2.5 Concluding remarks

A stability analysis using propagation theory has been conducted to predict the factors

that rule the temporal dependence of the onset of nonpenetrative convection in an initially

isothermal Boussinesq fluid. It was shown that for the dp system, or, in other words, for

high thermal disturbances, which are defined in terms of Rayleigh numbers that exceed a

certain minimum for given Prandtl numbers (Table 2.1), the study of nonpenetrative con-

vection equates conceptually and numerically the unsteady Rayleigh-Bénard convection.

An extension of previously reported results for the rigid-rigid system using propagation

theory (Kim et al., 1999) has been proposed for free-rigid boundary conditions. As several

works have reported the study of the onset of unsteady Rayleigh-Bénard convection, a

comparison of their results obtained with different methods, with those obtained using the

present linear model was made. For Rayleigh and Prandtl numbers within the limits of

the present theory, good agreement was found between present results and theoretical ones

obtained with the amplification model (Foster, 1965b) and the stochastic method (Jhaveri

& Homsy, 1982). General agreement on the validity of the scaling τc ∼ Ra−2/3 was found.

On the other hand, numerical evidence along with experimental data, suggest that the lag

between theoretical onset times (τc) and detected ones (τu or τm) is dominated at least by

two conditions, namely, the kinematic boundary condition on the side where the heat flow

(or temperature change) is imposed, and the way heating (or cooling) is applied in time. It

is argued that, at difference from the theoretical determination of τc or τu, recording of τm

depends in great extent on the experiment configuration and technological limitations. In

particular, present results suggest that for medium to large Prandtl numbers (greater than

about 1) and a top (if cooled from above) stress-free boundary, an onset time relation of

τm/τc ∼ 10 rather than 4 (previously proposed for the rigid-rigid system), seems to fit the

available data reasonably well. Given these results, it is concluded that the latter values

of the τm/τc ratio are particular cases of a more complex function that should take into

account, at least, boundary conditions for the prediction of the onset of convective motion

from the experimental knowledge of changes in scalar fields.
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Table 2.1: Critical (aτ ,Raτ ) parameters found for the dp system, as a function of Prandtl
number. The fourth and fifth columns (labelled as KCC99) show the critical numbers
found for the transient Rayleigh-Bénard problem studied by Kim et al. (1999). Columns
6 and 9 show the minimum Rayleigh numbers that guarantee that the dp assumption is
valid both for the rigid-rigid and for the free-rigid system, respectively.

Rigid-rigid Free-rigid

Present work KCC99

Pr aτ Raτ aτ Raτ Ramin aτ Raτ Ramin

0.01 0.824 1799.06 0.82 1799.1 1.80 × 106 0.809 1675.92 1.68 × 106

0.1 0.813 219.10 0.81 219.1 2.19 × 105 0.766 180.98 1.81 × 105

0.71 0.725 53.56 — — 5.36 × 104 0.637 36.58 3.66 × 104

1 0.702 44.81 0.63 44.81 4.48 × 104 0.607 29.36 2.94 × 104

7 0.589 24.73 — — 2.47 × 104 0.447 12.68 1.27 × 104

100 0.538 20.97 0.54 20.70 2.10 × 104 0.337 9.01 9.01 × 103

1000 0.533 20.70 0.53 20.69 2.07 × 104 0.320 8.67 8.67 × 103

∞ 0.533 20.67 0.53 20.67 2.07 × 104 0.317 8.63 8.63 × 103

Table 2.2: Parameters aj and bj of Eqs. (2.10) and (2.11) for the rigid-rigid (RR) and
free-rigid (FR) conditions.

aj bj

j RR FR RR FR

1 9.8371 5.9017 0.5291 0.3066
2 1.9022 1.3279 0.2923 0.5002
3 2.0867 2.5505 0.6329 1.1196
4 0.8502 0.7730 0.3347 0.1971
5 1.1421 1.3132 2.0924 3.2267
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Figure 2.2: Upper panel: effect of the Prandtl number on Raτ for the rigid-rigid and
rigid-free cases. Lower panel: effect of the Prandtl number on the wavenumber of the
fastest growing horizontal mode, ac. Symbols represent calculated points, corresponding to
Table 2.1: squares for the rigid-rigid case and circles for the free-rigid case. Curves represent
interpolated results using the models given by Eqs. (2.10), and (2.11) and parameter sets
given by Table 2.2.
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Chapter 3

The onset of thermal convection

increasing the temperature

sinusoidally

This chapter, authored by Christian Ihle and Yarko Niño, is in the form of research article,

on its final stage of preparation to be submitted to Environmental Fluid Mechanics.

Abstract

A theoretical model, based on linear stability analysis, is proposed to predict the

onset of natural convection in lakes and reservoirs due to night time cooling. To

such purpose, the system was modelled as a initially quiescent deep Boussinesq

fluid reservoir, whose boundary temperature changes sinusoidally. From scaling

analysis, it is found that critical onset times for convection are proportional

to R−2/7, where R is a Rayleigh number including fluid properties and forcing

frequency, whereas the proportionality constant is a function of fluid properties.

Results were compared with lake field data obtained in a recent campaign and

with a previous work. Present model predictions differ with field observations

by a relatively constant factor.

25



3.1 Introduction

Temperature is a relevant variable in lake and reservoir dynamics. Commonly, the daily

evolution of the density profile of a relatively thin layer near the surface depends on diurnal

heating and nocturnal cooling (Imberger & Patterson, 1990). In the latter case, it is the

turbulent process known as penetrative convection (Adrian, 1986) that which enhances

mixing and thus breaks the weak stratification formed during daytime. The study of such

process is largely justified by its influence on water quality, as well as on ecology issues (e.g.

Spigel & Imberger, 1987; Wehde et al., 2001), where accelerated eutrophication, associated

with elevated phytoplankton production as a consequence of high nutrients inputs to a

lake (Wetzel, 2001) is a major anthropogenic environmental problem. The hydrodynamics

of the system is the main agent affecting the distribution of these nutrients in the lake and

therefore, meteorological forcing acting on the underlying physics may have a major effect

on the biochemistry and, ultimately, on the water quality of the system.

In natural systems, the external forcing due to heating depends on the coupling of

a daily and a seasonal time scale. Regarding the surface layer buildup, the former is

often dominant. Implications of nocturnal cooling can be commensurate with those of

wind, and thus of induced surface and internal waves, where such cooling process is well

described as sinusoidal. Nonetheless, the enhancement of turbulent kinetic energy resulting

from cooling does not start at the very beginning of the cooling process, as anticipated

by related, theoretical studies (for instance, Goldstein & Volino, 1995; Homsy, 1973, and

references therein) and suggested by field observations (Jonas et al., 2003).

A heated 40×15×20 cm perspex tank filled with water, initially at 19.5◦C, was used

to account for a preliminary experimental verification for convection. The heater was

a brass plate connected to a Haake C heat bath. The latter has a built-in controller.

Temperature of the plate was modified sinusoidally, fixing a semi-period of 55 min and an

overall temperature difference of 6.8◦C. The tank bottom temperature was measured using

a K-type thermocouple. The flow was seeded with 90–110 µm Pliolite. Convective motion

was exposed using a 4 mm thick light sheet generated with a 1 kW photographic lamp

and captured using a Jai CVM4+CL digital video camera with a 50 mm f0.95 Vortex lens

mounted, at a refresh rate of 4 frames per second. The criterion employed to decide on

the onset time for convection was to detect a rapid increase of the root-mean square of the

computed velocity field using a PIV algorithm (Dalziel et al., 2000). A noticeable increase

of the kinetic energy was only observed after about 350 s, nearly 10.5% of half a heating

cycle. This sub-daily time-dependence is not directly addressed in present one-dimensional

models, where the nocturnal mixing is used to assume a complete mixing of the surface

layer (Gal et al., 2003).
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Figure 3.1: RMS of the kinetic energy of a 2D flow slice exposed using PIV, computed as

E∗ =
(

〈u∗2〉+ 〈v∗2〉
)1/2

, where brackets denote spatial averaging.

Although a significant amount of works have been devoted to the study of the stability

of periodically forced systems, both from the point of view of temperature and gravity

modulation, emphasis has been given to the role of frequency on the growth of distur-

bances (Davis, 1976; Dowden, 1981; Orr & Kelly, 1999). Differently, in the present case,

given the dimensions of the natural systems that are intended to be modelled, even for

temperature amplitudes as small as 0.1 K, convection starts at each cycle, and thus, to the

purposes of the present paper, the determination of minimal dimensionless parameters to

get convection is not important. Moreover, as in most of the cases disturbances propagate

within a thin layer near the surface, overall reservoir depth is not a relevant variable, and

a semi-infinite geometry is a better approximation. Given that hypothesis, the present

paper proposes a way of estimating critical times for disturbances growth in a sinusoidally,

thermally forced system. An approach based on a linear stability analysis of the governing

equations is considered to such purpose.
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3.2 Problem description

An initially quiescent horizontal Boussinesq fluid layer, well mixed at temperature θ∗ =

θ∗min, infinite on its horizontal dimension and semi infinite on the vertical axis, z∗, is

heated by increasing the boundary temperature, at time t∗ = 0 and z∗ = 0, to θ∗ = θ∗max

sinusoidally:
θ̃∗0(t

∗ > 0, z∗ = 0)

∆θ∗
=

1

2

[

1− cos

(

2π

T
t∗
)]

. (3.1)

Here, ∆θ∗ = θ∗max − θ∗min is the temperature amplitude and T is the forcing period. ω =

2π/T is the corresponding angular frequency and its reciprocal naturally appears as time

scale of the problem. For the purposes of the present work, only the effect of the first

forcing cycle is relevant: it is not the intent of the present work to assess the effect of the

forcing frequency over more than one cycle (Davis, 1976, presents a review on this topic).

From the point of view of Rayleigh’s analysis it turns out, from writing a Rayleigh

number based on a length scale equal to the depth of the fluid layer, that a very deep

reservoir will always evolve to convection in the presence of first order disturbances, no

matter the strength of the buoyancy force applied. However, such motion becomes manifest

only from a certain time on, where it is apparent that also fluid properties and the forcing

frequency play a role. At time t∗, when convection is about to start, buoyancy marginally

balances viscosity:

gαΘ∗ ∼ µ

ρ0

W ∗

δ∗2
∼ µ

ρ0δ∗t∗
. (3.2)

where Θ∗(t∗) and δ∗(t∗) are a time-dependent characteristic temperature and length scales,

µ is the dynamic viscosity of the fluid and ρ0 its reference density. In the third term, the

velocity W ∗ was written in terms of a length and time scale as W ∗ ∼ δ∗/t∗.

This problem can be modelled using continuity, Navier-Stokes and energy equations,

with no heat sources present. Surface tension effects are neglected in the present study.

This assumption is reasonable in the present context, as shown experimentally by Daven-

port & King (1974) in the case of linearly heated deep reservoirs. As prior the onset of

convection heat transfer is diffusive, length and velocity scales can be written using the

thermal diffusivity κ along with ω as (κ/ω)1/2 and (κω)1/2, respectively.

It is intuitive that if thermal forcing is stronger or the forcing frequency is larger, con-

vection will start earlier. Expressing the boundary condition (3.1) in terms of a MacLaurin

cosine expansion, it turns out that instabilities becomes manifest quickly, then the following

balance is valid:
Θ∗

∆θ∗
≈ ω2t2

4
, (3.3)

otherwise, more terms in the MacLaurin cosine expansion need to be considered.
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The balance (3.2) holds right before convection becomes manifest. From the point of

view of the temperature evolution, a suitable length scale would be that corresponding to

the temperature diffusion process, where δ∗ ∼ (κt∗)1/2 or, in dimensionless terms,

δ ∼ t1/2. (3.4)

Using (3.3) and (3.4) in (3.2) yields

Rt7/2 ∼ 1, (3.5)

with

R =
gα(θ∗max − θ∗min)κ

1/2

νω3/2
, (3.6)

where ν = µ/ρ0 is the kinematic viscosity. An estimation of onset times can be derived

from (3.5). However the prefactor for R−2/7, which can possibly depend on fluid proper-

ties, should be found either numerically or experimentally. For step-forced systems, such

coefficients have been found in the past in terms of ad-hoc Rayleigh numbers (see Ihle &

Niño, 2006b, and references therein). At difference, to the knowledge of the authors, this

is the first work where such objective is pursued in sinusoidally forced systems.

To the purpose of determining onset times, or, equivalently, the proportionality con-

stant in (3.5), propagation theory is used. Such approach, based on similarity consider-

ations on the linearised Navier-Stokes and energy equations, has the advantage of giving

fluid property-dependent results. However, one of its limitations is the requirement of a

self-similar evolution prior the onset of instability. Fortunately, this restriction is not a

strong one for the context where this paper was mainly focused to, namely, the onset of

convection in medium to large-scale natural systems, as is discussed in Section 3.4.

3.3 Solution method

Using the length and velocity scales mentioned in the previous section, the dimensionless

coordinates are denoted as x, y, and z. A linear stability analysis is the base of present

method. Corresponding dimensionless velocity base state and perturbations are defined as

(ũ0, ṽ0, w̃0) and (ũ1, ṽ1, w̃1), respectively. The dimensionless base temperature is scaled to

range between 0 and 1: θ̃0 = (θ∗0−θ∗min)(θ
∗
max−θ∗min)

−1 and the corresponding perturbation,

θ̃1, is scaled by νω3/2g−1α−1κ−1/2. In the latter expressions, the subscript 0 refers to the

base state and 1 to the perturbed one.

A first order expansion of the dimensionless temperature and velocity are expressed as

θ̃ = θ̃0 + θ̃1, and ũ = ũ0 + ũ1 = ũ1 = (ũ1, ṽ1, w̃1), respectively. The base state is that
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of a horizontally infinite, vertically infinite, quiescent fluid layer. Neglecting second order

terms, the following set of equations is obtained for the vertical velocity and temperature

perturbations:

(

1

Pr

∂

∂t
− ∆̃

)

∆̃w̃1 = ∆̃hθ̃1 (3.7a)

∂θ̃1
∂t

− R w̃1
∂θ̃0
∂z

= ∆̃θ̃1, (3.7b)

where ∆̃ ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and ∆̃h ≡ ∆̃ − ∂2/∂z2, provided the dimensionless

equation for the base state is satisfied:

∂θ̃0
∂t

=
∂2θ̃0
∂z2

(3.8a)

θ̃0(t = 0, z) = 0, (3.8b)

θ̃0(t > 0, z = 0) =
1

2
[1− cos(t)], (3.8c)

∂θ̃0
∂z

(t ≥ 0, z → ∞) = 0. (3.8d)

Equations (3.7) pose a non-separable problem. Both w̃1 and θ̃1 are functions of time.

Part of this time-dependency corresponds to the determination of the times when the

latter eigenfunctions will start to grow. The quasistatic hypothesis, which forces a sep-

arability assumption in (3.7)1, states that such growth is exponential, and gives no hint

of a characteristic time to mark the onset of convection. Not relying on this assumption,

the amplification model (Gresho & Sani, 1971, and references therein) uses series based

on separable, non-exponential terms, solving numerically for each of them. However, they

strongly depend on the initial conditions and thus add some degree of ambiguity to results.

More recently, a new approach has been proposed (Riaz et al., 2006), based on the com-

bination of a similarity space for disturbances (e.g., Yang & Choi, 2002a), and an ad-hoc

eigenfunction expansion (Foster, 1965a; Robinson, 1976), to find onset time predictions

largely independent of the initial conditions, thus improving such major drawback in the

amplification model.

In the present work, the principles of propagation theory are considered. In such

approach (Kang & Choi, 1997; Yang & Choi, 2002a) it is stated that, for the case of

thermal convection in systems where instabilities are confined mainly into the thermal

boundary layer (TBL), a balance between viscous dissipation and buoyancy occurs just at

1Although equations are non-separable, eigenvalues R can be found nevertheless.
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the onset of convection implying, from (3.7), that

∣

∣

∣

∣

w̃1

θ̃1

∣

∣

∣

∣

∼ δ2, (3.9)

In particular, (3.9) implies that the scaling ψ(t)w̃1 ∼ ψ(t)tθ̃1 is true if ψ(t) 6= 0. The

solution of the problem (3.8) can be expressed semi-analytically as

θ̃0(z, t) =
1

2

∞
∑

j=1

(−1)j+1i4j erfc

(

z

2
√
t

)

, (3.10)

with h(x | k) = ik erfc(x), the kth integral of the complementary error function:

ik erfc(x) =











2√
π

∫ ∞

x
e−t

2

dt if k = 0
∫ ∞

x
ik−1 erfc(t)dt if k > 0,

(3.11)

with i−1 erfc(x) ≡ 2π−1/2e−x
2

(Abramowitz & Stegun, 1965). It is noted that (3.10) does

not consider the approximation (3.3).

For small values of time, (3.10) is well-described by the first term of the MacLaurin

expansion previously mentioned, suggesting that if convection sets in early enough, θ̃0 ≈
t2h(z/

√
t | 4) ≡ t2θ0(ζ = z/

√
t). Supposing that disturbances behave similarly in the limit

of the onset of convection leads to the scaling ψ(t) ∼ tn, where n is a parameter. Therefore,

[θ̃1 (z, t) , w̃1 (z, t)] =
[

tnθ1(ζ), t
n+1w1(ζ)

]

, (3.12)

Stability equations can be thus expressed in a new coordinate system defined as (t, ζ),

instead of (t, z), where the tildes were dropped to stand for the newly defined variables.

To avoid confusion, t will be defined as τ . Eqs. (3.7) are cyclic in the horizontal plane and

then, modes with wavenumbers ax and ay for the x and y axis, respectively, are considered.

Introducing (3.12)× exp[i(axx+ayy)] in (3.7), noting that ∂(·)/∂τ = −ζ(2τ)−1∂(·)/∂ζ and

that ∂(·)/∂z = τ−1/2∂(·)/∂ζ, the set of stability equations to be solved is:

{

(

D2 − a2τ
)2

+
1

2Pr

[

ζD3 − 2nD2 − a2τ ζD+ 2(n+ 1)a2τ
]

}

w1 − a2τθ1 = 0 (3.13a)

(

D2 +
1

2
ζD− a2τ − n

)

θ1 − w1RτDθ0 = 0, (3.13b)

where Dk(·) = dk(·)/dζk, aτ = τ1/2
√

a2x + a2y andRτ = τ7/2R, provided Dθ0 = −4i3 erfc(ζ/2).

Boundary conditions for disturbances depend of the kind of thermal and kinematic condi-
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tions to be applied. The present model aims to reproduce Dirichlet boundary condition for

temperature, along with stress free and no-slip kinematic conditions. On the outer bound-

ary, corresponding to the limit ζ → ∞, no heat exchange should occur and the velocity

field should asymptotically decay. In the case of a no-slip boundary

θ1 = w1 = Dw1 = 0 in ζ = 0 (3.14a)

Dθ0 = w1 = Dw1 = 0 when ζ → ∞ (3.14b)

For the second case studied, consisting of an inner stress-free boundary condition,

θ1 = w1 = D2w1 = 0 in ζ = 0 (3.15a)

Dθ0 = w1 = Dw1 = 0 when ζ → ∞ (3.15b)

The present criterion for the setting of n is to find the lowest possible onset times

provided the optimisation problem

Rτ ,c(n) = min
aτ

Rτ (n), (3.16)

where Rτ (n) is an eigenvalue of (3.13). Computations show that Rτ is a monotonically

increasing function of n and, moreover, Rτ (0) ≤ Rτ (n) for n ≥ 0, in agreement with

previous results (Kim et al., 2002; Yang & Choi, 2002a). For the purposes of onset time

computations n was set to zero. A different path for the definition of a value of n would be

to adjust it to make the growth rate of the base state and that of the first order disturbances

equal. In the case of an imposed step heat flux, this leads to n = 1/2 (Choi et al., 2004a,b).

Anyhow, results are weakly dependent on such choice.

Equations (3.13) along with the boundary conditions (3.14) or (3.15) are homogeneous.

The solution method used to find optimal eigenvalues consists of an implementation of the

shooting method in combination with a Newton-Raphson scheme, corresponding to that

adopted in Ihle & Niño (2006b), where also its corresponding validation and comparison

against known results is given. The base state was computed efficiently expressing the inte-

grals of the complementary error functions in terms of Confluent Hypergeometric functions

of the first kind (Airey & Webb, 1918) as (Abramowitz & Stegun, 1965):

ik erfc(x) = e−x
2

[
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2kΓ
(

k
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(
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2
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− x
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2
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(

k

2
+ 1,

3

2
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)

]

,

(3.17)
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Table 3.1: Critical time for the series expansion (3.10) to require at any position ζ more
than one term to achieve a prescribed relative tolerance ǫ = |θ̃0(n+1)/θ̃0

(n)|, where θ̃0(n) is
the nth term of (3.10).

ǫ 10−5 5× 10−5 10−4 5× 10−4 10−3 3× 10−3

τ 0.043 0.10 0.16 0.39 0.56 0.99

where

M(k,m, x) =
∞
∑

j=0

(k)j
(m)j

xj

j!
, (3.18)

with

(γ)j =















1 if j = 0
j
∏

i=1

[γ + i− 1] if j ≥ 1
(3.19)

and Γ(x) =
∫∞

0 tx−1e−tdt. This expression is specially more efficient than the recursive

definition (3.11), for large values of k and x.

3.4 Results and discussion

On considering the solution of the base state (3.10), a relatively strong hypothesis is the

truncation of the cosine series of the boundary condition (3.8c), resulting on a separable

form, consisting of a product of a power of time and a function of ζ, a requisite to derive

the linear similarity system (3.13). Considering two or more terms on the expansion (3.10)

departs from such separability condition. Therefore, a restriction of this linear approach is

time through the spatial derivative of the base state. Table 3.1 shows the relative difference

between the truncated expansion for the boundary condition and that assumed herein. For

instance, to achieve a relative tolerance in (3.10) lower than or equal to 10−4 with only

the first term of the expansion, dimensionless time can be as large as 0.16 to preserve the

validity of the self-similar system (3.13).

Figure 3.2 shows the eigenfunctions that result from (3.13) along with (3.14) and (3.15).

Such disturbance curves result to penetrate deeper increasing the Prandtl number. As

this number increases, the fluid, relatively more viscous, exhibits steeper temperature

gradients, and thus tend to evolve more quickly to convection than when the retarding role

of thermal diffusivity is more efficient. However, as the system will evolve to convection

anyhow, times for the onset of convection are finite regardless the Prandtl number. Indeed,

33



−1

−0.5

0

0.5

1

10−1 100 101

w1

max
ζ
w1

− θ1
max

ζ
θ1

ζ

Figure 3.2: Normalized eigenfunctions resulting from the numerical integration of (3.13).
Upper curves represent the vertical velocity disturbance while the bottom ones (minus)
temperature disturbances. Solid lines represent the stress-free case in both sets, while
dashed ones the no-slip kinematic boundary condition. In both cases, from left to right,
computed results correspond to Pr = 0.01, Pr = 1 and Pr → ∞.

what the Prandtl number changes is not actually the absolute Rayleigh numbers necessary

to find convection, but only growth rates, given a previous supercritical condition. On

its original formulation, the energy method, conceived to define a boundary for global

stability, yields critical conditions regarding solely on a limiting value of time and a Rayleigh

number (Homsy, 1973; Joseph, 1966). Recently, Kim et al. (2008) have proposed a similar

approach, introducing an explicit Prandtl-number dependence for the transient Rayleigh-

Bénard problem.

The solution of the optimisation problem (3.16), given n = 0 and either a stress-free

or no-slip condition, is a set of eigenvalues Rτ along with critical wavenumbers aτ , both

assumed correct whenever the self-similar behaviour is valid. It is observed a tendency

to exponential curves for Rτ ,c(Pr) as Pr becomes smaller. On the other extreme, where

Pr → ∞, Rτ ,c tends to an asymptotic value, equal to 229.77 and 84.51 for the no-slip and

stress-free kinematic boundary conditions, respectively. According to present data, critical
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Table 3.2: Parameters aj of Eq. (3.20) for no-slip (R) and stress free (F) kinematic bound-
ary conditions.

aj

j 1 2 3 4 5

R 15.27 9.95 8.87 0.81 1.18
F 12.99 3.75 6.06 0.71 1.44

times can be estimated within a 2% error, for 0.01 ≤ Pr ≤ 1000, as:

Rτ7/2 = a1

[

a2 +
( a3
Pr

)a4]a5
(3.20)

The corresponding coefficients are shown in Table 3.2. Figure 3.3 shows a plot of (3.20)

using such coefficients for both kinematic boundary conditions.

The closest previous resemblance of present results corresponds to the case where a

linear, rather than step, heating is applied, as reviewed in Goldstein & Volino (1995)

and Ihle & Niño (2006b), respectively. Using scaling arguments similar to those employed

to deduce (3.5), it can be shown that if Rata = C, imposing temperature and heat linearly

imply that a = 5/2 and 3, respectively (Kim et al., 2005; Yang & Choi, 2002a). It can be

also shown that increasing the heat flux sinusoidally yields an exponent a = 4. Therefore,

present scalings suggest that sinusoidal heating tend to delay the onset of convection in

comparison when heating in a linearly and stepwise fashion, an intuitive consequence of

the manner of heating.

Some figures can be obtained from the preliminary laboratory experiment referred to

in Section 3.1. Considering molecular properties for the viscosity and thermal diffusivity

of water with no slip where the temperature was imposed, R ≈ 1.64 × 104, while the

observed/predicted dimensionless critical onset time ratio is 0.33/0.31 ≈ 1.1.

Unfortunately, available field and experimental data for onset times is not copious and,

to the knowledge of the authors, no systematic field work has been done so far to the pur-

pose of obtaining the time lag between temperature drop and mixing increase above the

thermocline. In a recent field campaign oriented to study the effect of wind on mixing and

the production of algae in Villarrica Lake, Chile, wind velocities, atmospheric and water

temperature at different depths was obtained (Rozas, 2009). This lake, whose free surface

altitude is 230 m.a.s.l., has an ellipsoidal shape with a maximum width (N-S direction)

of 11.5 km and a maximum length (E-W direction) of 23.05 km. With a total surface

and volume of 176 km2 and 21 km3, respectively, it is a 28c-type lake (Hutchinson, 1957;
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Figure 3.3: Upper panel: effect of the Prandtl number on Raτ for the no-slip (upper curve)
and stress-free (lower curve) cases. Symbols represent calculated points, corresponding to
Pr = 0.01, 0.1, 0.71, 1, 7, 100 and 1000, respectively. Curves represent interpolated results
using the models given by Eqs. (3.20) and parameter sets given by Table 3.2.
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Rozas, 2009). During winter time, water temperature remains constant close to 10◦C.

Solar radiation during summer drives surface temperature until about 22.5◦C during day-

time (Campos et al., 1983). At difference from winter, during summer there is a strong

thermal stratification, where a marked thermocline is observed about 20 m depth (Meru-

ane & Garreaud, 2005). During this season, evening and night ambient temperature dips

below that of the water surface layer, giving way to penetrative convection (Imberger &

Patterson, 1990). On the other hand, daytime (often strong) winds decrease to virtually

0 at midnight. Nightly water surface cooling events drive a daily change on the thermal

structure of the column. To assess this effect, in the referred campaign a set of measure-

ments using thermistor probes chains was made. Probes were placed every 2 m in the

thermocline, and at larger spacings in the hypolimnion, eventually reaching a maximum

depth of 80 m (Rozas, 2009). The meteorological station from where the ambient tem-

perature and wind velocity was measured is located about 5 km South-West the lake. A

normalized ambient and temperature surface temperature (0.5 m depth) and wind speed

time series is shown in Figure 3.4 for the week between 6th February and 13th February

2009. The decrease on wind speed during nights is manifest. On the other hand, ambi-

ent temperatures amplitudes are on the order of 15◦C. This makes surface temperatures

have maximum amplitudes of about 2◦C which, provided the absence of wind, is enough

to induce mixing on the column. A typical picture of this process is shown in the water

temperature column evolution between 10th and 11th February 2009 (Figure 3.5 with am-

bient conditions detailed on Table 3.3). During the nightly temperature drop, depicted

in Figure 3.4, penetrative convection eases mixing, which is reflected on more uniform

temperatures through out the column (11th Feb., 0:00 in Figure 3.5). As ambient tem-

peratures rise, heating diminishes mixing and temperature stratification appears again.

Although wind velocities are significant during daytime, kinetic energy transferred to the

water column tends to keep it confined to the surface. In turn, the effect of surface cooling

is to decrease potential energy in the system, thus deepening the thermocline in this short

time scale.

From the results shown above, it is seen that mixing have a significant impact on the

temperature distribution where the epilimnion is. An increased level of mixing implies a

narrower temperature distribution and thus a smaller standard deviation. It is therefore

expected that when maximum mixing occurs, the spatial standard deviation of temperature

in the epilimnion should reach a minimum value. Figure 3.6 shows the mean and standard

deviation of temperature for depths Z such as 0 ≤ Z ≤ 20 m, compared to ambient

temperature. It is defined here the minimum of the standard deviation of the epilimnion

as a measure of the start of active mixing at diurnal scale. Vertical lines on Figure 3.6

present the surface cooling starting and assumed onset condition. For the case of Villarrica
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Lake data analysed, mixing onset times defined this way are between 3.7 and 5.75 hours.

Surface water temperature amplitudes are between 0.97 and 1.4◦C. Considering a reference

turbulent kinematic viscosity νt = 10−4 m2s−1, the same value for the turbulent thermal

diffusivity and a typical forcing perdiod of 24 h, corresponding Rayleigh numbers as defined

in (3.6), are between 4× 105 and 5.7× 105. Comparison between measured and estimated

onset times using (3.20) are detailed presented in Table 3.4. Corresponding measured vs

model onset times differ by factors between 8 and 18. This result somewhat resembles the

factor of 10 found in Ihle & Niño (2006b) considering laboratory studies in the case of shear-

free kinematic conditions and sudden cooling. However, present results are established

under a specific onset time definition scheme.

Results can be also compared to those by Jonas et al. (2003). In their paper, it is

observed a significant turbulent kinetic energy increase close to 3 hours after the maximum

solar radiation point (during day 266). In terms of the present, nondimensional variables,

this yields τ ≈ 0.79. Considering the same turbulent kinematic viscosity and turbulent

Prandtl number as in the case of Lake Villarrica, and a reference temperature amplitude

corresponding to 0.3◦C, yields R ≈ 1.23× 105. Using this value in (3.20) for the stress-free

boundary condition yields a critical time equal to 0.16, close to 4.8 times too short than

that observed in the field. Considering the approach as in Lake Villarrica, i.e., to define

the onset times as the time when there is a maximum for mixing or, alternatively from

their data, a maximum for the vertical velocity component, the corresponding onset time

is about 6 hours after the maximum solar radiation point. Bearing this definition in mind,

corresponding measured vs modelled onset times is 9.5, which is commensurate with those

obtained from Villarrica Lake.

There are some points to note about present model and their comparison with field

data. As eddy viscosity and thermal diffusivity have to be properly measured, present

results cannot be considered as conclusive, but suggestive of the possibility to calibrate

the model summarized in (3.20). On the other hand, it is noted that in the present

stability analysis, it was used a sinusoidal forcing function. In real lakes, such a forcing is

periodical but in general not sinusoidal. However, the proposed model can be extended to

different periodical functions expressing them using a combination of Fourier modes, thus

replacing (3.1) by an expression tractable in a similar manner to that presented herein,

to derive in a different base state. This is another element that can be adapted to local

conditions.

38



6/Feb. 7/Feb. 8/Feb. 9/Feb. 10/Feb.11/Feb.12/Feb.13/Feb.
−2

−1.5

−1

−0.5

0

3.5

3

2.5

2

1.5

1

0.5

day

n
or
m
al
iz
ed

te
m
p
er
at
u
re

an
d
w
in
d
sp
ee
d

ambient temperature
wind speed

water temp. (0.5 m depth)

Figure 3.4: Normalized ambient temperature, water at 0.5 m depth temperature and wind
speed time series between 6th February and 13th February 2009. Labels in the x-axis
corresponds to noon. Variables χ were normalized to χ̂ as χ̂ = [χ− µt]/σt, where µt and
σt are the time average and standard deviation over the range of days considered. For
wind speed, (µt, σt) = (1.6, 0.92) m s−1. For ambient and water temperature, (µt, σt) =
(16.6, 5.25)◦C and (µt, σt) = (20.6, 0.45)◦C, respectively.

Table 3.3: Measured wind speed (ws) and ambient temperatures (Ta) at times correspond-
ing to those analyzed on Figure 3.5.

ws Ta
Date, time (m s−1) (◦C)

10/Feb., 12:00 2.29 17.67
10/Feb., 18:00 3.40 20.69
11/Feb., 0:00 0.01 12.54
11/Feb., 6:00 1.60 7.94
11/Feb., 12:00 1.53 17.63

3.5 Conclusions

A model for the prediction of convective motions in a semi infinite Boussinesq fluid layer

heated sinusoidally has been proposed using scaling arguments along with linear stability

analysis. The present paper aims to predict onset times in a supercritical system in the
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Figure 3.5: Thermistor probe measurements for different times between 10th and 11th
February 2009. (a) Full depth, (b) detail of depths near the surface.

sense of Rayleigh-Bénard convection. Using scaling arguments it is suggested that t ∼
R−2/7, where R is a measure of the relative importance of buoyancy over viscous dissipation
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Figure 3.6: Time series for ambient temperature, Ta, temperature measurement at 0.5 m
depth, T0.5, and standard deviation of temperature over the epilimnion (defined to end
at 20 m depth), σz,20, for days between 6th and 13th February 2009. Vertical thin lines
corresponds to assumed times for start of cooling and onset of mixing. Labels in the x-axis
corresponds to noon.

Table 3.4: Resulting dimensional onset times from field data and previous works.

time (min)

Date1 R model field ratio

7/02 4.0× 105 27.1 220 8.14
8/02 5.7× 105 24.6 345 14.04
9/02 4.3× 105 26.6 450 16.92

10-11/02 4.9× 105 25.6 465 18.14
11-12/02 4.3× 105 26.6 345 12.97
J032 1.2× 105 38 360 9.47

Average 13.27
Std. dev. 3.97

within a time-dependent, growing thermal boundary layer. Following the concepts of

propagation theory, values for such proportionality constant as a function of the Prandtl

number are proposed.
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Although the large difference observed between predicted and available field data, even

considering the various sources of error that comes out from them, along with the obvious

uncertainties regarding the existence of a background flow prior to the start of surface

cooling, the model seems to capture the essential features of the intended prediction. Time

and length scales are on the same order of magnitude for values observed both in large

systems as lakes, wherein (κ/ω)1/2 ∼ 1 m, and the present laboratory setup, with a length

scale for disturbances on the order of the centimetre. Results were compared to experi-

mental analysis and field measurements. Both for the field measurement campaign in lake

Villarrica, Chile (Rozas, 2009) and the virtually windless case of lake Sopensee, Switzer-

land (Jonas et al., 2003), there is a factor on the order of 10 between measured onset times

and those determined using the proposed model. Interestingly, this trend was even found

using rough approximations for eddy viscosity, thermal diffusivity and surface temperature

pattern, thus suggesting opportunity for model improvement.
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Chapter 4

Stability of impulsively-driven

natural convection with unsteady

base state: implications of an

adiabatic boundary

This chapter, authored by Christian Ihle and Yarko Niño, was submitted in the form of

research article to Physics Letters A.

Abstract

The energy method is used to estimate stability conditions of a horizontally

infinite fluid layer with adiabatic bottom while the top is impulsively cooled.

The effect of different kinematic boundary conditions is studied. This analysis,

which takes into account that the base state for temperature is unsteady during

the whole domain of time, predicts that the induced convection has lower crit-

ical Rayleigh numbers for stability than Bénard convection, in agreement with

previous theoretical findings. Instability limits for such impulsively-driven con-

vection are also investigated using a frozen time model, finding a very narrow

gap between stability and instability thresholds. Critical stability curves for

top free-bottom rigid and top rigid-bottom free kinematic boundary conditions

exhibit a crossing point, according to both linear and nonlinear approaches.

Such crossing concurs, as time increases, with the inset of a stronger influence

of the bottom boundary on the balance between stabilizing and destabilizing

effects. For large values of time, stability curves resulting from energy and
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frozen time approaches exhibit the same temporal growth rate, but no asymp-

totic convergence, suggesting a bound for the temporal asymptotic behavior of

the energy method.

44



4.1 Introduction

The onset of Rayleigh-Bénard convection in a horizontally infinite Boussinesq fluid layer

of height d, subject to a vertical temperature difference, depends solely on the opposing

effects of buoyancy and viscous forces in a time scale commensurate to that of temperature

diffusion through the whole layer depth. Such balance is commonly expressed in dimen-

sionless form using the Rayleigh number, R = gβ∆Td3ν−1κ−1 (Drazin & Reid, 1981;

Rayleigh, 1916), where g is the magnitude of the gravity acceleration vector, β, ν and

κ are the coefficient of thermal expansion, kinematic viscosity and thermal diffusivity of

the fluid respectively, and ∆T > 0 is the characteristic vertical temperature difference. If

the temperature profile that conforms the base state to perturbations is unsteady, time

appears through the temperature evolution as a second variable that can play a role on

the onset of convection. This sort of problem, referred to herein as URB, resembles many

flows found in industry as well as in nature, which makes research on thermal convection

to remain attractive, in terms of its application to practical problems, despite its long tra-

dition. Examples can be found in industry (Kerr et al., 1989) as well as in nature (Jonas

et al., 2003; Linden, 2001).

In the case of URB, the prediction of onset times for convection have been studied

in the past by several authors using “frozen time” approaches, which correspond to an

analogy of Rayleigh’s analysis, considering time in the base state as a parameter and

an exponential growth for disturbances. Alternatively, eigenfunction expansions of the

temporal evolution of disturbances can be used to relax the, mathematically non-rigorous,

separability assumption imposed upon the linear stability equation that is inherent to

frozen time models. Such approach is known as the “amplification model” (see Goldstein &

Volino, 1995; Homsy, 1973, and references therein for excellent reviews). The overall effect

of unsteady heating have been estimated both using a frozen time model (Gresho & Sani,

1971) and the energy method (Homsy, 1973; Joseph, 1966), the latter being a non-linear

approach based upon an energy criterion for stability. This method, has shown that the

manner of heating positively affects global stability conditions: in particular, fast heating

rates tend to make the system less stable (Neitzel, 1982; Wankat & Homsy, 1977), while

the same conclusion have been obtained using an earlier, quasi-static approach (Currie,

1967).

A different and more recent method to predict onset times for convection is propaga-

tion theory (Yang & Choi, 2002b), a linear analysis technique that relies on the assumption

that temperature and velocity disturbances mainly develop in a length scale commensurate

with that of the advancing base state temperature front. It is applicable when the temper-

ature base state admits a similarity solution, allowing time to be implicitly included in a
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system of similarity linear disturbance equations, posing an eigenvalue problem in this new

framework. This approach does not impose exponential growth rates for disturbances. A

consequence of such relaxation is that, at difference with frozen time models, results depend

on the Prandtl number ν/κ. Propagation theory have been used in a variety of problems

involving different step and time-dependent boundary conditions for URB. A key result of

such analyses is that theoretical times for the onset of convection have been found to be

lower, by a factor of 1/4, than onset times detected experimentally (e.g Choi et al., 2004a,c;

Kim et al., 2002, 2005; Yang & Choi, 2002b), and close to such factor when heating binary

mixtures, where the Soret effect conditionally induce convection (Kim et al., 2007), except

when shear-free boundaries and a temperature step are imposed, where a factor of 1/10 is

likely to fit better the data (Ihle & Niño, 2006b). In the last couple of years, a new linear

stability analysis approach has been developed (Riaz et al., 2006), considering the combi-

nation of a similarity space for disturbances (e.g. (Yang & Choi, 2002b)), combined with

an ad-hoc eigenfunction expansion (Foster, 1965a; Robinson, 1976), to find onset time pre-

dictions largely independent of the initial conditions, thus improving a major drawback of

the amplification model. Although the recently developed methodologies mentioned have

been proved to yield good results in the prediction of onset times for highly supercritical

systems, for which it is reasonable that layers behave as if they were semi-infinite and often

similarity solutions for the temperature base state can be found, they give no information

about the effect of the manner of heating in overall stability conditions of URB, where

frozen time and energy approaches are applicable.

A similar problem to that posed in URB is the flow that results from imposing a

temperature step on one side of the horizontally infinite fluid layer without letting heat

flow through the opposite boundary. The study of the stability of this kind of system

is the matter of the present paper. This configuration resembles that of nonpenetrative

convection (Adrian, 1986), and for convenience, the acronym NPC will be used hereafter

to refer to it. A key feature of NPC is that the base state never reaches a non-zero

steady state, and hence there is not a straightforward steady counterpart to compare

critical Rayleigh numbers with, as in the case of URB. For this system and high Rayleigh

numbers, propagation theory has been used to predict onset times for convection (Ihle &

Niño, 2006b), where it was proved that the outer, adiabatic boundary has no effect on

convection onset times. On the contrary, this is not necessarily true for Rayleigh numbers

slightly larger than critical ones, which is discussed in detail in this paper. Critical Rayleigh

numbers for the onset of NPC have not been reported so far in the open literature. In the

present paper, theoretical estimations of such values are proposed in the light of a frozen

time model and the energy method, using several different kinematic boundary conditions.

The energy method yields rigorous bounds for the stability of unsteady evolving systems.
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It has been used in the past in the study of URB stability (Homsy, 1973; Neitzel, 1982;

Wankat & Homsy, 1977), and very recently to determine reliable critical convective motion

onset times and Marangoni numbers for evaporating droplets (Ha & Lai, 2004). Therefore,

the energy method is understood as a proper way of assessing frozen time results. Indeed,

it is shown here that instability onset times predicted using the frozen time method are

consistent and close to those computed using the energy method. Limits for this behavior

are proposed by analyzing results for large values of time.

4.2 Problem description

The system is an initially quiescent, horizontally infinite Boussinesq fluid layer of height d,

at a constant temperature Tmax, subject to a sudden temperature drop ∆TNPC = Tmax −
Tmin on its upper surface, while the bottom is kept adiabatic. This imposes a transient

evolution of the temperature field, which can be merely conductive on the whole domain of

time, or driven by the combined effects of conduction and natural convection from a certain

time on, provided a minimum imbalance between viscous and buoyant forces exists. Scales

for disturbances are d, d2/κ, κ/d and ∆TNPC for length, time, velocity and temperature,

respectively. Notation for dimensionless variables is as follows: x, y denote horizontal

coordinates, z denotes a vertical upwards coordinate with origin at the bottom boundary,

u, v and w denote disturbance velocity components in the x, y and z directions, respectively,

and θ̄ = (T−Tmin)/∆TNPC is the base state normalized temperature (from now on denoted

simply temperature). In the case of the energy method equations, v = (u, v, w)T and θ

stand for the disturbance dimensionless velocity and temperature, whilst in the frozen time

model, v̂ = (û, v̂, ŵ)T and θ̂ are their analogue definitions.

A Rayleigh number depending on the temperature step ∆TNPC is defined as

Ra =
gβ∆TNPCd

3

νκ
. (4.1)

In NPC, in contrast with URB, since the bottom temperature is not fixed, the top and

bottom temperature difference is a function of time. Therefore, the analogue to the top-

bottom Rayleigh number definition in URB, R (as defined in the Introduction), is time-

dependent. As θ̄(z = 0, t) = (Tbottom − Tmin)/(Tmax − Tmin) = (Tbottom − Ttop)/∆TNPC, it

follows that a Rayleigh number in NPC based on the top and bottom temperatures can be

expressed in terms of θ̄ and Ra as a modified Rayleigh number, Rm = Ra θ̄(z = 0, t). This

parameter will be used to compare URB and NPC stability results. For instance, defining a

URB constant top-bottom temperature difference numerically equal to ∆TNPC, identifying

Tbottom, URB = Tmax, NPC and Ttop, URB = Tmin, NPC, then Rm = Ra θ̄(z = 0, t) ≤ Ra = R,
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for any fixed value of t, given the same fluid properties, temperature difference and layer

depth for URB and NPC problems. Although the control parameters Ra and R can be set

to be equal, as in the previous example, this does not mean that the instability conditions

associated with URB and NPC problems are the same. In fact, it is shown in this paper

that eigenvalues of the respective stability equations are generally different, which in the

context of the above example means that the initial temperature step required for the onset

of convection in NPC and URB problems can be expected to be different for identical fluid

properties and layer thickness.

4.3 Non-linear stability analysis

Limiting conditions for the stability of NPC are analyzed using the energy method. Details

about the derivation of equations for this method are given elsewhere (Joseph, 1965; Joseph,

1966), so only some aspects concerning the interest of the present analysis are mentioned

here. This approach relies on the definition of an energy functional, based upon a linear

combination of kinematic and thermal components: E = 〈|v|2/Pr + λRa θ2〉, where 〈·〉
denotes integration over the fluid volume, with λ > 0 a coupling parameter.

According to energy theory, NPC convective motion can exist for a certain t ≥ t∗ (Gumer-

man & Homsy, 1975) if Ra ≥ Ra∗ (where Ra∗ = Ra(t∗) is the analogy of the criti-

cal Rayleigh number found in the Rayleigh Bénard stability problem with steady base

state), provided disturbances exist from the beginning of the base state evolution. Fol-

lowing Homsy (1973), defining φ = (λRa)1/2θ, a set of Euler-Lagrange equations can be

deduced:

1

2
ρλ

(

1√
λ
−

√
λ
∂θ̄

∂z

)

∇2
hφ+∇4w = 0, (4.2a)

∇2φ+
1

2
ρλ

(

1√
λ
−

√
λ
∂θ̄

∂z

)

w = 0. (4.2b)

Here, ∇2n is the Laplacian operator applied n times and ∇2
h its horizontal version.

Initially, the system remains quiescent and θ̄(t ≤ 0, z) = 1. For t > 0, ∂θ̄/∂z = ∂φ/∂z =

w = 0 at z = 0, θ̄ = φ = w = 0 at z = 1; besides, ∂w/∂z = 0 is imposed on a rigid boundary

and ∂2w/∂z2 = 0 on a free one (both types or kinematic boundary conditions are applied

alternatively to top and bottom surfaces). ρλ is a Lagrange multiplier which is a solution
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of the problem:

1

ρλ
= max

h

{ 〈wφ〉√
λ

−
√
λ

〈

wφ
∂θ̄

∂z

〉}

(4.3a)

〈∇v : ∇v+ |∇φ|2〉 = 1, (4.3b)

where h is a function space that allows solutions for nonlinear disturbance velocity v and

temperature θ (and hence φ) such that they satisfy prescribed kinematic and thermal

boundary conditions, as well as ∇ · v = 0 (see (Homsy, 1973) and references therein for a

more complete discussion). Noting that (4.2) can be decomposed into horizontal Fourier

modes, if α is the dimensionless wavenumber of a horizontal wavevector and ρλ is the lowest

eigenvalue of (4.2) with appropriate boundary conditions, the goal is to find an optimal

solution:

ρ̃ = max
λ

min
α
ρλ (4.4)

The term ∂θ̄/∂z is time-dependent, and so then is ρ̃. If the flow is strongly stable, i.e., if

the energy decreases exponentially with time for arbitrary amplitude disturbances, then

ρλ >
√
Ra (Joseph, 1965). This corresponds to the decreasing portion of the ρ̃(t) curve

that results from the solution of the problem (4.4) for different values of time (Homsy,

1973). The fluid layer will be globally stable for
√
Ra < mint ρ̃.

Since λ is chosen to yield the largest eigenvalue of (4.2), it can also be a function of

time, but system (4.2) is obtained under the assumption that λ is a constant. Generally,

this is not a major obstacle for the analysis, as Homsy (1973) showed that the derivation

just outlined still holds if dλ/dt < 0, and that, when ρ2λ varies monotonically with time, the

optimal lower bound for stability does not change if dλ/dt ≥ 0. In the present case, for each

of the kinematic boundary conditions imposed, corresponding minimum is achieved from

monotonic curves ρ(t), and consequently, computed optimal lower bounds are considered

to be sound.

The shooting method and an optimization routine based on the Newton-Raphson it-

eration, whose validation has been previously reported (Ihle & Niño, 2006b), were used

to solve the minimax problem (4.4). Time-dependent ρλ(t) curves obtained for different

boundary conditions are shown in Figure 4.1. Stability results for NPC are summarized in

Table 4.1.

To validate the present application of the energy method, the analysis of unsteady

URB was chosen, since results of a previous application of such method to that system are

available (Neitzel, 1982). Critical stability parameters, i.e., minimum Rayleigh number,

corresponding time and wavenumber, obtained with the energy method for the unsteady

URB problem, are reported in Table 4.2, together with those obtained by Neitzel (1982),

49



with the exception of critical wavenumbers, which were not reported by him. Good general

agreement between both sets of results was found. However, at difference with Neitzel’s

results, present computations show the existence of a subcritical minimum for the free-free

condition. In the rest of the cases, correspondence among Ra∗ values was found within

the zero-decimal precision reported by Neitzel (1982). On the other hand, in every case,

present results were observed to converge to the well-known steady state Ra∗ values as

t→ ∞ (Drazin & Reid, 1981).

Table 4.1: Critical overall stability bounds (t∗,Ra∗ = Ra(t∗)) and their corresponding
optimal wavenumbers α∗ for NPC, obtained with the energy method (labeled as EM, in
columns 2 to 5), and frozen time model (labeled as FTM, in columns 6 to 9), for different
kinematic boundary conditions. R∗

m = Ra(t∗) θ̄(z = 0, t∗). In the first column, the first
kinematic condition corresponds to the upper boundary, which is cooled in every case,
while the second one corresponds to the bottom boundary.

EM FTM

Condition t∗ α∗ Ra∗ R∗
m t∗ α∗ Ra∗ R∗

m

Rigid-rigid 0.101 2.65 1 438.6 1 363.6 0.105 2.64 1 463.1 1 378
Free-rigid 0.087 2.28 825.4 798.1 0.092 2.27 840 806.8
Rigid-free 0.114 2.16 865.8 803.1 0.117 2.15 882.1 813.8
Free-free 0.103 1.8 452.4 427.4 0.106 1.79 460.6 433.1

Table 4.2: Critical overall stability bounds (t∗,Ra∗ = Ra(t∗)) and their corresponding
optimal wavenumbers α∗ for URB using the energy method. Columns 5 and 6 show
corresponding results by Neitzel (1982). The first kinematic condition corresponds to the
upper boundary, which is cooled in every case, while the second one corresponds to the
bottom boundary. When no critical time is given, curves decrease monotonically toward
asymptotes in the (t,Ra) space.

Present algorithm Neitzel (1982)

Condition t∗ α∗ Ra∗ t∗ Ra∗

Rigid-rigid 0.138 3.12 1 699.4 0.14 1 699
Free-rigid — 2.68 1 100.6 — 1101
Rigid-free 0.085 2.69 1 012.9 0.08 1 013
Free-free 0.135 2.23 654.6 — 657.5
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Figure 4.1: Critical NPC stability curves for fixed values of time, obtained from the op-
timization problem using the energy method, corresponding to system (4.4) (solid lines),
and frozen time model, corresponding to equations (4.6) (dashed lines), respectively. Left
panel: from top to bottom, curves corresponding to rigid-rigid, free-rigid and free-free
kinematic boundary conditions, respectively. Right panel: curves corresponding to the
rigid-free boundary condition. The dash-dotted line corresponds to the free-rigid critical
curve computed using the energy method. The first kinematic condition applies to the top
boundary.

4.4 Linear stability analysis

Limiting conditions for the instability of the NPC system are analyzed using the frozen time

model. To derive the equations for this method, it is argued that NPC onset corresponds

with the transition between the purely conductive and the conductive-convective states of

the system. As the former state is independent of the Prandtl number, it is expected that

the instability condition should also be independent of this parameter. The z-component

of the linearized momentum and energy disturbance equations in the present system are,

respectively:

(

1

Pr

∂

∂t
+

∂2

∂z2
− α2

)(

∂2

∂z2
− α2

)

ŵ − α2θ̂ = 0 (4.5a)

∂θ̂

∂t
+Ra ŵ

∂θ̄

∂z
−

(

∂2

∂z2
− α2

)

θ̂ = 0, (4.5b)
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where θ̂(z, t) and ŵ(z, t) are first order disturbances of temperature and vertical velocity,

respectively. Here, α and boundary conditions for disturbances have the same definition

as in the energy approach.

In the frozen time model, time is treated as a parameter and hence solutions of the form

(θ̂, ŵ) = [θ1(z), w1(z)] exp σt are considered. This assumption turns the PDE system (4.5)

into an ODE system that corresponds to an eigenvalue problem, where the latter can

be found in spite of the fact that system (4.5) is not separable. The validity of this

quasi-static approach requires that disturbances evolve much faster than the base state

conductive heat flow, represented by the term ∂θ̄/∂z. This is generally the case in the

present analysis as is discussed next. Indeed, in the case of impulsively-driven URB, it has

been shown (Gresho & Sani, 1971) that for supercritical systems (i.e., those with values

of the Rayleigh number greater than the critical one for the onset of instabilities), growth

rates of disturbances of frozen time model variations converge to those computed using

transient analysis (Foster, 1965a), where disturbances are written in terms of Fourier series

with time-dependent coefficients, turning system (4.5) into an eigenvalue problem subject

to certain initial conditions. In their problem, the temporal threshold of validity suggested

by Gresho & Sani (1971) is t ∼ 0.01, such that for larger times the frozen time model

would yield similar results as the transient analysis. Following the trend of this result, in

the NPC system the quasi-static hypothesis is likely to be reasonable, as in the present

analysis estimated values of the onset time of instabilities are on the order of 0.1. These

values are computed from marginal stability curves, obtained by solving the optimization

problem minα,tRa, where

( σ

Pr
+ α2 −D2

)

(

D2 − α2
)

w1 + α2θ1 = 0 (4.6a)

σθ1 +Raw1
∂θ̄

∂z
−

(

D2 − α2
)

θ1 = 0 (4.6b)

σ = 0, (4.6c)

with D(·) ≡ d(·)/dz. The marginal stability curves obtained are shown in Figure 4.1. Onset

times, corresponding to the minima of these curves, are indeed of about 0.1. The marginal

stability curves appear to be physically meaningful compared with global stability curves

obtained with the energy method, as critical Rayleigh numbers and corresponding times

are greater and lower, respectively, than those predicted by the energy theory. Nonetheless,

although present results are thought to describe well the physics underlying the present

problem, further verification with Foster’s approach (Foster, 1965a), which is beyond the

scope of the present paper, would give additional information about this point.

The present numerical algorithm, used for both the linear and non-linear analyses
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reported in this paper, was also ckecked in the context of the frozen time model, using

results of Gresho & Sani (1971) in the case of unsteady URB. In the rigid-rigid case, the

present analysis yields a minimum of Ra = 1706.41 at t = 0.185, whereas for the same

case, Gresho & Sani (1971) computed Ra = 1706.36 and t = 0.186, respectively.

4.5 Discussion

For small enough values of dimensionless time, when the thermal penetration depth is

small compared with the thickness of the fluid layer, the effect of temperature and velocity

disturbances is slight in contrast with the rapid evolution of the temperature base state.

As a matter of fact, in the light of both of the approaches considered, in this time range the

system exhibits critical Rayleigh numbers that are increasingly high as time decreases. On

the other hand, in this time range, URB and NPC have the same instability behavior as

they are independent of the boundary opposite to the step change in temperature (Ihle &

Niño, 2006b). Writing a force balance taking into account the effects of viscosity, thermal

diffusivity and buoyancy, it can be shown that Rac ∼ t−3/2 (see also Jhaveri & Homsy

(1982)). The validity of this relation relies on the assumption that the thermal boundary

layer thickness scales with
√
t, which is true if t / 0.01. If the dimensionless time is not so

small, then the latter scaling is not valid, and the temporal behavior of the stability (as well

as instability) of the system saturates to a minimum value of the Rayleigh number, which

depends on kinematic boundary conditions on both sides, as shown in Table 4.1. In the

present system, for larger values of time, the available heat from which an instability can

give rise to thermal convection decays exponentially to zero with time. As it will be shown

later, a consequence of this is that corresponding critical Rayleigh numbers must necessarily

increase exponentially as time increases, at difference with URB where convergence to the

steady state stability limit is obtained.

Data on Table 4.1 indicate that the NPC system becomes unstable before and at

lower Rayleigh numbers than URB given the same kinematic boundary conditions. Previ-

ously, Joseph & Shir (1966) commented on the destabilizing effect of the Robin boundary

condition (i.e., a generalization of that applied in the NPC problem, consisting of an

isothermal boundary condition at one boundary and a heat flux boundary condition at the

other), showing via manipulations of the set of energy Euler-Lagrange equations that the

corresponding stability limit is a monotonically increasing function of the Nusselt number

(Nu) on the boundaries. In particular, given kinematic boundary conditions, fixing the

upper thermal boundary condition as isothermal and allowing the prescribed heat flux on

the bottom to be set through Nu, according to Joseph & Shir (1966), the lowest stability

boundary will be found for Nu = 0, that is, for the NPC setup. The lack of heat flow
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on the bottom precludes compensation of the buoyant force exerted downwards to fluid

parcels due to the cooling on top by other volume forces from the bottom, such as the

upwelling force that exists in the URB case, caused by the heating at z = 0. Therefore,

the numerical results found in the light of the energy method are consistent with present

and previous predictions for URB and also thought to be physically appealing.

Experimental data for the minimum Rayleigh number necessary for NPC are available

only for the rigid-rigid case (Soberman, 1959), for which a critical time-dependent condition

of Rm = 1700 was found. This is consistent with the theoretical Rm lower bound reported

here, equal to 1 363.6 (Table 4.1).

The relationship between critical or onset times predicted by the energy method (i.e.,

times that minimize the energy functional) in NPC and URB depends on upper and lower

boundary conditions. According to results shown in Tables 4.1 and 4.2, dimensionless

onset times in NPC (0.101 and 0.103) are lower than those in URB (0.138 and 0.135) for

rigid-rigid and free-free cases, respectively. The opposite is true in the rigid-free case, with

onset times of 0.114 and 0.085 for NPC and URB, respectively. No comparison of critical

times can be done in the free-rigid case, since in URB, monotonic convergence to the steady

state critical value was achieved, both in the present work and in Neitzel (1982). Regarding

computed results for NPC using both approaches, it is readily apparent from Figure 4.1

that, given fixed boundary conditions and values of time, linear and nonlinear results are

similar, being critical Rayleigh numbers yielded by the frozen time model always greater

to those produced by the energy method, with relative differences on the order of 0.02.

Stability (and instability) curves corresponding to the free-rigid and rigid-free cases

cross each other for times equal to 0.161 and 0.175 according with energy and frozen time

computations, respectively (Figure 4.1). In the free-rigid case, the system can experiment

convective motion before and with a lower Rayleigh number than in the rigid-free system,

due to the lack of restrictions for the generation of a horizontal flow on the top lid. As

time goes on, the vertical heat flux space derivative near the bottom, ∂q/∂z(z = 0, t) =

−∂θ̄2/∂z2(z = 0, t), departs from zero (Figure 4.2), and an interplay between this evolution

and the kinematic boundary condition sets in. It is interesting that the mentioned curve

crossing occurs, according to both methods, very close to the maximum of ∂q/∂z(z = 0, t),

found at t = 0.167. After this time, rigid-free curves dip slightly below free-rigid ones

toward an asymptotic difference, to be analyzed below.

It can be argued whether the increasing portions of the set of marginal stability curves

corresponding to Figure 4.1 can be possibly reached experimentally. Although it is quite

difficult to suppress experimentally every natural source of disturbance, which would be

one way to retain the stability of the system after the critical onset time at a higher

Rayleigh number than that corresponding with the global minimum, it may be possible
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Figure 4.2: Vertical gradient of the base heat flux at z = 0, ∂q/∂z(z = 0, t) =
−∂θ̄2/∂z2(z = 0, t). The maximum occurs at t = 0.167.

to suppress convection through the use of active control systems (see, e.g., Howle, 1997),

shifting critical Rayleigh numbers significantly (Tang & Bau, 1993). Thus, the discussion

of conditions for stability at large values of time is considered meaningful in physical terms.

It is noted that for large values of time, the base state vertical base heat flux can be

approximated as:
∂θ̄

∂z
(z, t ≫ 0) ≈ −2 sin

(πz

2

)

exp

(

−π
2

4
t

)

. (4.7)

In particular, this is a very good approximation of ∂θ̄/∂z for t ' 0.4.

Using the energy method, Joseph & Shir (1966) have shown that the value of the

coupling parameter, λ∗, that maximizes problem (4.4), thus making ∂ρλ/∂λ = 0, satisfies

λ∗ = −〈wφ〉/〈wφ(∂θ̄/∂z)〉, where in the present case,

λ∗ ≈ 〈wφ〉
2〈wφ sin(πz/2)〉 exp

(

π2

4
t

)

≥ 1

2
exp

(

π2

4
t

)

, (4.8)

showing that the critical coupling parameter has an exponential factor (with a dimen-

sionless time constant equal to 4/π2) for large values of time. Although wφ is also a

function of time, from numerical computations it is evident that the latter dependence

vanishes for large enough dimensionless times (in the present case, on the order of 0.5).
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Computed prefactors 〈wφ〉/〈2wφ sin(πz/2)〉, extrapolated for large values of time, are 0.76,

0.72, 0.85 and 0.8 for the rigid-rigid, free-rigid, rigid-free and free-free cases respectively.

Critical Rayleigh numbers, ρ2λ∗ , exhibit the same growth rate, as can be readily checked

using (4.3a) for λ∗ and (4.8). Corresponding prefactors for such growth rate, Ra∞, along

with their corresponding wavenumbers, α∞, are shown in Table 4.3.

In the case of the linearized equations, for large values of time, a temporal dependence of

eigenvalues can be set to compensate the exponential decrease of the base state gradient.

This can be achieved in the present case if Ra(t) ∼ exp(π2t/4). Thus, system (4.5) is

separable, and the assumption of an exponential growth of disturbances is mathematically

consistent. Marginal condition for this case corresponds to σ = 0 (Pellew & Southwell,

1940), and equations turn to the following eigenvalue problem:

(D2 − α2
∞)2w1 − α2

∞θ1 = 0 (4.9a)

Ra∞w1f(z)− (D2 − α2
∞)θ1 = 0, (4.9b)

with f(z) = −2 sin(πz/2). Results for the different boundary conditions considered are

shown in Table 4.3, where it is observed that minimum differences between stability and

instability are not asymptotically zero, though very small. As the frozen time model

becomes progressively better with time, lack of convergence among energy and frozen time

approaches, must be due to the bound limitation given by construction of the energy

method. For values of dimensionless time greater than about 0.2, the difference between

energy and frozen time critical Rayleigh values is nearly constant. Figure 4.3 shows this

trend, where the ratio rf/re is plotted as a function of time, with rf = Ra/Ra∞ using the

frozen time model and re = Ra/Ra∞ using the energy method (see also Table 4.3). This

result supports the validity of computations obtained with the frozen time model, as their

difference with asymptotic ones (which are more accurate for larger values of dimensionless

time) are slight.

4.6 Conclusions

The onset of Rayleigh-Bénard convection depends on two aspects, namely, the relative

importance of the overall temperature difference, fluid properties and layer depth and, on

the other hand, the influence of the manner of heating both in time and in the existence

of subcritical stability thresholds. The first topic has been covered early in the 20th

century, while the latter more recently, motivated by the large number of applications in

industry and environment. Related to this family of problems is that of the stability of an

infinite Boussinesq fluid layer with one side kept adiabatic while the other is subject to a
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Table 4.3: Wavenumbers and prefactors for Rayleigh numbers, given by Ra∞ =
Ra(t) exp[−π2t/4], valid for large values of time (t & 0.5), obtained with the energy method
(labeled as EM, in columns 2 and 3), and frozen time model (labeled as FTM, in columns
4 and 5), for different kinematic boundary conditions.

EM FTM

Condition α∞ Ra∞ α∞ Ra∞

Rigid-rigid 2.61 995.9 2.61 1 004.4
Free-rigid 2.25 592 2.25 596.2
Rigid-free 2.14 580.8 2.13 587.5
Free-free 1.78 311.9 1.78 314.9
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Figure 4.3: Temporal evolution of the quotient rf/re, where rf = Ra/Ra∞ using the frozen
time model and re = Ra/Ra∞ using the energy method (see Table 4.3 for corresponding
values and definitions). Upper and lowermost curves represent the rigid-free and free-rigid
cases, respectively. The dashed, central curve corresponds to the free-free case and the
remaining one, the rigid-rigid condition. The first condition applies to the top boundary.

temperature step, labeled herein as NPC. Onset times for such system were recently studied

with both theoretical and experimental approaches (Ihle & Niño, 2006a,b). However, the

basic question regarding the minimal control parameter values and maximal expected times
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to observe convective patterns remained unanswered. This paper fills such gap.

Nonlinear and linear stability analyses of NPC, obtained from the application of energy

theory and the frozen time model, respectively, were presented and discussed in this paper.

Given the thermal boundary conditions imposed, the base state of the system is unsteady

on the whole domain of time. Overall stability and instability thresholds, expressed in

terms of critical onset times and Rayleigh numbers, were presented for different kinematic

boundary conditions, including rigid or free top and bottom surfaces. The marginal sta-

bility curves obtained from both linear and nonlinear approaches are very close to each

other and considered to be physically meaningful, as critical Rayleigh numbers and corre-

sponding times obtained with the frozen time model (representing the instability limit) are

greater and lower, respectively, than those predicted by the energy theory (representing

the stability limit). Results show that the present system becomes unstable before and

with lower Rayleigh numbers than Rayleigh-Bénard convection, in agreement with previ-

ous theoretical findings for the type of thermal boundary conditions associated with both

systems. Critical stability curves (i.e., critical Rayleigh number versus time) for free-rigid

and rigid-free cases exhibit a crossing point, according to both linear and nonlinear ap-

proaches. It is suggested that such crossing represents a transitional stage at which the

influence of the bottom boundary becomes stronger than that of the top one, on the bal-

ance between stabilizing and destabilizing effects. Using both the energy method and the

frozen time model, the latter was found to occur near the maximum value of the gradient

of the base state vertical heat flux at the bottom of the fluid layer. At difference with

unsteady Rayleigh-Bénard convection, an exponential growth of eigenvalues was found at

large values of time, using both the energy method and the frozen time model. In both

cases, the time constant for such growth is the same. However, prefactors do not converge,

but slightly and consistently differ. Since as time increases the frozen time approach be-

comes increasingly more accurate, this result suggests a bound for the temporal asymptotic

accuracy of the nonlinear energy method.
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Chapter 5

Simultaneous particle image

velocimetry and synthetic

schlieren measurements of an

erupting thermal plume

This chapter is published as research paper, authored by Christian Ihle, Stuart Dalziel and

Yarko Niño, in Measurement Science and Technology, volume 20 (2009), p. 125402.

Abstract

A technique to simultaneously extract Particle Image Velocimetry (PIV) and

Synthetic Schlieren (SS) information from a two-dimensional flow field is pro-

posed and exemplified with simultaneous velocity and density measurements

of the eruption of a laminar thermal line plume. The proposed experimental

method employs colour separation in conjunction with two video cameras in

order to unambiguously separate the conflicting requirements of both measure-

ment techniques, PIV and SS. This allows true simultaneous measurements,

in contrast to previously published approaches. In the present experiments, a

precision better than 10−3 K and 0.02 mms−1 was obtained for temperature

perturbations and velocity, respectively. The measured temperature field shows

perturbations of less than 0.1 K as the induced plume first erupts, driving a

vortical structure with velocities of around 2 mms−1 that propagates out in

front of the developing thermal structure. The present application of the exper-

imental technique has provided an estimation of the critical Rayleigh number

for plume eruption, with excellent agreement with previous works.
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5.1 Introduction

Particle Image Velocimetry (PIV; Adrian, 1991; Sveen & Cowen, 2004) has become the

most widely used, non-intrusive technique for extracting velocity information from exper-

imental flows. More recently, the pattern matching ideas on which PIV are based were

extended to develop Synthetic Schlieren (SS; Dalziel et al., 2007, 1998, 2000; Sutherland

et al., 1999) which provides whole-field density measurements. An almost identical ap-

proach (known as Background Oriented Schlieren) was developed slightly later by Richard

& Raffel (2001). Researchers studying fluids with varying density (whether due to changes

in the composition or temperature) typically desire both velocity and density measure-

ments, making the simultaneous use of PIV and SS an attractive proposition. Whereas

PIV typically requires a sheet of light illuminating suspended particles, the background

‘texture’ required for SS must be strongly illuminated to give sufficient depth of field for the

optical system. Various approaches have been used for quasi-simultaneous measurements,

typically interleaving PIV and SS images. Richard & Raffel (2001) (see also Meier, 2002)

used stroboscopic illumination of the background in a study of the compressible vortices

shed behind a cylinder. In a study of two-dimensional internal gravity waves, Sveen &

Dalziel (2005) back-illuminated their PIV particles using an LCD monitor that alternated

between displaying a uniform illumination for PIV and a textured image for SS, using a

single camera to capture both diagnostic images. The SS processing took account of the

PIV particles, that otherwise contaminated the SS image.

An alternative approach was proposed in Dalziel et al. (2007) and exemplified with a

study to determine the gradient Richardson number in an internal solitary wave. They

removed some of the limitations of the earlier technique in this two-dimensional flow. In

particular, they used two cameras, one of them dedicated to PIV and the other to SS. Also,

they used two different light sources: one for PIV and the other for SS. The first provided a

light sheet and was kept on all the time, while the second, as in the earlier study by Sveen

& Dalziel (2005), was pulsed using a fast response LCD monitor to generate an interleaved

image sequence.

A further approach to simultaneous PIV and SS is proposed herein. As in Dalziel

et al. (2007), two cameras and two light sources are used, one each for velocity and density

fields. However, in contrast to the previous approach, a separation in colour is used rather

than interleaving images in time. This colour separation permits both light sources to be

maintained continuously, thus allowing true simultaneous measurement. We illustrate this

new approach by considering a starting thermal plume erupting from a line heat source.

For the present study a separate computer is used for each camera, although with newer

framegrabbers both cameras could have been handled by the same computer.
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5.2 Experimental set-up

A tank, with internal dimensions of 370×165×250 mm (length×width×height) comprising

15 mm acrylic walls and a 0.5 mm copper base, was filled with water. The heat source,

consisting of a linear array of eight single stage, square Peltier devices, with sides of size

d+ = 15 mm, working as heaters (inducing fluid temperature changes on the order of 0.1 K),

was installed across the width of the tank (midway along its length) and attached to the

outside of the base. Their position was fixed using an aluminium block that connected

them thermally to a heat exchanger held at room temperature by a constant temperature

circulator. To either side of the Peltier devices, 20 mm polystyrene foam was used to

insulate the gap beneath the copper base. The tank was fitted with a 50 mm polystyrene

lid to minimise the influence of evaporative cooling.

The experiments were simultaneously visualised over a 50× 30 mm region, by the two

synchronised video cameras (Fig. 5.1). The SS texture (consisting of 0.4 mm diameter clear

dots randomly distributed on a black background printed on overhead transparency film)

was located 167 mm behind the tank and viewed by a Jai CVM4+CL digital video camera

(with a resolution of 1320×1024 pixels, here recorded at 8 bits) located 3 m from the tank

and fitted with a 2× adapter on an Olympus 135 mm telephoto lens. Backlight for SS is

provided using a 5 W cyan Luxeon V power LED from a stabilised constant-current power

supply. A second, identical video camera, this time fitted with a 25 mm f0.95 Vortex lens

and a red dichroic filter, was used for imaging the PIV particles. The light source for the

PIV particles, a 300 W Cermax arc lamp with a parabolic reflector, illuminated 63–71 µm

Pliolite S5E tracer particles with a mean concentration in the images of 78 particles/cm2.

The red filter on the PIV camera blocked the cyan light illuminating the SS texture while

permitting the tracer particles to be imaged.

The PIV camera CCD was aligned vertically with that of the SS camera. However,

it was located at 54.5 cm from the plane of the light sheet, 70 mm to the right of the

optical axis of the SS camera. This 7.3◦ misalignment of the cameras was the minimum

necessary to prevent the PIV camera from interfering with the view of the SS camera. (It

is worth noting that the misalignment at the central plane of the tank is reduced to around

5.5◦ taking into account refractive index effects.) The PIV camera distance was chosen to

maximise resolution while keeping particles focused. As a result from this setup, the SS

field of view magnification was 1.87 times that of the PIV. The processed measurements

from both fields of view were mapped to world coordinates using a reference grid immersed

in water. The positional error in our mapping procedure is estimated at less than 0.14 mm,

or about 0.3% of the width of the field of view.

If no precautions were taken, ambient thermal noise in the laboratory would have ren-
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Figure 5.1: Plan view of the optical setup. The width and depth of the tank are 400 and
200 mm, respectively.

dered signal-to-noise ratio levels from the SS experimental data unacceptable. In addition

to the installation of physical shielding and insulation, the experiments were automated

and run overnight when the laboratory’s thermal environment was most quiescent and no

personnel were present to disturb the conditions.

Each set of experimental runs was conducted as follows. A LabView routine retrieved

the control parameters, then requested DigiFlow (Dalziel, 2007) on the master computer

to start the video capture. DigiFlow relayed this onto the instance of DigiFlow on the slave

computer, synchronising the start of the capture, then informed LabView it was ready to

start the experiment. Complementary temperature information was measured above and

below the bottom plate of the tank using thermocouples. LabView logged temperature

and power supply current information while an experiment was in progress. Given the

relatively low Reynolds number of the flow, all of the present experiments were recorded

at a sampling rate of 8 frames per second for video and 2 samples per second for voltage,

current and temperature. Monitoring of the flow features and signals was done remotely

and thus did not disrupt the course of experiments. Between each run the system was

cooled and mixed for 5 minutes with the help of a peristaltic pump that recirculated the

water inside the tank, then allowed to settle for 40 minutes before the next experiment

was started.
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Inevitably, despite our efforts to achieve homogeneous, quiescent initial conditions in

the tank, there was some, although slight, residual thermal stratification and motion in

most of the experiments. As our SS was only able to measure the perturbation relative

to this initial density gradient, and our thermocouples were only accurate to 0.5 K, we

cannot be sure of the precise initial thermal stratification. However, based on our SS

measurements after the start of the experiment, we believe that at t = 0 the stratification

was stable with temperature differences of less than 0.03 K with a bulk temperature of

295.5 K, comparable with the ambient temperature in the laboratory. This weak stable

stratification is consistent with our measurements of a weak essentially horizontal drift to

the right (∼ 3 pixels/s = 0.15 mms−1) prior to the commencement of heating.

PIV and SS processing was completed using DigiFlow. For PIV, an adaptive, multipass

algorithm was used in conjunction with interrogation windows 25× 25 pixels at a spacing

of 12 pixels. Estimates of the precision of the velocity measurements exceed 0.3 pixels/s =

0.02 mms−1. The pattern matching algorithm, evolved from that presented in Dalziel

et al. (2000) and Sveen & Dalziel (2005), largely avoids the problems of peak-locking seen

in traditional PIV algorithms.

Similar pattern matching algorithms optimised for SS were employed on 21× 21 pixel

windows at a 12 pixel spacing for the density measurements. Here the precision is estimated

as better than 0.02 pixels (the precision of ∇ρ′/ρ0 is better than 5× 10−5 mm−1, where ρ′

and ρ0 are the perturbation and reference densities, respectively), based on measurements

of the constant temperature prior to the start of the experiments. The precision estimate

is consistent with that found in an earlier test using a translated static pattern (Dalziel

et al., 2000). (The improvement in accuracy for SS measurements over those for PIV arise

largely due to the effect of PIV particles entering and leaving the light sheet within the

time interval used in the analysis, a problem that is absent in SS.) The corresponding

precision achieved for the line-of-sight averaged temperature is better than 10−3 K.

Based on the analysis by Dalziel et al. (2007) applied to the present geometry, the

apparent displacement of the particles due to refractive index gradients in the flow is

around 6% of the apparent displacement of the texture, which is itself less than around 2

pixels, giving a maximum error in the position of a vector of less than around 1% of the

spacing between the vectors. As the rate of change of the density gradient is itself small

compared to the frame rate, the error in the velocity due to refractive index effects is much

lower again and substantially less than other sources of error. We may, therefore, safely

overlook any correction of the PIV results (Dalziel et al., 2007; Elsinga et al., 2005) for

refractive index variation.
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5.3 Results

Fig. 5.2 shows a sequence of simultaneous measurements of velocity and temperature for

a plume driven by a heat flux of q = 0.67 Wm−1. The dashed box shows the spatial

extent of the SS measurements, which is smaller than the region in which PIV was per-

formed. Within a few seconds after switching on the heater, a boundary layer begins to

grow, both vertically above and at the same time horizontally away from the heater. Hor-

izontal thermal boundary layer growth is driven primarily by the rapid thermal diffusion

through the 0.5 mm copper base, effectively increasing the width of the heat source as

(κbt)
1/2 for early times, where κb is the effective thermal diffusivity of the base. The ver-

tical growth continues until the boundary layer reaches a critical thickness. This critical

thickness marks the plume eruption, a phenomenon that has been related to a critical

Rayleigh number (Howard, 1966), with the flow assuming a length scale commensurate

with the thickness of the thermal boundary layer. The beginning of the eruption is shown

in Fig. 5.2a. Surprisingly, the temperature above the heater seems to be lower than that of

the ambient fluid. This is due to the relatively weak stable stratification existing initially

at the base of the tank, which is forced upwards as the fluid warmed by the heater begins

to swell away from the lower boundary. Fluid at this relatively cool temperature continues

to exist, almost undisturbed apart from a slight movement towards the heater, close to the

base to either side of the heater.

The circulation visible above the heater in Fig. 5.2a becomes more pronounced by t =

75 s (Fig. 5.2b), where the positive temperature perturbation is beginning to be visible a few

millimetres above the base of the tank. It is clear that this circulation, which must arise due

to baroclinic generation of vorticity, moves out in front of the emerging thermal signature,

but the core of this circulation is not marked by a stronger temperature perturbation. The

measurements suggest that most of the initial 0.5 s−1 vorticity is deposited near the base

of the tank. It is possible that entrainment of the slightly cooler, stably stratified fluid

near the base of the tank has reduced the buoyancy. It could be argued that, as the PIV

measurements are for a single plane whereas the SS measurements are line-of-sight averages,

the lack of a strong temperature perturbation at the core of the vorticies could be due to

three-dimensional motions in the plume. However, based on the subsequent development

in this experiment, and on similar observations in a set of preliminary experiments, we

believe this vortical structure is essentially two-dimensional and driven by inertia resulting

from earlier baroclinic vorticity generation.

By t = 95 s (Fig. 5.2c), the rising thermal plume is clearly visible, carrying warm

fluid (with temperatures elevated by around 0.1 K) away from the boundary above the

heater. The circulation seen at earlier times is now outside the region in which we have
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SS measurements (indicated by the dashed box in Fig. 5.2), but it appears likely that the

temperature of this circulation remains essentially that of the ambient.

Due to its sensitivity, SS proves an interesting approach to measure this kind of flow,

induced by subtle changes in density. Some explanation of our method for integration

of the SS gradient fields to obtain the temperature perturbation is required in order to

better understand the limitations of the results given by the method. The vector field

of apparent displacements measured by SS, in general, have both an irrotational and a

rotational component, although the density gradient itself is irrotational, by definition.

We make the projection of the measured apparent displacement field onto an irrotational

space unique by minimising the root mean square value of the rotational contribution. The

solution of this least squares problem, solved using a multigrid algorithm similar to that

often employed for the Poisson equation (Hazewinkel et al., 2010), then leads naturally

to the density perturbation, although there is a single arbitrary constant of integration

that is left unresolved. For the present results, we impose the average value of the density

perturbation in a region towards the top-left corner of the SS measurement domain to

remain equal to zero. We justify this by noting that the density perturbation and the flow

in this region should remain small for all times with an only weak velocity from the left due

to the imperfect initial condition. However, we recognise that there may be a net change

in the temperature of this region as the flow develops, and such a change will offset the

temperature perturbation shown here. As the background motion is much weaker than

that induced by heating, such a temperature change is not expected to significantly alter

the temperature gradients that are ultimately driving the flow.

Previous authors have characterised the eruption of an axisymmetric thermal plume

in terms of a critical Rayleigh number based on the total heat flux Q from the source

of radius R, the thermal conductivity k of the fluid and a thermal boundary layer width

δ. Moses et al. (1993), and references therein, defined a temperature scale Qδ[kR(R +

δ)]−1 ≈ Qδ/kR2 and found a critical Rayleigh number Rac of 130 ± 30, where Rac =

gαQδ4[R(R + δ)Cpρ0νκ
2]−1. Here g, α, ν, Cp and κ = kρ−1

0 C−1
p are the acceleration due

to gravity, coefficient of thermal expansion, kinematic viscosity, specific heat and thermal

diffusivity of the fluid, respectively. By analogy, for the present line plume with heat

flux q per unit length, we define a temperature scale qδ/kd and form a Rayleigh number

Raℓ = gαqδ4[dCpρ0νκ
2]−1. A thermal boundary layer thickness δ of about 2.6 mm, was

observed when the plume begins to form (Fig. 5.2b). This yields a critical Raℓ ≈ 128, in

excellent agreement with Moses et al. (1993) (see also Castaing et al., 1989; Zocchi et al.,

1990). The corresponding temperature scale qδ/kd ≈ 0.2 K is slightly higher than the

temperatures observed in the plume in Fig. 5.2. The relatively high thermal conductivity

of the 0.5mm copper base causes the effective width of the heat source to increase beyond
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the d = 15 mm width of the Peltier devices (this is particularly noticeable in Fig. 5.2a), and

thus to decrease the induced temperature of the fluid. Of course, the total buoyancy input

is unchanged by this, explaining why the critical Rayleigh number remains comparable.

5.4 Conclusions

The colour separation approach to simultaneous PIV and SS used in this study has some

advantages over the interleaving approach of previous authors. Perhaps the greatest of

these are the truly simultaneous sampling and avoiding the need to phase lock the capture

system with the illumination. While the limited temporal response of the LCD monitors

used in the earlier studies (Dalziel et al., 2007; Sveen & Dalziel, 2005) posed fairly strin-

gent restrictions, for the present study we could easily have strobed the LED we used for

illuminating the SS pattern. However, timing and stability issues derived from the latter

approach are avoided using the present colour separation application.

Our selected set-up here is only one of many possibilities using the same basic idea. In

the simplest variants, we could have employed a red LED with perhaps an argon-ion laser,

placing suitable red and (optionally) cyan filters over the SS and PIV cameras, respectively.

The present cyan LED would of course work equally well with a helium-neon or diode laser.

Other technologies are available for simultaneous measurements of velocity and density

in buoyancy-driven flows. For instance, laser induced fluorescence (LIF) is widely used in

conjunction with PIV (e.g. Westerweel et al., 2002). However, LIF is unsuitable in the

present thermally stratified case, as there is no method of introducing dye that will mark

temperature, even before considering the differences in their relative diffusivities. Ther-

mochromatic liquid crystals, on the other hand, have proven useful in thermally convective

flows in liquids (e.g. Ciofalo et al., 2003; Zocchi et al., 1990) and their use is not limited to

two-dimensional flows, although there are difficulties in working at the small scale of the

present experiments and the cost of the encapsulated liquid crystals is relatively high.

Although adding slightly to the complexity, the use of two video cameras substantially

improves the accuracy and flexibility of the present measurements. This is mainly due to

the ability to set appropriate lens apertures for both PIV (large) and SS (small).

The new approach to combining PIV and synthetic schlieren techniques using colour

separation has proven a convenient and effective way of obtaining true simultaneous velocity

and density measurements in this two-dimensional flow. Although this technology relies on

two cameras (and here we used two computers), its simplicity and the relatively low cost

of the camera make it a very attractive solution. In the present experiments, a precision

of better than 10−3 K and 0.02 mms−1 was obtained for temperature perturbations and

velocity, respectively, in a 50 × 30 mm region. Finally, the present application of the
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(a) t = 65 s
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Figure 5.2: Sequence of velocity vectors and temperature perturbation field (inside the
white, dashed rectangle) showing the starting plume for (a) t = 65 s, (b) t = 75 s and
(c) t = 95 s. The origin on the horizontal axis represents the centreline of the heater
(q = 0.67 Wm−1), whose boundary is marked by the red vertical lines placed below the
bottom axis. The region between y = 0 and y = 1.5 mm contains no information.
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(b) t = 75 s
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Figure 5.2: Continued
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(c) t = 95 s
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Figure 5.2: Continued
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experimental technique has provided an estimation of the critical Rayleigh number for

plume eruption, using the critical thermal boundary layer thickness as a length scale, with

excellent agreement with previous works.
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Chapter 6

Effect of surface temperature

inhomogeneities on turbulent

plume dynamics

This chapter is published as research paper, authored by Christian Ihle, Stuart Dalziel and

Yarko Niño, in the Proceedings of the Seventh International Symposium on Environmental

Hydraulics, Tempe, Arizona (2007). An extended version of this paper is in preparation.

Abstract

Experimental observations on the dynamics of plumes generated by spatial in-

homogeneities of positive and negative line buoyancy sources are reported. A

novel experimental technique is applied, allowing for simultaneous measure-

ment of 2D density and velocity fields. Localized heating and cooling at the

bottom of a tank produces different flow regimes, ranging from the horizontal

displacement of a plume rising from a heat source, to the disappearance of the

plume when the rate of cooling is sufficiently high. For a single plume release

and high cooling, theoretical considerations show that plume offset scales with

the cubic root of the cooling power, a result that agrees with experimental

results.
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6.1 Introduction

Non-uniform thermal conditions in the vicinity of otherwise steady plumes can trigger

small-scale, unsteady dynamics. In contrast with large scale flows driven by horizontal

temperature gradients in comparatively wide geometries, such as the meridional overturn-

ing circulation (or “thermohaline circulation”; see (Stommel, 1962)), the class of flows

of interest here appear in nature at micro- and meso-scales. The phenomena we are in-

terested in are essentially local and affect otherwise stationary systems. An interesting

example of such dynamics is the atmospheric boundary layer where there is intermittent

low-altitude cloud cover. The distribution of the clouds, and its associated impact on so-

lar heating of the ground, can induce a feedback process resulting on a scattered cloud

distribution (Schumann et al., 2002).

6.2 Problem description

Consider a large reservoir containing a Boussinesq fluid that is simultaneously cooled by

a line sink and heated by a line source, separated by a distance L at the bottom of the

reservoir. The strengths (per unit length) of the sink and source are q− and q+, respectively,

with corresponding widths d− and d+. When used in isolation, the heat sink will cool the

fluid immediately above it, generating a dense gravity current that propagates along the

bottom. In contrast, the source will generate a buoyant plume or puff that rises from the

base, eventually becoming turbulent. Transitions between a single plume to a series of

puffs above the heat source are possible and depend on the ratio of thermal properties of

the solid base of the reservoir and those of the fluid (see Hunt et al. (2003) for the case of

a uniformly heated from below tank). The presence of simultaneous cooling in the vicinity

of the heat source modifies this transition. In the simplest case, the gravity current from

the heat sink causes the plume rising from the heat source to be displaced away from the

heat sink. However, more complex behaviours can be also observed, as it is shown in this

paper.

6.3 Experimental technique

To study the interaction between the gravity current and the plume, a new experimental

technique that combines Particle Image Velocimetry (PIV) and synthetic schlieren was

developed. Two light sources are used, one backlighting the dotted mask for synthetic

schlieren (Sutherland et al., 1999), while the other illuminates the suspended PIV particles.

Two cameras are also used, one for each of the techniques. Whereas previous studies
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have used a liquid crystal monitor to switch on and off the pattern for the synthetic

schlieren (Dalziel et al., 2007), here we use a 5 W cyan LED to illuminate the synthetic

schlieren mask. Placing a red dichroic filter in front of the PIV camera effectively renders

the backlighting invisible. While the white light sheet used for the PIV is sufficiently

powerful for the PIV camera to image the particles through the dichroic filter, the light

sheet is much less bright than the cyan backlighting, allowing the synthetic schlieren camera

to image the mask without significant interference. With this arrangement we are able to

make truly simultaneous 2D measurements of the density and velocity fields.

In the present set of experiments we filled a 400×150×200 mm Perspex tank was filled

with salt water. The observation window corresponds to a 50×50 mm region near the heat

source and sink. The synthetic schlieren mask (consisting of 0.4 mm clear dots randomly

distributed on a black background printed on overhead transparency film) was located

167 mm behind the tank and viewed by a Jai CVM4+CL digital video camera (1320×1024

pixels, here recorded at 8 bits) located 3Â m from the tank and fitted with a ×2 adapter on

an Olympus 135 mm telephoto lens. A second CVM4+CL video camera, this time fitted

with a 25 mm f0.95 Vortex lens (fitted with a red dichroic filter) was used for imaging the

PIV particles. A 300 W Cermax arc lamp with a parabolic reflector was used to illuminate

the particles. The light sheet was formed with a simple 3 mm slit on the side of the tank.

The light path was directed via a cold mirror to eliminate most of the heat from the light

sheet. Pliolite S5E particles, sieved to 63-71 µm diameter, were rendered approximately

neutrally buoyant through the addition of salt to the water in the tank. A schematic of

the optical setup is shown in 6.1.

thermal
tunnel

lens
power LED (for synthetic schlieren)

synthetic schlieren mask

thermal tunnel

cold mirror

arc lamp
(for PIV)

PIV camera
(lens with red filter)

synthetic schlieren

heating line attached

camera

tank with seeded,
salted water

cooling line attached
below the copper bottom

below the copper bottom

Figure 6.1: Plan view of the optical setup
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Both the heating and cooling were provided by arrays of d+ = d− = 15 mm Peltier

devices attached to a thin copper sheet used as the bottom of the tank. Here we present

results with two lines of devices located L = 100 mm apart.

To minimise thermal noise, most of the experiments were conducted overnight using

an automated system. A simple protocol operating over the local network was developed

to coordinate the two computers running DigiFlow (Dalziel, 2007) (one for each of the

cameras) along with the Peltier elements. The resulting image sequences were synchronised

to better than 10 ms, substantially faster than the fastest time scale in the flow or the

spacing between the images captured. A stirring device was used to help recover isothermal

initial conditions between experiments. This was also controlled automatically together

with the experiments.

6.4 Results and discussion

Figure 6.2 shows typical flow features resulting from the interaction between the cold

gravity current (generated by the heat sink) and the hot plume (generated by the heat

source). Figure 6.2a shows the structure of the plume prior to the arrival of the gravity

current, and Figure 6.2b the structure after. In both cases, the upper panel shows the

velocity and horizontal density gradient, while the lower panel shows the velocity and

vertical density gradient. As the current collides with the plume, it nudges it away from

its initial location directly over the heat source. The cooler fluid of the current contrasts

with the warm fluid in the plume, enhancing the horizontal density gradient on the left-

hand side of the base of the plume as it pushes it to the right. Some of this cool fluid is

entrained into the plume, as is seen from the velocity field. The distinct vertical density

gradient of the plume prior to the collision (Figure 6.2a) is overrun by the dense fluid of

the gravity current, forming a region of statically unstable fluid over the heat source. The

incoming gravity current above continues to deflect the warm fluid below to the right into

the displaced plume. Such behaviour has a certain resemblance to salt wedge dynamics,

as can be seen in Figure 6.2b (bottom). For strong enough cooling, the plume has been

observed to disappear altogether.

Different flow regimes depend on the ratio R = q−/q+, along with heating rate, q+,

the thermal diffusivity of the base, κb and fluid properties such as its thermal diffusivity,

κ. If the heating rate is sufficiently high (close to q+
∗ = 0.67 W/m, a single starting

plume is replaced by the superposition of a number of departing plumes and puffs. This

transition is distinct from that found by Hunt et al. (2003) where the quotient played a

critical role. Examples of different behaviour observed here are shown in Figure 3 as time

series of the horizontal density gradient at a fixed height over the tank base. Figure 6.3a
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Figure 6.2: Recorded sequence of velocity vectors over horizontal (upper row) and vertical
(lower row) density gradient lines. (a) 86.5 s and (b) 155 s after the start of the experiment,
for a single plume release, q−/q+ = 112 and q+ = 0.78 W/m. The heater is centred on
x = 0.

shows a case where a continuous plume is produced, although it is displaced to the right

by the impinging cold current. In contrast, Figure 6.3b shows how the horizontal gradient

isolines converge for a high heating rate case when puffs are released.

As found by previous authors (e.g. Härtel et al., 2000), the Grashof number charac-

terises the relative importance of molecular and inertial forces for a gravity current. Here

we define the Grashof number for the cold gravity current as Gr = gαL4/ρ0Cpν
3d−Pr,

where α, Cp and ν are the coefficient of thermal expansion, specific heat and kinematic

viscosity of the fluid, respectively. Here ρ0 is a reference density and Pr = ν/κ is the

Prandtl number of the fluid.

As noted previously, for weak heat sources we find a regime where a single plume is

displaced laterally by the advancing gravity current. Even a weak cool gravity current can
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Figure 6.3: Time series for horizontal density gradient, for a vertical distance of 2 mm
above the tank base. (a) A single plume release, without puffs. R = 871, q+ = 0.22 W/m.
(b) Single plume with puffs. R = 6.6, q+ = 3.22 W/m. The origin in the abscissa represents
the centre of the heater.

lead to a substantial thickening of the bottom boundary layer on the left-hand side, closer

to the heat sink; in contrast, the boundary layer on the right-hand side remains essentially

unchanged. In this regime, at least for the time periods explored in these experiments

(between 100 s and 300 s each), the plume displacement was observed to vary nearly

linearly with time. (Here we determined the plume displacement from the definition of

a threshold for the horizontal density gradient, approximately 2 mm above the base of

the tank.) Using the viscous scaling L/ν to normalize the constant plume displacement

velocity u, we find a simple relationship with the Grashof number. Figure 4 shows the

experimental relation between the plume displacement velocity u and the Grashof number,

where uL/ν ≈ 0.062Gr−2.96, for 100 ≤ Gr ≤ 500.

6.5 Conclusions

Spatially non-uniform thermal forcing has been studied to asses the influence of a heat

sink placed near a heat source on the dynamics of buoyant plumes. Using simultaneous

measurements of density and velocity fields we found that the gravity current generated

by the heat sink displaces the thermal plume horizontally, forming persistent inverse tem-

perature stratification above the source. With weak sources, a single plume is generated,

but multiple plumes and puffs are found at higher heating rates. The horizontal displace-

ment of a single heat plume created by a nearby heat sink depends strongly on the gravity

current dynamics, with the displacement velocity proportional to the cooling rate q
1/3
− .
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Figure 6.4: Non-dimensional plume displacement as a function of the Grashof number.
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Chapter 7

Conclusions

The present thesis has been successfully addressed a set of spatiotemporal effects related

to penetrative convection. Using linear and non-linear stability analysis, the appearance of

thermal convection was quantitatively linked with the beginning of surface cooling in large-

scale water bodies, as it is the case of some middle-sized lakes. This problem can be directly

related with the well-known Rayleigh-Bénard for unsteady thermal forcing. For the ex-

treme case of sudden cooling, present results are consistent with those made at laboratory

scale. It was shown that the thermal boundary condition at the bottom of the reservoir is

unimportant compared to the surface one, where the cooling is applied. Observations show

that observed times for the onset of natural convection can be (in first order) modelled

to be proportional to theoretical times coming from linear stability analysis. At difference

with other works, here it is suggested that such a proportionality constant depends on

the kinematic boundary condition where the thermal forcing is applied. Free-surface (or

stress-free) boundary condition yields earlier theoretical onset times while differences with

observed times are larger. This work has been complemented with the identification of

global conditions for the existence of thermal convection in fluid layers where the side op-

posite to that where the thermal forcing is applied is adiabatic. Computed critical Rayleigh

numbers complement those reported for the case of the unsteady Rayleigh-Bénard problem,

showing that fluid enclosures cooled at the surface with no heat exchange at the bottom

are more prone to mixing (or, observe convection to appear before) than the case where

temperature is imposed at the bottom. In the case of sinusoidal cooling, field results from

published literature and a recent field campaign in Chile were compared to those obtained

using the same theoretical base than that with a step change in temperature. In this case,

the complexity introduced by the length scale of the reservoir and the combined effect of

wind are evident. Initial temperature and passive scalar concentration stratification plays

an important role on the prediction of the beginning of mixing. Interestingly, the studied
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case suggests the impact of temperature on mixing is more important that that of wind,

even when relatively strong wind events occur. For the initially unstratified case, a relation

for the prediction of the onset of convection is proposed. Nonetheless, a larger dataset is

required to give an accurate quantitative assessment of the effect of evening and night

cooling in the mixing dynamics of lakes and reservoirs.

Finally, an experimental study about the spatiotemporal dynamics relating two-dimen-

sional laminar, thermally induced plumes and gravity currents was done. To study this

problem a novel experimental technique, based on colour separation was developed to

simultaneously obtain velocity and density gradient vector fields. It was found that under

certain plume/gravity current intensity combinations plume can still keep the most of their

flow characteristic, though nudged away from their original position by the gravity current.

Plume displacement generation times can be significant compared to plume departure or

gravity horizontal displacement time scales. An interesting potential was identified on this

topic as it can bring further insights on the explanation of local flow phenomena where

thermal sinks and sources are found.
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Conference papers

A.1 Numerical simulations and linear stability analysis of

transient buoyancy-induced flow in a two-dimensional

enclosure

This paper is published as a research paper, authored by Christian Ihle, Yarko Niño and

Ramón Frederick, in the Proceedings of the Sixth International Symposium on Environ-

mental Hydraulics, Hong Kong, China (2004).
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ABSTRACT: Numerical experiments using two-dimensional DNS and a linear stability analysis
with an unsteady base state, using propagation theory, were performed to learn about the onset
and non-linear dynamics of penetrative convection in lakes and reservoirs. For this purpose, in a
first stage of development, some idealized conditions have been considered, namely a step change
and constant cool skin temperature imposed onto the surface. Two different horizontal boundary
conditions were considered in the stability analysis, seeking for an approximate description of a
stratified reservoir. Critical time-dependent Rayleigh numbers were found from the stability analy-
sis, which agree with experimental results for the related Rayleigh-Bénard instability. Non-linear
analysis showed the occurrence of periodically self-organized structures of buoyant plumes and
iso-Nusselt lines. It was found numerically that boundaries appear to delay the onset of instabilities
and to reduce the heat extraction rate.

1 INTRODUCTION

Many numerical and experimental studies in fluid systems subjected to surface cooling or bottom
heating have been motivated by problems in several branches of physics, engineering and, partic-
ularly, in environmental sciences. Buoyancy driven flows, generated by this kind of phenomenon,
are found in many aquatic systems in nature, such as lakes and reservoirs. This kind of instability
contributes to strong momentum, heat and concentration transport and complex biological
interactions inside the water body.

A particular kind of unstable stratification is found in lakes and reservoirs when the temperature
of the surface water drops, due to heat exchange with the atmosphere, below the mean temperature
of the water body. This, so called cool skin temperature, may occur on a daily basis in some cases,
due to abrupt changes of air temperatures between day and night. The instability generated due to
density differences between surface and deep waters drives the water mass to a buoyancy-induced
circulation, which eventually evolves to different turbulent patterns, organized according to the
depth level, as reviewed by Wüest & Lorke (2003).

The present article summarizes recent research work developed in two aspects relative to this kind
of phenomenon: the onset of instability, which can be predicted using linear stability analysis, and
a preliminary study of non-linear behaviour solving a DNS two-dimensional model for prescribed
conditions.
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2 EQUATIONS AND GENERAL CONDITIONS

2.1 General equations

Using tensor notation, the governing equations for the ith component of flow momentum and
temperature field for an incompressible Boussinesq fluid are:

For convenience, the z axis (i = 3) is considered positive downwards. In eq. (2): p̃ = p∗ − ρ0gx∗
3 .

In eq. (3) the viscous dissipation term is neglected, which would act as a source term in this equation.
On the other hand, α= kρ−1

0 C−1 denotes thermal diffusivity and δpq is the Kronecker-delta function.
Density changes are modelled as a linear function of temperature: ρ= ρ0(1 − β(Tc − T0)), with
β = −(1/ρ0)∂ρ/∂T ∗|0 denoting the coefficient of thermal expansion.

In the case of lakes, the water body exchanges heat with the atmosphere, inflows, outflows and
bed sediments. Reasonable assumptions are to consider that no heat is exchanged between the water
body and the bed and that no inflows or outflows are present. However, a way must be considered
to model the interaction between the lake and the atmosphere. We could use, for instance, the
equilibrium temperature concept, such that the heat flux exchange from the atmosphere to the
lake can be estimated as: Hn = ce(Te −Ts), where Te denotes the equilibrium temperature for given
meteorological conditions over the lake, Ts denotes the water body surface temperature and ce a heat
exchange coefficient, also depending on meteorological conditions. Hn is continuously modified
by weather conditions, via ce and Te, which also modifies Ts as it tends to follow Te. Both Hn

and Ts are continuously changing, so constant flux and constant surface temperature hypotheses
are not exact but widely used, as reviewed by Maxworthy (1997). In this problem we propose the
second case as an approximation for this condition, that is, a step change in surface temperature,
which is kept for t> 0 at a value equal to Tc. The stability of a similar problem with these initial
and boundary conditions have been treated recently (Kim et al., 2002). We aim to implement in
the near future a more realistic time varying boundary condition scheme, along with consideration
of an initial density stratification, having learned previously from the dynamics offered by the
approximated model reported herein.

2.2 Equations and conditions for linear stability analysis

Equations (1) to (3) are the starting point for the linear stability system. The enclosure to be
considered is the deep pool system, defined by Foster (1969) as a fluid body where no total pene-
tration of the thermal disturbance is observed throughout its depth. Keeping the temperature step
hypothesis at the upper surface, we impose the rigid-rigid and free-free boundary conditions, alter-
natively. The latter reflects the situation of the surface layer in a thermally strongly stratified water
body having an idealized thermocline, (whose structure is discussed in the review by Imberger &
Patterson, 1990) subjected to a sudden surface cooling. In deep pool systems, the free-rigid case
yields the same result as the free-free case, as every perturbation variable vanishes provided x∗

3 is
large enough. Non-dimensional stability equations for temperature and vertical velocity, deduced
from (1) to (3) are:
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where� denotes the three dimensional Laplacian and�1 the horizontal one. x3 = x∗
3/L, τ = t∗α/L2,

T = (T ∗ − T0)/(Tc − T0) =�′ + θ ′ and u3 = u∗
3L/α= U + u′

3 = u′
3, as the fluid is quiescent on its

base state. O(θ ′) = O(u′
3) = ε. Pr = ν/α is the Prandtl number and Ra = gβ(T0 − Tc)L3/(αν) is

the Rayleigh number, based on the length scale L. The unsteady base state �′(x3, τ ) corresponds
to the solution of the well known heat equation subjected to the boundary and initial conditions
considered herein. Horizontal modes of the form exp(i(a∗

1 x1 + a∗
2 x2)) are supposed.

Due to the time dependency of�′, it is not possible to assume a priori an exponential growth for
the amplitude functions, as in the case of systems with a steady base state. This case was treated
by Hadji & Jin (1996), and more recently by Kato et al. (2003). According to the propagation
theory developed by Kang & Choi (1997) and Yang & Choi (2002), using dimensional reasoning
and assuming an early onset (small τ ), the dimensionless amplitude functions may have the form:[
u′

3(τ , x3), θ ′(τ , x3)
] = [τu3(ζ ), θ (ζ )], with ζ = x3/

√
τ . Propagation theory can be applied if it is

possible to find a self-similar solution for the base temperature state. If that is the case, from Eqs. (4)
and (5) explicit space and time dependence can be transformed into ζ -only dependence, defining
an implicit time-dependent wave number aτ = τ 1/2

√
(a∗

1)2 + (a∗
2)2 and an implicit time-dependent

Rayleigh number Raτ = τ 3/2 Ra. Now, the onset of the instability is ruled by the conjunction of the
following three parameters: the Prandtl number, which depends solely on the fluid properties, Raτ
and τ , that depend on the system being studied.

The critical Raτ number can be found by using a shooting method to solve (4) and (5) for Raτ and
the unknown boundary conditions at ζ = 0. For the rigid-rigid case, it was considered that on ζ = 0,
u3 = Du3 = θ = 0, with Dn(·) ≡ dn(·)/dζ n, and on ζ → ∞, u3 = Du3 = Dθ = 0. For the free-free
case, equivalent conditions are on ζ = 0, u3 = D2u3 = θ = 0 and on ζ → ∞, u3 = D2u3 = Dθ = 0.

2.3 Conditions for non-linear analysis

The results reported here correspond to a two-dimensional flow situation in a rectangular domain
with height 1 and width A = 2. The region contains water, with Pr = 7. Both side-walls and bottom
are considered adiabatic, so heat transfer is allowed only through the air-water interface. Fluid
properties (except density as stated) are assumed to be constant. Density inversion below 4◦C is
not considered.

Initial and boundary conditions are: T = 0 in x3 = 0, always, T (τ = 0) = 1 everywhere,
∂T/∂x1(x1 = 0, x1 = 2) = 0, always, and ∂T/∂x3(x3 = 1) = 0, always. No-slip is imposed on every
boundary.

The time-dependent solution field was found numerically using the finite volume method. To
solve the pressure gradient field, the simpler scheme was chosen in an orthogonal staggered grid
of 182 × 92 nodes. Temperature field was computed using the power law scheme (Patankar, 1980).
Tolerances for dimensionless values of pressure, pressure correction, temperature and continuity
equation residue were set to 10−9. The dimensionless time step used was 10−6. Rayleigh number
chosen was 106, because of the good balance found between the time for instability onset and
computational cost.

A relevant feature of the two-dimensional problem is that it delivers information, from the
numerical simulation point of view, of the onset of the instability, provided its origin lies on the
x3 axis.

3 RESULTS AND DISCUSSION

For the deep pool systems studied, a suitable self-similar solution for the base temperature field
is �= erf (ζ/2), where erf (·) stands for the error function. For the deep pool Rayleigh-Bénard
problem, with an initially uniform temperature in the whole water body, rigid-rigid boundaries,
Pr = 7 and Ra = 106, Kim et al. (2002) found a critical Rayleigh number Raτ = 27.07 ± 1.35,
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Figure 1. Marginal stability curves for the deep pool system with small onset critical time, τc. The rigid-rigid
case exhibits a critical value of Raτ = 24.73. In the free-free case the critical value found was 12.68.

slightly higher than the critical value found for the rigid-rigid case in the present study (Figure 1).
These results do not consider the existence of vertical side-walls.

For the Rayleigh-Bénard problem, Foster (1969) reported that the time for incipient growth of
instabilities, obtained from the linear stability analysis, differs from the experimental observation
time (τm) by a factor close to 4. In the present numerical simulation, for Ra = 106, the onset time
found (using both the present numerical model along with a 10 aspect ratio prototype program)
was τm ≈ 0.01. This result comes from the observation of a computed dimensionless velocity field
on the order of 10−2. On the other hand, using the results from the stability curve (Figure 1), a
critical time τc can be found by using the critical Rayleigh number: τc = Raτ /Ra2/3 = 0.002473.
With this value, the time for the observed growth of instabilities in the numerical simulations differs
from the critical time calculated from the linear stability analysis by a factor τm/τc = 4.04, in close
agreement with Foster’s factor of 4. Further analyses must be done, using other Rayleigh numbers
and experimental evidence, to generalize this result for the present problem.

Non-linear evolution after the onset of the fastest growing modes exhibits a spatially-periodic
behavior, as vertical plumes tend to organize in nearly fixed places. The downwelling of these
thermal plumes generate circulation rolls, and patterns of horizontal motion, where the most active
places of heat exchange with the atmosphere lie in between the thermal plumes. This can be observed
on Figure 2, which shows the temperature field and the Nusselt number on the upper lid, defined
as Nu0 = − ∂T/∂x3|x3 = 0. Although the mean temperature in the cavity tends to decay throughout
the simulation because of the heat extraction with no balancing source terms, the dynamics of
the phenomenon keeps its shape and also the mean distance and positions of the convecting rolls,
whose motion tends to decay asymptotically. The corresponding organization pattern is shown on
Figure 3. Another interesting feature of the phenomenon is the less active (but not null) heat release
close to the boundaries, showing the relative importance of the velocity field on the overall cooling
process, whose magnitude near the walls is about 40% lower than near the center. It would be
interesting to know the relationship between heat extraction efficiency of the system and aspect
ratio. This will be addressed in a future stage of the present research project.
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Figure 2. Temperature field for the non-linear model, τ = 0.0172. The black line corresponds to the Nusselt
number onto the upper lid, normalized by its maximum. The latter shows that most of the heat exchange with
the atmosphere occurs in between the thermal plumes.

Figure 3. Iso-Nusselt number curves onto the upper lid for the two-dimensional non-linear simulation. Both
thermal plumes and the highest heat extraction zones tend to maintain their original positions, given by the
kinematic, thermal and geometric conditions imposed.

4 CONCLUDING REMARKS

A relatively novel linear stability technique for non-steady base states was applied to predict
the onset of the penetrative convection problem with constant surface temperature. Theoretically
predicted onset time is about 4 times lower than the time at which the instability is detected in
the numerical non-linear simulations. Similar results have been reported for the Rayleigh-Bénard
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problem using experimental observations instead of numerical simulations. The deep pool rigid-
rigid 2-D system appears to be slightly less stable than the classical Rayleigh-Bénard problem with
transient base state, as concluded from comparison with results by Kim et al. (2002). Non-linear
dynamics of the penetrative convection flow is characterized by a spatially periodic self-organization
of the system on alternating zones with high and low surface heat transfer rates, along with per-
sistent buoyant plumes that create circulation as they fall through the water column. Numerical
simulations also show the importance of the vertical boundaries on the heat extraction efficiency,
at least for the studied aspect ratio of 2.

ACKNOWLEDGEMENTS

The authors thank financial support by CONICYT, Chile, through a graduate scholarship for the
main author and FONDECYT Project No. 1040494.

REFERENCES

Foster, T. D. 1969. Onset of manifest convection in a layer of fluid with a time-dependent surface temperature.
Phys. Fluids, 12: 2482–2487, 1969.

Hadji, L. & Jin, X. 1996. Penetrative convection induced by the freezing of seawater. Int. J. Heat MassTransfer,
38(18): 3823–3834.

Imberger, J. & Patterson, J. C. 1990. Physical limnology. Adv. in Applied Mechanics, 27: 303–475.
Kang, K. H. & Choi, C. K. 1997. A theoretical analysis of the onset of surface-tension-driven convection in a

horizontal liquid layer cooled suddenly from above. Phys. Fluids, 9: 7–15.
Kato, R., Hashiba, M. & Fujimura, K. 2003. The onset of penetrative double-diffusive convection. Fluid Dyn.

Res., 32: 295–316.
Kim, M. C., Park, H. K. & Choi, C. K. 2002. Stability of an initially stably stratified fluid subjected to a step

change in temperature. Theoret. Comput. Fluid Dynamics, 16: 49–57.
Maxworthy, T. 1997. Convection into domains with open boundaries. Annu. Rev. Fluid Mech., 29: 327–371,

1997.
Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Mc Graw Hill, 1980.
Wüest, A. & Lorke, A. 2003. Small-Scale hydrodynamics in lakes. Annu. Rev. Fluid Mech., 35: 373–412.
Yang, D. J. & Choi, C. K. 2002. The onset of thermal convection in a horizontal fluid layer heated from below

with time-dependent heat flux. Phys. Fluids, 14(3): 930–937.

274



A.2 Onset of modulated penetrative convection: a theoret-

ical and experimental analysis

This paper is published as a research paper, authored by Christian Ihle and Yarko Niño, in

the Proceedings of the Sixth International Conference on Stratified Flows, Perth, Australia

(2006).

99



Onset of modulated penetrative convection: a theoretical and experimental
analysis

Christian F. Ihle and Yarko Niño

Program in Fluid Dynamics and Department of Civil Engineering
Universidad de Chile
cihle@ing.uchile.cl

Abstract

A simple model to study the onset of modulated penetrative convection induced by surface cool-
ing of lakes and large reservoirs is proposed. It is based on linear analysis of the Boussinesq
Navier-Stokes and energy equations, and considers the effect of time-dependent surface temper-
ature forcing, initial thermal stratification, and variable eddy viscosity and thermal diffusivity
along the depth. A set of dimensionless parameters that govern the onset of convection is de-
fined. It is found that the ratio between the thickness of the mixed layer and a length scale built
upon a reference eddy diffusivity value and the forcing period, are much more important than
the strength of the initial stratification. These results are consistent with laboratory experiments.

1. Introduction

Convection plays an important role on vertical mixing in lakes and reservoirs, contributing
to the effect of wind-induced surface stress, inflows and outflows. It occurs in certain water
bodies, either when the ambient temperature dips below the water surface temperature or due to
evaporative cooling. The intensity and temporal variation of the latter turbulence sources depend
on local climate phenomena. In particular, daily temperature oscillations appear to both induce
and suppress turbulence in the epilimnion, as shown by field studies in lakes (see, for instance,
Jonas et al., 2003). The present paper focuses on the development of a simple model for the
prediction of the onset time of daily convection induced by surface cooling in a temperature
(and hence density) stratified Boussinesq water layer, given a sinusoidal temperature forcing
function in one of the horizontal boundaries.

Since the early 1960s, several one-dimensional models have been developed in order to pre-
dict the thermal structure of the ocean due to the effects of solar heating and surface cooling in a
seasonal basis (see Turner, 1973, and references therein). In those cases, the daily fluctuations of
mean surface temperature and radiation were not considered. The first important contribution to
the study of the daily response of the ocean to the daily effect of radiation and convection is due
to Foster (1971), who developed a model based on the Fourier expansion of the Navier-Stokes
equations under the Boussinesq approximation, considering the effect of radiation (along with
the effect of the water turbidity) in a full-forcing period. Two strong assumptions were con-
sidered in his model: The first is the use of an infinite turbulent Prandtl number, that is, that
the eddy coefficient of viscosity is much larger than the eddy coefficient of thermal diffusivity.
Although this statement prevented his analysis from yielding quantitative results, it is claimed
that the essential features of the phenomenon were preserved. The second assumption is that
the surface cooling is constant, thus allowing for a daily energy balance to be considered in the
analysis. Actually, as the surface temperature depends on ambient temperature, which is also a
periodic function of time, a better approximation to the real effect of surface cooling would be
to set it as a periodic function of time.

In the present work, a simplified model, based on the linearised Navier-Stokes and energy



equations in a Boussinesq fluid layer, is proposed to predict the onset of thermal convection.
Alongside, experiments consisting of the measurement of onset times in a sinusoidally ther-
mally forced water tank were conducted to validate and adjust the model.

2. Problem description and methodology

2.1. Analytical model

Consider an initially stratified, zero-mean-flow, horizontally infinite isothermal Boussinesq
well-mixed fluid layer of height d on top of a large reservoir (see Figure 1). The initial strat-
ification and depth-dependent eddy viscosity and thermal diffusivity are essential features in
the present model of this system. The initial stratification represents the diurnal thermocline,
whereas the diffusion is allowed to evolve from molecular (in the hypolimnion) to turbulent (in
the epilimnion). Among other effects, the present model excludes the onset of turbulent patches.
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Figure 1: Schematic representation of the model. (a) Real situation to be modelled: a well-mixed layer
on top of a density interface. Surface temperature dips beneath the water body temperature in a si-
nusoidal fashion. Initially a null mean velocity field is assumed. (b) Assumed model and experiment
configuration: a bottom plate is heated sinusoidally in an initially quiescent reservoir. In the case of the
experiment, the whole layer has a molecular viscosity, but not in the analytical model, where functions
of the initial temperature field and viscosity are considered.

The forcing temperature, θ∗
0(z

∗ = 0, t∗) = θ∗max +(θ∗min −θ∗max)cos(πt∗/T ), acts at the bot-
tom of the layer. The forcing period, T , is on the order of 24 h for the case of climate forcing.
As the aim of the present work is the study of the onset of convection due to surface cooling,
assumed in the absence of radiation, on a daily basis, t∗ ∈ [0,T/2]. The problem of convection
suppression due to positive heat conduction and radiation, although interesting, is beyond of the
scope of the present paper. The semi-period T/2 will be assumed as a characteristic time scale
for the present problem. Length, velocity and temperature scales are d, 2d/T and θ∗

max −θ∗min,
respectively. Scales for kinematic viscosity and thermal diffusivity are ν̂ and κ̂, respectively.

The dimensionless parameters of interest for a Boussinesq, Reynolds Averaged Navier
Stokes (RANS) description of the flow are:

Pκ =
2d2

κ̂T
; Pν =

2d2

ν̂T
; G =

αg(θ∗max −θ∗min)T d

2ν̂
, (1)

where α is the coefficient of thermal expansion of the fluid and g the magnitude of the gravity
acceleration vector. Considering the vertical component of the expression resulting from taking
twice the curl of the linearised, three dimensional momentum equation in cartesian coordinates,
provided depth-dependent eddy viscosity and diffusivity, leads to a differential equation for
the vertical disturbance velocity and temperature. Decomposing the resulting equations into



horizontal Fourier modes of wavenumbers ax and ay, and assuming an exponential growth rate
of disturbances, an eigenvalue problem for G , given a2 = a2

x +a2
y and t is set:

[(

Pν s+
d2ν
dz2 −ν(D2 −a2)−2dν

dz
D
)

(D2 −a2)−2d2ν
dz2 D2

]

w = −a2Gθ (2a)
[

Pκ s−κ(D2 −a2)−
dκ
dz

D
]

θ = −Pκ w
∂θ̄(z, t)

∂z
, (2b)

where D(·) ≡ d(·)/dz and the integration domain is [0,1] (i.e., it is required for the instability
to develop in the layer of thickness d and to have completely decayed outside of it, as depicted
in Figure 1). In the present set of calculations it is assumed that the lower boundary is a rigid
heated surface whereas the upper is shear-free, resulting in the kinematic boundary conditions:
w(z = 0) = Dw(z = 0) = w(z = 1) = D2w(z = 1) = 0. The base state corresponds to the solution
of a dimensionless diffusion equation

∂θ̄
∂t

=
1

Pκ

∂
∂z

(

κ
∂θ̄
∂z

)

, (3)

with time-dependent forcing, θ(z = 0, t) = (1−cosπt)/2, and variable thermal diffusivity κ(z).
The following initial dimensionless condition is assumed:

θ̄(z, t = 0) =
λ0
2 {1+ tanh [γ(z−λ)]} , (4)

where λ0 = ∆θ∗0/(θ
∗
max −θ∗min) stands for the maximum dimensionless initial temperature dif-

ference attainable in the fluid layer at the beginning of the cycle. A typical value for the latter
is λ0 ≈ 0.05; this value was used throughout the present calculations. On the other hand, λ is
set to 1/2, implying a symmetry condition for the initial temperature, namely one with respect
to the point (λ0/2,1/2). The coefficient γ is a measure of the strength of the initial temperature
stratification and is large enough to set the initial temperature gradient virtually zero at z = 0
and 1. This is consistent with the assumption that disturbances should decay in the limit with
the outer region, at z = 1. In Figure 2a, a set of curves generated with some values of γ for a
fixed value of λ and Pκ are depicted. The viscosity function is consistent with (4) in the sense
that higher density gradients should have corresponding lower eddy viscosities. The matching
was made in a linear fashion. In particular, it is assumed that

κ(z) = ν(z) = 1− θ̄(z, t = 0)

λ0
(1− r), (5)

where r is the ratio between molecular and eddy viscosities, set here to 10−2, representative
of the type of fluid layers considered in the model. Further, it has been assumed that both
molecular and turbulent thermal diffusivity are equal to the corresponding molecular and tur-
bulent viscosity, effectively stating that both the turbulent Prandtl number, σ = ν̂/κ̂, and the
Prandtl number, remain on the order of unity. The eigenvalue problem (2) is solved for a set
of wavenumbers. For each value of time, the critical wavenumber is that which minimises the
eigenvalue G . The computation of (3) was done using a finite difference scheme. A description
and the validation of the numerical technique used to solve the eigenvalue problem is presented
elsewhere (Ihle and Niño, 2006).
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Figure 2: (a) Initial temperature stratification used to solve (3). Three different values for γ are depicted,
namely, 6, corresponding to γ1, 12 and 18, the latter corresponding to γ3 in the figure. (b) Base state
solutions for two values of dimensionless time, namely t1 = 0.05 and t2 = 0.3, considering variable ther-
mal diffusivity, corresponding to (5) (solid lines) and the solution using the constant, thermal diffusivity
scale, κ0 = κ/κ̂ = 1, corresponding to dashed lines, with λ0 = 0.05. In both cases, γ = 7 and Pκ = 10. (c)
Base state solutions considering variable (solid lines) and constant (dashed lines) thermal diffusivities,
for t = 0.05 and three different values of Pκ : 1 (right), 5 (centre) and 50 (left), with λ0=0.05 and γ = 7.

2.2. Experimental setup

A heated 40×15×20 cm perspex tank filled with water, initially at 19.5 ◦C, was used to account
for a preliminary experimental verification of the onset time for convection predicted by the
model. The heater was a brass plate connected to a Haake C heat bath. The latter has a built-
in controller that allows the setting of the brass plate temperature at a time scale much faster
to that of the experiment. Temperature of the plate was modified sinusoidally, fixing a semi-
period of 55 min and an overall temperature difference of 6.8 ◦C. The tank bottom temperature
was measured using a K-type thermocouple. The flow was seeded with 90–110 µm Pliolite
particles (Figure 3a). Convective motion was exposed using a 4 mm thick light sheet generated
with a 1 kW photographic lamp and captured using a Jai CVM4+CL digital video camera with
a 50 mm f0.95 Vortex lens mounted, at a refresh rate of 4 frames per second. The criterion
employed to decide on the onset time for convection was to detect a rapid increase of the root-
mean-square of the computed velocity field using a PIV algorithm (Dalziel et al., 2000). For
the present conditions, the rapid increase was found to occur close to 300 s after the start of the
experiment, as seen in Figure 3b.
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Figure 3: (a) Experimental setup scheme (side view). (b) RMS of the kinetic energy, computed as
E∗ =

(

〈u∗2〉+ 〈v∗2〉
)1/2, as a function of time. The apparently two groups of data are a consequence of

the choice of the data sampling frequency, biased towards the detection of onset times for convection
instead of an accurate reproduction of the non-linear dynamics of the flow.



3. Results and discussion

The length scale d considered in the present problem is representative of the mixed layer, also
referred to as the diurnal thermocline. A dimensionless account for the ratio between the con-
vective layer width and the overall reservoir depth is given by Pκ

−1/2. For instance, a typical
value for the eddy thermal diffusivity of 10−4m2 s−1 (Wüest and Lorke, 2003) and a semiperiod
of 12 h leads to a mixed layer scale of 1 m, which is commensurate with field observations. For
large reservoirs, normally Pκ

−1/2 < 1, and in most of the cases for small and medium-sized
reservoirs, Pκ

−1/2 > 1/10.
The effect of variable viscosity in the heat transfer characteristics of the system can be seen

in Figure 2b, where a comparison with the constant diffusivity case is presented. For t1, which
is approximately the time when convection starts, it is observed that for a low value of Pκ ,
heat transfer up to about half the layer height is more efficient than in the constant diffusivity
case, as expected. However, a zone exists near the outer boundary where this trend is reversed.
Interestingly, for medium to large values of Pκ , at times on the order of those corresponding
to the onset of convection in water, the response of the variable thermal diffusivity system is
very close to that with a constant one. For values of Pκ on the order of or larger than 50, this
statement holds also for large values of γ, as is shown in Figure 4c. Onset times for a range
of values of G , γ and Pκ are shown in Figure 4. Parameters for the experimental verification
correspond approximately to Pκ = 85.3 and G = 1.1×107. The corresponding dimensionless
measured onset time is close to 0.09. For these parameters, solving the eigenvalue problem (2)
with its corresponding boundary conditions yields an onset time close to 0.03, commensurate
with the experimental one. From Figure 4, it is apparent that onset times for convection are
much strongly dependent on the Pκ parameter than on the strength of initial stratification, given
by γ. In other words, the thickness of the mixed layer and the forcing temperature amplitude
strongly determines the time that marks the increase of eddy motion, in a much greater extent
than the initial stratification. However, present results suggest that for low values of the Pκ
parameter, corresponding to a high effective thermal diffusivity, stratification plays an important
role, as shown in Figure 4a, where the tendency of the critical curves is inverted with respect to
cases b and c: the higher γ is, the more stable the system becomes.
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4. Conclusions

A simple model to study the onset of penetrative convection in lakes and reservoirs has been
proposed and contrasted with experimental results. The effect of periodic heat flow, variable
initial temperature field, eddy viscosity, and thermal diffusivity has been considered. A dimen-
sionless number that relates the forcing period with the mixed layer depth and eddy viscosity,
appears to strongly influence onset times, in comparison with initial stratification strengths.
Experimental evidence gathered so far is consistent with predicted values of onset times.
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Jonas, T., Stips, A., Eugster, W., and Wüest, A. (2003). Observations of a quasi shear-free
lacustrine convective boundary layer: Stratification and its implications on turbulence. J.
Geophys. Res., 108:26/1–26/15.

Turner, J. (1973). Buoyancy effects in fluids. Cambridge University Press.
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